jbd2: remove bh_state lock from checkpointing code
[linux-2.6-block.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_file_inode);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97
98 static void __journal_abort_soft (journal_t *journal, int errno);
99 static int jbd2_journal_create_slab(size_t slab_size);
100
101 /*
102  * Helper function used to manage commit timeouts
103  */
104
105 static void commit_timeout(unsigned long __data)
106 {
107         struct task_struct * p = (struct task_struct *) __data;
108
109         wake_up_process(p);
110 }
111
112 /*
113  * kjournald2: The main thread function used to manage a logging device
114  * journal.
115  *
116  * This kernel thread is responsible for two things:
117  *
118  * 1) COMMIT:  Every so often we need to commit the current state of the
119  *    filesystem to disk.  The journal thread is responsible for writing
120  *    all of the metadata buffers to disk.
121  *
122  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
123  *    of the data in that part of the log has been rewritten elsewhere on
124  *    the disk.  Flushing these old buffers to reclaim space in the log is
125  *    known as checkpointing, and this thread is responsible for that job.
126  */
127
128 static int kjournald2(void *arg)
129 {
130         journal_t *journal = arg;
131         transaction_t *transaction;
132
133         /*
134          * Set up an interval timer which can be used to trigger a commit wakeup
135          * after the commit interval expires
136          */
137         setup_timer(&journal->j_commit_timer, commit_timeout,
138                         (unsigned long)current);
139
140         /* Record that the journal thread is running */
141         journal->j_task = current;
142         wake_up(&journal->j_wait_done_commit);
143
144         /*
145          * And now, wait forever for commit wakeup events.
146          */
147         write_lock(&journal->j_state_lock);
148
149 loop:
150         if (journal->j_flags & JBD2_UNMOUNT)
151                 goto end_loop;
152
153         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
154                 journal->j_commit_sequence, journal->j_commit_request);
155
156         if (journal->j_commit_sequence != journal->j_commit_request) {
157                 jbd_debug(1, "OK, requests differ\n");
158                 write_unlock(&journal->j_state_lock);
159                 del_timer_sync(&journal->j_commit_timer);
160                 jbd2_journal_commit_transaction(journal);
161                 write_lock(&journal->j_state_lock);
162                 goto loop;
163         }
164
165         wake_up(&journal->j_wait_done_commit);
166         if (freezing(current)) {
167                 /*
168                  * The simpler the better. Flushing journal isn't a
169                  * good idea, because that depends on threads that may
170                  * be already stopped.
171                  */
172                 jbd_debug(1, "Now suspending kjournald2\n");
173                 write_unlock(&journal->j_state_lock);
174                 try_to_freeze();
175                 write_lock(&journal->j_state_lock);
176         } else {
177                 /*
178                  * We assume on resume that commits are already there,
179                  * so we don't sleep
180                  */
181                 DEFINE_WAIT(wait);
182                 int should_sleep = 1;
183
184                 prepare_to_wait(&journal->j_wait_commit, &wait,
185                                 TASK_INTERRUPTIBLE);
186                 if (journal->j_commit_sequence != journal->j_commit_request)
187                         should_sleep = 0;
188                 transaction = journal->j_running_transaction;
189                 if (transaction && time_after_eq(jiffies,
190                                                 transaction->t_expires))
191                         should_sleep = 0;
192                 if (journal->j_flags & JBD2_UNMOUNT)
193                         should_sleep = 0;
194                 if (should_sleep) {
195                         write_unlock(&journal->j_state_lock);
196                         schedule();
197                         write_lock(&journal->j_state_lock);
198                 }
199                 finish_wait(&journal->j_wait_commit, &wait);
200         }
201
202         jbd_debug(1, "kjournald2 wakes\n");
203
204         /*
205          * Were we woken up by a commit wakeup event?
206          */
207         transaction = journal->j_running_transaction;
208         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
209                 journal->j_commit_request = transaction->t_tid;
210                 jbd_debug(1, "woke because of timeout\n");
211         }
212         goto loop;
213
214 end_loop:
215         write_unlock(&journal->j_state_lock);
216         del_timer_sync(&journal->j_commit_timer);
217         journal->j_task = NULL;
218         wake_up(&journal->j_wait_done_commit);
219         jbd_debug(1, "Journal thread exiting.\n");
220         return 0;
221 }
222
223 static int jbd2_journal_start_thread(journal_t *journal)
224 {
225         struct task_struct *t;
226
227         t = kthread_run(kjournald2, journal, "jbd2/%s",
228                         journal->j_devname);
229         if (IS_ERR(t))
230                 return PTR_ERR(t);
231
232         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
233         return 0;
234 }
235
236 static void journal_kill_thread(journal_t *journal)
237 {
238         write_lock(&journal->j_state_lock);
239         journal->j_flags |= JBD2_UNMOUNT;
240
241         while (journal->j_task) {
242                 wake_up(&journal->j_wait_commit);
243                 write_unlock(&journal->j_state_lock);
244                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
245                 write_lock(&journal->j_state_lock);
246         }
247         write_unlock(&journal->j_state_lock);
248 }
249
250 /*
251  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
252  *
253  * Writes a metadata buffer to a given disk block.  The actual IO is not
254  * performed but a new buffer_head is constructed which labels the data
255  * to be written with the correct destination disk block.
256  *
257  * Any magic-number escaping which needs to be done will cause a
258  * copy-out here.  If the buffer happens to start with the
259  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
260  * magic number is only written to the log for descripter blocks.  In
261  * this case, we copy the data and replace the first word with 0, and we
262  * return a result code which indicates that this buffer needs to be
263  * marked as an escaped buffer in the corresponding log descriptor
264  * block.  The missing word can then be restored when the block is read
265  * during recovery.
266  *
267  * If the source buffer has already been modified by a new transaction
268  * since we took the last commit snapshot, we use the frozen copy of
269  * that data for IO.  If we end up using the existing buffer_head's data
270  * for the write, then we *have* to lock the buffer to prevent anyone
271  * else from using and possibly modifying it while the IO is in
272  * progress.
273  *
274  * The function returns a pointer to the buffer_heads to be used for IO.
275  *
276  * We assume that the journal has already been locked in this function.
277  *
278  * Return value:
279  *  <0: Error
280  * >=0: Finished OK
281  *
282  * On success:
283  * Bit 0 set == escape performed on the data
284  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
285  */
286
287 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
288                                   struct journal_head  *jh_in,
289                                   struct journal_head **jh_out,
290                                   unsigned long long blocknr)
291 {
292         int need_copy_out = 0;
293         int done_copy_out = 0;
294         int do_escape = 0;
295         char *mapped_data;
296         struct buffer_head *new_bh;
297         struct journal_head *new_jh;
298         struct page *new_page;
299         unsigned int new_offset;
300         struct buffer_head *bh_in = jh2bh(jh_in);
301         journal_t *journal = transaction->t_journal;
302
303         /*
304          * The buffer really shouldn't be locked: only the current committing
305          * transaction is allowed to write it, so nobody else is allowed
306          * to do any IO.
307          *
308          * akpm: except if we're journalling data, and write() output is
309          * also part of a shared mapping, and another thread has
310          * decided to launch a writepage() against this buffer.
311          */
312         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
313
314 retry_alloc:
315         new_bh = alloc_buffer_head(GFP_NOFS);
316         if (!new_bh) {
317                 /*
318                  * Failure is not an option, but __GFP_NOFAIL is going
319                  * away; so we retry ourselves here.
320                  */
321                 congestion_wait(BLK_RW_ASYNC, HZ/50);
322                 goto retry_alloc;
323         }
324
325         /* keep subsequent assertions sane */
326         new_bh->b_state = 0;
327         init_buffer(new_bh, NULL, NULL);
328         atomic_set(&new_bh->b_count, 1);
329         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
330
331         /*
332          * If a new transaction has already done a buffer copy-out, then
333          * we use that version of the data for the commit.
334          */
335         jbd_lock_bh_state(bh_in);
336 repeat:
337         if (jh_in->b_frozen_data) {
338                 done_copy_out = 1;
339                 new_page = virt_to_page(jh_in->b_frozen_data);
340                 new_offset = offset_in_page(jh_in->b_frozen_data);
341         } else {
342                 new_page = jh2bh(jh_in)->b_page;
343                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
344         }
345
346         mapped_data = kmap_atomic(new_page, KM_USER0);
347         /*
348          * Fire data frozen trigger if data already wasn't frozen.  Do this
349          * before checking for escaping, as the trigger may modify the magic
350          * offset.  If a copy-out happens afterwards, it will have the correct
351          * data in the buffer.
352          */
353         if (!done_copy_out)
354                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
355                                            jh_in->b_triggers);
356
357         /*
358          * Check for escaping
359          */
360         if (*((__be32 *)(mapped_data + new_offset)) ==
361                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
362                 need_copy_out = 1;
363                 do_escape = 1;
364         }
365         kunmap_atomic(mapped_data, KM_USER0);
366
367         /*
368          * Do we need to do a data copy?
369          */
370         if (need_copy_out && !done_copy_out) {
371                 char *tmp;
372
373                 jbd_unlock_bh_state(bh_in);
374                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
375                 if (!tmp) {
376                         jbd2_journal_put_journal_head(new_jh);
377                         return -ENOMEM;
378                 }
379                 jbd_lock_bh_state(bh_in);
380                 if (jh_in->b_frozen_data) {
381                         jbd2_free(tmp, bh_in->b_size);
382                         goto repeat;
383                 }
384
385                 jh_in->b_frozen_data = tmp;
386                 mapped_data = kmap_atomic(new_page, KM_USER0);
387                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
388                 kunmap_atomic(mapped_data, KM_USER0);
389
390                 new_page = virt_to_page(tmp);
391                 new_offset = offset_in_page(tmp);
392                 done_copy_out = 1;
393
394                 /*
395                  * This isn't strictly necessary, as we're using frozen
396                  * data for the escaping, but it keeps consistency with
397                  * b_frozen_data usage.
398                  */
399                 jh_in->b_frozen_triggers = jh_in->b_triggers;
400         }
401
402         /*
403          * Did we need to do an escaping?  Now we've done all the
404          * copying, we can finally do so.
405          */
406         if (do_escape) {
407                 mapped_data = kmap_atomic(new_page, KM_USER0);
408                 *((unsigned int *)(mapped_data + new_offset)) = 0;
409                 kunmap_atomic(mapped_data, KM_USER0);
410         }
411
412         set_bh_page(new_bh, new_page, new_offset);
413         new_jh->b_transaction = NULL;
414         new_bh->b_size = jh2bh(jh_in)->b_size;
415         new_bh->b_bdev = transaction->t_journal->j_dev;
416         new_bh->b_blocknr = blocknr;
417         set_buffer_mapped(new_bh);
418         set_buffer_dirty(new_bh);
419
420         *jh_out = new_jh;
421
422         /*
423          * The to-be-written buffer needs to get moved to the io queue,
424          * and the original buffer whose contents we are shadowing or
425          * copying is moved to the transaction's shadow queue.
426          */
427         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
428         spin_lock(&journal->j_list_lock);
429         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
430         spin_unlock(&journal->j_list_lock);
431         jbd_unlock_bh_state(bh_in);
432
433         JBUFFER_TRACE(new_jh, "file as BJ_IO");
434         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
435
436         return do_escape | (done_copy_out << 1);
437 }
438
439 /*
440  * Allocation code for the journal file.  Manage the space left in the
441  * journal, so that we can begin checkpointing when appropriate.
442  */
443
444 /*
445  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
446  *
447  * Called with the journal already locked.
448  *
449  * Called under j_state_lock
450  */
451
452 int __jbd2_log_space_left(journal_t *journal)
453 {
454         int left = journal->j_free;
455
456         /* assert_spin_locked(&journal->j_state_lock); */
457
458         /*
459          * Be pessimistic here about the number of those free blocks which
460          * might be required for log descriptor control blocks.
461          */
462
463 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
464
465         left -= MIN_LOG_RESERVED_BLOCKS;
466
467         if (left <= 0)
468                 return 0;
469         left -= (left >> 3);
470         return left;
471 }
472
473 /*
474  * Called with j_state_lock locked for writing.
475  * Returns true if a transaction commit was started.
476  */
477 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
478 {
479         /*
480          * The only transaction we can possibly wait upon is the
481          * currently running transaction (if it exists).  Otherwise,
482          * the target tid must be an old one.
483          */
484         if (journal->j_running_transaction &&
485             journal->j_running_transaction->t_tid == target) {
486                 /*
487                  * We want a new commit: OK, mark the request and wakeup the
488                  * commit thread.  We do _not_ do the commit ourselves.
489                  */
490
491                 journal->j_commit_request = target;
492                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
493                           journal->j_commit_request,
494                           journal->j_commit_sequence);
495                 wake_up(&journal->j_wait_commit);
496                 return 1;
497         } else if (!tid_geq(journal->j_commit_request, target))
498                 /* This should never happen, but if it does, preserve
499                    the evidence before kjournald goes into a loop and
500                    increments j_commit_sequence beyond all recognition. */
501                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
502                           journal->j_commit_request,
503                           journal->j_commit_sequence,
504                           target, journal->j_running_transaction ? 
505                           journal->j_running_transaction->t_tid : 0);
506         return 0;
507 }
508
509 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
510 {
511         int ret;
512
513         write_lock(&journal->j_state_lock);
514         ret = __jbd2_log_start_commit(journal, tid);
515         write_unlock(&journal->j_state_lock);
516         return ret;
517 }
518
519 /*
520  * Force and wait upon a commit if the calling process is not within
521  * transaction.  This is used for forcing out undo-protected data which contains
522  * bitmaps, when the fs is running out of space.
523  *
524  * We can only force the running transaction if we don't have an active handle;
525  * otherwise, we will deadlock.
526  *
527  * Returns true if a transaction was started.
528  */
529 int jbd2_journal_force_commit_nested(journal_t *journal)
530 {
531         transaction_t *transaction = NULL;
532         tid_t tid;
533         int need_to_start = 0;
534
535         read_lock(&journal->j_state_lock);
536         if (journal->j_running_transaction && !current->journal_info) {
537                 transaction = journal->j_running_transaction;
538                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
539                         need_to_start = 1;
540         } else if (journal->j_committing_transaction)
541                 transaction = journal->j_committing_transaction;
542
543         if (!transaction) {
544                 read_unlock(&journal->j_state_lock);
545                 return 0;       /* Nothing to retry */
546         }
547
548         tid = transaction->t_tid;
549         read_unlock(&journal->j_state_lock);
550         if (need_to_start)
551                 jbd2_log_start_commit(journal, tid);
552         jbd2_log_wait_commit(journal, tid);
553         return 1;
554 }
555
556 /*
557  * Start a commit of the current running transaction (if any).  Returns true
558  * if a transaction is going to be committed (or is currently already
559  * committing), and fills its tid in at *ptid
560  */
561 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
562 {
563         int ret = 0;
564
565         write_lock(&journal->j_state_lock);
566         if (journal->j_running_transaction) {
567                 tid_t tid = journal->j_running_transaction->t_tid;
568
569                 __jbd2_log_start_commit(journal, tid);
570                 /* There's a running transaction and we've just made sure
571                  * it's commit has been scheduled. */
572                 if (ptid)
573                         *ptid = tid;
574                 ret = 1;
575         } else if (journal->j_committing_transaction) {
576                 /*
577                  * If ext3_write_super() recently started a commit, then we
578                  * have to wait for completion of that transaction
579                  */
580                 if (ptid)
581                         *ptid = journal->j_committing_transaction->t_tid;
582                 ret = 1;
583         }
584         write_unlock(&journal->j_state_lock);
585         return ret;
586 }
587
588 /*
589  * Return 1 if a given transaction has not yet sent barrier request
590  * connected with a transaction commit. If 0 is returned, transaction
591  * may or may not have sent the barrier. Used to avoid sending barrier
592  * twice in common cases.
593  */
594 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
595 {
596         int ret = 0;
597         transaction_t *commit_trans;
598
599         if (!(journal->j_flags & JBD2_BARRIER))
600                 return 0;
601         read_lock(&journal->j_state_lock);
602         /* Transaction already committed? */
603         if (tid_geq(journal->j_commit_sequence, tid))
604                 goto out;
605         commit_trans = journal->j_committing_transaction;
606         if (!commit_trans || commit_trans->t_tid != tid) {
607                 ret = 1;
608                 goto out;
609         }
610         /*
611          * Transaction is being committed and we already proceeded to
612          * submitting a flush to fs partition?
613          */
614         if (journal->j_fs_dev != journal->j_dev) {
615                 if (!commit_trans->t_need_data_flush ||
616                     commit_trans->t_state >= T_COMMIT_DFLUSH)
617                         goto out;
618         } else {
619                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
620                         goto out;
621         }
622         ret = 1;
623 out:
624         read_unlock(&journal->j_state_lock);
625         return ret;
626 }
627 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
628
629 /*
630  * Wait for a specified commit to complete.
631  * The caller may not hold the journal lock.
632  */
633 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
634 {
635         int err = 0;
636
637         read_lock(&journal->j_state_lock);
638 #ifdef CONFIG_JBD2_DEBUG
639         if (!tid_geq(journal->j_commit_request, tid)) {
640                 printk(KERN_EMERG
641                        "%s: error: j_commit_request=%d, tid=%d\n",
642                        __func__, journal->j_commit_request, tid);
643         }
644 #endif
645         while (tid_gt(tid, journal->j_commit_sequence)) {
646                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
647                                   tid, journal->j_commit_sequence);
648                 wake_up(&journal->j_wait_commit);
649                 read_unlock(&journal->j_state_lock);
650                 wait_event(journal->j_wait_done_commit,
651                                 !tid_gt(tid, journal->j_commit_sequence));
652                 read_lock(&journal->j_state_lock);
653         }
654         read_unlock(&journal->j_state_lock);
655
656         if (unlikely(is_journal_aborted(journal))) {
657                 printk(KERN_EMERG "journal commit I/O error\n");
658                 err = -EIO;
659         }
660         return err;
661 }
662
663 /*
664  * Log buffer allocation routines:
665  */
666
667 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
668 {
669         unsigned long blocknr;
670
671         write_lock(&journal->j_state_lock);
672         J_ASSERT(journal->j_free > 1);
673
674         blocknr = journal->j_head;
675         journal->j_head++;
676         journal->j_free--;
677         if (journal->j_head == journal->j_last)
678                 journal->j_head = journal->j_first;
679         write_unlock(&journal->j_state_lock);
680         return jbd2_journal_bmap(journal, blocknr, retp);
681 }
682
683 /*
684  * Conversion of logical to physical block numbers for the journal
685  *
686  * On external journals the journal blocks are identity-mapped, so
687  * this is a no-op.  If needed, we can use j_blk_offset - everything is
688  * ready.
689  */
690 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
691                  unsigned long long *retp)
692 {
693         int err = 0;
694         unsigned long long ret;
695
696         if (journal->j_inode) {
697                 ret = bmap(journal->j_inode, blocknr);
698                 if (ret)
699                         *retp = ret;
700                 else {
701                         printk(KERN_ALERT "%s: journal block not found "
702                                         "at offset %lu on %s\n",
703                                __func__, blocknr, journal->j_devname);
704                         err = -EIO;
705                         __journal_abort_soft(journal, err);
706                 }
707         } else {
708                 *retp = blocknr; /* +journal->j_blk_offset */
709         }
710         return err;
711 }
712
713 /*
714  * We play buffer_head aliasing tricks to write data/metadata blocks to
715  * the journal without copying their contents, but for journal
716  * descriptor blocks we do need to generate bona fide buffers.
717  *
718  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
719  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
720  * But we don't bother doing that, so there will be coherency problems with
721  * mmaps of blockdevs which hold live JBD-controlled filesystems.
722  */
723 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
724 {
725         struct buffer_head *bh;
726         unsigned long long blocknr;
727         int err;
728
729         err = jbd2_journal_next_log_block(journal, &blocknr);
730
731         if (err)
732                 return NULL;
733
734         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
735         if (!bh)
736                 return NULL;
737         lock_buffer(bh);
738         memset(bh->b_data, 0, journal->j_blocksize);
739         set_buffer_uptodate(bh);
740         unlock_buffer(bh);
741         BUFFER_TRACE(bh, "return this buffer");
742         return jbd2_journal_add_journal_head(bh);
743 }
744
745 /*
746  * Return tid of the oldest transaction in the journal and block in the journal
747  * where the transaction starts.
748  *
749  * If the journal is now empty, return which will be the next transaction ID
750  * we will write and where will that transaction start.
751  *
752  * The return value is 0 if journal tail cannot be pushed any further, 1 if
753  * it can.
754  */
755 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
756                               unsigned long *block)
757 {
758         transaction_t *transaction;
759         int ret;
760
761         read_lock(&journal->j_state_lock);
762         spin_lock(&journal->j_list_lock);
763         transaction = journal->j_checkpoint_transactions;
764         if (transaction) {
765                 *tid = transaction->t_tid;
766                 *block = transaction->t_log_start;
767         } else if ((transaction = journal->j_committing_transaction) != NULL) {
768                 *tid = transaction->t_tid;
769                 *block = transaction->t_log_start;
770         } else if ((transaction = journal->j_running_transaction) != NULL) {
771                 *tid = transaction->t_tid;
772                 *block = journal->j_head;
773         } else {
774                 *tid = journal->j_transaction_sequence;
775                 *block = journal->j_head;
776         }
777         ret = tid_gt(*tid, journal->j_tail_sequence);
778         spin_unlock(&journal->j_list_lock);
779         read_unlock(&journal->j_state_lock);
780
781         return ret;
782 }
783
784 /*
785  * Update information in journal structure and in on disk journal superblock
786  * about log tail. This function does not check whether information passed in
787  * really pushes log tail further. It's responsibility of the caller to make
788  * sure provided log tail information is valid (e.g. by holding
789  * j_checkpoint_mutex all the time between computing log tail and calling this
790  * function as is the case with jbd2_cleanup_journal_tail()).
791  *
792  * Requires j_checkpoint_mutex
793  */
794 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
795 {
796         unsigned long freed;
797
798         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
799
800         /*
801          * We cannot afford for write to remain in drive's caches since as
802          * soon as we update j_tail, next transaction can start reusing journal
803          * space and if we lose sb update during power failure we'd replay
804          * old transaction with possibly newly overwritten data.
805          */
806         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
807         write_lock(&journal->j_state_lock);
808         freed = block - journal->j_tail;
809         if (block < journal->j_tail)
810                 freed += journal->j_last - journal->j_first;
811
812         trace_jbd2_update_log_tail(journal, tid, block, freed);
813         jbd_debug(1,
814                   "Cleaning journal tail from %d to %d (offset %lu), "
815                   "freeing %lu\n",
816                   journal->j_tail_sequence, tid, block, freed);
817
818         journal->j_free += freed;
819         journal->j_tail_sequence = tid;
820         journal->j_tail = block;
821         write_unlock(&journal->j_state_lock);
822 }
823
824 struct jbd2_stats_proc_session {
825         journal_t *journal;
826         struct transaction_stats_s *stats;
827         int start;
828         int max;
829 };
830
831 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
832 {
833         return *pos ? NULL : SEQ_START_TOKEN;
834 }
835
836 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
837 {
838         return NULL;
839 }
840
841 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
842 {
843         struct jbd2_stats_proc_session *s = seq->private;
844
845         if (v != SEQ_START_TOKEN)
846                 return 0;
847         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
848                         s->stats->ts_tid,
849                         s->journal->j_max_transaction_buffers);
850         if (s->stats->ts_tid == 0)
851                 return 0;
852         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
853             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
854         seq_printf(seq, "  %ums running transaction\n",
855             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
856         seq_printf(seq, "  %ums transaction was being locked\n",
857             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
858         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
859             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
860         seq_printf(seq, "  %ums logging transaction\n",
861             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
862         seq_printf(seq, "  %lluus average transaction commit time\n",
863                    div_u64(s->journal->j_average_commit_time, 1000));
864         seq_printf(seq, "  %lu handles per transaction\n",
865             s->stats->run.rs_handle_count / s->stats->ts_tid);
866         seq_printf(seq, "  %lu blocks per transaction\n",
867             s->stats->run.rs_blocks / s->stats->ts_tid);
868         seq_printf(seq, "  %lu logged blocks per transaction\n",
869             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
870         return 0;
871 }
872
873 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
874 {
875 }
876
877 static const struct seq_operations jbd2_seq_info_ops = {
878         .start  = jbd2_seq_info_start,
879         .next   = jbd2_seq_info_next,
880         .stop   = jbd2_seq_info_stop,
881         .show   = jbd2_seq_info_show,
882 };
883
884 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
885 {
886         journal_t *journal = PDE(inode)->data;
887         struct jbd2_stats_proc_session *s;
888         int rc, size;
889
890         s = kmalloc(sizeof(*s), GFP_KERNEL);
891         if (s == NULL)
892                 return -ENOMEM;
893         size = sizeof(struct transaction_stats_s);
894         s->stats = kmalloc(size, GFP_KERNEL);
895         if (s->stats == NULL) {
896                 kfree(s);
897                 return -ENOMEM;
898         }
899         spin_lock(&journal->j_history_lock);
900         memcpy(s->stats, &journal->j_stats, size);
901         s->journal = journal;
902         spin_unlock(&journal->j_history_lock);
903
904         rc = seq_open(file, &jbd2_seq_info_ops);
905         if (rc == 0) {
906                 struct seq_file *m = file->private_data;
907                 m->private = s;
908         } else {
909                 kfree(s->stats);
910                 kfree(s);
911         }
912         return rc;
913
914 }
915
916 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
917 {
918         struct seq_file *seq = file->private_data;
919         struct jbd2_stats_proc_session *s = seq->private;
920         kfree(s->stats);
921         kfree(s);
922         return seq_release(inode, file);
923 }
924
925 static const struct file_operations jbd2_seq_info_fops = {
926         .owner          = THIS_MODULE,
927         .open           = jbd2_seq_info_open,
928         .read           = seq_read,
929         .llseek         = seq_lseek,
930         .release        = jbd2_seq_info_release,
931 };
932
933 static struct proc_dir_entry *proc_jbd2_stats;
934
935 static void jbd2_stats_proc_init(journal_t *journal)
936 {
937         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
938         if (journal->j_proc_entry) {
939                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
940                                  &jbd2_seq_info_fops, journal);
941         }
942 }
943
944 static void jbd2_stats_proc_exit(journal_t *journal)
945 {
946         remove_proc_entry("info", journal->j_proc_entry);
947         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
948 }
949
950 /*
951  * Management for journal control blocks: functions to create and
952  * destroy journal_t structures, and to initialise and read existing
953  * journal blocks from disk.  */
954
955 /* First: create and setup a journal_t object in memory.  We initialise
956  * very few fields yet: that has to wait until we have created the
957  * journal structures from from scratch, or loaded them from disk. */
958
959 static journal_t * journal_init_common (void)
960 {
961         journal_t *journal;
962         int err;
963
964         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
965         if (!journal)
966                 return NULL;
967
968         init_waitqueue_head(&journal->j_wait_transaction_locked);
969         init_waitqueue_head(&journal->j_wait_logspace);
970         init_waitqueue_head(&journal->j_wait_done_commit);
971         init_waitqueue_head(&journal->j_wait_checkpoint);
972         init_waitqueue_head(&journal->j_wait_commit);
973         init_waitqueue_head(&journal->j_wait_updates);
974         mutex_init(&journal->j_barrier);
975         mutex_init(&journal->j_checkpoint_mutex);
976         spin_lock_init(&journal->j_revoke_lock);
977         spin_lock_init(&journal->j_list_lock);
978         rwlock_init(&journal->j_state_lock);
979
980         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
981         journal->j_min_batch_time = 0;
982         journal->j_max_batch_time = 15000; /* 15ms */
983
984         /* The journal is marked for error until we succeed with recovery! */
985         journal->j_flags = JBD2_ABORT;
986
987         /* Set up a default-sized revoke table for the new mount. */
988         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
989         if (err) {
990                 kfree(journal);
991                 return NULL;
992         }
993
994         spin_lock_init(&journal->j_history_lock);
995
996         return journal;
997 }
998
999 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1000  *
1001  * Create a journal structure assigned some fixed set of disk blocks to
1002  * the journal.  We don't actually touch those disk blocks yet, but we
1003  * need to set up all of the mapping information to tell the journaling
1004  * system where the journal blocks are.
1005  *
1006  */
1007
1008 /**
1009  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1010  *  @bdev: Block device on which to create the journal
1011  *  @fs_dev: Device which hold journalled filesystem for this journal.
1012  *  @start: Block nr Start of journal.
1013  *  @len:  Length of the journal in blocks.
1014  *  @blocksize: blocksize of journalling device
1015  *
1016  *  Returns: a newly created journal_t *
1017  *
1018  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1019  *  range of blocks on an arbitrary block device.
1020  *
1021  */
1022 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1023                         struct block_device *fs_dev,
1024                         unsigned long long start, int len, int blocksize)
1025 {
1026         journal_t *journal = journal_init_common();
1027         struct buffer_head *bh;
1028         char *p;
1029         int n;
1030
1031         if (!journal)
1032                 return NULL;
1033
1034         /* journal descriptor can store up to n blocks -bzzz */
1035         journal->j_blocksize = blocksize;
1036         journal->j_dev = bdev;
1037         journal->j_fs_dev = fs_dev;
1038         journal->j_blk_offset = start;
1039         journal->j_maxlen = len;
1040         bdevname(journal->j_dev, journal->j_devname);
1041         p = journal->j_devname;
1042         while ((p = strchr(p, '/')))
1043                 *p = '!';
1044         jbd2_stats_proc_init(journal);
1045         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1046         journal->j_wbufsize = n;
1047         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1048         if (!journal->j_wbuf) {
1049                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1050                         __func__);
1051                 goto out_err;
1052         }
1053
1054         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1055         if (!bh) {
1056                 printk(KERN_ERR
1057                        "%s: Cannot get buffer for journal superblock\n",
1058                        __func__);
1059                 goto out_err;
1060         }
1061         journal->j_sb_buffer = bh;
1062         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1063
1064         return journal;
1065 out_err:
1066         kfree(journal->j_wbuf);
1067         jbd2_stats_proc_exit(journal);
1068         kfree(journal);
1069         return NULL;
1070 }
1071
1072 /**
1073  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1074  *  @inode: An inode to create the journal in
1075  *
1076  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1077  * the journal.  The inode must exist already, must support bmap() and
1078  * must have all data blocks preallocated.
1079  */
1080 journal_t * jbd2_journal_init_inode (struct inode *inode)
1081 {
1082         struct buffer_head *bh;
1083         journal_t *journal = journal_init_common();
1084         char *p;
1085         int err;
1086         int n;
1087         unsigned long long blocknr;
1088
1089         if (!journal)
1090                 return NULL;
1091
1092         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1093         journal->j_inode = inode;
1094         bdevname(journal->j_dev, journal->j_devname);
1095         p = journal->j_devname;
1096         while ((p = strchr(p, '/')))
1097                 *p = '!';
1098         p = journal->j_devname + strlen(journal->j_devname);
1099         sprintf(p, "-%lu", journal->j_inode->i_ino);
1100         jbd_debug(1,
1101                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1102                   journal, inode->i_sb->s_id, inode->i_ino,
1103                   (long long) inode->i_size,
1104                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1105
1106         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1107         journal->j_blocksize = inode->i_sb->s_blocksize;
1108         jbd2_stats_proc_init(journal);
1109
1110         /* journal descriptor can store up to n blocks -bzzz */
1111         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1112         journal->j_wbufsize = n;
1113         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1114         if (!journal->j_wbuf) {
1115                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1116                         __func__);
1117                 goto out_err;
1118         }
1119
1120         err = jbd2_journal_bmap(journal, 0, &blocknr);
1121         /* If that failed, give up */
1122         if (err) {
1123                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1124                        __func__);
1125                 goto out_err;
1126         }
1127
1128         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1129         if (!bh) {
1130                 printk(KERN_ERR
1131                        "%s: Cannot get buffer for journal superblock\n",
1132                        __func__);
1133                 goto out_err;
1134         }
1135         journal->j_sb_buffer = bh;
1136         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1137
1138         return journal;
1139 out_err:
1140         kfree(journal->j_wbuf);
1141         jbd2_stats_proc_exit(journal);
1142         kfree(journal);
1143         return NULL;
1144 }
1145
1146 /*
1147  * If the journal init or create aborts, we need to mark the journal
1148  * superblock as being NULL to prevent the journal destroy from writing
1149  * back a bogus superblock.
1150  */
1151 static void journal_fail_superblock (journal_t *journal)
1152 {
1153         struct buffer_head *bh = journal->j_sb_buffer;
1154         brelse(bh);
1155         journal->j_sb_buffer = NULL;
1156 }
1157
1158 /*
1159  * Given a journal_t structure, initialise the various fields for
1160  * startup of a new journaling session.  We use this both when creating
1161  * a journal, and after recovering an old journal to reset it for
1162  * subsequent use.
1163  */
1164
1165 static int journal_reset(journal_t *journal)
1166 {
1167         journal_superblock_t *sb = journal->j_superblock;
1168         unsigned long long first, last;
1169
1170         first = be32_to_cpu(sb->s_first);
1171         last = be32_to_cpu(sb->s_maxlen);
1172         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1173                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1174                        first, last);
1175                 journal_fail_superblock(journal);
1176                 return -EINVAL;
1177         }
1178
1179         journal->j_first = first;
1180         journal->j_last = last;
1181
1182         journal->j_head = first;
1183         journal->j_tail = first;
1184         journal->j_free = last - first;
1185
1186         journal->j_tail_sequence = journal->j_transaction_sequence;
1187         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1188         journal->j_commit_request = journal->j_commit_sequence;
1189
1190         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1191
1192         /*
1193          * As a special case, if the on-disk copy is already marked as needing
1194          * no recovery (s_start == 0), then we can safely defer the superblock
1195          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1196          * attempting a write to a potential-readonly device.
1197          */
1198         if (sb->s_start == 0) {
1199                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1200                         "(start %ld, seq %d, errno %d)\n",
1201                         journal->j_tail, journal->j_tail_sequence,
1202                         journal->j_errno);
1203                 journal->j_flags |= JBD2_FLUSHED;
1204         } else {
1205                 /* Lock here to make assertions happy... */
1206                 mutex_lock(&journal->j_checkpoint_mutex);
1207                 /*
1208                  * Update log tail information. We use WRITE_FUA since new
1209                  * transaction will start reusing journal space and so we
1210                  * must make sure information about current log tail is on
1211                  * disk before that.
1212                  */
1213                 jbd2_journal_update_sb_log_tail(journal,
1214                                                 journal->j_tail_sequence,
1215                                                 journal->j_tail,
1216                                                 WRITE_FUA);
1217                 mutex_unlock(&journal->j_checkpoint_mutex);
1218         }
1219         return jbd2_journal_start_thread(journal);
1220 }
1221
1222 static void jbd2_write_superblock(journal_t *journal, int write_op)
1223 {
1224         struct buffer_head *bh = journal->j_sb_buffer;
1225         int ret;
1226
1227         trace_jbd2_write_superblock(journal, write_op);
1228         if (!(journal->j_flags & JBD2_BARRIER))
1229                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1230         lock_buffer(bh);
1231         if (buffer_write_io_error(bh)) {
1232                 /*
1233                  * Oh, dear.  A previous attempt to write the journal
1234                  * superblock failed.  This could happen because the
1235                  * USB device was yanked out.  Or it could happen to
1236                  * be a transient write error and maybe the block will
1237                  * be remapped.  Nothing we can do but to retry the
1238                  * write and hope for the best.
1239                  */
1240                 printk(KERN_ERR "JBD2: previous I/O error detected "
1241                        "for journal superblock update for %s.\n",
1242                        journal->j_devname);
1243                 clear_buffer_write_io_error(bh);
1244                 set_buffer_uptodate(bh);
1245         }
1246         get_bh(bh);
1247         bh->b_end_io = end_buffer_write_sync;
1248         ret = submit_bh(write_op, bh);
1249         wait_on_buffer(bh);
1250         if (buffer_write_io_error(bh)) {
1251                 clear_buffer_write_io_error(bh);
1252                 set_buffer_uptodate(bh);
1253                 ret = -EIO;
1254         }
1255         if (ret) {
1256                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1257                        "journal superblock for %s.\n", ret,
1258                        journal->j_devname);
1259         }
1260 }
1261
1262 /**
1263  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1264  * @journal: The journal to update.
1265  * @tail_tid: TID of the new transaction at the tail of the log
1266  * @tail_block: The first block of the transaction at the tail of the log
1267  * @write_op: With which operation should we write the journal sb
1268  *
1269  * Update a journal's superblock information about log tail and write it to
1270  * disk, waiting for the IO to complete.
1271  */
1272 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1273                                      unsigned long tail_block, int write_op)
1274 {
1275         journal_superblock_t *sb = journal->j_superblock;
1276
1277         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1278         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1279                   tail_block, tail_tid);
1280
1281         sb->s_sequence = cpu_to_be32(tail_tid);
1282         sb->s_start    = cpu_to_be32(tail_block);
1283
1284         jbd2_write_superblock(journal, write_op);
1285
1286         /* Log is no longer empty */
1287         write_lock(&journal->j_state_lock);
1288         WARN_ON(!sb->s_sequence);
1289         journal->j_flags &= ~JBD2_FLUSHED;
1290         write_unlock(&journal->j_state_lock);
1291 }
1292
1293 /**
1294  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1295  * @journal: The journal to update.
1296  *
1297  * Update a journal's dynamic superblock fields to show that journal is empty.
1298  * Write updated superblock to disk waiting for IO to complete.
1299  */
1300 static void jbd2_mark_journal_empty(journal_t *journal)
1301 {
1302         journal_superblock_t *sb = journal->j_superblock;
1303
1304         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1305         read_lock(&journal->j_state_lock);
1306         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1307                   journal->j_tail_sequence);
1308
1309         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1310         sb->s_start    = cpu_to_be32(0);
1311         read_unlock(&journal->j_state_lock);
1312
1313         jbd2_write_superblock(journal, WRITE_FUA);
1314
1315         /* Log is no longer empty */
1316         write_lock(&journal->j_state_lock);
1317         journal->j_flags |= JBD2_FLUSHED;
1318         write_unlock(&journal->j_state_lock);
1319 }
1320
1321
1322 /**
1323  * jbd2_journal_update_sb_errno() - Update error in the journal.
1324  * @journal: The journal to update.
1325  *
1326  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1327  * to complete.
1328  */
1329 static void jbd2_journal_update_sb_errno(journal_t *journal)
1330 {
1331         journal_superblock_t *sb = journal->j_superblock;
1332
1333         read_lock(&journal->j_state_lock);
1334         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1335                   journal->j_errno);
1336         sb->s_errno    = cpu_to_be32(journal->j_errno);
1337         read_unlock(&journal->j_state_lock);
1338
1339         jbd2_write_superblock(journal, WRITE_SYNC);
1340 }
1341
1342 /*
1343  * Read the superblock for a given journal, performing initial
1344  * validation of the format.
1345  */
1346 static int journal_get_superblock(journal_t *journal)
1347 {
1348         struct buffer_head *bh;
1349         journal_superblock_t *sb;
1350         int err = -EIO;
1351
1352         bh = journal->j_sb_buffer;
1353
1354         J_ASSERT(bh != NULL);
1355         if (!buffer_uptodate(bh)) {
1356                 ll_rw_block(READ, 1, &bh);
1357                 wait_on_buffer(bh);
1358                 if (!buffer_uptodate(bh)) {
1359                         printk(KERN_ERR
1360                                 "JBD2: IO error reading journal superblock\n");
1361                         goto out;
1362                 }
1363         }
1364
1365         sb = journal->j_superblock;
1366
1367         err = -EINVAL;
1368
1369         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1370             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1371                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1372                 goto out;
1373         }
1374
1375         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1376         case JBD2_SUPERBLOCK_V1:
1377                 journal->j_format_version = 1;
1378                 break;
1379         case JBD2_SUPERBLOCK_V2:
1380                 journal->j_format_version = 2;
1381                 break;
1382         default:
1383                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1384                 goto out;
1385         }
1386
1387         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1388                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1389         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1390                 printk(KERN_WARNING "JBD2: journal file too short\n");
1391                 goto out;
1392         }
1393
1394         if (be32_to_cpu(sb->s_first) == 0 ||
1395             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1396                 printk(KERN_WARNING
1397                         "JBD2: Invalid start block of journal: %u\n",
1398                         be32_to_cpu(sb->s_first));
1399                 goto out;
1400         }
1401
1402         return 0;
1403
1404 out:
1405         journal_fail_superblock(journal);
1406         return err;
1407 }
1408
1409 /*
1410  * Load the on-disk journal superblock and read the key fields into the
1411  * journal_t.
1412  */
1413
1414 static int load_superblock(journal_t *journal)
1415 {
1416         int err;
1417         journal_superblock_t *sb;
1418
1419         err = journal_get_superblock(journal);
1420         if (err)
1421                 return err;
1422
1423         sb = journal->j_superblock;
1424
1425         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1426         journal->j_tail = be32_to_cpu(sb->s_start);
1427         journal->j_first = be32_to_cpu(sb->s_first);
1428         journal->j_last = be32_to_cpu(sb->s_maxlen);
1429         journal->j_errno = be32_to_cpu(sb->s_errno);
1430
1431         return 0;
1432 }
1433
1434
1435 /**
1436  * int jbd2_journal_load() - Read journal from disk.
1437  * @journal: Journal to act on.
1438  *
1439  * Given a journal_t structure which tells us which disk blocks contain
1440  * a journal, read the journal from disk to initialise the in-memory
1441  * structures.
1442  */
1443 int jbd2_journal_load(journal_t *journal)
1444 {
1445         int err;
1446         journal_superblock_t *sb;
1447
1448         err = load_superblock(journal);
1449         if (err)
1450                 return err;
1451
1452         sb = journal->j_superblock;
1453         /* If this is a V2 superblock, then we have to check the
1454          * features flags on it. */
1455
1456         if (journal->j_format_version >= 2) {
1457                 if ((sb->s_feature_ro_compat &
1458                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1459                     (sb->s_feature_incompat &
1460                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1461                         printk(KERN_WARNING
1462                                 "JBD2: Unrecognised features on journal\n");
1463                         return -EINVAL;
1464                 }
1465         }
1466
1467         /*
1468          * Create a slab for this blocksize
1469          */
1470         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1471         if (err)
1472                 return err;
1473
1474         /* Let the recovery code check whether it needs to recover any
1475          * data from the journal. */
1476         if (jbd2_journal_recover(journal))
1477                 goto recovery_error;
1478
1479         if (journal->j_failed_commit) {
1480                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1481                        "is corrupt.\n", journal->j_failed_commit,
1482                        journal->j_devname);
1483                 return -EIO;
1484         }
1485
1486         /* OK, we've finished with the dynamic journal bits:
1487          * reinitialise the dynamic contents of the superblock in memory
1488          * and reset them on disk. */
1489         if (journal_reset(journal))
1490                 goto recovery_error;
1491
1492         journal->j_flags &= ~JBD2_ABORT;
1493         journal->j_flags |= JBD2_LOADED;
1494         return 0;
1495
1496 recovery_error:
1497         printk(KERN_WARNING "JBD2: recovery failed\n");
1498         return -EIO;
1499 }
1500
1501 /**
1502  * void jbd2_journal_destroy() - Release a journal_t structure.
1503  * @journal: Journal to act on.
1504  *
1505  * Release a journal_t structure once it is no longer in use by the
1506  * journaled object.
1507  * Return <0 if we couldn't clean up the journal.
1508  */
1509 int jbd2_journal_destroy(journal_t *journal)
1510 {
1511         int err = 0;
1512
1513         /* Wait for the commit thread to wake up and die. */
1514         journal_kill_thread(journal);
1515
1516         /* Force a final log commit */
1517         if (journal->j_running_transaction)
1518                 jbd2_journal_commit_transaction(journal);
1519
1520         /* Force any old transactions to disk */
1521
1522         /* Totally anal locking here... */
1523         spin_lock(&journal->j_list_lock);
1524         while (journal->j_checkpoint_transactions != NULL) {
1525                 spin_unlock(&journal->j_list_lock);
1526                 mutex_lock(&journal->j_checkpoint_mutex);
1527                 jbd2_log_do_checkpoint(journal);
1528                 mutex_unlock(&journal->j_checkpoint_mutex);
1529                 spin_lock(&journal->j_list_lock);
1530         }
1531
1532         J_ASSERT(journal->j_running_transaction == NULL);
1533         J_ASSERT(journal->j_committing_transaction == NULL);
1534         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1535         spin_unlock(&journal->j_list_lock);
1536
1537         if (journal->j_sb_buffer) {
1538                 if (!is_journal_aborted(journal)) {
1539                         mutex_lock(&journal->j_checkpoint_mutex);
1540                         jbd2_mark_journal_empty(journal);
1541                         mutex_unlock(&journal->j_checkpoint_mutex);
1542                 } else
1543                         err = -EIO;
1544                 brelse(journal->j_sb_buffer);
1545         }
1546
1547         if (journal->j_proc_entry)
1548                 jbd2_stats_proc_exit(journal);
1549         if (journal->j_inode)
1550                 iput(journal->j_inode);
1551         if (journal->j_revoke)
1552                 jbd2_journal_destroy_revoke(journal);
1553         kfree(journal->j_wbuf);
1554         kfree(journal);
1555
1556         return err;
1557 }
1558
1559
1560 /**
1561  *int jbd2_journal_check_used_features () - Check if features specified are used.
1562  * @journal: Journal to check.
1563  * @compat: bitmask of compatible features
1564  * @ro: bitmask of features that force read-only mount
1565  * @incompat: bitmask of incompatible features
1566  *
1567  * Check whether the journal uses all of a given set of
1568  * features.  Return true (non-zero) if it does.
1569  **/
1570
1571 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1572                                  unsigned long ro, unsigned long incompat)
1573 {
1574         journal_superblock_t *sb;
1575
1576         if (!compat && !ro && !incompat)
1577                 return 1;
1578         /* Load journal superblock if it is not loaded yet. */
1579         if (journal->j_format_version == 0 &&
1580             journal_get_superblock(journal) != 0)
1581                 return 0;
1582         if (journal->j_format_version == 1)
1583                 return 0;
1584
1585         sb = journal->j_superblock;
1586
1587         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1588             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1589             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1590                 return 1;
1591
1592         return 0;
1593 }
1594
1595 /**
1596  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1597  * @journal: Journal to check.
1598  * @compat: bitmask of compatible features
1599  * @ro: bitmask of features that force read-only mount
1600  * @incompat: bitmask of incompatible features
1601  *
1602  * Check whether the journaling code supports the use of
1603  * all of a given set of features on this journal.  Return true
1604  * (non-zero) if it can. */
1605
1606 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1607                                       unsigned long ro, unsigned long incompat)
1608 {
1609         if (!compat && !ro && !incompat)
1610                 return 1;
1611
1612         /* We can support any known requested features iff the
1613          * superblock is in version 2.  Otherwise we fail to support any
1614          * extended sb features. */
1615
1616         if (journal->j_format_version != 2)
1617                 return 0;
1618
1619         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1620             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1621             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1622                 return 1;
1623
1624         return 0;
1625 }
1626
1627 /**
1628  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1629  * @journal: Journal to act on.
1630  * @compat: bitmask of compatible features
1631  * @ro: bitmask of features that force read-only mount
1632  * @incompat: bitmask of incompatible features
1633  *
1634  * Mark a given journal feature as present on the
1635  * superblock.  Returns true if the requested features could be set.
1636  *
1637  */
1638
1639 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1640                           unsigned long ro, unsigned long incompat)
1641 {
1642         journal_superblock_t *sb;
1643
1644         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1645                 return 1;
1646
1647         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1648                 return 0;
1649
1650         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1651                   compat, ro, incompat);
1652
1653         sb = journal->j_superblock;
1654
1655         sb->s_feature_compat    |= cpu_to_be32(compat);
1656         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1657         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1658
1659         return 1;
1660 }
1661
1662 /*
1663  * jbd2_journal_clear_features () - Clear a given journal feature in the
1664  *                                  superblock
1665  * @journal: Journal to act on.
1666  * @compat: bitmask of compatible features
1667  * @ro: bitmask of features that force read-only mount
1668  * @incompat: bitmask of incompatible features
1669  *
1670  * Clear a given journal feature as present on the
1671  * superblock.
1672  */
1673 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1674                                 unsigned long ro, unsigned long incompat)
1675 {
1676         journal_superblock_t *sb;
1677
1678         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1679                   compat, ro, incompat);
1680
1681         sb = journal->j_superblock;
1682
1683         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1684         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1685         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1686 }
1687 EXPORT_SYMBOL(jbd2_journal_clear_features);
1688
1689 /**
1690  * int jbd2_journal_flush () - Flush journal
1691  * @journal: Journal to act on.
1692  *
1693  * Flush all data for a given journal to disk and empty the journal.
1694  * Filesystems can use this when remounting readonly to ensure that
1695  * recovery does not need to happen on remount.
1696  */
1697
1698 int jbd2_journal_flush(journal_t *journal)
1699 {
1700         int err = 0;
1701         transaction_t *transaction = NULL;
1702
1703         write_lock(&journal->j_state_lock);
1704
1705         /* Force everything buffered to the log... */
1706         if (journal->j_running_transaction) {
1707                 transaction = journal->j_running_transaction;
1708                 __jbd2_log_start_commit(journal, transaction->t_tid);
1709         } else if (journal->j_committing_transaction)
1710                 transaction = journal->j_committing_transaction;
1711
1712         /* Wait for the log commit to complete... */
1713         if (transaction) {
1714                 tid_t tid = transaction->t_tid;
1715
1716                 write_unlock(&journal->j_state_lock);
1717                 jbd2_log_wait_commit(journal, tid);
1718         } else {
1719                 write_unlock(&journal->j_state_lock);
1720         }
1721
1722         /* ...and flush everything in the log out to disk. */
1723         spin_lock(&journal->j_list_lock);
1724         while (!err && journal->j_checkpoint_transactions != NULL) {
1725                 spin_unlock(&journal->j_list_lock);
1726                 mutex_lock(&journal->j_checkpoint_mutex);
1727                 err = jbd2_log_do_checkpoint(journal);
1728                 mutex_unlock(&journal->j_checkpoint_mutex);
1729                 spin_lock(&journal->j_list_lock);
1730         }
1731         spin_unlock(&journal->j_list_lock);
1732
1733         if (is_journal_aborted(journal))
1734                 return -EIO;
1735
1736         mutex_lock(&journal->j_checkpoint_mutex);
1737         jbd2_cleanup_journal_tail(journal);
1738
1739         /* Finally, mark the journal as really needing no recovery.
1740          * This sets s_start==0 in the underlying superblock, which is
1741          * the magic code for a fully-recovered superblock.  Any future
1742          * commits of data to the journal will restore the current
1743          * s_start value. */
1744         jbd2_mark_journal_empty(journal);
1745         mutex_unlock(&journal->j_checkpoint_mutex);
1746         write_lock(&journal->j_state_lock);
1747         J_ASSERT(!journal->j_running_transaction);
1748         J_ASSERT(!journal->j_committing_transaction);
1749         J_ASSERT(!journal->j_checkpoint_transactions);
1750         J_ASSERT(journal->j_head == journal->j_tail);
1751         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1752         write_unlock(&journal->j_state_lock);
1753         return 0;
1754 }
1755
1756 /**
1757  * int jbd2_journal_wipe() - Wipe journal contents
1758  * @journal: Journal to act on.
1759  * @write: flag (see below)
1760  *
1761  * Wipe out all of the contents of a journal, safely.  This will produce
1762  * a warning if the journal contains any valid recovery information.
1763  * Must be called between journal_init_*() and jbd2_journal_load().
1764  *
1765  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1766  * we merely suppress recovery.
1767  */
1768
1769 int jbd2_journal_wipe(journal_t *journal, int write)
1770 {
1771         int err = 0;
1772
1773         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1774
1775         err = load_superblock(journal);
1776         if (err)
1777                 return err;
1778
1779         if (!journal->j_tail)
1780                 goto no_recovery;
1781
1782         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1783                 write ? "Clearing" : "Ignoring");
1784
1785         err = jbd2_journal_skip_recovery(journal);
1786         if (write) {
1787                 /* Lock to make assertions happy... */
1788                 mutex_lock(&journal->j_checkpoint_mutex);
1789                 jbd2_mark_journal_empty(journal);
1790                 mutex_unlock(&journal->j_checkpoint_mutex);
1791         }
1792
1793  no_recovery:
1794         return err;
1795 }
1796
1797 /*
1798  * Journal abort has very specific semantics, which we describe
1799  * for journal abort.
1800  *
1801  * Two internal functions, which provide abort to the jbd layer
1802  * itself are here.
1803  */
1804
1805 /*
1806  * Quick version for internal journal use (doesn't lock the journal).
1807  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1808  * and don't attempt to make any other journal updates.
1809  */
1810 void __jbd2_journal_abort_hard(journal_t *journal)
1811 {
1812         transaction_t *transaction;
1813
1814         if (journal->j_flags & JBD2_ABORT)
1815                 return;
1816
1817         printk(KERN_ERR "Aborting journal on device %s.\n",
1818                journal->j_devname);
1819
1820         write_lock(&journal->j_state_lock);
1821         journal->j_flags |= JBD2_ABORT;
1822         transaction = journal->j_running_transaction;
1823         if (transaction)
1824                 __jbd2_log_start_commit(journal, transaction->t_tid);
1825         write_unlock(&journal->j_state_lock);
1826 }
1827
1828 /* Soft abort: record the abort error status in the journal superblock,
1829  * but don't do any other IO. */
1830 static void __journal_abort_soft (journal_t *journal, int errno)
1831 {
1832         if (journal->j_flags & JBD2_ABORT)
1833                 return;
1834
1835         if (!journal->j_errno)
1836                 journal->j_errno = errno;
1837
1838         __jbd2_journal_abort_hard(journal);
1839
1840         if (errno)
1841                 jbd2_journal_update_sb_errno(journal);
1842 }
1843
1844 /**
1845  * void jbd2_journal_abort () - Shutdown the journal immediately.
1846  * @journal: the journal to shutdown.
1847  * @errno:   an error number to record in the journal indicating
1848  *           the reason for the shutdown.
1849  *
1850  * Perform a complete, immediate shutdown of the ENTIRE
1851  * journal (not of a single transaction).  This operation cannot be
1852  * undone without closing and reopening the journal.
1853  *
1854  * The jbd2_journal_abort function is intended to support higher level error
1855  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1856  * mode.
1857  *
1858  * Journal abort has very specific semantics.  Any existing dirty,
1859  * unjournaled buffers in the main filesystem will still be written to
1860  * disk by bdflush, but the journaling mechanism will be suspended
1861  * immediately and no further transaction commits will be honoured.
1862  *
1863  * Any dirty, journaled buffers will be written back to disk without
1864  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1865  * filesystem, but we _do_ attempt to leave as much data as possible
1866  * behind for fsck to use for cleanup.
1867  *
1868  * Any attempt to get a new transaction handle on a journal which is in
1869  * ABORT state will just result in an -EROFS error return.  A
1870  * jbd2_journal_stop on an existing handle will return -EIO if we have
1871  * entered abort state during the update.
1872  *
1873  * Recursive transactions are not disturbed by journal abort until the
1874  * final jbd2_journal_stop, which will receive the -EIO error.
1875  *
1876  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1877  * which will be recorded (if possible) in the journal superblock.  This
1878  * allows a client to record failure conditions in the middle of a
1879  * transaction without having to complete the transaction to record the
1880  * failure to disk.  ext3_error, for example, now uses this
1881  * functionality.
1882  *
1883  * Errors which originate from within the journaling layer will NOT
1884  * supply an errno; a null errno implies that absolutely no further
1885  * writes are done to the journal (unless there are any already in
1886  * progress).
1887  *
1888  */
1889
1890 void jbd2_journal_abort(journal_t *journal, int errno)
1891 {
1892         __journal_abort_soft(journal, errno);
1893 }
1894
1895 /**
1896  * int jbd2_journal_errno () - returns the journal's error state.
1897  * @journal: journal to examine.
1898  *
1899  * This is the errno number set with jbd2_journal_abort(), the last
1900  * time the journal was mounted - if the journal was stopped
1901  * without calling abort this will be 0.
1902  *
1903  * If the journal has been aborted on this mount time -EROFS will
1904  * be returned.
1905  */
1906 int jbd2_journal_errno(journal_t *journal)
1907 {
1908         int err;
1909
1910         read_lock(&journal->j_state_lock);
1911         if (journal->j_flags & JBD2_ABORT)
1912                 err = -EROFS;
1913         else
1914                 err = journal->j_errno;
1915         read_unlock(&journal->j_state_lock);
1916         return err;
1917 }
1918
1919 /**
1920  * int jbd2_journal_clear_err () - clears the journal's error state
1921  * @journal: journal to act on.
1922  *
1923  * An error must be cleared or acked to take a FS out of readonly
1924  * mode.
1925  */
1926 int jbd2_journal_clear_err(journal_t *journal)
1927 {
1928         int err = 0;
1929
1930         write_lock(&journal->j_state_lock);
1931         if (journal->j_flags & JBD2_ABORT)
1932                 err = -EROFS;
1933         else
1934                 journal->j_errno = 0;
1935         write_unlock(&journal->j_state_lock);
1936         return err;
1937 }
1938
1939 /**
1940  * void jbd2_journal_ack_err() - Ack journal err.
1941  * @journal: journal to act on.
1942  *
1943  * An error must be cleared or acked to take a FS out of readonly
1944  * mode.
1945  */
1946 void jbd2_journal_ack_err(journal_t *journal)
1947 {
1948         write_lock(&journal->j_state_lock);
1949         if (journal->j_errno)
1950                 journal->j_flags |= JBD2_ACK_ERR;
1951         write_unlock(&journal->j_state_lock);
1952 }
1953
1954 int jbd2_journal_blocks_per_page(struct inode *inode)
1955 {
1956         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1957 }
1958
1959 /*
1960  * helper functions to deal with 32 or 64bit block numbers.
1961  */
1962 size_t journal_tag_bytes(journal_t *journal)
1963 {
1964         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1965                 return JBD2_TAG_SIZE64;
1966         else
1967                 return JBD2_TAG_SIZE32;
1968 }
1969
1970 /*
1971  * JBD memory management
1972  *
1973  * These functions are used to allocate block-sized chunks of memory
1974  * used for making copies of buffer_head data.  Very often it will be
1975  * page-sized chunks of data, but sometimes it will be in
1976  * sub-page-size chunks.  (For example, 16k pages on Power systems
1977  * with a 4k block file system.)  For blocks smaller than a page, we
1978  * use a SLAB allocator.  There are slab caches for each block size,
1979  * which are allocated at mount time, if necessary, and we only free
1980  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1981  * this reason we don't need to a mutex to protect access to
1982  * jbd2_slab[] allocating or releasing memory; only in
1983  * jbd2_journal_create_slab().
1984  */
1985 #define JBD2_MAX_SLABS 8
1986 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1987
1988 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1989         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1990         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1991 };
1992
1993
1994 static void jbd2_journal_destroy_slabs(void)
1995 {
1996         int i;
1997
1998         for (i = 0; i < JBD2_MAX_SLABS; i++) {
1999                 if (jbd2_slab[i])
2000                         kmem_cache_destroy(jbd2_slab[i]);
2001                 jbd2_slab[i] = NULL;
2002         }
2003 }
2004
2005 static int jbd2_journal_create_slab(size_t size)
2006 {
2007         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2008         int i = order_base_2(size) - 10;
2009         size_t slab_size;
2010
2011         if (size == PAGE_SIZE)
2012                 return 0;
2013
2014         if (i >= JBD2_MAX_SLABS)
2015                 return -EINVAL;
2016
2017         if (unlikely(i < 0))
2018                 i = 0;
2019         mutex_lock(&jbd2_slab_create_mutex);
2020         if (jbd2_slab[i]) {
2021                 mutex_unlock(&jbd2_slab_create_mutex);
2022                 return 0;       /* Already created */
2023         }
2024
2025         slab_size = 1 << (i+10);
2026         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2027                                          slab_size, 0, NULL);
2028         mutex_unlock(&jbd2_slab_create_mutex);
2029         if (!jbd2_slab[i]) {
2030                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2031                 return -ENOMEM;
2032         }
2033         return 0;
2034 }
2035
2036 static struct kmem_cache *get_slab(size_t size)
2037 {
2038         int i = order_base_2(size) - 10;
2039
2040         BUG_ON(i >= JBD2_MAX_SLABS);
2041         if (unlikely(i < 0))
2042                 i = 0;
2043         BUG_ON(jbd2_slab[i] == NULL);
2044         return jbd2_slab[i];
2045 }
2046
2047 void *jbd2_alloc(size_t size, gfp_t flags)
2048 {
2049         void *ptr;
2050
2051         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2052
2053         flags |= __GFP_REPEAT;
2054         if (size == PAGE_SIZE)
2055                 ptr = (void *)__get_free_pages(flags, 0);
2056         else if (size > PAGE_SIZE) {
2057                 int order = get_order(size);
2058
2059                 if (order < 3)
2060                         ptr = (void *)__get_free_pages(flags, order);
2061                 else
2062                         ptr = vmalloc(size);
2063         } else
2064                 ptr = kmem_cache_alloc(get_slab(size), flags);
2065
2066         /* Check alignment; SLUB has gotten this wrong in the past,
2067          * and this can lead to user data corruption! */
2068         BUG_ON(((unsigned long) ptr) & (size-1));
2069
2070         return ptr;
2071 }
2072
2073 void jbd2_free(void *ptr, size_t size)
2074 {
2075         if (size == PAGE_SIZE) {
2076                 free_pages((unsigned long)ptr, 0);
2077                 return;
2078         }
2079         if (size > PAGE_SIZE) {
2080                 int order = get_order(size);
2081
2082                 if (order < 3)
2083                         free_pages((unsigned long)ptr, order);
2084                 else
2085                         vfree(ptr);
2086                 return;
2087         }
2088         kmem_cache_free(get_slab(size), ptr);
2089 };
2090
2091 /*
2092  * Journal_head storage management
2093  */
2094 static struct kmem_cache *jbd2_journal_head_cache;
2095 #ifdef CONFIG_JBD2_DEBUG
2096 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2097 #endif
2098
2099 static int jbd2_journal_init_journal_head_cache(void)
2100 {
2101         int retval;
2102
2103         J_ASSERT(jbd2_journal_head_cache == NULL);
2104         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2105                                 sizeof(struct journal_head),
2106                                 0,              /* offset */
2107                                 SLAB_TEMPORARY, /* flags */
2108                                 NULL);          /* ctor */
2109         retval = 0;
2110         if (!jbd2_journal_head_cache) {
2111                 retval = -ENOMEM;
2112                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2113         }
2114         return retval;
2115 }
2116
2117 static void jbd2_journal_destroy_journal_head_cache(void)
2118 {
2119         if (jbd2_journal_head_cache) {
2120                 kmem_cache_destroy(jbd2_journal_head_cache);
2121                 jbd2_journal_head_cache = NULL;
2122         }
2123 }
2124
2125 /*
2126  * journal_head splicing and dicing
2127  */
2128 static struct journal_head *journal_alloc_journal_head(void)
2129 {
2130         struct journal_head *ret;
2131
2132 #ifdef CONFIG_JBD2_DEBUG
2133         atomic_inc(&nr_journal_heads);
2134 #endif
2135         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2136         if (!ret) {
2137                 jbd_debug(1, "out of memory for journal_head\n");
2138                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2139                 while (!ret) {
2140                         yield();
2141                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2142                 }
2143         }
2144         return ret;
2145 }
2146
2147 static void journal_free_journal_head(struct journal_head *jh)
2148 {
2149 #ifdef CONFIG_JBD2_DEBUG
2150         atomic_dec(&nr_journal_heads);
2151         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2152 #endif
2153         kmem_cache_free(jbd2_journal_head_cache, jh);
2154 }
2155
2156 /*
2157  * A journal_head is attached to a buffer_head whenever JBD has an
2158  * interest in the buffer.
2159  *
2160  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2161  * is set.  This bit is tested in core kernel code where we need to take
2162  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2163  * there.
2164  *
2165  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2166  *
2167  * When a buffer has its BH_JBD bit set it is immune from being released by
2168  * core kernel code, mainly via ->b_count.
2169  *
2170  * A journal_head is detached from its buffer_head when the journal_head's
2171  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2172  * transaction (b_cp_transaction) hold their references to b_jcount.
2173  *
2174  * Various places in the kernel want to attach a journal_head to a buffer_head
2175  * _before_ attaching the journal_head to a transaction.  To protect the
2176  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2177  * journal_head's b_jcount refcount by one.  The caller must call
2178  * jbd2_journal_put_journal_head() to undo this.
2179  *
2180  * So the typical usage would be:
2181  *
2182  *      (Attach a journal_head if needed.  Increments b_jcount)
2183  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2184  *      ...
2185  *      (Get another reference for transaction)
2186  *      jbd2_journal_grab_journal_head(bh);
2187  *      jh->b_transaction = xxx;
2188  *      (Put original reference)
2189  *      jbd2_journal_put_journal_head(jh);
2190  */
2191
2192 /*
2193  * Give a buffer_head a journal_head.
2194  *
2195  * May sleep.
2196  */
2197 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2198 {
2199         struct journal_head *jh;
2200         struct journal_head *new_jh = NULL;
2201
2202 repeat:
2203         if (!buffer_jbd(bh)) {
2204                 new_jh = journal_alloc_journal_head();
2205                 memset(new_jh, 0, sizeof(*new_jh));
2206         }
2207
2208         jbd_lock_bh_journal_head(bh);
2209         if (buffer_jbd(bh)) {
2210                 jh = bh2jh(bh);
2211         } else {
2212                 J_ASSERT_BH(bh,
2213                         (atomic_read(&bh->b_count) > 0) ||
2214                         (bh->b_page && bh->b_page->mapping));
2215
2216                 if (!new_jh) {
2217                         jbd_unlock_bh_journal_head(bh);
2218                         goto repeat;
2219                 }
2220
2221                 jh = new_jh;
2222                 new_jh = NULL;          /* We consumed it */
2223                 set_buffer_jbd(bh);
2224                 bh->b_private = jh;
2225                 jh->b_bh = bh;
2226                 get_bh(bh);
2227                 BUFFER_TRACE(bh, "added journal_head");
2228         }
2229         jh->b_jcount++;
2230         jbd_unlock_bh_journal_head(bh);
2231         if (new_jh)
2232                 journal_free_journal_head(new_jh);
2233         return bh->b_private;
2234 }
2235
2236 /*
2237  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2238  * having a journal_head, return NULL
2239  */
2240 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2241 {
2242         struct journal_head *jh = NULL;
2243
2244         jbd_lock_bh_journal_head(bh);
2245         if (buffer_jbd(bh)) {
2246                 jh = bh2jh(bh);
2247                 jh->b_jcount++;
2248         }
2249         jbd_unlock_bh_journal_head(bh);
2250         return jh;
2251 }
2252
2253 static void __journal_remove_journal_head(struct buffer_head *bh)
2254 {
2255         struct journal_head *jh = bh2jh(bh);
2256
2257         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2258         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2259         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2260         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2261         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2262         J_ASSERT_BH(bh, buffer_jbd(bh));
2263         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2264         BUFFER_TRACE(bh, "remove journal_head");
2265         if (jh->b_frozen_data) {
2266                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2267                 jbd2_free(jh->b_frozen_data, bh->b_size);
2268         }
2269         if (jh->b_committed_data) {
2270                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2271                 jbd2_free(jh->b_committed_data, bh->b_size);
2272         }
2273         bh->b_private = NULL;
2274         jh->b_bh = NULL;        /* debug, really */
2275         clear_buffer_jbd(bh);
2276         journal_free_journal_head(jh);
2277 }
2278
2279 /*
2280  * Drop a reference on the passed journal_head.  If it fell to zero then
2281  * release the journal_head from the buffer_head.
2282  */
2283 void jbd2_journal_put_journal_head(struct journal_head *jh)
2284 {
2285         struct buffer_head *bh = jh2bh(jh);
2286
2287         jbd_lock_bh_journal_head(bh);
2288         J_ASSERT_JH(jh, jh->b_jcount > 0);
2289         --jh->b_jcount;
2290         if (!jh->b_jcount) {
2291                 __journal_remove_journal_head(bh);
2292                 jbd_unlock_bh_journal_head(bh);
2293                 __brelse(bh);
2294         } else
2295                 jbd_unlock_bh_journal_head(bh);
2296 }
2297
2298 /*
2299  * Initialize jbd inode head
2300  */
2301 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2302 {
2303         jinode->i_transaction = NULL;
2304         jinode->i_next_transaction = NULL;
2305         jinode->i_vfs_inode = inode;
2306         jinode->i_flags = 0;
2307         INIT_LIST_HEAD(&jinode->i_list);
2308 }
2309
2310 /*
2311  * Function to be called before we start removing inode from memory (i.e.,
2312  * clear_inode() is a fine place to be called from). It removes inode from
2313  * transaction's lists.
2314  */
2315 void jbd2_journal_release_jbd_inode(journal_t *journal,
2316                                     struct jbd2_inode *jinode)
2317 {
2318         if (!journal)
2319                 return;
2320 restart:
2321         spin_lock(&journal->j_list_lock);
2322         /* Is commit writing out inode - we have to wait */
2323         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2324                 wait_queue_head_t *wq;
2325                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2326                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2327                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2328                 spin_unlock(&journal->j_list_lock);
2329                 schedule();
2330                 finish_wait(wq, &wait.wait);
2331                 goto restart;
2332         }
2333
2334         if (jinode->i_transaction) {
2335                 list_del(&jinode->i_list);
2336                 jinode->i_transaction = NULL;
2337         }
2338         spin_unlock(&journal->j_list_lock);
2339 }
2340
2341 /*
2342  * debugfs tunables
2343  */
2344 #ifdef CONFIG_JBD2_DEBUG
2345 u8 jbd2_journal_enable_debug __read_mostly;
2346 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2347
2348 #define JBD2_DEBUG_NAME "jbd2-debug"
2349
2350 static struct dentry *jbd2_debugfs_dir;
2351 static struct dentry *jbd2_debug;
2352
2353 static void __init jbd2_create_debugfs_entry(void)
2354 {
2355         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2356         if (jbd2_debugfs_dir)
2357                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2358                                                S_IRUGO | S_IWUSR,
2359                                                jbd2_debugfs_dir,
2360                                                &jbd2_journal_enable_debug);
2361 }
2362
2363 static void __exit jbd2_remove_debugfs_entry(void)
2364 {
2365         debugfs_remove(jbd2_debug);
2366         debugfs_remove(jbd2_debugfs_dir);
2367 }
2368
2369 #else
2370
2371 static void __init jbd2_create_debugfs_entry(void)
2372 {
2373 }
2374
2375 static void __exit jbd2_remove_debugfs_entry(void)
2376 {
2377 }
2378
2379 #endif
2380
2381 #ifdef CONFIG_PROC_FS
2382
2383 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2384
2385 static void __init jbd2_create_jbd_stats_proc_entry(void)
2386 {
2387         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2388 }
2389
2390 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2391 {
2392         if (proc_jbd2_stats)
2393                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2394 }
2395
2396 #else
2397
2398 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2399 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2400
2401 #endif
2402
2403 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2404
2405 static int __init jbd2_journal_init_handle_cache(void)
2406 {
2407         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2408         if (jbd2_handle_cache == NULL) {
2409                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2410                 return -ENOMEM;
2411         }
2412         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2413         if (jbd2_inode_cache == NULL) {
2414                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2415                 kmem_cache_destroy(jbd2_handle_cache);
2416                 return -ENOMEM;
2417         }
2418         return 0;
2419 }
2420
2421 static void jbd2_journal_destroy_handle_cache(void)
2422 {
2423         if (jbd2_handle_cache)
2424                 kmem_cache_destroy(jbd2_handle_cache);
2425         if (jbd2_inode_cache)
2426                 kmem_cache_destroy(jbd2_inode_cache);
2427
2428 }
2429
2430 /*
2431  * Module startup and shutdown
2432  */
2433
2434 static int __init journal_init_caches(void)
2435 {
2436         int ret;
2437
2438         ret = jbd2_journal_init_revoke_caches();
2439         if (ret == 0)
2440                 ret = jbd2_journal_init_journal_head_cache();
2441         if (ret == 0)
2442                 ret = jbd2_journal_init_handle_cache();
2443         if (ret == 0)
2444                 ret = jbd2_journal_init_transaction_cache();
2445         return ret;
2446 }
2447
2448 static void jbd2_journal_destroy_caches(void)
2449 {
2450         jbd2_journal_destroy_revoke_caches();
2451         jbd2_journal_destroy_journal_head_cache();
2452         jbd2_journal_destroy_handle_cache();
2453         jbd2_journal_destroy_transaction_cache();
2454         jbd2_journal_destroy_slabs();
2455 }
2456
2457 static int __init journal_init(void)
2458 {
2459         int ret;
2460
2461         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2462
2463         ret = journal_init_caches();
2464         if (ret == 0) {
2465                 jbd2_create_debugfs_entry();
2466                 jbd2_create_jbd_stats_proc_entry();
2467         } else {
2468                 jbd2_journal_destroy_caches();
2469         }
2470         return ret;
2471 }
2472
2473 static void __exit journal_exit(void)
2474 {
2475 #ifdef CONFIG_JBD2_DEBUG
2476         int n = atomic_read(&nr_journal_heads);
2477         if (n)
2478                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2479 #endif
2480         jbd2_remove_debugfs_entry();
2481         jbd2_remove_jbd_stats_proc_entry();
2482         jbd2_journal_destroy_caches();
2483 }
2484
2485 MODULE_LICENSE("GPL");
2486 module_init(journal_init);
2487 module_exit(journal_exit);
2488