1ef630f81c991a052a742b5d14d53360e1644557
[linux-2.6-block.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h>                /* remove ASAP */
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <asm/uaccess.h>
40
41 static const struct super_operations hugetlbfs_ops;
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46
47 struct hugetlbfs_config {
48         kuid_t   uid;
49         kgid_t   gid;
50         umode_t mode;
51         long    max_hpages;
52         long    nr_inodes;
53         struct hstate *hstate;
54         long    min_hpages;
55 };
56
57 struct hugetlbfs_inode_info {
58         struct shared_policy policy;
59         struct inode vfs_inode;
60 };
61
62 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
63 {
64         return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
65 }
66
67 int sysctl_hugetlb_shm_group;
68
69 enum {
70         Opt_size, Opt_nr_inodes,
71         Opt_mode, Opt_uid, Opt_gid,
72         Opt_pagesize, Opt_min_size,
73         Opt_err,
74 };
75
76 static const match_table_t tokens = {
77         {Opt_size,      "size=%s"},
78         {Opt_nr_inodes, "nr_inodes=%s"},
79         {Opt_mode,      "mode=%o"},
80         {Opt_uid,       "uid=%u"},
81         {Opt_gid,       "gid=%u"},
82         {Opt_pagesize,  "pagesize=%s"},
83         {Opt_min_size,  "min_size=%s"},
84         {Opt_err,       NULL},
85 };
86
87 static void huge_pagevec_release(struct pagevec *pvec)
88 {
89         int i;
90
91         for (i = 0; i < pagevec_count(pvec); ++i)
92                 put_page(pvec->pages[i]);
93
94         pagevec_reinit(pvec);
95 }
96
97 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
98 {
99         struct inode *inode = file_inode(file);
100         loff_t len, vma_len;
101         int ret;
102         struct hstate *h = hstate_file(file);
103
104         /*
105          * vma address alignment (but not the pgoff alignment) has
106          * already been checked by prepare_hugepage_range.  If you add
107          * any error returns here, do so after setting VM_HUGETLB, so
108          * is_vm_hugetlb_page tests below unmap_region go the right
109          * way when do_mmap_pgoff unwinds (may be important on powerpc
110          * and ia64).
111          */
112         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
113         vma->vm_ops = &hugetlb_vm_ops;
114
115         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
116                 return -EINVAL;
117
118         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
119
120         mutex_lock(&inode->i_mutex);
121         file_accessed(file);
122
123         ret = -ENOMEM;
124         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
125
126         if (hugetlb_reserve_pages(inode,
127                                 vma->vm_pgoff >> huge_page_order(h),
128                                 len >> huge_page_shift(h), vma,
129                                 vma->vm_flags))
130                 goto out;
131
132         ret = 0;
133         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
134                 inode->i_size = len;
135 out:
136         mutex_unlock(&inode->i_mutex);
137
138         return ret;
139 }
140
141 /*
142  * Called under down_write(mmap_sem).
143  */
144
145 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
146 static unsigned long
147 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
148                 unsigned long len, unsigned long pgoff, unsigned long flags)
149 {
150         struct mm_struct *mm = current->mm;
151         struct vm_area_struct *vma;
152         struct hstate *h = hstate_file(file);
153         struct vm_unmapped_area_info info;
154
155         if (len & ~huge_page_mask(h))
156                 return -EINVAL;
157         if (len > TASK_SIZE)
158                 return -ENOMEM;
159
160         if (flags & MAP_FIXED) {
161                 if (prepare_hugepage_range(file, addr, len))
162                         return -EINVAL;
163                 return addr;
164         }
165
166         if (addr) {
167                 addr = ALIGN(addr, huge_page_size(h));
168                 vma = find_vma(mm, addr);
169                 if (TASK_SIZE - len >= addr &&
170                     (!vma || addr + len <= vma->vm_start))
171                         return addr;
172         }
173
174         info.flags = 0;
175         info.length = len;
176         info.low_limit = TASK_UNMAPPED_BASE;
177         info.high_limit = TASK_SIZE;
178         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
179         info.align_offset = 0;
180         return vm_unmapped_area(&info);
181 }
182 #endif
183
184 static size_t
185 hugetlbfs_read_actor(struct page *page, unsigned long offset,
186                         struct iov_iter *to, unsigned long size)
187 {
188         size_t copied = 0;
189         int i, chunksize;
190
191         /* Find which 4k chunk and offset with in that chunk */
192         i = offset >> PAGE_CACHE_SHIFT;
193         offset = offset & ~PAGE_CACHE_MASK;
194
195         while (size) {
196                 size_t n;
197                 chunksize = PAGE_CACHE_SIZE;
198                 if (offset)
199                         chunksize -= offset;
200                 if (chunksize > size)
201                         chunksize = size;
202                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
203                 copied += n;
204                 if (n != chunksize)
205                         return copied;
206                 offset = 0;
207                 size -= chunksize;
208                 i++;
209         }
210         return copied;
211 }
212
213 /*
214  * Support for read() - Find the page attached to f_mapping and copy out the
215  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
216  * since it has PAGE_CACHE_SIZE assumptions.
217  */
218 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
219 {
220         struct file *file = iocb->ki_filp;
221         struct hstate *h = hstate_file(file);
222         struct address_space *mapping = file->f_mapping;
223         struct inode *inode = mapping->host;
224         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
225         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
226         unsigned long end_index;
227         loff_t isize;
228         ssize_t retval = 0;
229
230         while (iov_iter_count(to)) {
231                 struct page *page;
232                 size_t nr, copied;
233
234                 /* nr is the maximum number of bytes to copy from this page */
235                 nr = huge_page_size(h);
236                 isize = i_size_read(inode);
237                 if (!isize)
238                         break;
239                 end_index = (isize - 1) >> huge_page_shift(h);
240                 if (index > end_index)
241                         break;
242                 if (index == end_index) {
243                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
244                         if (nr <= offset)
245                                 break;
246                 }
247                 nr = nr - offset;
248
249                 /* Find the page */
250                 page = find_lock_page(mapping, index);
251                 if (unlikely(page == NULL)) {
252                         /*
253                          * We have a HOLE, zero out the user-buffer for the
254                          * length of the hole or request.
255                          */
256                         copied = iov_iter_zero(nr, to);
257                 } else {
258                         unlock_page(page);
259
260                         /*
261                          * We have the page, copy it to user space buffer.
262                          */
263                         copied = hugetlbfs_read_actor(page, offset, to, nr);
264                         page_cache_release(page);
265                 }
266                 offset += copied;
267                 retval += copied;
268                 if (copied != nr && iov_iter_count(to)) {
269                         if (!retval)
270                                 retval = -EFAULT;
271                         break;
272                 }
273                 index += offset >> huge_page_shift(h);
274                 offset &= ~huge_page_mask(h);
275         }
276         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
277         return retval;
278 }
279
280 static int hugetlbfs_write_begin(struct file *file,
281                         struct address_space *mapping,
282                         loff_t pos, unsigned len, unsigned flags,
283                         struct page **pagep, void **fsdata)
284 {
285         return -EINVAL;
286 }
287
288 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
289                         loff_t pos, unsigned len, unsigned copied,
290                         struct page *page, void *fsdata)
291 {
292         BUG();
293         return -EINVAL;
294 }
295
296 static void remove_huge_page(struct page *page)
297 {
298         ClearPageDirty(page);
299         ClearPageUptodate(page);
300         delete_from_page_cache(page);
301 }
302
303
304 /*
305  * remove_inode_hugepages handles two distinct cases: truncation and hole
306  * punch.  There are subtle differences in operation for each case.
307
308  * truncation is indicated by end of range being LLONG_MAX
309  *      In this case, we first scan the range and release found pages.
310  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
311  *      maps and global counts.
312  * hole punch is indicated if end is not LLONG_MAX
313  *      In the hole punch case we scan the range and release found pages.
314  *      Only when releasing a page is the associated region/reserv map
315  *      deleted.  The region/reserv map for ranges without associated
316  *      pages are not modified.
317  * Note: If the passed end of range value is beyond the end of file, but
318  * not LLONG_MAX this routine still performs a hole punch operation.
319  */
320 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
321                                    loff_t lend)
322 {
323         struct hstate *h = hstate_inode(inode);
324         struct address_space *mapping = &inode->i_data;
325         const pgoff_t start = lstart >> huge_page_shift(h);
326         const pgoff_t end = lend >> huge_page_shift(h);
327         struct vm_area_struct pseudo_vma;
328         struct pagevec pvec;
329         pgoff_t next;
330         int i, freed = 0;
331         long lookup_nr = PAGEVEC_SIZE;
332         bool truncate_op = (lend == LLONG_MAX);
333
334         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
335         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
336         pagevec_init(&pvec, 0);
337         next = start;
338         while (next < end) {
339                 /*
340                  * Make sure to never grab more pages that we
341                  * might possibly need.
342                  */
343                 if (end - next < lookup_nr)
344                         lookup_nr = end - next;
345
346                 /*
347                  * This pagevec_lookup() may return pages past 'end',
348                  * so we must check for page->index > end.
349                  */
350                 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) {
351                         if (next == start)
352                                 break;
353                         next = start;
354                         continue;
355                 }
356
357                 for (i = 0; i < pagevec_count(&pvec); ++i) {
358                         struct page *page = pvec.pages[i];
359                         u32 hash;
360
361                         hash = hugetlb_fault_mutex_hash(h, current->mm,
362                                                         &pseudo_vma,
363                                                         mapping, next, 0);
364                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
365
366                         lock_page(page);
367                         if (page->index >= end) {
368                                 unlock_page(page);
369                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
370                                 next = end;     /* we are done */
371                                 break;
372                         }
373
374                         /*
375                          * If page is mapped, it was faulted in after being
376                          * unmapped.  Do nothing in this race case.  In the
377                          * normal case page is not mapped.
378                          */
379                         if (!page_mapped(page)) {
380                                 bool rsv_on_error = !PagePrivate(page);
381                                 /*
382                                  * We must free the huge page and remove
383                                  * from page cache (remove_huge_page) BEFORE
384                                  * removing the region/reserve map
385                                  * (hugetlb_unreserve_pages).  In rare out
386                                  * of memory conditions, removal of the
387                                  * region/reserve map could fail.  Before
388                                  * free'ing the page, note PagePrivate which
389                                  * is used in case of error.
390                                  */
391                                 remove_huge_page(page);
392                                 freed++;
393                                 if (!truncate_op) {
394                                         if (unlikely(hugetlb_unreserve_pages(
395                                                         inode, next,
396                                                         next + 1, 1)))
397                                                 hugetlb_fix_reserve_counts(
398                                                         inode, rsv_on_error);
399                                 }
400                         }
401
402                         if (page->index > next)
403                                 next = page->index;
404
405                         ++next;
406                         unlock_page(page);
407
408                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
409                 }
410                 huge_pagevec_release(&pvec);
411         }
412
413         if (truncate_op)
414                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
415 }
416
417 static void hugetlbfs_evict_inode(struct inode *inode)
418 {
419         struct resv_map *resv_map;
420
421         remove_inode_hugepages(inode, 0, LLONG_MAX);
422         resv_map = (struct resv_map *)inode->i_mapping->private_data;
423         /* root inode doesn't have the resv_map, so we should check it */
424         if (resv_map)
425                 resv_map_release(&resv_map->refs);
426         clear_inode(inode);
427 }
428
429 static inline void
430 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
431 {
432         struct vm_area_struct *vma;
433
434         /*
435          * end == 0 indicates that the entire range after
436          * start should be unmapped.
437          */
438         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
439                 unsigned long v_offset;
440
441                 /*
442                  * Can the expression below overflow on 32-bit arches?
443                  * No, because the interval tree returns us only those vmas
444                  * which overlap the truncated area starting at pgoff,
445                  * and no vma on a 32-bit arch can span beyond the 4GB.
446                  */
447                 if (vma->vm_pgoff < start)
448                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
449                 else
450                         v_offset = 0;
451
452                 if (end) {
453                         end = ((end - start) << PAGE_SHIFT) +
454                                vma->vm_start + v_offset;
455                         if (end > vma->vm_end)
456                                 end = vma->vm_end;
457                 } else
458                         end = vma->vm_end;
459
460                 unmap_hugepage_range(vma, vma->vm_start + v_offset, end, NULL);
461         }
462 }
463
464 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
465 {
466         pgoff_t pgoff;
467         struct address_space *mapping = inode->i_mapping;
468         struct hstate *h = hstate_inode(inode);
469
470         BUG_ON(offset & ~huge_page_mask(h));
471         pgoff = offset >> PAGE_SHIFT;
472
473         i_size_write(inode, offset);
474         i_mmap_lock_write(mapping);
475         if (!RB_EMPTY_ROOT(&mapping->i_mmap))
476                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
477         i_mmap_unlock_write(mapping);
478         remove_inode_hugepages(inode, offset, LLONG_MAX);
479         return 0;
480 }
481
482 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
483 {
484         struct inode *inode = d_inode(dentry);
485         struct hstate *h = hstate_inode(inode);
486         int error;
487         unsigned int ia_valid = attr->ia_valid;
488
489         BUG_ON(!inode);
490
491         error = inode_change_ok(inode, attr);
492         if (error)
493                 return error;
494
495         if (ia_valid & ATTR_SIZE) {
496                 error = -EINVAL;
497                 if (attr->ia_size & ~huge_page_mask(h))
498                         return -EINVAL;
499                 error = hugetlb_vmtruncate(inode, attr->ia_size);
500                 if (error)
501                         return error;
502         }
503
504         setattr_copy(inode, attr);
505         mark_inode_dirty(inode);
506         return 0;
507 }
508
509 static struct inode *hugetlbfs_get_root(struct super_block *sb,
510                                         struct hugetlbfs_config *config)
511 {
512         struct inode *inode;
513
514         inode = new_inode(sb);
515         if (inode) {
516                 struct hugetlbfs_inode_info *info;
517                 inode->i_ino = get_next_ino();
518                 inode->i_mode = S_IFDIR | config->mode;
519                 inode->i_uid = config->uid;
520                 inode->i_gid = config->gid;
521                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
522                 info = HUGETLBFS_I(inode);
523                 mpol_shared_policy_init(&info->policy, NULL);
524                 inode->i_op = &hugetlbfs_dir_inode_operations;
525                 inode->i_fop = &simple_dir_operations;
526                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
527                 inc_nlink(inode);
528                 lockdep_annotate_inode_mutex_key(inode);
529         }
530         return inode;
531 }
532
533 /*
534  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
535  * be taken from reclaim -- unlike regular filesystems. This needs an
536  * annotation because huge_pmd_share() does an allocation under
537  * i_mmap_rwsem.
538  */
539 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
540
541 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
542                                         struct inode *dir,
543                                         umode_t mode, dev_t dev)
544 {
545         struct inode *inode;
546         struct resv_map *resv_map;
547
548         resv_map = resv_map_alloc();
549         if (!resv_map)
550                 return NULL;
551
552         inode = new_inode(sb);
553         if (inode) {
554                 struct hugetlbfs_inode_info *info;
555                 inode->i_ino = get_next_ino();
556                 inode_init_owner(inode, dir, mode);
557                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
558                                 &hugetlbfs_i_mmap_rwsem_key);
559                 inode->i_mapping->a_ops = &hugetlbfs_aops;
560                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
561                 inode->i_mapping->private_data = resv_map;
562                 info = HUGETLBFS_I(inode);
563                 /*
564                  * The policy is initialized here even if we are creating a
565                  * private inode because initialization simply creates an
566                  * an empty rb tree and calls spin_lock_init(), later when we
567                  * call mpol_free_shared_policy() it will just return because
568                  * the rb tree will still be empty.
569                  */
570                 mpol_shared_policy_init(&info->policy, NULL);
571                 switch (mode & S_IFMT) {
572                 default:
573                         init_special_inode(inode, mode, dev);
574                         break;
575                 case S_IFREG:
576                         inode->i_op = &hugetlbfs_inode_operations;
577                         inode->i_fop = &hugetlbfs_file_operations;
578                         break;
579                 case S_IFDIR:
580                         inode->i_op = &hugetlbfs_dir_inode_operations;
581                         inode->i_fop = &simple_dir_operations;
582
583                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
584                         inc_nlink(inode);
585                         break;
586                 case S_IFLNK:
587                         inode->i_op = &page_symlink_inode_operations;
588                         break;
589                 }
590                 lockdep_annotate_inode_mutex_key(inode);
591         } else
592                 kref_put(&resv_map->refs, resv_map_release);
593
594         return inode;
595 }
596
597 /*
598  * File creation. Allocate an inode, and we're done..
599  */
600 static int hugetlbfs_mknod(struct inode *dir,
601                         struct dentry *dentry, umode_t mode, dev_t dev)
602 {
603         struct inode *inode;
604         int error = -ENOSPC;
605
606         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
607         if (inode) {
608                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
609                 d_instantiate(dentry, inode);
610                 dget(dentry);   /* Extra count - pin the dentry in core */
611                 error = 0;
612         }
613         return error;
614 }
615
616 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
617 {
618         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
619         if (!retval)
620                 inc_nlink(dir);
621         return retval;
622 }
623
624 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
625 {
626         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
627 }
628
629 static int hugetlbfs_symlink(struct inode *dir,
630                         struct dentry *dentry, const char *symname)
631 {
632         struct inode *inode;
633         int error = -ENOSPC;
634
635         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
636         if (inode) {
637                 int l = strlen(symname)+1;
638                 error = page_symlink(inode, symname, l);
639                 if (!error) {
640                         d_instantiate(dentry, inode);
641                         dget(dentry);
642                 } else
643                         iput(inode);
644         }
645         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
646
647         return error;
648 }
649
650 /*
651  * mark the head page dirty
652  */
653 static int hugetlbfs_set_page_dirty(struct page *page)
654 {
655         struct page *head = compound_head(page);
656
657         SetPageDirty(head);
658         return 0;
659 }
660
661 static int hugetlbfs_migrate_page(struct address_space *mapping,
662                                 struct page *newpage, struct page *page,
663                                 enum migrate_mode mode)
664 {
665         int rc;
666
667         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
668         if (rc != MIGRATEPAGE_SUCCESS)
669                 return rc;
670         migrate_page_copy(newpage, page);
671
672         return MIGRATEPAGE_SUCCESS;
673 }
674
675 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
676 {
677         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
678         struct hstate *h = hstate_inode(d_inode(dentry));
679
680         buf->f_type = HUGETLBFS_MAGIC;
681         buf->f_bsize = huge_page_size(h);
682         if (sbinfo) {
683                 spin_lock(&sbinfo->stat_lock);
684                 /* If no limits set, just report 0 for max/free/used
685                  * blocks, like simple_statfs() */
686                 if (sbinfo->spool) {
687                         long free_pages;
688
689                         spin_lock(&sbinfo->spool->lock);
690                         buf->f_blocks = sbinfo->spool->max_hpages;
691                         free_pages = sbinfo->spool->max_hpages
692                                 - sbinfo->spool->used_hpages;
693                         buf->f_bavail = buf->f_bfree = free_pages;
694                         spin_unlock(&sbinfo->spool->lock);
695                         buf->f_files = sbinfo->max_inodes;
696                         buf->f_ffree = sbinfo->free_inodes;
697                 }
698                 spin_unlock(&sbinfo->stat_lock);
699         }
700         buf->f_namelen = NAME_MAX;
701         return 0;
702 }
703
704 static void hugetlbfs_put_super(struct super_block *sb)
705 {
706         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
707
708         if (sbi) {
709                 sb->s_fs_info = NULL;
710
711                 if (sbi->spool)
712                         hugepage_put_subpool(sbi->spool);
713
714                 kfree(sbi);
715         }
716 }
717
718 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
719 {
720         if (sbinfo->free_inodes >= 0) {
721                 spin_lock(&sbinfo->stat_lock);
722                 if (unlikely(!sbinfo->free_inodes)) {
723                         spin_unlock(&sbinfo->stat_lock);
724                         return 0;
725                 }
726                 sbinfo->free_inodes--;
727                 spin_unlock(&sbinfo->stat_lock);
728         }
729
730         return 1;
731 }
732
733 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
734 {
735         if (sbinfo->free_inodes >= 0) {
736                 spin_lock(&sbinfo->stat_lock);
737                 sbinfo->free_inodes++;
738                 spin_unlock(&sbinfo->stat_lock);
739         }
740 }
741
742
743 static struct kmem_cache *hugetlbfs_inode_cachep;
744
745 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
746 {
747         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
748         struct hugetlbfs_inode_info *p;
749
750         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
751                 return NULL;
752         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
753         if (unlikely(!p)) {
754                 hugetlbfs_inc_free_inodes(sbinfo);
755                 return NULL;
756         }
757         return &p->vfs_inode;
758 }
759
760 static void hugetlbfs_i_callback(struct rcu_head *head)
761 {
762         struct inode *inode = container_of(head, struct inode, i_rcu);
763         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
764 }
765
766 static void hugetlbfs_destroy_inode(struct inode *inode)
767 {
768         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
769         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
770         call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
771 }
772
773 static const struct address_space_operations hugetlbfs_aops = {
774         .write_begin    = hugetlbfs_write_begin,
775         .write_end      = hugetlbfs_write_end,
776         .set_page_dirty = hugetlbfs_set_page_dirty,
777         .migratepage    = hugetlbfs_migrate_page,
778 };
779
780
781 static void init_once(void *foo)
782 {
783         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
784
785         inode_init_once(&ei->vfs_inode);
786 }
787
788 const struct file_operations hugetlbfs_file_operations = {
789         .read_iter              = hugetlbfs_read_iter,
790         .mmap                   = hugetlbfs_file_mmap,
791         .fsync                  = noop_fsync,
792         .get_unmapped_area      = hugetlb_get_unmapped_area,
793         .llseek         = default_llseek,
794 };
795
796 static const struct inode_operations hugetlbfs_dir_inode_operations = {
797         .create         = hugetlbfs_create,
798         .lookup         = simple_lookup,
799         .link           = simple_link,
800         .unlink         = simple_unlink,
801         .symlink        = hugetlbfs_symlink,
802         .mkdir          = hugetlbfs_mkdir,
803         .rmdir          = simple_rmdir,
804         .mknod          = hugetlbfs_mknod,
805         .rename         = simple_rename,
806         .setattr        = hugetlbfs_setattr,
807 };
808
809 static const struct inode_operations hugetlbfs_inode_operations = {
810         .setattr        = hugetlbfs_setattr,
811 };
812
813 static const struct super_operations hugetlbfs_ops = {
814         .alloc_inode    = hugetlbfs_alloc_inode,
815         .destroy_inode  = hugetlbfs_destroy_inode,
816         .evict_inode    = hugetlbfs_evict_inode,
817         .statfs         = hugetlbfs_statfs,
818         .put_super      = hugetlbfs_put_super,
819         .show_options   = generic_show_options,
820 };
821
822 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
823
824 /*
825  * Convert size option passed from command line to number of huge pages
826  * in the pool specified by hstate.  Size option could be in bytes
827  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
828  */
829 static long long
830 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
831                                                                 int val_type)
832 {
833         if (val_type == NO_SIZE)
834                 return -1;
835
836         if (val_type == SIZE_PERCENT) {
837                 size_opt <<= huge_page_shift(h);
838                 size_opt *= h->max_huge_pages;
839                 do_div(size_opt, 100);
840         }
841
842         size_opt >>= huge_page_shift(h);
843         return size_opt;
844 }
845
846 static int
847 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
848 {
849         char *p, *rest;
850         substring_t args[MAX_OPT_ARGS];
851         int option;
852         unsigned long long max_size_opt = 0, min_size_opt = 0;
853         int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
854
855         if (!options)
856                 return 0;
857
858         while ((p = strsep(&options, ",")) != NULL) {
859                 int token;
860                 if (!*p)
861                         continue;
862
863                 token = match_token(p, tokens, args);
864                 switch (token) {
865                 case Opt_uid:
866                         if (match_int(&args[0], &option))
867                                 goto bad_val;
868                         pconfig->uid = make_kuid(current_user_ns(), option);
869                         if (!uid_valid(pconfig->uid))
870                                 goto bad_val;
871                         break;
872
873                 case Opt_gid:
874                         if (match_int(&args[0], &option))
875                                 goto bad_val;
876                         pconfig->gid = make_kgid(current_user_ns(), option);
877                         if (!gid_valid(pconfig->gid))
878                                 goto bad_val;
879                         break;
880
881                 case Opt_mode:
882                         if (match_octal(&args[0], &option))
883                                 goto bad_val;
884                         pconfig->mode = option & 01777U;
885                         break;
886
887                 case Opt_size: {
888                         /* memparse() will accept a K/M/G without a digit */
889                         if (!isdigit(*args[0].from))
890                                 goto bad_val;
891                         max_size_opt = memparse(args[0].from, &rest);
892                         max_val_type = SIZE_STD;
893                         if (*rest == '%')
894                                 max_val_type = SIZE_PERCENT;
895                         break;
896                 }
897
898                 case Opt_nr_inodes:
899                         /* memparse() will accept a K/M/G without a digit */
900                         if (!isdigit(*args[0].from))
901                                 goto bad_val;
902                         pconfig->nr_inodes = memparse(args[0].from, &rest);
903                         break;
904
905                 case Opt_pagesize: {
906                         unsigned long ps;
907                         ps = memparse(args[0].from, &rest);
908                         pconfig->hstate = size_to_hstate(ps);
909                         if (!pconfig->hstate) {
910                                 pr_err("Unsupported page size %lu MB\n",
911                                         ps >> 20);
912                                 return -EINVAL;
913                         }
914                         break;
915                 }
916
917                 case Opt_min_size: {
918                         /* memparse() will accept a K/M/G without a digit */
919                         if (!isdigit(*args[0].from))
920                                 goto bad_val;
921                         min_size_opt = memparse(args[0].from, &rest);
922                         min_val_type = SIZE_STD;
923                         if (*rest == '%')
924                                 min_val_type = SIZE_PERCENT;
925                         break;
926                 }
927
928                 default:
929                         pr_err("Bad mount option: \"%s\"\n", p);
930                         return -EINVAL;
931                         break;
932                 }
933         }
934
935         /*
936          * Use huge page pool size (in hstate) to convert the size
937          * options to number of huge pages.  If NO_SIZE, -1 is returned.
938          */
939         pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
940                                                 max_size_opt, max_val_type);
941         pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
942                                                 min_size_opt, min_val_type);
943
944         /*
945          * If max_size was specified, then min_size must be smaller
946          */
947         if (max_val_type > NO_SIZE &&
948             pconfig->min_hpages > pconfig->max_hpages) {
949                 pr_err("minimum size can not be greater than maximum size\n");
950                 return -EINVAL;
951         }
952
953         return 0;
954
955 bad_val:
956         pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
957         return -EINVAL;
958 }
959
960 static int
961 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
962 {
963         int ret;
964         struct hugetlbfs_config config;
965         struct hugetlbfs_sb_info *sbinfo;
966
967         save_mount_options(sb, data);
968
969         config.max_hpages = -1; /* No limit on size by default */
970         config.nr_inodes = -1; /* No limit on number of inodes by default */
971         config.uid = current_fsuid();
972         config.gid = current_fsgid();
973         config.mode = 0755;
974         config.hstate = &default_hstate;
975         config.min_hpages = -1; /* No default minimum size */
976         ret = hugetlbfs_parse_options(data, &config);
977         if (ret)
978                 return ret;
979
980         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
981         if (!sbinfo)
982                 return -ENOMEM;
983         sb->s_fs_info = sbinfo;
984         sbinfo->hstate = config.hstate;
985         spin_lock_init(&sbinfo->stat_lock);
986         sbinfo->max_inodes = config.nr_inodes;
987         sbinfo->free_inodes = config.nr_inodes;
988         sbinfo->spool = NULL;
989         /*
990          * Allocate and initialize subpool if maximum or minimum size is
991          * specified.  Any needed reservations (for minimim size) are taken
992          * taken when the subpool is created.
993          */
994         if (config.max_hpages != -1 || config.min_hpages != -1) {
995                 sbinfo->spool = hugepage_new_subpool(config.hstate,
996                                                         config.max_hpages,
997                                                         config.min_hpages);
998                 if (!sbinfo->spool)
999                         goto out_free;
1000         }
1001         sb->s_maxbytes = MAX_LFS_FILESIZE;
1002         sb->s_blocksize = huge_page_size(config.hstate);
1003         sb->s_blocksize_bits = huge_page_shift(config.hstate);
1004         sb->s_magic = HUGETLBFS_MAGIC;
1005         sb->s_op = &hugetlbfs_ops;
1006         sb->s_time_gran = 1;
1007         sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1008         if (!sb->s_root)
1009                 goto out_free;
1010         return 0;
1011 out_free:
1012         kfree(sbinfo->spool);
1013         kfree(sbinfo);
1014         return -ENOMEM;
1015 }
1016
1017 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1018         int flags, const char *dev_name, void *data)
1019 {
1020         return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1021 }
1022
1023 static struct file_system_type hugetlbfs_fs_type = {
1024         .name           = "hugetlbfs",
1025         .mount          = hugetlbfs_mount,
1026         .kill_sb        = kill_litter_super,
1027 };
1028 MODULE_ALIAS_FS("hugetlbfs");
1029
1030 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1031
1032 static int can_do_hugetlb_shm(void)
1033 {
1034         kgid_t shm_group;
1035         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1036         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1037 }
1038
1039 static int get_hstate_idx(int page_size_log)
1040 {
1041         struct hstate *h = hstate_sizelog(page_size_log);
1042
1043         if (!h)
1044                 return -1;
1045         return h - hstates;
1046 }
1047
1048 static const struct dentry_operations anon_ops = {
1049         .d_dname = simple_dname
1050 };
1051
1052 /*
1053  * Note that size should be aligned to proper hugepage size in caller side,
1054  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1055  */
1056 struct file *hugetlb_file_setup(const char *name, size_t size,
1057                                 vm_flags_t acctflag, struct user_struct **user,
1058                                 int creat_flags, int page_size_log)
1059 {
1060         struct file *file = ERR_PTR(-ENOMEM);
1061         struct inode *inode;
1062         struct path path;
1063         struct super_block *sb;
1064         struct qstr quick_string;
1065         int hstate_idx;
1066
1067         hstate_idx = get_hstate_idx(page_size_log);
1068         if (hstate_idx < 0)
1069                 return ERR_PTR(-ENODEV);
1070
1071         *user = NULL;
1072         if (!hugetlbfs_vfsmount[hstate_idx])
1073                 return ERR_PTR(-ENOENT);
1074
1075         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1076                 *user = current_user();
1077                 if (user_shm_lock(size, *user)) {
1078                         task_lock(current);
1079                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1080                                 current->comm, current->pid);
1081                         task_unlock(current);
1082                 } else {
1083                         *user = NULL;
1084                         return ERR_PTR(-EPERM);
1085                 }
1086         }
1087
1088         sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1089         quick_string.name = name;
1090         quick_string.len = strlen(quick_string.name);
1091         quick_string.hash = 0;
1092         path.dentry = d_alloc_pseudo(sb, &quick_string);
1093         if (!path.dentry)
1094                 goto out_shm_unlock;
1095
1096         d_set_d_op(path.dentry, &anon_ops);
1097         path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1098         file = ERR_PTR(-ENOSPC);
1099         inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1100         if (!inode)
1101                 goto out_dentry;
1102         if (creat_flags == HUGETLB_SHMFS_INODE)
1103                 inode->i_flags |= S_PRIVATE;
1104
1105         file = ERR_PTR(-ENOMEM);
1106         if (hugetlb_reserve_pages(inode, 0,
1107                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1108                         acctflag))
1109                 goto out_inode;
1110
1111         d_instantiate(path.dentry, inode);
1112         inode->i_size = size;
1113         clear_nlink(inode);
1114
1115         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1116                         &hugetlbfs_file_operations);
1117         if (IS_ERR(file))
1118                 goto out_dentry; /* inode is already attached */
1119
1120         return file;
1121
1122 out_inode:
1123         iput(inode);
1124 out_dentry:
1125         path_put(&path);
1126 out_shm_unlock:
1127         if (*user) {
1128                 user_shm_unlock(size, *user);
1129                 *user = NULL;
1130         }
1131         return file;
1132 }
1133
1134 static int __init init_hugetlbfs_fs(void)
1135 {
1136         struct hstate *h;
1137         int error;
1138         int i;
1139
1140         if (!hugepages_supported()) {
1141                 pr_info("disabling because there are no supported hugepage sizes\n");
1142                 return -ENOTSUPP;
1143         }
1144
1145         error = -ENOMEM;
1146         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1147                                         sizeof(struct hugetlbfs_inode_info),
1148                                         0, 0, init_once);
1149         if (hugetlbfs_inode_cachep == NULL)
1150                 goto out2;
1151
1152         error = register_filesystem(&hugetlbfs_fs_type);
1153         if (error)
1154                 goto out;
1155
1156         i = 0;
1157         for_each_hstate(h) {
1158                 char buf[50];
1159                 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1160
1161                 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1162                 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1163                                                         buf);
1164
1165                 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1166                         pr_err("Cannot mount internal hugetlbfs for "
1167                                 "page size %uK", ps_kb);
1168                         error = PTR_ERR(hugetlbfs_vfsmount[i]);
1169                         hugetlbfs_vfsmount[i] = NULL;
1170                 }
1171                 i++;
1172         }
1173         /* Non default hstates are optional */
1174         if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1175                 return 0;
1176
1177  out:
1178         kmem_cache_destroy(hugetlbfs_inode_cachep);
1179  out2:
1180         return error;
1181 }
1182
1183 static void __exit exit_hugetlbfs_fs(void)
1184 {
1185         struct hstate *h;
1186         int i;
1187
1188
1189         /*
1190          * Make sure all delayed rcu free inodes are flushed before we
1191          * destroy cache.
1192          */
1193         rcu_barrier();
1194         kmem_cache_destroy(hugetlbfs_inode_cachep);
1195         i = 0;
1196         for_each_hstate(h)
1197                 kern_unmount(hugetlbfs_vfsmount[i++]);
1198         unregister_filesystem(&hugetlbfs_fs_type);
1199 }
1200
1201 module_init(init_hugetlbfs_fs)
1202 module_exit(exit_hugetlbfs_fs)
1203
1204 MODULE_LICENSE("GPL");