mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[linux-block.git] / fs / gfs2 / rgrp.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61
62 struct gfs2_extent {
63         struct gfs2_rbm rbm;
64         u32 len;
65 };
66
67 static const char valid_change[16] = {
68                 /* current */
69         /* n */ 0, 1, 1, 1,
70         /* e */ 1, 0, 0, 0,
71         /* w */ 0, 0, 0, 1,
72                 1, 0, 0, 0
73 };
74
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76                          const struct gfs2_inode *ip, bool nowrap,
77                          const struct gfs2_alloc_parms *ap);
78
79
80 /**
81  * gfs2_setbit - Set a bit in the bitmaps
82  * @rbm: The position of the bit to set
83  * @do_clone: Also set the clone bitmap, if it exists
84  * @new_state: the new state of the block
85  *
86  */
87
88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89                                unsigned char new_state)
90 {
91         unsigned char *byte1, *byte2, *end, cur_state;
92         struct gfs2_bitmap *bi = rbm_bi(rbm);
93         unsigned int buflen = bi->bi_len;
94         const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95
96         byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97         end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98
99         BUG_ON(byte1 >= end);
100
101         cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102
103         if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104                 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105                         rbm->offset, cur_state, new_state);
106                 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107                         (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108                 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109                         bi->bi_offset, bi->bi_len);
110                 dump_stack();
111                 gfs2_consist_rgrpd(rbm->rgd);
112                 return;
113         }
114         *byte1 ^= (cur_state ^ new_state) << bit;
115
116         if (do_clone && bi->bi_clone) {
117                 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118                 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119                 *byte2 ^= (cur_state ^ new_state) << bit;
120         }
121 }
122
123 /**
124  * gfs2_testbit - test a bit in the bitmaps
125  * @rbm: The bit to test
126  *
127  * Returns: The two bit block state of the requested bit
128  */
129
130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131 {
132         struct gfs2_bitmap *bi = rbm_bi(rbm);
133         const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134         const u8 *byte;
135         unsigned int bit;
136
137         byte = buffer + (rbm->offset / GFS2_NBBY);
138         bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139
140         return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142
143 /**
144  * gfs2_bit_search
145  * @ptr: Pointer to bitmap data
146  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147  * @state: The state we are searching for
148  *
149  * We xor the bitmap data with a patter which is the bitwise opposite
150  * of what we are looking for, this gives rise to a pattern of ones
151  * wherever there is a match. Since we have two bits per entry, we
152  * take this pattern, shift it down by one place and then and it with
153  * the original. All the even bit positions (0,2,4, etc) then represent
154  * successful matches, so we mask with 0x55555..... to remove the unwanted
155  * odd bit positions.
156  *
157  * This allows searching of a whole u64 at once (32 blocks) with a
158  * single test (on 64 bit arches).
159  */
160
161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163         u64 tmp;
164         static const u64 search[] = {
165                 [0] = 0xffffffffffffffffULL,
166                 [1] = 0xaaaaaaaaaaaaaaaaULL,
167                 [2] = 0x5555555555555555ULL,
168                 [3] = 0x0000000000000000ULL,
169         };
170         tmp = le64_to_cpu(*ptr) ^ search[state];
171         tmp &= (tmp >> 1);
172         tmp &= mask;
173         return tmp;
174 }
175
176 /**
177  * rs_cmp - multi-block reservation range compare
178  * @blk: absolute file system block number of the new reservation
179  * @len: number of blocks in the new reservation
180  * @rs: existing reservation to compare against
181  *
182  * returns: 1 if the block range is beyond the reach of the reservation
183  *         -1 if the block range is before the start of the reservation
184  *          0 if the block range overlaps with the reservation
185  */
186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188         u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189
190         if (blk >= startblk + rs->rs_free)
191                 return 1;
192         if (blk + len - 1 < startblk)
193                 return -1;
194         return 0;
195 }
196
197 /**
198  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199  *       a block in a given allocation state.
200  * @buf: the buffer that holds the bitmaps
201  * @len: the length (in bytes) of the buffer
202  * @goal: start search at this block's bit-pair (within @buffer)
203  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204  *
205  * Scope of @goal and returned block number is only within this bitmap buffer,
206  * not entire rgrp or filesystem.  @buffer will be offset from the actual
207  * beginning of a bitmap block buffer, skipping any header structures, but
208  * headers are always a multiple of 64 bits long so that the buffer is
209  * always aligned to a 64 bit boundary.
210  *
211  * The size of the buffer is in bytes, but is it assumed that it is
212  * always ok to read a complete multiple of 64 bits at the end
213  * of the block in case the end is no aligned to a natural boundary.
214  *
215  * Return: the block number (bitmap buffer scope) that was found
216  */
217
218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219                        u32 goal, u8 state)
220 {
221         u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222         const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223         const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224         u64 tmp;
225         u64 mask = 0x5555555555555555ULL;
226         u32 bit;
227
228         /* Mask off bits we don't care about at the start of the search */
229         mask <<= spoint;
230         tmp = gfs2_bit_search(ptr, mask, state);
231         ptr++;
232         while(tmp == 0 && ptr < end) {
233                 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234                 ptr++;
235         }
236         /* Mask off any bits which are more than len bytes from the start */
237         if (ptr == end && (len & (sizeof(u64) - 1)))
238                 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239         /* Didn't find anything, so return */
240         if (tmp == 0)
241                 return BFITNOENT;
242         ptr--;
243         bit = __ffs64(tmp);
244         bit /= 2;       /* two bits per entry in the bitmap */
245         return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247
248 /**
249  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250  * @rbm: The rbm with rgd already set correctly
251  * @block: The block number (filesystem relative)
252  *
253  * This sets the bi and offset members of an rbm based on a
254  * resource group and a filesystem relative block number. The
255  * resource group must be set in the rbm on entry, the bi and
256  * offset members will be set by this function.
257  *
258  * Returns: 0 on success, or an error code
259  */
260
261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263         u64 rblock = block - rbm->rgd->rd_data0;
264
265         if (WARN_ON_ONCE(rblock > UINT_MAX))
266                 return -EINVAL;
267         if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268                 return -E2BIG;
269
270         rbm->bii = 0;
271         rbm->offset = (u32)(rblock);
272         /* Check if the block is within the first block */
273         if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274                 return 0;
275
276         /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277         rbm->offset += (sizeof(struct gfs2_rgrp) -
278                         sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279         rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280         rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281         return 0;
282 }
283
284 /**
285  * gfs2_rbm_incr - increment an rbm structure
286  * @rbm: The rbm with rgd already set correctly
287  *
288  * This function takes an existing rbm structure and increments it to the next
289  * viable block offset.
290  *
291  * Returns: If incrementing the offset would cause the rbm to go past the
292  *          end of the rgrp, true is returned, otherwise false.
293  *
294  */
295
296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297 {
298         if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299                 rbm->offset++;
300                 return false;
301         }
302         if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303                 return true;
304
305         rbm->offset = 0;
306         rbm->bii++;
307         return false;
308 }
309
310 /**
311  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312  * @rbm: Position to search (value/result)
313  * @n_unaligned: Number of unaligned blocks to check
314  * @len: Decremented for each block found (terminate on zero)
315  *
316  * Returns: true if a non-free block is encountered
317  */
318
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320 {
321         u32 n;
322         u8 res;
323
324         for (n = 0; n < n_unaligned; n++) {
325                 res = gfs2_testbit(rbm);
326                 if (res != GFS2_BLKST_FREE)
327                         return true;
328                 (*len)--;
329                 if (*len == 0)
330                         return true;
331                 if (gfs2_rbm_incr(rbm))
332                         return true;
333         }
334
335         return false;
336 }
337
338 /**
339  * gfs2_free_extlen - Return extent length of free blocks
340  * @rrbm: Starting position
341  * @len: Max length to check
342  *
343  * Starting at the block specified by the rbm, see how many free blocks
344  * there are, not reading more than len blocks ahead. This can be done
345  * using memchr_inv when the blocks are byte aligned, but has to be done
346  * on a block by block basis in case of unaligned blocks. Also this
347  * function can cope with bitmap boundaries (although it must stop on
348  * a resource group boundary)
349  *
350  * Returns: Number of free blocks in the extent
351  */
352
353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354 {
355         struct gfs2_rbm rbm = *rrbm;
356         u32 n_unaligned = rbm.offset & 3;
357         u32 size = len;
358         u32 bytes;
359         u32 chunk_size;
360         u8 *ptr, *start, *end;
361         u64 block;
362         struct gfs2_bitmap *bi;
363
364         if (n_unaligned &&
365             gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366                 goto out;
367
368         n_unaligned = len & 3;
369         /* Start is now byte aligned */
370         while (len > 3) {
371                 bi = rbm_bi(&rbm);
372                 start = bi->bi_bh->b_data;
373                 if (bi->bi_clone)
374                         start = bi->bi_clone;
375                 end = start + bi->bi_bh->b_size;
376                 start += bi->bi_offset;
377                 BUG_ON(rbm.offset & 3);
378                 start += (rbm.offset / GFS2_NBBY);
379                 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380                 ptr = memchr_inv(start, 0, bytes);
381                 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382                 chunk_size *= GFS2_NBBY;
383                 BUG_ON(len < chunk_size);
384                 len -= chunk_size;
385                 block = gfs2_rbm_to_block(&rbm);
386                 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387                         n_unaligned = 0;
388                         break;
389                 }
390                 if (ptr) {
391                         n_unaligned = 3;
392                         break;
393                 }
394                 n_unaligned = len & 3;
395         }
396
397         /* Deal with any bits left over at the end */
398         if (n_unaligned)
399                 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400 out:
401         return size - len;
402 }
403
404 /**
405  * gfs2_bitcount - count the number of bits in a certain state
406  * @rgd: the resource group descriptor
407  * @buffer: the buffer that holds the bitmaps
408  * @buflen: the length (in bytes) of the buffer
409  * @state: the state of the block we're looking for
410  *
411  * Returns: The number of bits
412  */
413
414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415                          unsigned int buflen, u8 state)
416 {
417         const u8 *byte = buffer;
418         const u8 *end = buffer + buflen;
419         const u8 state1 = state << 2;
420         const u8 state2 = state << 4;
421         const u8 state3 = state << 6;
422         u32 count = 0;
423
424         for (; byte < end; byte++) {
425                 if (((*byte) & 0x03) == state)
426                         count++;
427                 if (((*byte) & 0x0C) == state1)
428                         count++;
429                 if (((*byte) & 0x30) == state2)
430                         count++;
431                 if (((*byte) & 0xC0) == state3)
432                         count++;
433         }
434
435         return count;
436 }
437
438 /**
439  * gfs2_rgrp_verify - Verify that a resource group is consistent
440  * @rgd: the rgrp
441  *
442  */
443
444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445 {
446         struct gfs2_sbd *sdp = rgd->rd_sbd;
447         struct gfs2_bitmap *bi = NULL;
448         u32 length = rgd->rd_length;
449         u32 count[4], tmp;
450         int buf, x;
451
452         memset(count, 0, 4 * sizeof(u32));
453
454         /* Count # blocks in each of 4 possible allocation states */
455         for (buf = 0; buf < length; buf++) {
456                 bi = rgd->rd_bits + buf;
457                 for (x = 0; x < 4; x++)
458                         count[x] += gfs2_bitcount(rgd,
459                                                   bi->bi_bh->b_data +
460                                                   bi->bi_offset,
461                                                   bi->bi_len, x);
462         }
463
464         if (count[0] != rgd->rd_free) {
465                 if (gfs2_consist_rgrpd(rgd))
466                         fs_err(sdp, "free data mismatch:  %u != %u\n",
467                                count[0], rgd->rd_free);
468                 return;
469         }
470
471         tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472         if (count[1] != tmp) {
473                 if (gfs2_consist_rgrpd(rgd))
474                         fs_err(sdp, "used data mismatch:  %u != %u\n",
475                                count[1], tmp);
476                 return;
477         }
478
479         if (count[2] + count[3] != rgd->rd_dinodes) {
480                 if (gfs2_consist_rgrpd(rgd))
481                         fs_err(sdp, "used metadata mismatch:  %u != %u\n",
482                                count[2] + count[3], rgd->rd_dinodes);
483                 return;
484         }
485 }
486
487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488 {
489         u64 first = rgd->rd_data0;
490         u64 last = first + rgd->rd_data;
491         return first <= block && block < last;
492 }
493
494 /**
495  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496  * @sdp: The GFS2 superblock
497  * @blk: The data block number
498  * @exact: True if this needs to be an exact match
499  *
500  * Returns: The resource group, or NULL if not found
501  */
502
503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504 {
505         struct rb_node *n, *next;
506         struct gfs2_rgrpd *cur;
507
508         spin_lock(&sdp->sd_rindex_spin);
509         n = sdp->sd_rindex_tree.rb_node;
510         while (n) {
511                 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512                 next = NULL;
513                 if (blk < cur->rd_addr)
514                         next = n->rb_left;
515                 else if (blk >= cur->rd_data0 + cur->rd_data)
516                         next = n->rb_right;
517                 if (next == NULL) {
518                         spin_unlock(&sdp->sd_rindex_spin);
519                         if (exact) {
520                                 if (blk < cur->rd_addr)
521                                         return NULL;
522                                 if (blk >= cur->rd_data0 + cur->rd_data)
523                                         return NULL;
524                         }
525                         return cur;
526                 }
527                 n = next;
528         }
529         spin_unlock(&sdp->sd_rindex_spin);
530
531         return NULL;
532 }
533
534 /**
535  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536  * @sdp: The GFS2 superblock
537  *
538  * Returns: The first rgrp in the filesystem
539  */
540
541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542 {
543         const struct rb_node *n;
544         struct gfs2_rgrpd *rgd;
545
546         spin_lock(&sdp->sd_rindex_spin);
547         n = rb_first(&sdp->sd_rindex_tree);
548         rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549         spin_unlock(&sdp->sd_rindex_spin);
550
551         return rgd;
552 }
553
554 /**
555  * gfs2_rgrpd_get_next - get the next RG
556  * @rgd: the resource group descriptor
557  *
558  * Returns: The next rgrp
559  */
560
561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562 {
563         struct gfs2_sbd *sdp = rgd->rd_sbd;
564         const struct rb_node *n;
565
566         spin_lock(&sdp->sd_rindex_spin);
567         n = rb_next(&rgd->rd_node);
568         if (n == NULL)
569                 n = rb_first(&sdp->sd_rindex_tree);
570
571         if (unlikely(&rgd->rd_node == n)) {
572                 spin_unlock(&sdp->sd_rindex_spin);
573                 return NULL;
574         }
575         rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576         spin_unlock(&sdp->sd_rindex_spin);
577         return rgd;
578 }
579
580 void check_and_update_goal(struct gfs2_inode *ip)
581 {
582         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583         if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584                 ip->i_goal = ip->i_no_addr;
585 }
586
587 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588 {
589         int x;
590
591         for (x = 0; x < rgd->rd_length; x++) {
592                 struct gfs2_bitmap *bi = rgd->rd_bits + x;
593                 kfree(bi->bi_clone);
594                 bi->bi_clone = NULL;
595         }
596 }
597
598 /**
599  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
600  *                 plus a quota allocations data structure, if necessary
601  * @ip: the inode for this reservation
602  */
603 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
604 {
605         return gfs2_qa_alloc(ip);
606 }
607
608 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
609 {
610         gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
611                        (unsigned long long)rs->rs_inum,
612                        (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
613                        rs->rs_rbm.offset, rs->rs_free);
614 }
615
616 /**
617  * __rs_deltree - remove a multi-block reservation from the rgd tree
618  * @rs: The reservation to remove
619  *
620  */
621 static void __rs_deltree(struct gfs2_blkreserv *rs)
622 {
623         struct gfs2_rgrpd *rgd;
624
625         if (!gfs2_rs_active(rs))
626                 return;
627
628         rgd = rs->rs_rbm.rgd;
629         trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
630         rb_erase(&rs->rs_node, &rgd->rd_rstree);
631         RB_CLEAR_NODE(&rs->rs_node);
632
633         if (rs->rs_free) {
634                 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
635
636                 /* return reserved blocks to the rgrp */
637                 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
638                 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
639                 /* The rgrp extent failure point is likely not to increase;
640                    it will only do so if the freed blocks are somehow
641                    contiguous with a span of free blocks that follows. Still,
642                    it will force the number to be recalculated later. */
643                 rgd->rd_extfail_pt += rs->rs_free;
644                 rs->rs_free = 0;
645                 clear_bit(GBF_FULL, &bi->bi_flags);
646         }
647 }
648
649 /**
650  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
651  * @rs: The reservation to remove
652  *
653  */
654 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
655 {
656         struct gfs2_rgrpd *rgd;
657
658         rgd = rs->rs_rbm.rgd;
659         if (rgd) {
660                 spin_lock(&rgd->rd_rsspin);
661                 __rs_deltree(rs);
662                 spin_unlock(&rgd->rd_rsspin);
663         }
664 }
665
666 /**
667  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
668  * @ip: The inode for this reservation
669  * @wcount: The inode's write count, or NULL
670  *
671  */
672 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
673 {
674         down_write(&ip->i_rw_mutex);
675         if ((wcount == NULL) || (atomic_read(wcount) <= 1)) {
676                 gfs2_rs_deltree(&ip->i_res);
677                 BUG_ON(ip->i_res.rs_free);
678         }
679         up_write(&ip->i_rw_mutex);
680         gfs2_qa_delete(ip, wcount);
681 }
682
683 /**
684  * return_all_reservations - return all reserved blocks back to the rgrp.
685  * @rgd: the rgrp that needs its space back
686  *
687  * We previously reserved a bunch of blocks for allocation. Now we need to
688  * give them back. This leave the reservation structures in tact, but removes
689  * all of their corresponding "no-fly zones".
690  */
691 static void return_all_reservations(struct gfs2_rgrpd *rgd)
692 {
693         struct rb_node *n;
694         struct gfs2_blkreserv *rs;
695
696         spin_lock(&rgd->rd_rsspin);
697         while ((n = rb_first(&rgd->rd_rstree))) {
698                 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
699                 __rs_deltree(rs);
700         }
701         spin_unlock(&rgd->rd_rsspin);
702 }
703
704 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
705 {
706         struct rb_node *n;
707         struct gfs2_rgrpd *rgd;
708         struct gfs2_glock *gl;
709
710         while ((n = rb_first(&sdp->sd_rindex_tree))) {
711                 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
712                 gl = rgd->rd_gl;
713
714                 rb_erase(n, &sdp->sd_rindex_tree);
715
716                 if (gl) {
717                         spin_lock(&gl->gl_lockref.lock);
718                         gl->gl_object = NULL;
719                         spin_unlock(&gl->gl_lockref.lock);
720                         gfs2_glock_add_to_lru(gl);
721                         gfs2_glock_put(gl);
722                 }
723
724                 gfs2_free_clones(rgd);
725                 kfree(rgd->rd_bits);
726                 return_all_reservations(rgd);
727                 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
728         }
729 }
730
731 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
732 {
733         pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
734         pr_info("ri_length = %u\n", rgd->rd_length);
735         pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
736         pr_info("ri_data = %u\n", rgd->rd_data);
737         pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
738 }
739
740 /**
741  * gfs2_compute_bitstructs - Compute the bitmap sizes
742  * @rgd: The resource group descriptor
743  *
744  * Calculates bitmap descriptors, one for each block that contains bitmap data
745  *
746  * Returns: errno
747  */
748
749 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
750 {
751         struct gfs2_sbd *sdp = rgd->rd_sbd;
752         struct gfs2_bitmap *bi;
753         u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
754         u32 bytes_left, bytes;
755         int x;
756
757         if (!length)
758                 return -EINVAL;
759
760         rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
761         if (!rgd->rd_bits)
762                 return -ENOMEM;
763
764         bytes_left = rgd->rd_bitbytes;
765
766         for (x = 0; x < length; x++) {
767                 bi = rgd->rd_bits + x;
768
769                 bi->bi_flags = 0;
770                 /* small rgrp; bitmap stored completely in header block */
771                 if (length == 1) {
772                         bytes = bytes_left;
773                         bi->bi_offset = sizeof(struct gfs2_rgrp);
774                         bi->bi_start = 0;
775                         bi->bi_len = bytes;
776                         bi->bi_blocks = bytes * GFS2_NBBY;
777                 /* header block */
778                 } else if (x == 0) {
779                         bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
780                         bi->bi_offset = sizeof(struct gfs2_rgrp);
781                         bi->bi_start = 0;
782                         bi->bi_len = bytes;
783                         bi->bi_blocks = bytes * GFS2_NBBY;
784                 /* last block */
785                 } else if (x + 1 == length) {
786                         bytes = bytes_left;
787                         bi->bi_offset = sizeof(struct gfs2_meta_header);
788                         bi->bi_start = rgd->rd_bitbytes - bytes_left;
789                         bi->bi_len = bytes;
790                         bi->bi_blocks = bytes * GFS2_NBBY;
791                 /* other blocks */
792                 } else {
793                         bytes = sdp->sd_sb.sb_bsize -
794                                 sizeof(struct gfs2_meta_header);
795                         bi->bi_offset = sizeof(struct gfs2_meta_header);
796                         bi->bi_start = rgd->rd_bitbytes - bytes_left;
797                         bi->bi_len = bytes;
798                         bi->bi_blocks = bytes * GFS2_NBBY;
799                 }
800
801                 bytes_left -= bytes;
802         }
803
804         if (bytes_left) {
805                 gfs2_consist_rgrpd(rgd);
806                 return -EIO;
807         }
808         bi = rgd->rd_bits + (length - 1);
809         if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
810                 if (gfs2_consist_rgrpd(rgd)) {
811                         gfs2_rindex_print(rgd);
812                         fs_err(sdp, "start=%u len=%u offset=%u\n",
813                                bi->bi_start, bi->bi_len, bi->bi_offset);
814                 }
815                 return -EIO;
816         }
817
818         return 0;
819 }
820
821 /**
822  * gfs2_ri_total - Total up the file system space, according to the rindex.
823  * @sdp: the filesystem
824  *
825  */
826 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
827 {
828         u64 total_data = 0;     
829         struct inode *inode = sdp->sd_rindex;
830         struct gfs2_inode *ip = GFS2_I(inode);
831         char buf[sizeof(struct gfs2_rindex)];
832         int error, rgrps;
833
834         for (rgrps = 0;; rgrps++) {
835                 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
836
837                 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
838                         break;
839                 error = gfs2_internal_read(ip, buf, &pos,
840                                            sizeof(struct gfs2_rindex));
841                 if (error != sizeof(struct gfs2_rindex))
842                         break;
843                 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
844         }
845         return total_data;
846 }
847
848 static int rgd_insert(struct gfs2_rgrpd *rgd)
849 {
850         struct gfs2_sbd *sdp = rgd->rd_sbd;
851         struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
852
853         /* Figure out where to put new node */
854         while (*newn) {
855                 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
856                                                   rd_node);
857
858                 parent = *newn;
859                 if (rgd->rd_addr < cur->rd_addr)
860                         newn = &((*newn)->rb_left);
861                 else if (rgd->rd_addr > cur->rd_addr)
862                         newn = &((*newn)->rb_right);
863                 else
864                         return -EEXIST;
865         }
866
867         rb_link_node(&rgd->rd_node, parent, newn);
868         rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
869         sdp->sd_rgrps++;
870         return 0;
871 }
872
873 /**
874  * read_rindex_entry - Pull in a new resource index entry from the disk
875  * @ip: Pointer to the rindex inode
876  *
877  * Returns: 0 on success, > 0 on EOF, error code otherwise
878  */
879
880 static int read_rindex_entry(struct gfs2_inode *ip)
881 {
882         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
883         const unsigned bsize = sdp->sd_sb.sb_bsize;
884         loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
885         struct gfs2_rindex buf;
886         int error;
887         struct gfs2_rgrpd *rgd;
888
889         if (pos >= i_size_read(&ip->i_inode))
890                 return 1;
891
892         error = gfs2_internal_read(ip, (char *)&buf, &pos,
893                                    sizeof(struct gfs2_rindex));
894
895         if (error != sizeof(struct gfs2_rindex))
896                 return (error == 0) ? 1 : error;
897
898         rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
899         error = -ENOMEM;
900         if (!rgd)
901                 return error;
902
903         rgd->rd_sbd = sdp;
904         rgd->rd_addr = be64_to_cpu(buf.ri_addr);
905         rgd->rd_length = be32_to_cpu(buf.ri_length);
906         rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
907         rgd->rd_data = be32_to_cpu(buf.ri_data);
908         rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
909         spin_lock_init(&rgd->rd_rsspin);
910
911         error = compute_bitstructs(rgd);
912         if (error)
913                 goto fail;
914
915         error = gfs2_glock_get(sdp, rgd->rd_addr,
916                                &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
917         if (error)
918                 goto fail;
919
920         rgd->rd_gl->gl_object = rgd;
921         rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
922         rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1;
923         rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
924         rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
925         if (rgd->rd_data > sdp->sd_max_rg_data)
926                 sdp->sd_max_rg_data = rgd->rd_data;
927         spin_lock(&sdp->sd_rindex_spin);
928         error = rgd_insert(rgd);
929         spin_unlock(&sdp->sd_rindex_spin);
930         if (!error)
931                 return 0;
932
933         error = 0; /* someone else read in the rgrp; free it and ignore it */
934         gfs2_glock_put(rgd->rd_gl);
935
936 fail:
937         kfree(rgd->rd_bits);
938         kmem_cache_free(gfs2_rgrpd_cachep, rgd);
939         return error;
940 }
941
942 /**
943  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
944  * @sdp: the GFS2 superblock
945  *
946  * The purpose of this function is to select a subset of the resource groups
947  * and mark them as PREFERRED. We do it in such a way that each node prefers
948  * to use a unique set of rgrps to minimize glock contention.
949  */
950 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
951 {
952         struct gfs2_rgrpd *rgd, *first;
953         int i;
954
955         /* Skip an initial number of rgrps, based on this node's journal ID.
956            That should start each node out on its own set. */
957         rgd = gfs2_rgrpd_get_first(sdp);
958         for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
959                 rgd = gfs2_rgrpd_get_next(rgd);
960         first = rgd;
961
962         do {
963                 rgd->rd_flags |= GFS2_RDF_PREFERRED;
964                 for (i = 0; i < sdp->sd_journals; i++) {
965                         rgd = gfs2_rgrpd_get_next(rgd);
966                         if (!rgd || rgd == first)
967                                 break;
968                 }
969         } while (rgd && rgd != first);
970 }
971
972 /**
973  * gfs2_ri_update - Pull in a new resource index from the disk
974  * @ip: pointer to the rindex inode
975  *
976  * Returns: 0 on successful update, error code otherwise
977  */
978
979 static int gfs2_ri_update(struct gfs2_inode *ip)
980 {
981         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
982         int error;
983
984         do {
985                 error = read_rindex_entry(ip);
986         } while (error == 0);
987
988         if (error < 0)
989                 return error;
990
991         set_rgrp_preferences(sdp);
992
993         sdp->sd_rindex_uptodate = 1;
994         return 0;
995 }
996
997 /**
998  * gfs2_rindex_update - Update the rindex if required
999  * @sdp: The GFS2 superblock
1000  *
1001  * We grab a lock on the rindex inode to make sure that it doesn't
1002  * change whilst we are performing an operation. We keep this lock
1003  * for quite long periods of time compared to other locks. This
1004  * doesn't matter, since it is shared and it is very, very rarely
1005  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006  *
1007  * This makes sure that we're using the latest copy of the resource index
1008  * special file, which might have been updated if someone expanded the
1009  * filesystem (via gfs2_grow utility), which adds new resource groups.
1010  *
1011  * Returns: 0 on succeess, error code otherwise
1012  */
1013
1014 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015 {
1016         struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017         struct gfs2_glock *gl = ip->i_gl;
1018         struct gfs2_holder ri_gh;
1019         int error = 0;
1020         int unlock_required = 0;
1021
1022         /* Read new copy from disk if we don't have the latest */
1023         if (!sdp->sd_rindex_uptodate) {
1024                 if (!gfs2_glock_is_locked_by_me(gl)) {
1025                         error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026                         if (error)
1027                                 return error;
1028                         unlock_required = 1;
1029                 }
1030                 if (!sdp->sd_rindex_uptodate)
1031                         error = gfs2_ri_update(ip);
1032                 if (unlock_required)
1033                         gfs2_glock_dq_uninit(&ri_gh);
1034         }
1035
1036         return error;
1037 }
1038
1039 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040 {
1041         const struct gfs2_rgrp *str = buf;
1042         u32 rg_flags;
1043
1044         rg_flags = be32_to_cpu(str->rg_flags);
1045         rg_flags &= ~GFS2_RDF_MASK;
1046         rgd->rd_flags &= GFS2_RDF_MASK;
1047         rgd->rd_flags |= rg_flags;
1048         rgd->rd_free = be32_to_cpu(str->rg_free);
1049         rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050         rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051 }
1052
1053 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1054 {
1055         struct gfs2_rgrp *str = buf;
1056
1057         str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1058         str->rg_free = cpu_to_be32(rgd->rd_free);
1059         str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1060         str->__pad = cpu_to_be32(0);
1061         str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1062         memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1063 }
1064
1065 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1066 {
1067         struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1068         struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1069
1070         if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1071             rgl->rl_dinodes != str->rg_dinodes ||
1072             rgl->rl_igeneration != str->rg_igeneration)
1073                 return 0;
1074         return 1;
1075 }
1076
1077 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1078 {
1079         const struct gfs2_rgrp *str = buf;
1080
1081         rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1082         rgl->rl_flags = str->rg_flags;
1083         rgl->rl_free = str->rg_free;
1084         rgl->rl_dinodes = str->rg_dinodes;
1085         rgl->rl_igeneration = str->rg_igeneration;
1086         rgl->__pad = 0UL;
1087 }
1088
1089 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1090 {
1091         struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1092         u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1093         rgl->rl_unlinked = cpu_to_be32(unlinked);
1094 }
1095
1096 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1097 {
1098         struct gfs2_bitmap *bi;
1099         const u32 length = rgd->rd_length;
1100         const u8 *buffer = NULL;
1101         u32 i, goal, count = 0;
1102
1103         for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1104                 goal = 0;
1105                 buffer = bi->bi_bh->b_data + bi->bi_offset;
1106                 WARN_ON(!buffer_uptodate(bi->bi_bh));
1107                 while (goal < bi->bi_len * GFS2_NBBY) {
1108                         goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1109                                            GFS2_BLKST_UNLINKED);
1110                         if (goal == BFITNOENT)
1111                                 break;
1112                         count++;
1113                         goal++;
1114                 }
1115         }
1116
1117         return count;
1118 }
1119
1120
1121 /**
1122  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1123  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1124  *
1125  * Read in all of a Resource Group's header and bitmap blocks.
1126  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1127  *
1128  * Returns: errno
1129  */
1130
1131 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1132 {
1133         struct gfs2_sbd *sdp = rgd->rd_sbd;
1134         struct gfs2_glock *gl = rgd->rd_gl;
1135         unsigned int length = rgd->rd_length;
1136         struct gfs2_bitmap *bi;
1137         unsigned int x, y;
1138         int error;
1139
1140         if (rgd->rd_bits[0].bi_bh != NULL)
1141                 return 0;
1142
1143         for (x = 0; x < length; x++) {
1144                 bi = rgd->rd_bits + x;
1145                 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1146                 if (error)
1147                         goto fail;
1148         }
1149
1150         for (y = length; y--;) {
1151                 bi = rgd->rd_bits + y;
1152                 error = gfs2_meta_wait(sdp, bi->bi_bh);
1153                 if (error)
1154                         goto fail;
1155                 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1156                                               GFS2_METATYPE_RG)) {
1157                         error = -EIO;
1158                         goto fail;
1159                 }
1160         }
1161
1162         if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1163                 for (x = 0; x < length; x++)
1164                         clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1165                 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1166                 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1167                 rgd->rd_free_clone = rgd->rd_free;
1168                 /* max out the rgrp allocation failure point */
1169                 rgd->rd_extfail_pt = rgd->rd_free;
1170         }
1171         if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1172                 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1173                 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1174                                      rgd->rd_bits[0].bi_bh->b_data);
1175         }
1176         else if (sdp->sd_args.ar_rgrplvb) {
1177                 if (!gfs2_rgrp_lvb_valid(rgd)){
1178                         gfs2_consist_rgrpd(rgd);
1179                         error = -EIO;
1180                         goto fail;
1181                 }
1182                 if (rgd->rd_rgl->rl_unlinked == 0)
1183                         rgd->rd_flags &= ~GFS2_RDF_CHECK;
1184         }
1185         return 0;
1186
1187 fail:
1188         while (x--) {
1189                 bi = rgd->rd_bits + x;
1190                 brelse(bi->bi_bh);
1191                 bi->bi_bh = NULL;
1192                 gfs2_assert_warn(sdp, !bi->bi_clone);
1193         }
1194
1195         return error;
1196 }
1197
1198 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1199 {
1200         u32 rl_flags;
1201
1202         if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1203                 return 0;
1204
1205         if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1206                 return gfs2_rgrp_bh_get(rgd);
1207
1208         rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1209         rl_flags &= ~GFS2_RDF_MASK;
1210         rgd->rd_flags &= GFS2_RDF_MASK;
1211         rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1212         if (rgd->rd_rgl->rl_unlinked == 0)
1213                 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1214         rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1215         rgd->rd_free_clone = rgd->rd_free;
1216         rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1217         rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1218         return 0;
1219 }
1220
1221 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1222 {
1223         struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1224         struct gfs2_sbd *sdp = rgd->rd_sbd;
1225
1226         if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1227                 return 0;
1228         return gfs2_rgrp_bh_get(rgd);
1229 }
1230
1231 /**
1232  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1233  * @rgd: The resource group
1234  *
1235  */
1236
1237 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1238 {
1239         int x, length = rgd->rd_length;
1240
1241         for (x = 0; x < length; x++) {
1242                 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1243                 if (bi->bi_bh) {
1244                         brelse(bi->bi_bh);
1245                         bi->bi_bh = NULL;
1246                 }
1247         }
1248
1249 }
1250
1251 /**
1252  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1253  * @gh: The glock holder for the resource group
1254  *
1255  */
1256
1257 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1258 {
1259         struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1260         int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1261                 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1262
1263         if (rgd && demote_requested)
1264                 gfs2_rgrp_brelse(rgd);
1265 }
1266
1267 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1268                              struct buffer_head *bh,
1269                              const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1270 {
1271         struct super_block *sb = sdp->sd_vfs;
1272         u64 blk;
1273         sector_t start = 0;
1274         sector_t nr_blks = 0;
1275         int rv;
1276         unsigned int x;
1277         u32 trimmed = 0;
1278         u8 diff;
1279
1280         for (x = 0; x < bi->bi_len; x++) {
1281                 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1282                 clone += bi->bi_offset;
1283                 clone += x;
1284                 if (bh) {
1285                         const u8 *orig = bh->b_data + bi->bi_offset + x;
1286                         diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1287                 } else {
1288                         diff = ~(*clone | (*clone >> 1));
1289                 }
1290                 diff &= 0x55;
1291                 if (diff == 0)
1292                         continue;
1293                 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1294                 while(diff) {
1295                         if (diff & 1) {
1296                                 if (nr_blks == 0)
1297                                         goto start_new_extent;
1298                                 if ((start + nr_blks) != blk) {
1299                                         if (nr_blks >= minlen) {
1300                                                 rv = sb_issue_discard(sb,
1301                                                         start, nr_blks,
1302                                                         GFP_NOFS, 0);
1303                                                 if (rv)
1304                                                         goto fail;
1305                                                 trimmed += nr_blks;
1306                                         }
1307                                         nr_blks = 0;
1308 start_new_extent:
1309                                         start = blk;
1310                                 }
1311                                 nr_blks++;
1312                         }
1313                         diff >>= 2;
1314                         blk++;
1315                 }
1316         }
1317         if (nr_blks >= minlen) {
1318                 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1319                 if (rv)
1320                         goto fail;
1321                 trimmed += nr_blks;
1322         }
1323         if (ptrimmed)
1324                 *ptrimmed = trimmed;
1325         return 0;
1326
1327 fail:
1328         if (sdp->sd_args.ar_discard)
1329                 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1330         sdp->sd_args.ar_discard = 0;
1331         return -EIO;
1332 }
1333
1334 /**
1335  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1336  * @filp: Any file on the filesystem
1337  * @argp: Pointer to the arguments (also used to pass result)
1338  *
1339  * Returns: 0 on success, otherwise error code
1340  */
1341
1342 int gfs2_fitrim(struct file *filp, void __user *argp)
1343 {
1344         struct inode *inode = file_inode(filp);
1345         struct gfs2_sbd *sdp = GFS2_SB(inode);
1346         struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1347         struct buffer_head *bh;
1348         struct gfs2_rgrpd *rgd;
1349         struct gfs2_rgrpd *rgd_end;
1350         struct gfs2_holder gh;
1351         struct fstrim_range r;
1352         int ret = 0;
1353         u64 amt;
1354         u64 trimmed = 0;
1355         u64 start, end, minlen;
1356         unsigned int x;
1357         unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1358
1359         if (!capable(CAP_SYS_ADMIN))
1360                 return -EPERM;
1361
1362         if (!blk_queue_discard(q))
1363                 return -EOPNOTSUPP;
1364
1365         if (copy_from_user(&r, argp, sizeof(r)))
1366                 return -EFAULT;
1367
1368         ret = gfs2_rindex_update(sdp);
1369         if (ret)
1370                 return ret;
1371
1372         start = r.start >> bs_shift;
1373         end = start + (r.len >> bs_shift);
1374         minlen = max_t(u64, r.minlen,
1375                        q->limits.discard_granularity) >> bs_shift;
1376
1377         if (end <= start || minlen > sdp->sd_max_rg_data)
1378                 return -EINVAL;
1379
1380         rgd = gfs2_blk2rgrpd(sdp, start, 0);
1381         rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1382
1383         if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1384             && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1385                 return -EINVAL; /* start is beyond the end of the fs */
1386
1387         while (1) {
1388
1389                 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1390                 if (ret)
1391                         goto out;
1392
1393                 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1394                         /* Trim each bitmap in the rgrp */
1395                         for (x = 0; x < rgd->rd_length; x++) {
1396                                 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1397                                 ret = gfs2_rgrp_send_discards(sdp,
1398                                                 rgd->rd_data0, NULL, bi, minlen,
1399                                                 &amt);
1400                                 if (ret) {
1401                                         gfs2_glock_dq_uninit(&gh);
1402                                         goto out;
1403                                 }
1404                                 trimmed += amt;
1405                         }
1406
1407                         /* Mark rgrp as having been trimmed */
1408                         ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1409                         if (ret == 0) {
1410                                 bh = rgd->rd_bits[0].bi_bh;
1411                                 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1412                                 gfs2_trans_add_meta(rgd->rd_gl, bh);
1413                                 gfs2_rgrp_out(rgd, bh->b_data);
1414                                 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1415                                 gfs2_trans_end(sdp);
1416                         }
1417                 }
1418                 gfs2_glock_dq_uninit(&gh);
1419
1420                 if (rgd == rgd_end)
1421                         break;
1422
1423                 rgd = gfs2_rgrpd_get_next(rgd);
1424         }
1425
1426 out:
1427         r.len = trimmed << bs_shift;
1428         if (copy_to_user(argp, &r, sizeof(r)))
1429                 return -EFAULT;
1430
1431         return ret;
1432 }
1433
1434 /**
1435  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1436  * @ip: the inode structure
1437  *
1438  */
1439 static void rs_insert(struct gfs2_inode *ip)
1440 {
1441         struct rb_node **newn, *parent = NULL;
1442         int rc;
1443         struct gfs2_blkreserv *rs = &ip->i_res;
1444         struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1445         u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1446
1447         BUG_ON(gfs2_rs_active(rs));
1448
1449         spin_lock(&rgd->rd_rsspin);
1450         newn = &rgd->rd_rstree.rb_node;
1451         while (*newn) {
1452                 struct gfs2_blkreserv *cur =
1453                         rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1454
1455                 parent = *newn;
1456                 rc = rs_cmp(fsblock, rs->rs_free, cur);
1457                 if (rc > 0)
1458                         newn = &((*newn)->rb_right);
1459                 else if (rc < 0)
1460                         newn = &((*newn)->rb_left);
1461                 else {
1462                         spin_unlock(&rgd->rd_rsspin);
1463                         WARN_ON(1);
1464                         return;
1465                 }
1466         }
1467
1468         rb_link_node(&rs->rs_node, parent, newn);
1469         rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1470
1471         /* Do our rgrp accounting for the reservation */
1472         rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1473         spin_unlock(&rgd->rd_rsspin);
1474         trace_gfs2_rs(rs, TRACE_RS_INSERT);
1475 }
1476
1477 /**
1478  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1479  * @rgd: the resource group descriptor
1480  * @ip: pointer to the inode for which we're reserving blocks
1481  * @ap: the allocation parameters
1482  *
1483  */
1484
1485 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1486                            const struct gfs2_alloc_parms *ap)
1487 {
1488         struct gfs2_rbm rbm = { .rgd = rgd, };
1489         u64 goal;
1490         struct gfs2_blkreserv *rs = &ip->i_res;
1491         u32 extlen;
1492         u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1493         int ret;
1494         struct inode *inode = &ip->i_inode;
1495
1496         if (S_ISDIR(inode->i_mode))
1497                 extlen = 1;
1498         else {
1499                 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1500                 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1501         }
1502         if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1503                 return;
1504
1505         /* Find bitmap block that contains bits for goal block */
1506         if (rgrp_contains_block(rgd, ip->i_goal))
1507                 goal = ip->i_goal;
1508         else
1509                 goal = rgd->rd_last_alloc + rgd->rd_data0;
1510
1511         if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1512                 return;
1513
1514         ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1515         if (ret == 0) {
1516                 rs->rs_rbm = rbm;
1517                 rs->rs_free = extlen;
1518                 rs->rs_inum = ip->i_no_addr;
1519                 rs_insert(ip);
1520         } else {
1521                 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1522                         rgd->rd_last_alloc = 0;
1523         }
1524 }
1525
1526 /**
1527  * gfs2_next_unreserved_block - Return next block that is not reserved
1528  * @rgd: The resource group
1529  * @block: The starting block
1530  * @length: The required length
1531  * @ip: Ignore any reservations for this inode
1532  *
1533  * If the block does not appear in any reservation, then return the
1534  * block number unchanged. If it does appear in the reservation, then
1535  * keep looking through the tree of reservations in order to find the
1536  * first block number which is not reserved.
1537  */
1538
1539 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1540                                       u32 length,
1541                                       const struct gfs2_inode *ip)
1542 {
1543         struct gfs2_blkreserv *rs;
1544         struct rb_node *n;
1545         int rc;
1546
1547         spin_lock(&rgd->rd_rsspin);
1548         n = rgd->rd_rstree.rb_node;
1549         while (n) {
1550                 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1551                 rc = rs_cmp(block, length, rs);
1552                 if (rc < 0)
1553                         n = n->rb_left;
1554                 else if (rc > 0)
1555                         n = n->rb_right;
1556                 else
1557                         break;
1558         }
1559
1560         if (n) {
1561                 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1562                         block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1563                         n = n->rb_right;
1564                         if (n == NULL)
1565                                 break;
1566                         rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1567                 }
1568         }
1569
1570         spin_unlock(&rgd->rd_rsspin);
1571         return block;
1572 }
1573
1574 /**
1575  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1576  * @rbm: The current position in the resource group
1577  * @ip: The inode for which we are searching for blocks
1578  * @minext: The minimum extent length
1579  * @maxext: A pointer to the maximum extent structure
1580  *
1581  * This checks the current position in the rgrp to see whether there is
1582  * a reservation covering this block. If not then this function is a
1583  * no-op. If there is, then the position is moved to the end of the
1584  * contiguous reservation(s) so that we are pointing at the first
1585  * non-reserved block.
1586  *
1587  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1588  */
1589
1590 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1591                                              const struct gfs2_inode *ip,
1592                                              u32 minext,
1593                                              struct gfs2_extent *maxext)
1594 {
1595         u64 block = gfs2_rbm_to_block(rbm);
1596         u32 extlen = 1;
1597         u64 nblock;
1598         int ret;
1599
1600         /*
1601          * If we have a minimum extent length, then skip over any extent
1602          * which is less than the min extent length in size.
1603          */
1604         if (minext) {
1605                 extlen = gfs2_free_extlen(rbm, minext);
1606                 if (extlen <= maxext->len)
1607                         goto fail;
1608         }
1609
1610         /*
1611          * Check the extent which has been found against the reservations
1612          * and skip if parts of it are already reserved
1613          */
1614         nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1615         if (nblock == block) {
1616                 if (!minext || extlen >= minext)
1617                         return 0;
1618
1619                 if (extlen > maxext->len) {
1620                         maxext->len = extlen;
1621                         maxext->rbm = *rbm;
1622                 }
1623 fail:
1624                 nblock = block + extlen;
1625         }
1626         ret = gfs2_rbm_from_block(rbm, nblock);
1627         if (ret < 0)
1628                 return ret;
1629         return 1;
1630 }
1631
1632 /**
1633  * gfs2_rbm_find - Look for blocks of a particular state
1634  * @rbm: Value/result starting position and final position
1635  * @state: The state which we want to find
1636  * @minext: Pointer to the requested extent length (NULL for a single block)
1637  *          This is updated to be the actual reservation size.
1638  * @ip: If set, check for reservations
1639  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1640  *          around until we've reached the starting point.
1641  * @ap: the allocation parameters
1642  *
1643  * Side effects:
1644  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1645  *   has no free blocks in it.
1646  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1647  *   has come up short on a free block search.
1648  *
1649  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1650  */
1651
1652 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1653                          const struct gfs2_inode *ip, bool nowrap,
1654                          const struct gfs2_alloc_parms *ap)
1655 {
1656         struct buffer_head *bh;
1657         int initial_bii;
1658         u32 initial_offset;
1659         int first_bii = rbm->bii;
1660         u32 first_offset = rbm->offset;
1661         u32 offset;
1662         u8 *buffer;
1663         int n = 0;
1664         int iters = rbm->rgd->rd_length;
1665         int ret;
1666         struct gfs2_bitmap *bi;
1667         struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668
1669         /* If we are not starting at the beginning of a bitmap, then we
1670          * need to add one to the bitmap count to ensure that we search
1671          * the starting bitmap twice.
1672          */
1673         if (rbm->offset != 0)
1674                 iters++;
1675
1676         while(1) {
1677                 bi = rbm_bi(rbm);
1678                 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679                     (state == GFS2_BLKST_FREE))
1680                         goto next_bitmap;
1681
1682                 bh = bi->bi_bh;
1683                 buffer = bh->b_data + bi->bi_offset;
1684                 WARN_ON(!buffer_uptodate(bh));
1685                 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686                         buffer = bi->bi_clone + bi->bi_offset;
1687                 initial_offset = rbm->offset;
1688                 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689                 if (offset == BFITNOENT)
1690                         goto bitmap_full;
1691                 rbm->offset = offset;
1692                 if (ip == NULL)
1693                         return 0;
1694
1695                 initial_bii = rbm->bii;
1696                 ret = gfs2_reservation_check_and_update(rbm, ip,
1697                                                         minext ? *minext : 0,
1698                                                         &maxext);
1699                 if (ret == 0)
1700                         return 0;
1701                 if (ret > 0) {
1702                         n += (rbm->bii - initial_bii);
1703                         goto next_iter;
1704                 }
1705                 if (ret == -E2BIG) {
1706                         rbm->bii = 0;
1707                         rbm->offset = 0;
1708                         n += (rbm->bii - initial_bii);
1709                         goto res_covered_end_of_rgrp;
1710                 }
1711                 return ret;
1712
1713 bitmap_full:    /* Mark bitmap as full and fall through */
1714                 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715                         set_bit(GBF_FULL, &bi->bi_flags);
1716
1717 next_bitmap:    /* Find next bitmap in the rgrp */
1718                 rbm->offset = 0;
1719                 rbm->bii++;
1720                 if (rbm->bii == rbm->rgd->rd_length)
1721                         rbm->bii = 0;
1722 res_covered_end_of_rgrp:
1723                 if ((rbm->bii == 0) && nowrap)
1724                         break;
1725                 n++;
1726 next_iter:
1727                 if (n >= iters)
1728                         break;
1729         }
1730
1731         if (minext == NULL || state != GFS2_BLKST_FREE)
1732                 return -ENOSPC;
1733
1734         /* If the extent was too small, and it's smaller than the smallest
1735            to have failed before, remember for future reference that it's
1736            useless to search this rgrp again for this amount or more. */
1737         if ((first_offset == 0) && (first_bii == 0) &&
1738             (*minext < rbm->rgd->rd_extfail_pt))
1739                 rbm->rgd->rd_extfail_pt = *minext;
1740
1741         /* If the maximum extent we found is big enough to fulfill the
1742            minimum requirements, use it anyway. */
1743         if (maxext.len) {
1744                 *rbm = maxext.rbm;
1745                 *minext = maxext.len;
1746                 return 0;
1747         }
1748
1749         return -ENOSPC;
1750 }
1751
1752 /**
1753  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754  * @rgd: The rgrp
1755  * @last_unlinked: block address of the last dinode we unlinked
1756  * @skip: block address we should explicitly not unlink
1757  *
1758  * Returns: 0 if no error
1759  *          The inode, if one has been found, in inode.
1760  */
1761
1762 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763 {
1764         u64 block;
1765         struct gfs2_sbd *sdp = rgd->rd_sbd;
1766         struct gfs2_glock *gl;
1767         struct gfs2_inode *ip;
1768         int error;
1769         int found = 0;
1770         struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771
1772         while (1) {
1773                 down_write(&sdp->sd_log_flush_lock);
1774                 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775                                       true, NULL);
1776                 up_write(&sdp->sd_log_flush_lock);
1777                 if (error == -ENOSPC)
1778                         break;
1779                 if (WARN_ON_ONCE(error))
1780                         break;
1781
1782                 block = gfs2_rbm_to_block(&rbm);
1783                 if (gfs2_rbm_from_block(&rbm, block + 1))
1784                         break;
1785                 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1786                         continue;
1787                 if (block == skip)
1788                         continue;
1789                 *last_unlinked = block;
1790
1791                 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792                 if (error)
1793                         continue;
1794
1795                 /* If the inode is already in cache, we can ignore it here
1796                  * because the existing inode disposal code will deal with
1797                  * it when all refs have gone away. Accessing gl_object like
1798                  * this is not safe in general. Here it is ok because we do
1799                  * not dereference the pointer, and we only need an approx
1800                  * answer to whether it is NULL or not.
1801                  */
1802                 ip = gl->gl_object;
1803
1804                 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805                         gfs2_glock_put(gl);
1806                 else
1807                         found++;
1808
1809                 /* Limit reclaim to sensible number of tasks */
1810                 if (found > NR_CPUS)
1811                         return;
1812         }
1813
1814         rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815         return;
1816 }
1817
1818 /**
1819  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820  * @rgd: The rgrp in question
1821  * @loops: An indication of how picky we can be (0=very, 1=less so)
1822  *
1823  * This function uses the recently added glock statistics in order to
1824  * figure out whether a parciular resource group is suffering from
1825  * contention from multiple nodes. This is done purely on the basis
1826  * of timings, since this is the only data we have to work with and
1827  * our aim here is to reject a resource group which is highly contended
1828  * but (very important) not to do this too often in order to ensure that
1829  * we do not land up introducing fragmentation by changing resource
1830  * groups when not actually required.
1831  *
1832  * The calculation is fairly simple, we want to know whether the SRTTB
1833  * (i.e. smoothed round trip time for blocking operations) to acquire
1834  * the lock for this rgrp's glock is significantly greater than the
1835  * time taken for resource groups on average. We introduce a margin in
1836  * the form of the variable @var which is computed as the sum of the two
1837  * respective variences, and multiplied by a factor depending on @loops
1838  * and whether we have a lot of data to base the decision on. This is
1839  * then tested against the square difference of the means in order to
1840  * decide whether the result is statistically significant or not.
1841  *
1842  * Returns: A boolean verdict on the congestion status
1843  */
1844
1845 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846 {
1847         const struct gfs2_glock *gl = rgd->rd_gl;
1848         const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849         struct gfs2_lkstats *st;
1850         u64 r_dcount, l_dcount;
1851         u64 l_srttb, a_srttb = 0;
1852         s64 srttb_diff;
1853         u64 sqr_diff;
1854         u64 var;
1855         int cpu, nonzero = 0;
1856
1857         preempt_disable();
1858         for_each_present_cpu(cpu) {
1859                 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860                 if (st->stats[GFS2_LKS_SRTTB]) {
1861                         a_srttb += st->stats[GFS2_LKS_SRTTB];
1862                         nonzero++;
1863                 }
1864         }
1865         st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866         if (nonzero)
1867                 do_div(a_srttb, nonzero);
1868         r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869         var = st->stats[GFS2_LKS_SRTTVARB] +
1870               gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871         preempt_enable();
1872
1873         l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874         l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875
1876         if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877                 return false;
1878
1879         srttb_diff = a_srttb - l_srttb;
1880         sqr_diff = srttb_diff * srttb_diff;
1881
1882         var *= 2;
1883         if (l_dcount < 8 || r_dcount < 8)
1884                 var *= 2;
1885         if (loops == 1)
1886                 var *= 2;
1887
1888         return ((srttb_diff < 0) && (sqr_diff > var));
1889 }
1890
1891 /**
1892  * gfs2_rgrp_used_recently
1893  * @rs: The block reservation with the rgrp to test
1894  * @msecs: The time limit in milliseconds
1895  *
1896  * Returns: True if the rgrp glock has been used within the time limit
1897  */
1898 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899                                     u64 msecs)
1900 {
1901         u64 tdiff;
1902
1903         tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1905
1906         return tdiff > (msecs * 1000 * 1000);
1907 }
1908
1909 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910 {
1911         const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912         u32 skip;
1913
1914         get_random_bytes(&skip, sizeof(skip));
1915         return skip % sdp->sd_rgrps;
1916 }
1917
1918 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919 {
1920         struct gfs2_rgrpd *rgd = *pos;
1921         struct gfs2_sbd *sdp = rgd->rd_sbd;
1922
1923         rgd = gfs2_rgrpd_get_next(rgd);
1924         if (rgd == NULL)
1925                 rgd = gfs2_rgrpd_get_first(sdp);
1926         *pos = rgd;
1927         if (rgd != begin) /* If we didn't wrap */
1928                 return true;
1929         return false;
1930 }
1931
1932 /**
1933  * fast_to_acquire - determine if a resource group will be fast to acquire
1934  *
1935  * If this is one of our preferred rgrps, it should be quicker to acquire,
1936  * because we tried to set ourselves up as dlm lock master.
1937  */
1938 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939 {
1940         struct gfs2_glock *gl = rgd->rd_gl;
1941
1942         if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943             !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944             !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945                 return 1;
1946         if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947                 return 1;
1948         return 0;
1949 }
1950
1951 /**
1952  * gfs2_inplace_reserve - Reserve space in the filesystem
1953  * @ip: the inode to reserve space for
1954  * @ap: the allocation parameters
1955  *
1956  * We try our best to find an rgrp that has at least ap->target blocks
1957  * available. After a couple of passes (loops == 2), the prospects of finding
1958  * such an rgrp diminish. At this stage, we return the first rgrp that has
1959  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960  * the number of blocks available in the chosen rgrp.
1961  *
1962  * Returns: 0 on success,
1963  *          -ENOMEM if a suitable rgrp can't be found
1964  *          errno otherwise
1965  */
1966
1967 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968 {
1969         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970         struct gfs2_rgrpd *begin = NULL;
1971         struct gfs2_blkreserv *rs = &ip->i_res;
1972         int error = 0, rg_locked, flags = 0;
1973         u64 last_unlinked = NO_BLOCK;
1974         int loops = 0;
1975         u32 skip = 0;
1976
1977         if (sdp->sd_args.ar_rgrplvb)
1978                 flags |= GL_SKIP;
1979         if (gfs2_assert_warn(sdp, ap->target))
1980                 return -EINVAL;
1981         if (gfs2_rs_active(rs)) {
1982                 begin = rs->rs_rbm.rgd;
1983         } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984                 rs->rs_rbm.rgd = begin = ip->i_rgd;
1985         } else {
1986                 check_and_update_goal(ip);
1987                 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988         }
1989         if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990                 skip = gfs2_orlov_skip(ip);
1991         if (rs->rs_rbm.rgd == NULL)
1992                 return -EBADSLT;
1993
1994         while (loops < 3) {
1995                 rg_locked = 1;
1996
1997                 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998                         rg_locked = 0;
1999                         if (skip && skip--)
2000                                 goto next_rgrp;
2001                         if (!gfs2_rs_active(rs)) {
2002                                 if (loops == 0 &&
2003                                     !fast_to_acquire(rs->rs_rbm.rgd))
2004                                         goto next_rgrp;
2005                                 if ((loops < 2) &&
2006                                     gfs2_rgrp_used_recently(rs, 1000) &&
2007                                     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008                                         goto next_rgrp;
2009                         }
2010                         error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011                                                    LM_ST_EXCLUSIVE, flags,
2012                                                    &rs->rs_rgd_gh);
2013                         if (unlikely(error))
2014                                 return error;
2015                         if (!gfs2_rs_active(rs) && (loops < 2) &&
2016                             gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017                                 goto skip_rgrp;
2018                         if (sdp->sd_args.ar_rgrplvb) {
2019                                 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020                                 if (unlikely(error)) {
2021                                         gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022                                         return error;
2023                                 }
2024                         }
2025                 }
2026
2027                 /* Skip unuseable resource groups */
2028                 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029                                                  GFS2_RDF_ERROR)) ||
2030                     (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031                         goto skip_rgrp;
2032
2033                 if (sdp->sd_args.ar_rgrplvb)
2034                         gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035
2036                 /* Get a reservation if we don't already have one */
2037                 if (!gfs2_rs_active(rs))
2038                         rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039
2040                 /* Skip rgrps when we can't get a reservation on first pass */
2041                 if (!gfs2_rs_active(rs) && (loops < 1))
2042                         goto check_rgrp;
2043
2044                 /* If rgrp has enough free space, use it */
2045                 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046                     (loops == 2 && ap->min_target &&
2047                      rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048                         ip->i_rgd = rs->rs_rbm.rgd;
2049                         ap->allowed = ip->i_rgd->rd_free_clone;
2050                         return 0;
2051                 }
2052 check_rgrp:
2053                 /* Check for unlinked inodes which can be reclaimed */
2054                 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055                         try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056                                         ip->i_no_addr);
2057 skip_rgrp:
2058                 /* Drop reservation, if we couldn't use reserved rgrp */
2059                 if (gfs2_rs_active(rs))
2060                         gfs2_rs_deltree(rs);
2061
2062                 /* Unlock rgrp if required */
2063                 if (!rg_locked)
2064                         gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065 next_rgrp:
2066                 /* Find the next rgrp, and continue looking */
2067                 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068                         continue;
2069                 if (skip)
2070                         continue;
2071
2072                 /* If we've scanned all the rgrps, but found no free blocks
2073                  * then this checks for some less likely conditions before
2074                  * trying again.
2075                  */
2076                 loops++;
2077                 /* Check that fs hasn't grown if writing to rindex */
2078                 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079                         error = gfs2_ri_update(ip);
2080                         if (error)
2081                                 return error;
2082                 }
2083                 /* Flushing the log may release space */
2084                 if (loops == 2)
2085                         gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2086         }
2087
2088         return -ENOSPC;
2089 }
2090
2091 /**
2092  * gfs2_inplace_release - release an inplace reservation
2093  * @ip: the inode the reservation was taken out on
2094  *
2095  * Release a reservation made by gfs2_inplace_reserve().
2096  */
2097
2098 void gfs2_inplace_release(struct gfs2_inode *ip)
2099 {
2100         struct gfs2_blkreserv *rs = &ip->i_res;
2101
2102         if (rs->rs_rgd_gh.gh_gl)
2103                 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2104 }
2105
2106 /**
2107  * gfs2_get_block_type - Check a block in a RG is of given type
2108  * @rgd: the resource group holding the block
2109  * @block: the block number
2110  *
2111  * Returns: The block type (GFS2_BLKST_*)
2112  */
2113
2114 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115 {
2116         struct gfs2_rbm rbm = { .rgd = rgd, };
2117         int ret;
2118
2119         ret = gfs2_rbm_from_block(&rbm, block);
2120         WARN_ON_ONCE(ret != 0);
2121
2122         return gfs2_testbit(&rbm);
2123 }
2124
2125
2126 /**
2127  * gfs2_alloc_extent - allocate an extent from a given bitmap
2128  * @rbm: the resource group information
2129  * @dinode: TRUE if the first block we allocate is for a dinode
2130  * @n: The extent length (value/result)
2131  *
2132  * Add the bitmap buffer to the transaction.
2133  * Set the found bits to @new_state to change block's allocation state.
2134  */
2135 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136                              unsigned int *n)
2137 {
2138         struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139         const unsigned int elen = *n;
2140         u64 block;
2141         int ret;
2142
2143         *n = 1;
2144         block = gfs2_rbm_to_block(rbm);
2145         gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146         gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147         block++;
2148         while (*n < elen) {
2149                 ret = gfs2_rbm_from_block(&pos, block);
2150                 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2151                         break;
2152                 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153                 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154                 (*n)++;
2155                 block++;
2156         }
2157 }
2158
2159 /**
2160  * rgblk_free - Change alloc state of given block(s)
2161  * @sdp: the filesystem
2162  * @bstart: the start of a run of blocks to free
2163  * @blen: the length of the block run (all must lie within ONE RG!)
2164  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165  *
2166  * Returns:  Resource group containing the block(s)
2167  */
2168
2169 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170                                      u32 blen, unsigned char new_state)
2171 {
2172         struct gfs2_rbm rbm;
2173         struct gfs2_bitmap *bi, *bi_prev = NULL;
2174
2175         rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176         if (!rbm.rgd) {
2177                 if (gfs2_consist(sdp))
2178                         fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179                 return NULL;
2180         }
2181
2182         gfs2_rbm_from_block(&rbm, bstart);
2183         while (blen--) {
2184                 bi = rbm_bi(&rbm);
2185                 if (bi != bi_prev) {
2186                         if (!bi->bi_clone) {
2187                                 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188                                                       GFP_NOFS | __GFP_NOFAIL);
2189                                 memcpy(bi->bi_clone + bi->bi_offset,
2190                                        bi->bi_bh->b_data + bi->bi_offset,
2191                                        bi->bi_len);
2192                         }
2193                         gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194                         bi_prev = bi;
2195                 }
2196                 gfs2_setbit(&rbm, false, new_state);
2197                 gfs2_rbm_incr(&rbm);
2198         }
2199
2200         return rbm.rgd;
2201 }
2202
2203 /**
2204  * gfs2_rgrp_dump - print out an rgrp
2205  * @seq: The iterator
2206  * @gl: The glock in question
2207  *
2208  */
2209
2210 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211 {
2212         struct gfs2_rgrpd *rgd = gl->gl_object;
2213         struct gfs2_blkreserv *trs;
2214         const struct rb_node *n;
2215
2216         if (rgd == NULL)
2217                 return;
2218         gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219                        (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220                        rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221                        rgd->rd_reserved, rgd->rd_extfail_pt);
2222         spin_lock(&rgd->rd_rsspin);
2223         for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224                 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225                 dump_rs(seq, trs);
2226         }
2227         spin_unlock(&rgd->rd_rsspin);
2228 }
2229
2230 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231 {
2232         struct gfs2_sbd *sdp = rgd->rd_sbd;
2233         fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234                 (unsigned long long)rgd->rd_addr);
2235         fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236         gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237         rgd->rd_flags |= GFS2_RDF_ERROR;
2238 }
2239
2240 /**
2241  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242  * @ip: The inode we have just allocated blocks for
2243  * @rbm: The start of the allocated blocks
2244  * @len: The extent length
2245  *
2246  * Adjusts a reservation after an allocation has taken place. If the
2247  * reservation does not match the allocation, or if it is now empty
2248  * then it is removed.
2249  */
2250
2251 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252                                     const struct gfs2_rbm *rbm, unsigned len)
2253 {
2254         struct gfs2_blkreserv *rs = &ip->i_res;
2255         struct gfs2_rgrpd *rgd = rbm->rgd;
2256         unsigned rlen;
2257         u64 block;
2258         int ret;
2259
2260         spin_lock(&rgd->rd_rsspin);
2261         if (gfs2_rs_active(rs)) {
2262                 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263                         block = gfs2_rbm_to_block(rbm);
2264                         ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265                         rlen = min(rs->rs_free, len);
2266                         rs->rs_free -= rlen;
2267                         rgd->rd_reserved -= rlen;
2268                         trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269                         if (rs->rs_free && !ret)
2270                                 goto out;
2271                         /* We used up our block reservation, so we should
2272                            reserve more blocks next time. */
2273                         atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274                 }
2275                 __rs_deltree(rs);
2276         }
2277 out:
2278         spin_unlock(&rgd->rd_rsspin);
2279 }
2280
2281 /**
2282  * gfs2_set_alloc_start - Set starting point for block allocation
2283  * @rbm: The rbm which will be set to the required location
2284  * @ip: The gfs2 inode
2285  * @dinode: Flag to say if allocation includes a new inode
2286  *
2287  * This sets the starting point from the reservation if one is active
2288  * otherwise it falls back to guessing a start point based on the
2289  * inode's goal block or the last allocation point in the rgrp.
2290  */
2291
2292 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293                                  const struct gfs2_inode *ip, bool dinode)
2294 {
2295         u64 goal;
2296
2297         if (gfs2_rs_active(&ip->i_res)) {
2298                 *rbm = ip->i_res.rs_rbm;
2299                 return;
2300         }
2301
2302         if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303                 goal = ip->i_goal;
2304         else
2305                 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306
2307         gfs2_rbm_from_block(rbm, goal);
2308 }
2309
2310 /**
2311  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312  * @ip: the inode to allocate the block for
2313  * @bn: Used to return the starting block number
2314  * @nblocks: requested number of blocks/extent length (value/result)
2315  * @dinode: 1 if we're allocating a dinode block, else 0
2316  * @generation: the generation number of the inode
2317  *
2318  * Returns: 0 or error
2319  */
2320
2321 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322                       bool dinode, u64 *generation)
2323 {
2324         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325         struct buffer_head *dibh;
2326         struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327         unsigned int ndata;
2328         u64 block; /* block, within the file system scope */
2329         int error;
2330
2331         gfs2_set_alloc_start(&rbm, ip, dinode);
2332         error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2333
2334         if (error == -ENOSPC) {
2335                 gfs2_set_alloc_start(&rbm, ip, dinode);
2336                 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2337                                       NULL);
2338         }
2339
2340         /* Since all blocks are reserved in advance, this shouldn't happen */
2341         if (error) {
2342                 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2343                         (unsigned long long)ip->i_no_addr, error, *nblocks,
2344                         test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2345                         rbm.rgd->rd_extfail_pt);
2346                 goto rgrp_error;
2347         }
2348
2349         gfs2_alloc_extent(&rbm, dinode, nblocks);
2350         block = gfs2_rbm_to_block(&rbm);
2351         rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2352         if (gfs2_rs_active(&ip->i_res))
2353                 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2354         ndata = *nblocks;
2355         if (dinode)
2356                 ndata--;
2357
2358         if (!dinode) {
2359                 ip->i_goal = block + ndata - 1;
2360                 error = gfs2_meta_inode_buffer(ip, &dibh);
2361                 if (error == 0) {
2362                         struct gfs2_dinode *di =
2363                                 (struct gfs2_dinode *)dibh->b_data;
2364                         gfs2_trans_add_meta(ip->i_gl, dibh);
2365                         di->di_goal_meta = di->di_goal_data =
2366                                 cpu_to_be64(ip->i_goal);
2367                         brelse(dibh);
2368                 }
2369         }
2370         if (rbm.rgd->rd_free < *nblocks) {
2371                 pr_warn("nblocks=%u\n", *nblocks);
2372                 goto rgrp_error;
2373         }
2374
2375         rbm.rgd->rd_free -= *nblocks;
2376         if (dinode) {
2377                 rbm.rgd->rd_dinodes++;
2378                 *generation = rbm.rgd->rd_igeneration++;
2379                 if (*generation == 0)
2380                         *generation = rbm.rgd->rd_igeneration++;
2381         }
2382
2383         gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2384         gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385         gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2386
2387         gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2388         if (dinode)
2389                 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2390
2391         gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2392
2393         rbm.rgd->rd_free_clone -= *nblocks;
2394         trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2395                                dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2396         *bn = block;
2397         return 0;
2398
2399 rgrp_error:
2400         gfs2_rgrp_error(rbm.rgd);
2401         return -EIO;
2402 }
2403
2404 /**
2405  * __gfs2_free_blocks - free a contiguous run of block(s)
2406  * @ip: the inode these blocks are being freed from
2407  * @bstart: first block of a run of contiguous blocks
2408  * @blen: the length of the block run
2409  * @meta: 1 if the blocks represent metadata
2410  *
2411  */
2412
2413 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2414 {
2415         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2416         struct gfs2_rgrpd *rgd;
2417
2418         rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2419         if (!rgd)
2420                 return;
2421         trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2422         rgd->rd_free += blen;
2423         rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2424         gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2425         gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2426         gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2427
2428         /* Directories keep their data in the metadata address space */
2429         if (meta || ip->i_depth)
2430                 gfs2_meta_wipe(ip, bstart, blen);
2431 }
2432
2433 /**
2434  * gfs2_free_meta - free a contiguous run of data block(s)
2435  * @ip: the inode these blocks are being freed from
2436  * @bstart: first block of a run of contiguous blocks
2437  * @blen: the length of the block run
2438  *
2439  */
2440
2441 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2442 {
2443         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2444
2445         __gfs2_free_blocks(ip, bstart, blen, 1);
2446         gfs2_statfs_change(sdp, 0, +blen, 0);
2447         gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2448 }
2449
2450 void gfs2_unlink_di(struct inode *inode)
2451 {
2452         struct gfs2_inode *ip = GFS2_I(inode);
2453         struct gfs2_sbd *sdp = GFS2_SB(inode);
2454         struct gfs2_rgrpd *rgd;
2455         u64 blkno = ip->i_no_addr;
2456
2457         rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2458         if (!rgd)
2459                 return;
2460         trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2461         gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2462         gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2463         gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2464         update_rgrp_lvb_unlinked(rgd, 1);
2465 }
2466
2467 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2468 {
2469         struct gfs2_sbd *sdp = rgd->rd_sbd;
2470         struct gfs2_rgrpd *tmp_rgd;
2471
2472         tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2473         if (!tmp_rgd)
2474                 return;
2475         gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2476
2477         if (!rgd->rd_dinodes)
2478                 gfs2_consist_rgrpd(rgd);
2479         rgd->rd_dinodes--;
2480         rgd->rd_free++;
2481
2482         gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483         gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484         gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2485         update_rgrp_lvb_unlinked(rgd, -1);
2486
2487         gfs2_statfs_change(sdp, 0, +1, -1);
2488 }
2489
2490
2491 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2492 {
2493         gfs2_free_uninit_di(rgd, ip->i_no_addr);
2494         trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2495         gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2496         gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2497 }
2498
2499 /**
2500  * gfs2_check_blk_type - Check the type of a block
2501  * @sdp: The superblock
2502  * @no_addr: The block number to check
2503  * @type: The block type we are looking for
2504  *
2505  * Returns: 0 if the block type matches the expected type
2506  *          -ESTALE if it doesn't match
2507  *          or -ve errno if something went wrong while checking
2508  */
2509
2510 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2511 {
2512         struct gfs2_rgrpd *rgd;
2513         struct gfs2_holder rgd_gh;
2514         int error = -EINVAL;
2515
2516         rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2517         if (!rgd)
2518                 goto fail;
2519
2520         error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2521         if (error)
2522                 goto fail;
2523
2524         if (gfs2_get_block_type(rgd, no_addr) != type)
2525                 error = -ESTALE;
2526
2527         gfs2_glock_dq_uninit(&rgd_gh);
2528 fail:
2529         return error;
2530 }
2531
2532 /**
2533  * gfs2_rlist_add - add a RG to a list of RGs
2534  * @ip: the inode
2535  * @rlist: the list of resource groups
2536  * @block: the block
2537  *
2538  * Figure out what RG a block belongs to and add that RG to the list
2539  *
2540  * FIXME: Don't use NOFAIL
2541  *
2542  */
2543
2544 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2545                     u64 block)
2546 {
2547         struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2548         struct gfs2_rgrpd *rgd;
2549         struct gfs2_rgrpd **tmp;
2550         unsigned int new_space;
2551         unsigned int x;
2552
2553         if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2554                 return;
2555
2556         if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2557                 rgd = ip->i_rgd;
2558         else
2559                 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2560         if (!rgd) {
2561                 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2562                 return;
2563         }
2564         ip->i_rgd = rgd;
2565
2566         for (x = 0; x < rlist->rl_rgrps; x++)
2567                 if (rlist->rl_rgd[x] == rgd)
2568                         return;
2569
2570         if (rlist->rl_rgrps == rlist->rl_space) {
2571                 new_space = rlist->rl_space + 10;
2572
2573                 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2574                               GFP_NOFS | __GFP_NOFAIL);
2575
2576                 if (rlist->rl_rgd) {
2577                         memcpy(tmp, rlist->rl_rgd,
2578                                rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2579                         kfree(rlist->rl_rgd);
2580                 }
2581
2582                 rlist->rl_space = new_space;
2583                 rlist->rl_rgd = tmp;
2584         }
2585
2586         rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2587 }
2588
2589 /**
2590  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2591  *      and initialize an array of glock holders for them
2592  * @rlist: the list of resource groups
2593  * @state: the lock state to acquire the RG lock in
2594  *
2595  * FIXME: Don't use NOFAIL
2596  *
2597  */
2598
2599 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2600 {
2601         unsigned int x;
2602
2603         rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2604                                 GFP_NOFS | __GFP_NOFAIL);
2605         for (x = 0; x < rlist->rl_rgrps; x++)
2606                 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2607                                 state, 0,
2608                                 &rlist->rl_ghs[x]);
2609 }
2610
2611 /**
2612  * gfs2_rlist_free - free a resource group list
2613  * @rlist: the list of resource groups
2614  *
2615  */
2616
2617 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2618 {
2619         unsigned int x;
2620
2621         kfree(rlist->rl_rgd);
2622
2623         if (rlist->rl_ghs) {
2624                 for (x = 0; x < rlist->rl_rgrps; x++)
2625                         gfs2_holder_uninit(&rlist->rl_ghs[x]);
2626                 kfree(rlist->rl_ghs);
2627                 rlist->rl_ghs = NULL;
2628         }
2629 }
2630