Merge tag 'nfs-for-6.12-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-block.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124         WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126         list_move(&inode->i_io_list, head);
127
128         /* dirty_time doesn't count as dirty_io until expiration */
129         if (head != &wb->b_dirty_time)
130                 return wb_io_lists_populated(wb);
131
132         wb_io_lists_depopulated(wb);
133         return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138         spin_lock_irq(&wb->work_lock);
139         if (test_bit(WB_registered, &wb->state))
140                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141         spin_unlock_irq(&wb->work_lock);
142 }
143
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160         unsigned long timeout;
161
162         timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163         spin_lock_irq(&wb->work_lock);
164         if (test_bit(WB_registered, &wb->state))
165                 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166         spin_unlock_irq(&wb->work_lock);
167 }
168
169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171         struct wb_completion *done = work->done;
172
173         if (work->auto_free)
174                 kfree(work);
175         if (done) {
176                 wait_queue_head_t *waitq = done->waitq;
177
178                 /* @done can't be accessed after the following dec */
179                 if (atomic_dec_and_test(&done->cnt))
180                         wake_up_all(waitq);
181         }
182 }
183
184 static void wb_queue_work(struct bdi_writeback *wb,
185                           struct wb_writeback_work *work)
186 {
187         trace_writeback_queue(wb, work);
188
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191
192         spin_lock_irq(&wb->work_lock);
193
194         if (test_bit(WB_registered, &wb->state)) {
195                 list_add_tail(&work->list, &wb->work_list);
196                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
197         } else
198                 finish_writeback_work(work);
199
200         spin_unlock_irq(&wb->work_lock);
201 }
202
203 /**
204  * wb_wait_for_completion - wait for completion of bdi_writeback_works
205  * @done: target wb_completion
206  *
207  * Wait for one or more work items issued to @bdi with their ->done field
208  * set to @done, which should have been initialized with
209  * DEFINE_WB_COMPLETION().  This function returns after all such work items
210  * are completed.  Work items which are waited upon aren't freed
211  * automatically on completion.
212  */
213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215         atomic_dec(&done->cnt);         /* put down the initial count */
216         wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218
219 #ifdef CONFIG_CGROUP_WRITEBACK
220
221 /*
222  * Parameters for foreign inode detection, see wbc_detach_inode() to see
223  * how they're used.
224  *
225  * These paramters are inherently heuristical as the detection target
226  * itself is fuzzy.  All we want to do is detaching an inode from the
227  * current owner if it's being written to by some other cgroups too much.
228  *
229  * The current cgroup writeback is built on the assumption that multiple
230  * cgroups writing to the same inode concurrently is very rare and a mode
231  * of operation which isn't well supported.  As such, the goal is not
232  * taking too long when a different cgroup takes over an inode while
233  * avoiding too aggressive flip-flops from occasional foreign writes.
234  *
235  * We record, very roughly, 2s worth of IO time history and if more than
236  * half of that is foreign, trigger the switch.  The recording is quantized
237  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238  * writes smaller than 1/8 of avg size are ignored.
239  */
240 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
244
245 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247                                         /* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
249                                         /* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
251                                         /* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
253
254 /*
255  * Maximum inodes per isw.  A specific value has been chosen to make
256  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257  */
258 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                 / sizeof(struct inode *))
260
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266         struct backing_dev_info *bdi = inode_to_bdi(inode);
267         struct bdi_writeback *wb = NULL;
268
269         if (inode_cgwb_enabled(inode)) {
270                 struct cgroup_subsys_state *memcg_css;
271
272                 if (folio) {
273                         memcg_css = mem_cgroup_css_from_folio(folio);
274                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275                 } else {
276                         /* must pin memcg_css, see wb_get_create() */
277                         memcg_css = task_get_css(current, memory_cgrp_id);
278                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279                         css_put(memcg_css);
280                 }
281         }
282
283         if (!wb)
284                 wb = &bdi->wb;
285
286         /*
287          * There may be multiple instances of this function racing to
288          * update the same inode.  Use cmpxchg() to tell the winner.
289          */
290         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291                 wb_put(wb);
292 }
293 EXPORT_SYMBOL_GPL(__inode_attach_wb);
294
295 /**
296  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
297  * @inode: inode of interest with i_lock held
298  * @wb: target bdi_writeback
299  *
300  * Remove the inode from wb's io lists and if necessarily put onto b_attached
301  * list.  Only inodes attached to cgwb's are kept on this list.
302  */
303 static void inode_cgwb_move_to_attached(struct inode *inode,
304                                         struct bdi_writeback *wb)
305 {
306         assert_spin_locked(&wb->list_lock);
307         assert_spin_locked(&inode->i_lock);
308         WARN_ON_ONCE(inode->i_state & I_FREEING);
309
310         inode->i_state &= ~I_SYNC_QUEUED;
311         if (wb != &wb->bdi->wb)
312                 list_move(&inode->i_io_list, &wb->b_attached);
313         else
314                 list_del_init(&inode->i_io_list);
315         wb_io_lists_depopulated(wb);
316 }
317
318 /**
319  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
320  * @inode: inode of interest with i_lock held
321  *
322  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
323  * held on entry and is released on return.  The returned wb is guaranteed
324  * to stay @inode's associated wb until its list_lock is released.
325  */
326 static struct bdi_writeback *
327 locked_inode_to_wb_and_lock_list(struct inode *inode)
328         __releases(&inode->i_lock)
329         __acquires(&wb->list_lock)
330 {
331         while (true) {
332                 struct bdi_writeback *wb = inode_to_wb(inode);
333
334                 /*
335                  * inode_to_wb() association is protected by both
336                  * @inode->i_lock and @wb->list_lock but list_lock nests
337                  * outside i_lock.  Drop i_lock and verify that the
338                  * association hasn't changed after acquiring list_lock.
339                  */
340                 wb_get(wb);
341                 spin_unlock(&inode->i_lock);
342                 spin_lock(&wb->list_lock);
343
344                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
345                 if (likely(wb == inode->i_wb)) {
346                         wb_put(wb);     /* @inode already has ref */
347                         return wb;
348                 }
349
350                 spin_unlock(&wb->list_lock);
351                 wb_put(wb);
352                 cpu_relax();
353                 spin_lock(&inode->i_lock);
354         }
355 }
356
357 /**
358  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
359  * @inode: inode of interest
360  *
361  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
362  * on entry.
363  */
364 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
365         __acquires(&wb->list_lock)
366 {
367         spin_lock(&inode->i_lock);
368         return locked_inode_to_wb_and_lock_list(inode);
369 }
370
371 struct inode_switch_wbs_context {
372         struct rcu_work         work;
373
374         /*
375          * Multiple inodes can be switched at once.  The switching procedure
376          * consists of two parts, separated by a RCU grace period.  To make
377          * sure that the second part is executed for each inode gone through
378          * the first part, all inode pointers are placed into a NULL-terminated
379          * array embedded into struct inode_switch_wbs_context.  Otherwise
380          * an inode could be left in a non-consistent state.
381          */
382         struct bdi_writeback    *new_wb;
383         struct inode            *inodes[];
384 };
385
386 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
387 {
388         down_write(&bdi->wb_switch_rwsem);
389 }
390
391 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
392 {
393         up_write(&bdi->wb_switch_rwsem);
394 }
395
396 static bool inode_do_switch_wbs(struct inode *inode,
397                                 struct bdi_writeback *old_wb,
398                                 struct bdi_writeback *new_wb)
399 {
400         struct address_space *mapping = inode->i_mapping;
401         XA_STATE(xas, &mapping->i_pages, 0);
402         struct folio *folio;
403         bool switched = false;
404
405         spin_lock(&inode->i_lock);
406         xa_lock_irq(&mapping->i_pages);
407
408         /*
409          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
410          * path owns the inode and we shouldn't modify ->i_io_list.
411          */
412         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
413                 goto skip_switch;
414
415         trace_inode_switch_wbs(inode, old_wb, new_wb);
416
417         /*
418          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
419          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
420          * folios actually under writeback.
421          */
422         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
423                 if (folio_test_dirty(folio)) {
424                         long nr = folio_nr_pages(folio);
425                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
426                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
427                 }
428         }
429
430         xas_set(&xas, 0);
431         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
432                 long nr = folio_nr_pages(folio);
433                 WARN_ON_ONCE(!folio_test_writeback(folio));
434                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
435                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
436         }
437
438         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
439                 atomic_dec(&old_wb->writeback_inodes);
440                 atomic_inc(&new_wb->writeback_inodes);
441         }
442
443         wb_get(new_wb);
444
445         /*
446          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
447          * the specific list @inode was on is ignored and the @inode is put on
448          * ->b_dirty which is always correct including from ->b_dirty_time.
449          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
450          * was clean, it means it was on the b_attached list, so move it onto
451          * the b_attached list of @new_wb.
452          */
453         if (!list_empty(&inode->i_io_list)) {
454                 inode->i_wb = new_wb;
455
456                 if (inode->i_state & I_DIRTY_ALL) {
457                         struct inode *pos;
458
459                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
460                                 if (time_after_eq(inode->dirtied_when,
461                                                   pos->dirtied_when))
462                                         break;
463                         inode_io_list_move_locked(inode, new_wb,
464                                                   pos->i_io_list.prev);
465                 } else {
466                         inode_cgwb_move_to_attached(inode, new_wb);
467                 }
468         } else {
469                 inode->i_wb = new_wb;
470         }
471
472         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473         inode->i_wb_frn_winner = 0;
474         inode->i_wb_frn_avg_time = 0;
475         inode->i_wb_frn_history = 0;
476         switched = true;
477 skip_switch:
478         /*
479          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480          * ensures that the new wb is visible if they see !I_WB_SWITCH.
481          */
482         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483
484         xa_unlock_irq(&mapping->i_pages);
485         spin_unlock(&inode->i_lock);
486
487         return switched;
488 }
489
490 static void inode_switch_wbs_work_fn(struct work_struct *work)
491 {
492         struct inode_switch_wbs_context *isw =
493                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
494         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
495         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
496         struct bdi_writeback *new_wb = isw->new_wb;
497         unsigned long nr_switched = 0;
498         struct inode **inodep;
499
500         /*
501          * If @inode switches cgwb membership while sync_inodes_sb() is
502          * being issued, sync_inodes_sb() might miss it.  Synchronize.
503          */
504         down_read(&bdi->wb_switch_rwsem);
505
506         /*
507          * By the time control reaches here, RCU grace period has passed
508          * since I_WB_SWITCH assertion and all wb stat update transactions
509          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
510          * synchronizing against the i_pages lock.
511          *
512          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
513          * gives us exclusion against all wb related operations on @inode
514          * including IO list manipulations and stat updates.
515          */
516         if (old_wb < new_wb) {
517                 spin_lock(&old_wb->list_lock);
518                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519         } else {
520                 spin_lock(&new_wb->list_lock);
521                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522         }
523
524         for (inodep = isw->inodes; *inodep; inodep++) {
525                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527                         nr_switched++;
528         }
529
530         spin_unlock(&new_wb->list_lock);
531         spin_unlock(&old_wb->list_lock);
532
533         up_read(&bdi->wb_switch_rwsem);
534
535         if (nr_switched) {
536                 wb_wakeup(new_wb);
537                 wb_put_many(old_wb, nr_switched);
538         }
539
540         for (inodep = isw->inodes; *inodep; inodep++)
541                 iput(*inodep);
542         wb_put(new_wb);
543         kfree(isw);
544         atomic_dec(&isw_nr_in_flight);
545 }
546
547 static bool inode_prepare_wbs_switch(struct inode *inode,
548                                      struct bdi_writeback *new_wb)
549 {
550         /*
551          * Paired with smp_mb() in cgroup_writeback_umount().
552          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
553          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
554          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
555          */
556         smp_mb();
557
558         if (IS_DAX(inode))
559                 return false;
560
561         /* while holding I_WB_SWITCH, no one else can update the association */
562         spin_lock(&inode->i_lock);
563         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
564             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
565             inode_to_wb(inode) == new_wb) {
566                 spin_unlock(&inode->i_lock);
567                 return false;
568         }
569         inode->i_state |= I_WB_SWITCH;
570         __iget(inode);
571         spin_unlock(&inode->i_lock);
572
573         return true;
574 }
575
576 /**
577  * inode_switch_wbs - change the wb association of an inode
578  * @inode: target inode
579  * @new_wb_id: ID of the new wb
580  *
581  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
582  * switching is performed asynchronously and may fail silently.
583  */
584 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
585 {
586         struct backing_dev_info *bdi = inode_to_bdi(inode);
587         struct cgroup_subsys_state *memcg_css;
588         struct inode_switch_wbs_context *isw;
589
590         /* noop if seems to be already in progress */
591         if (inode->i_state & I_WB_SWITCH)
592                 return;
593
594         /* avoid queueing a new switch if too many are already in flight */
595         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
596                 return;
597
598         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
599         if (!isw)
600                 return;
601
602         atomic_inc(&isw_nr_in_flight);
603
604         /* find and pin the new wb */
605         rcu_read_lock();
606         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
607         if (memcg_css && !css_tryget(memcg_css))
608                 memcg_css = NULL;
609         rcu_read_unlock();
610         if (!memcg_css)
611                 goto out_free;
612
613         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
614         css_put(memcg_css);
615         if (!isw->new_wb)
616                 goto out_free;
617
618         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619                 goto out_free;
620
621         isw->inodes[0] = inode;
622
623         /*
624          * In addition to synchronizing among switchers, I_WB_SWITCH tells
625          * the RCU protected stat update paths to grab the i_page
626          * lock so that stat transfer can synchronize against them.
627          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
628          */
629         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
630         queue_rcu_work(isw_wq, &isw->work);
631         return;
632
633 out_free:
634         atomic_dec(&isw_nr_in_flight);
635         if (isw->new_wb)
636                 wb_put(isw->new_wb);
637         kfree(isw);
638 }
639
640 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
641                                    struct list_head *list, int *nr)
642 {
643         struct inode *inode;
644
645         list_for_each_entry(inode, list, i_io_list) {
646                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647                         continue;
648
649                 isw->inodes[*nr] = inode;
650                 (*nr)++;
651
652                 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
653                         return true;
654         }
655         return false;
656 }
657
658 /**
659  * cleanup_offline_cgwb - detach associated inodes
660  * @wb: target wb
661  *
662  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
663  * to eventually release the dying @wb.  Returns %true if not all inodes were
664  * switched and the function has to be restarted.
665  */
666 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
667 {
668         struct cgroup_subsys_state *memcg_css;
669         struct inode_switch_wbs_context *isw;
670         int nr;
671         bool restart = false;
672
673         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
674                       GFP_KERNEL);
675         if (!isw)
676                 return restart;
677
678         atomic_inc(&isw_nr_in_flight);
679
680         for (memcg_css = wb->memcg_css->parent; memcg_css;
681              memcg_css = memcg_css->parent) {
682                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
683                 if (isw->new_wb)
684                         break;
685         }
686         if (unlikely(!isw->new_wb))
687                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
688
689         nr = 0;
690         spin_lock(&wb->list_lock);
691         /*
692          * In addition to the inodes that have completed writeback, also switch
693          * cgwbs for those inodes only with dirty timestamps. Otherwise, those
694          * inodes won't be written back for a long time when lazytime is
695          * enabled, and thus pinning the dying cgwbs. It won't break the
696          * bandwidth restrictions, as writeback of inode metadata is not
697          * accounted for.
698          */
699         restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
700         if (!restart)
701                 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
702         spin_unlock(&wb->list_lock);
703
704         /* no attached inodes? bail out */
705         if (nr == 0) {
706                 atomic_dec(&isw_nr_in_flight);
707                 wb_put(isw->new_wb);
708                 kfree(isw);
709                 return restart;
710         }
711
712         /*
713          * In addition to synchronizing among switchers, I_WB_SWITCH tells
714          * the RCU protected stat update paths to grab the i_page
715          * lock so that stat transfer can synchronize against them.
716          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
717          */
718         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
719         queue_rcu_work(isw_wq, &isw->work);
720
721         return restart;
722 }
723
724 /**
725  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
726  * @wbc: writeback_control of interest
727  * @inode: target inode
728  *
729  * @inode is locked and about to be written back under the control of @wbc.
730  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
731  * writeback completion, wbc_detach_inode() should be called.  This is used
732  * to track the cgroup writeback context.
733  */
734 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
735                                  struct inode *inode)
736 {
737         if (!inode_cgwb_enabled(inode)) {
738                 spin_unlock(&inode->i_lock);
739                 return;
740         }
741
742         wbc->wb = inode_to_wb(inode);
743         wbc->inode = inode;
744
745         wbc->wb_id = wbc->wb->memcg_css->id;
746         wbc->wb_lcand_id = inode->i_wb_frn_winner;
747         wbc->wb_tcand_id = 0;
748         wbc->wb_bytes = 0;
749         wbc->wb_lcand_bytes = 0;
750         wbc->wb_tcand_bytes = 0;
751
752         wb_get(wbc->wb);
753         spin_unlock(&inode->i_lock);
754
755         /*
756          * A dying wb indicates that either the blkcg associated with the
757          * memcg changed or the associated memcg is dying.  In the first
758          * case, a replacement wb should already be available and we should
759          * refresh the wb immediately.  In the second case, trying to
760          * refresh will keep failing.
761          */
762         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763                 inode_switch_wbs(inode, wbc->wb_id);
764 }
765 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
766
767 /**
768  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
769  * @wbc: writeback_control of the just finished writeback
770  *
771  * To be called after a writeback attempt of an inode finishes and undoes
772  * wbc_attach_and_unlock_inode().  Can be called under any context.
773  *
774  * As concurrent write sharing of an inode is expected to be very rare and
775  * memcg only tracks page ownership on first-use basis severely confining
776  * the usefulness of such sharing, cgroup writeback tracks ownership
777  * per-inode.  While the support for concurrent write sharing of an inode
778  * is deemed unnecessary, an inode being written to by different cgroups at
779  * different points in time is a lot more common, and, more importantly,
780  * charging only by first-use can too readily lead to grossly incorrect
781  * behaviors (single foreign page can lead to gigabytes of writeback to be
782  * incorrectly attributed).
783  *
784  * To resolve this issue, cgroup writeback detects the majority dirtier of
785  * an inode and transfers the ownership to it.  To avoid unnecessary
786  * oscillation, the detection mechanism keeps track of history and gives
787  * out the switch verdict only if the foreign usage pattern is stable over
788  * a certain amount of time and/or writeback attempts.
789  *
790  * On each writeback attempt, @wbc tries to detect the majority writer
791  * using Boyer-Moore majority vote algorithm.  In addition to the byte
792  * count from the majority voting, it also counts the bytes written for the
793  * current wb and the last round's winner wb (max of last round's current
794  * wb, the winner from two rounds ago, and the last round's majority
795  * candidate).  Keeping track of the historical winner helps the algorithm
796  * to semi-reliably detect the most active writer even when it's not the
797  * absolute majority.
798  *
799  * Once the winner of the round is determined, whether the winner is
800  * foreign or not and how much IO time the round consumed is recorded in
801  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
802  * over a certain threshold, the switch verdict is given.
803  */
804 void wbc_detach_inode(struct writeback_control *wbc)
805 {
806         struct bdi_writeback *wb = wbc->wb;
807         struct inode *inode = wbc->inode;
808         unsigned long avg_time, max_bytes, max_time;
809         u16 history;
810         int max_id;
811
812         if (!wb)
813                 return;
814
815         history = inode->i_wb_frn_history;
816         avg_time = inode->i_wb_frn_avg_time;
817
818         /* pick the winner of this round */
819         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
820             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
821                 max_id = wbc->wb_id;
822                 max_bytes = wbc->wb_bytes;
823         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
824                 max_id = wbc->wb_lcand_id;
825                 max_bytes = wbc->wb_lcand_bytes;
826         } else {
827                 max_id = wbc->wb_tcand_id;
828                 max_bytes = wbc->wb_tcand_bytes;
829         }
830
831         /*
832          * Calculate the amount of IO time the winner consumed and fold it
833          * into the running average kept per inode.  If the consumed IO
834          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
835          * deciding whether to switch or not.  This is to prevent one-off
836          * small dirtiers from skewing the verdict.
837          */
838         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
839                                 wb->avg_write_bandwidth);
840         if (avg_time)
841                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
842                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
843         else
844                 avg_time = max_time;    /* immediate catch up on first run */
845
846         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
847                 int slots;
848
849                 /*
850                  * The switch verdict is reached if foreign wb's consume
851                  * more than a certain proportion of IO time in a
852                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
853                  * history mask where each bit represents one sixteenth of
854                  * the period.  Determine the number of slots to shift into
855                  * history from @max_time.
856                  */
857                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
858                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
859                 history <<= slots;
860                 if (wbc->wb_id != max_id)
861                         history |= (1U << slots) - 1;
862
863                 if (history)
864                         trace_inode_foreign_history(inode, wbc, history);
865
866                 /*
867                  * Switch if the current wb isn't the consistent winner.
868                  * If there are multiple closely competing dirtiers, the
869                  * inode may switch across them repeatedly over time, which
870                  * is okay.  The main goal is avoiding keeping an inode on
871                  * the wrong wb for an extended period of time.
872                  */
873                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
874                         inode_switch_wbs(inode, max_id);
875         }
876
877         /*
878          * Multiple instances of this function may race to update the
879          * following fields but we don't mind occassional inaccuracies.
880          */
881         inode->i_wb_frn_winner = max_id;
882         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
883         inode->i_wb_frn_history = history;
884
885         wb_put(wbc->wb);
886         wbc->wb = NULL;
887 }
888 EXPORT_SYMBOL_GPL(wbc_detach_inode);
889
890 /**
891  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
892  * @wbc: writeback_control of the writeback in progress
893  * @page: page being written out
894  * @bytes: number of bytes being written out
895  *
896  * @bytes from @page are about to written out during the writeback
897  * controlled by @wbc.  Keep the book for foreign inode detection.  See
898  * wbc_detach_inode().
899  */
900 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
901                               size_t bytes)
902 {
903         struct folio *folio;
904         struct cgroup_subsys_state *css;
905         int id;
906
907         /*
908          * pageout() path doesn't attach @wbc to the inode being written
909          * out.  This is intentional as we don't want the function to block
910          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
911          * regular writeback instead of writing things out itself.
912          */
913         if (!wbc->wb || wbc->no_cgroup_owner)
914                 return;
915
916         folio = page_folio(page);
917         css = mem_cgroup_css_from_folio(folio);
918         /* dead cgroups shouldn't contribute to inode ownership arbitration */
919         if (!(css->flags & CSS_ONLINE))
920                 return;
921
922         id = css->id;
923
924         if (id == wbc->wb_id) {
925                 wbc->wb_bytes += bytes;
926                 return;
927         }
928
929         if (id == wbc->wb_lcand_id)
930                 wbc->wb_lcand_bytes += bytes;
931
932         /* Boyer-Moore majority vote algorithm */
933         if (!wbc->wb_tcand_bytes)
934                 wbc->wb_tcand_id = id;
935         if (id == wbc->wb_tcand_id)
936                 wbc->wb_tcand_bytes += bytes;
937         else
938                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
939 }
940 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
941
942 /**
943  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
944  * @wb: target bdi_writeback to split @nr_pages to
945  * @nr_pages: number of pages to write for the whole bdi
946  *
947  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
948  * relation to the total write bandwidth of all wb's w/ dirty inodes on
949  * @wb->bdi.
950  */
951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952 {
953         unsigned long this_bw = wb->avg_write_bandwidth;
954         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
955
956         if (nr_pages == LONG_MAX)
957                 return LONG_MAX;
958
959         /*
960          * This may be called on clean wb's and proportional distribution
961          * may not make sense, just use the original @nr_pages in those
962          * cases.  In general, we wanna err on the side of writing more.
963          */
964         if (!tot_bw || this_bw >= tot_bw)
965                 return nr_pages;
966         else
967                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
968 }
969
970 /**
971  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
972  * @bdi: target backing_dev_info
973  * @base_work: wb_writeback_work to issue
974  * @skip_if_busy: skip wb's which already have writeback in progress
975  *
976  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
977  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
978  * distributed to the busy wbs according to each wb's proportion in the
979  * total active write bandwidth of @bdi.
980  */
981 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
982                                   struct wb_writeback_work *base_work,
983                                   bool skip_if_busy)
984 {
985         struct bdi_writeback *last_wb = NULL;
986         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
987                                               struct bdi_writeback, bdi_node);
988
989         might_sleep();
990 restart:
991         rcu_read_lock();
992         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
993                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
994                 struct wb_writeback_work fallback_work;
995                 struct wb_writeback_work *work;
996                 long nr_pages;
997
998                 if (last_wb) {
999                         wb_put(last_wb);
1000                         last_wb = NULL;
1001                 }
1002
1003                 /* SYNC_ALL writes out I_DIRTY_TIME too */
1004                 if (!wb_has_dirty_io(wb) &&
1005                     (base_work->sync_mode == WB_SYNC_NONE ||
1006                      list_empty(&wb->b_dirty_time)))
1007                         continue;
1008                 if (skip_if_busy && writeback_in_progress(wb))
1009                         continue;
1010
1011                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1012
1013                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014                 if (work) {
1015                         *work = *base_work;
1016                         work->nr_pages = nr_pages;
1017                         work->auto_free = 1;
1018                         wb_queue_work(wb, work);
1019                         continue;
1020                 }
1021
1022                 /*
1023                  * If wb_tryget fails, the wb has been shutdown, skip it.
1024                  *
1025                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1026                  * continuing iteration from @wb after dropping and
1027                  * regrabbing rcu read lock.
1028                  */
1029                 if (!wb_tryget(wb))
1030                         continue;
1031
1032                 /* alloc failed, execute synchronously using on-stack fallback */
1033                 work = &fallback_work;
1034                 *work = *base_work;
1035                 work->nr_pages = nr_pages;
1036                 work->auto_free = 0;
1037                 work->done = &fallback_work_done;
1038
1039                 wb_queue_work(wb, work);
1040                 last_wb = wb;
1041
1042                 rcu_read_unlock();
1043                 wb_wait_for_completion(&fallback_work_done);
1044                 goto restart;
1045         }
1046         rcu_read_unlock();
1047
1048         if (last_wb)
1049                 wb_put(last_wb);
1050 }
1051
1052 /**
1053  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1054  * @bdi_id: target bdi id
1055  * @memcg_id: target memcg css id
1056  * @reason: reason why some writeback work initiated
1057  * @done: target wb_completion
1058  *
1059  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1060  * with the specified parameters.
1061  */
1062 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1063                            enum wb_reason reason, struct wb_completion *done)
1064 {
1065         struct backing_dev_info *bdi;
1066         struct cgroup_subsys_state *memcg_css;
1067         struct bdi_writeback *wb;
1068         struct wb_writeback_work *work;
1069         unsigned long dirty;
1070         int ret;
1071
1072         /* lookup bdi and memcg */
1073         bdi = bdi_get_by_id(bdi_id);
1074         if (!bdi)
1075                 return -ENOENT;
1076
1077         rcu_read_lock();
1078         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1079         if (memcg_css && !css_tryget(memcg_css))
1080                 memcg_css = NULL;
1081         rcu_read_unlock();
1082         if (!memcg_css) {
1083                 ret = -ENOENT;
1084                 goto out_bdi_put;
1085         }
1086
1087         /*
1088          * And find the associated wb.  If the wb isn't there already
1089          * there's nothing to flush, don't create one.
1090          */
1091         wb = wb_get_lookup(bdi, memcg_css);
1092         if (!wb) {
1093                 ret = -ENOENT;
1094                 goto out_css_put;
1095         }
1096
1097         /*
1098          * The caller is attempting to write out most of
1099          * the currently dirty pages.  Let's take the current dirty page
1100          * count and inflate it by 25% which should be large enough to
1101          * flush out most dirty pages while avoiding getting livelocked by
1102          * concurrent dirtiers.
1103          *
1104          * BTW the memcg stats are flushed periodically and this is best-effort
1105          * estimation, so some potential error is ok.
1106          */
1107         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1108         dirty = dirty * 10 / 8;
1109
1110         /* issue the writeback work */
1111         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1112         if (work) {
1113                 work->nr_pages = dirty;
1114                 work->sync_mode = WB_SYNC_NONE;
1115                 work->range_cyclic = 1;
1116                 work->reason = reason;
1117                 work->done = done;
1118                 work->auto_free = 1;
1119                 wb_queue_work(wb, work);
1120                 ret = 0;
1121         } else {
1122                 ret = -ENOMEM;
1123         }
1124
1125         wb_put(wb);
1126 out_css_put:
1127         css_put(memcg_css);
1128 out_bdi_put:
1129         bdi_put(bdi);
1130         return ret;
1131 }
1132
1133 /**
1134  * cgroup_writeback_umount - flush inode wb switches for umount
1135  * @sb: target super_block
1136  *
1137  * This function is called when a super_block is about to be destroyed and
1138  * flushes in-flight inode wb switches.  An inode wb switch goes through
1139  * RCU and then workqueue, so the two need to be flushed in order to ensure
1140  * that all previously scheduled switches are finished.  As wb switches are
1141  * rare occurrences and synchronize_rcu() can take a while, perform
1142  * flushing iff wb switches are in flight.
1143  */
1144 void cgroup_writeback_umount(struct super_block *sb)
1145 {
1146
1147         if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1148                 return;
1149
1150         /*
1151          * SB_ACTIVE should be reliably cleared before checking
1152          * isw_nr_in_flight, see generic_shutdown_super().
1153          */
1154         smp_mb();
1155
1156         if (atomic_read(&isw_nr_in_flight)) {
1157                 /*
1158                  * Use rcu_barrier() to wait for all pending callbacks to
1159                  * ensure that all in-flight wb switches are in the workqueue.
1160                  */
1161                 rcu_barrier();
1162                 flush_workqueue(isw_wq);
1163         }
1164 }
1165
1166 static int __init cgroup_writeback_init(void)
1167 {
1168         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1169         if (!isw_wq)
1170                 return -ENOMEM;
1171         return 0;
1172 }
1173 fs_initcall(cgroup_writeback_init);
1174
1175 #else   /* CONFIG_CGROUP_WRITEBACK */
1176
1177 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1178 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1179
1180 static void inode_cgwb_move_to_attached(struct inode *inode,
1181                                         struct bdi_writeback *wb)
1182 {
1183         assert_spin_locked(&wb->list_lock);
1184         assert_spin_locked(&inode->i_lock);
1185         WARN_ON_ONCE(inode->i_state & I_FREEING);
1186
1187         inode->i_state &= ~I_SYNC_QUEUED;
1188         list_del_init(&inode->i_io_list);
1189         wb_io_lists_depopulated(wb);
1190 }
1191
1192 static struct bdi_writeback *
1193 locked_inode_to_wb_and_lock_list(struct inode *inode)
1194         __releases(&inode->i_lock)
1195         __acquires(&wb->list_lock)
1196 {
1197         struct bdi_writeback *wb = inode_to_wb(inode);
1198
1199         spin_unlock(&inode->i_lock);
1200         spin_lock(&wb->list_lock);
1201         return wb;
1202 }
1203
1204 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1205         __acquires(&wb->list_lock)
1206 {
1207         struct bdi_writeback *wb = inode_to_wb(inode);
1208
1209         spin_lock(&wb->list_lock);
1210         return wb;
1211 }
1212
1213 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1214 {
1215         return nr_pages;
1216 }
1217
1218 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1219                                   struct wb_writeback_work *base_work,
1220                                   bool skip_if_busy)
1221 {
1222         might_sleep();
1223
1224         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1225                 base_work->auto_free = 0;
1226                 wb_queue_work(&bdi->wb, base_work);
1227         }
1228 }
1229
1230 #endif  /* CONFIG_CGROUP_WRITEBACK */
1231
1232 /*
1233  * Add in the number of potentially dirty inodes, because each inode
1234  * write can dirty pagecache in the underlying blockdev.
1235  */
1236 static unsigned long get_nr_dirty_pages(void)
1237 {
1238         return global_node_page_state(NR_FILE_DIRTY) +
1239                 get_nr_dirty_inodes();
1240 }
1241
1242 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1243 {
1244         if (!wb_has_dirty_io(wb))
1245                 return;
1246
1247         /*
1248          * All callers of this function want to start writeback of all
1249          * dirty pages. Places like vmscan can call this at a very
1250          * high frequency, causing pointless allocations of tons of
1251          * work items and keeping the flusher threads busy retrieving
1252          * that work. Ensure that we only allow one of them pending and
1253          * inflight at the time.
1254          */
1255         if (test_bit(WB_start_all, &wb->state) ||
1256             test_and_set_bit(WB_start_all, &wb->state))
1257                 return;
1258
1259         wb->start_all_reason = reason;
1260         wb_wakeup(wb);
1261 }
1262
1263 /**
1264  * wb_start_background_writeback - start background writeback
1265  * @wb: bdi_writback to write from
1266  *
1267  * Description:
1268  *   This makes sure WB_SYNC_NONE background writeback happens. When
1269  *   this function returns, it is only guaranteed that for given wb
1270  *   some IO is happening if we are over background dirty threshold.
1271  *   Caller need not hold sb s_umount semaphore.
1272  */
1273 void wb_start_background_writeback(struct bdi_writeback *wb)
1274 {
1275         /*
1276          * We just wake up the flusher thread. It will perform background
1277          * writeback as soon as there is no other work to do.
1278          */
1279         trace_writeback_wake_background(wb);
1280         wb_wakeup(wb);
1281 }
1282
1283 /*
1284  * Remove the inode from the writeback list it is on.
1285  */
1286 void inode_io_list_del(struct inode *inode)
1287 {
1288         struct bdi_writeback *wb;
1289
1290         wb = inode_to_wb_and_lock_list(inode);
1291         spin_lock(&inode->i_lock);
1292
1293         inode->i_state &= ~I_SYNC_QUEUED;
1294         list_del_init(&inode->i_io_list);
1295         wb_io_lists_depopulated(wb);
1296
1297         spin_unlock(&inode->i_lock);
1298         spin_unlock(&wb->list_lock);
1299 }
1300 EXPORT_SYMBOL(inode_io_list_del);
1301
1302 /*
1303  * mark an inode as under writeback on the sb
1304  */
1305 void sb_mark_inode_writeback(struct inode *inode)
1306 {
1307         struct super_block *sb = inode->i_sb;
1308         unsigned long flags;
1309
1310         if (list_empty(&inode->i_wb_list)) {
1311                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1312                 if (list_empty(&inode->i_wb_list)) {
1313                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1314                         trace_sb_mark_inode_writeback(inode);
1315                 }
1316                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1317         }
1318 }
1319
1320 /*
1321  * clear an inode as under writeback on the sb
1322  */
1323 void sb_clear_inode_writeback(struct inode *inode)
1324 {
1325         struct super_block *sb = inode->i_sb;
1326         unsigned long flags;
1327
1328         if (!list_empty(&inode->i_wb_list)) {
1329                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1330                 if (!list_empty(&inode->i_wb_list)) {
1331                         list_del_init(&inode->i_wb_list);
1332                         trace_sb_clear_inode_writeback(inode);
1333                 }
1334                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1335         }
1336 }
1337
1338 /*
1339  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1340  * furthest end of its superblock's dirty-inode list.
1341  *
1342  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1343  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1344  * the case then the inode must have been redirtied while it was being written
1345  * out and we don't reset its dirtied_when.
1346  */
1347 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1348 {
1349         assert_spin_locked(&inode->i_lock);
1350
1351         inode->i_state &= ~I_SYNC_QUEUED;
1352         /*
1353          * When the inode is being freed just don't bother with dirty list
1354          * tracking. Flush worker will ignore this inode anyway and it will
1355          * trigger assertions in inode_io_list_move_locked().
1356          */
1357         if (inode->i_state & I_FREEING) {
1358                 list_del_init(&inode->i_io_list);
1359                 wb_io_lists_depopulated(wb);
1360                 return;
1361         }
1362         if (!list_empty(&wb->b_dirty)) {
1363                 struct inode *tail;
1364
1365                 tail = wb_inode(wb->b_dirty.next);
1366                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1367                         inode->dirtied_when = jiffies;
1368         }
1369         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1370 }
1371
1372 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1373 {
1374         spin_lock(&inode->i_lock);
1375         redirty_tail_locked(inode, wb);
1376         spin_unlock(&inode->i_lock);
1377 }
1378
1379 /*
1380  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1381  */
1382 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1383 {
1384         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1385 }
1386
1387 static void inode_sync_complete(struct inode *inode)
1388 {
1389         assert_spin_locked(&inode->i_lock);
1390
1391         inode->i_state &= ~I_SYNC;
1392         /* If inode is clean an unused, put it into LRU now... */
1393         inode_add_lru(inode);
1394         /* Called with inode->i_lock which ensures memory ordering. */
1395         inode_wake_up_bit(inode, __I_SYNC);
1396 }
1397
1398 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1399 {
1400         bool ret = time_after(inode->dirtied_when, t);
1401 #ifndef CONFIG_64BIT
1402         /*
1403          * For inodes being constantly redirtied, dirtied_when can get stuck.
1404          * It _appears_ to be in the future, but is actually in distant past.
1405          * This test is necessary to prevent such wrapped-around relative times
1406          * from permanently stopping the whole bdi writeback.
1407          */
1408         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1409 #endif
1410         return ret;
1411 }
1412
1413 /*
1414  * Move expired (dirtied before dirtied_before) dirty inodes from
1415  * @delaying_queue to @dispatch_queue.
1416  */
1417 static int move_expired_inodes(struct list_head *delaying_queue,
1418                                struct list_head *dispatch_queue,
1419                                unsigned long dirtied_before)
1420 {
1421         LIST_HEAD(tmp);
1422         struct list_head *pos, *node;
1423         struct super_block *sb = NULL;
1424         struct inode *inode;
1425         int do_sb_sort = 0;
1426         int moved = 0;
1427
1428         while (!list_empty(delaying_queue)) {
1429                 inode = wb_inode(delaying_queue->prev);
1430                 if (inode_dirtied_after(inode, dirtied_before))
1431                         break;
1432                 spin_lock(&inode->i_lock);
1433                 list_move(&inode->i_io_list, &tmp);
1434                 moved++;
1435                 inode->i_state |= I_SYNC_QUEUED;
1436                 spin_unlock(&inode->i_lock);
1437                 if (sb_is_blkdev_sb(inode->i_sb))
1438                         continue;
1439                 if (sb && sb != inode->i_sb)
1440                         do_sb_sort = 1;
1441                 sb = inode->i_sb;
1442         }
1443
1444         /* just one sb in list, splice to dispatch_queue and we're done */
1445         if (!do_sb_sort) {
1446                 list_splice(&tmp, dispatch_queue);
1447                 goto out;
1448         }
1449
1450         /*
1451          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1452          * we don't take inode->i_lock here because it is just a pointless overhead.
1453          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1454          * fully under our control.
1455          */
1456         while (!list_empty(&tmp)) {
1457                 sb = wb_inode(tmp.prev)->i_sb;
1458                 list_for_each_prev_safe(pos, node, &tmp) {
1459                         inode = wb_inode(pos);
1460                         if (inode->i_sb == sb)
1461                                 list_move(&inode->i_io_list, dispatch_queue);
1462                 }
1463         }
1464 out:
1465         return moved;
1466 }
1467
1468 /*
1469  * Queue all expired dirty inodes for io, eldest first.
1470  * Before
1471  *         newly dirtied     b_dirty    b_io    b_more_io
1472  *         =============>    gf         edc     BA
1473  * After
1474  *         newly dirtied     b_dirty    b_io    b_more_io
1475  *         =============>    g          fBAedc
1476  *                                           |
1477  *                                           +--> dequeue for IO
1478  */
1479 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1480                      unsigned long dirtied_before)
1481 {
1482         int moved;
1483         unsigned long time_expire_jif = dirtied_before;
1484
1485         assert_spin_locked(&wb->list_lock);
1486         list_splice_init(&wb->b_more_io, &wb->b_io);
1487         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1488         if (!work->for_sync)
1489                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1490         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1491                                      time_expire_jif);
1492         if (moved)
1493                 wb_io_lists_populated(wb);
1494         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1495 }
1496
1497 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1498 {
1499         int ret;
1500
1501         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1502                 trace_writeback_write_inode_start(inode, wbc);
1503                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1504                 trace_writeback_write_inode(inode, wbc);
1505                 return ret;
1506         }
1507         return 0;
1508 }
1509
1510 /*
1511  * Wait for writeback on an inode to complete. Called with i_lock held.
1512  * Caller must make sure inode cannot go away when we drop i_lock.
1513  */
1514 void inode_wait_for_writeback(struct inode *inode)
1515 {
1516         struct wait_bit_queue_entry wqe;
1517         struct wait_queue_head *wq_head;
1518
1519         assert_spin_locked(&inode->i_lock);
1520
1521         if (!(inode->i_state & I_SYNC))
1522                 return;
1523
1524         wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1525         for (;;) {
1526                 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1527                 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1528                 if (!(inode->i_state & I_SYNC))
1529                         break;
1530                 spin_unlock(&inode->i_lock);
1531                 schedule();
1532                 spin_lock(&inode->i_lock);
1533         }
1534         finish_wait(wq_head, &wqe.wq_entry);
1535 }
1536
1537 /*
1538  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1539  * held and drops it. It is aimed for callers not holding any inode reference
1540  * so once i_lock is dropped, inode can go away.
1541  */
1542 static void inode_sleep_on_writeback(struct inode *inode)
1543         __releases(inode->i_lock)
1544 {
1545         struct wait_bit_queue_entry wqe;
1546         struct wait_queue_head *wq_head;
1547         bool sleep;
1548
1549         assert_spin_locked(&inode->i_lock);
1550
1551         wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1552         prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1553         /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1554         sleep = !!(inode->i_state & I_SYNC);
1555         spin_unlock(&inode->i_lock);
1556         if (sleep)
1557                 schedule();
1558         finish_wait(wq_head, &wqe.wq_entry);
1559 }
1560
1561 /*
1562  * Find proper writeback list for the inode depending on its current state and
1563  * possibly also change of its state while we were doing writeback.  Here we
1564  * handle things such as livelock prevention or fairness of writeback among
1565  * inodes. This function can be called only by flusher thread - noone else
1566  * processes all inodes in writeback lists and requeueing inodes behind flusher
1567  * thread's back can have unexpected consequences.
1568  */
1569 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1570                           struct writeback_control *wbc,
1571                           unsigned long dirtied_before)
1572 {
1573         if (inode->i_state & I_FREEING)
1574                 return;
1575
1576         /*
1577          * Sync livelock prevention. Each inode is tagged and synced in one
1578          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1579          * the dirty time to prevent enqueue and sync it again.
1580          */
1581         if ((inode->i_state & I_DIRTY) &&
1582             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1583                 inode->dirtied_when = jiffies;
1584
1585         if (wbc->pages_skipped) {
1586                 /*
1587                  * Writeback is not making progress due to locked buffers.
1588                  * Skip this inode for now. Although having skipped pages
1589                  * is odd for clean inodes, it can happen for some
1590                  * filesystems so handle that gracefully.
1591                  */
1592                 if (inode->i_state & I_DIRTY_ALL)
1593                         redirty_tail_locked(inode, wb);
1594                 else
1595                         inode_cgwb_move_to_attached(inode, wb);
1596                 return;
1597         }
1598
1599         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1600                 /*
1601                  * We didn't write back all the pages.  nfs_writepages()
1602                  * sometimes bales out without doing anything.
1603                  */
1604                 if (wbc->nr_to_write <= 0 &&
1605                     !inode_dirtied_after(inode, dirtied_before)) {
1606                         /* Slice used up. Queue for next turn. */
1607                         requeue_io(inode, wb);
1608                 } else {
1609                         /*
1610                          * Writeback blocked by something other than
1611                          * congestion. Delay the inode for some time to
1612                          * avoid spinning on the CPU (100% iowait)
1613                          * retrying writeback of the dirty page/inode
1614                          * that cannot be performed immediately.
1615                          */
1616                         redirty_tail_locked(inode, wb);
1617                 }
1618         } else if (inode->i_state & I_DIRTY) {
1619                 /*
1620                  * Filesystems can dirty the inode during writeback operations,
1621                  * such as delayed allocation during submission or metadata
1622                  * updates after data IO completion.
1623                  */
1624                 redirty_tail_locked(inode, wb);
1625         } else if (inode->i_state & I_DIRTY_TIME) {
1626                 inode->dirtied_when = jiffies;
1627                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1628                 inode->i_state &= ~I_SYNC_QUEUED;
1629         } else {
1630                 /* The inode is clean. Remove from writeback lists. */
1631                 inode_cgwb_move_to_attached(inode, wb);
1632         }
1633 }
1634
1635 /*
1636  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1637  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1638  *
1639  * This doesn't remove the inode from the writeback list it is on, except
1640  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1641  * expiration.  The caller is otherwise responsible for writeback list handling.
1642  *
1643  * The caller is also responsible for setting the I_SYNC flag beforehand and
1644  * calling inode_sync_complete() to clear it afterwards.
1645  */
1646 static int
1647 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1648 {
1649         struct address_space *mapping = inode->i_mapping;
1650         long nr_to_write = wbc->nr_to_write;
1651         unsigned dirty;
1652         int ret;
1653
1654         WARN_ON(!(inode->i_state & I_SYNC));
1655
1656         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1657
1658         ret = do_writepages(mapping, wbc);
1659
1660         /*
1661          * Make sure to wait on the data before writing out the metadata.
1662          * This is important for filesystems that modify metadata on data
1663          * I/O completion. We don't do it for sync(2) writeback because it has a
1664          * separate, external IO completion path and ->sync_fs for guaranteeing
1665          * inode metadata is written back correctly.
1666          */
1667         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1668                 int err = filemap_fdatawait(mapping);
1669                 if (ret == 0)
1670                         ret = err;
1671         }
1672
1673         /*
1674          * If the inode has dirty timestamps and we need to write them, call
1675          * mark_inode_dirty_sync() to notify the filesystem about it and to
1676          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1677          */
1678         if ((inode->i_state & I_DIRTY_TIME) &&
1679             (wbc->sync_mode == WB_SYNC_ALL ||
1680              time_after(jiffies, inode->dirtied_time_when +
1681                         dirtytime_expire_interval * HZ))) {
1682                 trace_writeback_lazytime(inode);
1683                 mark_inode_dirty_sync(inode);
1684         }
1685
1686         /*
1687          * Get and clear the dirty flags from i_state.  This needs to be done
1688          * after calling writepages because some filesystems may redirty the
1689          * inode during writepages due to delalloc.  It also needs to be done
1690          * after handling timestamp expiration, as that may dirty the inode too.
1691          */
1692         spin_lock(&inode->i_lock);
1693         dirty = inode->i_state & I_DIRTY;
1694         inode->i_state &= ~dirty;
1695
1696         /*
1697          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1698          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1699          * either they see the I_DIRTY bits cleared or we see the dirtied
1700          * inode.
1701          *
1702          * I_DIRTY_PAGES is always cleared together above even if @mapping
1703          * still has dirty pages.  The flag is reinstated after smp_mb() if
1704          * necessary.  This guarantees that either __mark_inode_dirty()
1705          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1706          */
1707         smp_mb();
1708
1709         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1710                 inode->i_state |= I_DIRTY_PAGES;
1711         else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1712                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1713                         inode->i_state &= ~I_PINNING_NETFS_WB;
1714                         wbc->unpinned_netfs_wb = true;
1715                         dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1716                 }
1717         }
1718
1719         spin_unlock(&inode->i_lock);
1720
1721         /* Don't write the inode if only I_DIRTY_PAGES was set */
1722         if (dirty & ~I_DIRTY_PAGES) {
1723                 int err = write_inode(inode, wbc);
1724                 if (ret == 0)
1725                         ret = err;
1726         }
1727         wbc->unpinned_netfs_wb = false;
1728         trace_writeback_single_inode(inode, wbc, nr_to_write);
1729         return ret;
1730 }
1731
1732 /*
1733  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1734  * the regular batched writeback done by the flusher threads in
1735  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1736  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1737  *
1738  * To prevent the inode from going away, either the caller must have a reference
1739  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1740  */
1741 static int writeback_single_inode(struct inode *inode,
1742                                   struct writeback_control *wbc)
1743 {
1744         struct bdi_writeback *wb;
1745         int ret = 0;
1746
1747         spin_lock(&inode->i_lock);
1748         if (!atomic_read(&inode->i_count))
1749                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1750         else
1751                 WARN_ON(inode->i_state & I_WILL_FREE);
1752
1753         if (inode->i_state & I_SYNC) {
1754                 /*
1755                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1756                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1757                  * must wait for the existing writeback to complete, then do
1758                  * writeback again if there's anything left.
1759                  */
1760                 if (wbc->sync_mode != WB_SYNC_ALL)
1761                         goto out;
1762                 inode_wait_for_writeback(inode);
1763         }
1764         WARN_ON(inode->i_state & I_SYNC);
1765         /*
1766          * If the inode is already fully clean, then there's nothing to do.
1767          *
1768          * For data-integrity syncs we also need to check whether any pages are
1769          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1770          * there are any such pages, we'll need to wait for them.
1771          */
1772         if (!(inode->i_state & I_DIRTY_ALL) &&
1773             (wbc->sync_mode != WB_SYNC_ALL ||
1774              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1775                 goto out;
1776         inode->i_state |= I_SYNC;
1777         wbc_attach_and_unlock_inode(wbc, inode);
1778
1779         ret = __writeback_single_inode(inode, wbc);
1780
1781         wbc_detach_inode(wbc);
1782
1783         wb = inode_to_wb_and_lock_list(inode);
1784         spin_lock(&inode->i_lock);
1785         /*
1786          * If the inode is freeing, its i_io_list shoudn't be updated
1787          * as it can be finally deleted at this moment.
1788          */
1789         if (!(inode->i_state & I_FREEING)) {
1790                 /*
1791                  * If the inode is now fully clean, then it can be safely
1792                  * removed from its writeback list (if any). Otherwise the
1793                  * flusher threads are responsible for the writeback lists.
1794                  */
1795                 if (!(inode->i_state & I_DIRTY_ALL))
1796                         inode_cgwb_move_to_attached(inode, wb);
1797                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1798                         if ((inode->i_state & I_DIRTY))
1799                                 redirty_tail_locked(inode, wb);
1800                         else if (inode->i_state & I_DIRTY_TIME) {
1801                                 inode->dirtied_when = jiffies;
1802                                 inode_io_list_move_locked(inode,
1803                                                           wb,
1804                                                           &wb->b_dirty_time);
1805                         }
1806                 }
1807         }
1808
1809         spin_unlock(&wb->list_lock);
1810         inode_sync_complete(inode);
1811 out:
1812         spin_unlock(&inode->i_lock);
1813         return ret;
1814 }
1815
1816 static long writeback_chunk_size(struct bdi_writeback *wb,
1817                                  struct wb_writeback_work *work)
1818 {
1819         long pages;
1820
1821         /*
1822          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1823          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1824          * here avoids calling into writeback_inodes_wb() more than once.
1825          *
1826          * The intended call sequence for WB_SYNC_ALL writeback is:
1827          *
1828          *      wb_writeback()
1829          *          writeback_sb_inodes()       <== called only once
1830          *              write_cache_pages()     <== called once for each inode
1831          *                   (quickly) tag currently dirty pages
1832          *                   (maybe slowly) sync all tagged pages
1833          */
1834         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1835                 pages = LONG_MAX;
1836         else {
1837                 pages = min(wb->avg_write_bandwidth / 2,
1838                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1839                 pages = min(pages, work->nr_pages);
1840                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1841                                    MIN_WRITEBACK_PAGES);
1842         }
1843
1844         return pages;
1845 }
1846
1847 /*
1848  * Write a portion of b_io inodes which belong to @sb.
1849  *
1850  * Return the number of pages and/or inodes written.
1851  *
1852  * NOTE! This is called with wb->list_lock held, and will
1853  * unlock and relock that for each inode it ends up doing
1854  * IO for.
1855  */
1856 static long writeback_sb_inodes(struct super_block *sb,
1857                                 struct bdi_writeback *wb,
1858                                 struct wb_writeback_work *work)
1859 {
1860         struct writeback_control wbc = {
1861                 .sync_mode              = work->sync_mode,
1862                 .tagged_writepages      = work->tagged_writepages,
1863                 .for_kupdate            = work->for_kupdate,
1864                 .for_background         = work->for_background,
1865                 .for_sync               = work->for_sync,
1866                 .range_cyclic           = work->range_cyclic,
1867                 .range_start            = 0,
1868                 .range_end              = LLONG_MAX,
1869         };
1870         unsigned long start_time = jiffies;
1871         long write_chunk;
1872         long total_wrote = 0;  /* count both pages and inodes */
1873         unsigned long dirtied_before = jiffies;
1874
1875         if (work->for_kupdate)
1876                 dirtied_before = jiffies -
1877                         msecs_to_jiffies(dirty_expire_interval * 10);
1878
1879         while (!list_empty(&wb->b_io)) {
1880                 struct inode *inode = wb_inode(wb->b_io.prev);
1881                 struct bdi_writeback *tmp_wb;
1882                 long wrote;
1883
1884                 if (inode->i_sb != sb) {
1885                         if (work->sb) {
1886                                 /*
1887                                  * We only want to write back data for this
1888                                  * superblock, move all inodes not belonging
1889                                  * to it back onto the dirty list.
1890                                  */
1891                                 redirty_tail(inode, wb);
1892                                 continue;
1893                         }
1894
1895                         /*
1896                          * The inode belongs to a different superblock.
1897                          * Bounce back to the caller to unpin this and
1898                          * pin the next superblock.
1899                          */
1900                         break;
1901                 }
1902
1903                 /*
1904                  * Don't bother with new inodes or inodes being freed, first
1905                  * kind does not need periodic writeout yet, and for the latter
1906                  * kind writeout is handled by the freer.
1907                  */
1908                 spin_lock(&inode->i_lock);
1909                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1910                         redirty_tail_locked(inode, wb);
1911                         spin_unlock(&inode->i_lock);
1912                         continue;
1913                 }
1914                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1915                         /*
1916                          * If this inode is locked for writeback and we are not
1917                          * doing writeback-for-data-integrity, move it to
1918                          * b_more_io so that writeback can proceed with the
1919                          * other inodes on s_io.
1920                          *
1921                          * We'll have another go at writing back this inode
1922                          * when we completed a full scan of b_io.
1923                          */
1924                         requeue_io(inode, wb);
1925                         spin_unlock(&inode->i_lock);
1926                         trace_writeback_sb_inodes_requeue(inode);
1927                         continue;
1928                 }
1929                 spin_unlock(&wb->list_lock);
1930
1931                 /*
1932                  * We already requeued the inode if it had I_SYNC set and we
1933                  * are doing WB_SYNC_NONE writeback. So this catches only the
1934                  * WB_SYNC_ALL case.
1935                  */
1936                 if (inode->i_state & I_SYNC) {
1937                         /* Wait for I_SYNC. This function drops i_lock... */
1938                         inode_sleep_on_writeback(inode);
1939                         /* Inode may be gone, start again */
1940                         spin_lock(&wb->list_lock);
1941                         continue;
1942                 }
1943                 inode->i_state |= I_SYNC;
1944                 wbc_attach_and_unlock_inode(&wbc, inode);
1945
1946                 write_chunk = writeback_chunk_size(wb, work);
1947                 wbc.nr_to_write = write_chunk;
1948                 wbc.pages_skipped = 0;
1949
1950                 /*
1951                  * We use I_SYNC to pin the inode in memory. While it is set
1952                  * evict_inode() will wait so the inode cannot be freed.
1953                  */
1954                 __writeback_single_inode(inode, &wbc);
1955
1956                 wbc_detach_inode(&wbc);
1957                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1958                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1959                 wrote = wrote < 0 ? 0 : wrote;
1960                 total_wrote += wrote;
1961
1962                 if (need_resched()) {
1963                         /*
1964                          * We're trying to balance between building up a nice
1965                          * long list of IOs to improve our merge rate, and
1966                          * getting those IOs out quickly for anyone throttling
1967                          * in balance_dirty_pages().  cond_resched() doesn't
1968                          * unplug, so get our IOs out the door before we
1969                          * give up the CPU.
1970                          */
1971                         blk_flush_plug(current->plug, false);
1972                         cond_resched();
1973                 }
1974
1975                 /*
1976                  * Requeue @inode if still dirty.  Be careful as @inode may
1977                  * have been switched to another wb in the meantime.
1978                  */
1979                 tmp_wb = inode_to_wb_and_lock_list(inode);
1980                 spin_lock(&inode->i_lock);
1981                 if (!(inode->i_state & I_DIRTY_ALL))
1982                         total_wrote++;
1983                 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1984                 inode_sync_complete(inode);
1985                 spin_unlock(&inode->i_lock);
1986
1987                 if (unlikely(tmp_wb != wb)) {
1988                         spin_unlock(&tmp_wb->list_lock);
1989                         spin_lock(&wb->list_lock);
1990                 }
1991
1992                 /*
1993                  * bail out to wb_writeback() often enough to check
1994                  * background threshold and other termination conditions.
1995                  */
1996                 if (total_wrote) {
1997                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1998                                 break;
1999                         if (work->nr_pages <= 0)
2000                                 break;
2001                 }
2002         }
2003         return total_wrote;
2004 }
2005
2006 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2007                                   struct wb_writeback_work *work)
2008 {
2009         unsigned long start_time = jiffies;
2010         long wrote = 0;
2011
2012         while (!list_empty(&wb->b_io)) {
2013                 struct inode *inode = wb_inode(wb->b_io.prev);
2014                 struct super_block *sb = inode->i_sb;
2015
2016                 if (!super_trylock_shared(sb)) {
2017                         /*
2018                          * super_trylock_shared() may fail consistently due to
2019                          * s_umount being grabbed by someone else. Don't use
2020                          * requeue_io() to avoid busy retrying the inode/sb.
2021                          */
2022                         redirty_tail(inode, wb);
2023                         continue;
2024                 }
2025                 wrote += writeback_sb_inodes(sb, wb, work);
2026                 up_read(&sb->s_umount);
2027
2028                 /* refer to the same tests at the end of writeback_sb_inodes */
2029                 if (wrote) {
2030                         if (time_is_before_jiffies(start_time + HZ / 10UL))
2031                                 break;
2032                         if (work->nr_pages <= 0)
2033                                 break;
2034                 }
2035         }
2036         /* Leave any unwritten inodes on b_io */
2037         return wrote;
2038 }
2039
2040 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2041                                 enum wb_reason reason)
2042 {
2043         struct wb_writeback_work work = {
2044                 .nr_pages       = nr_pages,
2045                 .sync_mode      = WB_SYNC_NONE,
2046                 .range_cyclic   = 1,
2047                 .reason         = reason,
2048         };
2049         struct blk_plug plug;
2050
2051         blk_start_plug(&plug);
2052         spin_lock(&wb->list_lock);
2053         if (list_empty(&wb->b_io))
2054                 queue_io(wb, &work, jiffies);
2055         __writeback_inodes_wb(wb, &work);
2056         spin_unlock(&wb->list_lock);
2057         blk_finish_plug(&plug);
2058
2059         return nr_pages - work.nr_pages;
2060 }
2061
2062 /*
2063  * Explicit flushing or periodic writeback of "old" data.
2064  *
2065  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2066  * dirtying-time in the inode's address_space.  So this periodic writeback code
2067  * just walks the superblock inode list, writing back any inodes which are
2068  * older than a specific point in time.
2069  *
2070  * Try to run once per dirty_writeback_interval.  But if a writeback event
2071  * takes longer than a dirty_writeback_interval interval, then leave a
2072  * one-second gap.
2073  *
2074  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2075  * all dirty pages if they are all attached to "old" mappings.
2076  */
2077 static long wb_writeback(struct bdi_writeback *wb,
2078                          struct wb_writeback_work *work)
2079 {
2080         long nr_pages = work->nr_pages;
2081         unsigned long dirtied_before = jiffies;
2082         struct inode *inode;
2083         long progress;
2084         struct blk_plug plug;
2085         bool queued = false;
2086
2087         blk_start_plug(&plug);
2088         for (;;) {
2089                 /*
2090                  * Stop writeback when nr_pages has been consumed
2091                  */
2092                 if (work->nr_pages <= 0)
2093                         break;
2094
2095                 /*
2096                  * Background writeout and kupdate-style writeback may
2097                  * run forever. Stop them if there is other work to do
2098                  * so that e.g. sync can proceed. They'll be restarted
2099                  * after the other works are all done.
2100                  */
2101                 if ((work->for_background || work->for_kupdate) &&
2102                     !list_empty(&wb->work_list))
2103                         break;
2104
2105                 /*
2106                  * For background writeout, stop when we are below the
2107                  * background dirty threshold
2108                  */
2109                 if (work->for_background && !wb_over_bg_thresh(wb))
2110                         break;
2111
2112
2113                 spin_lock(&wb->list_lock);
2114
2115                 trace_writeback_start(wb, work);
2116                 if (list_empty(&wb->b_io)) {
2117                         /*
2118                          * Kupdate and background works are special and we want
2119                          * to include all inodes that need writing. Livelock
2120                          * avoidance is handled by these works yielding to any
2121                          * other work so we are safe.
2122                          */
2123                         if (work->for_kupdate) {
2124                                 dirtied_before = jiffies -
2125                                         msecs_to_jiffies(dirty_expire_interval *
2126                                                          10);
2127                         } else if (work->for_background)
2128                                 dirtied_before = jiffies;
2129
2130                         queue_io(wb, work, dirtied_before);
2131                         queued = true;
2132                 }
2133                 if (work->sb)
2134                         progress = writeback_sb_inodes(work->sb, wb, work);
2135                 else
2136                         progress = __writeback_inodes_wb(wb, work);
2137                 trace_writeback_written(wb, work);
2138
2139                 /*
2140                  * Did we write something? Try for more
2141                  *
2142                  * Dirty inodes are moved to b_io for writeback in batches.
2143                  * The completion of the current batch does not necessarily
2144                  * mean the overall work is done. So we keep looping as long
2145                  * as made some progress on cleaning pages or inodes.
2146                  */
2147                 if (progress || !queued) {
2148                         spin_unlock(&wb->list_lock);
2149                         continue;
2150                 }
2151
2152                 /*
2153                  * No more inodes for IO, bail
2154                  */
2155                 if (list_empty(&wb->b_more_io)) {
2156                         spin_unlock(&wb->list_lock);
2157                         break;
2158                 }
2159
2160                 /*
2161                  * Nothing written. Wait for some inode to
2162                  * become available for writeback. Otherwise
2163                  * we'll just busyloop.
2164                  */
2165                 trace_writeback_wait(wb, work);
2166                 inode = wb_inode(wb->b_more_io.prev);
2167                 spin_lock(&inode->i_lock);
2168                 spin_unlock(&wb->list_lock);
2169                 /* This function drops i_lock... */
2170                 inode_sleep_on_writeback(inode);
2171         }
2172         blk_finish_plug(&plug);
2173
2174         return nr_pages - work->nr_pages;
2175 }
2176
2177 /*
2178  * Return the next wb_writeback_work struct that hasn't been processed yet.
2179  */
2180 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2181 {
2182         struct wb_writeback_work *work = NULL;
2183
2184         spin_lock_irq(&wb->work_lock);
2185         if (!list_empty(&wb->work_list)) {
2186                 work = list_entry(wb->work_list.next,
2187                                   struct wb_writeback_work, list);
2188                 list_del_init(&work->list);
2189         }
2190         spin_unlock_irq(&wb->work_lock);
2191         return work;
2192 }
2193
2194 static long wb_check_background_flush(struct bdi_writeback *wb)
2195 {
2196         if (wb_over_bg_thresh(wb)) {
2197
2198                 struct wb_writeback_work work = {
2199                         .nr_pages       = LONG_MAX,
2200                         .sync_mode      = WB_SYNC_NONE,
2201                         .for_background = 1,
2202                         .range_cyclic   = 1,
2203                         .reason         = WB_REASON_BACKGROUND,
2204                 };
2205
2206                 return wb_writeback(wb, &work);
2207         }
2208
2209         return 0;
2210 }
2211
2212 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2213 {
2214         unsigned long expired;
2215         long nr_pages;
2216
2217         /*
2218          * When set to zero, disable periodic writeback
2219          */
2220         if (!dirty_writeback_interval)
2221                 return 0;
2222
2223         expired = wb->last_old_flush +
2224                         msecs_to_jiffies(dirty_writeback_interval * 10);
2225         if (time_before(jiffies, expired))
2226                 return 0;
2227
2228         wb->last_old_flush = jiffies;
2229         nr_pages = get_nr_dirty_pages();
2230
2231         if (nr_pages) {
2232                 struct wb_writeback_work work = {
2233                         .nr_pages       = nr_pages,
2234                         .sync_mode      = WB_SYNC_NONE,
2235                         .for_kupdate    = 1,
2236                         .range_cyclic   = 1,
2237                         .reason         = WB_REASON_PERIODIC,
2238                 };
2239
2240                 return wb_writeback(wb, &work);
2241         }
2242
2243         return 0;
2244 }
2245
2246 static long wb_check_start_all(struct bdi_writeback *wb)
2247 {
2248         long nr_pages;
2249
2250         if (!test_bit(WB_start_all, &wb->state))
2251                 return 0;
2252
2253         nr_pages = get_nr_dirty_pages();
2254         if (nr_pages) {
2255                 struct wb_writeback_work work = {
2256                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2257                         .sync_mode      = WB_SYNC_NONE,
2258                         .range_cyclic   = 1,
2259                         .reason         = wb->start_all_reason,
2260                 };
2261
2262                 nr_pages = wb_writeback(wb, &work);
2263         }
2264
2265         clear_bit(WB_start_all, &wb->state);
2266         return nr_pages;
2267 }
2268
2269
2270 /*
2271  * Retrieve work items and do the writeback they describe
2272  */
2273 static long wb_do_writeback(struct bdi_writeback *wb)
2274 {
2275         struct wb_writeback_work *work;
2276         long wrote = 0;
2277
2278         set_bit(WB_writeback_running, &wb->state);
2279         while ((work = get_next_work_item(wb)) != NULL) {
2280                 trace_writeback_exec(wb, work);
2281                 wrote += wb_writeback(wb, work);
2282                 finish_writeback_work(work);
2283         }
2284
2285         /*
2286          * Check for a flush-everything request
2287          */
2288         wrote += wb_check_start_all(wb);
2289
2290         /*
2291          * Check for periodic writeback, kupdated() style
2292          */
2293         wrote += wb_check_old_data_flush(wb);
2294         wrote += wb_check_background_flush(wb);
2295         clear_bit(WB_writeback_running, &wb->state);
2296
2297         return wrote;
2298 }
2299
2300 /*
2301  * Handle writeback of dirty data for the device backed by this bdi. Also
2302  * reschedules periodically and does kupdated style flushing.
2303  */
2304 void wb_workfn(struct work_struct *work)
2305 {
2306         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2307                                                 struct bdi_writeback, dwork);
2308         long pages_written;
2309
2310         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2311
2312         if (likely(!current_is_workqueue_rescuer() ||
2313                    !test_bit(WB_registered, &wb->state))) {
2314                 /*
2315                  * The normal path.  Keep writing back @wb until its
2316                  * work_list is empty.  Note that this path is also taken
2317                  * if @wb is shutting down even when we're running off the
2318                  * rescuer as work_list needs to be drained.
2319                  */
2320                 do {
2321                         pages_written = wb_do_writeback(wb);
2322                         trace_writeback_pages_written(pages_written);
2323                 } while (!list_empty(&wb->work_list));
2324         } else {
2325                 /*
2326                  * bdi_wq can't get enough workers and we're running off
2327                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2328                  * enough for efficient IO.
2329                  */
2330                 pages_written = writeback_inodes_wb(wb, 1024,
2331                                                     WB_REASON_FORKER_THREAD);
2332                 trace_writeback_pages_written(pages_written);
2333         }
2334
2335         if (!list_empty(&wb->work_list))
2336                 wb_wakeup(wb);
2337         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2338                 wb_wakeup_delayed(wb);
2339 }
2340
2341 /*
2342  * Start writeback of all dirty pages on this bdi.
2343  */
2344 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2345                                          enum wb_reason reason)
2346 {
2347         struct bdi_writeback *wb;
2348
2349         if (!bdi_has_dirty_io(bdi))
2350                 return;
2351
2352         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2353                 wb_start_writeback(wb, reason);
2354 }
2355
2356 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2357                                 enum wb_reason reason)
2358 {
2359         rcu_read_lock();
2360         __wakeup_flusher_threads_bdi(bdi, reason);
2361         rcu_read_unlock();
2362 }
2363
2364 /*
2365  * Wakeup the flusher threads to start writeback of all currently dirty pages
2366  */
2367 void wakeup_flusher_threads(enum wb_reason reason)
2368 {
2369         struct backing_dev_info *bdi;
2370
2371         /*
2372          * If we are expecting writeback progress we must submit plugged IO.
2373          */
2374         blk_flush_plug(current->plug, true);
2375
2376         rcu_read_lock();
2377         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2378                 __wakeup_flusher_threads_bdi(bdi, reason);
2379         rcu_read_unlock();
2380 }
2381
2382 /*
2383  * Wake up bdi's periodically to make sure dirtytime inodes gets
2384  * written back periodically.  We deliberately do *not* check the
2385  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2386  * kernel to be constantly waking up once there are any dirtytime
2387  * inodes on the system.  So instead we define a separate delayed work
2388  * function which gets called much more rarely.  (By default, only
2389  * once every 12 hours.)
2390  *
2391  * If there is any other write activity going on in the file system,
2392  * this function won't be necessary.  But if the only thing that has
2393  * happened on the file system is a dirtytime inode caused by an atime
2394  * update, we need this infrastructure below to make sure that inode
2395  * eventually gets pushed out to disk.
2396  */
2397 static void wakeup_dirtytime_writeback(struct work_struct *w);
2398 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2399
2400 static void wakeup_dirtytime_writeback(struct work_struct *w)
2401 {
2402         struct backing_dev_info *bdi;
2403
2404         rcu_read_lock();
2405         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2406                 struct bdi_writeback *wb;
2407
2408                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2409                         if (!list_empty(&wb->b_dirty_time))
2410                                 wb_wakeup(wb);
2411         }
2412         rcu_read_unlock();
2413         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2414 }
2415
2416 static int __init start_dirtytime_writeback(void)
2417 {
2418         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2419         return 0;
2420 }
2421 __initcall(start_dirtytime_writeback);
2422
2423 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2424                                void *buffer, size_t *lenp, loff_t *ppos)
2425 {
2426         int ret;
2427
2428         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2429         if (ret == 0 && write)
2430                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2431         return ret;
2432 }
2433
2434 /**
2435  * __mark_inode_dirty - internal function to mark an inode dirty
2436  *
2437  * @inode: inode to mark
2438  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2439  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2440  *         with I_DIRTY_PAGES.
2441  *
2442  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2443  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2444  *
2445  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2446  * instead of calling this directly.
2447  *
2448  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2449  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2450  * even if they are later hashed, as they will have been marked dirty already.
2451  *
2452  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2453  *
2454  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2455  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2456  * the kernel-internal blockdev inode represents the dirtying time of the
2457  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2458  * page->mapping->host, so the page-dirtying time is recorded in the internal
2459  * blockdev inode.
2460  */
2461 void __mark_inode_dirty(struct inode *inode, int flags)
2462 {
2463         struct super_block *sb = inode->i_sb;
2464         int dirtytime = 0;
2465         struct bdi_writeback *wb = NULL;
2466
2467         trace_writeback_mark_inode_dirty(inode, flags);
2468
2469         if (flags & I_DIRTY_INODE) {
2470                 /*
2471                  * Inode timestamp update will piggback on this dirtying.
2472                  * We tell ->dirty_inode callback that timestamps need to
2473                  * be updated by setting I_DIRTY_TIME in flags.
2474                  */
2475                 if (inode->i_state & I_DIRTY_TIME) {
2476                         spin_lock(&inode->i_lock);
2477                         if (inode->i_state & I_DIRTY_TIME) {
2478                                 inode->i_state &= ~I_DIRTY_TIME;
2479                                 flags |= I_DIRTY_TIME;
2480                         }
2481                         spin_unlock(&inode->i_lock);
2482                 }
2483
2484                 /*
2485                  * Notify the filesystem about the inode being dirtied, so that
2486                  * (if needed) it can update on-disk fields and journal the
2487                  * inode.  This is only needed when the inode itself is being
2488                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2489                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2490                  */
2491                 trace_writeback_dirty_inode_start(inode, flags);
2492                 if (sb->s_op->dirty_inode)
2493                         sb->s_op->dirty_inode(inode,
2494                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2495                 trace_writeback_dirty_inode(inode, flags);
2496
2497                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2498                 flags &= ~I_DIRTY_TIME;
2499         } else {
2500                 /*
2501                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2502                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2503                  * in one call to __mark_inode_dirty().)
2504                  */
2505                 dirtytime = flags & I_DIRTY_TIME;
2506                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2507         }
2508
2509         /*
2510          * Paired with smp_mb() in __writeback_single_inode() for the
2511          * following lockless i_state test.  See there for details.
2512          */
2513         smp_mb();
2514
2515         if ((inode->i_state & flags) == flags)
2516                 return;
2517
2518         spin_lock(&inode->i_lock);
2519         if ((inode->i_state & flags) != flags) {
2520                 const int was_dirty = inode->i_state & I_DIRTY;
2521
2522                 inode_attach_wb(inode, NULL);
2523
2524                 inode->i_state |= flags;
2525
2526                 /*
2527                  * Grab inode's wb early because it requires dropping i_lock and we
2528                  * need to make sure following checks happen atomically with dirty
2529                  * list handling so that we don't move inodes under flush worker's
2530                  * hands.
2531                  */
2532                 if (!was_dirty) {
2533                         wb = locked_inode_to_wb_and_lock_list(inode);
2534                         spin_lock(&inode->i_lock);
2535                 }
2536
2537                 /*
2538                  * If the inode is queued for writeback by flush worker, just
2539                  * update its dirty state. Once the flush worker is done with
2540                  * the inode it will place it on the appropriate superblock
2541                  * list, based upon its state.
2542                  */
2543                 if (inode->i_state & I_SYNC_QUEUED)
2544                         goto out_unlock;
2545
2546                 /*
2547                  * Only add valid (hashed) inodes to the superblock's
2548                  * dirty list.  Add blockdev inodes as well.
2549                  */
2550                 if (!S_ISBLK(inode->i_mode)) {
2551                         if (inode_unhashed(inode))
2552                                 goto out_unlock;
2553                 }
2554                 if (inode->i_state & I_FREEING)
2555                         goto out_unlock;
2556
2557                 /*
2558                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2559                  * reposition it (that would break b_dirty time-ordering).
2560                  */
2561                 if (!was_dirty) {
2562                         struct list_head *dirty_list;
2563                         bool wakeup_bdi = false;
2564
2565                         inode->dirtied_when = jiffies;
2566                         if (dirtytime)
2567                                 inode->dirtied_time_when = jiffies;
2568
2569                         if (inode->i_state & I_DIRTY)
2570                                 dirty_list = &wb->b_dirty;
2571                         else
2572                                 dirty_list = &wb->b_dirty_time;
2573
2574                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2575                                                                dirty_list);
2576
2577                         spin_unlock(&wb->list_lock);
2578                         spin_unlock(&inode->i_lock);
2579                         trace_writeback_dirty_inode_enqueue(inode);
2580
2581                         /*
2582                          * If this is the first dirty inode for this bdi,
2583                          * we have to wake-up the corresponding bdi thread
2584                          * to make sure background write-back happens
2585                          * later.
2586                          */
2587                         if (wakeup_bdi &&
2588                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2589                                 wb_wakeup_delayed(wb);
2590                         return;
2591                 }
2592         }
2593 out_unlock:
2594         if (wb)
2595                 spin_unlock(&wb->list_lock);
2596         spin_unlock(&inode->i_lock);
2597 }
2598 EXPORT_SYMBOL(__mark_inode_dirty);
2599
2600 /*
2601  * The @s_sync_lock is used to serialise concurrent sync operations
2602  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2603  * Concurrent callers will block on the s_sync_lock rather than doing contending
2604  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2605  * has been issued up to the time this function is enter is guaranteed to be
2606  * completed by the time we have gained the lock and waited for all IO that is
2607  * in progress regardless of the order callers are granted the lock.
2608  */
2609 static void wait_sb_inodes(struct super_block *sb)
2610 {
2611         LIST_HEAD(sync_list);
2612
2613         /*
2614          * We need to be protected against the filesystem going from
2615          * r/o to r/w or vice versa.
2616          */
2617         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2618
2619         mutex_lock(&sb->s_sync_lock);
2620
2621         /*
2622          * Splice the writeback list onto a temporary list to avoid waiting on
2623          * inodes that have started writeback after this point.
2624          *
2625          * Use rcu_read_lock() to keep the inodes around until we have a
2626          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2627          * the local list because inodes can be dropped from either by writeback
2628          * completion.
2629          */
2630         rcu_read_lock();
2631         spin_lock_irq(&sb->s_inode_wblist_lock);
2632         list_splice_init(&sb->s_inodes_wb, &sync_list);
2633
2634         /*
2635          * Data integrity sync. Must wait for all pages under writeback, because
2636          * there may have been pages dirtied before our sync call, but which had
2637          * writeout started before we write it out.  In which case, the inode
2638          * may not be on the dirty list, but we still have to wait for that
2639          * writeout.
2640          */
2641         while (!list_empty(&sync_list)) {
2642                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2643                                                        i_wb_list);
2644                 struct address_space *mapping = inode->i_mapping;
2645
2646                 /*
2647                  * Move each inode back to the wb list before we drop the lock
2648                  * to preserve consistency between i_wb_list and the mapping
2649                  * writeback tag. Writeback completion is responsible to remove
2650                  * the inode from either list once the writeback tag is cleared.
2651                  */
2652                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2653
2654                 /*
2655                  * The mapping can appear untagged while still on-list since we
2656                  * do not have the mapping lock. Skip it here, wb completion
2657                  * will remove it.
2658                  */
2659                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2660                         continue;
2661
2662                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2663
2664                 spin_lock(&inode->i_lock);
2665                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2666                         spin_unlock(&inode->i_lock);
2667
2668                         spin_lock_irq(&sb->s_inode_wblist_lock);
2669                         continue;
2670                 }
2671                 __iget(inode);
2672                 spin_unlock(&inode->i_lock);
2673                 rcu_read_unlock();
2674
2675                 /*
2676                  * We keep the error status of individual mapping so that
2677                  * applications can catch the writeback error using fsync(2).
2678                  * See filemap_fdatawait_keep_errors() for details.
2679                  */
2680                 filemap_fdatawait_keep_errors(mapping);
2681
2682                 cond_resched();
2683
2684                 iput(inode);
2685
2686                 rcu_read_lock();
2687                 spin_lock_irq(&sb->s_inode_wblist_lock);
2688         }
2689         spin_unlock_irq(&sb->s_inode_wblist_lock);
2690         rcu_read_unlock();
2691         mutex_unlock(&sb->s_sync_lock);
2692 }
2693
2694 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2695                                      enum wb_reason reason, bool skip_if_busy)
2696 {
2697         struct backing_dev_info *bdi = sb->s_bdi;
2698         DEFINE_WB_COMPLETION(done, bdi);
2699         struct wb_writeback_work work = {
2700                 .sb                     = sb,
2701                 .sync_mode              = WB_SYNC_NONE,
2702                 .tagged_writepages      = 1,
2703                 .done                   = &done,
2704                 .nr_pages               = nr,
2705                 .reason                 = reason,
2706         };
2707
2708         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2709                 return;
2710         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2711
2712         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2713         wb_wait_for_completion(&done);
2714 }
2715
2716 /**
2717  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2718  * @sb: the superblock
2719  * @nr: the number of pages to write
2720  * @reason: reason why some writeback work initiated
2721  *
2722  * Start writeback on some inodes on this super_block. No guarantees are made
2723  * on how many (if any) will be written, and this function does not wait
2724  * for IO completion of submitted IO.
2725  */
2726 void writeback_inodes_sb_nr(struct super_block *sb,
2727                             unsigned long nr,
2728                             enum wb_reason reason)
2729 {
2730         __writeback_inodes_sb_nr(sb, nr, reason, false);
2731 }
2732 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2733
2734 /**
2735  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2736  * @sb: the superblock
2737  * @reason: reason why some writeback work was initiated
2738  *
2739  * Start writeback on some inodes on this super_block. No guarantees are made
2740  * on how many (if any) will be written, and this function does not wait
2741  * for IO completion of submitted IO.
2742  */
2743 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2744 {
2745         writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2746 }
2747 EXPORT_SYMBOL(writeback_inodes_sb);
2748
2749 /**
2750  * try_to_writeback_inodes_sb - try to start writeback if none underway
2751  * @sb: the superblock
2752  * @reason: reason why some writeback work was initiated
2753  *
2754  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2755  */
2756 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2757 {
2758         if (!down_read_trylock(&sb->s_umount))
2759                 return;
2760
2761         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2762         up_read(&sb->s_umount);
2763 }
2764 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2765
2766 /**
2767  * sync_inodes_sb       -       sync sb inode pages
2768  * @sb: the superblock
2769  *
2770  * This function writes and waits on any dirty inode belonging to this
2771  * super_block.
2772  */
2773 void sync_inodes_sb(struct super_block *sb)
2774 {
2775         struct backing_dev_info *bdi = sb->s_bdi;
2776         DEFINE_WB_COMPLETION(done, bdi);
2777         struct wb_writeback_work work = {
2778                 .sb             = sb,
2779                 .sync_mode      = WB_SYNC_ALL,
2780                 .nr_pages       = LONG_MAX,
2781                 .range_cyclic   = 0,
2782                 .done           = &done,
2783                 .reason         = WB_REASON_SYNC,
2784                 .for_sync       = 1,
2785         };
2786
2787         /*
2788          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2789          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2790          * bdi_has_dirty() need to be written out too.
2791          */
2792         if (bdi == &noop_backing_dev_info)
2793                 return;
2794         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2795
2796         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2797         bdi_down_write_wb_switch_rwsem(bdi);
2798         bdi_split_work_to_wbs(bdi, &work, false);
2799         wb_wait_for_completion(&done);
2800         bdi_up_write_wb_switch_rwsem(bdi);
2801
2802         wait_sb_inodes(sb);
2803 }
2804 EXPORT_SYMBOL(sync_inodes_sb);
2805
2806 /**
2807  * write_inode_now      -       write an inode to disk
2808  * @inode: inode to write to disk
2809  * @sync: whether the write should be synchronous or not
2810  *
2811  * This function commits an inode to disk immediately if it is dirty. This is
2812  * primarily needed by knfsd.
2813  *
2814  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2815  */
2816 int write_inode_now(struct inode *inode, int sync)
2817 {
2818         struct writeback_control wbc = {
2819                 .nr_to_write = LONG_MAX,
2820                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2821                 .range_start = 0,
2822                 .range_end = LLONG_MAX,
2823         };
2824
2825         if (!mapping_can_writeback(inode->i_mapping))
2826                 wbc.nr_to_write = 0;
2827
2828         might_sleep();
2829         return writeback_single_inode(inode, &wbc);
2830 }
2831 EXPORT_SYMBOL(write_inode_now);
2832
2833 /**
2834  * sync_inode_metadata - write an inode to disk
2835  * @inode: the inode to sync
2836  * @wait: wait for I/O to complete.
2837  *
2838  * Write an inode to disk and adjust its dirty state after completion.
2839  *
2840  * Note: only writes the actual inode, no associated data or other metadata.
2841  */
2842 int sync_inode_metadata(struct inode *inode, int wait)
2843 {
2844         struct writeback_control wbc = {
2845                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2846                 .nr_to_write = 0, /* metadata-only */
2847         };
2848
2849         return writeback_single_inode(inode, &wbc);
2850 }
2851 EXPORT_SYMBOL(sync_inode_metadata);