mm: convert mem_cgroup_css_from_page() to mem_cgroup_css_from_folio()
[linux-block.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124         WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126         list_move(&inode->i_io_list, head);
127
128         /* dirty_time doesn't count as dirty_io until expiration */
129         if (head != &wb->b_dirty_time)
130                 return wb_io_lists_populated(wb);
131
132         wb_io_lists_depopulated(wb);
133         return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138         spin_lock_irq(&wb->work_lock);
139         if (test_bit(WB_registered, &wb->state))
140                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141         spin_unlock_irq(&wb->work_lock);
142 }
143
144 static void finish_writeback_work(struct bdi_writeback *wb,
145                                   struct wb_writeback_work *work)
146 {
147         struct wb_completion *done = work->done;
148
149         if (work->auto_free)
150                 kfree(work);
151         if (done) {
152                 wait_queue_head_t *waitq = done->waitq;
153
154                 /* @done can't be accessed after the following dec */
155                 if (atomic_dec_and_test(&done->cnt))
156                         wake_up_all(waitq);
157         }
158 }
159
160 static void wb_queue_work(struct bdi_writeback *wb,
161                           struct wb_writeback_work *work)
162 {
163         trace_writeback_queue(wb, work);
164
165         if (work->done)
166                 atomic_inc(&work->done->cnt);
167
168         spin_lock_irq(&wb->work_lock);
169
170         if (test_bit(WB_registered, &wb->state)) {
171                 list_add_tail(&work->list, &wb->work_list);
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         } else
174                 finish_writeback_work(wb, work);
175
176         spin_unlock_irq(&wb->work_lock);
177 }
178
179 /**
180  * wb_wait_for_completion - wait for completion of bdi_writeback_works
181  * @done: target wb_completion
182  *
183  * Wait for one or more work items issued to @bdi with their ->done field
184  * set to @done, which should have been initialized with
185  * DEFINE_WB_COMPLETION().  This function returns after all such work items
186  * are completed.  Work items which are waited upon aren't freed
187  * automatically on completion.
188  */
189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191         atomic_dec(&done->cnt);         /* put down the initial count */
192         wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194
195 #ifdef CONFIG_CGROUP_WRITEBACK
196
197 /*
198  * Parameters for foreign inode detection, see wbc_detach_inode() to see
199  * how they're used.
200  *
201  * These paramters are inherently heuristical as the detection target
202  * itself is fuzzy.  All we want to do is detaching an inode from the
203  * current owner if it's being written to by some other cgroups too much.
204  *
205  * The current cgroup writeback is built on the assumption that multiple
206  * cgroups writing to the same inode concurrently is very rare and a mode
207  * of operation which isn't well supported.  As such, the goal is not
208  * taking too long when a different cgroup takes over an inode while
209  * avoiding too aggressive flip-flops from occasional foreign writes.
210  *
211  * We record, very roughly, 2s worth of IO time history and if more than
212  * half of that is foreign, trigger the switch.  The recording is quantized
213  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
214  * writes smaller than 1/8 of avg size are ignored.
215  */
216 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
220
221 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223                                         /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
225                                         /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227                                         /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
229
230 /*
231  * Maximum inodes per isw.  A specific value has been chosen to make
232  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233  */
234 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235                                 / sizeof(struct inode *))
236
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239
240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242         struct backing_dev_info *bdi = inode_to_bdi(inode);
243         struct bdi_writeback *wb = NULL;
244
245         if (inode_cgwb_enabled(inode)) {
246                 struct cgroup_subsys_state *memcg_css;
247
248                 if (folio) {
249                         memcg_css = mem_cgroup_css_from_folio(folio);
250                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251                 } else {
252                         /* must pin memcg_css, see wb_get_create() */
253                         memcg_css = task_get_css(current, memory_cgrp_id);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                         css_put(memcg_css);
256                 }
257         }
258
259         if (!wb)
260                 wb = &bdi->wb;
261
262         /*
263          * There may be multiple instances of this function racing to
264          * update the same inode.  Use cmpxchg() to tell the winner.
265          */
266         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267                 wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271 /**
272  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273  * @inode: inode of interest with i_lock held
274  * @wb: target bdi_writeback
275  *
276  * Remove the inode from wb's io lists and if necessarily put onto b_attached
277  * list.  Only inodes attached to cgwb's are kept on this list.
278  */
279 static void inode_cgwb_move_to_attached(struct inode *inode,
280                                         struct bdi_writeback *wb)
281 {
282         assert_spin_locked(&wb->list_lock);
283         assert_spin_locked(&inode->i_lock);
284         WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286         inode->i_state &= ~I_SYNC_QUEUED;
287         if (wb != &wb->bdi->wb)
288                 list_move(&inode->i_io_list, &wb->b_attached);
289         else
290                 list_del_init(&inode->i_io_list);
291         wb_io_lists_depopulated(wb);
292 }
293
294 /**
295  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296  * @inode: inode of interest with i_lock held
297  *
298  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
299  * held on entry and is released on return.  The returned wb is guaranteed
300  * to stay @inode's associated wb until its list_lock is released.
301  */
302 static struct bdi_writeback *
303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304         __releases(&inode->i_lock)
305         __acquires(&wb->list_lock)
306 {
307         while (true) {
308                 struct bdi_writeback *wb = inode_to_wb(inode);
309
310                 /*
311                  * inode_to_wb() association is protected by both
312                  * @inode->i_lock and @wb->list_lock but list_lock nests
313                  * outside i_lock.  Drop i_lock and verify that the
314                  * association hasn't changed after acquiring list_lock.
315                  */
316                 wb_get(wb);
317                 spin_unlock(&inode->i_lock);
318                 spin_lock(&wb->list_lock);
319
320                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321                 if (likely(wb == inode->i_wb)) {
322                         wb_put(wb);     /* @inode already has ref */
323                         return wb;
324                 }
325
326                 spin_unlock(&wb->list_lock);
327                 wb_put(wb);
328                 cpu_relax();
329                 spin_lock(&inode->i_lock);
330         }
331 }
332
333 /**
334  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335  * @inode: inode of interest
336  *
337  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338  * on entry.
339  */
340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341         __acquires(&wb->list_lock)
342 {
343         spin_lock(&inode->i_lock);
344         return locked_inode_to_wb_and_lock_list(inode);
345 }
346
347 struct inode_switch_wbs_context {
348         struct rcu_work         work;
349
350         /*
351          * Multiple inodes can be switched at once.  The switching procedure
352          * consists of two parts, separated by a RCU grace period.  To make
353          * sure that the second part is executed for each inode gone through
354          * the first part, all inode pointers are placed into a NULL-terminated
355          * array embedded into struct inode_switch_wbs_context.  Otherwise
356          * an inode could be left in a non-consistent state.
357          */
358         struct bdi_writeback    *new_wb;
359         struct inode            *inodes[];
360 };
361
362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364         down_write(&bdi->wb_switch_rwsem);
365 }
366
367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369         up_write(&bdi->wb_switch_rwsem);
370 }
371
372 static bool inode_do_switch_wbs(struct inode *inode,
373                                 struct bdi_writeback *old_wb,
374                                 struct bdi_writeback *new_wb)
375 {
376         struct address_space *mapping = inode->i_mapping;
377         XA_STATE(xas, &mapping->i_pages, 0);
378         struct folio *folio;
379         bool switched = false;
380
381         spin_lock(&inode->i_lock);
382         xa_lock_irq(&mapping->i_pages);
383
384         /*
385          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386          * path owns the inode and we shouldn't modify ->i_io_list.
387          */
388         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389                 goto skip_switch;
390
391         trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393         /*
394          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
395          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396          * folios actually under writeback.
397          */
398         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399                 if (folio_test_dirty(folio)) {
400                         long nr = folio_nr_pages(folio);
401                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403                 }
404         }
405
406         xas_set(&xas, 0);
407         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408                 long nr = folio_nr_pages(folio);
409                 WARN_ON_ONCE(!folio_test_writeback(folio));
410                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412         }
413
414         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415                 atomic_dec(&old_wb->writeback_inodes);
416                 atomic_inc(&new_wb->writeback_inodes);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
423          * the specific list @inode was on is ignored and the @inode is put on
424          * ->b_dirty which is always correct including from ->b_dirty_time.
425          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
426          * was clean, it means it was on the b_attached list, so move it onto
427          * the b_attached list of @new_wb.
428          */
429         if (!list_empty(&inode->i_io_list)) {
430                 inode->i_wb = new_wb;
431
432                 if (inode->i_state & I_DIRTY_ALL) {
433                         struct inode *pos;
434
435                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436                                 if (time_after_eq(inode->dirtied_when,
437                                                   pos->dirtied_when))
438                                         break;
439                         inode_io_list_move_locked(inode, new_wb,
440                                                   pos->i_io_list.prev);
441                 } else {
442                         inode_cgwb_move_to_attached(inode, new_wb);
443                 }
444         } else {
445                 inode->i_wb = new_wb;
446         }
447
448         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449         inode->i_wb_frn_winner = 0;
450         inode->i_wb_frn_avg_time = 0;
451         inode->i_wb_frn_history = 0;
452         switched = true;
453 skip_switch:
454         /*
455          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456          * ensures that the new wb is visible if they see !I_WB_SWITCH.
457          */
458         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460         xa_unlock_irq(&mapping->i_pages);
461         spin_unlock(&inode->i_lock);
462
463         return switched;
464 }
465
466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468         struct inode_switch_wbs_context *isw =
469                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472         struct bdi_writeback *new_wb = isw->new_wb;
473         unsigned long nr_switched = 0;
474         struct inode **inodep;
475
476         /*
477          * If @inode switches cgwb membership while sync_inodes_sb() is
478          * being issued, sync_inodes_sb() might miss it.  Synchronize.
479          */
480         down_read(&bdi->wb_switch_rwsem);
481
482         /*
483          * By the time control reaches here, RCU grace period has passed
484          * since I_WB_SWITCH assertion and all wb stat update transactions
485          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486          * synchronizing against the i_pages lock.
487          *
488          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489          * gives us exclusion against all wb related operations on @inode
490          * including IO list manipulations and stat updates.
491          */
492         if (old_wb < new_wb) {
493                 spin_lock(&old_wb->list_lock);
494                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495         } else {
496                 spin_lock(&new_wb->list_lock);
497                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498         }
499
500         for (inodep = isw->inodes; *inodep; inodep++) {
501                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503                         nr_switched++;
504         }
505
506         spin_unlock(&new_wb->list_lock);
507         spin_unlock(&old_wb->list_lock);
508
509         up_read(&bdi->wb_switch_rwsem);
510
511         if (nr_switched) {
512                 wb_wakeup(new_wb);
513                 wb_put_many(old_wb, nr_switched);
514         }
515
516         for (inodep = isw->inodes; *inodep; inodep++)
517                 iput(*inodep);
518         wb_put(new_wb);
519         kfree(isw);
520         atomic_dec(&isw_nr_in_flight);
521 }
522
523 static bool inode_prepare_wbs_switch(struct inode *inode,
524                                      struct bdi_writeback *new_wb)
525 {
526         /*
527          * Paired with smp_mb() in cgroup_writeback_umount().
528          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531          */
532         smp_mb();
533
534         if (IS_DAX(inode))
535                 return false;
536
537         /* while holding I_WB_SWITCH, no one else can update the association */
538         spin_lock(&inode->i_lock);
539         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541             inode_to_wb(inode) == new_wb) {
542                 spin_unlock(&inode->i_lock);
543                 return false;
544         }
545         inode->i_state |= I_WB_SWITCH;
546         __iget(inode);
547         spin_unlock(&inode->i_lock);
548
549         return true;
550 }
551
552 /**
553  * inode_switch_wbs - change the wb association of an inode
554  * @inode: target inode
555  * @new_wb_id: ID of the new wb
556  *
557  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
558  * switching is performed asynchronously and may fail silently.
559  */
560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562         struct backing_dev_info *bdi = inode_to_bdi(inode);
563         struct cgroup_subsys_state *memcg_css;
564         struct inode_switch_wbs_context *isw;
565
566         /* noop if seems to be already in progress */
567         if (inode->i_state & I_WB_SWITCH)
568                 return;
569
570         /* avoid queueing a new switch if too many are already in flight */
571         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572                 return;
573
574         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575         if (!isw)
576                 return;
577
578         atomic_inc(&isw_nr_in_flight);
579
580         /* find and pin the new wb */
581         rcu_read_lock();
582         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583         if (memcg_css && !css_tryget(memcg_css))
584                 memcg_css = NULL;
585         rcu_read_unlock();
586         if (!memcg_css)
587                 goto out_free;
588
589         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590         css_put(memcg_css);
591         if (!isw->new_wb)
592                 goto out_free;
593
594         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595                 goto out_free;
596
597         isw->inodes[0] = inode;
598
599         /*
600          * In addition to synchronizing among switchers, I_WB_SWITCH tells
601          * the RCU protected stat update paths to grab the i_page
602          * lock so that stat transfer can synchronize against them.
603          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604          */
605         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606         queue_rcu_work(isw_wq, &isw->work);
607         return;
608
609 out_free:
610         atomic_dec(&isw_nr_in_flight);
611         if (isw->new_wb)
612                 wb_put(isw->new_wb);
613         kfree(isw);
614 }
615
616 /**
617  * cleanup_offline_cgwb - detach associated inodes
618  * @wb: target wb
619  *
620  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621  * to eventually release the dying @wb.  Returns %true if not all inodes were
622  * switched and the function has to be restarted.
623  */
624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625 {
626         struct cgroup_subsys_state *memcg_css;
627         struct inode_switch_wbs_context *isw;
628         struct inode *inode;
629         int nr;
630         bool restart = false;
631
632         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633                       GFP_KERNEL);
634         if (!isw)
635                 return restart;
636
637         atomic_inc(&isw_nr_in_flight);
638
639         for (memcg_css = wb->memcg_css->parent; memcg_css;
640              memcg_css = memcg_css->parent) {
641                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642                 if (isw->new_wb)
643                         break;
644         }
645         if (unlikely(!isw->new_wb))
646                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647
648         nr = 0;
649         spin_lock(&wb->list_lock);
650         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652                         continue;
653
654                 isw->inodes[nr++] = inode;
655
656                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657                         restart = true;
658                         break;
659                 }
660         }
661         spin_unlock(&wb->list_lock);
662
663         /* no attached inodes? bail out */
664         if (nr == 0) {
665                 atomic_dec(&isw_nr_in_flight);
666                 wb_put(isw->new_wb);
667                 kfree(isw);
668                 return restart;
669         }
670
671         /*
672          * In addition to synchronizing among switchers, I_WB_SWITCH tells
673          * the RCU protected stat update paths to grab the i_page
674          * lock so that stat transfer can synchronize against them.
675          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676          */
677         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678         queue_rcu_work(isw_wq, &isw->work);
679
680         return restart;
681 }
682
683 /**
684  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685  * @wbc: writeback_control of interest
686  * @inode: target inode
687  *
688  * @inode is locked and about to be written back under the control of @wbc.
689  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
690  * writeback completion, wbc_detach_inode() should be called.  This is used
691  * to track the cgroup writeback context.
692  */
693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694                                  struct inode *inode)
695 {
696         if (!inode_cgwb_enabled(inode)) {
697                 spin_unlock(&inode->i_lock);
698                 return;
699         }
700
701         wbc->wb = inode_to_wb(inode);
702         wbc->inode = inode;
703
704         wbc->wb_id = wbc->wb->memcg_css->id;
705         wbc->wb_lcand_id = inode->i_wb_frn_winner;
706         wbc->wb_tcand_id = 0;
707         wbc->wb_bytes = 0;
708         wbc->wb_lcand_bytes = 0;
709         wbc->wb_tcand_bytes = 0;
710
711         wb_get(wbc->wb);
712         spin_unlock(&inode->i_lock);
713
714         /*
715          * A dying wb indicates that either the blkcg associated with the
716          * memcg changed or the associated memcg is dying.  In the first
717          * case, a replacement wb should already be available and we should
718          * refresh the wb immediately.  In the second case, trying to
719          * refresh will keep failing.
720          */
721         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722                 inode_switch_wbs(inode, wbc->wb_id);
723 }
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725
726 /**
727  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728  * @wbc: writeback_control of the just finished writeback
729  *
730  * To be called after a writeback attempt of an inode finishes and undoes
731  * wbc_attach_and_unlock_inode().  Can be called under any context.
732  *
733  * As concurrent write sharing of an inode is expected to be very rare and
734  * memcg only tracks page ownership on first-use basis severely confining
735  * the usefulness of such sharing, cgroup writeback tracks ownership
736  * per-inode.  While the support for concurrent write sharing of an inode
737  * is deemed unnecessary, an inode being written to by different cgroups at
738  * different points in time is a lot more common, and, more importantly,
739  * charging only by first-use can too readily lead to grossly incorrect
740  * behaviors (single foreign page can lead to gigabytes of writeback to be
741  * incorrectly attributed).
742  *
743  * To resolve this issue, cgroup writeback detects the majority dirtier of
744  * an inode and transfers the ownership to it.  To avoid unnecessary
745  * oscillation, the detection mechanism keeps track of history and gives
746  * out the switch verdict only if the foreign usage pattern is stable over
747  * a certain amount of time and/or writeback attempts.
748  *
749  * On each writeback attempt, @wbc tries to detect the majority writer
750  * using Boyer-Moore majority vote algorithm.  In addition to the byte
751  * count from the majority voting, it also counts the bytes written for the
752  * current wb and the last round's winner wb (max of last round's current
753  * wb, the winner from two rounds ago, and the last round's majority
754  * candidate).  Keeping track of the historical winner helps the algorithm
755  * to semi-reliably detect the most active writer even when it's not the
756  * absolute majority.
757  *
758  * Once the winner of the round is determined, whether the winner is
759  * foreign or not and how much IO time the round consumed is recorded in
760  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
761  * over a certain threshold, the switch verdict is given.
762  */
763 void wbc_detach_inode(struct writeback_control *wbc)
764 {
765         struct bdi_writeback *wb = wbc->wb;
766         struct inode *inode = wbc->inode;
767         unsigned long avg_time, max_bytes, max_time;
768         u16 history;
769         int max_id;
770
771         if (!wb)
772                 return;
773
774         history = inode->i_wb_frn_history;
775         avg_time = inode->i_wb_frn_avg_time;
776
777         /* pick the winner of this round */
778         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780                 max_id = wbc->wb_id;
781                 max_bytes = wbc->wb_bytes;
782         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783                 max_id = wbc->wb_lcand_id;
784                 max_bytes = wbc->wb_lcand_bytes;
785         } else {
786                 max_id = wbc->wb_tcand_id;
787                 max_bytes = wbc->wb_tcand_bytes;
788         }
789
790         /*
791          * Calculate the amount of IO time the winner consumed and fold it
792          * into the running average kept per inode.  If the consumed IO
793          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794          * deciding whether to switch or not.  This is to prevent one-off
795          * small dirtiers from skewing the verdict.
796          */
797         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798                                 wb->avg_write_bandwidth);
799         if (avg_time)
800                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802         else
803                 avg_time = max_time;    /* immediate catch up on first run */
804
805         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806                 int slots;
807
808                 /*
809                  * The switch verdict is reached if foreign wb's consume
810                  * more than a certain proportion of IO time in a
811                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
812                  * history mask where each bit represents one sixteenth of
813                  * the period.  Determine the number of slots to shift into
814                  * history from @max_time.
815                  */
816                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818                 history <<= slots;
819                 if (wbc->wb_id != max_id)
820                         history |= (1U << slots) - 1;
821
822                 if (history)
823                         trace_inode_foreign_history(inode, wbc, history);
824
825                 /*
826                  * Switch if the current wb isn't the consistent winner.
827                  * If there are multiple closely competing dirtiers, the
828                  * inode may switch across them repeatedly over time, which
829                  * is okay.  The main goal is avoiding keeping an inode on
830                  * the wrong wb for an extended period of time.
831                  */
832                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
833                         inode_switch_wbs(inode, max_id);
834         }
835
836         /*
837          * Multiple instances of this function may race to update the
838          * following fields but we don't mind occassional inaccuracies.
839          */
840         inode->i_wb_frn_winner = max_id;
841         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842         inode->i_wb_frn_history = history;
843
844         wb_put(wbc->wb);
845         wbc->wb = NULL;
846 }
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848
849 /**
850  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851  * @wbc: writeback_control of the writeback in progress
852  * @page: page being written out
853  * @bytes: number of bytes being written out
854  *
855  * @bytes from @page are about to written out during the writeback
856  * controlled by @wbc.  Keep the book for foreign inode detection.  See
857  * wbc_detach_inode().
858  */
859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860                               size_t bytes)
861 {
862         struct folio *folio;
863         struct cgroup_subsys_state *css;
864         int id;
865
866         /*
867          * pageout() path doesn't attach @wbc to the inode being written
868          * out.  This is intentional as we don't want the function to block
869          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
870          * regular writeback instead of writing things out itself.
871          */
872         if (!wbc->wb || wbc->no_cgroup_owner)
873                 return;
874
875         folio = page_folio(page);
876         css = mem_cgroup_css_from_folio(folio);
877         /* dead cgroups shouldn't contribute to inode ownership arbitration */
878         if (!(css->flags & CSS_ONLINE))
879                 return;
880
881         id = css->id;
882
883         if (id == wbc->wb_id) {
884                 wbc->wb_bytes += bytes;
885                 return;
886         }
887
888         if (id == wbc->wb_lcand_id)
889                 wbc->wb_lcand_bytes += bytes;
890
891         /* Boyer-Moore majority vote algorithm */
892         if (!wbc->wb_tcand_bytes)
893                 wbc->wb_tcand_id = id;
894         if (id == wbc->wb_tcand_id)
895                 wbc->wb_tcand_bytes += bytes;
896         else
897                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
898 }
899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
900
901 /**
902  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903  * @wb: target bdi_writeback to split @nr_pages to
904  * @nr_pages: number of pages to write for the whole bdi
905  *
906  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907  * relation to the total write bandwidth of all wb's w/ dirty inodes on
908  * @wb->bdi.
909  */
910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
911 {
912         unsigned long this_bw = wb->avg_write_bandwidth;
913         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
914
915         if (nr_pages == LONG_MAX)
916                 return LONG_MAX;
917
918         /*
919          * This may be called on clean wb's and proportional distribution
920          * may not make sense, just use the original @nr_pages in those
921          * cases.  In general, we wanna err on the side of writing more.
922          */
923         if (!tot_bw || this_bw >= tot_bw)
924                 return nr_pages;
925         else
926                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
927 }
928
929 /**
930  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931  * @bdi: target backing_dev_info
932  * @base_work: wb_writeback_work to issue
933  * @skip_if_busy: skip wb's which already have writeback in progress
934  *
935  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
937  * distributed to the busy wbs according to each wb's proportion in the
938  * total active write bandwidth of @bdi.
939  */
940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941                                   struct wb_writeback_work *base_work,
942                                   bool skip_if_busy)
943 {
944         struct bdi_writeback *last_wb = NULL;
945         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946                                               struct bdi_writeback, bdi_node);
947
948         might_sleep();
949 restart:
950         rcu_read_lock();
951         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953                 struct wb_writeback_work fallback_work;
954                 struct wb_writeback_work *work;
955                 long nr_pages;
956
957                 if (last_wb) {
958                         wb_put(last_wb);
959                         last_wb = NULL;
960                 }
961
962                 /* SYNC_ALL writes out I_DIRTY_TIME too */
963                 if (!wb_has_dirty_io(wb) &&
964                     (base_work->sync_mode == WB_SYNC_NONE ||
965                      list_empty(&wb->b_dirty_time)))
966                         continue;
967                 if (skip_if_busy && writeback_in_progress(wb))
968                         continue;
969
970                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
971
972                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
973                 if (work) {
974                         *work = *base_work;
975                         work->nr_pages = nr_pages;
976                         work->auto_free = 1;
977                         wb_queue_work(wb, work);
978                         continue;
979                 }
980
981                 /* alloc failed, execute synchronously using on-stack fallback */
982                 work = &fallback_work;
983                 *work = *base_work;
984                 work->nr_pages = nr_pages;
985                 work->auto_free = 0;
986                 work->done = &fallback_work_done;
987
988                 wb_queue_work(wb, work);
989
990                 /*
991                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
992                  * continuing iteration from @wb after dropping and
993                  * regrabbing rcu read lock.
994                  */
995                 wb_get(wb);
996                 last_wb = wb;
997
998                 rcu_read_unlock();
999                 wb_wait_for_completion(&fallback_work_done);
1000                 goto restart;
1001         }
1002         rcu_read_unlock();
1003
1004         if (last_wb)
1005                 wb_put(last_wb);
1006 }
1007
1008 /**
1009  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1010  * @bdi_id: target bdi id
1011  * @memcg_id: target memcg css id
1012  * @reason: reason why some writeback work initiated
1013  * @done: target wb_completion
1014  *
1015  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1016  * with the specified parameters.
1017  */
1018 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1019                            enum wb_reason reason, struct wb_completion *done)
1020 {
1021         struct backing_dev_info *bdi;
1022         struct cgroup_subsys_state *memcg_css;
1023         struct bdi_writeback *wb;
1024         struct wb_writeback_work *work;
1025         unsigned long dirty;
1026         int ret;
1027
1028         /* lookup bdi and memcg */
1029         bdi = bdi_get_by_id(bdi_id);
1030         if (!bdi)
1031                 return -ENOENT;
1032
1033         rcu_read_lock();
1034         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1035         if (memcg_css && !css_tryget(memcg_css))
1036                 memcg_css = NULL;
1037         rcu_read_unlock();
1038         if (!memcg_css) {
1039                 ret = -ENOENT;
1040                 goto out_bdi_put;
1041         }
1042
1043         /*
1044          * And find the associated wb.  If the wb isn't there already
1045          * there's nothing to flush, don't create one.
1046          */
1047         wb = wb_get_lookup(bdi, memcg_css);
1048         if (!wb) {
1049                 ret = -ENOENT;
1050                 goto out_css_put;
1051         }
1052
1053         /*
1054          * The caller is attempting to write out most of
1055          * the currently dirty pages.  Let's take the current dirty page
1056          * count and inflate it by 25% which should be large enough to
1057          * flush out most dirty pages while avoiding getting livelocked by
1058          * concurrent dirtiers.
1059          *
1060          * BTW the memcg stats are flushed periodically and this is best-effort
1061          * estimation, so some potential error is ok.
1062          */
1063         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1064         dirty = dirty * 10 / 8;
1065
1066         /* issue the writeback work */
1067         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1068         if (work) {
1069                 work->nr_pages = dirty;
1070                 work->sync_mode = WB_SYNC_NONE;
1071                 work->range_cyclic = 1;
1072                 work->reason = reason;
1073                 work->done = done;
1074                 work->auto_free = 1;
1075                 wb_queue_work(wb, work);
1076                 ret = 0;
1077         } else {
1078                 ret = -ENOMEM;
1079         }
1080
1081         wb_put(wb);
1082 out_css_put:
1083         css_put(memcg_css);
1084 out_bdi_put:
1085         bdi_put(bdi);
1086         return ret;
1087 }
1088
1089 /**
1090  * cgroup_writeback_umount - flush inode wb switches for umount
1091  *
1092  * This function is called when a super_block is about to be destroyed and
1093  * flushes in-flight inode wb switches.  An inode wb switch goes through
1094  * RCU and then workqueue, so the two need to be flushed in order to ensure
1095  * that all previously scheduled switches are finished.  As wb switches are
1096  * rare occurrences and synchronize_rcu() can take a while, perform
1097  * flushing iff wb switches are in flight.
1098  */
1099 void cgroup_writeback_umount(void)
1100 {
1101         /*
1102          * SB_ACTIVE should be reliably cleared before checking
1103          * isw_nr_in_flight, see generic_shutdown_super().
1104          */
1105         smp_mb();
1106
1107         if (atomic_read(&isw_nr_in_flight)) {
1108                 /*
1109                  * Use rcu_barrier() to wait for all pending callbacks to
1110                  * ensure that all in-flight wb switches are in the workqueue.
1111                  */
1112                 rcu_barrier();
1113                 flush_workqueue(isw_wq);
1114         }
1115 }
1116
1117 static int __init cgroup_writeback_init(void)
1118 {
1119         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1120         if (!isw_wq)
1121                 return -ENOMEM;
1122         return 0;
1123 }
1124 fs_initcall(cgroup_writeback_init);
1125
1126 #else   /* CONFIG_CGROUP_WRITEBACK */
1127
1128 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1129 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1130
1131 static void inode_cgwb_move_to_attached(struct inode *inode,
1132                                         struct bdi_writeback *wb)
1133 {
1134         assert_spin_locked(&wb->list_lock);
1135         assert_spin_locked(&inode->i_lock);
1136         WARN_ON_ONCE(inode->i_state & I_FREEING);
1137
1138         inode->i_state &= ~I_SYNC_QUEUED;
1139         list_del_init(&inode->i_io_list);
1140         wb_io_lists_depopulated(wb);
1141 }
1142
1143 static struct bdi_writeback *
1144 locked_inode_to_wb_and_lock_list(struct inode *inode)
1145         __releases(&inode->i_lock)
1146         __acquires(&wb->list_lock)
1147 {
1148         struct bdi_writeback *wb = inode_to_wb(inode);
1149
1150         spin_unlock(&inode->i_lock);
1151         spin_lock(&wb->list_lock);
1152         return wb;
1153 }
1154
1155 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1156         __acquires(&wb->list_lock)
1157 {
1158         struct bdi_writeback *wb = inode_to_wb(inode);
1159
1160         spin_lock(&wb->list_lock);
1161         return wb;
1162 }
1163
1164 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1165 {
1166         return nr_pages;
1167 }
1168
1169 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1170                                   struct wb_writeback_work *base_work,
1171                                   bool skip_if_busy)
1172 {
1173         might_sleep();
1174
1175         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1176                 base_work->auto_free = 0;
1177                 wb_queue_work(&bdi->wb, base_work);
1178         }
1179 }
1180
1181 #endif  /* CONFIG_CGROUP_WRITEBACK */
1182
1183 /*
1184  * Add in the number of potentially dirty inodes, because each inode
1185  * write can dirty pagecache in the underlying blockdev.
1186  */
1187 static unsigned long get_nr_dirty_pages(void)
1188 {
1189         return global_node_page_state(NR_FILE_DIRTY) +
1190                 get_nr_dirty_inodes();
1191 }
1192
1193 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1194 {
1195         if (!wb_has_dirty_io(wb))
1196                 return;
1197
1198         /*
1199          * All callers of this function want to start writeback of all
1200          * dirty pages. Places like vmscan can call this at a very
1201          * high frequency, causing pointless allocations of tons of
1202          * work items and keeping the flusher threads busy retrieving
1203          * that work. Ensure that we only allow one of them pending and
1204          * inflight at the time.
1205          */
1206         if (test_bit(WB_start_all, &wb->state) ||
1207             test_and_set_bit(WB_start_all, &wb->state))
1208                 return;
1209
1210         wb->start_all_reason = reason;
1211         wb_wakeup(wb);
1212 }
1213
1214 /**
1215  * wb_start_background_writeback - start background writeback
1216  * @wb: bdi_writback to write from
1217  *
1218  * Description:
1219  *   This makes sure WB_SYNC_NONE background writeback happens. When
1220  *   this function returns, it is only guaranteed that for given wb
1221  *   some IO is happening if we are over background dirty threshold.
1222  *   Caller need not hold sb s_umount semaphore.
1223  */
1224 void wb_start_background_writeback(struct bdi_writeback *wb)
1225 {
1226         /*
1227          * We just wake up the flusher thread. It will perform background
1228          * writeback as soon as there is no other work to do.
1229          */
1230         trace_writeback_wake_background(wb);
1231         wb_wakeup(wb);
1232 }
1233
1234 /*
1235  * Remove the inode from the writeback list it is on.
1236  */
1237 void inode_io_list_del(struct inode *inode)
1238 {
1239         struct bdi_writeback *wb;
1240
1241         wb = inode_to_wb_and_lock_list(inode);
1242         spin_lock(&inode->i_lock);
1243
1244         inode->i_state &= ~I_SYNC_QUEUED;
1245         list_del_init(&inode->i_io_list);
1246         wb_io_lists_depopulated(wb);
1247
1248         spin_unlock(&inode->i_lock);
1249         spin_unlock(&wb->list_lock);
1250 }
1251 EXPORT_SYMBOL(inode_io_list_del);
1252
1253 /*
1254  * mark an inode as under writeback on the sb
1255  */
1256 void sb_mark_inode_writeback(struct inode *inode)
1257 {
1258         struct super_block *sb = inode->i_sb;
1259         unsigned long flags;
1260
1261         if (list_empty(&inode->i_wb_list)) {
1262                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1263                 if (list_empty(&inode->i_wb_list)) {
1264                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1265                         trace_sb_mark_inode_writeback(inode);
1266                 }
1267                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1268         }
1269 }
1270
1271 /*
1272  * clear an inode as under writeback on the sb
1273  */
1274 void sb_clear_inode_writeback(struct inode *inode)
1275 {
1276         struct super_block *sb = inode->i_sb;
1277         unsigned long flags;
1278
1279         if (!list_empty(&inode->i_wb_list)) {
1280                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1281                 if (!list_empty(&inode->i_wb_list)) {
1282                         list_del_init(&inode->i_wb_list);
1283                         trace_sb_clear_inode_writeback(inode);
1284                 }
1285                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1286         }
1287 }
1288
1289 /*
1290  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1291  * furthest end of its superblock's dirty-inode list.
1292  *
1293  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1294  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1295  * the case then the inode must have been redirtied while it was being written
1296  * out and we don't reset its dirtied_when.
1297  */
1298 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1299 {
1300         assert_spin_locked(&inode->i_lock);
1301
1302         inode->i_state &= ~I_SYNC_QUEUED;
1303         /*
1304          * When the inode is being freed just don't bother with dirty list
1305          * tracking. Flush worker will ignore this inode anyway and it will
1306          * trigger assertions in inode_io_list_move_locked().
1307          */
1308         if (inode->i_state & I_FREEING) {
1309                 list_del_init(&inode->i_io_list);
1310                 wb_io_lists_depopulated(wb);
1311                 return;
1312         }
1313         if (!list_empty(&wb->b_dirty)) {
1314                 struct inode *tail;
1315
1316                 tail = wb_inode(wb->b_dirty.next);
1317                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1318                         inode->dirtied_when = jiffies;
1319         }
1320         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1321 }
1322
1323 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1324 {
1325         spin_lock(&inode->i_lock);
1326         redirty_tail_locked(inode, wb);
1327         spin_unlock(&inode->i_lock);
1328 }
1329
1330 /*
1331  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1332  */
1333 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1334 {
1335         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1336 }
1337
1338 static void inode_sync_complete(struct inode *inode)
1339 {
1340         inode->i_state &= ~I_SYNC;
1341         /* If inode is clean an unused, put it into LRU now... */
1342         inode_add_lru(inode);
1343         /* Waiters must see I_SYNC cleared before being woken up */
1344         smp_mb();
1345         wake_up_bit(&inode->i_state, __I_SYNC);
1346 }
1347
1348 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1349 {
1350         bool ret = time_after(inode->dirtied_when, t);
1351 #ifndef CONFIG_64BIT
1352         /*
1353          * For inodes being constantly redirtied, dirtied_when can get stuck.
1354          * It _appears_ to be in the future, but is actually in distant past.
1355          * This test is necessary to prevent such wrapped-around relative times
1356          * from permanently stopping the whole bdi writeback.
1357          */
1358         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1359 #endif
1360         return ret;
1361 }
1362
1363 /*
1364  * Move expired (dirtied before dirtied_before) dirty inodes from
1365  * @delaying_queue to @dispatch_queue.
1366  */
1367 static int move_expired_inodes(struct list_head *delaying_queue,
1368                                struct list_head *dispatch_queue,
1369                                unsigned long dirtied_before)
1370 {
1371         LIST_HEAD(tmp);
1372         struct list_head *pos, *node;
1373         struct super_block *sb = NULL;
1374         struct inode *inode;
1375         int do_sb_sort = 0;
1376         int moved = 0;
1377
1378         while (!list_empty(delaying_queue)) {
1379                 inode = wb_inode(delaying_queue->prev);
1380                 if (inode_dirtied_after(inode, dirtied_before))
1381                         break;
1382                 spin_lock(&inode->i_lock);
1383                 list_move(&inode->i_io_list, &tmp);
1384                 moved++;
1385                 inode->i_state |= I_SYNC_QUEUED;
1386                 spin_unlock(&inode->i_lock);
1387                 if (sb_is_blkdev_sb(inode->i_sb))
1388                         continue;
1389                 if (sb && sb != inode->i_sb)
1390                         do_sb_sort = 1;
1391                 sb = inode->i_sb;
1392         }
1393
1394         /* just one sb in list, splice to dispatch_queue and we're done */
1395         if (!do_sb_sort) {
1396                 list_splice(&tmp, dispatch_queue);
1397                 goto out;
1398         }
1399
1400         /*
1401          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1402          * we don't take inode->i_lock here because it is just a pointless overhead.
1403          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1404          * fully under our control.
1405          */
1406         while (!list_empty(&tmp)) {
1407                 sb = wb_inode(tmp.prev)->i_sb;
1408                 list_for_each_prev_safe(pos, node, &tmp) {
1409                         inode = wb_inode(pos);
1410                         if (inode->i_sb == sb)
1411                                 list_move(&inode->i_io_list, dispatch_queue);
1412                 }
1413         }
1414 out:
1415         return moved;
1416 }
1417
1418 /*
1419  * Queue all expired dirty inodes for io, eldest first.
1420  * Before
1421  *         newly dirtied     b_dirty    b_io    b_more_io
1422  *         =============>    gf         edc     BA
1423  * After
1424  *         newly dirtied     b_dirty    b_io    b_more_io
1425  *         =============>    g          fBAedc
1426  *                                           |
1427  *                                           +--> dequeue for IO
1428  */
1429 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1430                      unsigned long dirtied_before)
1431 {
1432         int moved;
1433         unsigned long time_expire_jif = dirtied_before;
1434
1435         assert_spin_locked(&wb->list_lock);
1436         list_splice_init(&wb->b_more_io, &wb->b_io);
1437         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1438         if (!work->for_sync)
1439                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1440         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1441                                      time_expire_jif);
1442         if (moved)
1443                 wb_io_lists_populated(wb);
1444         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1445 }
1446
1447 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1448 {
1449         int ret;
1450
1451         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1452                 trace_writeback_write_inode_start(inode, wbc);
1453                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1454                 trace_writeback_write_inode(inode, wbc);
1455                 return ret;
1456         }
1457         return 0;
1458 }
1459
1460 /*
1461  * Wait for writeback on an inode to complete. Called with i_lock held.
1462  * Caller must make sure inode cannot go away when we drop i_lock.
1463  */
1464 static void __inode_wait_for_writeback(struct inode *inode)
1465         __releases(inode->i_lock)
1466         __acquires(inode->i_lock)
1467 {
1468         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1469         wait_queue_head_t *wqh;
1470
1471         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1472         while (inode->i_state & I_SYNC) {
1473                 spin_unlock(&inode->i_lock);
1474                 __wait_on_bit(wqh, &wq, bit_wait,
1475                               TASK_UNINTERRUPTIBLE);
1476                 spin_lock(&inode->i_lock);
1477         }
1478 }
1479
1480 /*
1481  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1482  */
1483 void inode_wait_for_writeback(struct inode *inode)
1484 {
1485         spin_lock(&inode->i_lock);
1486         __inode_wait_for_writeback(inode);
1487         spin_unlock(&inode->i_lock);
1488 }
1489
1490 /*
1491  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1492  * held and drops it. It is aimed for callers not holding any inode reference
1493  * so once i_lock is dropped, inode can go away.
1494  */
1495 static void inode_sleep_on_writeback(struct inode *inode)
1496         __releases(inode->i_lock)
1497 {
1498         DEFINE_WAIT(wait);
1499         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1500         int sleep;
1501
1502         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1503         sleep = inode->i_state & I_SYNC;
1504         spin_unlock(&inode->i_lock);
1505         if (sleep)
1506                 schedule();
1507         finish_wait(wqh, &wait);
1508 }
1509
1510 /*
1511  * Find proper writeback list for the inode depending on its current state and
1512  * possibly also change of its state while we were doing writeback.  Here we
1513  * handle things such as livelock prevention or fairness of writeback among
1514  * inodes. This function can be called only by flusher thread - noone else
1515  * processes all inodes in writeback lists and requeueing inodes behind flusher
1516  * thread's back can have unexpected consequences.
1517  */
1518 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1519                           struct writeback_control *wbc)
1520 {
1521         if (inode->i_state & I_FREEING)
1522                 return;
1523
1524         /*
1525          * Sync livelock prevention. Each inode is tagged and synced in one
1526          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1527          * the dirty time to prevent enqueue and sync it again.
1528          */
1529         if ((inode->i_state & I_DIRTY) &&
1530             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1531                 inode->dirtied_when = jiffies;
1532
1533         if (wbc->pages_skipped) {
1534                 /*
1535                  * writeback is not making progress due to locked
1536                  * buffers. Skip this inode for now.
1537                  */
1538                 redirty_tail_locked(inode, wb);
1539                 return;
1540         }
1541
1542         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1543                 /*
1544                  * We didn't write back all the pages.  nfs_writepages()
1545                  * sometimes bales out without doing anything.
1546                  */
1547                 if (wbc->nr_to_write <= 0) {
1548                         /* Slice used up. Queue for next turn. */
1549                         requeue_io(inode, wb);
1550                 } else {
1551                         /*
1552                          * Writeback blocked by something other than
1553                          * congestion. Delay the inode for some time to
1554                          * avoid spinning on the CPU (100% iowait)
1555                          * retrying writeback of the dirty page/inode
1556                          * that cannot be performed immediately.
1557                          */
1558                         redirty_tail_locked(inode, wb);
1559                 }
1560         } else if (inode->i_state & I_DIRTY) {
1561                 /*
1562                  * Filesystems can dirty the inode during writeback operations,
1563                  * such as delayed allocation during submission or metadata
1564                  * updates after data IO completion.
1565                  */
1566                 redirty_tail_locked(inode, wb);
1567         } else if (inode->i_state & I_DIRTY_TIME) {
1568                 inode->dirtied_when = jiffies;
1569                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1570                 inode->i_state &= ~I_SYNC_QUEUED;
1571         } else {
1572                 /* The inode is clean. Remove from writeback lists. */
1573                 inode_cgwb_move_to_attached(inode, wb);
1574         }
1575 }
1576
1577 /*
1578  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1579  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1580  *
1581  * This doesn't remove the inode from the writeback list it is on, except
1582  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1583  * expiration.  The caller is otherwise responsible for writeback list handling.
1584  *
1585  * The caller is also responsible for setting the I_SYNC flag beforehand and
1586  * calling inode_sync_complete() to clear it afterwards.
1587  */
1588 static int
1589 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1590 {
1591         struct address_space *mapping = inode->i_mapping;
1592         long nr_to_write = wbc->nr_to_write;
1593         unsigned dirty;
1594         int ret;
1595
1596         WARN_ON(!(inode->i_state & I_SYNC));
1597
1598         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1599
1600         ret = do_writepages(mapping, wbc);
1601
1602         /*
1603          * Make sure to wait on the data before writing out the metadata.
1604          * This is important for filesystems that modify metadata on data
1605          * I/O completion. We don't do it for sync(2) writeback because it has a
1606          * separate, external IO completion path and ->sync_fs for guaranteeing
1607          * inode metadata is written back correctly.
1608          */
1609         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1610                 int err = filemap_fdatawait(mapping);
1611                 if (ret == 0)
1612                         ret = err;
1613         }
1614
1615         /*
1616          * If the inode has dirty timestamps and we need to write them, call
1617          * mark_inode_dirty_sync() to notify the filesystem about it and to
1618          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1619          */
1620         if ((inode->i_state & I_DIRTY_TIME) &&
1621             (wbc->sync_mode == WB_SYNC_ALL ||
1622              time_after(jiffies, inode->dirtied_time_when +
1623                         dirtytime_expire_interval * HZ))) {
1624                 trace_writeback_lazytime(inode);
1625                 mark_inode_dirty_sync(inode);
1626         }
1627
1628         /*
1629          * Get and clear the dirty flags from i_state.  This needs to be done
1630          * after calling writepages because some filesystems may redirty the
1631          * inode during writepages due to delalloc.  It also needs to be done
1632          * after handling timestamp expiration, as that may dirty the inode too.
1633          */
1634         spin_lock(&inode->i_lock);
1635         dirty = inode->i_state & I_DIRTY;
1636         inode->i_state &= ~dirty;
1637
1638         /*
1639          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1640          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1641          * either they see the I_DIRTY bits cleared or we see the dirtied
1642          * inode.
1643          *
1644          * I_DIRTY_PAGES is always cleared together above even if @mapping
1645          * still has dirty pages.  The flag is reinstated after smp_mb() if
1646          * necessary.  This guarantees that either __mark_inode_dirty()
1647          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1648          */
1649         smp_mb();
1650
1651         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1652                 inode->i_state |= I_DIRTY_PAGES;
1653         else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1654                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1655                         inode->i_state &= ~I_PINNING_FSCACHE_WB;
1656                         wbc->unpinned_fscache_wb = true;
1657                         dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1658                 }
1659         }
1660
1661         spin_unlock(&inode->i_lock);
1662
1663         /* Don't write the inode if only I_DIRTY_PAGES was set */
1664         if (dirty & ~I_DIRTY_PAGES) {
1665                 int err = write_inode(inode, wbc);
1666                 if (ret == 0)
1667                         ret = err;
1668         }
1669         wbc->unpinned_fscache_wb = false;
1670         trace_writeback_single_inode(inode, wbc, nr_to_write);
1671         return ret;
1672 }
1673
1674 /*
1675  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1676  * the regular batched writeback done by the flusher threads in
1677  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1678  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1679  *
1680  * To prevent the inode from going away, either the caller must have a reference
1681  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1682  */
1683 static int writeback_single_inode(struct inode *inode,
1684                                   struct writeback_control *wbc)
1685 {
1686         struct bdi_writeback *wb;
1687         int ret = 0;
1688
1689         spin_lock(&inode->i_lock);
1690         if (!atomic_read(&inode->i_count))
1691                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1692         else
1693                 WARN_ON(inode->i_state & I_WILL_FREE);
1694
1695         if (inode->i_state & I_SYNC) {
1696                 /*
1697                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1698                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1699                  * must wait for the existing writeback to complete, then do
1700                  * writeback again if there's anything left.
1701                  */
1702                 if (wbc->sync_mode != WB_SYNC_ALL)
1703                         goto out;
1704                 __inode_wait_for_writeback(inode);
1705         }
1706         WARN_ON(inode->i_state & I_SYNC);
1707         /*
1708          * If the inode is already fully clean, then there's nothing to do.
1709          *
1710          * For data-integrity syncs we also need to check whether any pages are
1711          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1712          * there are any such pages, we'll need to wait for them.
1713          */
1714         if (!(inode->i_state & I_DIRTY_ALL) &&
1715             (wbc->sync_mode != WB_SYNC_ALL ||
1716              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1717                 goto out;
1718         inode->i_state |= I_SYNC;
1719         wbc_attach_and_unlock_inode(wbc, inode);
1720
1721         ret = __writeback_single_inode(inode, wbc);
1722
1723         wbc_detach_inode(wbc);
1724
1725         wb = inode_to_wb_and_lock_list(inode);
1726         spin_lock(&inode->i_lock);
1727         /*
1728          * If the inode is freeing, its i_io_list shoudn't be updated
1729          * as it can be finally deleted at this moment.
1730          */
1731         if (!(inode->i_state & I_FREEING)) {
1732                 /*
1733                  * If the inode is now fully clean, then it can be safely
1734                  * removed from its writeback list (if any). Otherwise the
1735                  * flusher threads are responsible for the writeback lists.
1736                  */
1737                 if (!(inode->i_state & I_DIRTY_ALL))
1738                         inode_cgwb_move_to_attached(inode, wb);
1739                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1740                         if ((inode->i_state & I_DIRTY))
1741                                 redirty_tail_locked(inode, wb);
1742                         else if (inode->i_state & I_DIRTY_TIME) {
1743                                 inode->dirtied_when = jiffies;
1744                                 inode_io_list_move_locked(inode,
1745                                                           wb,
1746                                                           &wb->b_dirty_time);
1747                         }
1748                 }
1749         }
1750
1751         spin_unlock(&wb->list_lock);
1752         inode_sync_complete(inode);
1753 out:
1754         spin_unlock(&inode->i_lock);
1755         return ret;
1756 }
1757
1758 static long writeback_chunk_size(struct bdi_writeback *wb,
1759                                  struct wb_writeback_work *work)
1760 {
1761         long pages;
1762
1763         /*
1764          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1765          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1766          * here avoids calling into writeback_inodes_wb() more than once.
1767          *
1768          * The intended call sequence for WB_SYNC_ALL writeback is:
1769          *
1770          *      wb_writeback()
1771          *          writeback_sb_inodes()       <== called only once
1772          *              write_cache_pages()     <== called once for each inode
1773          *                   (quickly) tag currently dirty pages
1774          *                   (maybe slowly) sync all tagged pages
1775          */
1776         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1777                 pages = LONG_MAX;
1778         else {
1779                 pages = min(wb->avg_write_bandwidth / 2,
1780                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1781                 pages = min(pages, work->nr_pages);
1782                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1783                                    MIN_WRITEBACK_PAGES);
1784         }
1785
1786         return pages;
1787 }
1788
1789 /*
1790  * Write a portion of b_io inodes which belong to @sb.
1791  *
1792  * Return the number of pages and/or inodes written.
1793  *
1794  * NOTE! This is called with wb->list_lock held, and will
1795  * unlock and relock that for each inode it ends up doing
1796  * IO for.
1797  */
1798 static long writeback_sb_inodes(struct super_block *sb,
1799                                 struct bdi_writeback *wb,
1800                                 struct wb_writeback_work *work)
1801 {
1802         struct writeback_control wbc = {
1803                 .sync_mode              = work->sync_mode,
1804                 .tagged_writepages      = work->tagged_writepages,
1805                 .for_kupdate            = work->for_kupdate,
1806                 .for_background         = work->for_background,
1807                 .for_sync               = work->for_sync,
1808                 .range_cyclic           = work->range_cyclic,
1809                 .range_start            = 0,
1810                 .range_end              = LLONG_MAX,
1811         };
1812         unsigned long start_time = jiffies;
1813         long write_chunk;
1814         long total_wrote = 0;  /* count both pages and inodes */
1815
1816         while (!list_empty(&wb->b_io)) {
1817                 struct inode *inode = wb_inode(wb->b_io.prev);
1818                 struct bdi_writeback *tmp_wb;
1819                 long wrote;
1820
1821                 if (inode->i_sb != sb) {
1822                         if (work->sb) {
1823                                 /*
1824                                  * We only want to write back data for this
1825                                  * superblock, move all inodes not belonging
1826                                  * to it back onto the dirty list.
1827                                  */
1828                                 redirty_tail(inode, wb);
1829                                 continue;
1830                         }
1831
1832                         /*
1833                          * The inode belongs to a different superblock.
1834                          * Bounce back to the caller to unpin this and
1835                          * pin the next superblock.
1836                          */
1837                         break;
1838                 }
1839
1840                 /*
1841                  * Don't bother with new inodes or inodes being freed, first
1842                  * kind does not need periodic writeout yet, and for the latter
1843                  * kind writeout is handled by the freer.
1844                  */
1845                 spin_lock(&inode->i_lock);
1846                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1847                         redirty_tail_locked(inode, wb);
1848                         spin_unlock(&inode->i_lock);
1849                         continue;
1850                 }
1851                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1852                         /*
1853                          * If this inode is locked for writeback and we are not
1854                          * doing writeback-for-data-integrity, move it to
1855                          * b_more_io so that writeback can proceed with the
1856                          * other inodes on s_io.
1857                          *
1858                          * We'll have another go at writing back this inode
1859                          * when we completed a full scan of b_io.
1860                          */
1861                         requeue_io(inode, wb);
1862                         spin_unlock(&inode->i_lock);
1863                         trace_writeback_sb_inodes_requeue(inode);
1864                         continue;
1865                 }
1866                 spin_unlock(&wb->list_lock);
1867
1868                 /*
1869                  * We already requeued the inode if it had I_SYNC set and we
1870                  * are doing WB_SYNC_NONE writeback. So this catches only the
1871                  * WB_SYNC_ALL case.
1872                  */
1873                 if (inode->i_state & I_SYNC) {
1874                         /* Wait for I_SYNC. This function drops i_lock... */
1875                         inode_sleep_on_writeback(inode);
1876                         /* Inode may be gone, start again */
1877                         spin_lock(&wb->list_lock);
1878                         continue;
1879                 }
1880                 inode->i_state |= I_SYNC;
1881                 wbc_attach_and_unlock_inode(&wbc, inode);
1882
1883                 write_chunk = writeback_chunk_size(wb, work);
1884                 wbc.nr_to_write = write_chunk;
1885                 wbc.pages_skipped = 0;
1886
1887                 /*
1888                  * We use I_SYNC to pin the inode in memory. While it is set
1889                  * evict_inode() will wait so the inode cannot be freed.
1890                  */
1891                 __writeback_single_inode(inode, &wbc);
1892
1893                 wbc_detach_inode(&wbc);
1894                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1895                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1896                 wrote = wrote < 0 ? 0 : wrote;
1897                 total_wrote += wrote;
1898
1899                 if (need_resched()) {
1900                         /*
1901                          * We're trying to balance between building up a nice
1902                          * long list of IOs to improve our merge rate, and
1903                          * getting those IOs out quickly for anyone throttling
1904                          * in balance_dirty_pages().  cond_resched() doesn't
1905                          * unplug, so get our IOs out the door before we
1906                          * give up the CPU.
1907                          */
1908                         blk_flush_plug(current->plug, false);
1909                         cond_resched();
1910                 }
1911
1912                 /*
1913                  * Requeue @inode if still dirty.  Be careful as @inode may
1914                  * have been switched to another wb in the meantime.
1915                  */
1916                 tmp_wb = inode_to_wb_and_lock_list(inode);
1917                 spin_lock(&inode->i_lock);
1918                 if (!(inode->i_state & I_DIRTY_ALL))
1919                         total_wrote++;
1920                 requeue_inode(inode, tmp_wb, &wbc);
1921                 inode_sync_complete(inode);
1922                 spin_unlock(&inode->i_lock);
1923
1924                 if (unlikely(tmp_wb != wb)) {
1925                         spin_unlock(&tmp_wb->list_lock);
1926                         spin_lock(&wb->list_lock);
1927                 }
1928
1929                 /*
1930                  * bail out to wb_writeback() often enough to check
1931                  * background threshold and other termination conditions.
1932                  */
1933                 if (total_wrote) {
1934                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1935                                 break;
1936                         if (work->nr_pages <= 0)
1937                                 break;
1938                 }
1939         }
1940         return total_wrote;
1941 }
1942
1943 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1944                                   struct wb_writeback_work *work)
1945 {
1946         unsigned long start_time = jiffies;
1947         long wrote = 0;
1948
1949         while (!list_empty(&wb->b_io)) {
1950                 struct inode *inode = wb_inode(wb->b_io.prev);
1951                 struct super_block *sb = inode->i_sb;
1952
1953                 if (!trylock_super(sb)) {
1954                         /*
1955                          * trylock_super() may fail consistently due to
1956                          * s_umount being grabbed by someone else. Don't use
1957                          * requeue_io() to avoid busy retrying the inode/sb.
1958                          */
1959                         redirty_tail(inode, wb);
1960                         continue;
1961                 }
1962                 wrote += writeback_sb_inodes(sb, wb, work);
1963                 up_read(&sb->s_umount);
1964
1965                 /* refer to the same tests at the end of writeback_sb_inodes */
1966                 if (wrote) {
1967                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1968                                 break;
1969                         if (work->nr_pages <= 0)
1970                                 break;
1971                 }
1972         }
1973         /* Leave any unwritten inodes on b_io */
1974         return wrote;
1975 }
1976
1977 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1978                                 enum wb_reason reason)
1979 {
1980         struct wb_writeback_work work = {
1981                 .nr_pages       = nr_pages,
1982                 .sync_mode      = WB_SYNC_NONE,
1983                 .range_cyclic   = 1,
1984                 .reason         = reason,
1985         };
1986         struct blk_plug plug;
1987
1988         blk_start_plug(&plug);
1989         spin_lock(&wb->list_lock);
1990         if (list_empty(&wb->b_io))
1991                 queue_io(wb, &work, jiffies);
1992         __writeback_inodes_wb(wb, &work);
1993         spin_unlock(&wb->list_lock);
1994         blk_finish_plug(&plug);
1995
1996         return nr_pages - work.nr_pages;
1997 }
1998
1999 /*
2000  * Explicit flushing or periodic writeback of "old" data.
2001  *
2002  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2003  * dirtying-time in the inode's address_space.  So this periodic writeback code
2004  * just walks the superblock inode list, writing back any inodes which are
2005  * older than a specific point in time.
2006  *
2007  * Try to run once per dirty_writeback_interval.  But if a writeback event
2008  * takes longer than a dirty_writeback_interval interval, then leave a
2009  * one-second gap.
2010  *
2011  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2012  * all dirty pages if they are all attached to "old" mappings.
2013  */
2014 static long wb_writeback(struct bdi_writeback *wb,
2015                          struct wb_writeback_work *work)
2016 {
2017         long nr_pages = work->nr_pages;
2018         unsigned long dirtied_before = jiffies;
2019         struct inode *inode;
2020         long progress;
2021         struct blk_plug plug;
2022
2023         blk_start_plug(&plug);
2024         spin_lock(&wb->list_lock);
2025         for (;;) {
2026                 /*
2027                  * Stop writeback when nr_pages has been consumed
2028                  */
2029                 if (work->nr_pages <= 0)
2030                         break;
2031
2032                 /*
2033                  * Background writeout and kupdate-style writeback may
2034                  * run forever. Stop them if there is other work to do
2035                  * so that e.g. sync can proceed. They'll be restarted
2036                  * after the other works are all done.
2037                  */
2038                 if ((work->for_background || work->for_kupdate) &&
2039                     !list_empty(&wb->work_list))
2040                         break;
2041
2042                 /*
2043                  * For background writeout, stop when we are below the
2044                  * background dirty threshold
2045                  */
2046                 if (work->for_background && !wb_over_bg_thresh(wb))
2047                         break;
2048
2049                 /*
2050                  * Kupdate and background works are special and we want to
2051                  * include all inodes that need writing. Livelock avoidance is
2052                  * handled by these works yielding to any other work so we are
2053                  * safe.
2054                  */
2055                 if (work->for_kupdate) {
2056                         dirtied_before = jiffies -
2057                                 msecs_to_jiffies(dirty_expire_interval * 10);
2058                 } else if (work->for_background)
2059                         dirtied_before = jiffies;
2060
2061                 trace_writeback_start(wb, work);
2062                 if (list_empty(&wb->b_io))
2063                         queue_io(wb, work, dirtied_before);
2064                 if (work->sb)
2065                         progress = writeback_sb_inodes(work->sb, wb, work);
2066                 else
2067                         progress = __writeback_inodes_wb(wb, work);
2068                 trace_writeback_written(wb, work);
2069
2070                 /*
2071                  * Did we write something? Try for more
2072                  *
2073                  * Dirty inodes are moved to b_io for writeback in batches.
2074                  * The completion of the current batch does not necessarily
2075                  * mean the overall work is done. So we keep looping as long
2076                  * as made some progress on cleaning pages or inodes.
2077                  */
2078                 if (progress)
2079                         continue;
2080                 /*
2081                  * No more inodes for IO, bail
2082                  */
2083                 if (list_empty(&wb->b_more_io))
2084                         break;
2085                 /*
2086                  * Nothing written. Wait for some inode to
2087                  * become available for writeback. Otherwise
2088                  * we'll just busyloop.
2089                  */
2090                 trace_writeback_wait(wb, work);
2091                 inode = wb_inode(wb->b_more_io.prev);
2092                 spin_lock(&inode->i_lock);
2093                 spin_unlock(&wb->list_lock);
2094                 /* This function drops i_lock... */
2095                 inode_sleep_on_writeback(inode);
2096                 spin_lock(&wb->list_lock);
2097         }
2098         spin_unlock(&wb->list_lock);
2099         blk_finish_plug(&plug);
2100
2101         return nr_pages - work->nr_pages;
2102 }
2103
2104 /*
2105  * Return the next wb_writeback_work struct that hasn't been processed yet.
2106  */
2107 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2108 {
2109         struct wb_writeback_work *work = NULL;
2110
2111         spin_lock_irq(&wb->work_lock);
2112         if (!list_empty(&wb->work_list)) {
2113                 work = list_entry(wb->work_list.next,
2114                                   struct wb_writeback_work, list);
2115                 list_del_init(&work->list);
2116         }
2117         spin_unlock_irq(&wb->work_lock);
2118         return work;
2119 }
2120
2121 static long wb_check_background_flush(struct bdi_writeback *wb)
2122 {
2123         if (wb_over_bg_thresh(wb)) {
2124
2125                 struct wb_writeback_work work = {
2126                         .nr_pages       = LONG_MAX,
2127                         .sync_mode      = WB_SYNC_NONE,
2128                         .for_background = 1,
2129                         .range_cyclic   = 1,
2130                         .reason         = WB_REASON_BACKGROUND,
2131                 };
2132
2133                 return wb_writeback(wb, &work);
2134         }
2135
2136         return 0;
2137 }
2138
2139 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2140 {
2141         unsigned long expired;
2142         long nr_pages;
2143
2144         /*
2145          * When set to zero, disable periodic writeback
2146          */
2147         if (!dirty_writeback_interval)
2148                 return 0;
2149
2150         expired = wb->last_old_flush +
2151                         msecs_to_jiffies(dirty_writeback_interval * 10);
2152         if (time_before(jiffies, expired))
2153                 return 0;
2154
2155         wb->last_old_flush = jiffies;
2156         nr_pages = get_nr_dirty_pages();
2157
2158         if (nr_pages) {
2159                 struct wb_writeback_work work = {
2160                         .nr_pages       = nr_pages,
2161                         .sync_mode      = WB_SYNC_NONE,
2162                         .for_kupdate    = 1,
2163                         .range_cyclic   = 1,
2164                         .reason         = WB_REASON_PERIODIC,
2165                 };
2166
2167                 return wb_writeback(wb, &work);
2168         }
2169
2170         return 0;
2171 }
2172
2173 static long wb_check_start_all(struct bdi_writeback *wb)
2174 {
2175         long nr_pages;
2176
2177         if (!test_bit(WB_start_all, &wb->state))
2178                 return 0;
2179
2180         nr_pages = get_nr_dirty_pages();
2181         if (nr_pages) {
2182                 struct wb_writeback_work work = {
2183                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2184                         .sync_mode      = WB_SYNC_NONE,
2185                         .range_cyclic   = 1,
2186                         .reason         = wb->start_all_reason,
2187                 };
2188
2189                 nr_pages = wb_writeback(wb, &work);
2190         }
2191
2192         clear_bit(WB_start_all, &wb->state);
2193         return nr_pages;
2194 }
2195
2196
2197 /*
2198  * Retrieve work items and do the writeback they describe
2199  */
2200 static long wb_do_writeback(struct bdi_writeback *wb)
2201 {
2202         struct wb_writeback_work *work;
2203         long wrote = 0;
2204
2205         set_bit(WB_writeback_running, &wb->state);
2206         while ((work = get_next_work_item(wb)) != NULL) {
2207                 trace_writeback_exec(wb, work);
2208                 wrote += wb_writeback(wb, work);
2209                 finish_writeback_work(wb, work);
2210         }
2211
2212         /*
2213          * Check for a flush-everything request
2214          */
2215         wrote += wb_check_start_all(wb);
2216
2217         /*
2218          * Check for periodic writeback, kupdated() style
2219          */
2220         wrote += wb_check_old_data_flush(wb);
2221         wrote += wb_check_background_flush(wb);
2222         clear_bit(WB_writeback_running, &wb->state);
2223
2224         return wrote;
2225 }
2226
2227 /*
2228  * Handle writeback of dirty data for the device backed by this bdi. Also
2229  * reschedules periodically and does kupdated style flushing.
2230  */
2231 void wb_workfn(struct work_struct *work)
2232 {
2233         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2234                                                 struct bdi_writeback, dwork);
2235         long pages_written;
2236
2237         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2238
2239         if (likely(!current_is_workqueue_rescuer() ||
2240                    !test_bit(WB_registered, &wb->state))) {
2241                 /*
2242                  * The normal path.  Keep writing back @wb until its
2243                  * work_list is empty.  Note that this path is also taken
2244                  * if @wb is shutting down even when we're running off the
2245                  * rescuer as work_list needs to be drained.
2246                  */
2247                 do {
2248                         pages_written = wb_do_writeback(wb);
2249                         trace_writeback_pages_written(pages_written);
2250                 } while (!list_empty(&wb->work_list));
2251         } else {
2252                 /*
2253                  * bdi_wq can't get enough workers and we're running off
2254                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2255                  * enough for efficient IO.
2256                  */
2257                 pages_written = writeback_inodes_wb(wb, 1024,
2258                                                     WB_REASON_FORKER_THREAD);
2259                 trace_writeback_pages_written(pages_written);
2260         }
2261
2262         if (!list_empty(&wb->work_list))
2263                 wb_wakeup(wb);
2264         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2265                 wb_wakeup_delayed(wb);
2266 }
2267
2268 /*
2269  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2270  * write back the whole world.
2271  */
2272 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2273                                          enum wb_reason reason)
2274 {
2275         struct bdi_writeback *wb;
2276
2277         if (!bdi_has_dirty_io(bdi))
2278                 return;
2279
2280         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2281                 wb_start_writeback(wb, reason);
2282 }
2283
2284 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2285                                 enum wb_reason reason)
2286 {
2287         rcu_read_lock();
2288         __wakeup_flusher_threads_bdi(bdi, reason);
2289         rcu_read_unlock();
2290 }
2291
2292 /*
2293  * Wakeup the flusher threads to start writeback of all currently dirty pages
2294  */
2295 void wakeup_flusher_threads(enum wb_reason reason)
2296 {
2297         struct backing_dev_info *bdi;
2298
2299         /*
2300          * If we are expecting writeback progress we must submit plugged IO.
2301          */
2302         blk_flush_plug(current->plug, true);
2303
2304         rcu_read_lock();
2305         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2306                 __wakeup_flusher_threads_bdi(bdi, reason);
2307         rcu_read_unlock();
2308 }
2309
2310 /*
2311  * Wake up bdi's periodically to make sure dirtytime inodes gets
2312  * written back periodically.  We deliberately do *not* check the
2313  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2314  * kernel to be constantly waking up once there are any dirtytime
2315  * inodes on the system.  So instead we define a separate delayed work
2316  * function which gets called much more rarely.  (By default, only
2317  * once every 12 hours.)
2318  *
2319  * If there is any other write activity going on in the file system,
2320  * this function won't be necessary.  But if the only thing that has
2321  * happened on the file system is a dirtytime inode caused by an atime
2322  * update, we need this infrastructure below to make sure that inode
2323  * eventually gets pushed out to disk.
2324  */
2325 static void wakeup_dirtytime_writeback(struct work_struct *w);
2326 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2327
2328 static void wakeup_dirtytime_writeback(struct work_struct *w)
2329 {
2330         struct backing_dev_info *bdi;
2331
2332         rcu_read_lock();
2333         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2334                 struct bdi_writeback *wb;
2335
2336                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2337                         if (!list_empty(&wb->b_dirty_time))
2338                                 wb_wakeup(wb);
2339         }
2340         rcu_read_unlock();
2341         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2342 }
2343
2344 static int __init start_dirtytime_writeback(void)
2345 {
2346         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2347         return 0;
2348 }
2349 __initcall(start_dirtytime_writeback);
2350
2351 int dirtytime_interval_handler(struct ctl_table *table, int write,
2352                                void *buffer, size_t *lenp, loff_t *ppos)
2353 {
2354         int ret;
2355
2356         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2357         if (ret == 0 && write)
2358                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2359         return ret;
2360 }
2361
2362 /**
2363  * __mark_inode_dirty - internal function to mark an inode dirty
2364  *
2365  * @inode: inode to mark
2366  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2367  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2368  *         with I_DIRTY_PAGES.
2369  *
2370  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2371  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2372  *
2373  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2374  * instead of calling this directly.
2375  *
2376  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2377  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2378  * even if they are later hashed, as they will have been marked dirty already.
2379  *
2380  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2381  *
2382  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2383  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2384  * the kernel-internal blockdev inode represents the dirtying time of the
2385  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2386  * page->mapping->host, so the page-dirtying time is recorded in the internal
2387  * blockdev inode.
2388  */
2389 void __mark_inode_dirty(struct inode *inode, int flags)
2390 {
2391         struct super_block *sb = inode->i_sb;
2392         int dirtytime = 0;
2393         struct bdi_writeback *wb = NULL;
2394
2395         trace_writeback_mark_inode_dirty(inode, flags);
2396
2397         if (flags & I_DIRTY_INODE) {
2398                 /*
2399                  * Inode timestamp update will piggback on this dirtying.
2400                  * We tell ->dirty_inode callback that timestamps need to
2401                  * be updated by setting I_DIRTY_TIME in flags.
2402                  */
2403                 if (inode->i_state & I_DIRTY_TIME) {
2404                         spin_lock(&inode->i_lock);
2405                         if (inode->i_state & I_DIRTY_TIME) {
2406                                 inode->i_state &= ~I_DIRTY_TIME;
2407                                 flags |= I_DIRTY_TIME;
2408                         }
2409                         spin_unlock(&inode->i_lock);
2410                 }
2411
2412                 /*
2413                  * Notify the filesystem about the inode being dirtied, so that
2414                  * (if needed) it can update on-disk fields and journal the
2415                  * inode.  This is only needed when the inode itself is being
2416                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2417                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2418                  */
2419                 trace_writeback_dirty_inode_start(inode, flags);
2420                 if (sb->s_op->dirty_inode)
2421                         sb->s_op->dirty_inode(inode,
2422                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2423                 trace_writeback_dirty_inode(inode, flags);
2424
2425                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2426                 flags &= ~I_DIRTY_TIME;
2427         } else {
2428                 /*
2429                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2430                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2431                  * in one call to __mark_inode_dirty().)
2432                  */
2433                 dirtytime = flags & I_DIRTY_TIME;
2434                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2435         }
2436
2437         /*
2438          * Paired with smp_mb() in __writeback_single_inode() for the
2439          * following lockless i_state test.  See there for details.
2440          */
2441         smp_mb();
2442
2443         if ((inode->i_state & flags) == flags)
2444                 return;
2445
2446         spin_lock(&inode->i_lock);
2447         if ((inode->i_state & flags) != flags) {
2448                 const int was_dirty = inode->i_state & I_DIRTY;
2449
2450                 inode_attach_wb(inode, NULL);
2451
2452                 inode->i_state |= flags;
2453
2454                 /*
2455                  * Grab inode's wb early because it requires dropping i_lock and we
2456                  * need to make sure following checks happen atomically with dirty
2457                  * list handling so that we don't move inodes under flush worker's
2458                  * hands.
2459                  */
2460                 if (!was_dirty) {
2461                         wb = locked_inode_to_wb_and_lock_list(inode);
2462                         spin_lock(&inode->i_lock);
2463                 }
2464
2465                 /*
2466                  * If the inode is queued for writeback by flush worker, just
2467                  * update its dirty state. Once the flush worker is done with
2468                  * the inode it will place it on the appropriate superblock
2469                  * list, based upon its state.
2470                  */
2471                 if (inode->i_state & I_SYNC_QUEUED)
2472                         goto out_unlock;
2473
2474                 /*
2475                  * Only add valid (hashed) inodes to the superblock's
2476                  * dirty list.  Add blockdev inodes as well.
2477                  */
2478                 if (!S_ISBLK(inode->i_mode)) {
2479                         if (inode_unhashed(inode))
2480                                 goto out_unlock;
2481                 }
2482                 if (inode->i_state & I_FREEING)
2483                         goto out_unlock;
2484
2485                 /*
2486                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2487                  * reposition it (that would break b_dirty time-ordering).
2488                  */
2489                 if (!was_dirty) {
2490                         struct list_head *dirty_list;
2491                         bool wakeup_bdi = false;
2492
2493                         inode->dirtied_when = jiffies;
2494                         if (dirtytime)
2495                                 inode->dirtied_time_when = jiffies;
2496
2497                         if (inode->i_state & I_DIRTY)
2498                                 dirty_list = &wb->b_dirty;
2499                         else
2500                                 dirty_list = &wb->b_dirty_time;
2501
2502                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2503                                                                dirty_list);
2504
2505                         spin_unlock(&wb->list_lock);
2506                         spin_unlock(&inode->i_lock);
2507                         trace_writeback_dirty_inode_enqueue(inode);
2508
2509                         /*
2510                          * If this is the first dirty inode for this bdi,
2511                          * we have to wake-up the corresponding bdi thread
2512                          * to make sure background write-back happens
2513                          * later.
2514                          */
2515                         if (wakeup_bdi &&
2516                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2517                                 wb_wakeup_delayed(wb);
2518                         return;
2519                 }
2520         }
2521 out_unlock:
2522         if (wb)
2523                 spin_unlock(&wb->list_lock);
2524         spin_unlock(&inode->i_lock);
2525 }
2526 EXPORT_SYMBOL(__mark_inode_dirty);
2527
2528 /*
2529  * The @s_sync_lock is used to serialise concurrent sync operations
2530  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2531  * Concurrent callers will block on the s_sync_lock rather than doing contending
2532  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2533  * has been issued up to the time this function is enter is guaranteed to be
2534  * completed by the time we have gained the lock and waited for all IO that is
2535  * in progress regardless of the order callers are granted the lock.
2536  */
2537 static void wait_sb_inodes(struct super_block *sb)
2538 {
2539         LIST_HEAD(sync_list);
2540
2541         /*
2542          * We need to be protected against the filesystem going from
2543          * r/o to r/w or vice versa.
2544          */
2545         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2546
2547         mutex_lock(&sb->s_sync_lock);
2548
2549         /*
2550          * Splice the writeback list onto a temporary list to avoid waiting on
2551          * inodes that have started writeback after this point.
2552          *
2553          * Use rcu_read_lock() to keep the inodes around until we have a
2554          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2555          * the local list because inodes can be dropped from either by writeback
2556          * completion.
2557          */
2558         rcu_read_lock();
2559         spin_lock_irq(&sb->s_inode_wblist_lock);
2560         list_splice_init(&sb->s_inodes_wb, &sync_list);
2561
2562         /*
2563          * Data integrity sync. Must wait for all pages under writeback, because
2564          * there may have been pages dirtied before our sync call, but which had
2565          * writeout started before we write it out.  In which case, the inode
2566          * may not be on the dirty list, but we still have to wait for that
2567          * writeout.
2568          */
2569         while (!list_empty(&sync_list)) {
2570                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2571                                                        i_wb_list);
2572                 struct address_space *mapping = inode->i_mapping;
2573
2574                 /*
2575                  * Move each inode back to the wb list before we drop the lock
2576                  * to preserve consistency between i_wb_list and the mapping
2577                  * writeback tag. Writeback completion is responsible to remove
2578                  * the inode from either list once the writeback tag is cleared.
2579                  */
2580                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2581
2582                 /*
2583                  * The mapping can appear untagged while still on-list since we
2584                  * do not have the mapping lock. Skip it here, wb completion
2585                  * will remove it.
2586                  */
2587                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2588                         continue;
2589
2590                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2591
2592                 spin_lock(&inode->i_lock);
2593                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2594                         spin_unlock(&inode->i_lock);
2595
2596                         spin_lock_irq(&sb->s_inode_wblist_lock);
2597                         continue;
2598                 }
2599                 __iget(inode);
2600                 spin_unlock(&inode->i_lock);
2601                 rcu_read_unlock();
2602
2603                 /*
2604                  * We keep the error status of individual mapping so that
2605                  * applications can catch the writeback error using fsync(2).
2606                  * See filemap_fdatawait_keep_errors() for details.
2607                  */
2608                 filemap_fdatawait_keep_errors(mapping);
2609
2610                 cond_resched();
2611
2612                 iput(inode);
2613
2614                 rcu_read_lock();
2615                 spin_lock_irq(&sb->s_inode_wblist_lock);
2616         }
2617         spin_unlock_irq(&sb->s_inode_wblist_lock);
2618         rcu_read_unlock();
2619         mutex_unlock(&sb->s_sync_lock);
2620 }
2621
2622 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2623                                      enum wb_reason reason, bool skip_if_busy)
2624 {
2625         struct backing_dev_info *bdi = sb->s_bdi;
2626         DEFINE_WB_COMPLETION(done, bdi);
2627         struct wb_writeback_work work = {
2628                 .sb                     = sb,
2629                 .sync_mode              = WB_SYNC_NONE,
2630                 .tagged_writepages      = 1,
2631                 .done                   = &done,
2632                 .nr_pages               = nr,
2633                 .reason                 = reason,
2634         };
2635
2636         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2637                 return;
2638         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2639
2640         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2641         wb_wait_for_completion(&done);
2642 }
2643
2644 /**
2645  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2646  * @sb: the superblock
2647  * @nr: the number of pages to write
2648  * @reason: reason why some writeback work initiated
2649  *
2650  * Start writeback on some inodes on this super_block. No guarantees are made
2651  * on how many (if any) will be written, and this function does not wait
2652  * for IO completion of submitted IO.
2653  */
2654 void writeback_inodes_sb_nr(struct super_block *sb,
2655                             unsigned long nr,
2656                             enum wb_reason reason)
2657 {
2658         __writeback_inodes_sb_nr(sb, nr, reason, false);
2659 }
2660 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2661
2662 /**
2663  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2664  * @sb: the superblock
2665  * @reason: reason why some writeback work was initiated
2666  *
2667  * Start writeback on some inodes on this super_block. No guarantees are made
2668  * on how many (if any) will be written, and this function does not wait
2669  * for IO completion of submitted IO.
2670  */
2671 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2672 {
2673         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2674 }
2675 EXPORT_SYMBOL(writeback_inodes_sb);
2676
2677 /**
2678  * try_to_writeback_inodes_sb - try to start writeback if none underway
2679  * @sb: the superblock
2680  * @reason: reason why some writeback work was initiated
2681  *
2682  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2683  */
2684 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2685 {
2686         if (!down_read_trylock(&sb->s_umount))
2687                 return;
2688
2689         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2690         up_read(&sb->s_umount);
2691 }
2692 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2693
2694 /**
2695  * sync_inodes_sb       -       sync sb inode pages
2696  * @sb: the superblock
2697  *
2698  * This function writes and waits on any dirty inode belonging to this
2699  * super_block.
2700  */
2701 void sync_inodes_sb(struct super_block *sb)
2702 {
2703         struct backing_dev_info *bdi = sb->s_bdi;
2704         DEFINE_WB_COMPLETION(done, bdi);
2705         struct wb_writeback_work work = {
2706                 .sb             = sb,
2707                 .sync_mode      = WB_SYNC_ALL,
2708                 .nr_pages       = LONG_MAX,
2709                 .range_cyclic   = 0,
2710                 .done           = &done,
2711                 .reason         = WB_REASON_SYNC,
2712                 .for_sync       = 1,
2713         };
2714
2715         /*
2716          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2717          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2718          * bdi_has_dirty() need to be written out too.
2719          */
2720         if (bdi == &noop_backing_dev_info)
2721                 return;
2722         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2723
2724         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2725         bdi_down_write_wb_switch_rwsem(bdi);
2726         bdi_split_work_to_wbs(bdi, &work, false);
2727         wb_wait_for_completion(&done);
2728         bdi_up_write_wb_switch_rwsem(bdi);
2729
2730         wait_sb_inodes(sb);
2731 }
2732 EXPORT_SYMBOL(sync_inodes_sb);
2733
2734 /**
2735  * write_inode_now      -       write an inode to disk
2736  * @inode: inode to write to disk
2737  * @sync: whether the write should be synchronous or not
2738  *
2739  * This function commits an inode to disk immediately if it is dirty. This is
2740  * primarily needed by knfsd.
2741  *
2742  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2743  */
2744 int write_inode_now(struct inode *inode, int sync)
2745 {
2746         struct writeback_control wbc = {
2747                 .nr_to_write = LONG_MAX,
2748                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2749                 .range_start = 0,
2750                 .range_end = LLONG_MAX,
2751         };
2752
2753         if (!mapping_can_writeback(inode->i_mapping))
2754                 wbc.nr_to_write = 0;
2755
2756         might_sleep();
2757         return writeback_single_inode(inode, &wbc);
2758 }
2759 EXPORT_SYMBOL(write_inode_now);
2760
2761 /**
2762  * sync_inode_metadata - write an inode to disk
2763  * @inode: the inode to sync
2764  * @wait: wait for I/O to complete.
2765  *
2766  * Write an inode to disk and adjust its dirty state after completion.
2767  *
2768  * Note: only writes the actual inode, no associated data or other metadata.
2769  */
2770 int sync_inode_metadata(struct inode *inode, int wait)
2771 {
2772         struct writeback_control wbc = {
2773                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2774                 .nr_to_write = 0, /* metadata-only */
2775         };
2776
2777         return writeback_single_inode(inode, &wbc);
2778 }
2779 EXPORT_SYMBOL(sync_inode_metadata);