f2fs: avoid naming confusion of sysfs init
[linux-block.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 static struct kmem_cache *f2fs_inode_cachep;
40
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42
43 char *fault_name[FAULT_MAX] = {
44         [FAULT_KMALLOC]         = "kmalloc",
45         [FAULT_PAGE_ALLOC]      = "page alloc",
46         [FAULT_ALLOC_NID]       = "alloc nid",
47         [FAULT_ORPHAN]          = "orphan",
48         [FAULT_BLOCK]           = "no more block",
49         [FAULT_DIR_DEPTH]       = "too big dir depth",
50         [FAULT_EVICT_INODE]     = "evict_inode fail",
51         [FAULT_TRUNCATE]        = "truncate fail",
52         [FAULT_IO]              = "IO error",
53         [FAULT_CHECKPOINT]      = "checkpoint error",
54 };
55
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57                                                 unsigned int rate)
58 {
59         struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61         if (rate) {
62                 atomic_set(&ffi->inject_ops, 0);
63                 ffi->inject_rate = rate;
64                 ffi->inject_type = (1 << FAULT_MAX) - 1;
65         } else {
66                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67         }
68 }
69 #endif
70
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73         .scan_objects = f2fs_shrink_scan,
74         .count_objects = f2fs_shrink_count,
75         .seeks = DEFAULT_SEEKS,
76 };
77
78 enum {
79         Opt_gc_background,
80         Opt_disable_roll_forward,
81         Opt_norecovery,
82         Opt_discard,
83         Opt_nodiscard,
84         Opt_noheap,
85         Opt_heap,
86         Opt_user_xattr,
87         Opt_nouser_xattr,
88         Opt_acl,
89         Opt_noacl,
90         Opt_active_logs,
91         Opt_disable_ext_identify,
92         Opt_inline_xattr,
93         Opt_noinline_xattr,
94         Opt_inline_data,
95         Opt_inline_dentry,
96         Opt_noinline_dentry,
97         Opt_flush_merge,
98         Opt_noflush_merge,
99         Opt_nobarrier,
100         Opt_fastboot,
101         Opt_extent_cache,
102         Opt_noextent_cache,
103         Opt_noinline_data,
104         Opt_data_flush,
105         Opt_mode,
106         Opt_io_size_bits,
107         Opt_fault_injection,
108         Opt_lazytime,
109         Opt_nolazytime,
110         Opt_usrquota,
111         Opt_grpquota,
112         Opt_prjquota,
113         Opt_err,
114 };
115
116 static match_table_t f2fs_tokens = {
117         {Opt_gc_background, "background_gc=%s"},
118         {Opt_disable_roll_forward, "disable_roll_forward"},
119         {Opt_norecovery, "norecovery"},
120         {Opt_discard, "discard"},
121         {Opt_nodiscard, "nodiscard"},
122         {Opt_noheap, "no_heap"},
123         {Opt_heap, "heap"},
124         {Opt_user_xattr, "user_xattr"},
125         {Opt_nouser_xattr, "nouser_xattr"},
126         {Opt_acl, "acl"},
127         {Opt_noacl, "noacl"},
128         {Opt_active_logs, "active_logs=%u"},
129         {Opt_disable_ext_identify, "disable_ext_identify"},
130         {Opt_inline_xattr, "inline_xattr"},
131         {Opt_noinline_xattr, "noinline_xattr"},
132         {Opt_inline_data, "inline_data"},
133         {Opt_inline_dentry, "inline_dentry"},
134         {Opt_noinline_dentry, "noinline_dentry"},
135         {Opt_flush_merge, "flush_merge"},
136         {Opt_noflush_merge, "noflush_merge"},
137         {Opt_nobarrier, "nobarrier"},
138         {Opt_fastboot, "fastboot"},
139         {Opt_extent_cache, "extent_cache"},
140         {Opt_noextent_cache, "noextent_cache"},
141         {Opt_noinline_data, "noinline_data"},
142         {Opt_data_flush, "data_flush"},
143         {Opt_mode, "mode=%s"},
144         {Opt_io_size_bits, "io_bits=%u"},
145         {Opt_fault_injection, "fault_injection=%u"},
146         {Opt_lazytime, "lazytime"},
147         {Opt_nolazytime, "nolazytime"},
148         {Opt_usrquota, "usrquota"},
149         {Opt_grpquota, "grpquota"},
150         {Opt_prjquota, "prjquota"},
151         {Opt_err, NULL},
152 };
153
154 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
155 {
156         struct va_format vaf;
157         va_list args;
158
159         va_start(args, fmt);
160         vaf.fmt = fmt;
161         vaf.va = &args;
162         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
163         va_end(args);
164 }
165
166 static void init_once(void *foo)
167 {
168         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
169
170         inode_init_once(&fi->vfs_inode);
171 }
172
173 static int parse_options(struct super_block *sb, char *options)
174 {
175         struct f2fs_sb_info *sbi = F2FS_SB(sb);
176         struct request_queue *q;
177         substring_t args[MAX_OPT_ARGS];
178         char *p, *name;
179         int arg = 0;
180
181         if (!options)
182                 return 0;
183
184         while ((p = strsep(&options, ",")) != NULL) {
185                 int token;
186                 if (!*p)
187                         continue;
188                 /*
189                  * Initialize args struct so we know whether arg was
190                  * found; some options take optional arguments.
191                  */
192                 args[0].to = args[0].from = NULL;
193                 token = match_token(p, f2fs_tokens, args);
194
195                 switch (token) {
196                 case Opt_gc_background:
197                         name = match_strdup(&args[0]);
198
199                         if (!name)
200                                 return -ENOMEM;
201                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
202                                 set_opt(sbi, BG_GC);
203                                 clear_opt(sbi, FORCE_FG_GC);
204                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
205                                 clear_opt(sbi, BG_GC);
206                                 clear_opt(sbi, FORCE_FG_GC);
207                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
208                                 set_opt(sbi, BG_GC);
209                                 set_opt(sbi, FORCE_FG_GC);
210                         } else {
211                                 kfree(name);
212                                 return -EINVAL;
213                         }
214                         kfree(name);
215                         break;
216                 case Opt_disable_roll_forward:
217                         set_opt(sbi, DISABLE_ROLL_FORWARD);
218                         break;
219                 case Opt_norecovery:
220                         /* this option mounts f2fs with ro */
221                         set_opt(sbi, DISABLE_ROLL_FORWARD);
222                         if (!f2fs_readonly(sb))
223                                 return -EINVAL;
224                         break;
225                 case Opt_discard:
226                         q = bdev_get_queue(sb->s_bdev);
227                         if (blk_queue_discard(q)) {
228                                 set_opt(sbi, DISCARD);
229                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
230                                 f2fs_msg(sb, KERN_WARNING,
231                                         "mounting with \"discard\" option, but "
232                                         "the device does not support discard");
233                         }
234                         break;
235                 case Opt_nodiscard:
236                         if (f2fs_sb_mounted_blkzoned(sb)) {
237                                 f2fs_msg(sb, KERN_WARNING,
238                                         "discard is required for zoned block devices");
239                                 return -EINVAL;
240                         }
241                         clear_opt(sbi, DISCARD);
242                         break;
243                 case Opt_noheap:
244                         set_opt(sbi, NOHEAP);
245                         break;
246                 case Opt_heap:
247                         clear_opt(sbi, NOHEAP);
248                         break;
249 #ifdef CONFIG_F2FS_FS_XATTR
250                 case Opt_user_xattr:
251                         set_opt(sbi, XATTR_USER);
252                         break;
253                 case Opt_nouser_xattr:
254                         clear_opt(sbi, XATTR_USER);
255                         break;
256                 case Opt_inline_xattr:
257                         set_opt(sbi, INLINE_XATTR);
258                         break;
259                 case Opt_noinline_xattr:
260                         clear_opt(sbi, INLINE_XATTR);
261                         break;
262 #else
263                 case Opt_user_xattr:
264                         f2fs_msg(sb, KERN_INFO,
265                                 "user_xattr options not supported");
266                         break;
267                 case Opt_nouser_xattr:
268                         f2fs_msg(sb, KERN_INFO,
269                                 "nouser_xattr options not supported");
270                         break;
271                 case Opt_inline_xattr:
272                         f2fs_msg(sb, KERN_INFO,
273                                 "inline_xattr options not supported");
274                         break;
275                 case Opt_noinline_xattr:
276                         f2fs_msg(sb, KERN_INFO,
277                                 "noinline_xattr options not supported");
278                         break;
279 #endif
280 #ifdef CONFIG_F2FS_FS_POSIX_ACL
281                 case Opt_acl:
282                         set_opt(sbi, POSIX_ACL);
283                         break;
284                 case Opt_noacl:
285                         clear_opt(sbi, POSIX_ACL);
286                         break;
287 #else
288                 case Opt_acl:
289                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
290                         break;
291                 case Opt_noacl:
292                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
293                         break;
294 #endif
295                 case Opt_active_logs:
296                         if (args->from && match_int(args, &arg))
297                                 return -EINVAL;
298                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
299                                 return -EINVAL;
300                         sbi->active_logs = arg;
301                         break;
302                 case Opt_disable_ext_identify:
303                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
304                         break;
305                 case Opt_inline_data:
306                         set_opt(sbi, INLINE_DATA);
307                         break;
308                 case Opt_inline_dentry:
309                         set_opt(sbi, INLINE_DENTRY);
310                         break;
311                 case Opt_noinline_dentry:
312                         clear_opt(sbi, INLINE_DENTRY);
313                         break;
314                 case Opt_flush_merge:
315                         set_opt(sbi, FLUSH_MERGE);
316                         break;
317                 case Opt_noflush_merge:
318                         clear_opt(sbi, FLUSH_MERGE);
319                         break;
320                 case Opt_nobarrier:
321                         set_opt(sbi, NOBARRIER);
322                         break;
323                 case Opt_fastboot:
324                         set_opt(sbi, FASTBOOT);
325                         break;
326                 case Opt_extent_cache:
327                         set_opt(sbi, EXTENT_CACHE);
328                         break;
329                 case Opt_noextent_cache:
330                         clear_opt(sbi, EXTENT_CACHE);
331                         break;
332                 case Opt_noinline_data:
333                         clear_opt(sbi, INLINE_DATA);
334                         break;
335                 case Opt_data_flush:
336                         set_opt(sbi, DATA_FLUSH);
337                         break;
338                 case Opt_mode:
339                         name = match_strdup(&args[0]);
340
341                         if (!name)
342                                 return -ENOMEM;
343                         if (strlen(name) == 8 &&
344                                         !strncmp(name, "adaptive", 8)) {
345                                 if (f2fs_sb_mounted_blkzoned(sb)) {
346                                         f2fs_msg(sb, KERN_WARNING,
347                                                  "adaptive mode is not allowed with "
348                                                  "zoned block device feature");
349                                         kfree(name);
350                                         return -EINVAL;
351                                 }
352                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
353                         } else if (strlen(name) == 3 &&
354                                         !strncmp(name, "lfs", 3)) {
355                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
356                         } else {
357                                 kfree(name);
358                                 return -EINVAL;
359                         }
360                         kfree(name);
361                         break;
362                 case Opt_io_size_bits:
363                         if (args->from && match_int(args, &arg))
364                                 return -EINVAL;
365                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
366                                 f2fs_msg(sb, KERN_WARNING,
367                                         "Not support %d, larger than %d",
368                                         1 << arg, BIO_MAX_PAGES);
369                                 return -EINVAL;
370                         }
371                         sbi->write_io_size_bits = arg;
372                         break;
373                 case Opt_fault_injection:
374                         if (args->from && match_int(args, &arg))
375                                 return -EINVAL;
376 #ifdef CONFIG_F2FS_FAULT_INJECTION
377                         f2fs_build_fault_attr(sbi, arg);
378                         set_opt(sbi, FAULT_INJECTION);
379 #else
380                         f2fs_msg(sb, KERN_INFO,
381                                 "FAULT_INJECTION was not selected");
382 #endif
383                         break;
384                 case Opt_lazytime:
385                         sb->s_flags |= MS_LAZYTIME;
386                         break;
387                 case Opt_nolazytime:
388                         sb->s_flags &= ~MS_LAZYTIME;
389                         break;
390 #ifdef CONFIG_QUOTA
391                 case Opt_usrquota:
392                         set_opt(sbi, USRQUOTA);
393                         break;
394                 case Opt_grpquota:
395                         set_opt(sbi, GRPQUOTA);
396                         break;
397                 case Opt_prjquota:
398                         set_opt(sbi, PRJQUOTA);
399                         break;
400 #else
401                 case Opt_usrquota:
402                 case Opt_grpquota:
403                 case Opt_prjquota:
404                         f2fs_msg(sb, KERN_INFO,
405                                         "quota operations not supported");
406                         break;
407 #endif
408                 default:
409                         f2fs_msg(sb, KERN_ERR,
410                                 "Unrecognized mount option \"%s\" or missing value",
411                                 p);
412                         return -EINVAL;
413                 }
414         }
415
416         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
417                 f2fs_msg(sb, KERN_ERR,
418                                 "Should set mode=lfs with %uKB-sized IO",
419                                 F2FS_IO_SIZE_KB(sbi));
420                 return -EINVAL;
421         }
422         return 0;
423 }
424
425 static struct inode *f2fs_alloc_inode(struct super_block *sb)
426 {
427         struct f2fs_inode_info *fi;
428
429         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
430         if (!fi)
431                 return NULL;
432
433         init_once((void *) fi);
434
435         /* Initialize f2fs-specific inode info */
436         fi->vfs_inode.i_version = 1;
437         atomic_set(&fi->dirty_pages, 0);
438         fi->i_current_depth = 1;
439         fi->i_advise = 0;
440         init_rwsem(&fi->i_sem);
441         INIT_LIST_HEAD(&fi->dirty_list);
442         INIT_LIST_HEAD(&fi->gdirty_list);
443         INIT_LIST_HEAD(&fi->inmem_pages);
444         mutex_init(&fi->inmem_lock);
445         init_rwsem(&fi->dio_rwsem[READ]);
446         init_rwsem(&fi->dio_rwsem[WRITE]);
447         init_rwsem(&fi->i_mmap_sem);
448
449 #ifdef CONFIG_QUOTA
450         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
451         fi->i_reserved_quota = 0;
452 #endif
453         /* Will be used by directory only */
454         fi->i_dir_level = F2FS_SB(sb)->dir_level;
455
456         return &fi->vfs_inode;
457 }
458
459 static int f2fs_drop_inode(struct inode *inode)
460 {
461         int ret;
462         /*
463          * This is to avoid a deadlock condition like below.
464          * writeback_single_inode(inode)
465          *  - f2fs_write_data_page
466          *    - f2fs_gc -> iput -> evict
467          *       - inode_wait_for_writeback(inode)
468          */
469         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
470                 if (!inode->i_nlink && !is_bad_inode(inode)) {
471                         /* to avoid evict_inode call simultaneously */
472                         atomic_inc(&inode->i_count);
473                         spin_unlock(&inode->i_lock);
474
475                         /* some remained atomic pages should discarded */
476                         if (f2fs_is_atomic_file(inode))
477                                 drop_inmem_pages(inode);
478
479                         /* should remain fi->extent_tree for writepage */
480                         f2fs_destroy_extent_node(inode);
481
482                         sb_start_intwrite(inode->i_sb);
483                         f2fs_i_size_write(inode, 0);
484
485                         if (F2FS_HAS_BLOCKS(inode))
486                                 f2fs_truncate(inode);
487
488                         sb_end_intwrite(inode->i_sb);
489
490                         fscrypt_put_encryption_info(inode, NULL);
491                         spin_lock(&inode->i_lock);
492                         atomic_dec(&inode->i_count);
493                 }
494                 trace_f2fs_drop_inode(inode, 0);
495                 return 0;
496         }
497         ret = generic_drop_inode(inode);
498         trace_f2fs_drop_inode(inode, ret);
499         return ret;
500 }
501
502 int f2fs_inode_dirtied(struct inode *inode, bool sync)
503 {
504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
505         int ret = 0;
506
507         spin_lock(&sbi->inode_lock[DIRTY_META]);
508         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
509                 ret = 1;
510         } else {
511                 set_inode_flag(inode, FI_DIRTY_INODE);
512                 stat_inc_dirty_inode(sbi, DIRTY_META);
513         }
514         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
515                 list_add_tail(&F2FS_I(inode)->gdirty_list,
516                                 &sbi->inode_list[DIRTY_META]);
517                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
518         }
519         spin_unlock(&sbi->inode_lock[DIRTY_META]);
520         return ret;
521 }
522
523 void f2fs_inode_synced(struct inode *inode)
524 {
525         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
526
527         spin_lock(&sbi->inode_lock[DIRTY_META]);
528         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
529                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
530                 return;
531         }
532         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
533                 list_del_init(&F2FS_I(inode)->gdirty_list);
534                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
535         }
536         clear_inode_flag(inode, FI_DIRTY_INODE);
537         clear_inode_flag(inode, FI_AUTO_RECOVER);
538         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
539         spin_unlock(&sbi->inode_lock[DIRTY_META]);
540 }
541
542 /*
543  * f2fs_dirty_inode() is called from __mark_inode_dirty()
544  *
545  * We should call set_dirty_inode to write the dirty inode through write_inode.
546  */
547 static void f2fs_dirty_inode(struct inode *inode, int flags)
548 {
549         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
550
551         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
552                         inode->i_ino == F2FS_META_INO(sbi))
553                 return;
554
555         if (flags == I_DIRTY_TIME)
556                 return;
557
558         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
559                 clear_inode_flag(inode, FI_AUTO_RECOVER);
560
561         f2fs_inode_dirtied(inode, false);
562 }
563
564 static void f2fs_i_callback(struct rcu_head *head)
565 {
566         struct inode *inode = container_of(head, struct inode, i_rcu);
567         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
568 }
569
570 static void f2fs_destroy_inode(struct inode *inode)
571 {
572         call_rcu(&inode->i_rcu, f2fs_i_callback);
573 }
574
575 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
576 {
577         percpu_counter_destroy(&sbi->alloc_valid_block_count);
578         percpu_counter_destroy(&sbi->total_valid_inode_count);
579 }
580
581 static void destroy_device_list(struct f2fs_sb_info *sbi)
582 {
583         int i;
584
585         for (i = 0; i < sbi->s_ndevs; i++) {
586                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
587 #ifdef CONFIG_BLK_DEV_ZONED
588                 kfree(FDEV(i).blkz_type);
589 #endif
590         }
591         kfree(sbi->devs);
592 }
593
594 static void f2fs_quota_off_umount(struct super_block *sb);
595 static void f2fs_put_super(struct super_block *sb)
596 {
597         struct f2fs_sb_info *sbi = F2FS_SB(sb);
598         int i;
599
600         f2fs_quota_off_umount(sb);
601
602         /* prevent remaining shrinker jobs */
603         mutex_lock(&sbi->umount_mutex);
604
605         /*
606          * We don't need to do checkpoint when superblock is clean.
607          * But, the previous checkpoint was not done by umount, it needs to do
608          * clean checkpoint again.
609          */
610         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
611                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
612                 struct cp_control cpc = {
613                         .reason = CP_UMOUNT,
614                 };
615                 write_checkpoint(sbi, &cpc);
616         }
617
618         /* be sure to wait for any on-going discard commands */
619         f2fs_wait_discard_bios(sbi);
620
621         if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
622                 struct cp_control cpc = {
623                         .reason = CP_UMOUNT | CP_TRIMMED,
624                 };
625                 write_checkpoint(sbi, &cpc);
626         }
627
628         /* write_checkpoint can update stat informaion */
629         f2fs_destroy_stats(sbi);
630
631         /*
632          * normally superblock is clean, so we need to release this.
633          * In addition, EIO will skip do checkpoint, we need this as well.
634          */
635         release_ino_entry(sbi, true);
636
637         f2fs_leave_shrinker(sbi);
638         mutex_unlock(&sbi->umount_mutex);
639
640         /* our cp_error case, we can wait for any writeback page */
641         f2fs_flush_merged_writes(sbi);
642
643         iput(sbi->node_inode);
644         iput(sbi->meta_inode);
645
646         /* destroy f2fs internal modules */
647         destroy_node_manager(sbi);
648         destroy_segment_manager(sbi);
649
650         kfree(sbi->ckpt);
651
652         f2fs_unregister_sysfs(sbi);
653
654         sb->s_fs_info = NULL;
655         if (sbi->s_chksum_driver)
656                 crypto_free_shash(sbi->s_chksum_driver);
657         kfree(sbi->raw_super);
658
659         destroy_device_list(sbi);
660         mempool_destroy(sbi->write_io_dummy);
661         destroy_percpu_info(sbi);
662         for (i = 0; i < NR_PAGE_TYPE; i++)
663                 kfree(sbi->write_io[i]);
664         kfree(sbi);
665 }
666
667 int f2fs_sync_fs(struct super_block *sb, int sync)
668 {
669         struct f2fs_sb_info *sbi = F2FS_SB(sb);
670         int err = 0;
671
672         trace_f2fs_sync_fs(sb, sync);
673
674         if (sync) {
675                 struct cp_control cpc;
676
677                 cpc.reason = __get_cp_reason(sbi);
678
679                 mutex_lock(&sbi->gc_mutex);
680                 err = write_checkpoint(sbi, &cpc);
681                 mutex_unlock(&sbi->gc_mutex);
682         }
683         f2fs_trace_ios(NULL, 1);
684
685         return err;
686 }
687
688 static int f2fs_freeze(struct super_block *sb)
689 {
690         if (f2fs_readonly(sb))
691                 return 0;
692
693         /* IO error happened before */
694         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
695                 return -EIO;
696
697         /* must be clean, since sync_filesystem() was already called */
698         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
699                 return -EINVAL;
700         return 0;
701 }
702
703 static int f2fs_unfreeze(struct super_block *sb)
704 {
705         return 0;
706 }
707
708 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
709 {
710         struct super_block *sb = dentry->d_sb;
711         struct f2fs_sb_info *sbi = F2FS_SB(sb);
712         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
713         block_t total_count, user_block_count, start_count, ovp_count;
714         u64 avail_node_count;
715
716         total_count = le64_to_cpu(sbi->raw_super->block_count);
717         user_block_count = sbi->user_block_count;
718         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
719         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
720         buf->f_type = F2FS_SUPER_MAGIC;
721         buf->f_bsize = sbi->blocksize;
722
723         buf->f_blocks = total_count - start_count;
724         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
725         buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
726                                                 sbi->reserved_blocks;
727
728         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
729
730         if (avail_node_count > user_block_count) {
731                 buf->f_files = user_block_count;
732                 buf->f_ffree = buf->f_bavail;
733         } else {
734                 buf->f_files = avail_node_count;
735                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
736                                         buf->f_bavail);
737         }
738
739         buf->f_namelen = F2FS_NAME_LEN;
740         buf->f_fsid.val[0] = (u32)id;
741         buf->f_fsid.val[1] = (u32)(id >> 32);
742
743         return 0;
744 }
745
746 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
747 {
748         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
749
750         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
751                 if (test_opt(sbi, FORCE_FG_GC))
752                         seq_printf(seq, ",background_gc=%s", "sync");
753                 else
754                         seq_printf(seq, ",background_gc=%s", "on");
755         } else {
756                 seq_printf(seq, ",background_gc=%s", "off");
757         }
758         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
759                 seq_puts(seq, ",disable_roll_forward");
760         if (test_opt(sbi, DISCARD))
761                 seq_puts(seq, ",discard");
762         if (test_opt(sbi, NOHEAP))
763                 seq_puts(seq, ",no_heap");
764         else
765                 seq_puts(seq, ",heap");
766 #ifdef CONFIG_F2FS_FS_XATTR
767         if (test_opt(sbi, XATTR_USER))
768                 seq_puts(seq, ",user_xattr");
769         else
770                 seq_puts(seq, ",nouser_xattr");
771         if (test_opt(sbi, INLINE_XATTR))
772                 seq_puts(seq, ",inline_xattr");
773         else
774                 seq_puts(seq, ",noinline_xattr");
775 #endif
776 #ifdef CONFIG_F2FS_FS_POSIX_ACL
777         if (test_opt(sbi, POSIX_ACL))
778                 seq_puts(seq, ",acl");
779         else
780                 seq_puts(seq, ",noacl");
781 #endif
782         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
783                 seq_puts(seq, ",disable_ext_identify");
784         if (test_opt(sbi, INLINE_DATA))
785                 seq_puts(seq, ",inline_data");
786         else
787                 seq_puts(seq, ",noinline_data");
788         if (test_opt(sbi, INLINE_DENTRY))
789                 seq_puts(seq, ",inline_dentry");
790         else
791                 seq_puts(seq, ",noinline_dentry");
792         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
793                 seq_puts(seq, ",flush_merge");
794         if (test_opt(sbi, NOBARRIER))
795                 seq_puts(seq, ",nobarrier");
796         if (test_opt(sbi, FASTBOOT))
797                 seq_puts(seq, ",fastboot");
798         if (test_opt(sbi, EXTENT_CACHE))
799                 seq_puts(seq, ",extent_cache");
800         else
801                 seq_puts(seq, ",noextent_cache");
802         if (test_opt(sbi, DATA_FLUSH))
803                 seq_puts(seq, ",data_flush");
804
805         seq_puts(seq, ",mode=");
806         if (test_opt(sbi, ADAPTIVE))
807                 seq_puts(seq, "adaptive");
808         else if (test_opt(sbi, LFS))
809                 seq_puts(seq, "lfs");
810         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
811         if (F2FS_IO_SIZE_BITS(sbi))
812                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
813 #ifdef CONFIG_F2FS_FAULT_INJECTION
814         if (test_opt(sbi, FAULT_INJECTION))
815                 seq_printf(seq, ",fault_injection=%u",
816                                 sbi->fault_info.inject_rate);
817 #endif
818 #ifdef CONFIG_QUOTA
819         if (test_opt(sbi, USRQUOTA))
820                 seq_puts(seq, ",usrquota");
821         if (test_opt(sbi, GRPQUOTA))
822                 seq_puts(seq, ",grpquota");
823         if (test_opt(sbi, PRJQUOTA))
824                 seq_puts(seq, ",prjquota");
825 #endif
826
827         return 0;
828 }
829
830 static void default_options(struct f2fs_sb_info *sbi)
831 {
832         /* init some FS parameters */
833         sbi->active_logs = NR_CURSEG_TYPE;
834
835         set_opt(sbi, BG_GC);
836         set_opt(sbi, INLINE_XATTR);
837         set_opt(sbi, INLINE_DATA);
838         set_opt(sbi, INLINE_DENTRY);
839         set_opt(sbi, EXTENT_CACHE);
840         set_opt(sbi, NOHEAP);
841         sbi->sb->s_flags |= MS_LAZYTIME;
842         set_opt(sbi, FLUSH_MERGE);
843         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
844                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
845                 set_opt(sbi, DISCARD);
846         } else {
847                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
848         }
849
850 #ifdef CONFIG_F2FS_FS_XATTR
851         set_opt(sbi, XATTR_USER);
852 #endif
853 #ifdef CONFIG_F2FS_FS_POSIX_ACL
854         set_opt(sbi, POSIX_ACL);
855 #endif
856
857 #ifdef CONFIG_F2FS_FAULT_INJECTION
858         f2fs_build_fault_attr(sbi, 0);
859 #endif
860 }
861
862 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
863 {
864         struct f2fs_sb_info *sbi = F2FS_SB(sb);
865         struct f2fs_mount_info org_mount_opt;
866         unsigned long old_sb_flags;
867         int err, active_logs;
868         bool need_restart_gc = false;
869         bool need_stop_gc = false;
870         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
871 #ifdef CONFIG_F2FS_FAULT_INJECTION
872         struct f2fs_fault_info ffi = sbi->fault_info;
873 #endif
874
875         /*
876          * Save the old mount options in case we
877          * need to restore them.
878          */
879         org_mount_opt = sbi->mount_opt;
880         old_sb_flags = sb->s_flags;
881         active_logs = sbi->active_logs;
882
883         /* recover superblocks we couldn't write due to previous RO mount */
884         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
885                 err = f2fs_commit_super(sbi, false);
886                 f2fs_msg(sb, KERN_INFO,
887                         "Try to recover all the superblocks, ret: %d", err);
888                 if (!err)
889                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
890         }
891
892         default_options(sbi);
893
894         /* parse mount options */
895         err = parse_options(sb, data);
896         if (err)
897                 goto restore_opts;
898
899         /*
900          * Previous and new state of filesystem is RO,
901          * so skip checking GC and FLUSH_MERGE conditions.
902          */
903         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
904                 goto skip;
905
906         if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
907                 err = dquot_suspend(sb, -1);
908                 if (err < 0)
909                         goto restore_opts;
910         } else {
911                 /* dquot_resume needs RW */
912                 sb->s_flags &= ~MS_RDONLY;
913                 dquot_resume(sb, -1);
914         }
915
916         /* disallow enable/disable extent_cache dynamically */
917         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
918                 err = -EINVAL;
919                 f2fs_msg(sbi->sb, KERN_WARNING,
920                                 "switch extent_cache option is not allowed");
921                 goto restore_opts;
922         }
923
924         /*
925          * We stop the GC thread if FS is mounted as RO
926          * or if background_gc = off is passed in mount
927          * option. Also sync the filesystem.
928          */
929         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
930                 if (sbi->gc_thread) {
931                         stop_gc_thread(sbi);
932                         need_restart_gc = true;
933                 }
934         } else if (!sbi->gc_thread) {
935                 err = start_gc_thread(sbi);
936                 if (err)
937                         goto restore_opts;
938                 need_stop_gc = true;
939         }
940
941         if (*flags & MS_RDONLY) {
942                 writeback_inodes_sb(sb, WB_REASON_SYNC);
943                 sync_inodes_sb(sb);
944
945                 set_sbi_flag(sbi, SBI_IS_DIRTY);
946                 set_sbi_flag(sbi, SBI_IS_CLOSE);
947                 f2fs_sync_fs(sb, 1);
948                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
949         }
950
951         /*
952          * We stop issue flush thread if FS is mounted as RO
953          * or if flush_merge is not passed in mount option.
954          */
955         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
956                 clear_opt(sbi, FLUSH_MERGE);
957                 destroy_flush_cmd_control(sbi, false);
958         } else {
959                 err = create_flush_cmd_control(sbi);
960                 if (err)
961                         goto restore_gc;
962         }
963 skip:
964         /* Update the POSIXACL Flag */
965         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
966                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
967
968         return 0;
969 restore_gc:
970         if (need_restart_gc) {
971                 if (start_gc_thread(sbi))
972                         f2fs_msg(sbi->sb, KERN_WARNING,
973                                 "background gc thread has stopped");
974         } else if (need_stop_gc) {
975                 stop_gc_thread(sbi);
976         }
977 restore_opts:
978         sbi->mount_opt = org_mount_opt;
979         sbi->active_logs = active_logs;
980         sb->s_flags = old_sb_flags;
981 #ifdef CONFIG_F2FS_FAULT_INJECTION
982         sbi->fault_info = ffi;
983 #endif
984         return err;
985 }
986
987 #ifdef CONFIG_QUOTA
988 /* Read data from quotafile */
989 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
990                                size_t len, loff_t off)
991 {
992         struct inode *inode = sb_dqopt(sb)->files[type];
993         struct address_space *mapping = inode->i_mapping;
994         block_t blkidx = F2FS_BYTES_TO_BLK(off);
995         int offset = off & (sb->s_blocksize - 1);
996         int tocopy;
997         size_t toread;
998         loff_t i_size = i_size_read(inode);
999         struct page *page;
1000         char *kaddr;
1001
1002         if (off > i_size)
1003                 return 0;
1004
1005         if (off + len > i_size)
1006                 len = i_size - off;
1007         toread = len;
1008         while (toread > 0) {
1009                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1010 repeat:
1011                 page = read_mapping_page(mapping, blkidx, NULL);
1012                 if (IS_ERR(page))
1013                         return PTR_ERR(page);
1014
1015                 lock_page(page);
1016
1017                 if (unlikely(page->mapping != mapping)) {
1018                         f2fs_put_page(page, 1);
1019                         goto repeat;
1020                 }
1021                 if (unlikely(!PageUptodate(page))) {
1022                         f2fs_put_page(page, 1);
1023                         return -EIO;
1024                 }
1025
1026                 kaddr = kmap_atomic(page);
1027                 memcpy(data, kaddr + offset, tocopy);
1028                 kunmap_atomic(kaddr);
1029                 f2fs_put_page(page, 1);
1030
1031                 offset = 0;
1032                 toread -= tocopy;
1033                 data += tocopy;
1034                 blkidx++;
1035         }
1036         return len;
1037 }
1038
1039 /* Write to quotafile */
1040 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1041                                 const char *data, size_t len, loff_t off)
1042 {
1043         struct inode *inode = sb_dqopt(sb)->files[type];
1044         struct address_space *mapping = inode->i_mapping;
1045         const struct address_space_operations *a_ops = mapping->a_ops;
1046         int offset = off & (sb->s_blocksize - 1);
1047         size_t towrite = len;
1048         struct page *page;
1049         char *kaddr;
1050         int err = 0;
1051         int tocopy;
1052
1053         while (towrite > 0) {
1054                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1055                                                                 towrite);
1056
1057                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1058                                                         &page, NULL);
1059                 if (unlikely(err))
1060                         break;
1061
1062                 kaddr = kmap_atomic(page);
1063                 memcpy(kaddr + offset, data, tocopy);
1064                 kunmap_atomic(kaddr);
1065                 flush_dcache_page(page);
1066
1067                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1068                                                 page, NULL);
1069                 offset = 0;
1070                 towrite -= tocopy;
1071                 off += tocopy;
1072                 data += tocopy;
1073                 cond_resched();
1074         }
1075
1076         if (len == towrite)
1077                 return err;
1078         inode->i_version++;
1079         inode->i_mtime = inode->i_ctime = current_time(inode);
1080         f2fs_mark_inode_dirty_sync(inode, false);
1081         return len - towrite;
1082 }
1083
1084 static struct dquot **f2fs_get_dquots(struct inode *inode)
1085 {
1086         return F2FS_I(inode)->i_dquot;
1087 }
1088
1089 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1090 {
1091         return &F2FS_I(inode)->i_reserved_quota;
1092 }
1093
1094 static int f2fs_quota_sync(struct super_block *sb, int type)
1095 {
1096         struct quota_info *dqopt = sb_dqopt(sb);
1097         int cnt;
1098         int ret;
1099
1100         ret = dquot_writeback_dquots(sb, type);
1101         if (ret)
1102                 return ret;
1103
1104         /*
1105          * Now when everything is written we can discard the pagecache so
1106          * that userspace sees the changes.
1107          */
1108         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1109                 if (type != -1 && cnt != type)
1110                         continue;
1111                 if (!sb_has_quota_active(sb, cnt))
1112                         continue;
1113
1114                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1115                 if (ret)
1116                         return ret;
1117
1118                 inode_lock(dqopt->files[cnt]);
1119                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1120                 inode_unlock(dqopt->files[cnt]);
1121         }
1122         return 0;
1123 }
1124
1125 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1126                                                         const struct path *path)
1127 {
1128         struct inode *inode;
1129         int err;
1130
1131         err = f2fs_quota_sync(sb, -1);
1132         if (err)
1133                 return err;
1134
1135         err = dquot_quota_on(sb, type, format_id, path);
1136         if (err)
1137                 return err;
1138
1139         inode = d_inode(path->dentry);
1140
1141         inode_lock(inode);
1142         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1143         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1144                                         S_NOATIME | S_IMMUTABLE);
1145         inode_unlock(inode);
1146         f2fs_mark_inode_dirty_sync(inode, false);
1147
1148         return 0;
1149 }
1150
1151 static int f2fs_quota_off(struct super_block *sb, int type)
1152 {
1153         struct inode *inode = sb_dqopt(sb)->files[type];
1154         int err;
1155
1156         if (!inode || !igrab(inode))
1157                 return dquot_quota_off(sb, type);
1158
1159         f2fs_quota_sync(sb, -1);
1160
1161         err = dquot_quota_off(sb, type);
1162         if (err)
1163                 goto out_put;
1164
1165         inode_lock(inode);
1166         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1167         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1168         inode_unlock(inode);
1169         f2fs_mark_inode_dirty_sync(inode, false);
1170 out_put:
1171         iput(inode);
1172         return err;
1173 }
1174
1175 static void f2fs_quota_off_umount(struct super_block *sb)
1176 {
1177         int type;
1178
1179         for (type = 0; type < MAXQUOTAS; type++)
1180                 f2fs_quota_off(sb, type);
1181 }
1182
1183 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1184 {
1185         *projid = F2FS_I(inode)->i_projid;
1186         return 0;
1187 }
1188
1189 static const struct dquot_operations f2fs_quota_operations = {
1190         .get_reserved_space = f2fs_get_reserved_space,
1191         .write_dquot    = dquot_commit,
1192         .acquire_dquot  = dquot_acquire,
1193         .release_dquot  = dquot_release,
1194         .mark_dirty     = dquot_mark_dquot_dirty,
1195         .write_info     = dquot_commit_info,
1196         .alloc_dquot    = dquot_alloc,
1197         .destroy_dquot  = dquot_destroy,
1198         .get_projid     = f2fs_get_projid,
1199         .get_next_id    = dquot_get_next_id,
1200 };
1201
1202 static const struct quotactl_ops f2fs_quotactl_ops = {
1203         .quota_on       = f2fs_quota_on,
1204         .quota_off      = f2fs_quota_off,
1205         .quota_sync     = f2fs_quota_sync,
1206         .get_state      = dquot_get_state,
1207         .set_info       = dquot_set_dqinfo,
1208         .get_dqblk      = dquot_get_dqblk,
1209         .set_dqblk      = dquot_set_dqblk,
1210         .get_nextdqblk  = dquot_get_next_dqblk,
1211 };
1212 #else
1213 static inline void f2fs_quota_off_umount(struct super_block *sb)
1214 {
1215 }
1216 #endif
1217
1218 static struct super_operations f2fs_sops = {
1219         .alloc_inode    = f2fs_alloc_inode,
1220         .drop_inode     = f2fs_drop_inode,
1221         .destroy_inode  = f2fs_destroy_inode,
1222         .write_inode    = f2fs_write_inode,
1223         .dirty_inode    = f2fs_dirty_inode,
1224         .show_options   = f2fs_show_options,
1225 #ifdef CONFIG_QUOTA
1226         .quota_read     = f2fs_quota_read,
1227         .quota_write    = f2fs_quota_write,
1228         .get_dquots     = f2fs_get_dquots,
1229 #endif
1230         .evict_inode    = f2fs_evict_inode,
1231         .put_super      = f2fs_put_super,
1232         .sync_fs        = f2fs_sync_fs,
1233         .freeze_fs      = f2fs_freeze,
1234         .unfreeze_fs    = f2fs_unfreeze,
1235         .statfs         = f2fs_statfs,
1236         .remount_fs     = f2fs_remount,
1237 };
1238
1239 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1240 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1241 {
1242         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1243                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1244                                 ctx, len, NULL);
1245 }
1246
1247 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1248                                                         void *fs_data)
1249 {
1250         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1251                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1252                                 ctx, len, fs_data, XATTR_CREATE);
1253 }
1254
1255 static unsigned f2fs_max_namelen(struct inode *inode)
1256 {
1257         return S_ISLNK(inode->i_mode) ?
1258                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1259 }
1260
1261 static const struct fscrypt_operations f2fs_cryptops = {
1262         .key_prefix     = "f2fs:",
1263         .get_context    = f2fs_get_context,
1264         .set_context    = f2fs_set_context,
1265         .is_encrypted   = f2fs_encrypted_inode,
1266         .empty_dir      = f2fs_empty_dir,
1267         .max_namelen    = f2fs_max_namelen,
1268 };
1269 #else
1270 static const struct fscrypt_operations f2fs_cryptops = {
1271         .is_encrypted   = f2fs_encrypted_inode,
1272 };
1273 #endif
1274
1275 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1276                 u64 ino, u32 generation)
1277 {
1278         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1279         struct inode *inode;
1280
1281         if (check_nid_range(sbi, ino))
1282                 return ERR_PTR(-ESTALE);
1283
1284         /*
1285          * f2fs_iget isn't quite right if the inode is currently unallocated!
1286          * However f2fs_iget currently does appropriate checks to handle stale
1287          * inodes so everything is OK.
1288          */
1289         inode = f2fs_iget(sb, ino);
1290         if (IS_ERR(inode))
1291                 return ERR_CAST(inode);
1292         if (unlikely(generation && inode->i_generation != generation)) {
1293                 /* we didn't find the right inode.. */
1294                 iput(inode);
1295                 return ERR_PTR(-ESTALE);
1296         }
1297         return inode;
1298 }
1299
1300 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1301                 int fh_len, int fh_type)
1302 {
1303         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1304                                     f2fs_nfs_get_inode);
1305 }
1306
1307 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1308                 int fh_len, int fh_type)
1309 {
1310         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1311                                     f2fs_nfs_get_inode);
1312 }
1313
1314 static const struct export_operations f2fs_export_ops = {
1315         .fh_to_dentry = f2fs_fh_to_dentry,
1316         .fh_to_parent = f2fs_fh_to_parent,
1317         .get_parent = f2fs_get_parent,
1318 };
1319
1320 static loff_t max_file_blocks(void)
1321 {
1322         loff_t result = 0;
1323         loff_t leaf_count = ADDRS_PER_BLOCK;
1324
1325         /*
1326          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1327          * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1328          * space in inode.i_addr, it will be more safe to reassign
1329          * result as zero.
1330          */
1331
1332         /* two direct node blocks */
1333         result += (leaf_count * 2);
1334
1335         /* two indirect node blocks */
1336         leaf_count *= NIDS_PER_BLOCK;
1337         result += (leaf_count * 2);
1338
1339         /* one double indirect node block */
1340         leaf_count *= NIDS_PER_BLOCK;
1341         result += leaf_count;
1342
1343         return result;
1344 }
1345
1346 static int __f2fs_commit_super(struct buffer_head *bh,
1347                         struct f2fs_super_block *super)
1348 {
1349         lock_buffer(bh);
1350         if (super)
1351                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1352         set_buffer_uptodate(bh);
1353         set_buffer_dirty(bh);
1354         unlock_buffer(bh);
1355
1356         /* it's rare case, we can do fua all the time */
1357         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1358 }
1359
1360 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1361                                         struct buffer_head *bh)
1362 {
1363         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1364                                         (bh->b_data + F2FS_SUPER_OFFSET);
1365         struct super_block *sb = sbi->sb;
1366         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1367         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1368         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1369         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1370         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1371         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1372         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1373         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1374         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1375         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1376         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1377         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1378         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1379         u64 main_end_blkaddr = main_blkaddr +
1380                                 (segment_count_main << log_blocks_per_seg);
1381         u64 seg_end_blkaddr = segment0_blkaddr +
1382                                 (segment_count << log_blocks_per_seg);
1383
1384         if (segment0_blkaddr != cp_blkaddr) {
1385                 f2fs_msg(sb, KERN_INFO,
1386                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1387                         segment0_blkaddr, cp_blkaddr);
1388                 return true;
1389         }
1390
1391         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1392                                                         sit_blkaddr) {
1393                 f2fs_msg(sb, KERN_INFO,
1394                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1395                         cp_blkaddr, sit_blkaddr,
1396                         segment_count_ckpt << log_blocks_per_seg);
1397                 return true;
1398         }
1399
1400         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1401                                                         nat_blkaddr) {
1402                 f2fs_msg(sb, KERN_INFO,
1403                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1404                         sit_blkaddr, nat_blkaddr,
1405                         segment_count_sit << log_blocks_per_seg);
1406                 return true;
1407         }
1408
1409         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1410                                                         ssa_blkaddr) {
1411                 f2fs_msg(sb, KERN_INFO,
1412                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1413                         nat_blkaddr, ssa_blkaddr,
1414                         segment_count_nat << log_blocks_per_seg);
1415                 return true;
1416         }
1417
1418         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1419                                                         main_blkaddr) {
1420                 f2fs_msg(sb, KERN_INFO,
1421                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1422                         ssa_blkaddr, main_blkaddr,
1423                         segment_count_ssa << log_blocks_per_seg);
1424                 return true;
1425         }
1426
1427         if (main_end_blkaddr > seg_end_blkaddr) {
1428                 f2fs_msg(sb, KERN_INFO,
1429                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1430                         main_blkaddr,
1431                         segment0_blkaddr +
1432                                 (segment_count << log_blocks_per_seg),
1433                         segment_count_main << log_blocks_per_seg);
1434                 return true;
1435         } else if (main_end_blkaddr < seg_end_blkaddr) {
1436                 int err = 0;
1437                 char *res;
1438
1439                 /* fix in-memory information all the time */
1440                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1441                                 segment0_blkaddr) >> log_blocks_per_seg);
1442
1443                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1444                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1445                         res = "internally";
1446                 } else {
1447                         err = __f2fs_commit_super(bh, NULL);
1448                         res = err ? "failed" : "done";
1449                 }
1450                 f2fs_msg(sb, KERN_INFO,
1451                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1452                         res, main_blkaddr,
1453                         segment0_blkaddr +
1454                                 (segment_count << log_blocks_per_seg),
1455                         segment_count_main << log_blocks_per_seg);
1456                 if (err)
1457                         return true;
1458         }
1459         return false;
1460 }
1461
1462 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1463                                 struct buffer_head *bh)
1464 {
1465         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1466                                         (bh->b_data + F2FS_SUPER_OFFSET);
1467         struct super_block *sb = sbi->sb;
1468         unsigned int blocksize;
1469
1470         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1471                 f2fs_msg(sb, KERN_INFO,
1472                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1473                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1474                 return 1;
1475         }
1476
1477         /* Currently, support only 4KB page cache size */
1478         if (F2FS_BLKSIZE != PAGE_SIZE) {
1479                 f2fs_msg(sb, KERN_INFO,
1480                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1481                         PAGE_SIZE);
1482                 return 1;
1483         }
1484
1485         /* Currently, support only 4KB block size */
1486         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1487         if (blocksize != F2FS_BLKSIZE) {
1488                 f2fs_msg(sb, KERN_INFO,
1489                         "Invalid blocksize (%u), supports only 4KB\n",
1490                         blocksize);
1491                 return 1;
1492         }
1493
1494         /* check log blocks per segment */
1495         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1496                 f2fs_msg(sb, KERN_INFO,
1497                         "Invalid log blocks per segment (%u)\n",
1498                         le32_to_cpu(raw_super->log_blocks_per_seg));
1499                 return 1;
1500         }
1501
1502         /* Currently, support 512/1024/2048/4096 bytes sector size */
1503         if (le32_to_cpu(raw_super->log_sectorsize) >
1504                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1505                 le32_to_cpu(raw_super->log_sectorsize) <
1506                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1507                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1508                         le32_to_cpu(raw_super->log_sectorsize));
1509                 return 1;
1510         }
1511         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1512                 le32_to_cpu(raw_super->log_sectorsize) !=
1513                         F2FS_MAX_LOG_SECTOR_SIZE) {
1514                 f2fs_msg(sb, KERN_INFO,
1515                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1516                         le32_to_cpu(raw_super->log_sectors_per_block),
1517                         le32_to_cpu(raw_super->log_sectorsize));
1518                 return 1;
1519         }
1520
1521         /* check reserved ino info */
1522         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1523                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1524                 le32_to_cpu(raw_super->root_ino) != 3) {
1525                 f2fs_msg(sb, KERN_INFO,
1526                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1527                         le32_to_cpu(raw_super->node_ino),
1528                         le32_to_cpu(raw_super->meta_ino),
1529                         le32_to_cpu(raw_super->root_ino));
1530                 return 1;
1531         }
1532
1533         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1534                 f2fs_msg(sb, KERN_INFO,
1535                         "Invalid segment count (%u)",
1536                         le32_to_cpu(raw_super->segment_count));
1537                 return 1;
1538         }
1539
1540         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1541         if (sanity_check_area_boundary(sbi, bh))
1542                 return 1;
1543
1544         return 0;
1545 }
1546
1547 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1548 {
1549         unsigned int total, fsmeta;
1550         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1551         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1552         unsigned int ovp_segments, reserved_segments;
1553         unsigned int main_segs, blocks_per_seg;
1554         int i;
1555
1556         total = le32_to_cpu(raw_super->segment_count);
1557         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1558         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1559         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1560         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1561         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1562
1563         if (unlikely(fsmeta >= total))
1564                 return 1;
1565
1566         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1567         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1568
1569         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1570                         ovp_segments == 0 || reserved_segments == 0)) {
1571                 f2fs_msg(sbi->sb, KERN_ERR,
1572                         "Wrong layout: check mkfs.f2fs version");
1573                 return 1;
1574         }
1575
1576         main_segs = le32_to_cpu(raw_super->segment_count_main);
1577         blocks_per_seg = sbi->blocks_per_seg;
1578
1579         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1580                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1581                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1582                         return 1;
1583         }
1584         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1585                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1586                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1587                         return 1;
1588         }
1589
1590         if (unlikely(f2fs_cp_error(sbi))) {
1591                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1592                 return 1;
1593         }
1594         return 0;
1595 }
1596
1597 static void init_sb_info(struct f2fs_sb_info *sbi)
1598 {
1599         struct f2fs_super_block *raw_super = sbi->raw_super;
1600         int i, j;
1601
1602         sbi->log_sectors_per_block =
1603                 le32_to_cpu(raw_super->log_sectors_per_block);
1604         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1605         sbi->blocksize = 1 << sbi->log_blocksize;
1606         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1607         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1608         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1609         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1610         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1611         sbi->total_node_count =
1612                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1613                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1614         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1615         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1616         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1617         sbi->cur_victim_sec = NULL_SECNO;
1618         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1619
1620         sbi->dir_level = DEF_DIR_LEVEL;
1621         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1622         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1623         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1624
1625         for (i = 0; i < NR_COUNT_TYPE; i++)
1626                 atomic_set(&sbi->nr_pages[i], 0);
1627
1628         atomic_set(&sbi->wb_sync_req, 0);
1629
1630         INIT_LIST_HEAD(&sbi->s_list);
1631         mutex_init(&sbi->umount_mutex);
1632         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
1633                 for (j = HOT; j < NR_TEMP_TYPE; j++)
1634                         mutex_init(&sbi->wio_mutex[i][j]);
1635         spin_lock_init(&sbi->cp_lock);
1636 }
1637
1638 static int init_percpu_info(struct f2fs_sb_info *sbi)
1639 {
1640         int err;
1641
1642         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1643         if (err)
1644                 return err;
1645
1646         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1647                                                                 GFP_KERNEL);
1648 }
1649
1650 #ifdef CONFIG_BLK_DEV_ZONED
1651 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1652 {
1653         struct block_device *bdev = FDEV(devi).bdev;
1654         sector_t nr_sectors = bdev->bd_part->nr_sects;
1655         sector_t sector = 0;
1656         struct blk_zone *zones;
1657         unsigned int i, nr_zones;
1658         unsigned int n = 0;
1659         int err = -EIO;
1660
1661         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1662                 return 0;
1663
1664         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1665                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1666                 return -EINVAL;
1667         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1668         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1669                                 __ilog2_u32(sbi->blocks_per_blkz))
1670                 return -EINVAL;
1671         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1672         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1673                                         sbi->log_blocks_per_blkz;
1674         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1675                 FDEV(devi).nr_blkz++;
1676
1677         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1678         if (!FDEV(devi).blkz_type)
1679                 return -ENOMEM;
1680
1681 #define F2FS_REPORT_NR_ZONES   4096
1682
1683         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1684                         GFP_KERNEL);
1685         if (!zones)
1686                 return -ENOMEM;
1687
1688         /* Get block zones type */
1689         while (zones && sector < nr_sectors) {
1690
1691                 nr_zones = F2FS_REPORT_NR_ZONES;
1692                 err = blkdev_report_zones(bdev, sector,
1693                                           zones, &nr_zones,
1694                                           GFP_KERNEL);
1695                 if (err)
1696                         break;
1697                 if (!nr_zones) {
1698                         err = -EIO;
1699                         break;
1700                 }
1701
1702                 for (i = 0; i < nr_zones; i++) {
1703                         FDEV(devi).blkz_type[n] = zones[i].type;
1704                         sector += zones[i].len;
1705                         n++;
1706                 }
1707         }
1708
1709         kfree(zones);
1710
1711         return err;
1712 }
1713 #endif
1714
1715 /*
1716  * Read f2fs raw super block.
1717  * Because we have two copies of super block, so read both of them
1718  * to get the first valid one. If any one of them is broken, we pass
1719  * them recovery flag back to the caller.
1720  */
1721 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1722                         struct f2fs_super_block **raw_super,
1723                         int *valid_super_block, int *recovery)
1724 {
1725         struct super_block *sb = sbi->sb;
1726         int block;
1727         struct buffer_head *bh;
1728         struct f2fs_super_block *super;
1729         int err = 0;
1730
1731         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1732         if (!super)
1733                 return -ENOMEM;
1734
1735         for (block = 0; block < 2; block++) {
1736                 bh = sb_bread(sb, block);
1737                 if (!bh) {
1738                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1739                                 block + 1);
1740                         err = -EIO;
1741                         continue;
1742                 }
1743
1744                 /* sanity checking of raw super */
1745                 if (sanity_check_raw_super(sbi, bh)) {
1746                         f2fs_msg(sb, KERN_ERR,
1747                                 "Can't find valid F2FS filesystem in %dth superblock",
1748                                 block + 1);
1749                         err = -EINVAL;
1750                         brelse(bh);
1751                         continue;
1752                 }
1753
1754                 if (!*raw_super) {
1755                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1756                                                         sizeof(*super));
1757                         *valid_super_block = block;
1758                         *raw_super = super;
1759                 }
1760                 brelse(bh);
1761         }
1762
1763         /* Fail to read any one of the superblocks*/
1764         if (err < 0)
1765                 *recovery = 1;
1766
1767         /* No valid superblock */
1768         if (!*raw_super)
1769                 kfree(super);
1770         else
1771                 err = 0;
1772
1773         return err;
1774 }
1775
1776 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1777 {
1778         struct buffer_head *bh;
1779         int err;
1780
1781         if ((recover && f2fs_readonly(sbi->sb)) ||
1782                                 bdev_read_only(sbi->sb->s_bdev)) {
1783                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1784                 return -EROFS;
1785         }
1786
1787         /* write back-up superblock first */
1788         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1789         if (!bh)
1790                 return -EIO;
1791         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1792         brelse(bh);
1793
1794         /* if we are in recovery path, skip writing valid superblock */
1795         if (recover || err)
1796                 return err;
1797
1798         /* write current valid superblock */
1799         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1800         if (!bh)
1801                 return -EIO;
1802         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1803         brelse(bh);
1804         return err;
1805 }
1806
1807 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1808 {
1809         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1810         unsigned int max_devices = MAX_DEVICES;
1811         int i;
1812
1813         /* Initialize single device information */
1814         if (!RDEV(0).path[0]) {
1815                 if (!bdev_is_zoned(sbi->sb->s_bdev))
1816                         return 0;
1817                 max_devices = 1;
1818         }
1819
1820         /*
1821          * Initialize multiple devices information, or single
1822          * zoned block device information.
1823          */
1824         sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1825                                 GFP_KERNEL);
1826         if (!sbi->devs)
1827                 return -ENOMEM;
1828
1829         for (i = 0; i < max_devices; i++) {
1830
1831                 if (i > 0 && !RDEV(i).path[0])
1832                         break;
1833
1834                 if (max_devices == 1) {
1835                         /* Single zoned block device mount */
1836                         FDEV(0).bdev =
1837                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1838                                         sbi->sb->s_mode, sbi->sb->s_type);
1839                 } else {
1840                         /* Multi-device mount */
1841                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1842                         FDEV(i).total_segments =
1843                                 le32_to_cpu(RDEV(i).total_segments);
1844                         if (i == 0) {
1845                                 FDEV(i).start_blk = 0;
1846                                 FDEV(i).end_blk = FDEV(i).start_blk +
1847                                     (FDEV(i).total_segments <<
1848                                     sbi->log_blocks_per_seg) - 1 +
1849                                     le32_to_cpu(raw_super->segment0_blkaddr);
1850                         } else {
1851                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1852                                 FDEV(i).end_blk = FDEV(i).start_blk +
1853                                         (FDEV(i).total_segments <<
1854                                         sbi->log_blocks_per_seg) - 1;
1855                         }
1856                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1857                                         sbi->sb->s_mode, sbi->sb->s_type);
1858                 }
1859                 if (IS_ERR(FDEV(i).bdev))
1860                         return PTR_ERR(FDEV(i).bdev);
1861
1862                 /* to release errored devices */
1863                 sbi->s_ndevs = i + 1;
1864
1865 #ifdef CONFIG_BLK_DEV_ZONED
1866                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1867                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1868                         f2fs_msg(sbi->sb, KERN_ERR,
1869                                 "Zoned block device feature not enabled\n");
1870                         return -EINVAL;
1871                 }
1872                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1873                         if (init_blkz_info(sbi, i)) {
1874                                 f2fs_msg(sbi->sb, KERN_ERR,
1875                                         "Failed to initialize F2FS blkzone information");
1876                                 return -EINVAL;
1877                         }
1878                         if (max_devices == 1)
1879                                 break;
1880                         f2fs_msg(sbi->sb, KERN_INFO,
1881                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1882                                 i, FDEV(i).path,
1883                                 FDEV(i).total_segments,
1884                                 FDEV(i).start_blk, FDEV(i).end_blk,
1885                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1886                                 "Host-aware" : "Host-managed");
1887                         continue;
1888                 }
1889 #endif
1890                 f2fs_msg(sbi->sb, KERN_INFO,
1891                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1892                                 i, FDEV(i).path,
1893                                 FDEV(i).total_segments,
1894                                 FDEV(i).start_blk, FDEV(i).end_blk);
1895         }
1896         f2fs_msg(sbi->sb, KERN_INFO,
1897                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
1898         return 0;
1899 }
1900
1901 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1902 {
1903         struct f2fs_sb_info *sbi;
1904         struct f2fs_super_block *raw_super;
1905         struct inode *root;
1906         int err;
1907         bool retry = true, need_fsck = false;
1908         char *options = NULL;
1909         int recovery, i, valid_super_block;
1910         struct curseg_info *seg_i;
1911
1912 try_onemore:
1913         err = -EINVAL;
1914         raw_super = NULL;
1915         valid_super_block = -1;
1916         recovery = 0;
1917
1918         /* allocate memory for f2fs-specific super block info */
1919         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1920         if (!sbi)
1921                 return -ENOMEM;
1922
1923         sbi->sb = sb;
1924
1925         /* Load the checksum driver */
1926         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1927         if (IS_ERR(sbi->s_chksum_driver)) {
1928                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1929                 err = PTR_ERR(sbi->s_chksum_driver);
1930                 sbi->s_chksum_driver = NULL;
1931                 goto free_sbi;
1932         }
1933
1934         /* set a block size */
1935         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1936                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1937                 goto free_sbi;
1938         }
1939
1940         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1941                                                                 &recovery);
1942         if (err)
1943                 goto free_sbi;
1944
1945         sb->s_fs_info = sbi;
1946         sbi->raw_super = raw_super;
1947
1948         /*
1949          * The BLKZONED feature indicates that the drive was formatted with
1950          * zone alignment optimization. This is optional for host-aware
1951          * devices, but mandatory for host-managed zoned block devices.
1952          */
1953 #ifndef CONFIG_BLK_DEV_ZONED
1954         if (f2fs_sb_mounted_blkzoned(sb)) {
1955                 f2fs_msg(sb, KERN_ERR,
1956                          "Zoned block device support is not enabled\n");
1957                 err = -EOPNOTSUPP;
1958                 goto free_sb_buf;
1959         }
1960 #endif
1961         default_options(sbi);
1962         /* parse mount options */
1963         options = kstrdup((const char *)data, GFP_KERNEL);
1964         if (data && !options) {
1965                 err = -ENOMEM;
1966                 goto free_sb_buf;
1967         }
1968
1969         err = parse_options(sb, options);
1970         if (err)
1971                 goto free_options;
1972
1973         sbi->max_file_blocks = max_file_blocks();
1974         sb->s_maxbytes = sbi->max_file_blocks <<
1975                                 le32_to_cpu(raw_super->log_blocksize);
1976         sb->s_max_links = F2FS_LINK_MAX;
1977         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1978
1979 #ifdef CONFIG_QUOTA
1980         sb->dq_op = &f2fs_quota_operations;
1981         sb->s_qcop = &f2fs_quotactl_ops;
1982         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1983 #endif
1984
1985         sb->s_op = &f2fs_sops;
1986         sb->s_cop = &f2fs_cryptops;
1987         sb->s_xattr = f2fs_xattr_handlers;
1988         sb->s_export_op = &f2fs_export_ops;
1989         sb->s_magic = F2FS_SUPER_MAGIC;
1990         sb->s_time_gran = 1;
1991         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1992                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1993         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1994
1995         /* init f2fs-specific super block info */
1996         sbi->valid_super_block = valid_super_block;
1997         mutex_init(&sbi->gc_mutex);
1998         mutex_init(&sbi->cp_mutex);
1999         init_rwsem(&sbi->node_write);
2000         init_rwsem(&sbi->node_change);
2001
2002         /* disallow all the data/node/meta page writes */
2003         set_sbi_flag(sbi, SBI_POR_DOING);
2004         spin_lock_init(&sbi->stat_lock);
2005
2006         for (i = 0; i < NR_PAGE_TYPE; i++) {
2007                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2008                 int j;
2009
2010                 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2011                                                                 GFP_KERNEL);
2012                 if (!sbi->write_io[i]) {
2013                         err = -ENOMEM;
2014                         goto free_options;
2015                 }
2016
2017                 for (j = HOT; j < n; j++) {
2018                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2019                         sbi->write_io[i][j].sbi = sbi;
2020                         sbi->write_io[i][j].bio = NULL;
2021                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2022                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2023                 }
2024         }
2025
2026         init_rwsem(&sbi->cp_rwsem);
2027         init_waitqueue_head(&sbi->cp_wait);
2028         init_sb_info(sbi);
2029
2030         err = init_percpu_info(sbi);
2031         if (err)
2032                 goto free_options;
2033
2034         if (F2FS_IO_SIZE(sbi) > 1) {
2035                 sbi->write_io_dummy =
2036                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2037                 if (!sbi->write_io_dummy) {
2038                         err = -ENOMEM;
2039                         goto free_options;
2040                 }
2041         }
2042
2043         /* get an inode for meta space */
2044         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2045         if (IS_ERR(sbi->meta_inode)) {
2046                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2047                 err = PTR_ERR(sbi->meta_inode);
2048                 goto free_io_dummy;
2049         }
2050
2051         err = get_valid_checkpoint(sbi);
2052         if (err) {
2053                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2054                 goto free_meta_inode;
2055         }
2056
2057         /* Initialize device list */
2058         err = f2fs_scan_devices(sbi);
2059         if (err) {
2060                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2061                 goto free_devices;
2062         }
2063
2064         sbi->total_valid_node_count =
2065                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2066         percpu_counter_set(&sbi->total_valid_inode_count,
2067                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2068         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2069         sbi->total_valid_block_count =
2070                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2071         sbi->last_valid_block_count = sbi->total_valid_block_count;
2072         sbi->reserved_blocks = 0;
2073
2074         for (i = 0; i < NR_INODE_TYPE; i++) {
2075                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2076                 spin_lock_init(&sbi->inode_lock[i]);
2077         }
2078
2079         init_extent_cache_info(sbi);
2080
2081         init_ino_entry_info(sbi);
2082
2083         /* setup f2fs internal modules */
2084         err = build_segment_manager(sbi);
2085         if (err) {
2086                 f2fs_msg(sb, KERN_ERR,
2087                         "Failed to initialize F2FS segment manager");
2088                 goto free_sm;
2089         }
2090         err = build_node_manager(sbi);
2091         if (err) {
2092                 f2fs_msg(sb, KERN_ERR,
2093                         "Failed to initialize F2FS node manager");
2094                 goto free_nm;
2095         }
2096
2097         /* For write statistics */
2098         if (sb->s_bdev->bd_part)
2099                 sbi->sectors_written_start =
2100                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2101
2102         /* Read accumulated write IO statistics if exists */
2103         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2104         if (__exist_node_summaries(sbi))
2105                 sbi->kbytes_written =
2106                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2107
2108         build_gc_manager(sbi);
2109
2110         /* get an inode for node space */
2111         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2112         if (IS_ERR(sbi->node_inode)) {
2113                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2114                 err = PTR_ERR(sbi->node_inode);
2115                 goto free_nm;
2116         }
2117
2118         f2fs_join_shrinker(sbi);
2119
2120         err = f2fs_build_stats(sbi);
2121         if (err)
2122                 goto free_nm;
2123
2124         /* if there are nt orphan nodes free them */
2125         err = recover_orphan_inodes(sbi);
2126         if (err)
2127                 goto free_node_inode;
2128
2129         /* read root inode and dentry */
2130         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2131         if (IS_ERR(root)) {
2132                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2133                 err = PTR_ERR(root);
2134                 goto free_node_inode;
2135         }
2136         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2137                 iput(root);
2138                 err = -EINVAL;
2139                 goto free_node_inode;
2140         }
2141
2142         sb->s_root = d_make_root(root); /* allocate root dentry */
2143         if (!sb->s_root) {
2144                 err = -ENOMEM;
2145                 goto free_root_inode;
2146         }
2147
2148         err = f2fs_register_sysfs(sbi);
2149         if (err)
2150                 goto free_root_inode;
2151
2152         /* recover fsynced data */
2153         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2154                 /*
2155                  * mount should be failed, when device has readonly mode, and
2156                  * previous checkpoint was not done by clean system shutdown.
2157                  */
2158                 if (bdev_read_only(sb->s_bdev) &&
2159                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2160                         err = -EROFS;
2161                         goto free_sysfs;
2162                 }
2163
2164                 if (need_fsck)
2165                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2166
2167                 if (!retry)
2168                         goto skip_recovery;
2169
2170                 err = recover_fsync_data(sbi, false);
2171                 if (err < 0) {
2172                         need_fsck = true;
2173                         f2fs_msg(sb, KERN_ERR,
2174                                 "Cannot recover all fsync data errno=%d", err);
2175                         goto free_sysfs;
2176                 }
2177         } else {
2178                 err = recover_fsync_data(sbi, true);
2179
2180                 if (!f2fs_readonly(sb) && err > 0) {
2181                         err = -EINVAL;
2182                         f2fs_msg(sb, KERN_ERR,
2183                                 "Need to recover fsync data");
2184                         goto free_sysfs;
2185                 }
2186         }
2187 skip_recovery:
2188         /* recover_fsync_data() cleared this already */
2189         clear_sbi_flag(sbi, SBI_POR_DOING);
2190
2191         /*
2192          * If filesystem is not mounted as read-only then
2193          * do start the gc_thread.
2194          */
2195         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2196                 /* After POR, we can run background GC thread.*/
2197                 err = start_gc_thread(sbi);
2198                 if (err)
2199                         goto free_sysfs;
2200         }
2201         kfree(options);
2202
2203         /* recover broken superblock */
2204         if (recovery) {
2205                 err = f2fs_commit_super(sbi, true);
2206                 f2fs_msg(sb, KERN_INFO,
2207                         "Try to recover %dth superblock, ret: %d",
2208                         sbi->valid_super_block ? 1 : 2, err);
2209         }
2210
2211         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2212                                 cur_cp_version(F2FS_CKPT(sbi)));
2213         f2fs_update_time(sbi, CP_TIME);
2214         f2fs_update_time(sbi, REQ_TIME);
2215         return 0;
2216
2217 free_sysfs:
2218         f2fs_sync_inode_meta(sbi);
2219         f2fs_unregister_sysfs(sbi);
2220 free_root_inode:
2221         dput(sb->s_root);
2222         sb->s_root = NULL;
2223 free_node_inode:
2224         truncate_inode_pages_final(NODE_MAPPING(sbi));
2225         mutex_lock(&sbi->umount_mutex);
2226         release_ino_entry(sbi, true);
2227         f2fs_leave_shrinker(sbi);
2228         /*
2229          * Some dirty meta pages can be produced by recover_orphan_inodes()
2230          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2231          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2232          * falls into an infinite loop in sync_meta_pages().
2233          */
2234         truncate_inode_pages_final(META_MAPPING(sbi));
2235         iput(sbi->node_inode);
2236         mutex_unlock(&sbi->umount_mutex);
2237         f2fs_destroy_stats(sbi);
2238 free_nm:
2239         destroy_node_manager(sbi);
2240 free_sm:
2241         destroy_segment_manager(sbi);
2242 free_devices:
2243         destroy_device_list(sbi);
2244         kfree(sbi->ckpt);
2245 free_meta_inode:
2246         make_bad_inode(sbi->meta_inode);
2247         iput(sbi->meta_inode);
2248 free_io_dummy:
2249         mempool_destroy(sbi->write_io_dummy);
2250 free_options:
2251         for (i = 0; i < NR_PAGE_TYPE; i++)
2252                 kfree(sbi->write_io[i]);
2253         destroy_percpu_info(sbi);
2254         kfree(options);
2255 free_sb_buf:
2256         kfree(raw_super);
2257 free_sbi:
2258         if (sbi->s_chksum_driver)
2259                 crypto_free_shash(sbi->s_chksum_driver);
2260         kfree(sbi);
2261
2262         /* give only one another chance */
2263         if (retry) {
2264                 retry = false;
2265                 shrink_dcache_sb(sb);
2266                 goto try_onemore;
2267         }
2268         return err;
2269 }
2270
2271 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2272                         const char *dev_name, void *data)
2273 {
2274         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2275 }
2276
2277 static void kill_f2fs_super(struct super_block *sb)
2278 {
2279         if (sb->s_root) {
2280                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2281                 stop_gc_thread(F2FS_SB(sb));
2282                 stop_discard_thread(F2FS_SB(sb));
2283         }
2284         kill_block_super(sb);
2285 }
2286
2287 static struct file_system_type f2fs_fs_type = {
2288         .owner          = THIS_MODULE,
2289         .name           = "f2fs",
2290         .mount          = f2fs_mount,
2291         .kill_sb        = kill_f2fs_super,
2292         .fs_flags       = FS_REQUIRES_DEV,
2293 };
2294 MODULE_ALIAS_FS("f2fs");
2295
2296 static int __init init_inodecache(void)
2297 {
2298         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2299                         sizeof(struct f2fs_inode_info), 0,
2300                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2301         if (!f2fs_inode_cachep)
2302                 return -ENOMEM;
2303         return 0;
2304 }
2305
2306 static void destroy_inodecache(void)
2307 {
2308         /*
2309          * Make sure all delayed rcu free inodes are flushed before we
2310          * destroy cache.
2311          */
2312         rcu_barrier();
2313         kmem_cache_destroy(f2fs_inode_cachep);
2314 }
2315
2316 static int __init init_f2fs_fs(void)
2317 {
2318         int err;
2319
2320         f2fs_build_trace_ios();
2321
2322         err = init_inodecache();
2323         if (err)
2324                 goto fail;
2325         err = create_node_manager_caches();
2326         if (err)
2327                 goto free_inodecache;
2328         err = create_segment_manager_caches();
2329         if (err)
2330                 goto free_node_manager_caches;
2331         err = create_checkpoint_caches();
2332         if (err)
2333                 goto free_segment_manager_caches;
2334         err = create_extent_cache();
2335         if (err)
2336                 goto free_checkpoint_caches;
2337         err = f2fs_init_sysfs();
2338         if (err)
2339                 goto free_extent_cache;
2340         err = register_shrinker(&f2fs_shrinker_info);
2341         if (err)
2342                 goto free_sysfs;
2343         err = register_filesystem(&f2fs_fs_type);
2344         if (err)
2345                 goto free_shrinker;
2346         err = f2fs_create_root_stats();
2347         if (err)
2348                 goto free_filesystem;
2349         return 0;
2350
2351 free_filesystem:
2352         unregister_filesystem(&f2fs_fs_type);
2353 free_shrinker:
2354         unregister_shrinker(&f2fs_shrinker_info);
2355 free_sysfs:
2356         f2fs_exit_sysfs();
2357 free_extent_cache:
2358         destroy_extent_cache();
2359 free_checkpoint_caches:
2360         destroy_checkpoint_caches();
2361 free_segment_manager_caches:
2362         destroy_segment_manager_caches();
2363 free_node_manager_caches:
2364         destroy_node_manager_caches();
2365 free_inodecache:
2366         destroy_inodecache();
2367 fail:
2368         return err;
2369 }
2370
2371 static void __exit exit_f2fs_fs(void)
2372 {
2373         f2fs_destroy_root_stats();
2374         unregister_filesystem(&f2fs_fs_type);
2375         unregister_shrinker(&f2fs_shrinker_info);
2376         f2fs_exit_sysfs();
2377         destroy_extent_cache();
2378         destroy_checkpoint_caches();
2379         destroy_segment_manager_caches();
2380         destroy_node_manager_caches();
2381         destroy_inodecache();
2382         f2fs_destroy_trace_ios();
2383 }
2384
2385 module_init(init_f2fs_fs)
2386 module_exit(exit_f2fs_fs)
2387
2388 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2389 MODULE_DESCRIPTION("Flash Friendly File System");
2390 MODULE_LICENSE("GPL");
2391