f2fs: move mnt_want_write_file after range check
[linux-block.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_KVMALLOC]        = "kvmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_PAGE_GET]        = "page get",
49         [FAULT_ALLOC_BIO]       = "alloc bio",
50         [FAULT_ALLOC_NID]       = "alloc nid",
51         [FAULT_ORPHAN]          = "orphan",
52         [FAULT_BLOCK]           = "no more block",
53         [FAULT_DIR_DEPTH]       = "too big dir depth",
54         [FAULT_EVICT_INODE]     = "evict_inode fail",
55         [FAULT_TRUNCATE]        = "truncate fail",
56         [FAULT_IO]              = "IO error",
57         [FAULT_CHECKPOINT]      = "checkpoint error",
58 };
59
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61                                                 unsigned int rate)
62 {
63         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65         if (rate) {
66                 atomic_set(&ffi->inject_ops, 0);
67                 ffi->inject_rate = rate;
68                 ffi->inject_type = (1 << FAULT_MAX) - 1;
69         } else {
70                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71         }
72 }
73 #endif
74
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77         .scan_objects = f2fs_shrink_scan,
78         .count_objects = f2fs_shrink_count,
79         .seeks = DEFAULT_SEEKS,
80 };
81
82 enum {
83         Opt_gc_background,
84         Opt_disable_roll_forward,
85         Opt_norecovery,
86         Opt_discard,
87         Opt_nodiscard,
88         Opt_noheap,
89         Opt_heap,
90         Opt_user_xattr,
91         Opt_nouser_xattr,
92         Opt_acl,
93         Opt_noacl,
94         Opt_active_logs,
95         Opt_disable_ext_identify,
96         Opt_inline_xattr,
97         Opt_noinline_xattr,
98         Opt_inline_xattr_size,
99         Opt_inline_data,
100         Opt_inline_dentry,
101         Opt_noinline_dentry,
102         Opt_flush_merge,
103         Opt_noflush_merge,
104         Opt_nobarrier,
105         Opt_fastboot,
106         Opt_extent_cache,
107         Opt_noextent_cache,
108         Opt_noinline_data,
109         Opt_data_flush,
110         Opt_reserve_root,
111         Opt_resgid,
112         Opt_resuid,
113         Opt_mode,
114         Opt_io_size_bits,
115         Opt_fault_injection,
116         Opt_lazytime,
117         Opt_nolazytime,
118         Opt_quota,
119         Opt_noquota,
120         Opt_usrquota,
121         Opt_grpquota,
122         Opt_prjquota,
123         Opt_usrjquota,
124         Opt_grpjquota,
125         Opt_prjjquota,
126         Opt_offusrjquota,
127         Opt_offgrpjquota,
128         Opt_offprjjquota,
129         Opt_jqfmt_vfsold,
130         Opt_jqfmt_vfsv0,
131         Opt_jqfmt_vfsv1,
132         Opt_whint,
133         Opt_alloc,
134         Opt_fsync,
135         Opt_test_dummy_encryption,
136         Opt_err,
137 };
138
139 static match_table_t f2fs_tokens = {
140         {Opt_gc_background, "background_gc=%s"},
141         {Opt_disable_roll_forward, "disable_roll_forward"},
142         {Opt_norecovery, "norecovery"},
143         {Opt_discard, "discard"},
144         {Opt_nodiscard, "nodiscard"},
145         {Opt_noheap, "no_heap"},
146         {Opt_heap, "heap"},
147         {Opt_user_xattr, "user_xattr"},
148         {Opt_nouser_xattr, "nouser_xattr"},
149         {Opt_acl, "acl"},
150         {Opt_noacl, "noacl"},
151         {Opt_active_logs, "active_logs=%u"},
152         {Opt_disable_ext_identify, "disable_ext_identify"},
153         {Opt_inline_xattr, "inline_xattr"},
154         {Opt_noinline_xattr, "noinline_xattr"},
155         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
156         {Opt_inline_data, "inline_data"},
157         {Opt_inline_dentry, "inline_dentry"},
158         {Opt_noinline_dentry, "noinline_dentry"},
159         {Opt_flush_merge, "flush_merge"},
160         {Opt_noflush_merge, "noflush_merge"},
161         {Opt_nobarrier, "nobarrier"},
162         {Opt_fastboot, "fastboot"},
163         {Opt_extent_cache, "extent_cache"},
164         {Opt_noextent_cache, "noextent_cache"},
165         {Opt_noinline_data, "noinline_data"},
166         {Opt_data_flush, "data_flush"},
167         {Opt_reserve_root, "reserve_root=%u"},
168         {Opt_resgid, "resgid=%u"},
169         {Opt_resuid, "resuid=%u"},
170         {Opt_mode, "mode=%s"},
171         {Opt_io_size_bits, "io_bits=%u"},
172         {Opt_fault_injection, "fault_injection=%u"},
173         {Opt_lazytime, "lazytime"},
174         {Opt_nolazytime, "nolazytime"},
175         {Opt_quota, "quota"},
176         {Opt_noquota, "noquota"},
177         {Opt_usrquota, "usrquota"},
178         {Opt_grpquota, "grpquota"},
179         {Opt_prjquota, "prjquota"},
180         {Opt_usrjquota, "usrjquota=%s"},
181         {Opt_grpjquota, "grpjquota=%s"},
182         {Opt_prjjquota, "prjjquota=%s"},
183         {Opt_offusrjquota, "usrjquota="},
184         {Opt_offgrpjquota, "grpjquota="},
185         {Opt_offprjjquota, "prjjquota="},
186         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189         {Opt_whint, "whint_mode=%s"},
190         {Opt_alloc, "alloc_mode=%s"},
191         {Opt_fsync, "fsync_mode=%s"},
192         {Opt_test_dummy_encryption, "test_dummy_encryption"},
193         {Opt_err, NULL},
194 };
195
196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198         struct va_format vaf;
199         va_list args;
200
201         va_start(args, fmt);
202         vaf.fmt = fmt;
203         vaf.va = &args;
204         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205         va_end(args);
206 }
207
208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210         block_t limit = (sbi->user_block_count << 1) / 1000;
211
212         /* limit is 0.2% */
213         if (test_opt(sbi, RESERVE_ROOT) &&
214                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
216                 f2fs_msg(sbi->sb, KERN_INFO,
217                         "Reduce reserved blocks for root = %u",
218                         F2FS_OPTION(sbi).root_reserved_blocks);
219         }
220         if (!test_opt(sbi, RESERVE_ROOT) &&
221                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
222                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
224                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225                 f2fs_msg(sbi->sb, KERN_INFO,
226                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227                                 from_kuid_munged(&init_user_ns,
228                                         F2FS_OPTION(sbi).s_resuid),
229                                 from_kgid_munged(&init_user_ns,
230                                         F2FS_OPTION(sbi).s_resgid));
231 }
232
233 static void init_once(void *foo)
234 {
235         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236
237         inode_init_once(&fi->vfs_inode);
238 }
239
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244                                                         substring_t *args)
245 {
246         struct f2fs_sb_info *sbi = F2FS_SB(sb);
247         char *qname;
248         int ret = -EINVAL;
249
250         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251                 f2fs_msg(sb, KERN_ERR,
252                         "Cannot change journaled "
253                         "quota options when quota turned on");
254                 return -EINVAL;
255         }
256         if (f2fs_sb_has_quota_ino(sb)) {
257                 f2fs_msg(sb, KERN_INFO,
258                         "QUOTA feature is enabled, so ignore qf_name");
259                 return 0;
260         }
261
262         qname = match_strdup(args);
263         if (!qname) {
264                 f2fs_msg(sb, KERN_ERR,
265                         "Not enough memory for storing quotafile name");
266                 return -EINVAL;
267         }
268         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270                         ret = 0;
271                 else
272                         f2fs_msg(sb, KERN_ERR,
273                                  "%s quota file already specified",
274                                  QTYPE2NAME(qtype));
275                 goto errout;
276         }
277         if (strchr(qname, '/')) {
278                 f2fs_msg(sb, KERN_ERR,
279                         "quotafile must be on filesystem root");
280                 goto errout;
281         }
282         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283         set_opt(sbi, QUOTA);
284         return 0;
285 errout:
286         kfree(qname);
287         return ret;
288 }
289
290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292         struct f2fs_sb_info *sbi = F2FS_SB(sb);
293
294         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296                         " when quota turned on");
297                 return -EINVAL;
298         }
299         kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301         return 0;
302 }
303
304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306         /*
307          * We do the test below only for project quotas. 'usrquota' and
308          * 'grpquota' mount options are allowed even without quota feature
309          * to support legacy quotas in quota files.
310          */
311         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313                          "Cannot enable project quota enforcement.");
314                 return -1;
315         }
316         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319                 if (test_opt(sbi, USRQUOTA) &&
320                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321                         clear_opt(sbi, USRQUOTA);
322
323                 if (test_opt(sbi, GRPQUOTA) &&
324                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325                         clear_opt(sbi, GRPQUOTA);
326
327                 if (test_opt(sbi, PRJQUOTA) &&
328                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329                         clear_opt(sbi, PRJQUOTA);
330
331                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332                                 test_opt(sbi, PRJQUOTA)) {
333                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334                                         "format mixing");
335                         return -1;
336                 }
337
338                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340                                         "not specified");
341                         return -1;
342                 }
343         }
344
345         if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346                 f2fs_msg(sbi->sb, KERN_INFO,
347                         "QUOTA feature is enabled, so ignore jquota_fmt");
348                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
349         }
350         if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351                 f2fs_msg(sbi->sb, KERN_INFO,
352                          "Filesystem with quota feature cannot be mounted RDWR "
353                          "without CONFIG_QUOTA");
354                 return -1;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         struct request_queue *q;
364         substring_t args[MAX_OPT_ARGS];
365         char *p, *name;
366         int arg = 0;
367         kuid_t uid;
368         kgid_t gid;
369 #ifdef CONFIG_QUOTA
370         int ret;
371 #endif
372
373         if (!options)
374                 return 0;
375
376         while ((p = strsep(&options, ",")) != NULL) {
377                 int token;
378                 if (!*p)
379                         continue;
380                 /*
381                  * Initialize args struct so we know whether arg was
382                  * found; some options take optional arguments.
383                  */
384                 args[0].to = args[0].from = NULL;
385                 token = match_token(p, f2fs_tokens, args);
386
387                 switch (token) {
388                 case Opt_gc_background:
389                         name = match_strdup(&args[0]);
390
391                         if (!name)
392                                 return -ENOMEM;
393                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394                                 set_opt(sbi, BG_GC);
395                                 clear_opt(sbi, FORCE_FG_GC);
396                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397                                 clear_opt(sbi, BG_GC);
398                                 clear_opt(sbi, FORCE_FG_GC);
399                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400                                 set_opt(sbi, BG_GC);
401                                 set_opt(sbi, FORCE_FG_GC);
402                         } else {
403                                 kfree(name);
404                                 return -EINVAL;
405                         }
406                         kfree(name);
407                         break;
408                 case Opt_disable_roll_forward:
409                         set_opt(sbi, DISABLE_ROLL_FORWARD);
410                         break;
411                 case Opt_norecovery:
412                         /* this option mounts f2fs with ro */
413                         set_opt(sbi, DISABLE_ROLL_FORWARD);
414                         if (!f2fs_readonly(sb))
415                                 return -EINVAL;
416                         break;
417                 case Opt_discard:
418                         q = bdev_get_queue(sb->s_bdev);
419                         if (blk_queue_discard(q)) {
420                                 set_opt(sbi, DISCARD);
421                         } else if (!f2fs_sb_has_blkzoned(sb)) {
422                                 f2fs_msg(sb, KERN_WARNING,
423                                         "mounting with \"discard\" option, but "
424                                         "the device does not support discard");
425                         }
426                         break;
427                 case Opt_nodiscard:
428                         if (f2fs_sb_has_blkzoned(sb)) {
429                                 f2fs_msg(sb, KERN_WARNING,
430                                         "discard is required for zoned block devices");
431                                 return -EINVAL;
432                         }
433                         clear_opt(sbi, DISCARD);
434                         break;
435                 case Opt_noheap:
436                         set_opt(sbi, NOHEAP);
437                         break;
438                 case Opt_heap:
439                         clear_opt(sbi, NOHEAP);
440                         break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442                 case Opt_user_xattr:
443                         set_opt(sbi, XATTR_USER);
444                         break;
445                 case Opt_nouser_xattr:
446                         clear_opt(sbi, XATTR_USER);
447                         break;
448                 case Opt_inline_xattr:
449                         set_opt(sbi, INLINE_XATTR);
450                         break;
451                 case Opt_noinline_xattr:
452                         clear_opt(sbi, INLINE_XATTR);
453                         break;
454                 case Opt_inline_xattr_size:
455                         if (args->from && match_int(args, &arg))
456                                 return -EINVAL;
457                         set_opt(sbi, INLINE_XATTR_SIZE);
458                         F2FS_OPTION(sbi).inline_xattr_size = arg;
459                         break;
460 #else
461                 case Opt_user_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "user_xattr options not supported");
464                         break;
465                 case Opt_nouser_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "nouser_xattr options not supported");
468                         break;
469                 case Opt_inline_xattr:
470                         f2fs_msg(sb, KERN_INFO,
471                                 "inline_xattr options not supported");
472                         break;
473                 case Opt_noinline_xattr:
474                         f2fs_msg(sb, KERN_INFO,
475                                 "noinline_xattr options not supported");
476                         break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479                 case Opt_acl:
480                         set_opt(sbi, POSIX_ACL);
481                         break;
482                 case Opt_noacl:
483                         clear_opt(sbi, POSIX_ACL);
484                         break;
485 #else
486                 case Opt_acl:
487                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
488                         break;
489                 case Opt_noacl:
490                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491                         break;
492 #endif
493                 case Opt_active_logs:
494                         if (args->from && match_int(args, &arg))
495                                 return -EINVAL;
496                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497                                 return -EINVAL;
498                         F2FS_OPTION(sbi).active_logs = arg;
499                         break;
500                 case Opt_disable_ext_identify:
501                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
502                         break;
503                 case Opt_inline_data:
504                         set_opt(sbi, INLINE_DATA);
505                         break;
506                 case Opt_inline_dentry:
507                         set_opt(sbi, INLINE_DENTRY);
508                         break;
509                 case Opt_noinline_dentry:
510                         clear_opt(sbi, INLINE_DENTRY);
511                         break;
512                 case Opt_flush_merge:
513                         set_opt(sbi, FLUSH_MERGE);
514                         break;
515                 case Opt_noflush_merge:
516                         clear_opt(sbi, FLUSH_MERGE);
517                         break;
518                 case Opt_nobarrier:
519                         set_opt(sbi, NOBARRIER);
520                         break;
521                 case Opt_fastboot:
522                         set_opt(sbi, FASTBOOT);
523                         break;
524                 case Opt_extent_cache:
525                         set_opt(sbi, EXTENT_CACHE);
526                         break;
527                 case Opt_noextent_cache:
528                         clear_opt(sbi, EXTENT_CACHE);
529                         break;
530                 case Opt_noinline_data:
531                         clear_opt(sbi, INLINE_DATA);
532                         break;
533                 case Opt_data_flush:
534                         set_opt(sbi, DATA_FLUSH);
535                         break;
536                 case Opt_reserve_root:
537                         if (args->from && match_int(args, &arg))
538                                 return -EINVAL;
539                         if (test_opt(sbi, RESERVE_ROOT)) {
540                                 f2fs_msg(sb, KERN_INFO,
541                                         "Preserve previous reserve_root=%u",
542                                         F2FS_OPTION(sbi).root_reserved_blocks);
543                         } else {
544                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545                                 set_opt(sbi, RESERVE_ROOT);
546                         }
547                         break;
548                 case Opt_resuid:
549                         if (args->from && match_int(args, &arg))
550                                 return -EINVAL;
551                         uid = make_kuid(current_user_ns(), arg);
552                         if (!uid_valid(uid)) {
553                                 f2fs_msg(sb, KERN_ERR,
554                                         "Invalid uid value %d", arg);
555                                 return -EINVAL;
556                         }
557                         F2FS_OPTION(sbi).s_resuid = uid;
558                         break;
559                 case Opt_resgid:
560                         if (args->from && match_int(args, &arg))
561                                 return -EINVAL;
562                         gid = make_kgid(current_user_ns(), arg);
563                         if (!gid_valid(gid)) {
564                                 f2fs_msg(sb, KERN_ERR,
565                                         "Invalid gid value %d", arg);
566                                 return -EINVAL;
567                         }
568                         F2FS_OPTION(sbi).s_resgid = gid;
569                         break;
570                 case Opt_mode:
571                         name = match_strdup(&args[0]);
572
573                         if (!name)
574                                 return -ENOMEM;
575                         if (strlen(name) == 8 &&
576                                         !strncmp(name, "adaptive", 8)) {
577                                 if (f2fs_sb_has_blkzoned(sb)) {
578                                         f2fs_msg(sb, KERN_WARNING,
579                                                  "adaptive mode is not allowed with "
580                                                  "zoned block device feature");
581                                         kfree(name);
582                                         return -EINVAL;
583                                 }
584                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585                         } else if (strlen(name) == 3 &&
586                                         !strncmp(name, "lfs", 3)) {
587                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588                         } else {
589                                 kfree(name);
590                                 return -EINVAL;
591                         }
592                         kfree(name);
593                         break;
594                 case Opt_io_size_bits:
595                         if (args->from && match_int(args, &arg))
596                                 return -EINVAL;
597                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598                                 f2fs_msg(sb, KERN_WARNING,
599                                         "Not support %d, larger than %d",
600                                         1 << arg, BIO_MAX_PAGES);
601                                 return -EINVAL;
602                         }
603                         F2FS_OPTION(sbi).write_io_size_bits = arg;
604                         break;
605                 case Opt_fault_injection:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609                         f2fs_build_fault_attr(sbi, arg);
610                         set_opt(sbi, FAULT_INJECTION);
611 #else
612                         f2fs_msg(sb, KERN_INFO,
613                                 "FAULT_INJECTION was not selected");
614 #endif
615                         break;
616                 case Opt_lazytime:
617                         sb->s_flags |= SB_LAZYTIME;
618                         break;
619                 case Opt_nolazytime:
620                         sb->s_flags &= ~SB_LAZYTIME;
621                         break;
622 #ifdef CONFIG_QUOTA
623                 case Opt_quota:
624                 case Opt_usrquota:
625                         set_opt(sbi, USRQUOTA);
626                         break;
627                 case Opt_grpquota:
628                         set_opt(sbi, GRPQUOTA);
629                         break;
630                 case Opt_prjquota:
631                         set_opt(sbi, PRJQUOTA);
632                         break;
633                 case Opt_usrjquota:
634                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635                         if (ret)
636                                 return ret;
637                         break;
638                 case Opt_grpjquota:
639                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640                         if (ret)
641                                 return ret;
642                         break;
643                 case Opt_prjjquota:
644                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645                         if (ret)
646                                 return ret;
647                         break;
648                 case Opt_offusrjquota:
649                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
650                         if (ret)
651                                 return ret;
652                         break;
653                 case Opt_offgrpjquota:
654                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655                         if (ret)
656                                 return ret;
657                         break;
658                 case Opt_offprjjquota:
659                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660                         if (ret)
661                                 return ret;
662                         break;
663                 case Opt_jqfmt_vfsold:
664                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665                         break;
666                 case Opt_jqfmt_vfsv0:
667                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668                         break;
669                 case Opt_jqfmt_vfsv1:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671                         break;
672                 case Opt_noquota:
673                         clear_opt(sbi, QUOTA);
674                         clear_opt(sbi, USRQUOTA);
675                         clear_opt(sbi, GRPQUOTA);
676                         clear_opt(sbi, PRJQUOTA);
677                         break;
678 #else
679                 case Opt_quota:
680                 case Opt_usrquota:
681                 case Opt_grpquota:
682                 case Opt_prjquota:
683                 case Opt_usrjquota:
684                 case Opt_grpjquota:
685                 case Opt_prjjquota:
686                 case Opt_offusrjquota:
687                 case Opt_offgrpjquota:
688                 case Opt_offprjjquota:
689                 case Opt_jqfmt_vfsold:
690                 case Opt_jqfmt_vfsv0:
691                 case Opt_jqfmt_vfsv1:
692                 case Opt_noquota:
693                         f2fs_msg(sb, KERN_INFO,
694                                         "quota operations not supported");
695                         break;
696 #endif
697                 case Opt_whint:
698                         name = match_strdup(&args[0]);
699                         if (!name)
700                                 return -ENOMEM;
701                         if (strlen(name) == 10 &&
702                                         !strncmp(name, "user-based", 10)) {
703                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704                         } else if (strlen(name) == 3 &&
705                                         !strncmp(name, "off", 3)) {
706                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707                         } else if (strlen(name) == 8 &&
708                                         !strncmp(name, "fs-based", 8)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710                         } else {
711                                 kfree(name);
712                                 return -EINVAL;
713                         }
714                         kfree(name);
715                         break;
716                 case Opt_alloc:
717                         name = match_strdup(&args[0]);
718                         if (!name)
719                                 return -ENOMEM;
720
721                         if (strlen(name) == 7 &&
722                                         !strncmp(name, "default", 7)) {
723                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724                         } else if (strlen(name) == 5 &&
725                                         !strncmp(name, "reuse", 5)) {
726                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727                         } else {
728                                 kfree(name);
729                                 return -EINVAL;
730                         }
731                         kfree(name);
732                         break;
733                 case Opt_fsync:
734                         name = match_strdup(&args[0]);
735                         if (!name)
736                                 return -ENOMEM;
737                         if (strlen(name) == 5 &&
738                                         !strncmp(name, "posix", 5)) {
739                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740                         } else if (strlen(name) == 6 &&
741                                         !strncmp(name, "strict", 6)) {
742                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743                         } else if (strlen(name) == 9 &&
744                                         !strncmp(name, "nobarrier", 9)) {
745                                 F2FS_OPTION(sbi).fsync_mode =
746                                                         FSYNC_MODE_NOBARRIER;
747                         } else {
748                                 kfree(name);
749                                 return -EINVAL;
750                         }
751                         kfree(name);
752                         break;
753                 case Opt_test_dummy_encryption:
754 #ifdef CONFIG_F2FS_FS_ENCRYPTION
755                         if (!f2fs_sb_has_encrypt(sb)) {
756                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
757                                 return -EINVAL;
758                         }
759
760                         F2FS_OPTION(sbi).test_dummy_encryption = true;
761                         f2fs_msg(sb, KERN_INFO,
762                                         "Test dummy encryption mode enabled");
763 #else
764                         f2fs_msg(sb, KERN_INFO,
765                                         "Test dummy encryption mount option ignored");
766 #endif
767                         break;
768                 default:
769                         f2fs_msg(sb, KERN_ERR,
770                                 "Unrecognized mount option \"%s\" or missing value",
771                                 p);
772                         return -EINVAL;
773                 }
774         }
775 #ifdef CONFIG_QUOTA
776         if (f2fs_check_quota_options(sbi))
777                 return -EINVAL;
778 #endif
779
780         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
781                 f2fs_msg(sb, KERN_ERR,
782                                 "Should set mode=lfs with %uKB-sized IO",
783                                 F2FS_IO_SIZE_KB(sbi));
784                 return -EINVAL;
785         }
786
787         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
788                 if (!f2fs_sb_has_extra_attr(sb) ||
789                         !f2fs_sb_has_flexible_inline_xattr(sb)) {
790                         f2fs_msg(sb, KERN_ERR,
791                                         "extra_attr or flexible_inline_xattr "
792                                         "feature is off");
793                         return -EINVAL;
794                 }
795                 if (!test_opt(sbi, INLINE_XATTR)) {
796                         f2fs_msg(sb, KERN_ERR,
797                                         "inline_xattr_size option should be "
798                                         "set with inline_xattr option");
799                         return -EINVAL;
800                 }
801                 if (!F2FS_OPTION(sbi).inline_xattr_size ||
802                         F2FS_OPTION(sbi).inline_xattr_size >=
803                                         DEF_ADDRS_PER_INODE -
804                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
805                                         DEF_INLINE_RESERVED_SIZE -
806                                         DEF_MIN_INLINE_SIZE) {
807                         f2fs_msg(sb, KERN_ERR,
808                                         "inline xattr size is out of range");
809                         return -EINVAL;
810                 }
811         }
812
813         /* Not pass down write hints if the number of active logs is lesser
814          * than NR_CURSEG_TYPE.
815          */
816         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
817                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
818         return 0;
819 }
820
821 static struct inode *f2fs_alloc_inode(struct super_block *sb)
822 {
823         struct f2fs_inode_info *fi;
824
825         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
826         if (!fi)
827                 return NULL;
828
829         init_once((void *) fi);
830
831         /* Initialize f2fs-specific inode info */
832         atomic_set(&fi->dirty_pages, 0);
833         fi->i_current_depth = 1;
834         init_rwsem(&fi->i_sem);
835         INIT_LIST_HEAD(&fi->dirty_list);
836         INIT_LIST_HEAD(&fi->gdirty_list);
837         INIT_LIST_HEAD(&fi->inmem_ilist);
838         INIT_LIST_HEAD(&fi->inmem_pages);
839         mutex_init(&fi->inmem_lock);
840         init_rwsem(&fi->dio_rwsem[READ]);
841         init_rwsem(&fi->dio_rwsem[WRITE]);
842         init_rwsem(&fi->i_mmap_sem);
843         init_rwsem(&fi->i_xattr_sem);
844
845         /* Will be used by directory only */
846         fi->i_dir_level = F2FS_SB(sb)->dir_level;
847
848         return &fi->vfs_inode;
849 }
850
851 static int f2fs_drop_inode(struct inode *inode)
852 {
853         int ret;
854         /*
855          * This is to avoid a deadlock condition like below.
856          * writeback_single_inode(inode)
857          *  - f2fs_write_data_page
858          *    - f2fs_gc -> iput -> evict
859          *       - inode_wait_for_writeback(inode)
860          */
861         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
862                 if (!inode->i_nlink && !is_bad_inode(inode)) {
863                         /* to avoid evict_inode call simultaneously */
864                         atomic_inc(&inode->i_count);
865                         spin_unlock(&inode->i_lock);
866
867                         /* some remained atomic pages should discarded */
868                         if (f2fs_is_atomic_file(inode))
869                                 drop_inmem_pages(inode);
870
871                         /* should remain fi->extent_tree for writepage */
872                         f2fs_destroy_extent_node(inode);
873
874                         sb_start_intwrite(inode->i_sb);
875                         f2fs_i_size_write(inode, 0);
876
877                         if (F2FS_HAS_BLOCKS(inode))
878                                 f2fs_truncate(inode);
879
880                         sb_end_intwrite(inode->i_sb);
881
882                         spin_lock(&inode->i_lock);
883                         atomic_dec(&inode->i_count);
884                 }
885                 trace_f2fs_drop_inode(inode, 0);
886                 return 0;
887         }
888         ret = generic_drop_inode(inode);
889         trace_f2fs_drop_inode(inode, ret);
890         return ret;
891 }
892
893 int f2fs_inode_dirtied(struct inode *inode, bool sync)
894 {
895         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
896         int ret = 0;
897
898         spin_lock(&sbi->inode_lock[DIRTY_META]);
899         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
900                 ret = 1;
901         } else {
902                 set_inode_flag(inode, FI_DIRTY_INODE);
903                 stat_inc_dirty_inode(sbi, DIRTY_META);
904         }
905         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
906                 list_add_tail(&F2FS_I(inode)->gdirty_list,
907                                 &sbi->inode_list[DIRTY_META]);
908                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
909         }
910         spin_unlock(&sbi->inode_lock[DIRTY_META]);
911         return ret;
912 }
913
914 void f2fs_inode_synced(struct inode *inode)
915 {
916         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917
918         spin_lock(&sbi->inode_lock[DIRTY_META]);
919         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
920                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
921                 return;
922         }
923         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
924                 list_del_init(&F2FS_I(inode)->gdirty_list);
925                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
926         }
927         clear_inode_flag(inode, FI_DIRTY_INODE);
928         clear_inode_flag(inode, FI_AUTO_RECOVER);
929         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
930         spin_unlock(&sbi->inode_lock[DIRTY_META]);
931 }
932
933 /*
934  * f2fs_dirty_inode() is called from __mark_inode_dirty()
935  *
936  * We should call set_dirty_inode to write the dirty inode through write_inode.
937  */
938 static void f2fs_dirty_inode(struct inode *inode, int flags)
939 {
940         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
941
942         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
943                         inode->i_ino == F2FS_META_INO(sbi))
944                 return;
945
946         if (flags == I_DIRTY_TIME)
947                 return;
948
949         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
950                 clear_inode_flag(inode, FI_AUTO_RECOVER);
951
952         f2fs_inode_dirtied(inode, false);
953 }
954
955 static void f2fs_i_callback(struct rcu_head *head)
956 {
957         struct inode *inode = container_of(head, struct inode, i_rcu);
958         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
959 }
960
961 static void f2fs_destroy_inode(struct inode *inode)
962 {
963         call_rcu(&inode->i_rcu, f2fs_i_callback);
964 }
965
966 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
967 {
968         percpu_counter_destroy(&sbi->alloc_valid_block_count);
969         percpu_counter_destroy(&sbi->total_valid_inode_count);
970 }
971
972 static void destroy_device_list(struct f2fs_sb_info *sbi)
973 {
974         int i;
975
976         for (i = 0; i < sbi->s_ndevs; i++) {
977                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
978 #ifdef CONFIG_BLK_DEV_ZONED
979                 kfree(FDEV(i).blkz_type);
980 #endif
981         }
982         kfree(sbi->devs);
983 }
984
985 static void f2fs_put_super(struct super_block *sb)
986 {
987         struct f2fs_sb_info *sbi = F2FS_SB(sb);
988         int i;
989         bool dropped;
990
991         f2fs_quota_off_umount(sb);
992
993         /* prevent remaining shrinker jobs */
994         mutex_lock(&sbi->umount_mutex);
995
996         /*
997          * We don't need to do checkpoint when superblock is clean.
998          * But, the previous checkpoint was not done by umount, it needs to do
999          * clean checkpoint again.
1000          */
1001         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1002                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1003                 struct cp_control cpc = {
1004                         .reason = CP_UMOUNT,
1005                 };
1006                 write_checkpoint(sbi, &cpc);
1007         }
1008
1009         /* be sure to wait for any on-going discard commands */
1010         dropped = f2fs_wait_discard_bios(sbi);
1011
1012         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1013                 struct cp_control cpc = {
1014                         .reason = CP_UMOUNT | CP_TRIMMED,
1015                 };
1016                 write_checkpoint(sbi, &cpc);
1017         }
1018
1019         /* write_checkpoint can update stat informaion */
1020         f2fs_destroy_stats(sbi);
1021
1022         /*
1023          * normally superblock is clean, so we need to release this.
1024          * In addition, EIO will skip do checkpoint, we need this as well.
1025          */
1026         release_ino_entry(sbi, true);
1027
1028         f2fs_leave_shrinker(sbi);
1029         mutex_unlock(&sbi->umount_mutex);
1030
1031         /* our cp_error case, we can wait for any writeback page */
1032         f2fs_flush_merged_writes(sbi);
1033
1034         iput(sbi->node_inode);
1035         iput(sbi->meta_inode);
1036
1037         /* destroy f2fs internal modules */
1038         destroy_node_manager(sbi);
1039         destroy_segment_manager(sbi);
1040
1041         kfree(sbi->ckpt);
1042
1043         f2fs_unregister_sysfs(sbi);
1044
1045         sb->s_fs_info = NULL;
1046         if (sbi->s_chksum_driver)
1047                 crypto_free_shash(sbi->s_chksum_driver);
1048         kfree(sbi->raw_super);
1049
1050         destroy_device_list(sbi);
1051         mempool_destroy(sbi->write_io_dummy);
1052 #ifdef CONFIG_QUOTA
1053         for (i = 0; i < MAXQUOTAS; i++)
1054                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1055 #endif
1056         destroy_percpu_info(sbi);
1057         for (i = 0; i < NR_PAGE_TYPE; i++)
1058                 kfree(sbi->write_io[i]);
1059         kfree(sbi);
1060 }
1061
1062 int f2fs_sync_fs(struct super_block *sb, int sync)
1063 {
1064         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1065         int err = 0;
1066
1067         if (unlikely(f2fs_cp_error(sbi)))
1068                 return 0;
1069
1070         trace_f2fs_sync_fs(sb, sync);
1071
1072         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1073                 return -EAGAIN;
1074
1075         if (sync) {
1076                 struct cp_control cpc;
1077
1078                 cpc.reason = __get_cp_reason(sbi);
1079
1080                 mutex_lock(&sbi->gc_mutex);
1081                 err = write_checkpoint(sbi, &cpc);
1082                 mutex_unlock(&sbi->gc_mutex);
1083         }
1084         f2fs_trace_ios(NULL, 1);
1085
1086         return err;
1087 }
1088
1089 static int f2fs_freeze(struct super_block *sb)
1090 {
1091         if (f2fs_readonly(sb))
1092                 return 0;
1093
1094         /* IO error happened before */
1095         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1096                 return -EIO;
1097
1098         /* must be clean, since sync_filesystem() was already called */
1099         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1100                 return -EINVAL;
1101         return 0;
1102 }
1103
1104 static int f2fs_unfreeze(struct super_block *sb)
1105 {
1106         return 0;
1107 }
1108
1109 #ifdef CONFIG_QUOTA
1110 static int f2fs_statfs_project(struct super_block *sb,
1111                                 kprojid_t projid, struct kstatfs *buf)
1112 {
1113         struct kqid qid;
1114         struct dquot *dquot;
1115         u64 limit;
1116         u64 curblock;
1117
1118         qid = make_kqid_projid(projid);
1119         dquot = dqget(sb, qid);
1120         if (IS_ERR(dquot))
1121                 return PTR_ERR(dquot);
1122         spin_lock(&dq_data_lock);
1123
1124         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1125                  dquot->dq_dqb.dqb_bsoftlimit :
1126                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1127         if (limit && buf->f_blocks > limit) {
1128                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1129                 buf->f_blocks = limit;
1130                 buf->f_bfree = buf->f_bavail =
1131                         (buf->f_blocks > curblock) ?
1132                          (buf->f_blocks - curblock) : 0;
1133         }
1134
1135         limit = dquot->dq_dqb.dqb_isoftlimit ?
1136                 dquot->dq_dqb.dqb_isoftlimit :
1137                 dquot->dq_dqb.dqb_ihardlimit;
1138         if (limit && buf->f_files > limit) {
1139                 buf->f_files = limit;
1140                 buf->f_ffree =
1141                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1142                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1143         }
1144
1145         spin_unlock(&dq_data_lock);
1146         dqput(dquot);
1147         return 0;
1148 }
1149 #endif
1150
1151 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1152 {
1153         struct super_block *sb = dentry->d_sb;
1154         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1155         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1156         block_t total_count, user_block_count, start_count;
1157         u64 avail_node_count;
1158
1159         total_count = le64_to_cpu(sbi->raw_super->block_count);
1160         user_block_count = sbi->user_block_count;
1161         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1162         buf->f_type = F2FS_SUPER_MAGIC;
1163         buf->f_bsize = sbi->blocksize;
1164
1165         buf->f_blocks = total_count - start_count;
1166         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1167                                                 sbi->current_reserved_blocks;
1168         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1169                 buf->f_bavail = buf->f_bfree -
1170                                 F2FS_OPTION(sbi).root_reserved_blocks;
1171         else
1172                 buf->f_bavail = 0;
1173
1174         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1175                                                 F2FS_RESERVED_NODE_NUM;
1176
1177         if (avail_node_count > user_block_count) {
1178                 buf->f_files = user_block_count;
1179                 buf->f_ffree = buf->f_bavail;
1180         } else {
1181                 buf->f_files = avail_node_count;
1182                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1183                                         buf->f_bavail);
1184         }
1185
1186         buf->f_namelen = F2FS_NAME_LEN;
1187         buf->f_fsid.val[0] = (u32)id;
1188         buf->f_fsid.val[1] = (u32)(id >> 32);
1189
1190 #ifdef CONFIG_QUOTA
1191         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1192                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1193                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1194         }
1195 #endif
1196         return 0;
1197 }
1198
1199 static inline void f2fs_show_quota_options(struct seq_file *seq,
1200                                            struct super_block *sb)
1201 {
1202 #ifdef CONFIG_QUOTA
1203         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1204
1205         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1206                 char *fmtname = "";
1207
1208                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1209                 case QFMT_VFS_OLD:
1210                         fmtname = "vfsold";
1211                         break;
1212                 case QFMT_VFS_V0:
1213                         fmtname = "vfsv0";
1214                         break;
1215                 case QFMT_VFS_V1:
1216                         fmtname = "vfsv1";
1217                         break;
1218                 }
1219                 seq_printf(seq, ",jqfmt=%s", fmtname);
1220         }
1221
1222         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1223                 seq_show_option(seq, "usrjquota",
1224                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1225
1226         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1227                 seq_show_option(seq, "grpjquota",
1228                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1229
1230         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1231                 seq_show_option(seq, "prjjquota",
1232                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1233 #endif
1234 }
1235
1236 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1237 {
1238         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1239
1240         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1241                 if (test_opt(sbi, FORCE_FG_GC))
1242                         seq_printf(seq, ",background_gc=%s", "sync");
1243                 else
1244                         seq_printf(seq, ",background_gc=%s", "on");
1245         } else {
1246                 seq_printf(seq, ",background_gc=%s", "off");
1247         }
1248         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1249                 seq_puts(seq, ",disable_roll_forward");
1250         if (test_opt(sbi, DISCARD))
1251                 seq_puts(seq, ",discard");
1252         if (test_opt(sbi, NOHEAP))
1253                 seq_puts(seq, ",no_heap");
1254         else
1255                 seq_puts(seq, ",heap");
1256 #ifdef CONFIG_F2FS_FS_XATTR
1257         if (test_opt(sbi, XATTR_USER))
1258                 seq_puts(seq, ",user_xattr");
1259         else
1260                 seq_puts(seq, ",nouser_xattr");
1261         if (test_opt(sbi, INLINE_XATTR))
1262                 seq_puts(seq, ",inline_xattr");
1263         else
1264                 seq_puts(seq, ",noinline_xattr");
1265         if (test_opt(sbi, INLINE_XATTR_SIZE))
1266                 seq_printf(seq, ",inline_xattr_size=%u",
1267                                         F2FS_OPTION(sbi).inline_xattr_size);
1268 #endif
1269 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1270         if (test_opt(sbi, POSIX_ACL))
1271                 seq_puts(seq, ",acl");
1272         else
1273                 seq_puts(seq, ",noacl");
1274 #endif
1275         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1276                 seq_puts(seq, ",disable_ext_identify");
1277         if (test_opt(sbi, INLINE_DATA))
1278                 seq_puts(seq, ",inline_data");
1279         else
1280                 seq_puts(seq, ",noinline_data");
1281         if (test_opt(sbi, INLINE_DENTRY))
1282                 seq_puts(seq, ",inline_dentry");
1283         else
1284                 seq_puts(seq, ",noinline_dentry");
1285         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1286                 seq_puts(seq, ",flush_merge");
1287         if (test_opt(sbi, NOBARRIER))
1288                 seq_puts(seq, ",nobarrier");
1289         if (test_opt(sbi, FASTBOOT))
1290                 seq_puts(seq, ",fastboot");
1291         if (test_opt(sbi, EXTENT_CACHE))
1292                 seq_puts(seq, ",extent_cache");
1293         else
1294                 seq_puts(seq, ",noextent_cache");
1295         if (test_opt(sbi, DATA_FLUSH))
1296                 seq_puts(seq, ",data_flush");
1297
1298         seq_puts(seq, ",mode=");
1299         if (test_opt(sbi, ADAPTIVE))
1300                 seq_puts(seq, "adaptive");
1301         else if (test_opt(sbi, LFS))
1302                 seq_puts(seq, "lfs");
1303         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1304         if (test_opt(sbi, RESERVE_ROOT))
1305                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1306                                 F2FS_OPTION(sbi).root_reserved_blocks,
1307                                 from_kuid_munged(&init_user_ns,
1308                                         F2FS_OPTION(sbi).s_resuid),
1309                                 from_kgid_munged(&init_user_ns,
1310                                         F2FS_OPTION(sbi).s_resgid));
1311         if (F2FS_IO_SIZE_BITS(sbi))
1312                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1313 #ifdef CONFIG_F2FS_FAULT_INJECTION
1314         if (test_opt(sbi, FAULT_INJECTION))
1315                 seq_printf(seq, ",fault_injection=%u",
1316                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1317 #endif
1318 #ifdef CONFIG_QUOTA
1319         if (test_opt(sbi, QUOTA))
1320                 seq_puts(seq, ",quota");
1321         if (test_opt(sbi, USRQUOTA))
1322                 seq_puts(seq, ",usrquota");
1323         if (test_opt(sbi, GRPQUOTA))
1324                 seq_puts(seq, ",grpquota");
1325         if (test_opt(sbi, PRJQUOTA))
1326                 seq_puts(seq, ",prjquota");
1327 #endif
1328         f2fs_show_quota_options(seq, sbi->sb);
1329         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1330                 seq_printf(seq, ",whint_mode=%s", "user-based");
1331         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1332                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1333 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1334         if (F2FS_OPTION(sbi).test_dummy_encryption)
1335                 seq_puts(seq, ",test_dummy_encryption");
1336 #endif
1337
1338         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1339                 seq_printf(seq, ",alloc_mode=%s", "default");
1340         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1341                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1342
1343         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1344                 seq_printf(seq, ",fsync_mode=%s", "posix");
1345         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1346                 seq_printf(seq, ",fsync_mode=%s", "strict");
1347         return 0;
1348 }
1349
1350 static void default_options(struct f2fs_sb_info *sbi)
1351 {
1352         /* init some FS parameters */
1353         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1354         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1355         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1356         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1357         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1358         F2FS_OPTION(sbi).test_dummy_encryption = false;
1359         sbi->readdir_ra = 1;
1360
1361         set_opt(sbi, BG_GC);
1362         set_opt(sbi, INLINE_XATTR);
1363         set_opt(sbi, INLINE_DATA);
1364         set_opt(sbi, INLINE_DENTRY);
1365         set_opt(sbi, EXTENT_CACHE);
1366         set_opt(sbi, NOHEAP);
1367         sbi->sb->s_flags |= SB_LAZYTIME;
1368         set_opt(sbi, FLUSH_MERGE);
1369         if (f2fs_sb_has_blkzoned(sbi->sb)) {
1370                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1371                 set_opt(sbi, DISCARD);
1372         } else {
1373                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1374         }
1375
1376 #ifdef CONFIG_F2FS_FS_XATTR
1377         set_opt(sbi, XATTR_USER);
1378 #endif
1379 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1380         set_opt(sbi, POSIX_ACL);
1381 #endif
1382
1383 #ifdef CONFIG_F2FS_FAULT_INJECTION
1384         f2fs_build_fault_attr(sbi, 0);
1385 #endif
1386 }
1387
1388 #ifdef CONFIG_QUOTA
1389 static int f2fs_enable_quotas(struct super_block *sb);
1390 #endif
1391 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1392 {
1393         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1394         struct f2fs_mount_info org_mount_opt;
1395         unsigned long old_sb_flags;
1396         int err;
1397         bool need_restart_gc = false;
1398         bool need_stop_gc = false;
1399         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1400 #ifdef CONFIG_QUOTA
1401         int i, j;
1402 #endif
1403
1404         /*
1405          * Save the old mount options in case we
1406          * need to restore them.
1407          */
1408         org_mount_opt = sbi->mount_opt;
1409         old_sb_flags = sb->s_flags;
1410
1411 #ifdef CONFIG_QUOTA
1412         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1413         for (i = 0; i < MAXQUOTAS; i++) {
1414                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1415                         org_mount_opt.s_qf_names[i] =
1416                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1417                                 GFP_KERNEL);
1418                         if (!org_mount_opt.s_qf_names[i]) {
1419                                 for (j = 0; j < i; j++)
1420                                         kfree(org_mount_opt.s_qf_names[j]);
1421                                 return -ENOMEM;
1422                         }
1423                 } else {
1424                         org_mount_opt.s_qf_names[i] = NULL;
1425                 }
1426         }
1427 #endif
1428
1429         /* recover superblocks we couldn't write due to previous RO mount */
1430         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1431                 err = f2fs_commit_super(sbi, false);
1432                 f2fs_msg(sb, KERN_INFO,
1433                         "Try to recover all the superblocks, ret: %d", err);
1434                 if (!err)
1435                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1436         }
1437
1438         default_options(sbi);
1439
1440         /* parse mount options */
1441         err = parse_options(sb, data);
1442         if (err)
1443                 goto restore_opts;
1444
1445         /*
1446          * Previous and new state of filesystem is RO,
1447          * so skip checking GC and FLUSH_MERGE conditions.
1448          */
1449         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1450                 goto skip;
1451
1452 #ifdef CONFIG_QUOTA
1453         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1454                 err = dquot_suspend(sb, -1);
1455                 if (err < 0)
1456                         goto restore_opts;
1457         } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1458                 /* dquot_resume needs RW */
1459                 sb->s_flags &= ~SB_RDONLY;
1460                 if (sb_any_quota_suspended(sb)) {
1461                         dquot_resume(sb, -1);
1462                 } else if (f2fs_sb_has_quota_ino(sb)) {
1463                         err = f2fs_enable_quotas(sb);
1464                         if (err)
1465                                 goto restore_opts;
1466                 }
1467         }
1468 #endif
1469         /* disallow enable/disable extent_cache dynamically */
1470         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1471                 err = -EINVAL;
1472                 f2fs_msg(sbi->sb, KERN_WARNING,
1473                                 "switch extent_cache option is not allowed");
1474                 goto restore_opts;
1475         }
1476
1477         /*
1478          * We stop the GC thread if FS is mounted as RO
1479          * or if background_gc = off is passed in mount
1480          * option. Also sync the filesystem.
1481          */
1482         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1483                 if (sbi->gc_thread) {
1484                         stop_gc_thread(sbi);
1485                         need_restart_gc = true;
1486                 }
1487         } else if (!sbi->gc_thread) {
1488                 err = start_gc_thread(sbi);
1489                 if (err)
1490                         goto restore_opts;
1491                 need_stop_gc = true;
1492         }
1493
1494         if (*flags & SB_RDONLY ||
1495                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1496                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1497                 sync_inodes_sb(sb);
1498
1499                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1500                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1501                 f2fs_sync_fs(sb, 1);
1502                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1503         }
1504
1505         /*
1506          * We stop issue flush thread if FS is mounted as RO
1507          * or if flush_merge is not passed in mount option.
1508          */
1509         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1510                 clear_opt(sbi, FLUSH_MERGE);
1511                 destroy_flush_cmd_control(sbi, false);
1512         } else {
1513                 err = create_flush_cmd_control(sbi);
1514                 if (err)
1515                         goto restore_gc;
1516         }
1517 skip:
1518 #ifdef CONFIG_QUOTA
1519         /* Release old quota file names */
1520         for (i = 0; i < MAXQUOTAS; i++)
1521                 kfree(org_mount_opt.s_qf_names[i]);
1522 #endif
1523         /* Update the POSIXACL Flag */
1524         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1525                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1526
1527         limit_reserve_root(sbi);
1528         return 0;
1529 restore_gc:
1530         if (need_restart_gc) {
1531                 if (start_gc_thread(sbi))
1532                         f2fs_msg(sbi->sb, KERN_WARNING,
1533                                 "background gc thread has stopped");
1534         } else if (need_stop_gc) {
1535                 stop_gc_thread(sbi);
1536         }
1537 restore_opts:
1538 #ifdef CONFIG_QUOTA
1539         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1540         for (i = 0; i < MAXQUOTAS; i++) {
1541                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1542                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1543         }
1544 #endif
1545         sbi->mount_opt = org_mount_opt;
1546         sb->s_flags = old_sb_flags;
1547         return err;
1548 }
1549
1550 #ifdef CONFIG_QUOTA
1551 /* Read data from quotafile */
1552 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1553                                size_t len, loff_t off)
1554 {
1555         struct inode *inode = sb_dqopt(sb)->files[type];
1556         struct address_space *mapping = inode->i_mapping;
1557         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1558         int offset = off & (sb->s_blocksize - 1);
1559         int tocopy;
1560         size_t toread;
1561         loff_t i_size = i_size_read(inode);
1562         struct page *page;
1563         char *kaddr;
1564
1565         if (off > i_size)
1566                 return 0;
1567
1568         if (off + len > i_size)
1569                 len = i_size - off;
1570         toread = len;
1571         while (toread > 0) {
1572                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1573 repeat:
1574                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1575                 if (IS_ERR(page)) {
1576                         if (PTR_ERR(page) == -ENOMEM) {
1577                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1578                                 goto repeat;
1579                         }
1580                         return PTR_ERR(page);
1581                 }
1582
1583                 lock_page(page);
1584
1585                 if (unlikely(page->mapping != mapping)) {
1586                         f2fs_put_page(page, 1);
1587                         goto repeat;
1588                 }
1589                 if (unlikely(!PageUptodate(page))) {
1590                         f2fs_put_page(page, 1);
1591                         return -EIO;
1592                 }
1593
1594                 kaddr = kmap_atomic(page);
1595                 memcpy(data, kaddr + offset, tocopy);
1596                 kunmap_atomic(kaddr);
1597                 f2fs_put_page(page, 1);
1598
1599                 offset = 0;
1600                 toread -= tocopy;
1601                 data += tocopy;
1602                 blkidx++;
1603         }
1604         return len;
1605 }
1606
1607 /* Write to quotafile */
1608 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1609                                 const char *data, size_t len, loff_t off)
1610 {
1611         struct inode *inode = sb_dqopt(sb)->files[type];
1612         struct address_space *mapping = inode->i_mapping;
1613         const struct address_space_operations *a_ops = mapping->a_ops;
1614         int offset = off & (sb->s_blocksize - 1);
1615         size_t towrite = len;
1616         struct page *page;
1617         char *kaddr;
1618         int err = 0;
1619         int tocopy;
1620
1621         while (towrite > 0) {
1622                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1623                                                                 towrite);
1624 retry:
1625                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1626                                                         &page, NULL);
1627                 if (unlikely(err)) {
1628                         if (err == -ENOMEM) {
1629                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1630                                 goto retry;
1631                         }
1632                         break;
1633                 }
1634
1635                 kaddr = kmap_atomic(page);
1636                 memcpy(kaddr + offset, data, tocopy);
1637                 kunmap_atomic(kaddr);
1638                 flush_dcache_page(page);
1639
1640                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1641                                                 page, NULL);
1642                 offset = 0;
1643                 towrite -= tocopy;
1644                 off += tocopy;
1645                 data += tocopy;
1646                 cond_resched();
1647         }
1648
1649         if (len == towrite)
1650                 return err;
1651         inode->i_mtime = inode->i_ctime = current_time(inode);
1652         f2fs_mark_inode_dirty_sync(inode, false);
1653         return len - towrite;
1654 }
1655
1656 static struct dquot **f2fs_get_dquots(struct inode *inode)
1657 {
1658         return F2FS_I(inode)->i_dquot;
1659 }
1660
1661 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1662 {
1663         return &F2FS_I(inode)->i_reserved_quota;
1664 }
1665
1666 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1667 {
1668         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1669                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1670 }
1671
1672 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1673 {
1674         int enabled = 0;
1675         int i, err;
1676
1677         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1678                 err = f2fs_enable_quotas(sbi->sb);
1679                 if (err) {
1680                         f2fs_msg(sbi->sb, KERN_ERR,
1681                                         "Cannot turn on quota_ino: %d", err);
1682                         return 0;
1683                 }
1684                 return 1;
1685         }
1686
1687         for (i = 0; i < MAXQUOTAS; i++) {
1688                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1689                         err = f2fs_quota_on_mount(sbi, i);
1690                         if (!err) {
1691                                 enabled = 1;
1692                                 continue;
1693                         }
1694                         f2fs_msg(sbi->sb, KERN_ERR,
1695                                 "Cannot turn on quotas: %d on %d", err, i);
1696                 }
1697         }
1698         return enabled;
1699 }
1700
1701 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1702                              unsigned int flags)
1703 {
1704         struct inode *qf_inode;
1705         unsigned long qf_inum;
1706         int err;
1707
1708         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1709
1710         qf_inum = f2fs_qf_ino(sb, type);
1711         if (!qf_inum)
1712                 return -EPERM;
1713
1714         qf_inode = f2fs_iget(sb, qf_inum);
1715         if (IS_ERR(qf_inode)) {
1716                 f2fs_msg(sb, KERN_ERR,
1717                         "Bad quota inode %u:%lu", type, qf_inum);
1718                 return PTR_ERR(qf_inode);
1719         }
1720
1721         /* Don't account quota for quota files to avoid recursion */
1722         qf_inode->i_flags |= S_NOQUOTA;
1723         err = dquot_enable(qf_inode, type, format_id, flags);
1724         iput(qf_inode);
1725         return err;
1726 }
1727
1728 static int f2fs_enable_quotas(struct super_block *sb)
1729 {
1730         int type, err = 0;
1731         unsigned long qf_inum;
1732         bool quota_mopt[MAXQUOTAS] = {
1733                 test_opt(F2FS_SB(sb), USRQUOTA),
1734                 test_opt(F2FS_SB(sb), GRPQUOTA),
1735                 test_opt(F2FS_SB(sb), PRJQUOTA),
1736         };
1737
1738         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1739         for (type = 0; type < MAXQUOTAS; type++) {
1740                 qf_inum = f2fs_qf_ino(sb, type);
1741                 if (qf_inum) {
1742                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1743                                 DQUOT_USAGE_ENABLED |
1744                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1745                         if (err) {
1746                                 f2fs_msg(sb, KERN_ERR,
1747                                         "Failed to enable quota tracking "
1748                                         "(type=%d, err=%d). Please run "
1749                                         "fsck to fix.", type, err);
1750                                 for (type--; type >= 0; type--)
1751                                         dquot_quota_off(sb, type);
1752                                 return err;
1753                         }
1754                 }
1755         }
1756         return 0;
1757 }
1758
1759 static int f2fs_quota_sync(struct super_block *sb, int type)
1760 {
1761         struct quota_info *dqopt = sb_dqopt(sb);
1762         int cnt;
1763         int ret;
1764
1765         ret = dquot_writeback_dquots(sb, type);
1766         if (ret)
1767                 return ret;
1768
1769         /*
1770          * Now when everything is written we can discard the pagecache so
1771          * that userspace sees the changes.
1772          */
1773         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1774                 if (type != -1 && cnt != type)
1775                         continue;
1776                 if (!sb_has_quota_active(sb, cnt))
1777                         continue;
1778
1779                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1780                 if (ret)
1781                         return ret;
1782
1783                 inode_lock(dqopt->files[cnt]);
1784                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1785                 inode_unlock(dqopt->files[cnt]);
1786         }
1787         return 0;
1788 }
1789
1790 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1791                                                         const struct path *path)
1792 {
1793         struct inode *inode;
1794         int err;
1795
1796         err = f2fs_quota_sync(sb, type);
1797         if (err)
1798                 return err;
1799
1800         err = dquot_quota_on(sb, type, format_id, path);
1801         if (err)
1802                 return err;
1803
1804         inode = d_inode(path->dentry);
1805
1806         inode_lock(inode);
1807         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1808         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1809                                         S_NOATIME | S_IMMUTABLE);
1810         inode_unlock(inode);
1811         f2fs_mark_inode_dirty_sync(inode, false);
1812
1813         return 0;
1814 }
1815
1816 static int f2fs_quota_off(struct super_block *sb, int type)
1817 {
1818         struct inode *inode = sb_dqopt(sb)->files[type];
1819         int err;
1820
1821         if (!inode || !igrab(inode))
1822                 return dquot_quota_off(sb, type);
1823
1824         f2fs_quota_sync(sb, type);
1825
1826         err = dquot_quota_off(sb, type);
1827         if (err || f2fs_sb_has_quota_ino(sb))
1828                 goto out_put;
1829
1830         inode_lock(inode);
1831         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1832         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1833         inode_unlock(inode);
1834         f2fs_mark_inode_dirty_sync(inode, false);
1835 out_put:
1836         iput(inode);
1837         return err;
1838 }
1839
1840 void f2fs_quota_off_umount(struct super_block *sb)
1841 {
1842         int type;
1843
1844         for (type = 0; type < MAXQUOTAS; type++)
1845                 f2fs_quota_off(sb, type);
1846 }
1847
1848 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1849 {
1850         *projid = F2FS_I(inode)->i_projid;
1851         return 0;
1852 }
1853
1854 static const struct dquot_operations f2fs_quota_operations = {
1855         .get_reserved_space = f2fs_get_reserved_space,
1856         .write_dquot    = dquot_commit,
1857         .acquire_dquot  = dquot_acquire,
1858         .release_dquot  = dquot_release,
1859         .mark_dirty     = dquot_mark_dquot_dirty,
1860         .write_info     = dquot_commit_info,
1861         .alloc_dquot    = dquot_alloc,
1862         .destroy_dquot  = dquot_destroy,
1863         .get_projid     = f2fs_get_projid,
1864         .get_next_id    = dquot_get_next_id,
1865 };
1866
1867 static const struct quotactl_ops f2fs_quotactl_ops = {
1868         .quota_on       = f2fs_quota_on,
1869         .quota_off      = f2fs_quota_off,
1870         .quota_sync     = f2fs_quota_sync,
1871         .get_state      = dquot_get_state,
1872         .set_info       = dquot_set_dqinfo,
1873         .get_dqblk      = dquot_get_dqblk,
1874         .set_dqblk      = dquot_set_dqblk,
1875         .get_nextdqblk  = dquot_get_next_dqblk,
1876 };
1877 #else
1878 void f2fs_quota_off_umount(struct super_block *sb)
1879 {
1880 }
1881 #endif
1882
1883 static const struct super_operations f2fs_sops = {
1884         .alloc_inode    = f2fs_alloc_inode,
1885         .drop_inode     = f2fs_drop_inode,
1886         .destroy_inode  = f2fs_destroy_inode,
1887         .write_inode    = f2fs_write_inode,
1888         .dirty_inode    = f2fs_dirty_inode,
1889         .show_options   = f2fs_show_options,
1890 #ifdef CONFIG_QUOTA
1891         .quota_read     = f2fs_quota_read,
1892         .quota_write    = f2fs_quota_write,
1893         .get_dquots     = f2fs_get_dquots,
1894 #endif
1895         .evict_inode    = f2fs_evict_inode,
1896         .put_super      = f2fs_put_super,
1897         .sync_fs        = f2fs_sync_fs,
1898         .freeze_fs      = f2fs_freeze,
1899         .unfreeze_fs    = f2fs_unfreeze,
1900         .statfs         = f2fs_statfs,
1901         .remount_fs     = f2fs_remount,
1902 };
1903
1904 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1905 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1906 {
1907         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1908                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1909                                 ctx, len, NULL);
1910 }
1911
1912 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1913                                                         void *fs_data)
1914 {
1915         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1916
1917         /*
1918          * Encrypting the root directory is not allowed because fsck
1919          * expects lost+found directory to exist and remain unencrypted
1920          * if LOST_FOUND feature is enabled.
1921          *
1922          */
1923         if (f2fs_sb_has_lost_found(sbi->sb) &&
1924                         inode->i_ino == F2FS_ROOT_INO(sbi))
1925                 return -EPERM;
1926
1927         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1928                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1929                                 ctx, len, fs_data, XATTR_CREATE);
1930 }
1931
1932 static bool f2fs_dummy_context(struct inode *inode)
1933 {
1934         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1935 }
1936
1937 static unsigned f2fs_max_namelen(struct inode *inode)
1938 {
1939         return S_ISLNK(inode->i_mode) ?
1940                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1941 }
1942
1943 static const struct fscrypt_operations f2fs_cryptops = {
1944         .key_prefix     = "f2fs:",
1945         .get_context    = f2fs_get_context,
1946         .set_context    = f2fs_set_context,
1947         .dummy_context  = f2fs_dummy_context,
1948         .empty_dir      = f2fs_empty_dir,
1949         .max_namelen    = f2fs_max_namelen,
1950 };
1951 #endif
1952
1953 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1954                 u64 ino, u32 generation)
1955 {
1956         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1957         struct inode *inode;
1958
1959         if (check_nid_range(sbi, ino))
1960                 return ERR_PTR(-ESTALE);
1961
1962         /*
1963          * f2fs_iget isn't quite right if the inode is currently unallocated!
1964          * However f2fs_iget currently does appropriate checks to handle stale
1965          * inodes so everything is OK.
1966          */
1967         inode = f2fs_iget(sb, ino);
1968         if (IS_ERR(inode))
1969                 return ERR_CAST(inode);
1970         if (unlikely(generation && inode->i_generation != generation)) {
1971                 /* we didn't find the right inode.. */
1972                 iput(inode);
1973                 return ERR_PTR(-ESTALE);
1974         }
1975         return inode;
1976 }
1977
1978 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1979                 int fh_len, int fh_type)
1980 {
1981         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1982                                     f2fs_nfs_get_inode);
1983 }
1984
1985 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1986                 int fh_len, int fh_type)
1987 {
1988         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1989                                     f2fs_nfs_get_inode);
1990 }
1991
1992 static const struct export_operations f2fs_export_ops = {
1993         .fh_to_dentry = f2fs_fh_to_dentry,
1994         .fh_to_parent = f2fs_fh_to_parent,
1995         .get_parent = f2fs_get_parent,
1996 };
1997
1998 static loff_t max_file_blocks(void)
1999 {
2000         loff_t result = 0;
2001         loff_t leaf_count = ADDRS_PER_BLOCK;
2002
2003         /*
2004          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2005          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2006          * space in inode.i_addr, it will be more safe to reassign
2007          * result as zero.
2008          */
2009
2010         /* two direct node blocks */
2011         result += (leaf_count * 2);
2012
2013         /* two indirect node blocks */
2014         leaf_count *= NIDS_PER_BLOCK;
2015         result += (leaf_count * 2);
2016
2017         /* one double indirect node block */
2018         leaf_count *= NIDS_PER_BLOCK;
2019         result += leaf_count;
2020
2021         return result;
2022 }
2023
2024 static int __f2fs_commit_super(struct buffer_head *bh,
2025                         struct f2fs_super_block *super)
2026 {
2027         lock_buffer(bh);
2028         if (super)
2029                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2030         set_buffer_dirty(bh);
2031         unlock_buffer(bh);
2032
2033         /* it's rare case, we can do fua all the time */
2034         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2035 }
2036
2037 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2038                                         struct buffer_head *bh)
2039 {
2040         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2041                                         (bh->b_data + F2FS_SUPER_OFFSET);
2042         struct super_block *sb = sbi->sb;
2043         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2044         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2045         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2046         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2047         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2048         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2049         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2050         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2051         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2052         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2053         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2054         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2055         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2056         u64 main_end_blkaddr = main_blkaddr +
2057                                 (segment_count_main << log_blocks_per_seg);
2058         u64 seg_end_blkaddr = segment0_blkaddr +
2059                                 (segment_count << log_blocks_per_seg);
2060
2061         if (segment0_blkaddr != cp_blkaddr) {
2062                 f2fs_msg(sb, KERN_INFO,
2063                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2064                         segment0_blkaddr, cp_blkaddr);
2065                 return true;
2066         }
2067
2068         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2069                                                         sit_blkaddr) {
2070                 f2fs_msg(sb, KERN_INFO,
2071                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2072                         cp_blkaddr, sit_blkaddr,
2073                         segment_count_ckpt << log_blocks_per_seg);
2074                 return true;
2075         }
2076
2077         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2078                                                         nat_blkaddr) {
2079                 f2fs_msg(sb, KERN_INFO,
2080                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2081                         sit_blkaddr, nat_blkaddr,
2082                         segment_count_sit << log_blocks_per_seg);
2083                 return true;
2084         }
2085
2086         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2087                                                         ssa_blkaddr) {
2088                 f2fs_msg(sb, KERN_INFO,
2089                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2090                         nat_blkaddr, ssa_blkaddr,
2091                         segment_count_nat << log_blocks_per_seg);
2092                 return true;
2093         }
2094
2095         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2096                                                         main_blkaddr) {
2097                 f2fs_msg(sb, KERN_INFO,
2098                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2099                         ssa_blkaddr, main_blkaddr,
2100                         segment_count_ssa << log_blocks_per_seg);
2101                 return true;
2102         }
2103
2104         if (main_end_blkaddr > seg_end_blkaddr) {
2105                 f2fs_msg(sb, KERN_INFO,
2106                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2107                         main_blkaddr,
2108                         segment0_blkaddr +
2109                                 (segment_count << log_blocks_per_seg),
2110                         segment_count_main << log_blocks_per_seg);
2111                 return true;
2112         } else if (main_end_blkaddr < seg_end_blkaddr) {
2113                 int err = 0;
2114                 char *res;
2115
2116                 /* fix in-memory information all the time */
2117                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2118                                 segment0_blkaddr) >> log_blocks_per_seg);
2119
2120                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2121                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2122                         res = "internally";
2123                 } else {
2124                         err = __f2fs_commit_super(bh, NULL);
2125                         res = err ? "failed" : "done";
2126                 }
2127                 f2fs_msg(sb, KERN_INFO,
2128                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2129                         res, main_blkaddr,
2130                         segment0_blkaddr +
2131                                 (segment_count << log_blocks_per_seg),
2132                         segment_count_main << log_blocks_per_seg);
2133                 if (err)
2134                         return true;
2135         }
2136         return false;
2137 }
2138
2139 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2140                                 struct buffer_head *bh)
2141 {
2142         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2143                                         (bh->b_data + F2FS_SUPER_OFFSET);
2144         struct super_block *sb = sbi->sb;
2145         unsigned int blocksize;
2146
2147         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2148                 f2fs_msg(sb, KERN_INFO,
2149                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2150                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2151                 return 1;
2152         }
2153
2154         /* Currently, support only 4KB page cache size */
2155         if (F2FS_BLKSIZE != PAGE_SIZE) {
2156                 f2fs_msg(sb, KERN_INFO,
2157                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2158                         PAGE_SIZE);
2159                 return 1;
2160         }
2161
2162         /* Currently, support only 4KB block size */
2163         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2164         if (blocksize != F2FS_BLKSIZE) {
2165                 f2fs_msg(sb, KERN_INFO,
2166                         "Invalid blocksize (%u), supports only 4KB\n",
2167                         blocksize);
2168                 return 1;
2169         }
2170
2171         /* check log blocks per segment */
2172         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2173                 f2fs_msg(sb, KERN_INFO,
2174                         "Invalid log blocks per segment (%u)\n",
2175                         le32_to_cpu(raw_super->log_blocks_per_seg));
2176                 return 1;
2177         }
2178
2179         /* Currently, support 512/1024/2048/4096 bytes sector size */
2180         if (le32_to_cpu(raw_super->log_sectorsize) >
2181                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2182                 le32_to_cpu(raw_super->log_sectorsize) <
2183                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2184                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2185                         le32_to_cpu(raw_super->log_sectorsize));
2186                 return 1;
2187         }
2188         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2189                 le32_to_cpu(raw_super->log_sectorsize) !=
2190                         F2FS_MAX_LOG_SECTOR_SIZE) {
2191                 f2fs_msg(sb, KERN_INFO,
2192                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2193                         le32_to_cpu(raw_super->log_sectors_per_block),
2194                         le32_to_cpu(raw_super->log_sectorsize));
2195                 return 1;
2196         }
2197
2198         /* check reserved ino info */
2199         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2200                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2201                 le32_to_cpu(raw_super->root_ino) != 3) {
2202                 f2fs_msg(sb, KERN_INFO,
2203                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2204                         le32_to_cpu(raw_super->node_ino),
2205                         le32_to_cpu(raw_super->meta_ino),
2206                         le32_to_cpu(raw_super->root_ino));
2207                 return 1;
2208         }
2209
2210         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2211                 f2fs_msg(sb, KERN_INFO,
2212                         "Invalid segment count (%u)",
2213                         le32_to_cpu(raw_super->segment_count));
2214                 return 1;
2215         }
2216
2217         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2218         if (sanity_check_area_boundary(sbi, bh))
2219                 return 1;
2220
2221         return 0;
2222 }
2223
2224 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2225 {
2226         unsigned int total, fsmeta;
2227         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2228         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2229         unsigned int ovp_segments, reserved_segments;
2230         unsigned int main_segs, blocks_per_seg;
2231         int i;
2232
2233         total = le32_to_cpu(raw_super->segment_count);
2234         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2235         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2236         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2237         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2238         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2239
2240         if (unlikely(fsmeta >= total))
2241                 return 1;
2242
2243         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2244         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2245
2246         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2247                         ovp_segments == 0 || reserved_segments == 0)) {
2248                 f2fs_msg(sbi->sb, KERN_ERR,
2249                         "Wrong layout: check mkfs.f2fs version");
2250                 return 1;
2251         }
2252
2253         main_segs = le32_to_cpu(raw_super->segment_count_main);
2254         blocks_per_seg = sbi->blocks_per_seg;
2255
2256         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2257                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2258                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2259                         return 1;
2260         }
2261         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2262                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2263                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2264                         return 1;
2265         }
2266
2267         if (unlikely(f2fs_cp_error(sbi))) {
2268                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2269                 return 1;
2270         }
2271         return 0;
2272 }
2273
2274 static void init_sb_info(struct f2fs_sb_info *sbi)
2275 {
2276         struct f2fs_super_block *raw_super = sbi->raw_super;
2277         int i, j;
2278
2279         sbi->log_sectors_per_block =
2280                 le32_to_cpu(raw_super->log_sectors_per_block);
2281         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2282         sbi->blocksize = 1 << sbi->log_blocksize;
2283         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2284         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2285         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2286         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2287         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2288         sbi->total_node_count =
2289                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2290                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2291         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2292         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2293         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2294         sbi->cur_victim_sec = NULL_SECNO;
2295         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2296
2297         sbi->dir_level = DEF_DIR_LEVEL;
2298         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2299         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2300         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2301
2302         for (i = 0; i < NR_COUNT_TYPE; i++)
2303                 atomic_set(&sbi->nr_pages[i], 0);
2304
2305         atomic_set(&sbi->wb_sync_req, 0);
2306
2307         INIT_LIST_HEAD(&sbi->s_list);
2308         mutex_init(&sbi->umount_mutex);
2309         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2310                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2311                         mutex_init(&sbi->wio_mutex[i][j]);
2312         spin_lock_init(&sbi->cp_lock);
2313
2314         sbi->dirty_device = 0;
2315         spin_lock_init(&sbi->dev_lock);
2316
2317         init_rwsem(&sbi->sb_lock);
2318 }
2319
2320 static int init_percpu_info(struct f2fs_sb_info *sbi)
2321 {
2322         int err;
2323
2324         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2325         if (err)
2326                 return err;
2327
2328         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2329                                                                 GFP_KERNEL);
2330 }
2331
2332 #ifdef CONFIG_BLK_DEV_ZONED
2333 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2334 {
2335         struct block_device *bdev = FDEV(devi).bdev;
2336         sector_t nr_sectors = bdev->bd_part->nr_sects;
2337         sector_t sector = 0;
2338         struct blk_zone *zones;
2339         unsigned int i, nr_zones;
2340         unsigned int n = 0;
2341         int err = -EIO;
2342
2343         if (!f2fs_sb_has_blkzoned(sbi->sb))
2344                 return 0;
2345
2346         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2347                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2348                 return -EINVAL;
2349         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2350         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2351                                 __ilog2_u32(sbi->blocks_per_blkz))
2352                 return -EINVAL;
2353         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2354         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2355                                         sbi->log_blocks_per_blkz;
2356         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2357                 FDEV(devi).nr_blkz++;
2358
2359         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2360                                                                 GFP_KERNEL);
2361         if (!FDEV(devi).blkz_type)
2362                 return -ENOMEM;
2363
2364 #define F2FS_REPORT_NR_ZONES   4096
2365
2366         zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2367                                 F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2368         if (!zones)
2369                 return -ENOMEM;
2370
2371         /* Get block zones type */
2372         while (zones && sector < nr_sectors) {
2373
2374                 nr_zones = F2FS_REPORT_NR_ZONES;
2375                 err = blkdev_report_zones(bdev, sector,
2376                                           zones, &nr_zones,
2377                                           GFP_KERNEL);
2378                 if (err)
2379                         break;
2380                 if (!nr_zones) {
2381                         err = -EIO;
2382                         break;
2383                 }
2384
2385                 for (i = 0; i < nr_zones; i++) {
2386                         FDEV(devi).blkz_type[n] = zones[i].type;
2387                         sector += zones[i].len;
2388                         n++;
2389                 }
2390         }
2391
2392         kfree(zones);
2393
2394         return err;
2395 }
2396 #endif
2397
2398 /*
2399  * Read f2fs raw super block.
2400  * Because we have two copies of super block, so read both of them
2401  * to get the first valid one. If any one of them is broken, we pass
2402  * them recovery flag back to the caller.
2403  */
2404 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2405                         struct f2fs_super_block **raw_super,
2406                         int *valid_super_block, int *recovery)
2407 {
2408         struct super_block *sb = sbi->sb;
2409         int block;
2410         struct buffer_head *bh;
2411         struct f2fs_super_block *super;
2412         int err = 0;
2413
2414         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2415         if (!super)
2416                 return -ENOMEM;
2417
2418         for (block = 0; block < 2; block++) {
2419                 bh = sb_bread(sb, block);
2420                 if (!bh) {
2421                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2422                                 block + 1);
2423                         err = -EIO;
2424                         continue;
2425                 }
2426
2427                 /* sanity checking of raw super */
2428                 if (sanity_check_raw_super(sbi, bh)) {
2429                         f2fs_msg(sb, KERN_ERR,
2430                                 "Can't find valid F2FS filesystem in %dth superblock",
2431                                 block + 1);
2432                         err = -EINVAL;
2433                         brelse(bh);
2434                         continue;
2435                 }
2436
2437                 if (!*raw_super) {
2438                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2439                                                         sizeof(*super));
2440                         *valid_super_block = block;
2441                         *raw_super = super;
2442                 }
2443                 brelse(bh);
2444         }
2445
2446         /* Fail to read any one of the superblocks*/
2447         if (err < 0)
2448                 *recovery = 1;
2449
2450         /* No valid superblock */
2451         if (!*raw_super)
2452                 kfree(super);
2453         else
2454                 err = 0;
2455
2456         return err;
2457 }
2458
2459 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2460 {
2461         struct buffer_head *bh;
2462         int err;
2463
2464         if ((recover && f2fs_readonly(sbi->sb)) ||
2465                                 bdev_read_only(sbi->sb->s_bdev)) {
2466                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2467                 return -EROFS;
2468         }
2469
2470         /* write back-up superblock first */
2471         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2472         if (!bh)
2473                 return -EIO;
2474         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2475         brelse(bh);
2476
2477         /* if we are in recovery path, skip writing valid superblock */
2478         if (recover || err)
2479                 return err;
2480
2481         /* write current valid superblock */
2482         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2483         if (!bh)
2484                 return -EIO;
2485         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2486         brelse(bh);
2487         return err;
2488 }
2489
2490 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2491 {
2492         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2493         unsigned int max_devices = MAX_DEVICES;
2494         int i;
2495
2496         /* Initialize single device information */
2497         if (!RDEV(0).path[0]) {
2498                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2499                         return 0;
2500                 max_devices = 1;
2501         }
2502
2503         /*
2504          * Initialize multiple devices information, or single
2505          * zoned block device information.
2506          */
2507         sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2508                                                 max_devices, GFP_KERNEL);
2509         if (!sbi->devs)
2510                 return -ENOMEM;
2511
2512         for (i = 0; i < max_devices; i++) {
2513
2514                 if (i > 0 && !RDEV(i).path[0])
2515                         break;
2516
2517                 if (max_devices == 1) {
2518                         /* Single zoned block device mount */
2519                         FDEV(0).bdev =
2520                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2521                                         sbi->sb->s_mode, sbi->sb->s_type);
2522                 } else {
2523                         /* Multi-device mount */
2524                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2525                         FDEV(i).total_segments =
2526                                 le32_to_cpu(RDEV(i).total_segments);
2527                         if (i == 0) {
2528                                 FDEV(i).start_blk = 0;
2529                                 FDEV(i).end_blk = FDEV(i).start_blk +
2530                                     (FDEV(i).total_segments <<
2531                                     sbi->log_blocks_per_seg) - 1 +
2532                                     le32_to_cpu(raw_super->segment0_blkaddr);
2533                         } else {
2534                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2535                                 FDEV(i).end_blk = FDEV(i).start_blk +
2536                                         (FDEV(i).total_segments <<
2537                                         sbi->log_blocks_per_seg) - 1;
2538                         }
2539                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2540                                         sbi->sb->s_mode, sbi->sb->s_type);
2541                 }
2542                 if (IS_ERR(FDEV(i).bdev))
2543                         return PTR_ERR(FDEV(i).bdev);
2544
2545                 /* to release errored devices */
2546                 sbi->s_ndevs = i + 1;
2547
2548 #ifdef CONFIG_BLK_DEV_ZONED
2549                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2550                                 !f2fs_sb_has_blkzoned(sbi->sb)) {
2551                         f2fs_msg(sbi->sb, KERN_ERR,
2552                                 "Zoned block device feature not enabled\n");
2553                         return -EINVAL;
2554                 }
2555                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2556                         if (init_blkz_info(sbi, i)) {
2557                                 f2fs_msg(sbi->sb, KERN_ERR,
2558                                         "Failed to initialize F2FS blkzone information");
2559                                 return -EINVAL;
2560                         }
2561                         if (max_devices == 1)
2562                                 break;
2563                         f2fs_msg(sbi->sb, KERN_INFO,
2564                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2565                                 i, FDEV(i).path,
2566                                 FDEV(i).total_segments,
2567                                 FDEV(i).start_blk, FDEV(i).end_blk,
2568                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2569                                 "Host-aware" : "Host-managed");
2570                         continue;
2571                 }
2572 #endif
2573                 f2fs_msg(sbi->sb, KERN_INFO,
2574                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2575                                 i, FDEV(i).path,
2576                                 FDEV(i).total_segments,
2577                                 FDEV(i).start_blk, FDEV(i).end_blk);
2578         }
2579         f2fs_msg(sbi->sb, KERN_INFO,
2580                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2581         return 0;
2582 }
2583
2584 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2585 {
2586         struct f2fs_sm_info *sm_i = SM_I(sbi);
2587
2588         /* adjust parameters according to the volume size */
2589         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2590                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2591                 sm_i->dcc_info->discard_granularity = 1;
2592                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2593         }
2594 }
2595
2596 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2597 {
2598         struct f2fs_sb_info *sbi;
2599         struct f2fs_super_block *raw_super;
2600         struct inode *root;
2601         int err;
2602         bool retry = true, need_fsck = false;
2603         char *options = NULL;
2604         int recovery, i, valid_super_block;
2605         struct curseg_info *seg_i;
2606
2607 try_onemore:
2608         err = -EINVAL;
2609         raw_super = NULL;
2610         valid_super_block = -1;
2611         recovery = 0;
2612
2613         /* allocate memory for f2fs-specific super block info */
2614         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2615         if (!sbi)
2616                 return -ENOMEM;
2617
2618         sbi->sb = sb;
2619
2620         /* Load the checksum driver */
2621         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2622         if (IS_ERR(sbi->s_chksum_driver)) {
2623                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2624                 err = PTR_ERR(sbi->s_chksum_driver);
2625                 sbi->s_chksum_driver = NULL;
2626                 goto free_sbi;
2627         }
2628
2629         /* set a block size */
2630         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2631                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2632                 goto free_sbi;
2633         }
2634
2635         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2636                                                                 &recovery);
2637         if (err)
2638                 goto free_sbi;
2639
2640         sb->s_fs_info = sbi;
2641         sbi->raw_super = raw_super;
2642
2643         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2644         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2645
2646         /* precompute checksum seed for metadata */
2647         if (f2fs_sb_has_inode_chksum(sb))
2648                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2649                                                 sizeof(raw_super->uuid));
2650
2651         /*
2652          * The BLKZONED feature indicates that the drive was formatted with
2653          * zone alignment optimization. This is optional for host-aware
2654          * devices, but mandatory for host-managed zoned block devices.
2655          */
2656 #ifndef CONFIG_BLK_DEV_ZONED
2657         if (f2fs_sb_has_blkzoned(sb)) {
2658                 f2fs_msg(sb, KERN_ERR,
2659                          "Zoned block device support is not enabled\n");
2660                 err = -EOPNOTSUPP;
2661                 goto free_sb_buf;
2662         }
2663 #endif
2664         default_options(sbi);
2665         /* parse mount options */
2666         options = kstrdup((const char *)data, GFP_KERNEL);
2667         if (data && !options) {
2668                 err = -ENOMEM;
2669                 goto free_sb_buf;
2670         }
2671
2672         err = parse_options(sb, options);
2673         if (err)
2674                 goto free_options;
2675
2676         sbi->max_file_blocks = max_file_blocks();
2677         sb->s_maxbytes = sbi->max_file_blocks <<
2678                                 le32_to_cpu(raw_super->log_blocksize);
2679         sb->s_max_links = F2FS_LINK_MAX;
2680         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2681
2682 #ifdef CONFIG_QUOTA
2683         sb->dq_op = &f2fs_quota_operations;
2684         if (f2fs_sb_has_quota_ino(sb))
2685                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2686         else
2687                 sb->s_qcop = &f2fs_quotactl_ops;
2688         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2689
2690         if (f2fs_sb_has_quota_ino(sbi->sb)) {
2691                 for (i = 0; i < MAXQUOTAS; i++) {
2692                         if (f2fs_qf_ino(sbi->sb, i))
2693                                 sbi->nquota_files++;
2694                 }
2695         }
2696 #endif
2697
2698         sb->s_op = &f2fs_sops;
2699 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2700         sb->s_cop = &f2fs_cryptops;
2701 #endif
2702         sb->s_xattr = f2fs_xattr_handlers;
2703         sb->s_export_op = &f2fs_export_ops;
2704         sb->s_magic = F2FS_SUPER_MAGIC;
2705         sb->s_time_gran = 1;
2706         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2707                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2708         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2709         sb->s_iflags |= SB_I_CGROUPWB;
2710
2711         /* init f2fs-specific super block info */
2712         sbi->valid_super_block = valid_super_block;
2713         mutex_init(&sbi->gc_mutex);
2714         mutex_init(&sbi->cp_mutex);
2715         init_rwsem(&sbi->node_write);
2716         init_rwsem(&sbi->node_change);
2717
2718         /* disallow all the data/node/meta page writes */
2719         set_sbi_flag(sbi, SBI_POR_DOING);
2720         spin_lock_init(&sbi->stat_lock);
2721
2722         /* init iostat info */
2723         spin_lock_init(&sbi->iostat_lock);
2724         sbi->iostat_enable = false;
2725
2726         for (i = 0; i < NR_PAGE_TYPE; i++) {
2727                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2728                 int j;
2729
2730                 sbi->write_io[i] = f2fs_kmalloc(sbi,
2731                                         n * sizeof(struct f2fs_bio_info),
2732                                         GFP_KERNEL);
2733                 if (!sbi->write_io[i]) {
2734                         err = -ENOMEM;
2735                         goto free_options;
2736                 }
2737
2738                 for (j = HOT; j < n; j++) {
2739                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2740                         sbi->write_io[i][j].sbi = sbi;
2741                         sbi->write_io[i][j].bio = NULL;
2742                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2743                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2744                 }
2745         }
2746
2747         init_rwsem(&sbi->cp_rwsem);
2748         init_waitqueue_head(&sbi->cp_wait);
2749         init_sb_info(sbi);
2750
2751         err = init_percpu_info(sbi);
2752         if (err)
2753                 goto free_bio_info;
2754
2755         if (F2FS_IO_SIZE(sbi) > 1) {
2756                 sbi->write_io_dummy =
2757                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2758                 if (!sbi->write_io_dummy) {
2759                         err = -ENOMEM;
2760                         goto free_percpu;
2761                 }
2762         }
2763
2764         /* get an inode for meta space */
2765         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2766         if (IS_ERR(sbi->meta_inode)) {
2767                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2768                 err = PTR_ERR(sbi->meta_inode);
2769                 goto free_io_dummy;
2770         }
2771
2772         err = get_valid_checkpoint(sbi);
2773         if (err) {
2774                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2775                 goto free_meta_inode;
2776         }
2777
2778         /* Initialize device list */
2779         err = f2fs_scan_devices(sbi);
2780         if (err) {
2781                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2782                 goto free_devices;
2783         }
2784
2785         sbi->total_valid_node_count =
2786                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2787         percpu_counter_set(&sbi->total_valid_inode_count,
2788                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2789         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2790         sbi->total_valid_block_count =
2791                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2792         sbi->last_valid_block_count = sbi->total_valid_block_count;
2793         sbi->reserved_blocks = 0;
2794         sbi->current_reserved_blocks = 0;
2795         limit_reserve_root(sbi);
2796
2797         for (i = 0; i < NR_INODE_TYPE; i++) {
2798                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2799                 spin_lock_init(&sbi->inode_lock[i]);
2800         }
2801
2802         init_extent_cache_info(sbi);
2803
2804         init_ino_entry_info(sbi);
2805
2806         /* setup f2fs internal modules */
2807         err = build_segment_manager(sbi);
2808         if (err) {
2809                 f2fs_msg(sb, KERN_ERR,
2810                         "Failed to initialize F2FS segment manager");
2811                 goto free_sm;
2812         }
2813         err = build_node_manager(sbi);
2814         if (err) {
2815                 f2fs_msg(sb, KERN_ERR,
2816                         "Failed to initialize F2FS node manager");
2817                 goto free_nm;
2818         }
2819
2820         /* For write statistics */
2821         if (sb->s_bdev->bd_part)
2822                 sbi->sectors_written_start =
2823                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2824
2825         /* Read accumulated write IO statistics if exists */
2826         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2827         if (__exist_node_summaries(sbi))
2828                 sbi->kbytes_written =
2829                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2830
2831         build_gc_manager(sbi);
2832
2833         /* get an inode for node space */
2834         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2835         if (IS_ERR(sbi->node_inode)) {
2836                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2837                 err = PTR_ERR(sbi->node_inode);
2838                 goto free_nm;
2839         }
2840
2841         err = f2fs_build_stats(sbi);
2842         if (err)
2843                 goto free_node_inode;
2844
2845         /* read root inode and dentry */
2846         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2847         if (IS_ERR(root)) {
2848                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2849                 err = PTR_ERR(root);
2850                 goto free_stats;
2851         }
2852         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2853                 iput(root);
2854                 err = -EINVAL;
2855                 goto free_node_inode;
2856         }
2857
2858         sb->s_root = d_make_root(root); /* allocate root dentry */
2859         if (!sb->s_root) {
2860                 err = -ENOMEM;
2861                 goto free_root_inode;
2862         }
2863
2864         err = f2fs_register_sysfs(sbi);
2865         if (err)
2866                 goto free_root_inode;
2867
2868 #ifdef CONFIG_QUOTA
2869         /*
2870          * Turn on quotas which were not enabled for read-only mounts if
2871          * filesystem has quota feature, so that they are updated correctly.
2872          */
2873         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2874                 err = f2fs_enable_quotas(sb);
2875                 if (err) {
2876                         f2fs_msg(sb, KERN_ERR,
2877                                 "Cannot turn on quotas: error %d", err);
2878                         goto free_sysfs;
2879                 }
2880         }
2881 #endif
2882         /* if there are nt orphan nodes free them */
2883         err = recover_orphan_inodes(sbi);
2884         if (err)
2885                 goto free_meta;
2886
2887         /* recover fsynced data */
2888         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2889                 /*
2890                  * mount should be failed, when device has readonly mode, and
2891                  * previous checkpoint was not done by clean system shutdown.
2892                  */
2893                 if (bdev_read_only(sb->s_bdev) &&
2894                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2895                         err = -EROFS;
2896                         goto free_meta;
2897                 }
2898
2899                 if (need_fsck)
2900                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2901
2902                 if (!retry)
2903                         goto skip_recovery;
2904
2905                 err = recover_fsync_data(sbi, false);
2906                 if (err < 0) {
2907                         need_fsck = true;
2908                         f2fs_msg(sb, KERN_ERR,
2909                                 "Cannot recover all fsync data errno=%d", err);
2910                         goto free_meta;
2911                 }
2912         } else {
2913                 err = recover_fsync_data(sbi, true);
2914
2915                 if (!f2fs_readonly(sb) && err > 0) {
2916                         err = -EINVAL;
2917                         f2fs_msg(sb, KERN_ERR,
2918                                 "Need to recover fsync data");
2919                         goto free_meta;
2920                 }
2921         }
2922 skip_recovery:
2923         /* recover_fsync_data() cleared this already */
2924         clear_sbi_flag(sbi, SBI_POR_DOING);
2925
2926         /*
2927          * If filesystem is not mounted as read-only then
2928          * do start the gc_thread.
2929          */
2930         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2931                 /* After POR, we can run background GC thread.*/
2932                 err = start_gc_thread(sbi);
2933                 if (err)
2934                         goto free_meta;
2935         }
2936         kfree(options);
2937
2938         /* recover broken superblock */
2939         if (recovery) {
2940                 err = f2fs_commit_super(sbi, true);
2941                 f2fs_msg(sb, KERN_INFO,
2942                         "Try to recover %dth superblock, ret: %d",
2943                         sbi->valid_super_block ? 1 : 2, err);
2944         }
2945
2946         f2fs_join_shrinker(sbi);
2947
2948         f2fs_tuning_parameters(sbi);
2949
2950         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2951                                 cur_cp_version(F2FS_CKPT(sbi)));
2952         f2fs_update_time(sbi, CP_TIME);
2953         f2fs_update_time(sbi, REQ_TIME);
2954         return 0;
2955
2956 free_meta:
2957 #ifdef CONFIG_QUOTA
2958         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
2959                 f2fs_quota_off_umount(sbi->sb);
2960 #endif
2961         f2fs_sync_inode_meta(sbi);
2962         /*
2963          * Some dirty meta pages can be produced by recover_orphan_inodes()
2964          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2965          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2966          * falls into an infinite loop in sync_meta_pages().
2967          */
2968         truncate_inode_pages_final(META_MAPPING(sbi));
2969 #ifdef CONFIG_QUOTA
2970 free_sysfs:
2971 #endif
2972         f2fs_unregister_sysfs(sbi);
2973 free_root_inode:
2974         dput(sb->s_root);
2975         sb->s_root = NULL;
2976 free_stats:
2977         f2fs_destroy_stats(sbi);
2978 free_node_inode:
2979         release_ino_entry(sbi, true);
2980         truncate_inode_pages_final(NODE_MAPPING(sbi));
2981         iput(sbi->node_inode);
2982 free_nm:
2983         destroy_node_manager(sbi);
2984 free_sm:
2985         destroy_segment_manager(sbi);
2986 free_devices:
2987         destroy_device_list(sbi);
2988         kfree(sbi->ckpt);
2989 free_meta_inode:
2990         make_bad_inode(sbi->meta_inode);
2991         iput(sbi->meta_inode);
2992 free_io_dummy:
2993         mempool_destroy(sbi->write_io_dummy);
2994 free_percpu:
2995         destroy_percpu_info(sbi);
2996 free_bio_info:
2997         for (i = 0; i < NR_PAGE_TYPE; i++)
2998                 kfree(sbi->write_io[i]);
2999 free_options:
3000 #ifdef CONFIG_QUOTA
3001         for (i = 0; i < MAXQUOTAS; i++)
3002                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3003 #endif
3004         kfree(options);
3005 free_sb_buf:
3006         kfree(raw_super);
3007 free_sbi:
3008         if (sbi->s_chksum_driver)
3009                 crypto_free_shash(sbi->s_chksum_driver);
3010         kfree(sbi);
3011
3012         /* give only one another chance */
3013         if (retry) {
3014                 retry = false;
3015                 shrink_dcache_sb(sb);
3016                 goto try_onemore;
3017         }
3018         return err;
3019 }
3020
3021 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3022                         const char *dev_name, void *data)
3023 {
3024         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3025 }
3026
3027 static void kill_f2fs_super(struct super_block *sb)
3028 {
3029         if (sb->s_root) {
3030                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3031                 stop_gc_thread(F2FS_SB(sb));
3032                 stop_discard_thread(F2FS_SB(sb));
3033         }
3034         kill_block_super(sb);
3035 }
3036
3037 static struct file_system_type f2fs_fs_type = {
3038         .owner          = THIS_MODULE,
3039         .name           = "f2fs",
3040         .mount          = f2fs_mount,
3041         .kill_sb        = kill_f2fs_super,
3042         .fs_flags       = FS_REQUIRES_DEV,
3043 };
3044 MODULE_ALIAS_FS("f2fs");
3045
3046 static int __init init_inodecache(void)
3047 {
3048         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3049                         sizeof(struct f2fs_inode_info), 0,
3050                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3051         if (!f2fs_inode_cachep)
3052                 return -ENOMEM;
3053         return 0;
3054 }
3055
3056 static void destroy_inodecache(void)
3057 {
3058         /*
3059          * Make sure all delayed rcu free inodes are flushed before we
3060          * destroy cache.
3061          */
3062         rcu_barrier();
3063         kmem_cache_destroy(f2fs_inode_cachep);
3064 }
3065
3066 static int __init init_f2fs_fs(void)
3067 {
3068         int err;
3069
3070         f2fs_build_trace_ios();
3071
3072         err = init_inodecache();
3073         if (err)
3074                 goto fail;
3075         err = create_node_manager_caches();
3076         if (err)
3077                 goto free_inodecache;
3078         err = create_segment_manager_caches();
3079         if (err)
3080                 goto free_node_manager_caches;
3081         err = create_checkpoint_caches();
3082         if (err)
3083                 goto free_segment_manager_caches;
3084         err = create_extent_cache();
3085         if (err)
3086                 goto free_checkpoint_caches;
3087         err = f2fs_init_sysfs();
3088         if (err)
3089                 goto free_extent_cache;
3090         err = register_shrinker(&f2fs_shrinker_info);
3091         if (err)
3092                 goto free_sysfs;
3093         err = register_filesystem(&f2fs_fs_type);
3094         if (err)
3095                 goto free_shrinker;
3096         err = f2fs_create_root_stats();
3097         if (err)
3098                 goto free_filesystem;
3099         err = f2fs_init_post_read_processing();
3100         if (err)
3101                 goto free_root_stats;
3102         return 0;
3103
3104 free_root_stats:
3105         f2fs_destroy_root_stats();
3106 free_filesystem:
3107         unregister_filesystem(&f2fs_fs_type);
3108 free_shrinker:
3109         unregister_shrinker(&f2fs_shrinker_info);
3110 free_sysfs:
3111         f2fs_exit_sysfs();
3112 free_extent_cache:
3113         destroy_extent_cache();
3114 free_checkpoint_caches:
3115         destroy_checkpoint_caches();
3116 free_segment_manager_caches:
3117         destroy_segment_manager_caches();
3118 free_node_manager_caches:
3119         destroy_node_manager_caches();
3120 free_inodecache:
3121         destroy_inodecache();
3122 fail:
3123         return err;
3124 }
3125
3126 static void __exit exit_f2fs_fs(void)
3127 {
3128         f2fs_destroy_post_read_processing();
3129         f2fs_destroy_root_stats();
3130         unregister_filesystem(&f2fs_fs_type);
3131         unregister_shrinker(&f2fs_shrinker_info);
3132         f2fs_exit_sysfs();
3133         destroy_extent_cache();
3134         destroy_checkpoint_caches();
3135         destroy_segment_manager_caches();
3136         destroy_node_manager_caches();
3137         destroy_inodecache();
3138         f2fs_destroy_trace_ios();
3139 }
3140
3141 module_init(init_f2fs_fs)
3142 module_exit(exit_f2fs_fs)
3143
3144 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3145 MODULE_DESCRIPTION("Flash Friendly File System");
3146 MODULE_LICENSE("GPL");
3147