f2fs: add fault injection to sysfs
[linux-2.6-block.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46         [FAULT_KMALLOC]         = "kmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_ALLOC_NID]       = "alloc nid",
49         [FAULT_ORPHAN]          = "orphan",
50         [FAULT_BLOCK]           = "no more block",
51         [FAULT_DIR_DEPTH]       = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56         if (rate) {
57                 atomic_set(&f2fs_fault.inject_ops, 0);
58                 f2fs_fault.inject_rate = rate;
59                 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60         } else {
61                 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62         }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68         .scan_objects = f2fs_shrink_scan,
69         .count_objects = f2fs_shrink_count,
70         .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74         Opt_gc_background,
75         Opt_disable_roll_forward,
76         Opt_norecovery,
77         Opt_discard,
78         Opt_noheap,
79         Opt_user_xattr,
80         Opt_nouser_xattr,
81         Opt_acl,
82         Opt_noacl,
83         Opt_active_logs,
84         Opt_disable_ext_identify,
85         Opt_inline_xattr,
86         Opt_inline_data,
87         Opt_inline_dentry,
88         Opt_flush_merge,
89         Opt_nobarrier,
90         Opt_fastboot,
91         Opt_extent_cache,
92         Opt_noextent_cache,
93         Opt_noinline_data,
94         Opt_data_flush,
95         Opt_fault_injection,
96         Opt_err,
97 };
98
99 static match_table_t f2fs_tokens = {
100         {Opt_gc_background, "background_gc=%s"},
101         {Opt_disable_roll_forward, "disable_roll_forward"},
102         {Opt_norecovery, "norecovery"},
103         {Opt_discard, "discard"},
104         {Opt_noheap, "no_heap"},
105         {Opt_user_xattr, "user_xattr"},
106         {Opt_nouser_xattr, "nouser_xattr"},
107         {Opt_acl, "acl"},
108         {Opt_noacl, "noacl"},
109         {Opt_active_logs, "active_logs=%u"},
110         {Opt_disable_ext_identify, "disable_ext_identify"},
111         {Opt_inline_xattr, "inline_xattr"},
112         {Opt_inline_data, "inline_data"},
113         {Opt_inline_dentry, "inline_dentry"},
114         {Opt_flush_merge, "flush_merge"},
115         {Opt_nobarrier, "nobarrier"},
116         {Opt_fastboot, "fastboot"},
117         {Opt_extent_cache, "extent_cache"},
118         {Opt_noextent_cache, "noextent_cache"},
119         {Opt_noinline_data, "noinline_data"},
120         {Opt_data_flush, "data_flush"},
121         {Opt_fault_injection, "fault_injection=%u"},
122         {Opt_err, NULL},
123 };
124
125 /* Sysfs support for f2fs */
126 enum {
127         GC_THREAD,      /* struct f2fs_gc_thread */
128         SM_INFO,        /* struct f2fs_sm_info */
129         NM_INFO,        /* struct f2fs_nm_info */
130         F2FS_SBI,       /* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
133         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
134 #endif
135 };
136
137 struct f2fs_attr {
138         struct attribute attr;
139         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141                          const char *, size_t);
142         int struct_type;
143         int offset;
144 };
145
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148         if (struct_type == GC_THREAD)
149                 return (unsigned char *)sbi->gc_thread;
150         else if (struct_type == SM_INFO)
151                 return (unsigned char *)SM_I(sbi);
152         else if (struct_type == NM_INFO)
153                 return (unsigned char *)NM_I(sbi);
154         else if (struct_type == F2FS_SBI)
155                 return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157         else if (struct_type == FAULT_INFO_RATE ||
158                                         struct_type == FAULT_INFO_TYPE)
159                 return (unsigned char *)&f2fs_fault;
160 #endif
161         return NULL;
162 }
163
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165                 struct f2fs_sb_info *sbi, char *buf)
166 {
167         struct super_block *sb = sbi->sb;
168
169         if (!sb->s_bdev->bd_part)
170                 return snprintf(buf, PAGE_SIZE, "0\n");
171
172         return snprintf(buf, PAGE_SIZE, "%llu\n",
173                 (unsigned long long)(sbi->kbytes_written +
174                         BD_PART_WRITTEN(sbi)));
175 }
176
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178                         struct f2fs_sb_info *sbi, char *buf)
179 {
180         unsigned char *ptr = NULL;
181         unsigned int *ui;
182
183         ptr = __struct_ptr(sbi, a->struct_type);
184         if (!ptr)
185                 return -EINVAL;
186
187         ui = (unsigned int *)(ptr + a->offset);
188
189         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193                         struct f2fs_sb_info *sbi,
194                         const char *buf, size_t count)
195 {
196         unsigned char *ptr;
197         unsigned long t;
198         unsigned int *ui;
199         ssize_t ret;
200
201         ptr = __struct_ptr(sbi, a->struct_type);
202         if (!ptr)
203                 return -EINVAL;
204
205         ui = (unsigned int *)(ptr + a->offset);
206
207         ret = kstrtoul(skip_spaces(buf), 0, &t);
208         if (ret < 0)
209                 return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212                 return -EINVAL;
213 #endif
214         *ui = t;
215         return count;
216 }
217
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219                                 struct attribute *attr, char *buf)
220 {
221         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222                                                                 s_kobj);
223         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224
225         return a->show ? a->show(a, sbi, buf) : 0;
226 }
227
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229                                                 const char *buf, size_t len)
230 {
231         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232                                                                         s_kobj);
233         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234
235         return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241                                                                 s_kobj);
242         complete(&sbi->s_kobj_unregister);
243 }
244
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = {                   \
247         .attr = {.name = __stringify(_name), .mode = _mode },   \
248         .show   = _show,                                        \
249         .store  = _store,                                       \
250         .struct_type = _struct_type,                            \
251         .offset = _offset                                       \
252 }
253
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
255         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
256                 f2fs_sbi_show, f2fs_sbi_store,                  \
257                 offsetof(struct struct_name, elname))
258
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287         ATTR_LIST(gc_min_sleep_time),
288         ATTR_LIST(gc_max_sleep_time),
289         ATTR_LIST(gc_no_gc_sleep_time),
290         ATTR_LIST(gc_idle),
291         ATTR_LIST(reclaim_segments),
292         ATTR_LIST(max_small_discards),
293         ATTR_LIST(batched_trim_sections),
294         ATTR_LIST(ipu_policy),
295         ATTR_LIST(min_ipu_util),
296         ATTR_LIST(min_fsync_blocks),
297         ATTR_LIST(max_victim_search),
298         ATTR_LIST(dir_level),
299         ATTR_LIST(ram_thresh),
300         ATTR_LIST(ra_nid_pages),
301         ATTR_LIST(dirty_nats_ratio),
302         ATTR_LIST(cp_interval),
303         ATTR_LIST(idle_interval),
304         ATTR_LIST(lifetime_write_kbytes),
305         NULL,
306 };
307
308 static const struct sysfs_ops f2fs_attr_ops = {
309         .show   = f2fs_attr_show,
310         .store  = f2fs_attr_store,
311 };
312
313 static struct kobj_type f2fs_ktype = {
314         .default_attrs  = f2fs_attrs,
315         .sysfs_ops      = &f2fs_attr_ops,
316         .release        = f2fs_sb_release,
317 };
318
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322
323 static struct attribute *f2fs_fault_attrs[] = {
324         ATTR_LIST(inject_rate),
325         ATTR_LIST(inject_type),
326         NULL
327 };
328
329 static struct kobj_type f2fs_fault_ktype = {
330         .default_attrs  = f2fs_fault_attrs,
331         .sysfs_ops      = &f2fs_attr_ops,
332 };
333 #endif
334
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337         struct va_format vaf;
338         va_list args;
339
340         va_start(args, fmt);
341         vaf.fmt = fmt;
342         vaf.va = &args;
343         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344         va_end(args);
345 }
346
347 static void init_once(void *foo)
348 {
349         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350
351         inode_init_once(&fi->vfs_inode);
352 }
353
354 static int parse_options(struct super_block *sb, char *options)
355 {
356         struct f2fs_sb_info *sbi = F2FS_SB(sb);
357         struct request_queue *q;
358         substring_t args[MAX_OPT_ARGS];
359         char *p, *name;
360         int arg = 0;
361
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363         f2fs_build_fault_attr(0);
364 #endif
365
366         if (!options)
367                 return 0;
368
369         while ((p = strsep(&options, ",")) != NULL) {
370                 int token;
371                 if (!*p)
372                         continue;
373                 /*
374                  * Initialize args struct so we know whether arg was
375                  * found; some options take optional arguments.
376                  */
377                 args[0].to = args[0].from = NULL;
378                 token = match_token(p, f2fs_tokens, args);
379
380                 switch (token) {
381                 case Opt_gc_background:
382                         name = match_strdup(&args[0]);
383
384                         if (!name)
385                                 return -ENOMEM;
386                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387                                 set_opt(sbi, BG_GC);
388                                 clear_opt(sbi, FORCE_FG_GC);
389                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390                                 clear_opt(sbi, BG_GC);
391                                 clear_opt(sbi, FORCE_FG_GC);
392                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393                                 set_opt(sbi, BG_GC);
394                                 set_opt(sbi, FORCE_FG_GC);
395                         } else {
396                                 kfree(name);
397                                 return -EINVAL;
398                         }
399                         kfree(name);
400                         break;
401                 case Opt_disable_roll_forward:
402                         set_opt(sbi, DISABLE_ROLL_FORWARD);
403                         break;
404                 case Opt_norecovery:
405                         /* this option mounts f2fs with ro */
406                         set_opt(sbi, DISABLE_ROLL_FORWARD);
407                         if (!f2fs_readonly(sb))
408                                 return -EINVAL;
409                         break;
410                 case Opt_discard:
411                         q = bdev_get_queue(sb->s_bdev);
412                         if (blk_queue_discard(q)) {
413                                 set_opt(sbi, DISCARD);
414                         } else {
415                                 f2fs_msg(sb, KERN_WARNING,
416                                         "mounting with \"discard\" option, but "
417                                         "the device does not support discard");
418                         }
419                         break;
420                 case Opt_noheap:
421                         set_opt(sbi, NOHEAP);
422                         break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424                 case Opt_user_xattr:
425                         set_opt(sbi, XATTR_USER);
426                         break;
427                 case Opt_nouser_xattr:
428                         clear_opt(sbi, XATTR_USER);
429                         break;
430                 case Opt_inline_xattr:
431                         set_opt(sbi, INLINE_XATTR);
432                         break;
433 #else
434                 case Opt_user_xattr:
435                         f2fs_msg(sb, KERN_INFO,
436                                 "user_xattr options not supported");
437                         break;
438                 case Opt_nouser_xattr:
439                         f2fs_msg(sb, KERN_INFO,
440                                 "nouser_xattr options not supported");
441                         break;
442                 case Opt_inline_xattr:
443                         f2fs_msg(sb, KERN_INFO,
444                                 "inline_xattr options not supported");
445                         break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448                 case Opt_acl:
449                         set_opt(sbi, POSIX_ACL);
450                         break;
451                 case Opt_noacl:
452                         clear_opt(sbi, POSIX_ACL);
453                         break;
454 #else
455                 case Opt_acl:
456                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
457                         break;
458                 case Opt_noacl:
459                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460                         break;
461 #endif
462                 case Opt_active_logs:
463                         if (args->from && match_int(args, &arg))
464                                 return -EINVAL;
465                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466                                 return -EINVAL;
467                         sbi->active_logs = arg;
468                         break;
469                 case Opt_disable_ext_identify:
470                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
471                         break;
472                 case Opt_inline_data:
473                         set_opt(sbi, INLINE_DATA);
474                         break;
475                 case Opt_inline_dentry:
476                         set_opt(sbi, INLINE_DENTRY);
477                         break;
478                 case Opt_flush_merge:
479                         set_opt(sbi, FLUSH_MERGE);
480                         break;
481                 case Opt_nobarrier:
482                         set_opt(sbi, NOBARRIER);
483                         break;
484                 case Opt_fastboot:
485                         set_opt(sbi, FASTBOOT);
486                         break;
487                 case Opt_extent_cache:
488                         set_opt(sbi, EXTENT_CACHE);
489                         break;
490                 case Opt_noextent_cache:
491                         clear_opt(sbi, EXTENT_CACHE);
492                         break;
493                 case Opt_noinline_data:
494                         clear_opt(sbi, INLINE_DATA);
495                         break;
496                 case Opt_data_flush:
497                         set_opt(sbi, DATA_FLUSH);
498                         break;
499                 case Opt_fault_injection:
500                         if (args->from && match_int(args, &arg))
501                                 return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503                         f2fs_build_fault_attr(arg);
504 #else
505                         f2fs_msg(sb, KERN_INFO,
506                                 "FAULT_INJECTION was not selected");
507 #endif
508                         break;
509                 default:
510                         f2fs_msg(sb, KERN_ERR,
511                                 "Unrecognized mount option \"%s\" or missing value",
512                                 p);
513                         return -EINVAL;
514                 }
515         }
516         return 0;
517 }
518
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521         struct f2fs_inode_info *fi;
522
523         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524         if (!fi)
525                 return NULL;
526
527         init_once((void *) fi);
528
529         /* Initialize f2fs-specific inode info */
530         fi->vfs_inode.i_version = 1;
531         atomic_set(&fi->dirty_pages, 0);
532         fi->i_current_depth = 1;
533         fi->i_advise = 0;
534         init_rwsem(&fi->i_sem);
535         INIT_LIST_HEAD(&fi->dirty_list);
536         INIT_LIST_HEAD(&fi->inmem_pages);
537         mutex_init(&fi->inmem_lock);
538
539         set_inode_flag(fi, FI_NEW_INODE);
540
541         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
542                 set_inode_flag(fi, FI_INLINE_XATTR);
543
544         /* Will be used by directory only */
545         fi->i_dir_level = F2FS_SB(sb)->dir_level;
546         return &fi->vfs_inode;
547 }
548
549 static int f2fs_drop_inode(struct inode *inode)
550 {
551         /*
552          * This is to avoid a deadlock condition like below.
553          * writeback_single_inode(inode)
554          *  - f2fs_write_data_page
555          *    - f2fs_gc -> iput -> evict
556          *       - inode_wait_for_writeback(inode)
557          */
558         if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
559                 if (!inode->i_nlink && !is_bad_inode(inode)) {
560                         /* to avoid evict_inode call simultaneously */
561                         atomic_inc(&inode->i_count);
562                         spin_unlock(&inode->i_lock);
563
564                         /* some remained atomic pages should discarded */
565                         if (f2fs_is_atomic_file(inode))
566                                 drop_inmem_pages(inode);
567
568                         /* should remain fi->extent_tree for writepage */
569                         f2fs_destroy_extent_node(inode);
570
571                         sb_start_intwrite(inode->i_sb);
572                         i_size_write(inode, 0);
573
574                         if (F2FS_HAS_BLOCKS(inode))
575                                 f2fs_truncate(inode, true);
576
577                         sb_end_intwrite(inode->i_sb);
578
579                         fscrypt_put_encryption_info(inode, NULL);
580                         spin_lock(&inode->i_lock);
581                         atomic_dec(&inode->i_count);
582                 }
583                 return 0;
584         }
585         return generic_drop_inode(inode);
586 }
587
588 /*
589  * f2fs_dirty_inode() is called from __mark_inode_dirty()
590  *
591  * We should call set_dirty_inode to write the dirty inode through write_inode.
592  */
593 static void f2fs_dirty_inode(struct inode *inode, int flags)
594 {
595         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
596 }
597
598 static void f2fs_i_callback(struct rcu_head *head)
599 {
600         struct inode *inode = container_of(head, struct inode, i_rcu);
601         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
602 }
603
604 static void f2fs_destroy_inode(struct inode *inode)
605 {
606         call_rcu(&inode->i_rcu, f2fs_i_callback);
607 }
608
609 static void f2fs_put_super(struct super_block *sb)
610 {
611         struct f2fs_sb_info *sbi = F2FS_SB(sb);
612
613         if (sbi->s_proc) {
614                 remove_proc_entry("segment_info", sbi->s_proc);
615                 remove_proc_entry("segment_bits", sbi->s_proc);
616                 remove_proc_entry(sb->s_id, f2fs_proc_root);
617         }
618         kobject_del(&sbi->s_kobj);
619
620         stop_gc_thread(sbi);
621
622         /* prevent remaining shrinker jobs */
623         mutex_lock(&sbi->umount_mutex);
624
625         /*
626          * We don't need to do checkpoint when superblock is clean.
627          * But, the previous checkpoint was not done by umount, it needs to do
628          * clean checkpoint again.
629          */
630         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
631                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
632                 struct cp_control cpc = {
633                         .reason = CP_UMOUNT,
634                 };
635                 write_checkpoint(sbi, &cpc);
636         }
637
638         /* write_checkpoint can update stat informaion */
639         f2fs_destroy_stats(sbi);
640
641         /*
642          * normally superblock is clean, so we need to release this.
643          * In addition, EIO will skip do checkpoint, we need this as well.
644          */
645         release_ino_entry(sbi, true);
646         release_discard_addrs(sbi);
647
648         f2fs_leave_shrinker(sbi);
649         mutex_unlock(&sbi->umount_mutex);
650
651         /* our cp_error case, we can wait for any writeback page */
652         if (get_pages(sbi, F2FS_WRITEBACK))
653                 f2fs_flush_merged_bios(sbi);
654
655         iput(sbi->node_inode);
656         iput(sbi->meta_inode);
657
658         /* destroy f2fs internal modules */
659         destroy_node_manager(sbi);
660         destroy_segment_manager(sbi);
661
662         kfree(sbi->ckpt);
663         kobject_put(&sbi->s_kobj);
664         wait_for_completion(&sbi->s_kobj_unregister);
665
666         sb->s_fs_info = NULL;
667         if (sbi->s_chksum_driver)
668                 crypto_free_shash(sbi->s_chksum_driver);
669         kfree(sbi->raw_super);
670         kfree(sbi);
671 }
672
673 int f2fs_sync_fs(struct super_block *sb, int sync)
674 {
675         struct f2fs_sb_info *sbi = F2FS_SB(sb);
676         int err = 0;
677
678         trace_f2fs_sync_fs(sb, sync);
679
680         if (sync) {
681                 struct cp_control cpc;
682
683                 cpc.reason = __get_cp_reason(sbi);
684
685                 mutex_lock(&sbi->gc_mutex);
686                 err = write_checkpoint(sbi, &cpc);
687                 mutex_unlock(&sbi->gc_mutex);
688         }
689         f2fs_trace_ios(NULL, 1);
690
691         return err;
692 }
693
694 static int f2fs_freeze(struct super_block *sb)
695 {
696         int err;
697
698         if (f2fs_readonly(sb))
699                 return 0;
700
701         err = f2fs_sync_fs(sb, 1);
702         return err;
703 }
704
705 static int f2fs_unfreeze(struct super_block *sb)
706 {
707         return 0;
708 }
709
710 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
711 {
712         struct super_block *sb = dentry->d_sb;
713         struct f2fs_sb_info *sbi = F2FS_SB(sb);
714         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
715         block_t total_count, user_block_count, start_count, ovp_count;
716
717         total_count = le64_to_cpu(sbi->raw_super->block_count);
718         user_block_count = sbi->user_block_count;
719         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
720         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
721         buf->f_type = F2FS_SUPER_MAGIC;
722         buf->f_bsize = sbi->blocksize;
723
724         buf->f_blocks = total_count - start_count;
725         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
726         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
727
728         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
729         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
730
731         buf->f_namelen = F2FS_NAME_LEN;
732         buf->f_fsid.val[0] = (u32)id;
733         buf->f_fsid.val[1] = (u32)(id >> 32);
734
735         return 0;
736 }
737
738 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
739 {
740         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
741
742         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
743                 if (test_opt(sbi, FORCE_FG_GC))
744                         seq_printf(seq, ",background_gc=%s", "sync");
745                 else
746                         seq_printf(seq, ",background_gc=%s", "on");
747         } else {
748                 seq_printf(seq, ",background_gc=%s", "off");
749         }
750         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
751                 seq_puts(seq, ",disable_roll_forward");
752         if (test_opt(sbi, DISCARD))
753                 seq_puts(seq, ",discard");
754         if (test_opt(sbi, NOHEAP))
755                 seq_puts(seq, ",no_heap_alloc");
756 #ifdef CONFIG_F2FS_FS_XATTR
757         if (test_opt(sbi, XATTR_USER))
758                 seq_puts(seq, ",user_xattr");
759         else
760                 seq_puts(seq, ",nouser_xattr");
761         if (test_opt(sbi, INLINE_XATTR))
762                 seq_puts(seq, ",inline_xattr");
763 #endif
764 #ifdef CONFIG_F2FS_FS_POSIX_ACL
765         if (test_opt(sbi, POSIX_ACL))
766                 seq_puts(seq, ",acl");
767         else
768                 seq_puts(seq, ",noacl");
769 #endif
770         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
771                 seq_puts(seq, ",disable_ext_identify");
772         if (test_opt(sbi, INLINE_DATA))
773                 seq_puts(seq, ",inline_data");
774         else
775                 seq_puts(seq, ",noinline_data");
776         if (test_opt(sbi, INLINE_DENTRY))
777                 seq_puts(seq, ",inline_dentry");
778         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
779                 seq_puts(seq, ",flush_merge");
780         if (test_opt(sbi, NOBARRIER))
781                 seq_puts(seq, ",nobarrier");
782         if (test_opt(sbi, FASTBOOT))
783                 seq_puts(seq, ",fastboot");
784         if (test_opt(sbi, EXTENT_CACHE))
785                 seq_puts(seq, ",extent_cache");
786         else
787                 seq_puts(seq, ",noextent_cache");
788         if (test_opt(sbi, DATA_FLUSH))
789                 seq_puts(seq, ",data_flush");
790         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
791
792         return 0;
793 }
794
795 static int segment_info_seq_show(struct seq_file *seq, void *offset)
796 {
797         struct super_block *sb = seq->private;
798         struct f2fs_sb_info *sbi = F2FS_SB(sb);
799         unsigned int total_segs =
800                         le32_to_cpu(sbi->raw_super->segment_count_main);
801         int i;
802
803         seq_puts(seq, "format: segment_type|valid_blocks\n"
804                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
805
806         for (i = 0; i < total_segs; i++) {
807                 struct seg_entry *se = get_seg_entry(sbi, i);
808
809                 if ((i % 10) == 0)
810                         seq_printf(seq, "%-10d", i);
811                 seq_printf(seq, "%d|%-3u", se->type,
812                                         get_valid_blocks(sbi, i, 1));
813                 if ((i % 10) == 9 || i == (total_segs - 1))
814                         seq_putc(seq, '\n');
815                 else
816                         seq_putc(seq, ' ');
817         }
818
819         return 0;
820 }
821
822 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
823 {
824         struct super_block *sb = seq->private;
825         struct f2fs_sb_info *sbi = F2FS_SB(sb);
826         unsigned int total_segs =
827                         le32_to_cpu(sbi->raw_super->segment_count_main);
828         int i, j;
829
830         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
831                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
832
833         for (i = 0; i < total_segs; i++) {
834                 struct seg_entry *se = get_seg_entry(sbi, i);
835
836                 seq_printf(seq, "%-10d", i);
837                 seq_printf(seq, "%d|%-3u|", se->type,
838                                         get_valid_blocks(sbi, i, 1));
839                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
840                         seq_printf(seq, "%x ", se->cur_valid_map[j]);
841                 seq_putc(seq, '\n');
842         }
843         return 0;
844 }
845
846 #define F2FS_PROC_FILE_DEF(_name)                                       \
847 static int _name##_open_fs(struct inode *inode, struct file *file)      \
848 {                                                                       \
849         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
850 }                                                                       \
851                                                                         \
852 static const struct file_operations f2fs_seq_##_name##_fops = {         \
853         .owner = THIS_MODULE,                                           \
854         .open = _name##_open_fs,                                        \
855         .read = seq_read,                                               \
856         .llseek = seq_lseek,                                            \
857         .release = single_release,                                      \
858 };
859
860 F2FS_PROC_FILE_DEF(segment_info);
861 F2FS_PROC_FILE_DEF(segment_bits);
862
863 static void default_options(struct f2fs_sb_info *sbi)
864 {
865         /* init some FS parameters */
866         sbi->active_logs = NR_CURSEG_TYPE;
867
868         set_opt(sbi, BG_GC);
869         set_opt(sbi, INLINE_DATA);
870         set_opt(sbi, EXTENT_CACHE);
871
872 #ifdef CONFIG_F2FS_FS_XATTR
873         set_opt(sbi, XATTR_USER);
874 #endif
875 #ifdef CONFIG_F2FS_FS_POSIX_ACL
876         set_opt(sbi, POSIX_ACL);
877 #endif
878 }
879
880 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
881 {
882         struct f2fs_sb_info *sbi = F2FS_SB(sb);
883         struct f2fs_mount_info org_mount_opt;
884         int err, active_logs;
885         bool need_restart_gc = false;
886         bool need_stop_gc = false;
887         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
888
889         /*
890          * Save the old mount options in case we
891          * need to restore them.
892          */
893         org_mount_opt = sbi->mount_opt;
894         active_logs = sbi->active_logs;
895
896         /* recover superblocks we couldn't write due to previous RO mount */
897         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
898                 err = f2fs_commit_super(sbi, false);
899                 f2fs_msg(sb, KERN_INFO,
900                         "Try to recover all the superblocks, ret: %d", err);
901                 if (!err)
902                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
903         }
904
905         sbi->mount_opt.opt = 0;
906         default_options(sbi);
907
908         /* parse mount options */
909         err = parse_options(sb, data);
910         if (err)
911                 goto restore_opts;
912
913         /*
914          * Previous and new state of filesystem is RO,
915          * so skip checking GC and FLUSH_MERGE conditions.
916          */
917         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
918                 goto skip;
919
920         /* disallow enable/disable extent_cache dynamically */
921         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
922                 err = -EINVAL;
923                 f2fs_msg(sbi->sb, KERN_WARNING,
924                                 "switch extent_cache option is not allowed");
925                 goto restore_opts;
926         }
927
928         /*
929          * We stop the GC thread if FS is mounted as RO
930          * or if background_gc = off is passed in mount
931          * option. Also sync the filesystem.
932          */
933         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
934                 if (sbi->gc_thread) {
935                         stop_gc_thread(sbi);
936                         need_restart_gc = true;
937                 }
938         } else if (!sbi->gc_thread) {
939                 err = start_gc_thread(sbi);
940                 if (err)
941                         goto restore_opts;
942                 need_stop_gc = true;
943         }
944
945         if (*flags & MS_RDONLY) {
946                 writeback_inodes_sb(sb, WB_REASON_SYNC);
947                 sync_inodes_sb(sb);
948
949                 set_sbi_flag(sbi, SBI_IS_DIRTY);
950                 set_sbi_flag(sbi, SBI_IS_CLOSE);
951                 f2fs_sync_fs(sb, 1);
952                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
953         }
954
955         /*
956          * We stop issue flush thread if FS is mounted as RO
957          * or if flush_merge is not passed in mount option.
958          */
959         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
960                 destroy_flush_cmd_control(sbi);
961         } else if (!SM_I(sbi)->cmd_control_info) {
962                 err = create_flush_cmd_control(sbi);
963                 if (err)
964                         goto restore_gc;
965         }
966 skip:
967         /* Update the POSIXACL Flag */
968         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
969                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
970
971         return 0;
972 restore_gc:
973         if (need_restart_gc) {
974                 if (start_gc_thread(sbi))
975                         f2fs_msg(sbi->sb, KERN_WARNING,
976                                 "background gc thread has stopped");
977         } else if (need_stop_gc) {
978                 stop_gc_thread(sbi);
979         }
980 restore_opts:
981         sbi->mount_opt = org_mount_opt;
982         sbi->active_logs = active_logs;
983         return err;
984 }
985
986 static struct super_operations f2fs_sops = {
987         .alloc_inode    = f2fs_alloc_inode,
988         .drop_inode     = f2fs_drop_inode,
989         .destroy_inode  = f2fs_destroy_inode,
990         .write_inode    = f2fs_write_inode,
991         .dirty_inode    = f2fs_dirty_inode,
992         .show_options   = f2fs_show_options,
993         .evict_inode    = f2fs_evict_inode,
994         .put_super      = f2fs_put_super,
995         .sync_fs        = f2fs_sync_fs,
996         .freeze_fs      = f2fs_freeze,
997         .unfreeze_fs    = f2fs_unfreeze,
998         .statfs         = f2fs_statfs,
999         .remount_fs     = f2fs_remount,
1000 };
1001
1002 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1003 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1004 {
1005         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1006                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1007                                 ctx, len, NULL);
1008 }
1009
1010 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1011 {
1012         *key = F2FS_I_SB(inode)->key_prefix;
1013         return F2FS_I_SB(inode)->key_prefix_size;
1014 }
1015
1016 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1017                                                         void *fs_data)
1018 {
1019         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1020                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1021                                 ctx, len, fs_data, XATTR_CREATE);
1022 }
1023
1024 static unsigned f2fs_max_namelen(struct inode *inode)
1025 {
1026         return S_ISLNK(inode->i_mode) ?
1027                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1028 }
1029
1030 static struct fscrypt_operations f2fs_cryptops = {
1031         .get_context    = f2fs_get_context,
1032         .key_prefix     = f2fs_key_prefix,
1033         .set_context    = f2fs_set_context,
1034         .is_encrypted   = f2fs_encrypted_inode,
1035         .empty_dir      = f2fs_empty_dir,
1036         .max_namelen    = f2fs_max_namelen,
1037 };
1038 #else
1039 static struct fscrypt_operations f2fs_cryptops = {
1040         .is_encrypted   = f2fs_encrypted_inode,
1041 };
1042 #endif
1043
1044 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1045                 u64 ino, u32 generation)
1046 {
1047         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1048         struct inode *inode;
1049
1050         if (check_nid_range(sbi, ino))
1051                 return ERR_PTR(-ESTALE);
1052
1053         /*
1054          * f2fs_iget isn't quite right if the inode is currently unallocated!
1055          * However f2fs_iget currently does appropriate checks to handle stale
1056          * inodes so everything is OK.
1057          */
1058         inode = f2fs_iget(sb, ino);
1059         if (IS_ERR(inode))
1060                 return ERR_CAST(inode);
1061         if (unlikely(generation && inode->i_generation != generation)) {
1062                 /* we didn't find the right inode.. */
1063                 iput(inode);
1064                 return ERR_PTR(-ESTALE);
1065         }
1066         return inode;
1067 }
1068
1069 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1070                 int fh_len, int fh_type)
1071 {
1072         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1073                                     f2fs_nfs_get_inode);
1074 }
1075
1076 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1077                 int fh_len, int fh_type)
1078 {
1079         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1080                                     f2fs_nfs_get_inode);
1081 }
1082
1083 static const struct export_operations f2fs_export_ops = {
1084         .fh_to_dentry = f2fs_fh_to_dentry,
1085         .fh_to_parent = f2fs_fh_to_parent,
1086         .get_parent = f2fs_get_parent,
1087 };
1088
1089 static loff_t max_file_blocks(void)
1090 {
1091         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1092         loff_t leaf_count = ADDRS_PER_BLOCK;
1093
1094         /* two direct node blocks */
1095         result += (leaf_count * 2);
1096
1097         /* two indirect node blocks */
1098         leaf_count *= NIDS_PER_BLOCK;
1099         result += (leaf_count * 2);
1100
1101         /* one double indirect node block */
1102         leaf_count *= NIDS_PER_BLOCK;
1103         result += leaf_count;
1104
1105         return result;
1106 }
1107
1108 static int __f2fs_commit_super(struct buffer_head *bh,
1109                         struct f2fs_super_block *super)
1110 {
1111         lock_buffer(bh);
1112         if (super)
1113                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1114         set_buffer_uptodate(bh);
1115         set_buffer_dirty(bh);
1116         unlock_buffer(bh);
1117
1118         /* it's rare case, we can do fua all the time */
1119         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1120 }
1121
1122 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1123                                         struct buffer_head *bh)
1124 {
1125         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1126                                         (bh->b_data + F2FS_SUPER_OFFSET);
1127         struct super_block *sb = sbi->sb;
1128         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1129         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1130         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1131         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1132         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1133         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1134         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1135         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1136         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1137         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1138         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1139         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1140         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1141         u64 main_end_blkaddr = main_blkaddr +
1142                                 (segment_count_main << log_blocks_per_seg);
1143         u64 seg_end_blkaddr = segment0_blkaddr +
1144                                 (segment_count << log_blocks_per_seg);
1145
1146         if (segment0_blkaddr != cp_blkaddr) {
1147                 f2fs_msg(sb, KERN_INFO,
1148                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1149                         segment0_blkaddr, cp_blkaddr);
1150                 return true;
1151         }
1152
1153         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1154                                                         sit_blkaddr) {
1155                 f2fs_msg(sb, KERN_INFO,
1156                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1157                         cp_blkaddr, sit_blkaddr,
1158                         segment_count_ckpt << log_blocks_per_seg);
1159                 return true;
1160         }
1161
1162         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1163                                                         nat_blkaddr) {
1164                 f2fs_msg(sb, KERN_INFO,
1165                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1166                         sit_blkaddr, nat_blkaddr,
1167                         segment_count_sit << log_blocks_per_seg);
1168                 return true;
1169         }
1170
1171         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1172                                                         ssa_blkaddr) {
1173                 f2fs_msg(sb, KERN_INFO,
1174                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1175                         nat_blkaddr, ssa_blkaddr,
1176                         segment_count_nat << log_blocks_per_seg);
1177                 return true;
1178         }
1179
1180         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1181                                                         main_blkaddr) {
1182                 f2fs_msg(sb, KERN_INFO,
1183                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1184                         ssa_blkaddr, main_blkaddr,
1185                         segment_count_ssa << log_blocks_per_seg);
1186                 return true;
1187         }
1188
1189         if (main_end_blkaddr > seg_end_blkaddr) {
1190                 f2fs_msg(sb, KERN_INFO,
1191                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1192                         main_blkaddr,
1193                         segment0_blkaddr +
1194                                 (segment_count << log_blocks_per_seg),
1195                         segment_count_main << log_blocks_per_seg);
1196                 return true;
1197         } else if (main_end_blkaddr < seg_end_blkaddr) {
1198                 int err = 0;
1199                 char *res;
1200
1201                 /* fix in-memory information all the time */
1202                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1203                                 segment0_blkaddr) >> log_blocks_per_seg);
1204
1205                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1206                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1207                         res = "internally";
1208                 } else {
1209                         err = __f2fs_commit_super(bh, NULL);
1210                         res = err ? "failed" : "done";
1211                 }
1212                 f2fs_msg(sb, KERN_INFO,
1213                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1214                         res, main_blkaddr,
1215                         segment0_blkaddr +
1216                                 (segment_count << log_blocks_per_seg),
1217                         segment_count_main << log_blocks_per_seg);
1218                 if (err)
1219                         return true;
1220         }
1221         return false;
1222 }
1223
1224 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1225                                 struct buffer_head *bh)
1226 {
1227         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1228                                         (bh->b_data + F2FS_SUPER_OFFSET);
1229         struct super_block *sb = sbi->sb;
1230         unsigned int blocksize;
1231
1232         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1233                 f2fs_msg(sb, KERN_INFO,
1234                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1235                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1236                 return 1;
1237         }
1238
1239         /* Currently, support only 4KB page cache size */
1240         if (F2FS_BLKSIZE != PAGE_SIZE) {
1241                 f2fs_msg(sb, KERN_INFO,
1242                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1243                         PAGE_SIZE);
1244                 return 1;
1245         }
1246
1247         /* Currently, support only 4KB block size */
1248         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1249         if (blocksize != F2FS_BLKSIZE) {
1250                 f2fs_msg(sb, KERN_INFO,
1251                         "Invalid blocksize (%u), supports only 4KB\n",
1252                         blocksize);
1253                 return 1;
1254         }
1255
1256         /* check log blocks per segment */
1257         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1258                 f2fs_msg(sb, KERN_INFO,
1259                         "Invalid log blocks per segment (%u)\n",
1260                         le32_to_cpu(raw_super->log_blocks_per_seg));
1261                 return 1;
1262         }
1263
1264         /* Currently, support 512/1024/2048/4096 bytes sector size */
1265         if (le32_to_cpu(raw_super->log_sectorsize) >
1266                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1267                 le32_to_cpu(raw_super->log_sectorsize) <
1268                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1269                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1270                         le32_to_cpu(raw_super->log_sectorsize));
1271                 return 1;
1272         }
1273         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1274                 le32_to_cpu(raw_super->log_sectorsize) !=
1275                         F2FS_MAX_LOG_SECTOR_SIZE) {
1276                 f2fs_msg(sb, KERN_INFO,
1277                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1278                         le32_to_cpu(raw_super->log_sectors_per_block),
1279                         le32_to_cpu(raw_super->log_sectorsize));
1280                 return 1;
1281         }
1282
1283         /* check reserved ino info */
1284         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1285                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1286                 le32_to_cpu(raw_super->root_ino) != 3) {
1287                 f2fs_msg(sb, KERN_INFO,
1288                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1289                         le32_to_cpu(raw_super->node_ino),
1290                         le32_to_cpu(raw_super->meta_ino),
1291                         le32_to_cpu(raw_super->root_ino));
1292                 return 1;
1293         }
1294
1295         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1296         if (sanity_check_area_boundary(sbi, bh))
1297                 return 1;
1298
1299         return 0;
1300 }
1301
1302 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1303 {
1304         unsigned int total, fsmeta;
1305         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1306         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1307
1308         total = le32_to_cpu(raw_super->segment_count);
1309         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1310         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1311         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1312         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1313         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1314
1315         if (unlikely(fsmeta >= total))
1316                 return 1;
1317
1318         if (unlikely(f2fs_cp_error(sbi))) {
1319                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1320                 return 1;
1321         }
1322         return 0;
1323 }
1324
1325 static void init_sb_info(struct f2fs_sb_info *sbi)
1326 {
1327         struct f2fs_super_block *raw_super = sbi->raw_super;
1328         int i;
1329
1330         sbi->log_sectors_per_block =
1331                 le32_to_cpu(raw_super->log_sectors_per_block);
1332         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1333         sbi->blocksize = 1 << sbi->log_blocksize;
1334         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1335         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1336         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1337         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1338         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1339         sbi->total_node_count =
1340                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1341                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1342         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1343         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1344         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1345         sbi->cur_victim_sec = NULL_SECNO;
1346         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1347
1348         for (i = 0; i < NR_COUNT_TYPE; i++)
1349                 atomic_set(&sbi->nr_pages[i], 0);
1350
1351         sbi->dir_level = DEF_DIR_LEVEL;
1352         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1353         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1354         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1355
1356         INIT_LIST_HEAD(&sbi->s_list);
1357         mutex_init(&sbi->umount_mutex);
1358
1359 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1360         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1361                                 F2FS_KEY_DESC_PREFIX_SIZE);
1362         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1363 #endif
1364 }
1365
1366 /*
1367  * Read f2fs raw super block.
1368  * Because we have two copies of super block, so read both of them
1369  * to get the first valid one. If any one of them is broken, we pass
1370  * them recovery flag back to the caller.
1371  */
1372 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1373                         struct f2fs_super_block **raw_super,
1374                         int *valid_super_block, int *recovery)
1375 {
1376         struct super_block *sb = sbi->sb;
1377         int block;
1378         struct buffer_head *bh;
1379         struct f2fs_super_block *super;
1380         int err = 0;
1381
1382         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1383         if (!super)
1384                 return -ENOMEM;
1385
1386         for (block = 0; block < 2; block++) {
1387                 bh = sb_bread(sb, block);
1388                 if (!bh) {
1389                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1390                                 block + 1);
1391                         err = -EIO;
1392                         continue;
1393                 }
1394
1395                 /* sanity checking of raw super */
1396                 if (sanity_check_raw_super(sbi, bh)) {
1397                         f2fs_msg(sb, KERN_ERR,
1398                                 "Can't find valid F2FS filesystem in %dth superblock",
1399                                 block + 1);
1400                         err = -EINVAL;
1401                         brelse(bh);
1402                         continue;
1403                 }
1404
1405                 if (!*raw_super) {
1406                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1407                                                         sizeof(*super));
1408                         *valid_super_block = block;
1409                         *raw_super = super;
1410                 }
1411                 brelse(bh);
1412         }
1413
1414         /* Fail to read any one of the superblocks*/
1415         if (err < 0)
1416                 *recovery = 1;
1417
1418         /* No valid superblock */
1419         if (!*raw_super)
1420                 kfree(super);
1421         else
1422                 err = 0;
1423
1424         return err;
1425 }
1426
1427 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1428 {
1429         struct buffer_head *bh;
1430         int err;
1431
1432         if ((recover && f2fs_readonly(sbi->sb)) ||
1433                                 bdev_read_only(sbi->sb->s_bdev)) {
1434                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1435                 return -EROFS;
1436         }
1437
1438         /* write back-up superblock first */
1439         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1440         if (!bh)
1441                 return -EIO;
1442         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1443         brelse(bh);
1444
1445         /* if we are in recovery path, skip writing valid superblock */
1446         if (recover || err)
1447                 return err;
1448
1449         /* write current valid superblock */
1450         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1451         if (!bh)
1452                 return -EIO;
1453         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1454         brelse(bh);
1455         return err;
1456 }
1457
1458 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1459 {
1460         struct f2fs_sb_info *sbi;
1461         struct f2fs_super_block *raw_super;
1462         struct inode *root;
1463         int err;
1464         bool retry = true, need_fsck = false;
1465         char *options = NULL;
1466         int recovery, i, valid_super_block;
1467         struct curseg_info *seg_i;
1468
1469 try_onemore:
1470         err = -EINVAL;
1471         raw_super = NULL;
1472         valid_super_block = -1;
1473         recovery = 0;
1474
1475         /* allocate memory for f2fs-specific super block info */
1476         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1477         if (!sbi)
1478                 return -ENOMEM;
1479
1480         sbi->sb = sb;
1481
1482         /* Load the checksum driver */
1483         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1484         if (IS_ERR(sbi->s_chksum_driver)) {
1485                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1486                 err = PTR_ERR(sbi->s_chksum_driver);
1487                 sbi->s_chksum_driver = NULL;
1488                 goto free_sbi;
1489         }
1490
1491         /* set a block size */
1492         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1493                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1494                 goto free_sbi;
1495         }
1496
1497         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1498                                                                 &recovery);
1499         if (err)
1500                 goto free_sbi;
1501
1502         sb->s_fs_info = sbi;
1503         default_options(sbi);
1504         /* parse mount options */
1505         options = kstrdup((const char *)data, GFP_KERNEL);
1506         if (data && !options) {
1507                 err = -ENOMEM;
1508                 goto free_sb_buf;
1509         }
1510
1511         err = parse_options(sb, options);
1512         if (err)
1513                 goto free_options;
1514
1515         sbi->max_file_blocks = max_file_blocks();
1516         sb->s_maxbytes = sbi->max_file_blocks <<
1517                                 le32_to_cpu(raw_super->log_blocksize);
1518         sb->s_max_links = F2FS_LINK_MAX;
1519         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1520
1521         sb->s_op = &f2fs_sops;
1522         sb->s_cop = &f2fs_cryptops;
1523         sb->s_xattr = f2fs_xattr_handlers;
1524         sb->s_export_op = &f2fs_export_ops;
1525         sb->s_magic = F2FS_SUPER_MAGIC;
1526         sb->s_time_gran = 1;
1527         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1528                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1529         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1530
1531         /* init f2fs-specific super block info */
1532         sbi->raw_super = raw_super;
1533         sbi->valid_super_block = valid_super_block;
1534         mutex_init(&sbi->gc_mutex);
1535         mutex_init(&sbi->writepages);
1536         mutex_init(&sbi->cp_mutex);
1537         init_rwsem(&sbi->node_write);
1538
1539         /* disallow all the data/node/meta page writes */
1540         set_sbi_flag(sbi, SBI_POR_DOING);
1541         spin_lock_init(&sbi->stat_lock);
1542
1543         init_rwsem(&sbi->read_io.io_rwsem);
1544         sbi->read_io.sbi = sbi;
1545         sbi->read_io.bio = NULL;
1546         for (i = 0; i < NR_PAGE_TYPE; i++) {
1547                 init_rwsem(&sbi->write_io[i].io_rwsem);
1548                 sbi->write_io[i].sbi = sbi;
1549                 sbi->write_io[i].bio = NULL;
1550         }
1551
1552         init_rwsem(&sbi->cp_rwsem);
1553         init_waitqueue_head(&sbi->cp_wait);
1554         init_sb_info(sbi);
1555
1556         /* get an inode for meta space */
1557         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1558         if (IS_ERR(sbi->meta_inode)) {
1559                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1560                 err = PTR_ERR(sbi->meta_inode);
1561                 goto free_options;
1562         }
1563
1564         err = get_valid_checkpoint(sbi);
1565         if (err) {
1566                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1567                 goto free_meta_inode;
1568         }
1569
1570         sbi->total_valid_node_count =
1571                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1572         sbi->total_valid_inode_count =
1573                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1574         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1575         sbi->total_valid_block_count =
1576                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1577         sbi->last_valid_block_count = sbi->total_valid_block_count;
1578         sbi->alloc_valid_block_count = 0;
1579         for (i = 0; i < NR_INODE_TYPE; i++) {
1580                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1581                 spin_lock_init(&sbi->inode_lock[i]);
1582         }
1583
1584         init_extent_cache_info(sbi);
1585
1586         init_ino_entry_info(sbi);
1587
1588         /* setup f2fs internal modules */
1589         err = build_segment_manager(sbi);
1590         if (err) {
1591                 f2fs_msg(sb, KERN_ERR,
1592                         "Failed to initialize F2FS segment manager");
1593                 goto free_sm;
1594         }
1595         err = build_node_manager(sbi);
1596         if (err) {
1597                 f2fs_msg(sb, KERN_ERR,
1598                         "Failed to initialize F2FS node manager");
1599                 goto free_nm;
1600         }
1601
1602         /* For write statistics */
1603         if (sb->s_bdev->bd_part)
1604                 sbi->sectors_written_start =
1605                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1606
1607         /* Read accumulated write IO statistics if exists */
1608         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1609         if (__exist_node_summaries(sbi))
1610                 sbi->kbytes_written =
1611                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1612
1613         build_gc_manager(sbi);
1614
1615         /* get an inode for node space */
1616         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1617         if (IS_ERR(sbi->node_inode)) {
1618                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1619                 err = PTR_ERR(sbi->node_inode);
1620                 goto free_nm;
1621         }
1622
1623         f2fs_join_shrinker(sbi);
1624
1625         /* if there are nt orphan nodes free them */
1626         err = recover_orphan_inodes(sbi);
1627         if (err)
1628                 goto free_node_inode;
1629
1630         /* read root inode and dentry */
1631         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1632         if (IS_ERR(root)) {
1633                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1634                 err = PTR_ERR(root);
1635                 goto free_node_inode;
1636         }
1637         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1638                 iput(root);
1639                 err = -EINVAL;
1640                 goto free_node_inode;
1641         }
1642
1643         sb->s_root = d_make_root(root); /* allocate root dentry */
1644         if (!sb->s_root) {
1645                 err = -ENOMEM;
1646                 goto free_root_inode;
1647         }
1648
1649         err = f2fs_build_stats(sbi);
1650         if (err)
1651                 goto free_root_inode;
1652
1653         if (f2fs_proc_root)
1654                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1655
1656         if (sbi->s_proc) {
1657                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1658                                  &f2fs_seq_segment_info_fops, sb);
1659                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1660                                  &f2fs_seq_segment_bits_fops, sb);
1661         }
1662
1663         sbi->s_kobj.kset = f2fs_kset;
1664         init_completion(&sbi->s_kobj_unregister);
1665         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1666                                                         "%s", sb->s_id);
1667         if (err)
1668                 goto free_proc;
1669
1670         /* recover fsynced data */
1671         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1672                 /*
1673                  * mount should be failed, when device has readonly mode, and
1674                  * previous checkpoint was not done by clean system shutdown.
1675                  */
1676                 if (bdev_read_only(sb->s_bdev) &&
1677                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1678                         err = -EROFS;
1679                         goto free_kobj;
1680                 }
1681
1682                 if (need_fsck)
1683                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1684
1685                 err = recover_fsync_data(sbi, false);
1686                 if (err < 0) {
1687                         need_fsck = true;
1688                         f2fs_msg(sb, KERN_ERR,
1689                                 "Cannot recover all fsync data errno=%d", err);
1690                         goto free_kobj;
1691                 }
1692         } else {
1693                 err = recover_fsync_data(sbi, true);
1694
1695                 if (!f2fs_readonly(sb) && err > 0) {
1696                         err = -EINVAL;
1697                         f2fs_msg(sb, KERN_ERR,
1698                                 "Need to recover fsync data");
1699                         goto free_kobj;
1700                 }
1701         }
1702
1703         /* recover_fsync_data() cleared this already */
1704         clear_sbi_flag(sbi, SBI_POR_DOING);
1705
1706         /*
1707          * If filesystem is not mounted as read-only then
1708          * do start the gc_thread.
1709          */
1710         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1711                 /* After POR, we can run background GC thread.*/
1712                 err = start_gc_thread(sbi);
1713                 if (err)
1714                         goto free_kobj;
1715         }
1716         kfree(options);
1717
1718         /* recover broken superblock */
1719         if (recovery) {
1720                 err = f2fs_commit_super(sbi, true);
1721                 f2fs_msg(sb, KERN_INFO,
1722                         "Try to recover %dth superblock, ret: %d",
1723                         sbi->valid_super_block ? 1 : 2, err);
1724         }
1725
1726         f2fs_update_time(sbi, CP_TIME);
1727         f2fs_update_time(sbi, REQ_TIME);
1728         return 0;
1729
1730 free_kobj:
1731         kobject_del(&sbi->s_kobj);
1732         kobject_put(&sbi->s_kobj);
1733         wait_for_completion(&sbi->s_kobj_unregister);
1734 free_proc:
1735         if (sbi->s_proc) {
1736                 remove_proc_entry("segment_info", sbi->s_proc);
1737                 remove_proc_entry("segment_bits", sbi->s_proc);
1738                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1739         }
1740         f2fs_destroy_stats(sbi);
1741 free_root_inode:
1742         dput(sb->s_root);
1743         sb->s_root = NULL;
1744 free_node_inode:
1745         mutex_lock(&sbi->umount_mutex);
1746         f2fs_leave_shrinker(sbi);
1747         iput(sbi->node_inode);
1748         mutex_unlock(&sbi->umount_mutex);
1749 free_nm:
1750         destroy_node_manager(sbi);
1751 free_sm:
1752         destroy_segment_manager(sbi);
1753         kfree(sbi->ckpt);
1754 free_meta_inode:
1755         make_bad_inode(sbi->meta_inode);
1756         iput(sbi->meta_inode);
1757 free_options:
1758         kfree(options);
1759 free_sb_buf:
1760         kfree(raw_super);
1761 free_sbi:
1762         if (sbi->s_chksum_driver)
1763                 crypto_free_shash(sbi->s_chksum_driver);
1764         kfree(sbi);
1765
1766         /* give only one another chance */
1767         if (retry) {
1768                 retry = false;
1769                 shrink_dcache_sb(sb);
1770                 goto try_onemore;
1771         }
1772         return err;
1773 }
1774
1775 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1776                         const char *dev_name, void *data)
1777 {
1778         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1779 }
1780
1781 static void kill_f2fs_super(struct super_block *sb)
1782 {
1783         if (sb->s_root)
1784                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1785         kill_block_super(sb);
1786 }
1787
1788 static struct file_system_type f2fs_fs_type = {
1789         .owner          = THIS_MODULE,
1790         .name           = "f2fs",
1791         .mount          = f2fs_mount,
1792         .kill_sb        = kill_f2fs_super,
1793         .fs_flags       = FS_REQUIRES_DEV,
1794 };
1795 MODULE_ALIAS_FS("f2fs");
1796
1797 static int __init init_inodecache(void)
1798 {
1799         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1800                         sizeof(struct f2fs_inode_info), 0,
1801                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1802         if (!f2fs_inode_cachep)
1803                 return -ENOMEM;
1804         return 0;
1805 }
1806
1807 static void destroy_inodecache(void)
1808 {
1809         /*
1810          * Make sure all delayed rcu free inodes are flushed before we
1811          * destroy cache.
1812          */
1813         rcu_barrier();
1814         kmem_cache_destroy(f2fs_inode_cachep);
1815 }
1816
1817 static int __init init_f2fs_fs(void)
1818 {
1819         int err;
1820
1821         f2fs_build_trace_ios();
1822
1823         err = init_inodecache();
1824         if (err)
1825                 goto fail;
1826         err = create_node_manager_caches();
1827         if (err)
1828                 goto free_inodecache;
1829         err = create_segment_manager_caches();
1830         if (err)
1831                 goto free_node_manager_caches;
1832         err = create_checkpoint_caches();
1833         if (err)
1834                 goto free_segment_manager_caches;
1835         err = create_extent_cache();
1836         if (err)
1837                 goto free_checkpoint_caches;
1838         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1839         if (!f2fs_kset) {
1840                 err = -ENOMEM;
1841                 goto free_extent_cache;
1842         }
1843 #ifdef CONFIG_F2FS_FAULT_INJECTION
1844         f2fs_fault_inject.kset = f2fs_kset;
1845         f2fs_build_fault_attr(0);
1846         err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1847                                 NULL, "fault_injection");
1848         if (err) {
1849                 f2fs_fault_inject.kset = NULL;
1850                 goto free_kset;
1851         }
1852 #endif
1853         err = register_shrinker(&f2fs_shrinker_info);
1854         if (err)
1855                 goto free_kset;
1856
1857         err = register_filesystem(&f2fs_fs_type);
1858         if (err)
1859                 goto free_shrinker;
1860         err = f2fs_create_root_stats();
1861         if (err)
1862                 goto free_filesystem;
1863         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1864         return 0;
1865
1866 free_filesystem:
1867         unregister_filesystem(&f2fs_fs_type);
1868 free_shrinker:
1869         unregister_shrinker(&f2fs_shrinker_info);
1870 free_kset:
1871 #ifdef CONFIG_F2FS_FAULT_INJECTION
1872         if (f2fs_fault_inject.kset)
1873                 kobject_put(&f2fs_fault_inject);
1874 #endif
1875         kset_unregister(f2fs_kset);
1876 free_extent_cache:
1877         destroy_extent_cache();
1878 free_checkpoint_caches:
1879         destroy_checkpoint_caches();
1880 free_segment_manager_caches:
1881         destroy_segment_manager_caches();
1882 free_node_manager_caches:
1883         destroy_node_manager_caches();
1884 free_inodecache:
1885         destroy_inodecache();
1886 fail:
1887         return err;
1888 }
1889
1890 static void __exit exit_f2fs_fs(void)
1891 {
1892         remove_proc_entry("fs/f2fs", NULL);
1893         f2fs_destroy_root_stats();
1894         unregister_shrinker(&f2fs_shrinker_info);
1895         unregister_filesystem(&f2fs_fs_type);
1896         destroy_extent_cache();
1897         destroy_checkpoint_caches();
1898         destroy_segment_manager_caches();
1899         destroy_node_manager_caches();
1900         destroy_inodecache();
1901 #ifdef CONFIG_F2FS_FAULT_INJECTION
1902         kobject_put(&f2fs_fault_inject);
1903 #endif
1904         kset_unregister(f2fs_kset);
1905         f2fs_destroy_trace_ios();
1906 }
1907
1908 module_init(init_f2fs_fs)
1909 module_exit(exit_f2fs_fs)
1910
1911 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1912 MODULE_DESCRIPTION("Flash Friendly File System");
1913 MODULE_LICENSE("GPL");