Merge tag 'pstore-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-block.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *f2fs_fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_KVMALLOC]        = "kvmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_PAGE_GET]        = "page get",
49         [FAULT_ALLOC_BIO]       = "alloc bio",
50         [FAULT_ALLOC_NID]       = "alloc nid",
51         [FAULT_ORPHAN]          = "orphan",
52         [FAULT_BLOCK]           = "no more block",
53         [FAULT_DIR_DEPTH]       = "too big dir depth",
54         [FAULT_EVICT_INODE]     = "evict_inode fail",
55         [FAULT_TRUNCATE]        = "truncate fail",
56         [FAULT_IO]              = "IO error",
57         [FAULT_CHECKPOINT]      = "checkpoint error",
58         [FAULT_DISCARD]         = "discard error",
59 };
60
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62                                                         unsigned int type)
63 {
64         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65
66         if (rate) {
67                 atomic_set(&ffi->inject_ops, 0);
68                 ffi->inject_rate = rate;
69         }
70
71         if (type)
72                 ffi->inject_type = type;
73
74         if (!rate && !type)
75                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81         .scan_objects = f2fs_shrink_scan,
82         .count_objects = f2fs_shrink_count,
83         .seeks = DEFAULT_SEEKS,
84 };
85
86 enum {
87         Opt_gc_background,
88         Opt_disable_roll_forward,
89         Opt_norecovery,
90         Opt_discard,
91         Opt_nodiscard,
92         Opt_noheap,
93         Opt_heap,
94         Opt_user_xattr,
95         Opt_nouser_xattr,
96         Opt_acl,
97         Opt_noacl,
98         Opt_active_logs,
99         Opt_disable_ext_identify,
100         Opt_inline_xattr,
101         Opt_noinline_xattr,
102         Opt_inline_xattr_size,
103         Opt_inline_data,
104         Opt_inline_dentry,
105         Opt_noinline_dentry,
106         Opt_flush_merge,
107         Opt_noflush_merge,
108         Opt_nobarrier,
109         Opt_fastboot,
110         Opt_extent_cache,
111         Opt_noextent_cache,
112         Opt_noinline_data,
113         Opt_data_flush,
114         Opt_reserve_root,
115         Opt_resgid,
116         Opt_resuid,
117         Opt_mode,
118         Opt_io_size_bits,
119         Opt_fault_injection,
120         Opt_fault_type,
121         Opt_lazytime,
122         Opt_nolazytime,
123         Opt_quota,
124         Opt_noquota,
125         Opt_usrquota,
126         Opt_grpquota,
127         Opt_prjquota,
128         Opt_usrjquota,
129         Opt_grpjquota,
130         Opt_prjjquota,
131         Opt_offusrjquota,
132         Opt_offgrpjquota,
133         Opt_offprjjquota,
134         Opt_jqfmt_vfsold,
135         Opt_jqfmt_vfsv0,
136         Opt_jqfmt_vfsv1,
137         Opt_whint,
138         Opt_alloc,
139         Opt_fsync,
140         Opt_test_dummy_encryption,
141         Opt_err,
142 };
143
144 static match_table_t f2fs_tokens = {
145         {Opt_gc_background, "background_gc=%s"},
146         {Opt_disable_roll_forward, "disable_roll_forward"},
147         {Opt_norecovery, "norecovery"},
148         {Opt_discard, "discard"},
149         {Opt_nodiscard, "nodiscard"},
150         {Opt_noheap, "no_heap"},
151         {Opt_heap, "heap"},
152         {Opt_user_xattr, "user_xattr"},
153         {Opt_nouser_xattr, "nouser_xattr"},
154         {Opt_acl, "acl"},
155         {Opt_noacl, "noacl"},
156         {Opt_active_logs, "active_logs=%u"},
157         {Opt_disable_ext_identify, "disable_ext_identify"},
158         {Opt_inline_xattr, "inline_xattr"},
159         {Opt_noinline_xattr, "noinline_xattr"},
160         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
161         {Opt_inline_data, "inline_data"},
162         {Opt_inline_dentry, "inline_dentry"},
163         {Opt_noinline_dentry, "noinline_dentry"},
164         {Opt_flush_merge, "flush_merge"},
165         {Opt_noflush_merge, "noflush_merge"},
166         {Opt_nobarrier, "nobarrier"},
167         {Opt_fastboot, "fastboot"},
168         {Opt_extent_cache, "extent_cache"},
169         {Opt_noextent_cache, "noextent_cache"},
170         {Opt_noinline_data, "noinline_data"},
171         {Opt_data_flush, "data_flush"},
172         {Opt_reserve_root, "reserve_root=%u"},
173         {Opt_resgid, "resgid=%u"},
174         {Opt_resuid, "resuid=%u"},
175         {Opt_mode, "mode=%s"},
176         {Opt_io_size_bits, "io_bits=%u"},
177         {Opt_fault_injection, "fault_injection=%u"},
178         {Opt_fault_type, "fault_type=%u"},
179         {Opt_lazytime, "lazytime"},
180         {Opt_nolazytime, "nolazytime"},
181         {Opt_quota, "quota"},
182         {Opt_noquota, "noquota"},
183         {Opt_usrquota, "usrquota"},
184         {Opt_grpquota, "grpquota"},
185         {Opt_prjquota, "prjquota"},
186         {Opt_usrjquota, "usrjquota=%s"},
187         {Opt_grpjquota, "grpjquota=%s"},
188         {Opt_prjjquota, "prjjquota=%s"},
189         {Opt_offusrjquota, "usrjquota="},
190         {Opt_offgrpjquota, "grpjquota="},
191         {Opt_offprjjquota, "prjjquota="},
192         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
193         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
194         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
195         {Opt_whint, "whint_mode=%s"},
196         {Opt_alloc, "alloc_mode=%s"},
197         {Opt_fsync, "fsync_mode=%s"},
198         {Opt_test_dummy_encryption, "test_dummy_encryption"},
199         {Opt_err, NULL},
200 };
201
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204         struct va_format vaf;
205         va_list args;
206
207         va_start(args, fmt);
208         vaf.fmt = fmt;
209         vaf.va = &args;
210         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211         va_end(args);
212 }
213
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216         block_t limit = (sbi->user_block_count << 1) / 1000;
217
218         /* limit is 0.2% */
219         if (test_opt(sbi, RESERVE_ROOT) &&
220                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
222                 f2fs_msg(sbi->sb, KERN_INFO,
223                         "Reduce reserved blocks for root = %u",
224                         F2FS_OPTION(sbi).root_reserved_blocks);
225         }
226         if (!test_opt(sbi, RESERVE_ROOT) &&
227                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
228                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
230                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231                 f2fs_msg(sbi->sb, KERN_INFO,
232                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233                                 from_kuid_munged(&init_user_ns,
234                                         F2FS_OPTION(sbi).s_resuid),
235                                 from_kgid_munged(&init_user_ns,
236                                         F2FS_OPTION(sbi).s_resgid));
237 }
238
239 static void init_once(void *foo)
240 {
241         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242
243         inode_init_once(&fi->vfs_inode);
244 }
245
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250                                                         substring_t *args)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         char *qname;
254         int ret = -EINVAL;
255
256         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257                 f2fs_msg(sb, KERN_ERR,
258                         "Cannot change journaled "
259                         "quota options when quota turned on");
260                 return -EINVAL;
261         }
262         if (f2fs_sb_has_quota_ino(sb)) {
263                 f2fs_msg(sb, KERN_INFO,
264                         "QUOTA feature is enabled, so ignore qf_name");
265                 return 0;
266         }
267
268         qname = match_strdup(args);
269         if (!qname) {
270                 f2fs_msg(sb, KERN_ERR,
271                         "Not enough memory for storing quotafile name");
272                 return -EINVAL;
273         }
274         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276                         ret = 0;
277                 else
278                         f2fs_msg(sb, KERN_ERR,
279                                  "%s quota file already specified",
280                                  QTYPE2NAME(qtype));
281                 goto errout;
282         }
283         if (strchr(qname, '/')) {
284                 f2fs_msg(sb, KERN_ERR,
285                         "quotafile must be on filesystem root");
286                 goto errout;
287         }
288         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289         set_opt(sbi, QUOTA);
290         return 0;
291 errout:
292         kfree(qname);
293         return ret;
294 }
295
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298         struct f2fs_sb_info *sbi = F2FS_SB(sb);
299
300         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302                         " when quota turned on");
303                 return -EINVAL;
304         }
305         kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307         return 0;
308 }
309
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312         /*
313          * We do the test below only for project quotas. 'usrquota' and
314          * 'grpquota' mount options are allowed even without quota feature
315          * to support legacy quotas in quota files.
316          */
317         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
318                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319                          "Cannot enable project quota enforcement.");
320                 return -1;
321         }
322         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325                 if (test_opt(sbi, USRQUOTA) &&
326                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327                         clear_opt(sbi, USRQUOTA);
328
329                 if (test_opt(sbi, GRPQUOTA) &&
330                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331                         clear_opt(sbi, GRPQUOTA);
332
333                 if (test_opt(sbi, PRJQUOTA) &&
334                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335                         clear_opt(sbi, PRJQUOTA);
336
337                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338                                 test_opt(sbi, PRJQUOTA)) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340                                         "format mixing");
341                         return -1;
342                 }
343
344                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346                                         "not specified");
347                         return -1;
348                 }
349         }
350
351         if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
352                 f2fs_msg(sbi->sb, KERN_INFO,
353                         "QUOTA feature is enabled, so ignore jquota_fmt");
354                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         struct request_queue *q;
364         substring_t args[MAX_OPT_ARGS];
365         char *p, *name;
366         int arg = 0;
367         kuid_t uid;
368         kgid_t gid;
369 #ifdef CONFIG_QUOTA
370         int ret;
371 #endif
372
373         if (!options)
374                 return 0;
375
376         while ((p = strsep(&options, ",")) != NULL) {
377                 int token;
378                 if (!*p)
379                         continue;
380                 /*
381                  * Initialize args struct so we know whether arg was
382                  * found; some options take optional arguments.
383                  */
384                 args[0].to = args[0].from = NULL;
385                 token = match_token(p, f2fs_tokens, args);
386
387                 switch (token) {
388                 case Opt_gc_background:
389                         name = match_strdup(&args[0]);
390
391                         if (!name)
392                                 return -ENOMEM;
393                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394                                 set_opt(sbi, BG_GC);
395                                 clear_opt(sbi, FORCE_FG_GC);
396                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397                                 clear_opt(sbi, BG_GC);
398                                 clear_opt(sbi, FORCE_FG_GC);
399                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400                                 set_opt(sbi, BG_GC);
401                                 set_opt(sbi, FORCE_FG_GC);
402                         } else {
403                                 kfree(name);
404                                 return -EINVAL;
405                         }
406                         kfree(name);
407                         break;
408                 case Opt_disable_roll_forward:
409                         set_opt(sbi, DISABLE_ROLL_FORWARD);
410                         break;
411                 case Opt_norecovery:
412                         /* this option mounts f2fs with ro */
413                         set_opt(sbi, DISABLE_ROLL_FORWARD);
414                         if (!f2fs_readonly(sb))
415                                 return -EINVAL;
416                         break;
417                 case Opt_discard:
418                         q = bdev_get_queue(sb->s_bdev);
419                         if (blk_queue_discard(q)) {
420                                 set_opt(sbi, DISCARD);
421                         } else if (!f2fs_sb_has_blkzoned(sb)) {
422                                 f2fs_msg(sb, KERN_WARNING,
423                                         "mounting with \"discard\" option, but "
424                                         "the device does not support discard");
425                         }
426                         break;
427                 case Opt_nodiscard:
428                         if (f2fs_sb_has_blkzoned(sb)) {
429                                 f2fs_msg(sb, KERN_WARNING,
430                                         "discard is required for zoned block devices");
431                                 return -EINVAL;
432                         }
433                         clear_opt(sbi, DISCARD);
434                         break;
435                 case Opt_noheap:
436                         set_opt(sbi, NOHEAP);
437                         break;
438                 case Opt_heap:
439                         clear_opt(sbi, NOHEAP);
440                         break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442                 case Opt_user_xattr:
443                         set_opt(sbi, XATTR_USER);
444                         break;
445                 case Opt_nouser_xattr:
446                         clear_opt(sbi, XATTR_USER);
447                         break;
448                 case Opt_inline_xattr:
449                         set_opt(sbi, INLINE_XATTR);
450                         break;
451                 case Opt_noinline_xattr:
452                         clear_opt(sbi, INLINE_XATTR);
453                         break;
454                 case Opt_inline_xattr_size:
455                         if (args->from && match_int(args, &arg))
456                                 return -EINVAL;
457                         set_opt(sbi, INLINE_XATTR_SIZE);
458                         F2FS_OPTION(sbi).inline_xattr_size = arg;
459                         break;
460 #else
461                 case Opt_user_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "user_xattr options not supported");
464                         break;
465                 case Opt_nouser_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "nouser_xattr options not supported");
468                         break;
469                 case Opt_inline_xattr:
470                         f2fs_msg(sb, KERN_INFO,
471                                 "inline_xattr options not supported");
472                         break;
473                 case Opt_noinline_xattr:
474                         f2fs_msg(sb, KERN_INFO,
475                                 "noinline_xattr options not supported");
476                         break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479                 case Opt_acl:
480                         set_opt(sbi, POSIX_ACL);
481                         break;
482                 case Opt_noacl:
483                         clear_opt(sbi, POSIX_ACL);
484                         break;
485 #else
486                 case Opt_acl:
487                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
488                         break;
489                 case Opt_noacl:
490                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491                         break;
492 #endif
493                 case Opt_active_logs:
494                         if (args->from && match_int(args, &arg))
495                                 return -EINVAL;
496                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497                                 return -EINVAL;
498                         F2FS_OPTION(sbi).active_logs = arg;
499                         break;
500                 case Opt_disable_ext_identify:
501                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
502                         break;
503                 case Opt_inline_data:
504                         set_opt(sbi, INLINE_DATA);
505                         break;
506                 case Opt_inline_dentry:
507                         set_opt(sbi, INLINE_DENTRY);
508                         break;
509                 case Opt_noinline_dentry:
510                         clear_opt(sbi, INLINE_DENTRY);
511                         break;
512                 case Opt_flush_merge:
513                         set_opt(sbi, FLUSH_MERGE);
514                         break;
515                 case Opt_noflush_merge:
516                         clear_opt(sbi, FLUSH_MERGE);
517                         break;
518                 case Opt_nobarrier:
519                         set_opt(sbi, NOBARRIER);
520                         break;
521                 case Opt_fastboot:
522                         set_opt(sbi, FASTBOOT);
523                         break;
524                 case Opt_extent_cache:
525                         set_opt(sbi, EXTENT_CACHE);
526                         break;
527                 case Opt_noextent_cache:
528                         clear_opt(sbi, EXTENT_CACHE);
529                         break;
530                 case Opt_noinline_data:
531                         clear_opt(sbi, INLINE_DATA);
532                         break;
533                 case Opt_data_flush:
534                         set_opt(sbi, DATA_FLUSH);
535                         break;
536                 case Opt_reserve_root:
537                         if (args->from && match_int(args, &arg))
538                                 return -EINVAL;
539                         if (test_opt(sbi, RESERVE_ROOT)) {
540                                 f2fs_msg(sb, KERN_INFO,
541                                         "Preserve previous reserve_root=%u",
542                                         F2FS_OPTION(sbi).root_reserved_blocks);
543                         } else {
544                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545                                 set_opt(sbi, RESERVE_ROOT);
546                         }
547                         break;
548                 case Opt_resuid:
549                         if (args->from && match_int(args, &arg))
550                                 return -EINVAL;
551                         uid = make_kuid(current_user_ns(), arg);
552                         if (!uid_valid(uid)) {
553                                 f2fs_msg(sb, KERN_ERR,
554                                         "Invalid uid value %d", arg);
555                                 return -EINVAL;
556                         }
557                         F2FS_OPTION(sbi).s_resuid = uid;
558                         break;
559                 case Opt_resgid:
560                         if (args->from && match_int(args, &arg))
561                                 return -EINVAL;
562                         gid = make_kgid(current_user_ns(), arg);
563                         if (!gid_valid(gid)) {
564                                 f2fs_msg(sb, KERN_ERR,
565                                         "Invalid gid value %d", arg);
566                                 return -EINVAL;
567                         }
568                         F2FS_OPTION(sbi).s_resgid = gid;
569                         break;
570                 case Opt_mode:
571                         name = match_strdup(&args[0]);
572
573                         if (!name)
574                                 return -ENOMEM;
575                         if (strlen(name) == 8 &&
576                                         !strncmp(name, "adaptive", 8)) {
577                                 if (f2fs_sb_has_blkzoned(sb)) {
578                                         f2fs_msg(sb, KERN_WARNING,
579                                                  "adaptive mode is not allowed with "
580                                                  "zoned block device feature");
581                                         kfree(name);
582                                         return -EINVAL;
583                                 }
584                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585                         } else if (strlen(name) == 3 &&
586                                         !strncmp(name, "lfs", 3)) {
587                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588                         } else {
589                                 kfree(name);
590                                 return -EINVAL;
591                         }
592                         kfree(name);
593                         break;
594                 case Opt_io_size_bits:
595                         if (args->from && match_int(args, &arg))
596                                 return -EINVAL;
597                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598                                 f2fs_msg(sb, KERN_WARNING,
599                                         "Not support %d, larger than %d",
600                                         1 << arg, BIO_MAX_PAGES);
601                                 return -EINVAL;
602                         }
603                         F2FS_OPTION(sbi).write_io_size_bits = arg;
604                         break;
605                 case Opt_fault_injection:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
610                         set_opt(sbi, FAULT_INJECTION);
611 #else
612                         f2fs_msg(sb, KERN_INFO,
613                                 "FAULT_INJECTION was not selected");
614 #endif
615                         break;
616                 case Opt_fault_type:
617                         if (args->from && match_int(args, &arg))
618                                 return -EINVAL;
619 #ifdef CONFIG_F2FS_FAULT_INJECTION
620                         f2fs_build_fault_attr(sbi, 0, arg);
621                         set_opt(sbi, FAULT_INJECTION);
622 #else
623                         f2fs_msg(sb, KERN_INFO,
624                                 "FAULT_INJECTION was not selected");
625 #endif
626                         break;
627                 case Opt_lazytime:
628                         sb->s_flags |= SB_LAZYTIME;
629                         break;
630                 case Opt_nolazytime:
631                         sb->s_flags &= ~SB_LAZYTIME;
632                         break;
633 #ifdef CONFIG_QUOTA
634                 case Opt_quota:
635                 case Opt_usrquota:
636                         set_opt(sbi, USRQUOTA);
637                         break;
638                 case Opt_grpquota:
639                         set_opt(sbi, GRPQUOTA);
640                         break;
641                 case Opt_prjquota:
642                         set_opt(sbi, PRJQUOTA);
643                         break;
644                 case Opt_usrjquota:
645                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
646                         if (ret)
647                                 return ret;
648                         break;
649                 case Opt_grpjquota:
650                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
651                         if (ret)
652                                 return ret;
653                         break;
654                 case Opt_prjjquota:
655                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
656                         if (ret)
657                                 return ret;
658                         break;
659                 case Opt_offusrjquota:
660                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
661                         if (ret)
662                                 return ret;
663                         break;
664                 case Opt_offgrpjquota:
665                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
666                         if (ret)
667                                 return ret;
668                         break;
669                 case Opt_offprjjquota:
670                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
671                         if (ret)
672                                 return ret;
673                         break;
674                 case Opt_jqfmt_vfsold:
675                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
676                         break;
677                 case Opt_jqfmt_vfsv0:
678                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
679                         break;
680                 case Opt_jqfmt_vfsv1:
681                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
682                         break;
683                 case Opt_noquota:
684                         clear_opt(sbi, QUOTA);
685                         clear_opt(sbi, USRQUOTA);
686                         clear_opt(sbi, GRPQUOTA);
687                         clear_opt(sbi, PRJQUOTA);
688                         break;
689 #else
690                 case Opt_quota:
691                 case Opt_usrquota:
692                 case Opt_grpquota:
693                 case Opt_prjquota:
694                 case Opt_usrjquota:
695                 case Opt_grpjquota:
696                 case Opt_prjjquota:
697                 case Opt_offusrjquota:
698                 case Opt_offgrpjquota:
699                 case Opt_offprjjquota:
700                 case Opt_jqfmt_vfsold:
701                 case Opt_jqfmt_vfsv0:
702                 case Opt_jqfmt_vfsv1:
703                 case Opt_noquota:
704                         f2fs_msg(sb, KERN_INFO,
705                                         "quota operations not supported");
706                         break;
707 #endif
708                 case Opt_whint:
709                         name = match_strdup(&args[0]);
710                         if (!name)
711                                 return -ENOMEM;
712                         if (strlen(name) == 10 &&
713                                         !strncmp(name, "user-based", 10)) {
714                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
715                         } else if (strlen(name) == 3 &&
716                                         !strncmp(name, "off", 3)) {
717                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
718                         } else if (strlen(name) == 8 &&
719                                         !strncmp(name, "fs-based", 8)) {
720                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
721                         } else {
722                                 kfree(name);
723                                 return -EINVAL;
724                         }
725                         kfree(name);
726                         break;
727                 case Opt_alloc:
728                         name = match_strdup(&args[0]);
729                         if (!name)
730                                 return -ENOMEM;
731
732                         if (strlen(name) == 7 &&
733                                         !strncmp(name, "default", 7)) {
734                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
735                         } else if (strlen(name) == 5 &&
736                                         !strncmp(name, "reuse", 5)) {
737                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
738                         } else {
739                                 kfree(name);
740                                 return -EINVAL;
741                         }
742                         kfree(name);
743                         break;
744                 case Opt_fsync:
745                         name = match_strdup(&args[0]);
746                         if (!name)
747                                 return -ENOMEM;
748                         if (strlen(name) == 5 &&
749                                         !strncmp(name, "posix", 5)) {
750                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
751                         } else if (strlen(name) == 6 &&
752                                         !strncmp(name, "strict", 6)) {
753                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
754                         } else if (strlen(name) == 9 &&
755                                         !strncmp(name, "nobarrier", 9)) {
756                                 F2FS_OPTION(sbi).fsync_mode =
757                                                         FSYNC_MODE_NOBARRIER;
758                         } else {
759                                 kfree(name);
760                                 return -EINVAL;
761                         }
762                         kfree(name);
763                         break;
764                 case Opt_test_dummy_encryption:
765 #ifdef CONFIG_F2FS_FS_ENCRYPTION
766                         if (!f2fs_sb_has_encrypt(sb)) {
767                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
768                                 return -EINVAL;
769                         }
770
771                         F2FS_OPTION(sbi).test_dummy_encryption = true;
772                         f2fs_msg(sb, KERN_INFO,
773                                         "Test dummy encryption mode enabled");
774 #else
775                         f2fs_msg(sb, KERN_INFO,
776                                         "Test dummy encryption mount option ignored");
777 #endif
778                         break;
779                 default:
780                         f2fs_msg(sb, KERN_ERR,
781                                 "Unrecognized mount option \"%s\" or missing value",
782                                 p);
783                         return -EINVAL;
784                 }
785         }
786 #ifdef CONFIG_QUOTA
787         if (f2fs_check_quota_options(sbi))
788                 return -EINVAL;
789 #else
790         if (f2fs_sb_has_quota_ino(sbi->sb) && !f2fs_readonly(sbi->sb)) {
791                 f2fs_msg(sbi->sb, KERN_INFO,
792                          "Filesystem with quota feature cannot be mounted RDWR "
793                          "without CONFIG_QUOTA");
794                 return -EINVAL;
795         }
796         if (f2fs_sb_has_project_quota(sbi->sb) && !f2fs_readonly(sbi->sb)) {
797                 f2fs_msg(sb, KERN_ERR,
798                         "Filesystem with project quota feature cannot be "
799                         "mounted RDWR without CONFIG_QUOTA");
800                 return -EINVAL;
801         }
802 #endif
803
804         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
805                 f2fs_msg(sb, KERN_ERR,
806                                 "Should set mode=lfs with %uKB-sized IO",
807                                 F2FS_IO_SIZE_KB(sbi));
808                 return -EINVAL;
809         }
810
811         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
812                 if (!f2fs_sb_has_extra_attr(sb) ||
813                         !f2fs_sb_has_flexible_inline_xattr(sb)) {
814                         f2fs_msg(sb, KERN_ERR,
815                                         "extra_attr or flexible_inline_xattr "
816                                         "feature is off");
817                         return -EINVAL;
818                 }
819                 if (!test_opt(sbi, INLINE_XATTR)) {
820                         f2fs_msg(sb, KERN_ERR,
821                                         "inline_xattr_size option should be "
822                                         "set with inline_xattr option");
823                         return -EINVAL;
824                 }
825                 if (!F2FS_OPTION(sbi).inline_xattr_size ||
826                         F2FS_OPTION(sbi).inline_xattr_size >=
827                                         DEF_ADDRS_PER_INODE -
828                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
829                                         DEF_INLINE_RESERVED_SIZE -
830                                         DEF_MIN_INLINE_SIZE) {
831                         f2fs_msg(sb, KERN_ERR,
832                                         "inline xattr size is out of range");
833                         return -EINVAL;
834                 }
835         }
836
837         /* Not pass down write hints if the number of active logs is lesser
838          * than NR_CURSEG_TYPE.
839          */
840         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
841                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
842         return 0;
843 }
844
845 static struct inode *f2fs_alloc_inode(struct super_block *sb)
846 {
847         struct f2fs_inode_info *fi;
848
849         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
850         if (!fi)
851                 return NULL;
852
853         init_once((void *) fi);
854
855         /* Initialize f2fs-specific inode info */
856         atomic_set(&fi->dirty_pages, 0);
857         init_rwsem(&fi->i_sem);
858         INIT_LIST_HEAD(&fi->dirty_list);
859         INIT_LIST_HEAD(&fi->gdirty_list);
860         INIT_LIST_HEAD(&fi->inmem_ilist);
861         INIT_LIST_HEAD(&fi->inmem_pages);
862         mutex_init(&fi->inmem_lock);
863         init_rwsem(&fi->i_gc_rwsem[READ]);
864         init_rwsem(&fi->i_gc_rwsem[WRITE]);
865         init_rwsem(&fi->i_mmap_sem);
866         init_rwsem(&fi->i_xattr_sem);
867
868         /* Will be used by directory only */
869         fi->i_dir_level = F2FS_SB(sb)->dir_level;
870
871         return &fi->vfs_inode;
872 }
873
874 static int f2fs_drop_inode(struct inode *inode)
875 {
876         int ret;
877         /*
878          * This is to avoid a deadlock condition like below.
879          * writeback_single_inode(inode)
880          *  - f2fs_write_data_page
881          *    - f2fs_gc -> iput -> evict
882          *       - inode_wait_for_writeback(inode)
883          */
884         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
885                 if (!inode->i_nlink && !is_bad_inode(inode)) {
886                         /* to avoid evict_inode call simultaneously */
887                         atomic_inc(&inode->i_count);
888                         spin_unlock(&inode->i_lock);
889
890                         /* some remained atomic pages should discarded */
891                         if (f2fs_is_atomic_file(inode))
892                                 f2fs_drop_inmem_pages(inode);
893
894                         /* should remain fi->extent_tree for writepage */
895                         f2fs_destroy_extent_node(inode);
896
897                         sb_start_intwrite(inode->i_sb);
898                         f2fs_i_size_write(inode, 0);
899
900                         if (F2FS_HAS_BLOCKS(inode))
901                                 f2fs_truncate(inode);
902
903                         sb_end_intwrite(inode->i_sb);
904
905                         spin_lock(&inode->i_lock);
906                         atomic_dec(&inode->i_count);
907                 }
908                 trace_f2fs_drop_inode(inode, 0);
909                 return 0;
910         }
911         ret = generic_drop_inode(inode);
912         trace_f2fs_drop_inode(inode, ret);
913         return ret;
914 }
915
916 int f2fs_inode_dirtied(struct inode *inode, bool sync)
917 {
918         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
919         int ret = 0;
920
921         spin_lock(&sbi->inode_lock[DIRTY_META]);
922         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
923                 ret = 1;
924         } else {
925                 set_inode_flag(inode, FI_DIRTY_INODE);
926                 stat_inc_dirty_inode(sbi, DIRTY_META);
927         }
928         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
929                 list_add_tail(&F2FS_I(inode)->gdirty_list,
930                                 &sbi->inode_list[DIRTY_META]);
931                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
932         }
933         spin_unlock(&sbi->inode_lock[DIRTY_META]);
934         return ret;
935 }
936
937 void f2fs_inode_synced(struct inode *inode)
938 {
939         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
940
941         spin_lock(&sbi->inode_lock[DIRTY_META]);
942         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
943                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
944                 return;
945         }
946         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
947                 list_del_init(&F2FS_I(inode)->gdirty_list);
948                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
949         }
950         clear_inode_flag(inode, FI_DIRTY_INODE);
951         clear_inode_flag(inode, FI_AUTO_RECOVER);
952         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
953         spin_unlock(&sbi->inode_lock[DIRTY_META]);
954 }
955
956 /*
957  * f2fs_dirty_inode() is called from __mark_inode_dirty()
958  *
959  * We should call set_dirty_inode to write the dirty inode through write_inode.
960  */
961 static void f2fs_dirty_inode(struct inode *inode, int flags)
962 {
963         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
964
965         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
966                         inode->i_ino == F2FS_META_INO(sbi))
967                 return;
968
969         if (flags == I_DIRTY_TIME)
970                 return;
971
972         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
973                 clear_inode_flag(inode, FI_AUTO_RECOVER);
974
975         f2fs_inode_dirtied(inode, false);
976 }
977
978 static void f2fs_i_callback(struct rcu_head *head)
979 {
980         struct inode *inode = container_of(head, struct inode, i_rcu);
981         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
982 }
983
984 static void f2fs_destroy_inode(struct inode *inode)
985 {
986         call_rcu(&inode->i_rcu, f2fs_i_callback);
987 }
988
989 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
990 {
991         percpu_counter_destroy(&sbi->alloc_valid_block_count);
992         percpu_counter_destroy(&sbi->total_valid_inode_count);
993 }
994
995 static void destroy_device_list(struct f2fs_sb_info *sbi)
996 {
997         int i;
998
999         for (i = 0; i < sbi->s_ndevs; i++) {
1000                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1001 #ifdef CONFIG_BLK_DEV_ZONED
1002                 kfree(FDEV(i).blkz_type);
1003 #endif
1004         }
1005         kfree(sbi->devs);
1006 }
1007
1008 static void f2fs_put_super(struct super_block *sb)
1009 {
1010         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1011         int i;
1012         bool dropped;
1013
1014         f2fs_quota_off_umount(sb);
1015
1016         /* prevent remaining shrinker jobs */
1017         mutex_lock(&sbi->umount_mutex);
1018
1019         /*
1020          * We don't need to do checkpoint when superblock is clean.
1021          * But, the previous checkpoint was not done by umount, it needs to do
1022          * clean checkpoint again.
1023          */
1024         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1025                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1026                 struct cp_control cpc = {
1027                         .reason = CP_UMOUNT,
1028                 };
1029                 f2fs_write_checkpoint(sbi, &cpc);
1030         }
1031
1032         /* be sure to wait for any on-going discard commands */
1033         dropped = f2fs_wait_discard_bios(sbi);
1034
1035         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1036                 struct cp_control cpc = {
1037                         .reason = CP_UMOUNT | CP_TRIMMED,
1038                 };
1039                 f2fs_write_checkpoint(sbi, &cpc);
1040         }
1041
1042         /* f2fs_write_checkpoint can update stat informaion */
1043         f2fs_destroy_stats(sbi);
1044
1045         /*
1046          * normally superblock is clean, so we need to release this.
1047          * In addition, EIO will skip do checkpoint, we need this as well.
1048          */
1049         f2fs_release_ino_entry(sbi, true);
1050
1051         f2fs_leave_shrinker(sbi);
1052         mutex_unlock(&sbi->umount_mutex);
1053
1054         /* our cp_error case, we can wait for any writeback page */
1055         f2fs_flush_merged_writes(sbi);
1056
1057         f2fs_wait_on_all_pages_writeback(sbi);
1058
1059         f2fs_bug_on(sbi, sbi->fsync_node_num);
1060
1061         iput(sbi->node_inode);
1062         iput(sbi->meta_inode);
1063
1064         /* destroy f2fs internal modules */
1065         f2fs_destroy_node_manager(sbi);
1066         f2fs_destroy_segment_manager(sbi);
1067
1068         kfree(sbi->ckpt);
1069
1070         f2fs_unregister_sysfs(sbi);
1071
1072         sb->s_fs_info = NULL;
1073         if (sbi->s_chksum_driver)
1074                 crypto_free_shash(sbi->s_chksum_driver);
1075         kfree(sbi->raw_super);
1076
1077         destroy_device_list(sbi);
1078         mempool_destroy(sbi->write_io_dummy);
1079 #ifdef CONFIG_QUOTA
1080         for (i = 0; i < MAXQUOTAS; i++)
1081                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1082 #endif
1083         destroy_percpu_info(sbi);
1084         for (i = 0; i < NR_PAGE_TYPE; i++)
1085                 kfree(sbi->write_io[i]);
1086         kfree(sbi);
1087 }
1088
1089 int f2fs_sync_fs(struct super_block *sb, int sync)
1090 {
1091         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1092         int err = 0;
1093
1094         if (unlikely(f2fs_cp_error(sbi)))
1095                 return 0;
1096
1097         trace_f2fs_sync_fs(sb, sync);
1098
1099         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1100                 return -EAGAIN;
1101
1102         if (sync) {
1103                 struct cp_control cpc;
1104
1105                 cpc.reason = __get_cp_reason(sbi);
1106
1107                 mutex_lock(&sbi->gc_mutex);
1108                 err = f2fs_write_checkpoint(sbi, &cpc);
1109                 mutex_unlock(&sbi->gc_mutex);
1110         }
1111         f2fs_trace_ios(NULL, 1);
1112
1113         return err;
1114 }
1115
1116 static int f2fs_freeze(struct super_block *sb)
1117 {
1118         if (f2fs_readonly(sb))
1119                 return 0;
1120
1121         /* IO error happened before */
1122         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1123                 return -EIO;
1124
1125         /* must be clean, since sync_filesystem() was already called */
1126         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1127                 return -EINVAL;
1128         return 0;
1129 }
1130
1131 static int f2fs_unfreeze(struct super_block *sb)
1132 {
1133         return 0;
1134 }
1135
1136 #ifdef CONFIG_QUOTA
1137 static int f2fs_statfs_project(struct super_block *sb,
1138                                 kprojid_t projid, struct kstatfs *buf)
1139 {
1140         struct kqid qid;
1141         struct dquot *dquot;
1142         u64 limit;
1143         u64 curblock;
1144
1145         qid = make_kqid_projid(projid);
1146         dquot = dqget(sb, qid);
1147         if (IS_ERR(dquot))
1148                 return PTR_ERR(dquot);
1149         spin_lock(&dquot->dq_dqb_lock);
1150
1151         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1152                  dquot->dq_dqb.dqb_bsoftlimit :
1153                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1154         if (limit && buf->f_blocks > limit) {
1155                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1156                 buf->f_blocks = limit;
1157                 buf->f_bfree = buf->f_bavail =
1158                         (buf->f_blocks > curblock) ?
1159                          (buf->f_blocks - curblock) : 0;
1160         }
1161
1162         limit = dquot->dq_dqb.dqb_isoftlimit ?
1163                 dquot->dq_dqb.dqb_isoftlimit :
1164                 dquot->dq_dqb.dqb_ihardlimit;
1165         if (limit && buf->f_files > limit) {
1166                 buf->f_files = limit;
1167                 buf->f_ffree =
1168                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1169                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1170         }
1171
1172         spin_unlock(&dquot->dq_dqb_lock);
1173         dqput(dquot);
1174         return 0;
1175 }
1176 #endif
1177
1178 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1179 {
1180         struct super_block *sb = dentry->d_sb;
1181         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1182         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1183         block_t total_count, user_block_count, start_count;
1184         u64 avail_node_count;
1185
1186         total_count = le64_to_cpu(sbi->raw_super->block_count);
1187         user_block_count = sbi->user_block_count;
1188         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1189         buf->f_type = F2FS_SUPER_MAGIC;
1190         buf->f_bsize = sbi->blocksize;
1191
1192         buf->f_blocks = total_count - start_count;
1193         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1194                                                 sbi->current_reserved_blocks;
1195         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1196                 buf->f_bavail = buf->f_bfree -
1197                                 F2FS_OPTION(sbi).root_reserved_blocks;
1198         else
1199                 buf->f_bavail = 0;
1200
1201         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1202                                                 F2FS_RESERVED_NODE_NUM;
1203
1204         if (avail_node_count > user_block_count) {
1205                 buf->f_files = user_block_count;
1206                 buf->f_ffree = buf->f_bavail;
1207         } else {
1208                 buf->f_files = avail_node_count;
1209                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1210                                         buf->f_bavail);
1211         }
1212
1213         buf->f_namelen = F2FS_NAME_LEN;
1214         buf->f_fsid.val[0] = (u32)id;
1215         buf->f_fsid.val[1] = (u32)(id >> 32);
1216
1217 #ifdef CONFIG_QUOTA
1218         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1219                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1220                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1221         }
1222 #endif
1223         return 0;
1224 }
1225
1226 static inline void f2fs_show_quota_options(struct seq_file *seq,
1227                                            struct super_block *sb)
1228 {
1229 #ifdef CONFIG_QUOTA
1230         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1231
1232         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1233                 char *fmtname = "";
1234
1235                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1236                 case QFMT_VFS_OLD:
1237                         fmtname = "vfsold";
1238                         break;
1239                 case QFMT_VFS_V0:
1240                         fmtname = "vfsv0";
1241                         break;
1242                 case QFMT_VFS_V1:
1243                         fmtname = "vfsv1";
1244                         break;
1245                 }
1246                 seq_printf(seq, ",jqfmt=%s", fmtname);
1247         }
1248
1249         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1250                 seq_show_option(seq, "usrjquota",
1251                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1252
1253         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1254                 seq_show_option(seq, "grpjquota",
1255                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1256
1257         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1258                 seq_show_option(seq, "prjjquota",
1259                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1260 #endif
1261 }
1262
1263 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1264 {
1265         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1266
1267         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1268                 if (test_opt(sbi, FORCE_FG_GC))
1269                         seq_printf(seq, ",background_gc=%s", "sync");
1270                 else
1271                         seq_printf(seq, ",background_gc=%s", "on");
1272         } else {
1273                 seq_printf(seq, ",background_gc=%s", "off");
1274         }
1275         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1276                 seq_puts(seq, ",disable_roll_forward");
1277         if (test_opt(sbi, DISCARD))
1278                 seq_puts(seq, ",discard");
1279         if (test_opt(sbi, NOHEAP))
1280                 seq_puts(seq, ",no_heap");
1281         else
1282                 seq_puts(seq, ",heap");
1283 #ifdef CONFIG_F2FS_FS_XATTR
1284         if (test_opt(sbi, XATTR_USER))
1285                 seq_puts(seq, ",user_xattr");
1286         else
1287                 seq_puts(seq, ",nouser_xattr");
1288         if (test_opt(sbi, INLINE_XATTR))
1289                 seq_puts(seq, ",inline_xattr");
1290         else
1291                 seq_puts(seq, ",noinline_xattr");
1292         if (test_opt(sbi, INLINE_XATTR_SIZE))
1293                 seq_printf(seq, ",inline_xattr_size=%u",
1294                                         F2FS_OPTION(sbi).inline_xattr_size);
1295 #endif
1296 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1297         if (test_opt(sbi, POSIX_ACL))
1298                 seq_puts(seq, ",acl");
1299         else
1300                 seq_puts(seq, ",noacl");
1301 #endif
1302         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1303                 seq_puts(seq, ",disable_ext_identify");
1304         if (test_opt(sbi, INLINE_DATA))
1305                 seq_puts(seq, ",inline_data");
1306         else
1307                 seq_puts(seq, ",noinline_data");
1308         if (test_opt(sbi, INLINE_DENTRY))
1309                 seq_puts(seq, ",inline_dentry");
1310         else
1311                 seq_puts(seq, ",noinline_dentry");
1312         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1313                 seq_puts(seq, ",flush_merge");
1314         if (test_opt(sbi, NOBARRIER))
1315                 seq_puts(seq, ",nobarrier");
1316         if (test_opt(sbi, FASTBOOT))
1317                 seq_puts(seq, ",fastboot");
1318         if (test_opt(sbi, EXTENT_CACHE))
1319                 seq_puts(seq, ",extent_cache");
1320         else
1321                 seq_puts(seq, ",noextent_cache");
1322         if (test_opt(sbi, DATA_FLUSH))
1323                 seq_puts(seq, ",data_flush");
1324
1325         seq_puts(seq, ",mode=");
1326         if (test_opt(sbi, ADAPTIVE))
1327                 seq_puts(seq, "adaptive");
1328         else if (test_opt(sbi, LFS))
1329                 seq_puts(seq, "lfs");
1330         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1331         if (test_opt(sbi, RESERVE_ROOT))
1332                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1333                                 F2FS_OPTION(sbi).root_reserved_blocks,
1334                                 from_kuid_munged(&init_user_ns,
1335                                         F2FS_OPTION(sbi).s_resuid),
1336                                 from_kgid_munged(&init_user_ns,
1337                                         F2FS_OPTION(sbi).s_resgid));
1338         if (F2FS_IO_SIZE_BITS(sbi))
1339                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1340 #ifdef CONFIG_F2FS_FAULT_INJECTION
1341         if (test_opt(sbi, FAULT_INJECTION)) {
1342                 seq_printf(seq, ",fault_injection=%u",
1343                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1344                 seq_printf(seq, ",fault_type=%u",
1345                                 F2FS_OPTION(sbi).fault_info.inject_type);
1346         }
1347 #endif
1348 #ifdef CONFIG_QUOTA
1349         if (test_opt(sbi, QUOTA))
1350                 seq_puts(seq, ",quota");
1351         if (test_opt(sbi, USRQUOTA))
1352                 seq_puts(seq, ",usrquota");
1353         if (test_opt(sbi, GRPQUOTA))
1354                 seq_puts(seq, ",grpquota");
1355         if (test_opt(sbi, PRJQUOTA))
1356                 seq_puts(seq, ",prjquota");
1357 #endif
1358         f2fs_show_quota_options(seq, sbi->sb);
1359         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1360                 seq_printf(seq, ",whint_mode=%s", "user-based");
1361         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1362                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1363 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1364         if (F2FS_OPTION(sbi).test_dummy_encryption)
1365                 seq_puts(seq, ",test_dummy_encryption");
1366 #endif
1367
1368         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1369                 seq_printf(seq, ",alloc_mode=%s", "default");
1370         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1371                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1372
1373         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1374                 seq_printf(seq, ",fsync_mode=%s", "posix");
1375         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1376                 seq_printf(seq, ",fsync_mode=%s", "strict");
1377         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1378                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1379         return 0;
1380 }
1381
1382 static void default_options(struct f2fs_sb_info *sbi)
1383 {
1384         /* init some FS parameters */
1385         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1386         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1387         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1388         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1389         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1390         F2FS_OPTION(sbi).test_dummy_encryption = false;
1391         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1392         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1393
1394         set_opt(sbi, BG_GC);
1395         set_opt(sbi, INLINE_XATTR);
1396         set_opt(sbi, INLINE_DATA);
1397         set_opt(sbi, INLINE_DENTRY);
1398         set_opt(sbi, EXTENT_CACHE);
1399         set_opt(sbi, NOHEAP);
1400         sbi->sb->s_flags |= SB_LAZYTIME;
1401         set_opt(sbi, FLUSH_MERGE);
1402         if (blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev)))
1403                 set_opt(sbi, DISCARD);
1404         if (f2fs_sb_has_blkzoned(sbi->sb))
1405                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1406         else
1407                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1408
1409 #ifdef CONFIG_F2FS_FS_XATTR
1410         set_opt(sbi, XATTR_USER);
1411 #endif
1412 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1413         set_opt(sbi, POSIX_ACL);
1414 #endif
1415
1416         f2fs_build_fault_attr(sbi, 0, 0);
1417 }
1418
1419 #ifdef CONFIG_QUOTA
1420 static int f2fs_enable_quotas(struct super_block *sb);
1421 #endif
1422 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1423 {
1424         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1425         struct f2fs_mount_info org_mount_opt;
1426         unsigned long old_sb_flags;
1427         int err;
1428         bool need_restart_gc = false;
1429         bool need_stop_gc = false;
1430         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1431 #ifdef CONFIG_QUOTA
1432         int i, j;
1433 #endif
1434
1435         /*
1436          * Save the old mount options in case we
1437          * need to restore them.
1438          */
1439         org_mount_opt = sbi->mount_opt;
1440         old_sb_flags = sb->s_flags;
1441
1442 #ifdef CONFIG_QUOTA
1443         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1444         for (i = 0; i < MAXQUOTAS; i++) {
1445                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1446                         org_mount_opt.s_qf_names[i] =
1447                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1448                                 GFP_KERNEL);
1449                         if (!org_mount_opt.s_qf_names[i]) {
1450                                 for (j = 0; j < i; j++)
1451                                         kfree(org_mount_opt.s_qf_names[j]);
1452                                 return -ENOMEM;
1453                         }
1454                 } else {
1455                         org_mount_opt.s_qf_names[i] = NULL;
1456                 }
1457         }
1458 #endif
1459
1460         /* recover superblocks we couldn't write due to previous RO mount */
1461         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1462                 err = f2fs_commit_super(sbi, false);
1463                 f2fs_msg(sb, KERN_INFO,
1464                         "Try to recover all the superblocks, ret: %d", err);
1465                 if (!err)
1466                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1467         }
1468
1469         default_options(sbi);
1470
1471         /* parse mount options */
1472         err = parse_options(sb, data);
1473         if (err)
1474                 goto restore_opts;
1475
1476         /*
1477          * Previous and new state of filesystem is RO,
1478          * so skip checking GC and FLUSH_MERGE conditions.
1479          */
1480         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1481                 goto skip;
1482
1483 #ifdef CONFIG_QUOTA
1484         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1485                 err = dquot_suspend(sb, -1);
1486                 if (err < 0)
1487                         goto restore_opts;
1488         } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1489                 /* dquot_resume needs RW */
1490                 sb->s_flags &= ~SB_RDONLY;
1491                 if (sb_any_quota_suspended(sb)) {
1492                         dquot_resume(sb, -1);
1493                 } else if (f2fs_sb_has_quota_ino(sb)) {
1494                         err = f2fs_enable_quotas(sb);
1495                         if (err)
1496                                 goto restore_opts;
1497                 }
1498         }
1499 #endif
1500         /* disallow enable/disable extent_cache dynamically */
1501         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1502                 err = -EINVAL;
1503                 f2fs_msg(sbi->sb, KERN_WARNING,
1504                                 "switch extent_cache option is not allowed");
1505                 goto restore_opts;
1506         }
1507
1508         /*
1509          * We stop the GC thread if FS is mounted as RO
1510          * or if background_gc = off is passed in mount
1511          * option. Also sync the filesystem.
1512          */
1513         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1514                 if (sbi->gc_thread) {
1515                         f2fs_stop_gc_thread(sbi);
1516                         need_restart_gc = true;
1517                 }
1518         } else if (!sbi->gc_thread) {
1519                 err = f2fs_start_gc_thread(sbi);
1520                 if (err)
1521                         goto restore_opts;
1522                 need_stop_gc = true;
1523         }
1524
1525         if (*flags & SB_RDONLY ||
1526                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1527                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1528                 sync_inodes_sb(sb);
1529
1530                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1531                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1532                 f2fs_sync_fs(sb, 1);
1533                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1534         }
1535
1536         /*
1537          * We stop issue flush thread if FS is mounted as RO
1538          * or if flush_merge is not passed in mount option.
1539          */
1540         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1541                 clear_opt(sbi, FLUSH_MERGE);
1542                 f2fs_destroy_flush_cmd_control(sbi, false);
1543         } else {
1544                 err = f2fs_create_flush_cmd_control(sbi);
1545                 if (err)
1546                         goto restore_gc;
1547         }
1548 skip:
1549 #ifdef CONFIG_QUOTA
1550         /* Release old quota file names */
1551         for (i = 0; i < MAXQUOTAS; i++)
1552                 kfree(org_mount_opt.s_qf_names[i]);
1553 #endif
1554         /* Update the POSIXACL Flag */
1555         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1556                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1557
1558         limit_reserve_root(sbi);
1559         return 0;
1560 restore_gc:
1561         if (need_restart_gc) {
1562                 if (f2fs_start_gc_thread(sbi))
1563                         f2fs_msg(sbi->sb, KERN_WARNING,
1564                                 "background gc thread has stopped");
1565         } else if (need_stop_gc) {
1566                 f2fs_stop_gc_thread(sbi);
1567         }
1568 restore_opts:
1569 #ifdef CONFIG_QUOTA
1570         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1571         for (i = 0; i < MAXQUOTAS; i++) {
1572                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1573                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1574         }
1575 #endif
1576         sbi->mount_opt = org_mount_opt;
1577         sb->s_flags = old_sb_flags;
1578         return err;
1579 }
1580
1581 #ifdef CONFIG_QUOTA
1582 /* Read data from quotafile */
1583 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1584                                size_t len, loff_t off)
1585 {
1586         struct inode *inode = sb_dqopt(sb)->files[type];
1587         struct address_space *mapping = inode->i_mapping;
1588         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1589         int offset = off & (sb->s_blocksize - 1);
1590         int tocopy;
1591         size_t toread;
1592         loff_t i_size = i_size_read(inode);
1593         struct page *page;
1594         char *kaddr;
1595
1596         if (off > i_size)
1597                 return 0;
1598
1599         if (off + len > i_size)
1600                 len = i_size - off;
1601         toread = len;
1602         while (toread > 0) {
1603                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1604 repeat:
1605                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1606                 if (IS_ERR(page)) {
1607                         if (PTR_ERR(page) == -ENOMEM) {
1608                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1609                                 goto repeat;
1610                         }
1611                         return PTR_ERR(page);
1612                 }
1613
1614                 lock_page(page);
1615
1616                 if (unlikely(page->mapping != mapping)) {
1617                         f2fs_put_page(page, 1);
1618                         goto repeat;
1619                 }
1620                 if (unlikely(!PageUptodate(page))) {
1621                         f2fs_put_page(page, 1);
1622                         return -EIO;
1623                 }
1624
1625                 kaddr = kmap_atomic(page);
1626                 memcpy(data, kaddr + offset, tocopy);
1627                 kunmap_atomic(kaddr);
1628                 f2fs_put_page(page, 1);
1629
1630                 offset = 0;
1631                 toread -= tocopy;
1632                 data += tocopy;
1633                 blkidx++;
1634         }
1635         return len;
1636 }
1637
1638 /* Write to quotafile */
1639 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1640                                 const char *data, size_t len, loff_t off)
1641 {
1642         struct inode *inode = sb_dqopt(sb)->files[type];
1643         struct address_space *mapping = inode->i_mapping;
1644         const struct address_space_operations *a_ops = mapping->a_ops;
1645         int offset = off & (sb->s_blocksize - 1);
1646         size_t towrite = len;
1647         struct page *page;
1648         char *kaddr;
1649         int err = 0;
1650         int tocopy;
1651
1652         while (towrite > 0) {
1653                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1654                                                                 towrite);
1655 retry:
1656                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1657                                                         &page, NULL);
1658                 if (unlikely(err)) {
1659                         if (err == -ENOMEM) {
1660                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1661                                 goto retry;
1662                         }
1663                         break;
1664                 }
1665
1666                 kaddr = kmap_atomic(page);
1667                 memcpy(kaddr + offset, data, tocopy);
1668                 kunmap_atomic(kaddr);
1669                 flush_dcache_page(page);
1670
1671                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1672                                                 page, NULL);
1673                 offset = 0;
1674                 towrite -= tocopy;
1675                 off += tocopy;
1676                 data += tocopy;
1677                 cond_resched();
1678         }
1679
1680         if (len == towrite)
1681                 return err;
1682         inode->i_mtime = inode->i_ctime = current_time(inode);
1683         f2fs_mark_inode_dirty_sync(inode, false);
1684         return len - towrite;
1685 }
1686
1687 static struct dquot **f2fs_get_dquots(struct inode *inode)
1688 {
1689         return F2FS_I(inode)->i_dquot;
1690 }
1691
1692 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1693 {
1694         return &F2FS_I(inode)->i_reserved_quota;
1695 }
1696
1697 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1698 {
1699         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1700                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1701 }
1702
1703 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1704 {
1705         int enabled = 0;
1706         int i, err;
1707
1708         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1709                 err = f2fs_enable_quotas(sbi->sb);
1710                 if (err) {
1711                         f2fs_msg(sbi->sb, KERN_ERR,
1712                                         "Cannot turn on quota_ino: %d", err);
1713                         return 0;
1714                 }
1715                 return 1;
1716         }
1717
1718         for (i = 0; i < MAXQUOTAS; i++) {
1719                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1720                         err = f2fs_quota_on_mount(sbi, i);
1721                         if (!err) {
1722                                 enabled = 1;
1723                                 continue;
1724                         }
1725                         f2fs_msg(sbi->sb, KERN_ERR,
1726                                 "Cannot turn on quotas: %d on %d", err, i);
1727                 }
1728         }
1729         return enabled;
1730 }
1731
1732 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1733                              unsigned int flags)
1734 {
1735         struct inode *qf_inode;
1736         unsigned long qf_inum;
1737         int err;
1738
1739         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1740
1741         qf_inum = f2fs_qf_ino(sb, type);
1742         if (!qf_inum)
1743                 return -EPERM;
1744
1745         qf_inode = f2fs_iget(sb, qf_inum);
1746         if (IS_ERR(qf_inode)) {
1747                 f2fs_msg(sb, KERN_ERR,
1748                         "Bad quota inode %u:%lu", type, qf_inum);
1749                 return PTR_ERR(qf_inode);
1750         }
1751
1752         /* Don't account quota for quota files to avoid recursion */
1753         qf_inode->i_flags |= S_NOQUOTA;
1754         err = dquot_enable(qf_inode, type, format_id, flags);
1755         iput(qf_inode);
1756         return err;
1757 }
1758
1759 static int f2fs_enable_quotas(struct super_block *sb)
1760 {
1761         int type, err = 0;
1762         unsigned long qf_inum;
1763         bool quota_mopt[MAXQUOTAS] = {
1764                 test_opt(F2FS_SB(sb), USRQUOTA),
1765                 test_opt(F2FS_SB(sb), GRPQUOTA),
1766                 test_opt(F2FS_SB(sb), PRJQUOTA),
1767         };
1768
1769         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1770         for (type = 0; type < MAXQUOTAS; type++) {
1771                 qf_inum = f2fs_qf_ino(sb, type);
1772                 if (qf_inum) {
1773                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1774                                 DQUOT_USAGE_ENABLED |
1775                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1776                         if (err) {
1777                                 f2fs_msg(sb, KERN_ERR,
1778                                         "Failed to enable quota tracking "
1779                                         "(type=%d, err=%d). Please run "
1780                                         "fsck to fix.", type, err);
1781                                 for (type--; type >= 0; type--)
1782                                         dquot_quota_off(sb, type);
1783                                 return err;
1784                         }
1785                 }
1786         }
1787         return 0;
1788 }
1789
1790 static int f2fs_quota_sync(struct super_block *sb, int type)
1791 {
1792         struct quota_info *dqopt = sb_dqopt(sb);
1793         int cnt;
1794         int ret;
1795
1796         ret = dquot_writeback_dquots(sb, type);
1797         if (ret)
1798                 return ret;
1799
1800         /*
1801          * Now when everything is written we can discard the pagecache so
1802          * that userspace sees the changes.
1803          */
1804         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1805                 if (type != -1 && cnt != type)
1806                         continue;
1807                 if (!sb_has_quota_active(sb, cnt))
1808                         continue;
1809
1810                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1811                 if (ret)
1812                         return ret;
1813
1814                 inode_lock(dqopt->files[cnt]);
1815                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1816                 inode_unlock(dqopt->files[cnt]);
1817         }
1818         return 0;
1819 }
1820
1821 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1822                                                         const struct path *path)
1823 {
1824         struct inode *inode;
1825         int err;
1826
1827         err = f2fs_quota_sync(sb, type);
1828         if (err)
1829                 return err;
1830
1831         err = dquot_quota_on(sb, type, format_id, path);
1832         if (err)
1833                 return err;
1834
1835         inode = d_inode(path->dentry);
1836
1837         inode_lock(inode);
1838         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1839         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1840                                         S_NOATIME | S_IMMUTABLE);
1841         inode_unlock(inode);
1842         f2fs_mark_inode_dirty_sync(inode, false);
1843
1844         return 0;
1845 }
1846
1847 static int f2fs_quota_off(struct super_block *sb, int type)
1848 {
1849         struct inode *inode = sb_dqopt(sb)->files[type];
1850         int err;
1851
1852         if (!inode || !igrab(inode))
1853                 return dquot_quota_off(sb, type);
1854
1855         f2fs_quota_sync(sb, type);
1856
1857         err = dquot_quota_off(sb, type);
1858         if (err || f2fs_sb_has_quota_ino(sb))
1859                 goto out_put;
1860
1861         inode_lock(inode);
1862         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1863         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1864         inode_unlock(inode);
1865         f2fs_mark_inode_dirty_sync(inode, false);
1866 out_put:
1867         iput(inode);
1868         return err;
1869 }
1870
1871 void f2fs_quota_off_umount(struct super_block *sb)
1872 {
1873         int type;
1874
1875         for (type = 0; type < MAXQUOTAS; type++)
1876                 f2fs_quota_off(sb, type);
1877 }
1878
1879 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1880 {
1881         *projid = F2FS_I(inode)->i_projid;
1882         return 0;
1883 }
1884
1885 static const struct dquot_operations f2fs_quota_operations = {
1886         .get_reserved_space = f2fs_get_reserved_space,
1887         .write_dquot    = dquot_commit,
1888         .acquire_dquot  = dquot_acquire,
1889         .release_dquot  = dquot_release,
1890         .mark_dirty     = dquot_mark_dquot_dirty,
1891         .write_info     = dquot_commit_info,
1892         .alloc_dquot    = dquot_alloc,
1893         .destroy_dquot  = dquot_destroy,
1894         .get_projid     = f2fs_get_projid,
1895         .get_next_id    = dquot_get_next_id,
1896 };
1897
1898 static const struct quotactl_ops f2fs_quotactl_ops = {
1899         .quota_on       = f2fs_quota_on,
1900         .quota_off      = f2fs_quota_off,
1901         .quota_sync     = f2fs_quota_sync,
1902         .get_state      = dquot_get_state,
1903         .set_info       = dquot_set_dqinfo,
1904         .get_dqblk      = dquot_get_dqblk,
1905         .set_dqblk      = dquot_set_dqblk,
1906         .get_nextdqblk  = dquot_get_next_dqblk,
1907 };
1908 #else
1909 void f2fs_quota_off_umount(struct super_block *sb)
1910 {
1911 }
1912 #endif
1913
1914 static const struct super_operations f2fs_sops = {
1915         .alloc_inode    = f2fs_alloc_inode,
1916         .drop_inode     = f2fs_drop_inode,
1917         .destroy_inode  = f2fs_destroy_inode,
1918         .write_inode    = f2fs_write_inode,
1919         .dirty_inode    = f2fs_dirty_inode,
1920         .show_options   = f2fs_show_options,
1921 #ifdef CONFIG_QUOTA
1922         .quota_read     = f2fs_quota_read,
1923         .quota_write    = f2fs_quota_write,
1924         .get_dquots     = f2fs_get_dquots,
1925 #endif
1926         .evict_inode    = f2fs_evict_inode,
1927         .put_super      = f2fs_put_super,
1928         .sync_fs        = f2fs_sync_fs,
1929         .freeze_fs      = f2fs_freeze,
1930         .unfreeze_fs    = f2fs_unfreeze,
1931         .statfs         = f2fs_statfs,
1932         .remount_fs     = f2fs_remount,
1933 };
1934
1935 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1936 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1937 {
1938         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1939                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1940                                 ctx, len, NULL);
1941 }
1942
1943 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1944                                                         void *fs_data)
1945 {
1946         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1947
1948         /*
1949          * Encrypting the root directory is not allowed because fsck
1950          * expects lost+found directory to exist and remain unencrypted
1951          * if LOST_FOUND feature is enabled.
1952          *
1953          */
1954         if (f2fs_sb_has_lost_found(sbi->sb) &&
1955                         inode->i_ino == F2FS_ROOT_INO(sbi))
1956                 return -EPERM;
1957
1958         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1959                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1960                                 ctx, len, fs_data, XATTR_CREATE);
1961 }
1962
1963 static bool f2fs_dummy_context(struct inode *inode)
1964 {
1965         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1966 }
1967
1968 static const struct fscrypt_operations f2fs_cryptops = {
1969         .key_prefix     = "f2fs:",
1970         .get_context    = f2fs_get_context,
1971         .set_context    = f2fs_set_context,
1972         .dummy_context  = f2fs_dummy_context,
1973         .empty_dir      = f2fs_empty_dir,
1974         .max_namelen    = F2FS_NAME_LEN,
1975 };
1976 #endif
1977
1978 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1979                 u64 ino, u32 generation)
1980 {
1981         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1982         struct inode *inode;
1983
1984         if (f2fs_check_nid_range(sbi, ino))
1985                 return ERR_PTR(-ESTALE);
1986
1987         /*
1988          * f2fs_iget isn't quite right if the inode is currently unallocated!
1989          * However f2fs_iget currently does appropriate checks to handle stale
1990          * inodes so everything is OK.
1991          */
1992         inode = f2fs_iget(sb, ino);
1993         if (IS_ERR(inode))
1994                 return ERR_CAST(inode);
1995         if (unlikely(generation && inode->i_generation != generation)) {
1996                 /* we didn't find the right inode.. */
1997                 iput(inode);
1998                 return ERR_PTR(-ESTALE);
1999         }
2000         return inode;
2001 }
2002
2003 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2004                 int fh_len, int fh_type)
2005 {
2006         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2007                                     f2fs_nfs_get_inode);
2008 }
2009
2010 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2011                 int fh_len, int fh_type)
2012 {
2013         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2014                                     f2fs_nfs_get_inode);
2015 }
2016
2017 static const struct export_operations f2fs_export_ops = {
2018         .fh_to_dentry = f2fs_fh_to_dentry,
2019         .fh_to_parent = f2fs_fh_to_parent,
2020         .get_parent = f2fs_get_parent,
2021 };
2022
2023 static loff_t max_file_blocks(void)
2024 {
2025         loff_t result = 0;
2026         loff_t leaf_count = ADDRS_PER_BLOCK;
2027
2028         /*
2029          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2030          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2031          * space in inode.i_addr, it will be more safe to reassign
2032          * result as zero.
2033          */
2034
2035         /* two direct node blocks */
2036         result += (leaf_count * 2);
2037
2038         /* two indirect node blocks */
2039         leaf_count *= NIDS_PER_BLOCK;
2040         result += (leaf_count * 2);
2041
2042         /* one double indirect node block */
2043         leaf_count *= NIDS_PER_BLOCK;
2044         result += leaf_count;
2045
2046         return result;
2047 }
2048
2049 static int __f2fs_commit_super(struct buffer_head *bh,
2050                         struct f2fs_super_block *super)
2051 {
2052         lock_buffer(bh);
2053         if (super)
2054                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2055         set_buffer_dirty(bh);
2056         unlock_buffer(bh);
2057
2058         /* it's rare case, we can do fua all the time */
2059         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2060 }
2061
2062 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2063                                         struct buffer_head *bh)
2064 {
2065         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2066                                         (bh->b_data + F2FS_SUPER_OFFSET);
2067         struct super_block *sb = sbi->sb;
2068         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2069         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2070         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2071         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2072         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2073         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2074         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2075         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2076         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2077         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2078         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2079         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2080         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2081         u64 main_end_blkaddr = main_blkaddr +
2082                                 (segment_count_main << log_blocks_per_seg);
2083         u64 seg_end_blkaddr = segment0_blkaddr +
2084                                 (segment_count << log_blocks_per_seg);
2085
2086         if (segment0_blkaddr != cp_blkaddr) {
2087                 f2fs_msg(sb, KERN_INFO,
2088                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2089                         segment0_blkaddr, cp_blkaddr);
2090                 return true;
2091         }
2092
2093         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2094                                                         sit_blkaddr) {
2095                 f2fs_msg(sb, KERN_INFO,
2096                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2097                         cp_blkaddr, sit_blkaddr,
2098                         segment_count_ckpt << log_blocks_per_seg);
2099                 return true;
2100         }
2101
2102         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2103                                                         nat_blkaddr) {
2104                 f2fs_msg(sb, KERN_INFO,
2105                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2106                         sit_blkaddr, nat_blkaddr,
2107                         segment_count_sit << log_blocks_per_seg);
2108                 return true;
2109         }
2110
2111         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2112                                                         ssa_blkaddr) {
2113                 f2fs_msg(sb, KERN_INFO,
2114                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2115                         nat_blkaddr, ssa_blkaddr,
2116                         segment_count_nat << log_blocks_per_seg);
2117                 return true;
2118         }
2119
2120         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2121                                                         main_blkaddr) {
2122                 f2fs_msg(sb, KERN_INFO,
2123                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2124                         ssa_blkaddr, main_blkaddr,
2125                         segment_count_ssa << log_blocks_per_seg);
2126                 return true;
2127         }
2128
2129         if (main_end_blkaddr > seg_end_blkaddr) {
2130                 f2fs_msg(sb, KERN_INFO,
2131                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2132                         main_blkaddr,
2133                         segment0_blkaddr +
2134                                 (segment_count << log_blocks_per_seg),
2135                         segment_count_main << log_blocks_per_seg);
2136                 return true;
2137         } else if (main_end_blkaddr < seg_end_blkaddr) {
2138                 int err = 0;
2139                 char *res;
2140
2141                 /* fix in-memory information all the time */
2142                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2143                                 segment0_blkaddr) >> log_blocks_per_seg);
2144
2145                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2146                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2147                         res = "internally";
2148                 } else {
2149                         err = __f2fs_commit_super(bh, NULL);
2150                         res = err ? "failed" : "done";
2151                 }
2152                 f2fs_msg(sb, KERN_INFO,
2153                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2154                         res, main_blkaddr,
2155                         segment0_blkaddr +
2156                                 (segment_count << log_blocks_per_seg),
2157                         segment_count_main << log_blocks_per_seg);
2158                 if (err)
2159                         return true;
2160         }
2161         return false;
2162 }
2163
2164 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2165                                 struct buffer_head *bh)
2166 {
2167         block_t segment_count, segs_per_sec, secs_per_zone;
2168         block_t total_sections, blocks_per_seg;
2169         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2170                                         (bh->b_data + F2FS_SUPER_OFFSET);
2171         struct super_block *sb = sbi->sb;
2172         unsigned int blocksize;
2173
2174         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2175                 f2fs_msg(sb, KERN_INFO,
2176                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2177                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2178                 return 1;
2179         }
2180
2181         /* Currently, support only 4KB page cache size */
2182         if (F2FS_BLKSIZE != PAGE_SIZE) {
2183                 f2fs_msg(sb, KERN_INFO,
2184                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2185                         PAGE_SIZE);
2186                 return 1;
2187         }
2188
2189         /* Currently, support only 4KB block size */
2190         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2191         if (blocksize != F2FS_BLKSIZE) {
2192                 f2fs_msg(sb, KERN_INFO,
2193                         "Invalid blocksize (%u), supports only 4KB\n",
2194                         blocksize);
2195                 return 1;
2196         }
2197
2198         /* check log blocks per segment */
2199         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2200                 f2fs_msg(sb, KERN_INFO,
2201                         "Invalid log blocks per segment (%u)\n",
2202                         le32_to_cpu(raw_super->log_blocks_per_seg));
2203                 return 1;
2204         }
2205
2206         /* Currently, support 512/1024/2048/4096 bytes sector size */
2207         if (le32_to_cpu(raw_super->log_sectorsize) >
2208                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2209                 le32_to_cpu(raw_super->log_sectorsize) <
2210                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2211                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2212                         le32_to_cpu(raw_super->log_sectorsize));
2213                 return 1;
2214         }
2215         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2216                 le32_to_cpu(raw_super->log_sectorsize) !=
2217                         F2FS_MAX_LOG_SECTOR_SIZE) {
2218                 f2fs_msg(sb, KERN_INFO,
2219                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2220                         le32_to_cpu(raw_super->log_sectors_per_block),
2221                         le32_to_cpu(raw_super->log_sectorsize));
2222                 return 1;
2223         }
2224
2225         segment_count = le32_to_cpu(raw_super->segment_count);
2226         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2227         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2228         total_sections = le32_to_cpu(raw_super->section_count);
2229
2230         /* blocks_per_seg should be 512, given the above check */
2231         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2232
2233         if (segment_count > F2FS_MAX_SEGMENT ||
2234                                 segment_count < F2FS_MIN_SEGMENTS) {
2235                 f2fs_msg(sb, KERN_INFO,
2236                         "Invalid segment count (%u)",
2237                         segment_count);
2238                 return 1;
2239         }
2240
2241         if (total_sections > segment_count ||
2242                         total_sections < F2FS_MIN_SEGMENTS ||
2243                         segs_per_sec > segment_count || !segs_per_sec) {
2244                 f2fs_msg(sb, KERN_INFO,
2245                         "Invalid segment/section count (%u, %u x %u)",
2246                         segment_count, total_sections, segs_per_sec);
2247                 return 1;
2248         }
2249
2250         if ((segment_count / segs_per_sec) < total_sections) {
2251                 f2fs_msg(sb, KERN_INFO,
2252                         "Small segment_count (%u < %u * %u)",
2253                         segment_count, segs_per_sec, total_sections);
2254                 return 1;
2255         }
2256
2257         if (segment_count > (le32_to_cpu(raw_super->block_count) >> 9)) {
2258                 f2fs_msg(sb, KERN_INFO,
2259                         "Wrong segment_count / block_count (%u > %u)",
2260                         segment_count, le32_to_cpu(raw_super->block_count));
2261                 return 1;
2262         }
2263
2264         if (secs_per_zone > total_sections || !secs_per_zone) {
2265                 f2fs_msg(sb, KERN_INFO,
2266                         "Wrong secs_per_zone / total_sections (%u, %u)",
2267                         secs_per_zone, total_sections);
2268                 return 1;
2269         }
2270         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2271                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2272                         (le32_to_cpu(raw_super->extension_count) +
2273                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2274                 f2fs_msg(sb, KERN_INFO,
2275                         "Corrupted extension count (%u + %u > %u)",
2276                         le32_to_cpu(raw_super->extension_count),
2277                         raw_super->hot_ext_count,
2278                         F2FS_MAX_EXTENSION);
2279                 return 1;
2280         }
2281
2282         if (le32_to_cpu(raw_super->cp_payload) >
2283                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2284                 f2fs_msg(sb, KERN_INFO,
2285                         "Insane cp_payload (%u > %u)",
2286                         le32_to_cpu(raw_super->cp_payload),
2287                         blocks_per_seg - F2FS_CP_PACKS);
2288                 return 1;
2289         }
2290
2291         /* check reserved ino info */
2292         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2293                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2294                 le32_to_cpu(raw_super->root_ino) != 3) {
2295                 f2fs_msg(sb, KERN_INFO,
2296                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2297                         le32_to_cpu(raw_super->node_ino),
2298                         le32_to_cpu(raw_super->meta_ino),
2299                         le32_to_cpu(raw_super->root_ino));
2300                 return 1;
2301         }
2302
2303         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2304         if (sanity_check_area_boundary(sbi, bh))
2305                 return 1;
2306
2307         return 0;
2308 }
2309
2310 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2311 {
2312         unsigned int total, fsmeta;
2313         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2314         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2315         unsigned int ovp_segments, reserved_segments;
2316         unsigned int main_segs, blocks_per_seg;
2317         unsigned int sit_segs, nat_segs;
2318         unsigned int sit_bitmap_size, nat_bitmap_size;
2319         unsigned int log_blocks_per_seg;
2320         unsigned int segment_count_main;
2321         unsigned int cp_pack_start_sum, cp_payload;
2322         block_t user_block_count;
2323         int i;
2324
2325         total = le32_to_cpu(raw_super->segment_count);
2326         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2327         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2328         fsmeta += sit_segs;
2329         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2330         fsmeta += nat_segs;
2331         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2332         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2333
2334         if (unlikely(fsmeta >= total))
2335                 return 1;
2336
2337         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2338         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2339
2340         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2341                         ovp_segments == 0 || reserved_segments == 0)) {
2342                 f2fs_msg(sbi->sb, KERN_ERR,
2343                         "Wrong layout: check mkfs.f2fs version");
2344                 return 1;
2345         }
2346
2347         user_block_count = le64_to_cpu(ckpt->user_block_count);
2348         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2349         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2350         if (!user_block_count || user_block_count >=
2351                         segment_count_main << log_blocks_per_seg) {
2352                 f2fs_msg(sbi->sb, KERN_ERR,
2353                         "Wrong user_block_count: %u", user_block_count);
2354                 return 1;
2355         }
2356
2357         main_segs = le32_to_cpu(raw_super->segment_count_main);
2358         blocks_per_seg = sbi->blocks_per_seg;
2359
2360         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2361                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2362                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2363                         return 1;
2364         }
2365         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2366                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2367                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2368                         return 1;
2369         }
2370
2371         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2372         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2373
2374         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2375                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2376                 f2fs_msg(sbi->sb, KERN_ERR,
2377                         "Wrong bitmap size: sit: %u, nat:%u",
2378                         sit_bitmap_size, nat_bitmap_size);
2379                 return 1;
2380         }
2381
2382         cp_pack_start_sum = __start_sum_addr(sbi);
2383         cp_payload = __cp_payload(sbi);
2384         if (cp_pack_start_sum < cp_payload + 1 ||
2385                 cp_pack_start_sum > blocks_per_seg - 1 -
2386                         NR_CURSEG_TYPE) {
2387                 f2fs_msg(sbi->sb, KERN_ERR,
2388                         "Wrong cp_pack_start_sum: %u",
2389                         cp_pack_start_sum);
2390                 return 1;
2391         }
2392
2393         if (unlikely(f2fs_cp_error(sbi))) {
2394                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2395                 return 1;
2396         }
2397         return 0;
2398 }
2399
2400 static void init_sb_info(struct f2fs_sb_info *sbi)
2401 {
2402         struct f2fs_super_block *raw_super = sbi->raw_super;
2403         int i, j;
2404
2405         sbi->log_sectors_per_block =
2406                 le32_to_cpu(raw_super->log_sectors_per_block);
2407         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2408         sbi->blocksize = 1 << sbi->log_blocksize;
2409         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2410         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2411         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2412         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2413         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2414         sbi->total_node_count =
2415                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2416                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2417         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2418         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2419         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2420         sbi->cur_victim_sec = NULL_SECNO;
2421         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2422
2423         sbi->dir_level = DEF_DIR_LEVEL;
2424         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2425         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2426         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2427
2428         for (i = 0; i < NR_COUNT_TYPE; i++)
2429                 atomic_set(&sbi->nr_pages[i], 0);
2430
2431         for (i = 0; i < META; i++)
2432                 atomic_set(&sbi->wb_sync_req[i], 0);
2433
2434         INIT_LIST_HEAD(&sbi->s_list);
2435         mutex_init(&sbi->umount_mutex);
2436         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2437                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2438                         mutex_init(&sbi->wio_mutex[i][j]);
2439         init_rwsem(&sbi->io_order_lock);
2440         spin_lock_init(&sbi->cp_lock);
2441
2442         sbi->dirty_device = 0;
2443         spin_lock_init(&sbi->dev_lock);
2444
2445         init_rwsem(&sbi->sb_lock);
2446 }
2447
2448 static int init_percpu_info(struct f2fs_sb_info *sbi)
2449 {
2450         int err;
2451
2452         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2453         if (err)
2454                 return err;
2455
2456         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2457                                                                 GFP_KERNEL);
2458 }
2459
2460 #ifdef CONFIG_BLK_DEV_ZONED
2461 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2462 {
2463         struct block_device *bdev = FDEV(devi).bdev;
2464         sector_t nr_sectors = bdev->bd_part->nr_sects;
2465         sector_t sector = 0;
2466         struct blk_zone *zones;
2467         unsigned int i, nr_zones;
2468         unsigned int n = 0;
2469         int err = -EIO;
2470
2471         if (!f2fs_sb_has_blkzoned(sbi->sb))
2472                 return 0;
2473
2474         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2475                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2476                 return -EINVAL;
2477         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2478         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2479                                 __ilog2_u32(sbi->blocks_per_blkz))
2480                 return -EINVAL;
2481         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2482         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2483                                         sbi->log_blocks_per_blkz;
2484         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2485                 FDEV(devi).nr_blkz++;
2486
2487         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2488                                                                 GFP_KERNEL);
2489         if (!FDEV(devi).blkz_type)
2490                 return -ENOMEM;
2491
2492 #define F2FS_REPORT_NR_ZONES   4096
2493
2494         zones = f2fs_kzalloc(sbi,
2495                              array_size(F2FS_REPORT_NR_ZONES,
2496                                         sizeof(struct blk_zone)),
2497                              GFP_KERNEL);
2498         if (!zones)
2499                 return -ENOMEM;
2500
2501         /* Get block zones type */
2502         while (zones && sector < nr_sectors) {
2503
2504                 nr_zones = F2FS_REPORT_NR_ZONES;
2505                 err = blkdev_report_zones(bdev, sector,
2506                                           zones, &nr_zones,
2507                                           GFP_KERNEL);
2508                 if (err)
2509                         break;
2510                 if (!nr_zones) {
2511                         err = -EIO;
2512                         break;
2513                 }
2514
2515                 for (i = 0; i < nr_zones; i++) {
2516                         FDEV(devi).blkz_type[n] = zones[i].type;
2517                         sector += zones[i].len;
2518                         n++;
2519                 }
2520         }
2521
2522         kfree(zones);
2523
2524         return err;
2525 }
2526 #endif
2527
2528 /*
2529  * Read f2fs raw super block.
2530  * Because we have two copies of super block, so read both of them
2531  * to get the first valid one. If any one of them is broken, we pass
2532  * them recovery flag back to the caller.
2533  */
2534 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2535                         struct f2fs_super_block **raw_super,
2536                         int *valid_super_block, int *recovery)
2537 {
2538         struct super_block *sb = sbi->sb;
2539         int block;
2540         struct buffer_head *bh;
2541         struct f2fs_super_block *super;
2542         int err = 0;
2543
2544         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2545         if (!super)
2546                 return -ENOMEM;
2547
2548         for (block = 0; block < 2; block++) {
2549                 bh = sb_bread(sb, block);
2550                 if (!bh) {
2551                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2552                                 block + 1);
2553                         err = -EIO;
2554                         continue;
2555                 }
2556
2557                 /* sanity checking of raw super */
2558                 if (sanity_check_raw_super(sbi, bh)) {
2559                         f2fs_msg(sb, KERN_ERR,
2560                                 "Can't find valid F2FS filesystem in %dth superblock",
2561                                 block + 1);
2562                         err = -EINVAL;
2563                         brelse(bh);
2564                         continue;
2565                 }
2566
2567                 if (!*raw_super) {
2568                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2569                                                         sizeof(*super));
2570                         *valid_super_block = block;
2571                         *raw_super = super;
2572                 }
2573                 brelse(bh);
2574         }
2575
2576         /* Fail to read any one of the superblocks*/
2577         if (err < 0)
2578                 *recovery = 1;
2579
2580         /* No valid superblock */
2581         if (!*raw_super)
2582                 kfree(super);
2583         else
2584                 err = 0;
2585
2586         return err;
2587 }
2588
2589 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2590 {
2591         struct buffer_head *bh;
2592         int err;
2593
2594         if ((recover && f2fs_readonly(sbi->sb)) ||
2595                                 bdev_read_only(sbi->sb->s_bdev)) {
2596                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2597                 return -EROFS;
2598         }
2599
2600         /* write back-up superblock first */
2601         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2602         if (!bh)
2603                 return -EIO;
2604         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2605         brelse(bh);
2606
2607         /* if we are in recovery path, skip writing valid superblock */
2608         if (recover || err)
2609                 return err;
2610
2611         /* write current valid superblock */
2612         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2613         if (!bh)
2614                 return -EIO;
2615         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2616         brelse(bh);
2617         return err;
2618 }
2619
2620 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2621 {
2622         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2623         unsigned int max_devices = MAX_DEVICES;
2624         int i;
2625
2626         /* Initialize single device information */
2627         if (!RDEV(0).path[0]) {
2628                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2629                         return 0;
2630                 max_devices = 1;
2631         }
2632
2633         /*
2634          * Initialize multiple devices information, or single
2635          * zoned block device information.
2636          */
2637         sbi->devs = f2fs_kzalloc(sbi,
2638                                  array_size(max_devices,
2639                                             sizeof(struct f2fs_dev_info)),
2640                                  GFP_KERNEL);
2641         if (!sbi->devs)
2642                 return -ENOMEM;
2643
2644         for (i = 0; i < max_devices; i++) {
2645
2646                 if (i > 0 && !RDEV(i).path[0])
2647                         break;
2648
2649                 if (max_devices == 1) {
2650                         /* Single zoned block device mount */
2651                         FDEV(0).bdev =
2652                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2653                                         sbi->sb->s_mode, sbi->sb->s_type);
2654                 } else {
2655                         /* Multi-device mount */
2656                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2657                         FDEV(i).total_segments =
2658                                 le32_to_cpu(RDEV(i).total_segments);
2659                         if (i == 0) {
2660                                 FDEV(i).start_blk = 0;
2661                                 FDEV(i).end_blk = FDEV(i).start_blk +
2662                                     (FDEV(i).total_segments <<
2663                                     sbi->log_blocks_per_seg) - 1 +
2664                                     le32_to_cpu(raw_super->segment0_blkaddr);
2665                         } else {
2666                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2667                                 FDEV(i).end_blk = FDEV(i).start_blk +
2668                                         (FDEV(i).total_segments <<
2669                                         sbi->log_blocks_per_seg) - 1;
2670                         }
2671                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2672                                         sbi->sb->s_mode, sbi->sb->s_type);
2673                 }
2674                 if (IS_ERR(FDEV(i).bdev))
2675                         return PTR_ERR(FDEV(i).bdev);
2676
2677                 /* to release errored devices */
2678                 sbi->s_ndevs = i + 1;
2679
2680 #ifdef CONFIG_BLK_DEV_ZONED
2681                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2682                                 !f2fs_sb_has_blkzoned(sbi->sb)) {
2683                         f2fs_msg(sbi->sb, KERN_ERR,
2684                                 "Zoned block device feature not enabled\n");
2685                         return -EINVAL;
2686                 }
2687                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2688                         if (init_blkz_info(sbi, i)) {
2689                                 f2fs_msg(sbi->sb, KERN_ERR,
2690                                         "Failed to initialize F2FS blkzone information");
2691                                 return -EINVAL;
2692                         }
2693                         if (max_devices == 1)
2694                                 break;
2695                         f2fs_msg(sbi->sb, KERN_INFO,
2696                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2697                                 i, FDEV(i).path,
2698                                 FDEV(i).total_segments,
2699                                 FDEV(i).start_blk, FDEV(i).end_blk,
2700                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2701                                 "Host-aware" : "Host-managed");
2702                         continue;
2703                 }
2704 #endif
2705                 f2fs_msg(sbi->sb, KERN_INFO,
2706                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2707                                 i, FDEV(i).path,
2708                                 FDEV(i).total_segments,
2709                                 FDEV(i).start_blk, FDEV(i).end_blk);
2710         }
2711         f2fs_msg(sbi->sb, KERN_INFO,
2712                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2713         return 0;
2714 }
2715
2716 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2717 {
2718         struct f2fs_sm_info *sm_i = SM_I(sbi);
2719
2720         /* adjust parameters according to the volume size */
2721         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2722                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2723                 sm_i->dcc_info->discard_granularity = 1;
2724                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2725         }
2726
2727         sbi->readdir_ra = 1;
2728 }
2729
2730 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2731 {
2732         struct f2fs_sb_info *sbi;
2733         struct f2fs_super_block *raw_super;
2734         struct inode *root;
2735         int err;
2736         bool retry = true, need_fsck = false;
2737         char *options = NULL;
2738         int recovery, i, valid_super_block;
2739         struct curseg_info *seg_i;
2740
2741 try_onemore:
2742         err = -EINVAL;
2743         raw_super = NULL;
2744         valid_super_block = -1;
2745         recovery = 0;
2746
2747         /* allocate memory for f2fs-specific super block info */
2748         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2749         if (!sbi)
2750                 return -ENOMEM;
2751
2752         sbi->sb = sb;
2753
2754         /* Load the checksum driver */
2755         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2756         if (IS_ERR(sbi->s_chksum_driver)) {
2757                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2758                 err = PTR_ERR(sbi->s_chksum_driver);
2759                 sbi->s_chksum_driver = NULL;
2760                 goto free_sbi;
2761         }
2762
2763         /* set a block size */
2764         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2765                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2766                 goto free_sbi;
2767         }
2768
2769         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2770                                                                 &recovery);
2771         if (err)
2772                 goto free_sbi;
2773
2774         sb->s_fs_info = sbi;
2775         sbi->raw_super = raw_super;
2776
2777         /* precompute checksum seed for metadata */
2778         if (f2fs_sb_has_inode_chksum(sb))
2779                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2780                                                 sizeof(raw_super->uuid));
2781
2782         /*
2783          * The BLKZONED feature indicates that the drive was formatted with
2784          * zone alignment optimization. This is optional for host-aware
2785          * devices, but mandatory for host-managed zoned block devices.
2786          */
2787 #ifndef CONFIG_BLK_DEV_ZONED
2788         if (f2fs_sb_has_blkzoned(sb)) {
2789                 f2fs_msg(sb, KERN_ERR,
2790                          "Zoned block device support is not enabled\n");
2791                 err = -EOPNOTSUPP;
2792                 goto free_sb_buf;
2793         }
2794 #endif
2795         default_options(sbi);
2796         /* parse mount options */
2797         options = kstrdup((const char *)data, GFP_KERNEL);
2798         if (data && !options) {
2799                 err = -ENOMEM;
2800                 goto free_sb_buf;
2801         }
2802
2803         err = parse_options(sb, options);
2804         if (err)
2805                 goto free_options;
2806
2807         sbi->max_file_blocks = max_file_blocks();
2808         sb->s_maxbytes = sbi->max_file_blocks <<
2809                                 le32_to_cpu(raw_super->log_blocksize);
2810         sb->s_max_links = F2FS_LINK_MAX;
2811         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2812
2813 #ifdef CONFIG_QUOTA
2814         sb->dq_op = &f2fs_quota_operations;
2815         if (f2fs_sb_has_quota_ino(sb))
2816                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2817         else
2818                 sb->s_qcop = &f2fs_quotactl_ops;
2819         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2820
2821         if (f2fs_sb_has_quota_ino(sbi->sb)) {
2822                 for (i = 0; i < MAXQUOTAS; i++) {
2823                         if (f2fs_qf_ino(sbi->sb, i))
2824                                 sbi->nquota_files++;
2825                 }
2826         }
2827 #endif
2828
2829         sb->s_op = &f2fs_sops;
2830 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2831         sb->s_cop = &f2fs_cryptops;
2832 #endif
2833         sb->s_xattr = f2fs_xattr_handlers;
2834         sb->s_export_op = &f2fs_export_ops;
2835         sb->s_magic = F2FS_SUPER_MAGIC;
2836         sb->s_time_gran = 1;
2837         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2838                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2839         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2840         sb->s_iflags |= SB_I_CGROUPWB;
2841
2842         /* init f2fs-specific super block info */
2843         sbi->valid_super_block = valid_super_block;
2844         mutex_init(&sbi->gc_mutex);
2845         mutex_init(&sbi->writepages);
2846         mutex_init(&sbi->cp_mutex);
2847         init_rwsem(&sbi->node_write);
2848         init_rwsem(&sbi->node_change);
2849
2850         /* disallow all the data/node/meta page writes */
2851         set_sbi_flag(sbi, SBI_POR_DOING);
2852         spin_lock_init(&sbi->stat_lock);
2853
2854         /* init iostat info */
2855         spin_lock_init(&sbi->iostat_lock);
2856         sbi->iostat_enable = false;
2857
2858         for (i = 0; i < NR_PAGE_TYPE; i++) {
2859                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2860                 int j;
2861
2862                 sbi->write_io[i] =
2863                         f2fs_kmalloc(sbi,
2864                                      array_size(n,
2865                                                 sizeof(struct f2fs_bio_info)),
2866                                      GFP_KERNEL);
2867                 if (!sbi->write_io[i]) {
2868                         err = -ENOMEM;
2869                         goto free_options;
2870                 }
2871
2872                 for (j = HOT; j < n; j++) {
2873                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2874                         sbi->write_io[i][j].sbi = sbi;
2875                         sbi->write_io[i][j].bio = NULL;
2876                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2877                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2878                 }
2879         }
2880
2881         init_rwsem(&sbi->cp_rwsem);
2882         init_waitqueue_head(&sbi->cp_wait);
2883         init_sb_info(sbi);
2884
2885         err = init_percpu_info(sbi);
2886         if (err)
2887                 goto free_bio_info;
2888
2889         if (F2FS_IO_SIZE(sbi) > 1) {
2890                 sbi->write_io_dummy =
2891                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2892                 if (!sbi->write_io_dummy) {
2893                         err = -ENOMEM;
2894                         goto free_percpu;
2895                 }
2896         }
2897
2898         /* get an inode for meta space */
2899         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2900         if (IS_ERR(sbi->meta_inode)) {
2901                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2902                 err = PTR_ERR(sbi->meta_inode);
2903                 goto free_io_dummy;
2904         }
2905
2906         err = f2fs_get_valid_checkpoint(sbi);
2907         if (err) {
2908                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2909                 goto free_meta_inode;
2910         }
2911
2912         /* Initialize device list */
2913         err = f2fs_scan_devices(sbi);
2914         if (err) {
2915                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2916                 goto free_devices;
2917         }
2918
2919         sbi->total_valid_node_count =
2920                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2921         percpu_counter_set(&sbi->total_valid_inode_count,
2922                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2923         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2924         sbi->total_valid_block_count =
2925                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2926         sbi->last_valid_block_count = sbi->total_valid_block_count;
2927         sbi->reserved_blocks = 0;
2928         sbi->current_reserved_blocks = 0;
2929         limit_reserve_root(sbi);
2930
2931         for (i = 0; i < NR_INODE_TYPE; i++) {
2932                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2933                 spin_lock_init(&sbi->inode_lock[i]);
2934         }
2935
2936         f2fs_init_extent_cache_info(sbi);
2937
2938         f2fs_init_ino_entry_info(sbi);
2939
2940         f2fs_init_fsync_node_info(sbi);
2941
2942         /* setup f2fs internal modules */
2943         err = f2fs_build_segment_manager(sbi);
2944         if (err) {
2945                 f2fs_msg(sb, KERN_ERR,
2946                         "Failed to initialize F2FS segment manager");
2947                 goto free_sm;
2948         }
2949         err = f2fs_build_node_manager(sbi);
2950         if (err) {
2951                 f2fs_msg(sb, KERN_ERR,
2952                         "Failed to initialize F2FS node manager");
2953                 goto free_nm;
2954         }
2955
2956         /* For write statistics */
2957         if (sb->s_bdev->bd_part)
2958                 sbi->sectors_written_start =
2959                         (u64)part_stat_read(sb->s_bdev->bd_part,
2960                                             sectors[STAT_WRITE]);
2961
2962         /* Read accumulated write IO statistics if exists */
2963         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2964         if (__exist_node_summaries(sbi))
2965                 sbi->kbytes_written =
2966                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2967
2968         f2fs_build_gc_manager(sbi);
2969
2970         /* get an inode for node space */
2971         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2972         if (IS_ERR(sbi->node_inode)) {
2973                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2974                 err = PTR_ERR(sbi->node_inode);
2975                 goto free_nm;
2976         }
2977
2978         err = f2fs_build_stats(sbi);
2979         if (err)
2980                 goto free_node_inode;
2981
2982         /* read root inode and dentry */
2983         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2984         if (IS_ERR(root)) {
2985                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2986                 err = PTR_ERR(root);
2987                 goto free_stats;
2988         }
2989         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
2990                         !root->i_size || !root->i_nlink) {
2991                 iput(root);
2992                 err = -EINVAL;
2993                 goto free_stats;
2994         }
2995
2996         sb->s_root = d_make_root(root); /* allocate root dentry */
2997         if (!sb->s_root) {
2998                 err = -ENOMEM;
2999                 goto free_root_inode;
3000         }
3001
3002         err = f2fs_register_sysfs(sbi);
3003         if (err)
3004                 goto free_root_inode;
3005
3006 #ifdef CONFIG_QUOTA
3007         /* Enable quota usage during mount */
3008         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
3009                 err = f2fs_enable_quotas(sb);
3010                 if (err) {
3011                         f2fs_msg(sb, KERN_ERR,
3012                                 "Cannot turn on quotas: error %d", err);
3013                         goto free_sysfs;
3014                 }
3015         }
3016 #endif
3017         /* if there are nt orphan nodes free them */
3018         err = f2fs_recover_orphan_inodes(sbi);
3019         if (err)
3020                 goto free_meta;
3021
3022         /* recover fsynced data */
3023         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3024                 /*
3025                  * mount should be failed, when device has readonly mode, and
3026                  * previous checkpoint was not done by clean system shutdown.
3027                  */
3028                 if (bdev_read_only(sb->s_bdev) &&
3029                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3030                         err = -EROFS;
3031                         goto free_meta;
3032                 }
3033
3034                 if (need_fsck)
3035                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3036
3037                 if (!retry)
3038                         goto skip_recovery;
3039
3040                 err = f2fs_recover_fsync_data(sbi, false);
3041                 if (err < 0) {
3042                         need_fsck = true;
3043                         f2fs_msg(sb, KERN_ERR,
3044                                 "Cannot recover all fsync data errno=%d", err);
3045                         goto free_meta;
3046                 }
3047         } else {
3048                 err = f2fs_recover_fsync_data(sbi, true);
3049
3050                 if (!f2fs_readonly(sb) && err > 0) {
3051                         err = -EINVAL;
3052                         f2fs_msg(sb, KERN_ERR,
3053                                 "Need to recover fsync data");
3054                         goto free_meta;
3055                 }
3056         }
3057 skip_recovery:
3058         /* f2fs_recover_fsync_data() cleared this already */
3059         clear_sbi_flag(sbi, SBI_POR_DOING);
3060
3061         /*
3062          * If filesystem is not mounted as read-only then
3063          * do start the gc_thread.
3064          */
3065         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3066                 /* After POR, we can run background GC thread.*/
3067                 err = f2fs_start_gc_thread(sbi);
3068                 if (err)
3069                         goto free_meta;
3070         }
3071         kfree(options);
3072
3073         /* recover broken superblock */
3074         if (recovery) {
3075                 err = f2fs_commit_super(sbi, true);
3076                 f2fs_msg(sb, KERN_INFO,
3077                         "Try to recover %dth superblock, ret: %d",
3078                         sbi->valid_super_block ? 1 : 2, err);
3079         }
3080
3081         f2fs_join_shrinker(sbi);
3082
3083         f2fs_tuning_parameters(sbi);
3084
3085         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3086                                 cur_cp_version(F2FS_CKPT(sbi)));
3087         f2fs_update_time(sbi, CP_TIME);
3088         f2fs_update_time(sbi, REQ_TIME);
3089         return 0;
3090
3091 free_meta:
3092 #ifdef CONFIG_QUOTA
3093         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3094                 f2fs_quota_off_umount(sbi->sb);
3095 #endif
3096         f2fs_sync_inode_meta(sbi);
3097         /*
3098          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3099          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3100          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3101          * falls into an infinite loop in f2fs_sync_meta_pages().
3102          */
3103         truncate_inode_pages_final(META_MAPPING(sbi));
3104 #ifdef CONFIG_QUOTA
3105 free_sysfs:
3106 #endif
3107         f2fs_unregister_sysfs(sbi);
3108 free_root_inode:
3109         dput(sb->s_root);
3110         sb->s_root = NULL;
3111 free_stats:
3112         f2fs_destroy_stats(sbi);
3113 free_node_inode:
3114         f2fs_release_ino_entry(sbi, true);
3115         truncate_inode_pages_final(NODE_MAPPING(sbi));
3116         iput(sbi->node_inode);
3117 free_nm:
3118         f2fs_destroy_node_manager(sbi);
3119 free_sm:
3120         f2fs_destroy_segment_manager(sbi);
3121 free_devices:
3122         destroy_device_list(sbi);
3123         kfree(sbi->ckpt);
3124 free_meta_inode:
3125         make_bad_inode(sbi->meta_inode);
3126         iput(sbi->meta_inode);
3127 free_io_dummy:
3128         mempool_destroy(sbi->write_io_dummy);
3129 free_percpu:
3130         destroy_percpu_info(sbi);
3131 free_bio_info:
3132         for (i = 0; i < NR_PAGE_TYPE; i++)
3133                 kfree(sbi->write_io[i]);
3134 free_options:
3135 #ifdef CONFIG_QUOTA
3136         for (i = 0; i < MAXQUOTAS; i++)
3137                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3138 #endif
3139         kfree(options);
3140 free_sb_buf:
3141         kfree(raw_super);
3142 free_sbi:
3143         if (sbi->s_chksum_driver)
3144                 crypto_free_shash(sbi->s_chksum_driver);
3145         kfree(sbi);
3146
3147         /* give only one another chance */
3148         if (retry) {
3149                 retry = false;
3150                 shrink_dcache_sb(sb);
3151                 goto try_onemore;
3152         }
3153         return err;
3154 }
3155
3156 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3157                         const char *dev_name, void *data)
3158 {
3159         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3160 }
3161
3162 static void kill_f2fs_super(struct super_block *sb)
3163 {
3164         if (sb->s_root) {
3165                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3166
3167                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3168                 f2fs_stop_gc_thread(sbi);
3169                 f2fs_stop_discard_thread(sbi);
3170
3171                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3172                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3173                         struct cp_control cpc = {
3174                                 .reason = CP_UMOUNT,
3175                         };
3176                         f2fs_write_checkpoint(sbi, &cpc);
3177                 }
3178         }
3179         kill_block_super(sb);
3180 }
3181
3182 static struct file_system_type f2fs_fs_type = {
3183         .owner          = THIS_MODULE,
3184         .name           = "f2fs",
3185         .mount          = f2fs_mount,
3186         .kill_sb        = kill_f2fs_super,
3187         .fs_flags       = FS_REQUIRES_DEV,
3188 };
3189 MODULE_ALIAS_FS("f2fs");
3190
3191 static int __init init_inodecache(void)
3192 {
3193         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3194                         sizeof(struct f2fs_inode_info), 0,
3195                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3196         if (!f2fs_inode_cachep)
3197                 return -ENOMEM;
3198         return 0;
3199 }
3200
3201 static void destroy_inodecache(void)
3202 {
3203         /*
3204          * Make sure all delayed rcu free inodes are flushed before we
3205          * destroy cache.
3206          */
3207         rcu_barrier();
3208         kmem_cache_destroy(f2fs_inode_cachep);
3209 }
3210
3211 static int __init init_f2fs_fs(void)
3212 {
3213         int err;
3214
3215         if (PAGE_SIZE != F2FS_BLKSIZE) {
3216                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3217                                 PAGE_SIZE, F2FS_BLKSIZE);
3218                 return -EINVAL;
3219         }
3220
3221         f2fs_build_trace_ios();
3222
3223         err = init_inodecache();
3224         if (err)
3225                 goto fail;
3226         err = f2fs_create_node_manager_caches();
3227         if (err)
3228                 goto free_inodecache;
3229         err = f2fs_create_segment_manager_caches();
3230         if (err)
3231                 goto free_node_manager_caches;
3232         err = f2fs_create_checkpoint_caches();
3233         if (err)
3234                 goto free_segment_manager_caches;
3235         err = f2fs_create_extent_cache();
3236         if (err)
3237                 goto free_checkpoint_caches;
3238         err = f2fs_init_sysfs();
3239         if (err)
3240                 goto free_extent_cache;
3241         err = register_shrinker(&f2fs_shrinker_info);
3242         if (err)
3243                 goto free_sysfs;
3244         err = register_filesystem(&f2fs_fs_type);
3245         if (err)
3246                 goto free_shrinker;
3247         err = f2fs_create_root_stats();
3248         if (err)
3249                 goto free_filesystem;
3250         err = f2fs_init_post_read_processing();
3251         if (err)
3252                 goto free_root_stats;
3253         return 0;
3254
3255 free_root_stats:
3256         f2fs_destroy_root_stats();
3257 free_filesystem:
3258         unregister_filesystem(&f2fs_fs_type);
3259 free_shrinker:
3260         unregister_shrinker(&f2fs_shrinker_info);
3261 free_sysfs:
3262         f2fs_exit_sysfs();
3263 free_extent_cache:
3264         f2fs_destroy_extent_cache();
3265 free_checkpoint_caches:
3266         f2fs_destroy_checkpoint_caches();
3267 free_segment_manager_caches:
3268         f2fs_destroy_segment_manager_caches();
3269 free_node_manager_caches:
3270         f2fs_destroy_node_manager_caches();
3271 free_inodecache:
3272         destroy_inodecache();
3273 fail:
3274         return err;
3275 }
3276
3277 static void __exit exit_f2fs_fs(void)
3278 {
3279         f2fs_destroy_post_read_processing();
3280         f2fs_destroy_root_stats();
3281         unregister_filesystem(&f2fs_fs_type);
3282         unregister_shrinker(&f2fs_shrinker_info);
3283         f2fs_exit_sysfs();
3284         f2fs_destroy_extent_cache();
3285         f2fs_destroy_checkpoint_caches();
3286         f2fs_destroy_segment_manager_caches();
3287         f2fs_destroy_node_manager_caches();
3288         destroy_inodecache();
3289         f2fs_destroy_trace_ios();
3290 }
3291
3292 module_init(init_f2fs_fs)
3293 module_exit(exit_f2fs_fs)
3294
3295 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3296 MODULE_DESCRIPTION("Flash Friendly File System");
3297 MODULE_LICENSE("GPL");
3298