db619fd2f51a5205a518e77ceb7ba654052e151d
[linux-2.6-block.git] / fs / f2fs / segment.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13 #define NULL_SECNO                      ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
30
31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32                                                 unsigned short seg_type)
33 {
34         f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36
37 #define IS_CURSEG(sbi, seg)                                             \
38         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
39          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
40          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
41          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
42          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
43          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
44          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
45          ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
46
47 #define IS_CURSEC(sbi, secno)                                           \
48         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
49           SEGS_PER_SEC(sbi)) || \
50          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
51           SEGS_PER_SEC(sbi)) || \
52          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
53           SEGS_PER_SEC(sbi)) || \
54          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
55           SEGS_PER_SEC(sbi)) || \
56          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
57           SEGS_PER_SEC(sbi)) || \
58          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
59           SEGS_PER_SEC(sbi)) || \
60          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
61           SEGS_PER_SEC(sbi)) || \
62          ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
63           SEGS_PER_SEC(sbi)))
64
65 #define MAIN_BLKADDR(sbi)                                               \
66         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
67                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
68 #define SEG0_BLKADDR(sbi)                                               \
69         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
70                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
71
72 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
73 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
74
75 #define TOTAL_SEGS(sbi)                                                 \
76         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
77                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
78 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
79
80 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
81 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
82                                         (sbi)->log_blocks_per_seg))
83
84 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
85          (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
86
87 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
88         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
89
90 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
91 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
92         (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
93 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
94         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
95
96 #define GET_SEGNO(sbi, blk_addr)                                        \
97         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
98         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
99                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
100 #define CAP_BLKS_PER_SEC(sbi)                                   \
101         (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
102 #define CAP_SEGS_PER_SEC(sbi)                                   \
103         (SEGS_PER_SEC(sbi) -                                    \
104         BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
105 #define GET_START_SEG_FROM_SEC(sbi, segno)                      \
106         (rounddown(segno, SEGS_PER_SEC(sbi)))
107 #define GET_SEC_FROM_SEG(sbi, segno)                            \
108         (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109 #define GET_SEG_FROM_SEC(sbi, secno)                            \
110         ((secno) * SEGS_PER_SEC(sbi))
111 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
112         (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
114         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116 #define GET_SUM_BLOCK(sbi, segno)                               \
117         ((sbi)->sm_info->ssa_blkaddr + (segno))
118
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
123         ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)                                 \
125         ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno)              \
127         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)                        \
129         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)                    \
131         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
134         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)                                        \
136         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138 /*
139  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140  * LFS writes data sequentially with cleaning operations.
141  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143  * fragmented segment which has similar aging degree.
144  */
145 enum {
146         LFS = 0,
147         SSR,
148         AT_SSR,
149 };
150
151 /*
152  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153  * GC_CB is based on cost-benefit algorithm.
154  * GC_GREEDY is based on greedy algorithm.
155  * GC_AT is based on age-threshold algorithm.
156  */
157 enum {
158         GC_CB = 0,
159         GC_GREEDY,
160         GC_AT,
161         ALLOC_NEXT,
162         FLUSH_DEVICE,
163         MAX_GC_POLICY,
164 };
165
166 /*
167  * BG_GC means the background cleaning job.
168  * FG_GC means the on-demand cleaning job.
169  */
170 enum {
171         BG_GC = 0,
172         FG_GC,
173 };
174
175 /* for a function parameter to select a victim segment */
176 struct victim_sel_policy {
177         int alloc_mode;                 /* LFS or SSR */
178         int gc_mode;                    /* GC_CB or GC_GREEDY */
179         unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
180         unsigned int max_search;        /*
181                                          * maximum # of segments/sections
182                                          * to search
183                                          */
184         unsigned int offset;            /* last scanned bitmap offset */
185         unsigned int ofs_unit;          /* bitmap search unit */
186         unsigned int min_cost;          /* minimum cost */
187         unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
188         unsigned int min_segno;         /* segment # having min. cost */
189         unsigned long long age;         /* mtime of GCed section*/
190         unsigned long long age_threshold;/* age threshold */
191         bool one_time_gc;               /* one time GC */
192 };
193
194 struct seg_entry {
195         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
196         unsigned int valid_blocks:10;   /* # of valid blocks */
197         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
198         unsigned int padding:6;         /* padding */
199         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
200 #ifdef CONFIG_F2FS_CHECK_FS
201         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
202 #endif
203         /*
204          * # of valid blocks and the validity bitmap stored in the last
205          * checkpoint pack. This information is used by the SSR mode.
206          */
207         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
208         unsigned char *discard_map;
209         unsigned long long mtime;       /* modification time of the segment */
210 };
211
212 struct sec_entry {
213         unsigned int valid_blocks;      /* # of valid blocks in a section */
214         unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */
215 };
216
217 #define MAX_SKIP_GC_COUNT                       16
218
219 struct revoke_entry {
220         struct list_head list;
221         block_t old_addr;               /* for revoking when fail to commit */
222         pgoff_t index;
223 };
224
225 struct sit_info {
226         block_t sit_base_addr;          /* start block address of SIT area */
227         block_t sit_blocks;             /* # of blocks used by SIT area */
228         block_t written_valid_blocks;   /* # of valid blocks in main area */
229         char *bitmap;                   /* all bitmaps pointer */
230         char *sit_bitmap;               /* SIT bitmap pointer */
231 #ifdef CONFIG_F2FS_CHECK_FS
232         char *sit_bitmap_mir;           /* SIT bitmap mirror */
233
234         /* bitmap of segments to be ignored by GC in case of errors */
235         unsigned long *invalid_segmap;
236 #endif
237         unsigned int bitmap_size;       /* SIT bitmap size */
238
239         unsigned long *tmp_map;                 /* bitmap for temporal use */
240         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
241         unsigned int dirty_sentries;            /* # of dirty sentries */
242         unsigned int sents_per_block;           /* # of SIT entries per block */
243         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
244         struct seg_entry *sentries;             /* SIT segment-level cache */
245         struct sec_entry *sec_entries;          /* SIT section-level cache */
246
247         /* for cost-benefit algorithm in cleaning procedure */
248         unsigned long long elapsed_time;        /* elapsed time after mount */
249         unsigned long long mounted_time;        /* mount time */
250         unsigned long long min_mtime;           /* min. modification time */
251         unsigned long long max_mtime;           /* max. modification time */
252         unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
253         unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
254
255         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
256 };
257
258 struct free_segmap_info {
259         unsigned int start_segno;       /* start segment number logically */
260         unsigned int free_segments;     /* # of free segments */
261         unsigned int free_sections;     /* # of free sections */
262         spinlock_t segmap_lock;         /* free segmap lock */
263         unsigned long *free_segmap;     /* free segment bitmap */
264         unsigned long *free_secmap;     /* free section bitmap */
265 };
266
267 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
268 enum dirty_type {
269         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
270         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
271         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
272         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
273         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
274         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
275         DIRTY,                  /* to count # of dirty segments */
276         PRE,                    /* to count # of entirely obsolete segments */
277         NR_DIRTY_TYPE
278 };
279
280 struct dirty_seglist_info {
281         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
282         unsigned long *dirty_secmap;
283         struct mutex seglist_lock;              /* lock for segment bitmaps */
284         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
285         unsigned long *victim_secmap;           /* background GC victims */
286         unsigned long *pinned_secmap;           /* pinned victims from foreground GC */
287         unsigned int pinned_secmap_cnt;         /* count of victims which has pinned data */
288         bool enable_pin_section;                /* enable pinning section */
289 };
290
291 /* for active log information */
292 struct curseg_info {
293         struct mutex curseg_mutex;              /* lock for consistency */
294         struct f2fs_summary_block *sum_blk;     /* cached summary block */
295         struct rw_semaphore journal_rwsem;      /* protect journal area */
296         struct f2fs_journal *journal;           /* cached journal info */
297         unsigned char alloc_type;               /* current allocation type */
298         unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
299         unsigned int segno;                     /* current segment number */
300         unsigned short next_blkoff;             /* next block offset to write */
301         unsigned int zone;                      /* current zone number */
302         unsigned int next_segno;                /* preallocated segment */
303         int fragment_remained_chunk;            /* remained block size in a chunk for block fragmentation mode */
304         bool inited;                            /* indicate inmem log is inited */
305 };
306
307 struct sit_entry_set {
308         struct list_head set_list;      /* link with all sit sets */
309         unsigned int start_segno;       /* start segno of sits in set */
310         unsigned int entry_cnt;         /* the # of sit entries in set */
311 };
312
313 /*
314  * inline functions
315  */
316 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
317 {
318         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
319 }
320
321 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
322                                                 unsigned int segno)
323 {
324         struct sit_info *sit_i = SIT_I(sbi);
325         return &sit_i->sentries[segno];
326 }
327
328 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
329                                                 unsigned int segno)
330 {
331         struct sit_info *sit_i = SIT_I(sbi);
332         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
333 }
334
335 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
336                                 unsigned int segno, bool use_section)
337 {
338         /*
339          * In order to get # of valid blocks in a section instantly from many
340          * segments, f2fs manages two counting structures separately.
341          */
342         if (use_section && __is_large_section(sbi))
343                 return get_sec_entry(sbi, segno)->valid_blocks;
344         else
345                 return get_seg_entry(sbi, segno)->valid_blocks;
346 }
347
348 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
349                                 unsigned int segno, bool use_section)
350 {
351         if (use_section && __is_large_section(sbi))
352                 return get_sec_entry(sbi, segno)->ckpt_valid_blocks;
353         else
354                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
355 }
356
357 static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
358                 unsigned int segno)
359 {
360         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
361         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
362         unsigned int blocks = 0;
363         int i;
364
365         for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
366                 struct seg_entry *se = get_seg_entry(sbi, start_segno);
367
368                 blocks += se->ckpt_valid_blocks;
369         }
370         get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks;
371 }
372
373 #ifdef CONFIG_F2FS_CHECK_FS
374 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
375                 unsigned int segno)
376 {
377         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
378         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
379         unsigned int blocks = 0;
380         int i;
381
382         for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
383                 struct seg_entry *se = get_seg_entry(sbi, start_segno);
384
385                 blocks += se->ckpt_valid_blocks;
386         }
387
388         if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) {
389                 f2fs_err(sbi,
390                         "Inconsistent ckpt valid blocks: "
391                         "seg entry(%d) vs sec entry(%d) at secno %d",
392                         blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno);
393                 f2fs_bug_on(sbi, 1);
394         }
395 }
396 #else
397 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
398                         unsigned int segno)
399 {
400 }
401 #endif
402 static inline void seg_info_from_raw_sit(struct seg_entry *se,
403                                         struct f2fs_sit_entry *rs)
404 {
405         se->valid_blocks = GET_SIT_VBLOCKS(rs);
406         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
407         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
408         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
409 #ifdef CONFIG_F2FS_CHECK_FS
410         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
411 #endif
412         se->type = GET_SIT_TYPE(rs);
413         se->mtime = le64_to_cpu(rs->mtime);
414 }
415
416 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
417                                         struct f2fs_sit_entry *rs)
418 {
419         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
420                                         se->valid_blocks;
421         rs->vblocks = cpu_to_le16(raw_vblocks);
422         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
423         rs->mtime = cpu_to_le64(se->mtime);
424 }
425
426 static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi,
427                                 struct folio *folio, unsigned int start)
428 {
429         struct f2fs_sit_block *raw_sit;
430         struct seg_entry *se;
431         struct f2fs_sit_entry *rs;
432         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
433                                         (unsigned long)MAIN_SEGS(sbi));
434         int i;
435
436         raw_sit = folio_address(folio);
437         memset(raw_sit, 0, PAGE_SIZE);
438         for (i = 0; i < end - start; i++) {
439                 rs = &raw_sit->entries[i];
440                 se = get_seg_entry(sbi, start + i);
441                 __seg_info_to_raw_sit(se, rs);
442         }
443 }
444
445 static inline void seg_info_to_raw_sit(struct seg_entry *se,
446                                         struct f2fs_sit_entry *rs)
447 {
448         __seg_info_to_raw_sit(se, rs);
449
450         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
451         se->ckpt_valid_blocks = se->valid_blocks;
452 }
453
454 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
455                 unsigned int max, unsigned int segno)
456 {
457         unsigned int ret;
458         spin_lock(&free_i->segmap_lock);
459         ret = find_next_bit(free_i->free_segmap, max, segno);
460         spin_unlock(&free_i->segmap_lock);
461         return ret;
462 }
463
464 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
465 {
466         struct free_segmap_info *free_i = FREE_I(sbi);
467         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
468         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
469         unsigned int next;
470
471         spin_lock(&free_i->segmap_lock);
472         clear_bit(segno, free_i->free_segmap);
473         free_i->free_segments++;
474
475         next = find_next_bit(free_i->free_segmap,
476                         start_segno + SEGS_PER_SEC(sbi), start_segno);
477         if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) {
478                 clear_bit(secno, free_i->free_secmap);
479                 free_i->free_sections++;
480         }
481         spin_unlock(&free_i->segmap_lock);
482 }
483
484 static inline void __set_inuse(struct f2fs_sb_info *sbi,
485                 unsigned int segno)
486 {
487         struct free_segmap_info *free_i = FREE_I(sbi);
488         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
489
490         set_bit(segno, free_i->free_segmap);
491         free_i->free_segments--;
492         if (!test_and_set_bit(secno, free_i->free_secmap))
493                 free_i->free_sections--;
494 }
495
496 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
497                 unsigned int segno, bool inmem)
498 {
499         struct free_segmap_info *free_i = FREE_I(sbi);
500         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
501         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
502         unsigned int next;
503         bool ret;
504
505         spin_lock(&free_i->segmap_lock);
506         ret = test_and_clear_bit(segno, free_i->free_segmap);
507         if (!ret)
508                 goto unlock_out;
509
510         free_i->free_segments++;
511
512         if (!inmem && IS_CURSEC(sbi, secno))
513                 goto unlock_out;
514
515         /* check large section */
516         next = find_next_bit(free_i->free_segmap,
517                              start_segno + SEGS_PER_SEC(sbi), start_segno);
518         if (next < start_segno + f2fs_usable_segs_in_sec(sbi))
519                 goto unlock_out;
520
521         ret = test_and_clear_bit(secno, free_i->free_secmap);
522         if (!ret)
523                 goto unlock_out;
524
525         free_i->free_sections++;
526
527         if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno)
528                 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
529         if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno)
530                 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
531
532 unlock_out:
533         spin_unlock(&free_i->segmap_lock);
534 }
535
536 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
537                 unsigned int segno)
538 {
539         struct free_segmap_info *free_i = FREE_I(sbi);
540         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
541
542         spin_lock(&free_i->segmap_lock);
543         if (!test_and_set_bit(segno, free_i->free_segmap)) {
544                 free_i->free_segments--;
545                 if (!test_and_set_bit(secno, free_i->free_secmap))
546                         free_i->free_sections--;
547         }
548         spin_unlock(&free_i->segmap_lock);
549 }
550
551 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
552                 void *dst_addr)
553 {
554         struct sit_info *sit_i = SIT_I(sbi);
555
556 #ifdef CONFIG_F2FS_CHECK_FS
557         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
558                                                 sit_i->bitmap_size))
559                 f2fs_bug_on(sbi, 1);
560 #endif
561         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
562 }
563
564 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
565 {
566         return SIT_I(sbi)->written_valid_blocks;
567 }
568
569 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
570 {
571         return FREE_I(sbi)->free_segments;
572 }
573
574 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
575 {
576         return SM_I(sbi)->reserved_segments;
577 }
578
579 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
580 {
581         return FREE_I(sbi)->free_sections;
582 }
583
584 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
585 {
586         return DIRTY_I(sbi)->nr_dirty[PRE];
587 }
588
589 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
590 {
591         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
592                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
593                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
594                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
595                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
596                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
597 }
598
599 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
600 {
601         return SM_I(sbi)->ovp_segments;
602 }
603
604 static inline int reserved_sections(struct f2fs_sb_info *sbi)
605 {
606         return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
607 }
608
609 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
610                         unsigned int node_blocks, unsigned int data_blocks,
611                         unsigned int dent_blocks)
612 {
613         unsigned int segno, left_blocks, blocks;
614         int i;
615
616         /* check current data/node sections in the worst case. */
617         for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
618                 segno = CURSEG_I(sbi, i)->segno;
619
620                 if (unlikely(segno == NULL_SEGNO))
621                         return false;
622
623                 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) {
624                         left_blocks = CAP_BLKS_PER_SEC(sbi) -
625                                 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) -
626                                 CURSEG_I(sbi, i)->next_blkoff;
627                 } else {
628                         left_blocks = CAP_BLKS_PER_SEC(sbi) -
629                                         get_ckpt_valid_blocks(sbi, segno, true);
630                 }
631
632                 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
633                 if (blocks > left_blocks)
634                         return false;
635         }
636
637         /* check current data section for dentry blocks. */
638         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
639
640         if (unlikely(segno == NULL_SEGNO))
641                 return false;
642
643         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) {
644                 left_blocks = CAP_BLKS_PER_SEC(sbi) -
645                                 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) -
646                                 CURSEG_I(sbi, CURSEG_HOT_DATA)->next_blkoff;
647         } else {
648                 left_blocks = CAP_BLKS_PER_SEC(sbi) -
649                                 get_ckpt_valid_blocks(sbi, segno, true);
650         }
651
652         if (dent_blocks > left_blocks)
653                 return false;
654         return true;
655 }
656
657 /*
658  * calculate needed sections for dirty node/dentry and call
659  * has_curseg_enough_space, please note that, it needs to account
660  * dirty data as well in lfs mode when checkpoint is disabled.
661  */
662 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
663                 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
664 {
665         unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
666                                         get_pages(sbi, F2FS_DIRTY_DENTS) +
667                                         get_pages(sbi, F2FS_DIRTY_IMETA);
668         unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
669         unsigned int total_data_blocks = 0;
670         unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
671         unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
672         unsigned int data_secs = 0;
673         unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
674         unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
675         unsigned int data_blocks = 0;
676
677         if (f2fs_lfs_mode(sbi) &&
678                 unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
679                 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
680                 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
681                 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
682         }
683
684         if (lower_p)
685                 *lower_p = node_secs + dent_secs + data_secs;
686         if (upper_p)
687                 *upper_p = node_secs + dent_secs +
688                         (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
689                         (data_blocks ? 1 : 0);
690         if (curseg_p)
691                 *curseg_p = has_curseg_enough_space(sbi,
692                                 node_blocks, data_blocks, dent_blocks);
693 }
694
695 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
696                                         int freed, int needed)
697 {
698         unsigned int free_secs, lower_secs, upper_secs;
699         bool curseg_space;
700
701         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
702                 return false;
703
704         __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
705
706         free_secs = free_sections(sbi) + freed;
707         lower_secs += needed + reserved_sections(sbi);
708         upper_secs += needed + reserved_sections(sbi);
709
710         if (free_secs > upper_secs)
711                 return false;
712         if (free_secs <= lower_secs)
713                 return true;
714         return !curseg_space;
715 }
716
717 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
718                                         int freed, int needed)
719 {
720         return !has_not_enough_free_secs(sbi, freed, needed);
721 }
722
723 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
724 {
725         unsigned int total_free_blocks = 0;
726         unsigned int avail_user_block_count;
727
728         spin_lock(&sbi->stat_lock);
729
730         avail_user_block_count = get_available_block_count(sbi, NULL, true);
731         total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
732
733         spin_unlock(&sbi->stat_lock);
734
735         return total_free_blocks > 0;
736 }
737
738 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
739 {
740         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
741                 return true;
742         if (likely(has_enough_free_secs(sbi, 0, 0)))
743                 return true;
744         if (!f2fs_lfs_mode(sbi) &&
745                 likely(has_enough_free_blks(sbi)))
746                 return true;
747         return false;
748 }
749
750 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
751 {
752         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
753 }
754
755 static inline int utilization(struct f2fs_sb_info *sbi)
756 {
757         return div_u64((u64)valid_user_blocks(sbi) * 100,
758                                         sbi->user_block_count);
759 }
760
761 /*
762  * Sometimes f2fs may be better to drop out-of-place update policy.
763  * And, users can control the policy through sysfs entries.
764  * There are five policies with triggering conditions as follows.
765  * F2FS_IPU_FORCE - all the time,
766  * F2FS_IPU_SSR - if SSR mode is activated,
767  * F2FS_IPU_UTIL - if FS utilization is over threashold,
768  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
769  *                     threashold,
770  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
771  *                     storages. IPU will be triggered only if the # of dirty
772  *                     pages over min_fsync_blocks. (=default option)
773  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
774  * F2FS_IPU_NOCACHE - disable IPU bio cache.
775  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
776  *                            FI_OPU_WRITE flag.
777  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
778  */
779 #define DEF_MIN_IPU_UTIL        70
780 #define DEF_MIN_FSYNC_BLOCKS    8
781 #define DEF_MIN_HOT_BLOCKS      16
782
783 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
784
785 #define F2FS_IPU_DISABLE        0
786
787 /* Modification on enum should be synchronized with ipu_mode_names array */
788 enum {
789         F2FS_IPU_FORCE,
790         F2FS_IPU_SSR,
791         F2FS_IPU_UTIL,
792         F2FS_IPU_SSR_UTIL,
793         F2FS_IPU_FSYNC,
794         F2FS_IPU_ASYNC,
795         F2FS_IPU_NOCACHE,
796         F2FS_IPU_HONOR_OPU_WRITE,
797         F2FS_IPU_MAX,
798 };
799
800 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
801 {
802         return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
803 }
804
805 #define F2FS_IPU_POLICY(name)                                   \
806 static inline bool IS_##name(struct f2fs_sb_info *sbi)          \
807 {                                                               \
808         return SM_I(sbi)->ipu_policy & BIT(name);               \
809 }
810
811 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
812 F2FS_IPU_POLICY(F2FS_IPU_SSR);
813 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
814 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
815 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
816 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
817 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
818 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
819
820 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
821                 int type)
822 {
823         struct curseg_info *curseg = CURSEG_I(sbi, type);
824         return curseg->segno;
825 }
826
827 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
828                 int type)
829 {
830         struct curseg_info *curseg = CURSEG_I(sbi, type);
831         return curseg->alloc_type;
832 }
833
834 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
835                 unsigned int segno)
836 {
837         return segno <= (MAIN_SEGS(sbi) - 1);
838 }
839
840 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
841 {
842         struct f2fs_sb_info *sbi = fio->sbi;
843
844         if (__is_valid_data_blkaddr(fio->old_blkaddr))
845                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
846                                         META_GENERIC : DATA_GENERIC);
847         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
848                                         META_GENERIC : DATA_GENERIC_ENHANCE);
849 }
850
851 /*
852  * Summary block is always treated as an invalid block
853  */
854 static inline int check_block_count(struct f2fs_sb_info *sbi,
855                 int segno, struct f2fs_sit_entry *raw_sit)
856 {
857         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
858         int valid_blocks = 0;
859         int cur_pos = 0, next_pos;
860         unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
861
862         /* check bitmap with valid block count */
863         do {
864                 if (is_valid) {
865                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
866                                         usable_blks_per_seg,
867                                         cur_pos);
868                         valid_blocks += next_pos - cur_pos;
869                 } else
870                         next_pos = find_next_bit_le(&raw_sit->valid_map,
871                                         usable_blks_per_seg,
872                                         cur_pos);
873                 cur_pos = next_pos;
874                 is_valid = !is_valid;
875         } while (cur_pos < usable_blks_per_seg);
876
877         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
878                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
879                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
880                 set_sbi_flag(sbi, SBI_NEED_FSCK);
881                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
882                 return -EFSCORRUPTED;
883         }
884
885         if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
886                 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
887                                 BLKS_PER_SEG(sbi),
888                                 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
889
890         /* check segment usage, and check boundary of a given segment number */
891         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
892                                         || !valid_main_segno(sbi, segno))) {
893                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
894                          GET_SIT_VBLOCKS(raw_sit), segno);
895                 set_sbi_flag(sbi, SBI_NEED_FSCK);
896                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
897                 return -EFSCORRUPTED;
898         }
899         return 0;
900 }
901
902 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
903                                                 unsigned int start)
904 {
905         struct sit_info *sit_i = SIT_I(sbi);
906         unsigned int offset = SIT_BLOCK_OFFSET(start);
907         block_t blk_addr = sit_i->sit_base_addr + offset;
908
909         f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
910
911 #ifdef CONFIG_F2FS_CHECK_FS
912         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
913                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
914                 f2fs_bug_on(sbi, 1);
915 #endif
916
917         /* calculate sit block address */
918         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
919                 blk_addr += sit_i->sit_blocks;
920
921         return blk_addr;
922 }
923
924 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
925                                                 pgoff_t block_addr)
926 {
927         struct sit_info *sit_i = SIT_I(sbi);
928         block_addr -= sit_i->sit_base_addr;
929         if (block_addr < sit_i->sit_blocks)
930                 block_addr += sit_i->sit_blocks;
931         else
932                 block_addr -= sit_i->sit_blocks;
933
934         return block_addr + sit_i->sit_base_addr;
935 }
936
937 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
938 {
939         unsigned int block_off = SIT_BLOCK_OFFSET(start);
940
941         f2fs_change_bit(block_off, sit_i->sit_bitmap);
942 #ifdef CONFIG_F2FS_CHECK_FS
943         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
944 #endif
945 }
946
947 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
948                                                 bool base_time)
949 {
950         struct sit_info *sit_i = SIT_I(sbi);
951         time64_t diff, now = ktime_get_boottime_seconds();
952
953         if (now >= sit_i->mounted_time)
954                 return sit_i->elapsed_time + now - sit_i->mounted_time;
955
956         /* system time is set to the past */
957         if (!base_time) {
958                 diff = sit_i->mounted_time - now;
959                 if (sit_i->elapsed_time >= diff)
960                         return sit_i->elapsed_time - diff;
961                 return 0;
962         }
963         return sit_i->elapsed_time;
964 }
965
966 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
967                         unsigned int ofs_in_node, unsigned char version)
968 {
969         sum->nid = cpu_to_le32(nid);
970         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
971         sum->version = version;
972 }
973
974 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
975 {
976         return __start_cp_addr(sbi) +
977                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
978 }
979
980 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
981 {
982         return __start_cp_addr(sbi) +
983                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
984                                 - (base + 1) + type;
985 }
986
987 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
988 {
989         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
990                 return true;
991         return false;
992 }
993
994 /*
995  * It is very important to gather dirty pages and write at once, so that we can
996  * submit a big bio without interfering other data writes.
997  * By default, 512 pages for directory data,
998  * 512 pages (2MB) * 8 for nodes, and
999  * 256 pages * 8 for meta are set.
1000  */
1001 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
1002 {
1003         if (sbi->sb->s_bdi->wb.dirty_exceeded)
1004                 return 0;
1005
1006         if (type == DATA)
1007                 return BLKS_PER_SEG(sbi);
1008         else if (type == NODE)
1009                 return SEGS_TO_BLKS(sbi, 8);
1010         else if (type == META)
1011                 return 8 * BIO_MAX_VECS;
1012         else
1013                 return 0;
1014 }
1015
1016 /*
1017  * When writing pages, it'd better align nr_to_write for segment size.
1018  */
1019 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
1020                                         struct writeback_control *wbc)
1021 {
1022         long nr_to_write, desired;
1023
1024         if (wbc->sync_mode != WB_SYNC_NONE)
1025                 return 0;
1026
1027         nr_to_write = wbc->nr_to_write;
1028         desired = BIO_MAX_VECS;
1029         if (type == NODE)
1030                 desired <<= 1;
1031
1032         wbc->nr_to_write = desired;
1033         return desired - nr_to_write;
1034 }
1035
1036 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
1037 {
1038         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1039         bool wakeup = false;
1040         int i;
1041
1042         if (force)
1043                 goto wake_up;
1044
1045         mutex_lock(&dcc->cmd_lock);
1046         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1047                 if (i + 1 < dcc->discard_granularity)
1048                         break;
1049                 if (!list_empty(&dcc->pend_list[i])) {
1050                         wakeup = true;
1051                         break;
1052                 }
1053         }
1054         mutex_unlock(&dcc->cmd_lock);
1055         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
1056                 return;
1057 wake_up:
1058         dcc->discard_wake = true;
1059         wake_up_interruptible_all(&dcc->discard_wait_queue);
1060 }