f2fs: introduce and spread verify_blkaddr
[linux-2.6-block.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38         unsigned long tmp = 0;
39         int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42         shift = 56;
43 #endif
44         while (shift >= 0) {
45                 tmp |= (unsigned long)str[idx++] << shift;
46                 shift -= BITS_PER_BYTE;
47         }
48         return tmp;
49 }
50
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57         int num = 0;
58
59 #if BITS_PER_LONG == 64
60         if ((word & 0xffffffff00000000UL) == 0)
61                 num += 32;
62         else
63                 word >>= 32;
64 #endif
65         if ((word & 0xffff0000) == 0)
66                 num += 16;
67         else
68                 word >>= 16;
69
70         if ((word & 0xff00) == 0)
71                 num += 8;
72         else
73                 word >>= 8;
74
75         if ((word & 0xf0) == 0)
76                 num += 4;
77         else
78                 word >>= 4;
79
80         if ((word & 0xc) == 0)
81                 num += 2;
82         else
83                 word >>= 2;
84
85         if ((word & 0x2) == 0)
86                 num += 1;
87         return num;
88 }
89
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100                         unsigned long size, unsigned long offset)
101 {
102         const unsigned long *p = addr + BIT_WORD(offset);
103         unsigned long result = size;
104         unsigned long tmp;
105
106         if (offset >= size)
107                 return size;
108
109         size -= (offset & ~(BITS_PER_LONG - 1));
110         offset %= BITS_PER_LONG;
111
112         while (1) {
113                 if (*p == 0)
114                         goto pass;
115
116                 tmp = __reverse_ulong((unsigned char *)p);
117
118                 tmp &= ~0UL >> offset;
119                 if (size < BITS_PER_LONG)
120                         tmp &= (~0UL << (BITS_PER_LONG - size));
121                 if (tmp)
122                         goto found;
123 pass:
124                 if (size <= BITS_PER_LONG)
125                         break;
126                 size -= BITS_PER_LONG;
127                 offset = 0;
128                 p++;
129         }
130         return result;
131 found:
132         return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136                         unsigned long size, unsigned long offset)
137 {
138         const unsigned long *p = addr + BIT_WORD(offset);
139         unsigned long result = size;
140         unsigned long tmp;
141
142         if (offset >= size)
143                 return size;
144
145         size -= (offset & ~(BITS_PER_LONG - 1));
146         offset %= BITS_PER_LONG;
147
148         while (1) {
149                 if (*p == ~0UL)
150                         goto pass;
151
152                 tmp = __reverse_ulong((unsigned char *)p);
153
154                 if (offset)
155                         tmp |= ~0UL << (BITS_PER_LONG - offset);
156                 if (size < BITS_PER_LONG)
157                         tmp |= ~0UL >> size;
158                 if (tmp != ~0UL)
159                         goto found;
160 pass:
161                 if (size <= BITS_PER_LONG)
162                         break;
163                 size -= BITS_PER_LONG;
164                 offset = 0;
165                 p++;
166         }
167         return result;
168 found:
169         return result - size + __reverse_ffz(tmp);
170 }
171
172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 {
174         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178         if (test_opt(sbi, LFS))
179                 return false;
180         if (sbi->gc_mode == GC_URGENT)
181                 return true;
182
183         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 {
189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191         struct inmem_pages *new;
192
193         f2fs_trace_pid(page);
194
195         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196         SetPagePrivate(page);
197
198         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200         /* add atomic page indices to the list */
201         new->page = page;
202         INIT_LIST_HEAD(&new->list);
203
204         /* increase reference count with clean state */
205         mutex_lock(&fi->inmem_lock);
206         get_page(page);
207         list_add_tail(&new->list, &fi->inmem_pages);
208         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209         if (list_empty(&fi->inmem_ilist))
210                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213         mutex_unlock(&fi->inmem_lock);
214
215         trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219                                 struct list_head *head, bool drop, bool recover)
220 {
221         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222         struct inmem_pages *cur, *tmp;
223         int err = 0;
224
225         list_for_each_entry_safe(cur, tmp, head, list) {
226                 struct page *page = cur->page;
227
228                 if (drop)
229                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231                 lock_page(page);
232
233                 f2fs_wait_on_page_writeback(page, DATA, true);
234
235                 if (recover) {
236                         struct dnode_of_data dn;
237                         struct node_info ni;
238
239                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
240 retry:
241                         set_new_dnode(&dn, inode, NULL, NULL, 0);
242                         err = f2fs_get_dnode_of_data(&dn, page->index,
243                                                                 LOOKUP_NODE);
244                         if (err) {
245                                 if (err == -ENOMEM) {
246                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
247                                         cond_resched();
248                                         goto retry;
249                                 }
250                                 err = -EAGAIN;
251                                 goto next;
252                         }
253                         f2fs_get_node_info(sbi, dn.nid, &ni);
254                         if (cur->old_addr == NEW_ADDR) {
255                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
256                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
257                         } else
258                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
259                                         cur->old_addr, ni.version, true, true);
260                         f2fs_put_dnode(&dn);
261                 }
262 next:
263                 /* we don't need to invalidate this in the sccessful status */
264                 if (drop || recover)
265                         ClearPageUptodate(page);
266                 set_page_private(page, 0);
267                 ClearPagePrivate(page);
268                 f2fs_put_page(page, 1);
269
270                 list_del(&cur->list);
271                 kmem_cache_free(inmem_entry_slab, cur);
272                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
273         }
274         return err;
275 }
276
277 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
278 {
279         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
280         struct inode *inode;
281         struct f2fs_inode_info *fi;
282 next:
283         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
284         if (list_empty(head)) {
285                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
286                 return;
287         }
288         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
289         inode = igrab(&fi->vfs_inode);
290         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
291
292         if (inode) {
293                 if (gc_failure) {
294                         if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
295                                 goto drop;
296                         goto skip;
297                 }
298 drop:
299                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
300                 f2fs_drop_inmem_pages(inode);
301                 iput(inode);
302         }
303 skip:
304         congestion_wait(BLK_RW_ASYNC, HZ/50);
305         cond_resched();
306         goto next;
307 }
308
309 void f2fs_drop_inmem_pages(struct inode *inode)
310 {
311         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
312         struct f2fs_inode_info *fi = F2FS_I(inode);
313
314         mutex_lock(&fi->inmem_lock);
315         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
316         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
317         if (!list_empty(&fi->inmem_ilist))
318                 list_del_init(&fi->inmem_ilist);
319         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
320         mutex_unlock(&fi->inmem_lock);
321
322         clear_inode_flag(inode, FI_ATOMIC_FILE);
323         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
324         stat_dec_atomic_write(inode);
325 }
326
327 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
328 {
329         struct f2fs_inode_info *fi = F2FS_I(inode);
330         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
331         struct list_head *head = &fi->inmem_pages;
332         struct inmem_pages *cur = NULL;
333
334         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
335
336         mutex_lock(&fi->inmem_lock);
337         list_for_each_entry(cur, head, list) {
338                 if (cur->page == page)
339                         break;
340         }
341
342         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
343         list_del(&cur->list);
344         mutex_unlock(&fi->inmem_lock);
345
346         dec_page_count(sbi, F2FS_INMEM_PAGES);
347         kmem_cache_free(inmem_entry_slab, cur);
348
349         ClearPageUptodate(page);
350         set_page_private(page, 0);
351         ClearPagePrivate(page);
352         f2fs_put_page(page, 0);
353
354         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
355 }
356
357 static int __f2fs_commit_inmem_pages(struct inode *inode)
358 {
359         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
360         struct f2fs_inode_info *fi = F2FS_I(inode);
361         struct inmem_pages *cur, *tmp;
362         struct f2fs_io_info fio = {
363                 .sbi = sbi,
364                 .ino = inode->i_ino,
365                 .type = DATA,
366                 .op = REQ_OP_WRITE,
367                 .op_flags = REQ_SYNC | REQ_PRIO,
368                 .io_type = FS_DATA_IO,
369         };
370         struct list_head revoke_list;
371         pgoff_t last_idx = ULONG_MAX;
372         int err = 0;
373
374         INIT_LIST_HEAD(&revoke_list);
375
376         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
377                 struct page *page = cur->page;
378
379                 lock_page(page);
380                 if (page->mapping == inode->i_mapping) {
381                         trace_f2fs_commit_inmem_page(page, INMEM);
382
383                         set_page_dirty(page);
384                         f2fs_wait_on_page_writeback(page, DATA, true);
385                         if (clear_page_dirty_for_io(page)) {
386                                 inode_dec_dirty_pages(inode);
387                                 f2fs_remove_dirty_inode(inode);
388                         }
389 retry:
390                         fio.page = page;
391                         fio.old_blkaddr = NULL_ADDR;
392                         fio.encrypted_page = NULL;
393                         fio.need_lock = LOCK_DONE;
394                         err = f2fs_do_write_data_page(&fio);
395                         if (err) {
396                                 if (err == -ENOMEM) {
397                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
398                                         cond_resched();
399                                         goto retry;
400                                 }
401                                 unlock_page(page);
402                                 break;
403                         }
404                         /* record old blkaddr for revoking */
405                         cur->old_addr = fio.old_blkaddr;
406                         last_idx = page->index;
407                 }
408                 unlock_page(page);
409                 list_move_tail(&cur->list, &revoke_list);
410         }
411
412         if (last_idx != ULONG_MAX)
413                 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
414
415         if (err) {
416                 /*
417                  * try to revoke all committed pages, but still we could fail
418                  * due to no memory or other reason, if that happened, EAGAIN
419                  * will be returned, which means in such case, transaction is
420                  * already not integrity, caller should use journal to do the
421                  * recovery or rewrite & commit last transaction. For other
422                  * error number, revoking was done by filesystem itself.
423                  */
424                 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
425
426                 /* drop all uncommitted pages */
427                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
428         } else {
429                 __revoke_inmem_pages(inode, &revoke_list, false, false);
430         }
431
432         return err;
433 }
434
435 int f2fs_commit_inmem_pages(struct inode *inode)
436 {
437         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
438         struct f2fs_inode_info *fi = F2FS_I(inode);
439         int err;
440
441         f2fs_balance_fs(sbi, true);
442         f2fs_lock_op(sbi);
443
444         set_inode_flag(inode, FI_ATOMIC_COMMIT);
445
446         mutex_lock(&fi->inmem_lock);
447         err = __f2fs_commit_inmem_pages(inode);
448
449         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
450         if (!list_empty(&fi->inmem_ilist))
451                 list_del_init(&fi->inmem_ilist);
452         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
453         mutex_unlock(&fi->inmem_lock);
454
455         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
456
457         f2fs_unlock_op(sbi);
458         return err;
459 }
460
461 /*
462  * This function balances dirty node and dentry pages.
463  * In addition, it controls garbage collection.
464  */
465 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
466 {
467 #ifdef CONFIG_F2FS_FAULT_INJECTION
468         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
469                 f2fs_show_injection_info(FAULT_CHECKPOINT);
470                 f2fs_stop_checkpoint(sbi, false);
471         }
472 #endif
473
474         /* balance_fs_bg is able to be pending */
475         if (need && excess_cached_nats(sbi))
476                 f2fs_balance_fs_bg(sbi);
477
478         /*
479          * We should do GC or end up with checkpoint, if there are so many dirty
480          * dir/node pages without enough free segments.
481          */
482         if (has_not_enough_free_secs(sbi, 0, 0)) {
483                 mutex_lock(&sbi->gc_mutex);
484                 f2fs_gc(sbi, false, false, NULL_SEGNO);
485         }
486 }
487
488 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
489 {
490         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491                 return;
492
493         /* try to shrink extent cache when there is no enough memory */
494         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
495                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
496
497         /* check the # of cached NAT entries */
498         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
499                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
500
501         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
502                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
503         else
504                 f2fs_build_free_nids(sbi, false, false);
505
506         if (!is_idle(sbi) && !excess_dirty_nats(sbi))
507                 return;
508
509         /* checkpoint is the only way to shrink partial cached entries */
510         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
511                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
512                         excess_prefree_segs(sbi) ||
513                         excess_dirty_nats(sbi) ||
514                         f2fs_time_over(sbi, CP_TIME)) {
515                 if (test_opt(sbi, DATA_FLUSH)) {
516                         struct blk_plug plug;
517
518                         blk_start_plug(&plug);
519                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
520                         blk_finish_plug(&plug);
521                 }
522                 f2fs_sync_fs(sbi->sb, true);
523                 stat_inc_bg_cp_count(sbi->stat_info);
524         }
525 }
526
527 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
528                                 struct block_device *bdev)
529 {
530         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
531         int ret;
532
533         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
534         bio_set_dev(bio, bdev);
535         ret = submit_bio_wait(bio);
536         bio_put(bio);
537
538         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
539                                 test_opt(sbi, FLUSH_MERGE), ret);
540         return ret;
541 }
542
543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
544 {
545         int ret = 0;
546         int i;
547
548         if (!sbi->s_ndevs)
549                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
550
551         for (i = 0; i < sbi->s_ndevs; i++) {
552                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
553                         continue;
554                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
555                 if (ret)
556                         break;
557         }
558         return ret;
559 }
560
561 static int issue_flush_thread(void *data)
562 {
563         struct f2fs_sb_info *sbi = data;
564         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
565         wait_queue_head_t *q = &fcc->flush_wait_queue;
566 repeat:
567         if (kthread_should_stop())
568                 return 0;
569
570         sb_start_intwrite(sbi->sb);
571
572         if (!llist_empty(&fcc->issue_list)) {
573                 struct flush_cmd *cmd, *next;
574                 int ret;
575
576                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
577                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
578
579                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
580
581                 ret = submit_flush_wait(sbi, cmd->ino);
582                 atomic_inc(&fcc->issued_flush);
583
584                 llist_for_each_entry_safe(cmd, next,
585                                           fcc->dispatch_list, llnode) {
586                         cmd->ret = ret;
587                         complete(&cmd->wait);
588                 }
589                 fcc->dispatch_list = NULL;
590         }
591
592         sb_end_intwrite(sbi->sb);
593
594         wait_event_interruptible(*q,
595                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
596         goto repeat;
597 }
598
599 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
600 {
601         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
602         struct flush_cmd cmd;
603         int ret;
604
605         if (test_opt(sbi, NOBARRIER))
606                 return 0;
607
608         if (!test_opt(sbi, FLUSH_MERGE)) {
609                 ret = submit_flush_wait(sbi, ino);
610                 atomic_inc(&fcc->issued_flush);
611                 return ret;
612         }
613
614         if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
615                 ret = submit_flush_wait(sbi, ino);
616                 atomic_dec(&fcc->issing_flush);
617
618                 atomic_inc(&fcc->issued_flush);
619                 return ret;
620         }
621
622         cmd.ino = ino;
623         init_completion(&cmd.wait);
624
625         llist_add(&cmd.llnode, &fcc->issue_list);
626
627         /* update issue_list before we wake up issue_flush thread */
628         smp_mb();
629
630         if (waitqueue_active(&fcc->flush_wait_queue))
631                 wake_up(&fcc->flush_wait_queue);
632
633         if (fcc->f2fs_issue_flush) {
634                 wait_for_completion(&cmd.wait);
635                 atomic_dec(&fcc->issing_flush);
636         } else {
637                 struct llist_node *list;
638
639                 list = llist_del_all(&fcc->issue_list);
640                 if (!list) {
641                         wait_for_completion(&cmd.wait);
642                         atomic_dec(&fcc->issing_flush);
643                 } else {
644                         struct flush_cmd *tmp, *next;
645
646                         ret = submit_flush_wait(sbi, ino);
647
648                         llist_for_each_entry_safe(tmp, next, list, llnode) {
649                                 if (tmp == &cmd) {
650                                         cmd.ret = ret;
651                                         atomic_dec(&fcc->issing_flush);
652                                         continue;
653                                 }
654                                 tmp->ret = ret;
655                                 complete(&tmp->wait);
656                         }
657                 }
658         }
659
660         return cmd.ret;
661 }
662
663 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
664 {
665         dev_t dev = sbi->sb->s_bdev->bd_dev;
666         struct flush_cmd_control *fcc;
667         int err = 0;
668
669         if (SM_I(sbi)->fcc_info) {
670                 fcc = SM_I(sbi)->fcc_info;
671                 if (fcc->f2fs_issue_flush)
672                         return err;
673                 goto init_thread;
674         }
675
676         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
677         if (!fcc)
678                 return -ENOMEM;
679         atomic_set(&fcc->issued_flush, 0);
680         atomic_set(&fcc->issing_flush, 0);
681         init_waitqueue_head(&fcc->flush_wait_queue);
682         init_llist_head(&fcc->issue_list);
683         SM_I(sbi)->fcc_info = fcc;
684         if (!test_opt(sbi, FLUSH_MERGE))
685                 return err;
686
687 init_thread:
688         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
689                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
690         if (IS_ERR(fcc->f2fs_issue_flush)) {
691                 err = PTR_ERR(fcc->f2fs_issue_flush);
692                 kfree(fcc);
693                 SM_I(sbi)->fcc_info = NULL;
694                 return err;
695         }
696
697         return err;
698 }
699
700 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
701 {
702         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
703
704         if (fcc && fcc->f2fs_issue_flush) {
705                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
706
707                 fcc->f2fs_issue_flush = NULL;
708                 kthread_stop(flush_thread);
709         }
710         if (free) {
711                 kfree(fcc);
712                 SM_I(sbi)->fcc_info = NULL;
713         }
714 }
715
716 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
717 {
718         int ret = 0, i;
719
720         if (!sbi->s_ndevs)
721                 return 0;
722
723         for (i = 1; i < sbi->s_ndevs; i++) {
724                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
725                         continue;
726                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
727                 if (ret)
728                         break;
729
730                 spin_lock(&sbi->dev_lock);
731                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
732                 spin_unlock(&sbi->dev_lock);
733         }
734
735         return ret;
736 }
737
738 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
739                 enum dirty_type dirty_type)
740 {
741         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
742
743         /* need not be added */
744         if (IS_CURSEG(sbi, segno))
745                 return;
746
747         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
748                 dirty_i->nr_dirty[dirty_type]++;
749
750         if (dirty_type == DIRTY) {
751                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
752                 enum dirty_type t = sentry->type;
753
754                 if (unlikely(t >= DIRTY)) {
755                         f2fs_bug_on(sbi, 1);
756                         return;
757                 }
758                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
759                         dirty_i->nr_dirty[t]++;
760         }
761 }
762
763 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
764                 enum dirty_type dirty_type)
765 {
766         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
767
768         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
769                 dirty_i->nr_dirty[dirty_type]--;
770
771         if (dirty_type == DIRTY) {
772                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
773                 enum dirty_type t = sentry->type;
774
775                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
776                         dirty_i->nr_dirty[t]--;
777
778                 if (get_valid_blocks(sbi, segno, true) == 0)
779                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
780                                                 dirty_i->victim_secmap);
781         }
782 }
783
784 /*
785  * Should not occur error such as -ENOMEM.
786  * Adding dirty entry into seglist is not critical operation.
787  * If a given segment is one of current working segments, it won't be added.
788  */
789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
790 {
791         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792         unsigned short valid_blocks;
793
794         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
795                 return;
796
797         mutex_lock(&dirty_i->seglist_lock);
798
799         valid_blocks = get_valid_blocks(sbi, segno, false);
800
801         if (valid_blocks == 0) {
802                 __locate_dirty_segment(sbi, segno, PRE);
803                 __remove_dirty_segment(sbi, segno, DIRTY);
804         } else if (valid_blocks < sbi->blocks_per_seg) {
805                 __locate_dirty_segment(sbi, segno, DIRTY);
806         } else {
807                 /* Recovery routine with SSR needs this */
808                 __remove_dirty_segment(sbi, segno, DIRTY);
809         }
810
811         mutex_unlock(&dirty_i->seglist_lock);
812 }
813
814 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
815                 struct block_device *bdev, block_t lstart,
816                 block_t start, block_t len)
817 {
818         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
819         struct list_head *pend_list;
820         struct discard_cmd *dc;
821
822         f2fs_bug_on(sbi, !len);
823
824         pend_list = &dcc->pend_list[plist_idx(len)];
825
826         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
827         INIT_LIST_HEAD(&dc->list);
828         dc->bdev = bdev;
829         dc->lstart = lstart;
830         dc->start = start;
831         dc->len = len;
832         dc->ref = 0;
833         dc->state = D_PREP;
834         dc->error = 0;
835         init_completion(&dc->wait);
836         list_add_tail(&dc->list, pend_list);
837         atomic_inc(&dcc->discard_cmd_cnt);
838         dcc->undiscard_blks += len;
839
840         return dc;
841 }
842
843 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
844                                 struct block_device *bdev, block_t lstart,
845                                 block_t start, block_t len,
846                                 struct rb_node *parent, struct rb_node **p)
847 {
848         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
849         struct discard_cmd *dc;
850
851         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
852
853         rb_link_node(&dc->rb_node, parent, p);
854         rb_insert_color(&dc->rb_node, &dcc->root);
855
856         return dc;
857 }
858
859 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
860                                                         struct discard_cmd *dc)
861 {
862         if (dc->state == D_DONE)
863                 atomic_dec(&dcc->issing_discard);
864
865         list_del(&dc->list);
866         rb_erase(&dc->rb_node, &dcc->root);
867         dcc->undiscard_blks -= dc->len;
868
869         kmem_cache_free(discard_cmd_slab, dc);
870
871         atomic_dec(&dcc->discard_cmd_cnt);
872 }
873
874 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
875                                                         struct discard_cmd *dc)
876 {
877         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
878
879         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
880
881         f2fs_bug_on(sbi, dc->ref);
882
883         if (dc->error == -EOPNOTSUPP)
884                 dc->error = 0;
885
886         if (dc->error)
887                 f2fs_msg(sbi->sb, KERN_INFO,
888                         "Issue discard(%u, %u, %u) failed, ret: %d",
889                         dc->lstart, dc->start, dc->len, dc->error);
890         __detach_discard_cmd(dcc, dc);
891 }
892
893 static void f2fs_submit_discard_endio(struct bio *bio)
894 {
895         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
896
897         dc->error = blk_status_to_errno(bio->bi_status);
898         dc->state = D_DONE;
899         complete_all(&dc->wait);
900         bio_put(bio);
901 }
902
903 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
904                                 block_t start, block_t end)
905 {
906 #ifdef CONFIG_F2FS_CHECK_FS
907         struct seg_entry *sentry;
908         unsigned int segno;
909         block_t blk = start;
910         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
911         unsigned long *map;
912
913         while (blk < end) {
914                 segno = GET_SEGNO(sbi, blk);
915                 sentry = get_seg_entry(sbi, segno);
916                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
917
918                 if (end < START_BLOCK(sbi, segno + 1))
919                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
920                 else
921                         size = max_blocks;
922                 map = (unsigned long *)(sentry->cur_valid_map);
923                 offset = __find_rev_next_bit(map, size, offset);
924                 f2fs_bug_on(sbi, offset != size);
925                 blk = START_BLOCK(sbi, segno + 1);
926         }
927 #endif
928 }
929
930 static void __init_discard_policy(struct f2fs_sb_info *sbi,
931                                 struct discard_policy *dpolicy,
932                                 int discard_type, unsigned int granularity)
933 {
934         /* common policy */
935         dpolicy->type = discard_type;
936         dpolicy->sync = true;
937         dpolicy->granularity = granularity;
938
939         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
940         dpolicy->io_aware_gran = MAX_PLIST_NUM;
941
942         if (discard_type == DPOLICY_BG) {
943                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
944                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
945                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
946                 dpolicy->io_aware = true;
947                 dpolicy->sync = false;
948                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
949                         dpolicy->granularity = 1;
950                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
951                 }
952         } else if (discard_type == DPOLICY_FORCE) {
953                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
954                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
955                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
956                 dpolicy->io_aware = false;
957         } else if (discard_type == DPOLICY_FSTRIM) {
958                 dpolicy->io_aware = false;
959         } else if (discard_type == DPOLICY_UMOUNT) {
960                 dpolicy->max_requests = UINT_MAX;
961                 dpolicy->io_aware = false;
962         }
963 }
964
965
966 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
967 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
968                                                 struct discard_policy *dpolicy,
969                                                 struct discard_cmd *dc)
970 {
971         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
972         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
973                                         &(dcc->fstrim_list) : &(dcc->wait_list);
974         struct bio *bio = NULL;
975         int flag = dpolicy->sync ? REQ_SYNC : 0;
976
977         if (dc->state != D_PREP)
978                 return;
979
980         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
981                 return;
982
983         trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
984
985         dc->error = __blkdev_issue_discard(dc->bdev,
986                                 SECTOR_FROM_BLOCK(dc->start),
987                                 SECTOR_FROM_BLOCK(dc->len),
988                                 GFP_NOFS, 0, &bio);
989         if (!dc->error) {
990                 /* should keep before submission to avoid D_DONE right away */
991                 dc->state = D_SUBMIT;
992                 atomic_inc(&dcc->issued_discard);
993                 atomic_inc(&dcc->issing_discard);
994                 if (bio) {
995                         bio->bi_private = dc;
996                         bio->bi_end_io = f2fs_submit_discard_endio;
997                         bio->bi_opf |= flag;
998                         submit_bio(bio);
999                         list_move_tail(&dc->list, wait_list);
1000                         __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
1001
1002                         f2fs_update_iostat(sbi, FS_DISCARD, 1);
1003                 }
1004         } else {
1005                 __remove_discard_cmd(sbi, dc);
1006         }
1007 }
1008
1009 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1010                                 struct block_device *bdev, block_t lstart,
1011                                 block_t start, block_t len,
1012                                 struct rb_node **insert_p,
1013                                 struct rb_node *insert_parent)
1014 {
1015         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1016         struct rb_node **p;
1017         struct rb_node *parent = NULL;
1018         struct discard_cmd *dc = NULL;
1019
1020         if (insert_p && insert_parent) {
1021                 parent = insert_parent;
1022                 p = insert_p;
1023                 goto do_insert;
1024         }
1025
1026         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1027 do_insert:
1028         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1029         if (!dc)
1030                 return NULL;
1031
1032         return dc;
1033 }
1034
1035 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1036                                                 struct discard_cmd *dc)
1037 {
1038         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1039 }
1040
1041 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1042                                 struct discard_cmd *dc, block_t blkaddr)
1043 {
1044         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1045         struct discard_info di = dc->di;
1046         bool modified = false;
1047
1048         if (dc->state == D_DONE || dc->len == 1) {
1049                 __remove_discard_cmd(sbi, dc);
1050                 return;
1051         }
1052
1053         dcc->undiscard_blks -= di.len;
1054
1055         if (blkaddr > di.lstart) {
1056                 dc->len = blkaddr - dc->lstart;
1057                 dcc->undiscard_blks += dc->len;
1058                 __relocate_discard_cmd(dcc, dc);
1059                 modified = true;
1060         }
1061
1062         if (blkaddr < di.lstart + di.len - 1) {
1063                 if (modified) {
1064                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1065                                         di.start + blkaddr + 1 - di.lstart,
1066                                         di.lstart + di.len - 1 - blkaddr,
1067                                         NULL, NULL);
1068                 } else {
1069                         dc->lstart++;
1070                         dc->len--;
1071                         dc->start++;
1072                         dcc->undiscard_blks += dc->len;
1073                         __relocate_discard_cmd(dcc, dc);
1074                 }
1075         }
1076 }
1077
1078 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1079                                 struct block_device *bdev, block_t lstart,
1080                                 block_t start, block_t len)
1081 {
1082         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1083         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1084         struct discard_cmd *dc;
1085         struct discard_info di = {0};
1086         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1087         block_t end = lstart + len;
1088
1089         mutex_lock(&dcc->cmd_lock);
1090
1091         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1092                                         NULL, lstart,
1093                                         (struct rb_entry **)&prev_dc,
1094                                         (struct rb_entry **)&next_dc,
1095                                         &insert_p, &insert_parent, true);
1096         if (dc)
1097                 prev_dc = dc;
1098
1099         if (!prev_dc) {
1100                 di.lstart = lstart;
1101                 di.len = next_dc ? next_dc->lstart - lstart : len;
1102                 di.len = min(di.len, len);
1103                 di.start = start;
1104         }
1105
1106         while (1) {
1107                 struct rb_node *node;
1108                 bool merged = false;
1109                 struct discard_cmd *tdc = NULL;
1110
1111                 if (prev_dc) {
1112                         di.lstart = prev_dc->lstart + prev_dc->len;
1113                         if (di.lstart < lstart)
1114                                 di.lstart = lstart;
1115                         if (di.lstart >= end)
1116                                 break;
1117
1118                         if (!next_dc || next_dc->lstart > end)
1119                                 di.len = end - di.lstart;
1120                         else
1121                                 di.len = next_dc->lstart - di.lstart;
1122                         di.start = start + di.lstart - lstart;
1123                 }
1124
1125                 if (!di.len)
1126                         goto next;
1127
1128                 if (prev_dc && prev_dc->state == D_PREP &&
1129                         prev_dc->bdev == bdev &&
1130                         __is_discard_back_mergeable(&di, &prev_dc->di)) {
1131                         prev_dc->di.len += di.len;
1132                         dcc->undiscard_blks += di.len;
1133                         __relocate_discard_cmd(dcc, prev_dc);
1134                         di = prev_dc->di;
1135                         tdc = prev_dc;
1136                         merged = true;
1137                 }
1138
1139                 if (next_dc && next_dc->state == D_PREP &&
1140                         next_dc->bdev == bdev &&
1141                         __is_discard_front_mergeable(&di, &next_dc->di)) {
1142                         next_dc->di.lstart = di.lstart;
1143                         next_dc->di.len += di.len;
1144                         next_dc->di.start = di.start;
1145                         dcc->undiscard_blks += di.len;
1146                         __relocate_discard_cmd(dcc, next_dc);
1147                         if (tdc)
1148                                 __remove_discard_cmd(sbi, tdc);
1149                         merged = true;
1150                 }
1151
1152                 if (!merged) {
1153                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1154                                                         di.len, NULL, NULL);
1155                 }
1156  next:
1157                 prev_dc = next_dc;
1158                 if (!prev_dc)
1159                         break;
1160
1161                 node = rb_next(&prev_dc->rb_node);
1162                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1163         }
1164
1165         mutex_unlock(&dcc->cmd_lock);
1166 }
1167
1168 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1169                 struct block_device *bdev, block_t blkstart, block_t blklen)
1170 {
1171         block_t lblkstart = blkstart;
1172
1173         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1174
1175         if (sbi->s_ndevs) {
1176                 int devi = f2fs_target_device_index(sbi, blkstart);
1177
1178                 blkstart -= FDEV(devi).start_blk;
1179         }
1180         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1181         return 0;
1182 }
1183
1184 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1185                                         struct discard_policy *dpolicy)
1186 {
1187         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188         struct list_head *pend_list;
1189         struct discard_cmd *dc, *tmp;
1190         struct blk_plug plug;
1191         int i, iter = 0, issued = 0;
1192         bool io_interrupted = false;
1193
1194         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1195                 if (i + 1 < dpolicy->granularity)
1196                         break;
1197                 pend_list = &dcc->pend_list[i];
1198
1199                 mutex_lock(&dcc->cmd_lock);
1200                 if (list_empty(pend_list))
1201                         goto next;
1202                 f2fs_bug_on(sbi,
1203                         !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
1204                 blk_start_plug(&plug);
1205                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1206                         f2fs_bug_on(sbi, dc->state != D_PREP);
1207
1208                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1209                                                                 !is_idle(sbi)) {
1210                                 io_interrupted = true;
1211                                 goto skip;
1212                         }
1213
1214                         __submit_discard_cmd(sbi, dpolicy, dc);
1215                         issued++;
1216 skip:
1217                         if (++iter >= dpolicy->max_requests)
1218                                 break;
1219                 }
1220                 blk_finish_plug(&plug);
1221 next:
1222                 mutex_unlock(&dcc->cmd_lock);
1223
1224                 if (iter >= dpolicy->max_requests)
1225                         break;
1226         }
1227
1228         if (!issued && io_interrupted)
1229                 issued = -1;
1230
1231         return issued;
1232 }
1233
1234 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1235 {
1236         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1237         struct list_head *pend_list;
1238         struct discard_cmd *dc, *tmp;
1239         int i;
1240         bool dropped = false;
1241
1242         mutex_lock(&dcc->cmd_lock);
1243         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1244                 pend_list = &dcc->pend_list[i];
1245                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1246                         f2fs_bug_on(sbi, dc->state != D_PREP);
1247                         __remove_discard_cmd(sbi, dc);
1248                         dropped = true;
1249                 }
1250         }
1251         mutex_unlock(&dcc->cmd_lock);
1252
1253         return dropped;
1254 }
1255
1256 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1257 {
1258         __drop_discard_cmd(sbi);
1259 }
1260
1261 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1262                                                         struct discard_cmd *dc)
1263 {
1264         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1265         unsigned int len = 0;
1266
1267         wait_for_completion_io(&dc->wait);
1268         mutex_lock(&dcc->cmd_lock);
1269         f2fs_bug_on(sbi, dc->state != D_DONE);
1270         dc->ref--;
1271         if (!dc->ref) {
1272                 if (!dc->error)
1273                         len = dc->len;
1274                 __remove_discard_cmd(sbi, dc);
1275         }
1276         mutex_unlock(&dcc->cmd_lock);
1277
1278         return len;
1279 }
1280
1281 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1282                                                 struct discard_policy *dpolicy,
1283                                                 block_t start, block_t end)
1284 {
1285         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1286         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1287                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1288         struct discard_cmd *dc, *tmp;
1289         bool need_wait;
1290         unsigned int trimmed = 0;
1291
1292 next:
1293         need_wait = false;
1294
1295         mutex_lock(&dcc->cmd_lock);
1296         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1297                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1298                         continue;
1299                 if (dc->len < dpolicy->granularity)
1300                         continue;
1301                 if (dc->state == D_DONE && !dc->ref) {
1302                         wait_for_completion_io(&dc->wait);
1303                         if (!dc->error)
1304                                 trimmed += dc->len;
1305                         __remove_discard_cmd(sbi, dc);
1306                 } else {
1307                         dc->ref++;
1308                         need_wait = true;
1309                         break;
1310                 }
1311         }
1312         mutex_unlock(&dcc->cmd_lock);
1313
1314         if (need_wait) {
1315                 trimmed += __wait_one_discard_bio(sbi, dc);
1316                 goto next;
1317         }
1318
1319         return trimmed;
1320 }
1321
1322 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1323                                                 struct discard_policy *dpolicy)
1324 {
1325         struct discard_policy dp;
1326
1327         if (dpolicy) {
1328                 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1329                 return;
1330         }
1331
1332         /* wait all */
1333         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1334         __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1335         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1336         __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1337 }
1338
1339 /* This should be covered by global mutex, &sit_i->sentry_lock */
1340 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1341 {
1342         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1343         struct discard_cmd *dc;
1344         bool need_wait = false;
1345
1346         mutex_lock(&dcc->cmd_lock);
1347         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1348                                                         NULL, blkaddr);
1349         if (dc) {
1350                 if (dc->state == D_PREP) {
1351                         __punch_discard_cmd(sbi, dc, blkaddr);
1352                 } else {
1353                         dc->ref++;
1354                         need_wait = true;
1355                 }
1356         }
1357         mutex_unlock(&dcc->cmd_lock);
1358
1359         if (need_wait)
1360                 __wait_one_discard_bio(sbi, dc);
1361 }
1362
1363 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1364 {
1365         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1366
1367         if (dcc && dcc->f2fs_issue_discard) {
1368                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1369
1370                 dcc->f2fs_issue_discard = NULL;
1371                 kthread_stop(discard_thread);
1372         }
1373 }
1374
1375 /* This comes from f2fs_put_super */
1376 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1377 {
1378         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1379         struct discard_policy dpolicy;
1380         bool dropped;
1381
1382         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1383                                         dcc->discard_granularity);
1384         __issue_discard_cmd(sbi, &dpolicy);
1385         dropped = __drop_discard_cmd(sbi);
1386
1387         /* just to make sure there is no pending discard commands */
1388         __wait_all_discard_cmd(sbi, NULL);
1389         return dropped;
1390 }
1391
1392 static int issue_discard_thread(void *data)
1393 {
1394         struct f2fs_sb_info *sbi = data;
1395         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1396         wait_queue_head_t *q = &dcc->discard_wait_queue;
1397         struct discard_policy dpolicy;
1398         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1399         int issued;
1400
1401         set_freezable();
1402
1403         do {
1404                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1405                                         dcc->discard_granularity);
1406
1407                 wait_event_interruptible_timeout(*q,
1408                                 kthread_should_stop() || freezing(current) ||
1409                                 dcc->discard_wake,
1410                                 msecs_to_jiffies(wait_ms));
1411
1412                 if (dcc->discard_wake)
1413                         dcc->discard_wake = 0;
1414
1415                 if (try_to_freeze())
1416                         continue;
1417                 if (f2fs_readonly(sbi->sb))
1418                         continue;
1419                 if (kthread_should_stop())
1420                         return 0;
1421                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1422                         wait_ms = dpolicy.max_interval;
1423                         continue;
1424                 }
1425
1426                 if (sbi->gc_mode == GC_URGENT)
1427                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1428
1429                 sb_start_intwrite(sbi->sb);
1430
1431                 issued = __issue_discard_cmd(sbi, &dpolicy);
1432                 if (issued > 0) {
1433                         __wait_all_discard_cmd(sbi, &dpolicy);
1434                         wait_ms = dpolicy.min_interval;
1435                 } else if (issued == -1){
1436                         wait_ms = dpolicy.mid_interval;
1437                 } else {
1438                         wait_ms = dpolicy.max_interval;
1439                 }
1440
1441                 sb_end_intwrite(sbi->sb);
1442
1443         } while (!kthread_should_stop());
1444         return 0;
1445 }
1446
1447 #ifdef CONFIG_BLK_DEV_ZONED
1448 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1449                 struct block_device *bdev, block_t blkstart, block_t blklen)
1450 {
1451         sector_t sector, nr_sects;
1452         block_t lblkstart = blkstart;
1453         int devi = 0;
1454
1455         if (sbi->s_ndevs) {
1456                 devi = f2fs_target_device_index(sbi, blkstart);
1457                 blkstart -= FDEV(devi).start_blk;
1458         }
1459
1460         /*
1461          * We need to know the type of the zone: for conventional zones,
1462          * use regular discard if the drive supports it. For sequential
1463          * zones, reset the zone write pointer.
1464          */
1465         switch (get_blkz_type(sbi, bdev, blkstart)) {
1466
1467         case BLK_ZONE_TYPE_CONVENTIONAL:
1468                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1469                         return 0;
1470                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1471         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1472         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1473                 sector = SECTOR_FROM_BLOCK(blkstart);
1474                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1475
1476                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1477                                 nr_sects != bdev_zone_sectors(bdev)) {
1478                         f2fs_msg(sbi->sb, KERN_INFO,
1479                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1480                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1481                                 blkstart, blklen);
1482                         return -EIO;
1483                 }
1484                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1485                 return blkdev_reset_zones(bdev, sector,
1486                                           nr_sects, GFP_NOFS);
1487         default:
1488                 /* Unknown zone type: broken device ? */
1489                 return -EIO;
1490         }
1491 }
1492 #endif
1493
1494 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1495                 struct block_device *bdev, block_t blkstart, block_t blklen)
1496 {
1497 #ifdef CONFIG_BLK_DEV_ZONED
1498         if (f2fs_sb_has_blkzoned(sbi->sb) &&
1499                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1500                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1501 #endif
1502         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1503 }
1504
1505 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1506                                 block_t blkstart, block_t blklen)
1507 {
1508         sector_t start = blkstart, len = 0;
1509         struct block_device *bdev;
1510         struct seg_entry *se;
1511         unsigned int offset;
1512         block_t i;
1513         int err = 0;
1514
1515         bdev = f2fs_target_device(sbi, blkstart, NULL);
1516
1517         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1518                 if (i != start) {
1519                         struct block_device *bdev2 =
1520                                 f2fs_target_device(sbi, i, NULL);
1521
1522                         if (bdev2 != bdev) {
1523                                 err = __issue_discard_async(sbi, bdev,
1524                                                 start, len);
1525                                 if (err)
1526                                         return err;
1527                                 bdev = bdev2;
1528                                 start = i;
1529                                 len = 0;
1530                         }
1531                 }
1532
1533                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1534                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1535
1536                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1537                         sbi->discard_blks--;
1538         }
1539
1540         if (len)
1541                 err = __issue_discard_async(sbi, bdev, start, len);
1542         return err;
1543 }
1544
1545 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1546                                                         bool check_only)
1547 {
1548         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1549         int max_blocks = sbi->blocks_per_seg;
1550         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1551         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1552         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1553         unsigned long *discard_map = (unsigned long *)se->discard_map;
1554         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1555         unsigned int start = 0, end = -1;
1556         bool force = (cpc->reason & CP_DISCARD);
1557         struct discard_entry *de = NULL;
1558         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1559         int i;
1560
1561         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1562                 return false;
1563
1564         if (!force) {
1565                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1566                         SM_I(sbi)->dcc_info->nr_discards >=
1567                                 SM_I(sbi)->dcc_info->max_discards)
1568                         return false;
1569         }
1570
1571         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1572         for (i = 0; i < entries; i++)
1573                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1574                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1575
1576         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1577                                 SM_I(sbi)->dcc_info->max_discards) {
1578                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1579                 if (start >= max_blocks)
1580                         break;
1581
1582                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1583                 if (force && start && end != max_blocks
1584                                         && (end - start) < cpc->trim_minlen)
1585                         continue;
1586
1587                 if (check_only)
1588                         return true;
1589
1590                 if (!de) {
1591                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1592                                                                 GFP_F2FS_ZERO);
1593                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1594                         list_add_tail(&de->list, head);
1595                 }
1596
1597                 for (i = start; i < end; i++)
1598                         __set_bit_le(i, (void *)de->discard_map);
1599
1600                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1601         }
1602         return false;
1603 }
1604
1605 static void release_discard_addr(struct discard_entry *entry)
1606 {
1607         list_del(&entry->list);
1608         kmem_cache_free(discard_entry_slab, entry);
1609 }
1610
1611 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1612 {
1613         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1614         struct discard_entry *entry, *this;
1615
1616         /* drop caches */
1617         list_for_each_entry_safe(entry, this, head, list)
1618                 release_discard_addr(entry);
1619 }
1620
1621 /*
1622  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1623  */
1624 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1625 {
1626         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1627         unsigned int segno;
1628
1629         mutex_lock(&dirty_i->seglist_lock);
1630         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1631                 __set_test_and_free(sbi, segno);
1632         mutex_unlock(&dirty_i->seglist_lock);
1633 }
1634
1635 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1636                                                 struct cp_control *cpc)
1637 {
1638         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639         struct list_head *head = &dcc->entry_list;
1640         struct discard_entry *entry, *this;
1641         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1642         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1643         unsigned int start = 0, end = -1;
1644         unsigned int secno, start_segno;
1645         bool force = (cpc->reason & CP_DISCARD);
1646
1647         mutex_lock(&dirty_i->seglist_lock);
1648
1649         while (1) {
1650                 int i;
1651                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1652                 if (start >= MAIN_SEGS(sbi))
1653                         break;
1654                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1655                                                                 start + 1);
1656
1657                 for (i = start; i < end; i++)
1658                         clear_bit(i, prefree_map);
1659
1660                 dirty_i->nr_dirty[PRE] -= end - start;
1661
1662                 if (!test_opt(sbi, DISCARD))
1663                         continue;
1664
1665                 if (force && start >= cpc->trim_start &&
1666                                         (end - 1) <= cpc->trim_end)
1667                                 continue;
1668
1669                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1670                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1671                                 (end - start) << sbi->log_blocks_per_seg);
1672                         continue;
1673                 }
1674 next:
1675                 secno = GET_SEC_FROM_SEG(sbi, start);
1676                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1677                 if (!IS_CURSEC(sbi, secno) &&
1678                         !get_valid_blocks(sbi, start, true))
1679                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1680                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1681
1682                 start = start_segno + sbi->segs_per_sec;
1683                 if (start < end)
1684                         goto next;
1685                 else
1686                         end = start - 1;
1687         }
1688         mutex_unlock(&dirty_i->seglist_lock);
1689
1690         /* send small discards */
1691         list_for_each_entry_safe(entry, this, head, list) {
1692                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1693                 bool is_valid = test_bit_le(0, entry->discard_map);
1694
1695 find_next:
1696                 if (is_valid) {
1697                         next_pos = find_next_zero_bit_le(entry->discard_map,
1698                                         sbi->blocks_per_seg, cur_pos);
1699                         len = next_pos - cur_pos;
1700
1701                         if (f2fs_sb_has_blkzoned(sbi->sb) ||
1702                             (force && len < cpc->trim_minlen))
1703                                 goto skip;
1704
1705                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1706                                                                         len);
1707                         total_len += len;
1708                 } else {
1709                         next_pos = find_next_bit_le(entry->discard_map,
1710                                         sbi->blocks_per_seg, cur_pos);
1711                 }
1712 skip:
1713                 cur_pos = next_pos;
1714                 is_valid = !is_valid;
1715
1716                 if (cur_pos < sbi->blocks_per_seg)
1717                         goto find_next;
1718
1719                 release_discard_addr(entry);
1720                 dcc->nr_discards -= total_len;
1721         }
1722
1723         wake_up_discard_thread(sbi, false);
1724 }
1725
1726 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1727 {
1728         dev_t dev = sbi->sb->s_bdev->bd_dev;
1729         struct discard_cmd_control *dcc;
1730         int err = 0, i;
1731
1732         if (SM_I(sbi)->dcc_info) {
1733                 dcc = SM_I(sbi)->dcc_info;
1734                 goto init_thread;
1735         }
1736
1737         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1738         if (!dcc)
1739                 return -ENOMEM;
1740
1741         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1742         INIT_LIST_HEAD(&dcc->entry_list);
1743         for (i = 0; i < MAX_PLIST_NUM; i++)
1744                 INIT_LIST_HEAD(&dcc->pend_list[i]);
1745         INIT_LIST_HEAD(&dcc->wait_list);
1746         INIT_LIST_HEAD(&dcc->fstrim_list);
1747         mutex_init(&dcc->cmd_lock);
1748         atomic_set(&dcc->issued_discard, 0);
1749         atomic_set(&dcc->issing_discard, 0);
1750         atomic_set(&dcc->discard_cmd_cnt, 0);
1751         dcc->nr_discards = 0;
1752         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1753         dcc->undiscard_blks = 0;
1754         dcc->root = RB_ROOT;
1755
1756         init_waitqueue_head(&dcc->discard_wait_queue);
1757         SM_I(sbi)->dcc_info = dcc;
1758 init_thread:
1759         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1760                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1761         if (IS_ERR(dcc->f2fs_issue_discard)) {
1762                 err = PTR_ERR(dcc->f2fs_issue_discard);
1763                 kfree(dcc);
1764                 SM_I(sbi)->dcc_info = NULL;
1765                 return err;
1766         }
1767
1768         return err;
1769 }
1770
1771 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1772 {
1773         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1774
1775         if (!dcc)
1776                 return;
1777
1778         f2fs_stop_discard_thread(sbi);
1779
1780         kfree(dcc);
1781         SM_I(sbi)->dcc_info = NULL;
1782 }
1783
1784 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1785 {
1786         struct sit_info *sit_i = SIT_I(sbi);
1787
1788         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1789                 sit_i->dirty_sentries++;
1790                 return false;
1791         }
1792
1793         return true;
1794 }
1795
1796 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1797                                         unsigned int segno, int modified)
1798 {
1799         struct seg_entry *se = get_seg_entry(sbi, segno);
1800         se->type = type;
1801         if (modified)
1802                 __mark_sit_entry_dirty(sbi, segno);
1803 }
1804
1805 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1806 {
1807         struct seg_entry *se;
1808         unsigned int segno, offset;
1809         long int new_vblocks;
1810         bool exist;
1811 #ifdef CONFIG_F2FS_CHECK_FS
1812         bool mir_exist;
1813 #endif
1814
1815         segno = GET_SEGNO(sbi, blkaddr);
1816
1817         se = get_seg_entry(sbi, segno);
1818         new_vblocks = se->valid_blocks + del;
1819         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1820
1821         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1822                                 (new_vblocks > sbi->blocks_per_seg)));
1823
1824         se->valid_blocks = new_vblocks;
1825         se->mtime = get_mtime(sbi, false);
1826         if (se->mtime > SIT_I(sbi)->max_mtime)
1827                 SIT_I(sbi)->max_mtime = se->mtime;
1828
1829         /* Update valid block bitmap */
1830         if (del > 0) {
1831                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1832 #ifdef CONFIG_F2FS_CHECK_FS
1833                 mir_exist = f2fs_test_and_set_bit(offset,
1834                                                 se->cur_valid_map_mir);
1835                 if (unlikely(exist != mir_exist)) {
1836                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1837                                 "when setting bitmap, blk:%u, old bit:%d",
1838                                 blkaddr, exist);
1839                         f2fs_bug_on(sbi, 1);
1840                 }
1841 #endif
1842                 if (unlikely(exist)) {
1843                         f2fs_msg(sbi->sb, KERN_ERR,
1844                                 "Bitmap was wrongly set, blk:%u", blkaddr);
1845                         f2fs_bug_on(sbi, 1);
1846                         se->valid_blocks--;
1847                         del = 0;
1848                 }
1849
1850                 if (f2fs_discard_en(sbi) &&
1851                         !f2fs_test_and_set_bit(offset, se->discard_map))
1852                         sbi->discard_blks--;
1853
1854                 /* don't overwrite by SSR to keep node chain */
1855                 if (IS_NODESEG(se->type)) {
1856                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1857                                 se->ckpt_valid_blocks++;
1858                 }
1859         } else {
1860                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1861 #ifdef CONFIG_F2FS_CHECK_FS
1862                 mir_exist = f2fs_test_and_clear_bit(offset,
1863                                                 se->cur_valid_map_mir);
1864                 if (unlikely(exist != mir_exist)) {
1865                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1866                                 "when clearing bitmap, blk:%u, old bit:%d",
1867                                 blkaddr, exist);
1868                         f2fs_bug_on(sbi, 1);
1869                 }
1870 #endif
1871                 if (unlikely(!exist)) {
1872                         f2fs_msg(sbi->sb, KERN_ERR,
1873                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1874                         f2fs_bug_on(sbi, 1);
1875                         se->valid_blocks++;
1876                         del = 0;
1877                 }
1878
1879                 if (f2fs_discard_en(sbi) &&
1880                         f2fs_test_and_clear_bit(offset, se->discard_map))
1881                         sbi->discard_blks++;
1882         }
1883         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1884                 se->ckpt_valid_blocks += del;
1885
1886         __mark_sit_entry_dirty(sbi, segno);
1887
1888         /* update total number of valid blocks to be written in ckpt area */
1889         SIT_I(sbi)->written_valid_blocks += del;
1890
1891         if (sbi->segs_per_sec > 1)
1892                 get_sec_entry(sbi, segno)->valid_blocks += del;
1893 }
1894
1895 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1896 {
1897         unsigned int segno = GET_SEGNO(sbi, addr);
1898         struct sit_info *sit_i = SIT_I(sbi);
1899
1900         f2fs_bug_on(sbi, addr == NULL_ADDR);
1901         if (addr == NEW_ADDR)
1902                 return;
1903
1904         /* add it into sit main buffer */
1905         down_write(&sit_i->sentry_lock);
1906
1907         update_sit_entry(sbi, addr, -1);
1908
1909         /* add it into dirty seglist */
1910         locate_dirty_segment(sbi, segno);
1911
1912         up_write(&sit_i->sentry_lock);
1913 }
1914
1915 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1916 {
1917         struct sit_info *sit_i = SIT_I(sbi);
1918         unsigned int segno, offset;
1919         struct seg_entry *se;
1920         bool is_cp = false;
1921
1922         if (!is_valid_data_blkaddr(sbi, blkaddr))
1923                 return true;
1924
1925         down_read(&sit_i->sentry_lock);
1926
1927         segno = GET_SEGNO(sbi, blkaddr);
1928         se = get_seg_entry(sbi, segno);
1929         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1930
1931         if (f2fs_test_bit(offset, se->ckpt_valid_map))
1932                 is_cp = true;
1933
1934         up_read(&sit_i->sentry_lock);
1935
1936         return is_cp;
1937 }
1938
1939 /*
1940  * This function should be resided under the curseg_mutex lock
1941  */
1942 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1943                                         struct f2fs_summary *sum)
1944 {
1945         struct curseg_info *curseg = CURSEG_I(sbi, type);
1946         void *addr = curseg->sum_blk;
1947         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1948         memcpy(addr, sum, sizeof(struct f2fs_summary));
1949 }
1950
1951 /*
1952  * Calculate the number of current summary pages for writing
1953  */
1954 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1955 {
1956         int valid_sum_count = 0;
1957         int i, sum_in_page;
1958
1959         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1960                 if (sbi->ckpt->alloc_type[i] == SSR)
1961                         valid_sum_count += sbi->blocks_per_seg;
1962                 else {
1963                         if (for_ra)
1964                                 valid_sum_count += le16_to_cpu(
1965                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1966                         else
1967                                 valid_sum_count += curseg_blkoff(sbi, i);
1968                 }
1969         }
1970
1971         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1972                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1973         if (valid_sum_count <= sum_in_page)
1974                 return 1;
1975         else if ((valid_sum_count - sum_in_page) <=
1976                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1977                 return 2;
1978         return 3;
1979 }
1980
1981 /*
1982  * Caller should put this summary page
1983  */
1984 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1985 {
1986         return f2fs_get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1987 }
1988
1989 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
1990                                         void *src, block_t blk_addr)
1991 {
1992         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1993
1994         memcpy(page_address(page), src, PAGE_SIZE);
1995         set_page_dirty(page);
1996         f2fs_put_page(page, 1);
1997 }
1998
1999 static void write_sum_page(struct f2fs_sb_info *sbi,
2000                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2001 {
2002         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2003 }
2004
2005 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2006                                                 int type, block_t blk_addr)
2007 {
2008         struct curseg_info *curseg = CURSEG_I(sbi, type);
2009         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2010         struct f2fs_summary_block *src = curseg->sum_blk;
2011         struct f2fs_summary_block *dst;
2012
2013         dst = (struct f2fs_summary_block *)page_address(page);
2014         memset(dst, 0, PAGE_SIZE);
2015
2016         mutex_lock(&curseg->curseg_mutex);
2017
2018         down_read(&curseg->journal_rwsem);
2019         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2020         up_read(&curseg->journal_rwsem);
2021
2022         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2023         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2024
2025         mutex_unlock(&curseg->curseg_mutex);
2026
2027         set_page_dirty(page);
2028         f2fs_put_page(page, 1);
2029 }
2030
2031 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2032 {
2033         struct curseg_info *curseg = CURSEG_I(sbi, type);
2034         unsigned int segno = curseg->segno + 1;
2035         struct free_segmap_info *free_i = FREE_I(sbi);
2036
2037         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2038                 return !test_bit(segno, free_i->free_segmap);
2039         return 0;
2040 }
2041
2042 /*
2043  * Find a new segment from the free segments bitmap to right order
2044  * This function should be returned with success, otherwise BUG
2045  */
2046 static void get_new_segment(struct f2fs_sb_info *sbi,
2047                         unsigned int *newseg, bool new_sec, int dir)
2048 {
2049         struct free_segmap_info *free_i = FREE_I(sbi);
2050         unsigned int segno, secno, zoneno;
2051         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2052         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2053         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2054         unsigned int left_start = hint;
2055         bool init = true;
2056         int go_left = 0;
2057         int i;
2058
2059         spin_lock(&free_i->segmap_lock);
2060
2061         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2062                 segno = find_next_zero_bit(free_i->free_segmap,
2063                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2064                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2065                         goto got_it;
2066         }
2067 find_other_zone:
2068         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2069         if (secno >= MAIN_SECS(sbi)) {
2070                 if (dir == ALLOC_RIGHT) {
2071                         secno = find_next_zero_bit(free_i->free_secmap,
2072                                                         MAIN_SECS(sbi), 0);
2073                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2074                 } else {
2075                         go_left = 1;
2076                         left_start = hint - 1;
2077                 }
2078         }
2079         if (go_left == 0)
2080                 goto skip_left;
2081
2082         while (test_bit(left_start, free_i->free_secmap)) {
2083                 if (left_start > 0) {
2084                         left_start--;
2085                         continue;
2086                 }
2087                 left_start = find_next_zero_bit(free_i->free_secmap,
2088                                                         MAIN_SECS(sbi), 0);
2089                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2090                 break;
2091         }
2092         secno = left_start;
2093 skip_left:
2094         segno = GET_SEG_FROM_SEC(sbi, secno);
2095         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2096
2097         /* give up on finding another zone */
2098         if (!init)
2099                 goto got_it;
2100         if (sbi->secs_per_zone == 1)
2101                 goto got_it;
2102         if (zoneno == old_zoneno)
2103                 goto got_it;
2104         if (dir == ALLOC_LEFT) {
2105                 if (!go_left && zoneno + 1 >= total_zones)
2106                         goto got_it;
2107                 if (go_left && zoneno == 0)
2108                         goto got_it;
2109         }
2110         for (i = 0; i < NR_CURSEG_TYPE; i++)
2111                 if (CURSEG_I(sbi, i)->zone == zoneno)
2112                         break;
2113
2114         if (i < NR_CURSEG_TYPE) {
2115                 /* zone is in user, try another */
2116                 if (go_left)
2117                         hint = zoneno * sbi->secs_per_zone - 1;
2118                 else if (zoneno + 1 >= total_zones)
2119                         hint = 0;
2120                 else
2121                         hint = (zoneno + 1) * sbi->secs_per_zone;
2122                 init = false;
2123                 goto find_other_zone;
2124         }
2125 got_it:
2126         /* set it as dirty segment in free segmap */
2127         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2128         __set_inuse(sbi, segno);
2129         *newseg = segno;
2130         spin_unlock(&free_i->segmap_lock);
2131 }
2132
2133 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2134 {
2135         struct curseg_info *curseg = CURSEG_I(sbi, type);
2136         struct summary_footer *sum_footer;
2137
2138         curseg->segno = curseg->next_segno;
2139         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2140         curseg->next_blkoff = 0;
2141         curseg->next_segno = NULL_SEGNO;
2142
2143         sum_footer = &(curseg->sum_blk->footer);
2144         memset(sum_footer, 0, sizeof(struct summary_footer));
2145         if (IS_DATASEG(type))
2146                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2147         if (IS_NODESEG(type))
2148                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2149         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2150 }
2151
2152 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2153 {
2154         /* if segs_per_sec is large than 1, we need to keep original policy. */
2155         if (sbi->segs_per_sec != 1)
2156                 return CURSEG_I(sbi, type)->segno;
2157
2158         if (test_opt(sbi, NOHEAP) &&
2159                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2160                 return 0;
2161
2162         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2163                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2164
2165         /* find segments from 0 to reuse freed segments */
2166         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2167                 return 0;
2168
2169         return CURSEG_I(sbi, type)->segno;
2170 }
2171
2172 /*
2173  * Allocate a current working segment.
2174  * This function always allocates a free segment in LFS manner.
2175  */
2176 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2177 {
2178         struct curseg_info *curseg = CURSEG_I(sbi, type);
2179         unsigned int segno = curseg->segno;
2180         int dir = ALLOC_LEFT;
2181
2182         write_sum_page(sbi, curseg->sum_blk,
2183                                 GET_SUM_BLOCK(sbi, segno));
2184         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2185                 dir = ALLOC_RIGHT;
2186
2187         if (test_opt(sbi, NOHEAP))
2188                 dir = ALLOC_RIGHT;
2189
2190         segno = __get_next_segno(sbi, type);
2191         get_new_segment(sbi, &segno, new_sec, dir);
2192         curseg->next_segno = segno;
2193         reset_curseg(sbi, type, 1);
2194         curseg->alloc_type = LFS;
2195 }
2196
2197 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2198                         struct curseg_info *seg, block_t start)
2199 {
2200         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2201         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2202         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2203         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2204         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2205         int i, pos;
2206
2207         for (i = 0; i < entries; i++)
2208                 target_map[i] = ckpt_map[i] | cur_map[i];
2209
2210         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2211
2212         seg->next_blkoff = pos;
2213 }
2214
2215 /*
2216  * If a segment is written by LFS manner, next block offset is just obtained
2217  * by increasing the current block offset. However, if a segment is written by
2218  * SSR manner, next block offset obtained by calling __next_free_blkoff
2219  */
2220 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2221                                 struct curseg_info *seg)
2222 {
2223         if (seg->alloc_type == SSR)
2224                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2225         else
2226                 seg->next_blkoff++;
2227 }
2228
2229 /*
2230  * This function always allocates a used segment(from dirty seglist) by SSR
2231  * manner, so it should recover the existing segment information of valid blocks
2232  */
2233 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2234 {
2235         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2236         struct curseg_info *curseg = CURSEG_I(sbi, type);
2237         unsigned int new_segno = curseg->next_segno;
2238         struct f2fs_summary_block *sum_node;
2239         struct page *sum_page;
2240
2241         write_sum_page(sbi, curseg->sum_blk,
2242                                 GET_SUM_BLOCK(sbi, curseg->segno));
2243         __set_test_and_inuse(sbi, new_segno);
2244
2245         mutex_lock(&dirty_i->seglist_lock);
2246         __remove_dirty_segment(sbi, new_segno, PRE);
2247         __remove_dirty_segment(sbi, new_segno, DIRTY);
2248         mutex_unlock(&dirty_i->seglist_lock);
2249
2250         reset_curseg(sbi, type, 1);
2251         curseg->alloc_type = SSR;
2252         __next_free_blkoff(sbi, curseg, 0);
2253
2254         sum_page = f2fs_get_sum_page(sbi, new_segno);
2255         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2256         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2257         f2fs_put_page(sum_page, 1);
2258 }
2259
2260 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2261 {
2262         struct curseg_info *curseg = CURSEG_I(sbi, type);
2263         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2264         unsigned segno = NULL_SEGNO;
2265         int i, cnt;
2266         bool reversed = false;
2267
2268         /* f2fs_need_SSR() already forces to do this */
2269         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2270                 curseg->next_segno = segno;
2271                 return 1;
2272         }
2273
2274         /* For node segments, let's do SSR more intensively */
2275         if (IS_NODESEG(type)) {
2276                 if (type >= CURSEG_WARM_NODE) {
2277                         reversed = true;
2278                         i = CURSEG_COLD_NODE;
2279                 } else {
2280                         i = CURSEG_HOT_NODE;
2281                 }
2282                 cnt = NR_CURSEG_NODE_TYPE;
2283         } else {
2284                 if (type >= CURSEG_WARM_DATA) {
2285                         reversed = true;
2286                         i = CURSEG_COLD_DATA;
2287                 } else {
2288                         i = CURSEG_HOT_DATA;
2289                 }
2290                 cnt = NR_CURSEG_DATA_TYPE;
2291         }
2292
2293         for (; cnt-- > 0; reversed ? i-- : i++) {
2294                 if (i == type)
2295                         continue;
2296                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2297                         curseg->next_segno = segno;
2298                         return 1;
2299                 }
2300         }
2301         return 0;
2302 }
2303
2304 /*
2305  * flush out current segment and replace it with new segment
2306  * This function should be returned with success, otherwise BUG
2307  */
2308 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2309                                                 int type, bool force)
2310 {
2311         struct curseg_info *curseg = CURSEG_I(sbi, type);
2312
2313         if (force)
2314                 new_curseg(sbi, type, true);
2315         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2316                                         type == CURSEG_WARM_NODE)
2317                 new_curseg(sbi, type, false);
2318         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2319                 new_curseg(sbi, type, false);
2320         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2321                 change_curseg(sbi, type);
2322         else
2323                 new_curseg(sbi, type, false);
2324
2325         stat_inc_seg_type(sbi, curseg);
2326 }
2327
2328 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2329 {
2330         struct curseg_info *curseg;
2331         unsigned int old_segno;
2332         int i;
2333
2334         down_write(&SIT_I(sbi)->sentry_lock);
2335
2336         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2337                 curseg = CURSEG_I(sbi, i);
2338                 old_segno = curseg->segno;
2339                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2340                 locate_dirty_segment(sbi, old_segno);
2341         }
2342
2343         up_write(&SIT_I(sbi)->sentry_lock);
2344 }
2345
2346 static const struct segment_allocation default_salloc_ops = {
2347         .allocate_segment = allocate_segment_by_default,
2348 };
2349
2350 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2351                                                 struct cp_control *cpc)
2352 {
2353         __u64 trim_start = cpc->trim_start;
2354         bool has_candidate = false;
2355
2356         down_write(&SIT_I(sbi)->sentry_lock);
2357         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2358                 if (add_discard_addrs(sbi, cpc, true)) {
2359                         has_candidate = true;
2360                         break;
2361                 }
2362         }
2363         up_write(&SIT_I(sbi)->sentry_lock);
2364
2365         cpc->trim_start = trim_start;
2366         return has_candidate;
2367 }
2368
2369 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2370                                         struct discard_policy *dpolicy,
2371                                         unsigned int start, unsigned int end)
2372 {
2373         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2374         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2375         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2376         struct discard_cmd *dc;
2377         struct blk_plug plug;
2378         int issued;
2379
2380 next:
2381         issued = 0;
2382
2383         mutex_lock(&dcc->cmd_lock);
2384         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
2385
2386         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2387                                         NULL, start,
2388                                         (struct rb_entry **)&prev_dc,
2389                                         (struct rb_entry **)&next_dc,
2390                                         &insert_p, &insert_parent, true);
2391         if (!dc)
2392                 dc = next_dc;
2393
2394         blk_start_plug(&plug);
2395
2396         while (dc && dc->lstart <= end) {
2397                 struct rb_node *node;
2398
2399                 if (dc->len < dpolicy->granularity)
2400                         goto skip;
2401
2402                 if (dc->state != D_PREP) {
2403                         list_move_tail(&dc->list, &dcc->fstrim_list);
2404                         goto skip;
2405                 }
2406
2407                 __submit_discard_cmd(sbi, dpolicy, dc);
2408
2409                 if (++issued >= dpolicy->max_requests) {
2410                         start = dc->lstart + dc->len;
2411
2412                         blk_finish_plug(&plug);
2413                         mutex_unlock(&dcc->cmd_lock);
2414                         __wait_all_discard_cmd(sbi, NULL);
2415                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2416                         goto next;
2417                 }
2418 skip:
2419                 node = rb_next(&dc->rb_node);
2420                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2421
2422                 if (fatal_signal_pending(current))
2423                         break;
2424         }
2425
2426         blk_finish_plug(&plug);
2427         mutex_unlock(&dcc->cmd_lock);
2428 }
2429
2430 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2431 {
2432         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2433         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2434         unsigned int start_segno, end_segno;
2435         block_t start_block, end_block;
2436         struct cp_control cpc;
2437         struct discard_policy dpolicy;
2438         unsigned long long trimmed = 0;
2439         int err = 0;
2440
2441         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2442                 return -EINVAL;
2443
2444         if (end <= MAIN_BLKADDR(sbi))
2445                 return -EINVAL;
2446
2447         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2448                 f2fs_msg(sbi->sb, KERN_WARNING,
2449                         "Found FS corruption, run fsck to fix.");
2450                 return -EIO;
2451         }
2452
2453         /* start/end segment number in main_area */
2454         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2455         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2456                                                 GET_SEGNO(sbi, end);
2457
2458         cpc.reason = CP_DISCARD;
2459         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2460         cpc.trim_start = start_segno;
2461         cpc.trim_end = end_segno;
2462
2463         if (sbi->discard_blks == 0)
2464                 goto out;
2465
2466         mutex_lock(&sbi->gc_mutex);
2467         err = f2fs_write_checkpoint(sbi, &cpc);
2468         mutex_unlock(&sbi->gc_mutex);
2469         if (err)
2470                 goto out;
2471
2472         /*
2473          * We filed discard candidates, but actually we don't need to wait for
2474          * all of them, since they'll be issued in idle time along with runtime
2475          * discard option. User configuration looks like using runtime discard
2476          * or periodic fstrim instead of it.
2477          */
2478         if (test_opt(sbi, DISCARD))
2479                 goto out;
2480
2481         start_block = START_BLOCK(sbi, start_segno);
2482         end_block = START_BLOCK(sbi, end_segno + 1);
2483
2484         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2485         __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2486
2487         trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2488                                         start_block, end_block);
2489         range->len = F2FS_BLK_TO_BYTES(trimmed);
2490 out:
2491         return err;
2492 }
2493
2494 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2495 {
2496         struct curseg_info *curseg = CURSEG_I(sbi, type);
2497         if (curseg->next_blkoff < sbi->blocks_per_seg)
2498                 return true;
2499         return false;
2500 }
2501
2502 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2503 {
2504         switch (hint) {
2505         case WRITE_LIFE_SHORT:
2506                 return CURSEG_HOT_DATA;
2507         case WRITE_LIFE_EXTREME:
2508                 return CURSEG_COLD_DATA;
2509         default:
2510                 return CURSEG_WARM_DATA;
2511         }
2512 }
2513
2514 /* This returns write hints for each segment type. This hints will be
2515  * passed down to block layer. There are mapping tables which depend on
2516  * the mount option 'whint_mode'.
2517  *
2518  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2519  *
2520  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2521  *
2522  * User                  F2FS                     Block
2523  * ----                  ----                     -----
2524  *                       META                     WRITE_LIFE_NOT_SET
2525  *                       HOT_NODE                 "
2526  *                       WARM_NODE                "
2527  *                       COLD_NODE                "
2528  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2529  * extension list        "                        "
2530  *
2531  * -- buffered io
2532  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2533  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2534  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2535  * WRITE_LIFE_NONE       "                        "
2536  * WRITE_LIFE_MEDIUM     "                        "
2537  * WRITE_LIFE_LONG       "                        "
2538  *
2539  * -- direct io
2540  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2541  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2542  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2543  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2544  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2545  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2546  *
2547  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2548  *
2549  * User                  F2FS                     Block
2550  * ----                  ----                     -----
2551  *                       META                     WRITE_LIFE_MEDIUM;
2552  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2553  *                       WARM_NODE                "
2554  *                       COLD_NODE                WRITE_LIFE_NONE
2555  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2556  * extension list        "                        "
2557  *
2558  * -- buffered io
2559  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2560  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2561  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2562  * WRITE_LIFE_NONE       "                        "
2563  * WRITE_LIFE_MEDIUM     "                        "
2564  * WRITE_LIFE_LONG       "                        "
2565  *
2566  * -- direct io
2567  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2568  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2569  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2570  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2571  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2572  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2573  */
2574
2575 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2576                                 enum page_type type, enum temp_type temp)
2577 {
2578         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2579                 if (type == DATA) {
2580                         if (temp == WARM)
2581                                 return WRITE_LIFE_NOT_SET;
2582                         else if (temp == HOT)
2583                                 return WRITE_LIFE_SHORT;
2584                         else if (temp == COLD)
2585                                 return WRITE_LIFE_EXTREME;
2586                 } else {
2587                         return WRITE_LIFE_NOT_SET;
2588                 }
2589         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2590                 if (type == DATA) {
2591                         if (temp == WARM)
2592                                 return WRITE_LIFE_LONG;
2593                         else if (temp == HOT)
2594                                 return WRITE_LIFE_SHORT;
2595                         else if (temp == COLD)
2596                                 return WRITE_LIFE_EXTREME;
2597                 } else if (type == NODE) {
2598                         if (temp == WARM || temp == HOT)
2599                                 return WRITE_LIFE_NOT_SET;
2600                         else if (temp == COLD)
2601                                 return WRITE_LIFE_NONE;
2602                 } else if (type == META) {
2603                         return WRITE_LIFE_MEDIUM;
2604                 }
2605         }
2606         return WRITE_LIFE_NOT_SET;
2607 }
2608
2609 static int __get_segment_type_2(struct f2fs_io_info *fio)
2610 {
2611         if (fio->type == DATA)
2612                 return CURSEG_HOT_DATA;
2613         else
2614                 return CURSEG_HOT_NODE;
2615 }
2616
2617 static int __get_segment_type_4(struct f2fs_io_info *fio)
2618 {
2619         if (fio->type == DATA) {
2620                 struct inode *inode = fio->page->mapping->host;
2621
2622                 if (S_ISDIR(inode->i_mode))
2623                         return CURSEG_HOT_DATA;
2624                 else
2625                         return CURSEG_COLD_DATA;
2626         } else {
2627                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2628                         return CURSEG_WARM_NODE;
2629                 else
2630                         return CURSEG_COLD_NODE;
2631         }
2632 }
2633
2634 static int __get_segment_type_6(struct f2fs_io_info *fio)
2635 {
2636         if (fio->type == DATA) {
2637                 struct inode *inode = fio->page->mapping->host;
2638
2639                 if (is_cold_data(fio->page) || file_is_cold(inode))
2640                         return CURSEG_COLD_DATA;
2641                 if (file_is_hot(inode) ||
2642                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
2643                                 is_inode_flag_set(inode, FI_ATOMIC_FILE) ||
2644                                 is_inode_flag_set(inode, FI_VOLATILE_FILE))
2645                         return CURSEG_HOT_DATA;
2646                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2647         } else {
2648                 if (IS_DNODE(fio->page))
2649                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2650                                                 CURSEG_HOT_NODE;
2651                 return CURSEG_COLD_NODE;
2652         }
2653 }
2654
2655 static int __get_segment_type(struct f2fs_io_info *fio)
2656 {
2657         int type = 0;
2658
2659         switch (F2FS_OPTION(fio->sbi).active_logs) {
2660         case 2:
2661                 type = __get_segment_type_2(fio);
2662                 break;
2663         case 4:
2664                 type = __get_segment_type_4(fio);
2665                 break;
2666         case 6:
2667                 type = __get_segment_type_6(fio);
2668                 break;
2669         default:
2670                 f2fs_bug_on(fio->sbi, true);
2671         }
2672
2673         if (IS_HOT(type))
2674                 fio->temp = HOT;
2675         else if (IS_WARM(type))
2676                 fio->temp = WARM;
2677         else
2678                 fio->temp = COLD;
2679         return type;
2680 }
2681
2682 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2683                 block_t old_blkaddr, block_t *new_blkaddr,
2684                 struct f2fs_summary *sum, int type,
2685                 struct f2fs_io_info *fio, bool add_list)
2686 {
2687         struct sit_info *sit_i = SIT_I(sbi);
2688         struct curseg_info *curseg = CURSEG_I(sbi, type);
2689
2690         down_read(&SM_I(sbi)->curseg_lock);
2691
2692         mutex_lock(&curseg->curseg_mutex);
2693         down_write(&sit_i->sentry_lock);
2694
2695         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2696
2697         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2698
2699         /*
2700          * __add_sum_entry should be resided under the curseg_mutex
2701          * because, this function updates a summary entry in the
2702          * current summary block.
2703          */
2704         __add_sum_entry(sbi, type, sum);
2705
2706         __refresh_next_blkoff(sbi, curseg);
2707
2708         stat_inc_block_count(sbi, curseg);
2709
2710         /*
2711          * SIT information should be updated before segment allocation,
2712          * since SSR needs latest valid block information.
2713          */
2714         update_sit_entry(sbi, *new_blkaddr, 1);
2715         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2716                 update_sit_entry(sbi, old_blkaddr, -1);
2717
2718         if (!__has_curseg_space(sbi, type))
2719                 sit_i->s_ops->allocate_segment(sbi, type, false);
2720
2721         /*
2722          * segment dirty status should be updated after segment allocation,
2723          * so we just need to update status only one time after previous
2724          * segment being closed.
2725          */
2726         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2727         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2728
2729         up_write(&sit_i->sentry_lock);
2730
2731         if (page && IS_NODESEG(type)) {
2732                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2733
2734                 f2fs_inode_chksum_set(sbi, page);
2735         }
2736
2737         if (add_list) {
2738                 struct f2fs_bio_info *io;
2739
2740                 INIT_LIST_HEAD(&fio->list);
2741                 fio->in_list = true;
2742                 fio->retry = false;
2743                 io = sbi->write_io[fio->type] + fio->temp;
2744                 spin_lock(&io->io_lock);
2745                 list_add_tail(&fio->list, &io->io_list);
2746                 spin_unlock(&io->io_lock);
2747         }
2748
2749         mutex_unlock(&curseg->curseg_mutex);
2750
2751         up_read(&SM_I(sbi)->curseg_lock);
2752 }
2753
2754 static void update_device_state(struct f2fs_io_info *fio)
2755 {
2756         struct f2fs_sb_info *sbi = fio->sbi;
2757         unsigned int devidx;
2758
2759         if (!sbi->s_ndevs)
2760                 return;
2761
2762         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2763
2764         /* update device state for fsync */
2765         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2766
2767         /* update device state for checkpoint */
2768         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2769                 spin_lock(&sbi->dev_lock);
2770                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2771                 spin_unlock(&sbi->dev_lock);
2772         }
2773 }
2774
2775 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2776 {
2777         int type = __get_segment_type(fio);
2778         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
2779
2780         if (keep_order)
2781                 down_read(&fio->sbi->io_order_lock);
2782 reallocate:
2783         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2784                         &fio->new_blkaddr, sum, type, fio, true);
2785
2786         /* writeout dirty page into bdev */
2787         f2fs_submit_page_write(fio);
2788         if (fio->retry) {
2789                 fio->old_blkaddr = fio->new_blkaddr;
2790                 goto reallocate;
2791         }
2792
2793         update_device_state(fio);
2794
2795         if (keep_order)
2796                 up_read(&fio->sbi->io_order_lock);
2797 }
2798
2799 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2800                                         enum iostat_type io_type)
2801 {
2802         struct f2fs_io_info fio = {
2803                 .sbi = sbi,
2804                 .type = META,
2805                 .temp = HOT,
2806                 .op = REQ_OP_WRITE,
2807                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2808                 .old_blkaddr = page->index,
2809                 .new_blkaddr = page->index,
2810                 .page = page,
2811                 .encrypted_page = NULL,
2812                 .in_list = false,
2813         };
2814
2815         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2816                 fio.op_flags &= ~REQ_META;
2817
2818         set_page_writeback(page);
2819         ClearPageError(page);
2820         f2fs_submit_page_write(&fio);
2821
2822         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2823 }
2824
2825 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2826 {
2827         struct f2fs_summary sum;
2828
2829         set_summary(&sum, nid, 0, 0);
2830         do_write_page(&sum, fio);
2831
2832         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2833 }
2834
2835 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2836                                         struct f2fs_io_info *fio)
2837 {
2838         struct f2fs_sb_info *sbi = fio->sbi;
2839         struct f2fs_summary sum;
2840         struct node_info ni;
2841
2842         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2843         f2fs_get_node_info(sbi, dn->nid, &ni);
2844         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2845         do_write_page(&sum, fio);
2846         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2847
2848         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2849 }
2850
2851 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
2852 {
2853         int err;
2854         struct f2fs_sb_info *sbi = fio->sbi;
2855
2856         fio->new_blkaddr = fio->old_blkaddr;
2857         /* i/o temperature is needed for passing down write hints */
2858         __get_segment_type(fio);
2859
2860         f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2861                         GET_SEGNO(sbi, fio->new_blkaddr))->type));
2862
2863         stat_inc_inplace_blocks(fio->sbi);
2864
2865         err = f2fs_submit_page_bio(fio);
2866         if (!err)
2867                 update_device_state(fio);
2868
2869         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2870
2871         return err;
2872 }
2873
2874 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2875                                                 unsigned int segno)
2876 {
2877         int i;
2878
2879         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2880                 if (CURSEG_I(sbi, i)->segno == segno)
2881                         break;
2882         }
2883         return i;
2884 }
2885
2886 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2887                                 block_t old_blkaddr, block_t new_blkaddr,
2888                                 bool recover_curseg, bool recover_newaddr)
2889 {
2890         struct sit_info *sit_i = SIT_I(sbi);
2891         struct curseg_info *curseg;
2892         unsigned int segno, old_cursegno;
2893         struct seg_entry *se;
2894         int type;
2895         unsigned short old_blkoff;
2896
2897         segno = GET_SEGNO(sbi, new_blkaddr);
2898         se = get_seg_entry(sbi, segno);
2899         type = se->type;
2900
2901         down_write(&SM_I(sbi)->curseg_lock);
2902
2903         if (!recover_curseg) {
2904                 /* for recovery flow */
2905                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2906                         if (old_blkaddr == NULL_ADDR)
2907                                 type = CURSEG_COLD_DATA;
2908                         else
2909                                 type = CURSEG_WARM_DATA;
2910                 }
2911         } else {
2912                 if (IS_CURSEG(sbi, segno)) {
2913                         /* se->type is volatile as SSR allocation */
2914                         type = __f2fs_get_curseg(sbi, segno);
2915                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2916                 } else {
2917                         type = CURSEG_WARM_DATA;
2918                 }
2919         }
2920
2921         f2fs_bug_on(sbi, !IS_DATASEG(type));
2922         curseg = CURSEG_I(sbi, type);
2923
2924         mutex_lock(&curseg->curseg_mutex);
2925         down_write(&sit_i->sentry_lock);
2926
2927         old_cursegno = curseg->segno;
2928         old_blkoff = curseg->next_blkoff;
2929
2930         /* change the current segment */
2931         if (segno != curseg->segno) {
2932                 curseg->next_segno = segno;
2933                 change_curseg(sbi, type);
2934         }
2935
2936         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2937         __add_sum_entry(sbi, type, sum);
2938
2939         if (!recover_curseg || recover_newaddr)
2940                 update_sit_entry(sbi, new_blkaddr, 1);
2941         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2942                 update_sit_entry(sbi, old_blkaddr, -1);
2943
2944         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2945         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2946
2947         locate_dirty_segment(sbi, old_cursegno);
2948
2949         if (recover_curseg) {
2950                 if (old_cursegno != curseg->segno) {
2951                         curseg->next_segno = old_cursegno;
2952                         change_curseg(sbi, type);
2953                 }
2954                 curseg->next_blkoff = old_blkoff;
2955         }
2956
2957         up_write(&sit_i->sentry_lock);
2958         mutex_unlock(&curseg->curseg_mutex);
2959         up_write(&SM_I(sbi)->curseg_lock);
2960 }
2961
2962 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2963                                 block_t old_addr, block_t new_addr,
2964                                 unsigned char version, bool recover_curseg,
2965                                 bool recover_newaddr)
2966 {
2967         struct f2fs_summary sum;
2968
2969         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2970
2971         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
2972                                         recover_curseg, recover_newaddr);
2973
2974         f2fs_update_data_blkaddr(dn, new_addr);
2975 }
2976
2977 void f2fs_wait_on_page_writeback(struct page *page,
2978                                 enum page_type type, bool ordered)
2979 {
2980         if (PageWriteback(page)) {
2981                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2982
2983                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2984                                                 0, page->index, type);
2985                 if (ordered)
2986                         wait_on_page_writeback(page);
2987                 else
2988                         wait_for_stable_page(page);
2989         }
2990 }
2991
2992 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2993 {
2994         struct page *cpage;
2995
2996         if (!is_valid_data_blkaddr(sbi, blkaddr))
2997                 return;
2998
2999         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3000         if (cpage) {
3001                 f2fs_wait_on_page_writeback(cpage, DATA, true);
3002                 f2fs_put_page(cpage, 1);
3003         }
3004 }
3005
3006 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
3007 {
3008         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3009         struct curseg_info *seg_i;
3010         unsigned char *kaddr;
3011         struct page *page;
3012         block_t start;
3013         int i, j, offset;
3014
3015         start = start_sum_block(sbi);
3016
3017         page = f2fs_get_meta_page(sbi, start++);
3018         kaddr = (unsigned char *)page_address(page);
3019
3020         /* Step 1: restore nat cache */
3021         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3022         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3023
3024         /* Step 2: restore sit cache */
3025         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3026         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3027         offset = 2 * SUM_JOURNAL_SIZE;
3028
3029         /* Step 3: restore summary entries */
3030         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3031                 unsigned short blk_off;
3032                 unsigned int segno;
3033
3034                 seg_i = CURSEG_I(sbi, i);
3035                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3036                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3037                 seg_i->next_segno = segno;
3038                 reset_curseg(sbi, i, 0);
3039                 seg_i->alloc_type = ckpt->alloc_type[i];
3040                 seg_i->next_blkoff = blk_off;
3041
3042                 if (seg_i->alloc_type == SSR)
3043                         blk_off = sbi->blocks_per_seg;
3044
3045                 for (j = 0; j < blk_off; j++) {
3046                         struct f2fs_summary *s;
3047                         s = (struct f2fs_summary *)(kaddr + offset);
3048                         seg_i->sum_blk->entries[j] = *s;
3049                         offset += SUMMARY_SIZE;
3050                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3051                                                 SUM_FOOTER_SIZE)
3052                                 continue;
3053
3054                         f2fs_put_page(page, 1);
3055                         page = NULL;
3056
3057                         page = f2fs_get_meta_page(sbi, start++);
3058                         kaddr = (unsigned char *)page_address(page);
3059                         offset = 0;
3060                 }
3061         }
3062         f2fs_put_page(page, 1);
3063 }
3064
3065 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3066 {
3067         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3068         struct f2fs_summary_block *sum;
3069         struct curseg_info *curseg;
3070         struct page *new;
3071         unsigned short blk_off;
3072         unsigned int segno = 0;
3073         block_t blk_addr = 0;
3074
3075         /* get segment number and block addr */
3076         if (IS_DATASEG(type)) {
3077                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3078                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3079                                                         CURSEG_HOT_DATA]);
3080                 if (__exist_node_summaries(sbi))
3081                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3082                 else
3083                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3084         } else {
3085                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3086                                                         CURSEG_HOT_NODE]);
3087                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3088                                                         CURSEG_HOT_NODE]);
3089                 if (__exist_node_summaries(sbi))
3090                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3091                                                         type - CURSEG_HOT_NODE);
3092                 else
3093                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3094         }
3095
3096         new = f2fs_get_meta_page(sbi, blk_addr);
3097         sum = (struct f2fs_summary_block *)page_address(new);
3098
3099         if (IS_NODESEG(type)) {
3100                 if (__exist_node_summaries(sbi)) {
3101                         struct f2fs_summary *ns = &sum->entries[0];
3102                         int i;
3103                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3104                                 ns->version = 0;
3105                                 ns->ofs_in_node = 0;
3106                         }
3107                 } else {
3108                         f2fs_restore_node_summary(sbi, segno, sum);
3109                 }
3110         }
3111
3112         /* set uncompleted segment to curseg */
3113         curseg = CURSEG_I(sbi, type);
3114         mutex_lock(&curseg->curseg_mutex);
3115
3116         /* update journal info */
3117         down_write(&curseg->journal_rwsem);
3118         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3119         up_write(&curseg->journal_rwsem);
3120
3121         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3122         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3123         curseg->next_segno = segno;
3124         reset_curseg(sbi, type, 0);
3125         curseg->alloc_type = ckpt->alloc_type[type];
3126         curseg->next_blkoff = blk_off;
3127         mutex_unlock(&curseg->curseg_mutex);
3128         f2fs_put_page(new, 1);
3129         return 0;
3130 }
3131
3132 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3133 {
3134         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3135         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3136         int type = CURSEG_HOT_DATA;
3137         int err;
3138
3139         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3140                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3141
3142                 if (npages >= 2)
3143                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3144                                                         META_CP, true);
3145
3146                 /* restore for compacted data summary */
3147                 read_compacted_summaries(sbi);
3148                 type = CURSEG_HOT_NODE;
3149         }
3150
3151         if (__exist_node_summaries(sbi))
3152                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3153                                         NR_CURSEG_TYPE - type, META_CP, true);
3154
3155         for (; type <= CURSEG_COLD_NODE; type++) {
3156                 err = read_normal_summaries(sbi, type);
3157                 if (err)
3158                         return err;
3159         }
3160
3161         /* sanity check for summary blocks */
3162         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3163                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3164                 return -EINVAL;
3165
3166         return 0;
3167 }
3168
3169 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3170 {
3171         struct page *page;
3172         unsigned char *kaddr;
3173         struct f2fs_summary *summary;
3174         struct curseg_info *seg_i;
3175         int written_size = 0;
3176         int i, j;
3177
3178         page = f2fs_grab_meta_page(sbi, blkaddr++);
3179         kaddr = (unsigned char *)page_address(page);
3180         memset(kaddr, 0, PAGE_SIZE);
3181
3182         /* Step 1: write nat cache */
3183         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3184         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3185         written_size += SUM_JOURNAL_SIZE;
3186
3187         /* Step 2: write sit cache */
3188         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3189         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3190         written_size += SUM_JOURNAL_SIZE;
3191
3192         /* Step 3: write summary entries */
3193         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3194                 unsigned short blkoff;
3195                 seg_i = CURSEG_I(sbi, i);
3196                 if (sbi->ckpt->alloc_type[i] == SSR)
3197                         blkoff = sbi->blocks_per_seg;
3198                 else
3199                         blkoff = curseg_blkoff(sbi, i);
3200
3201                 for (j = 0; j < blkoff; j++) {
3202                         if (!page) {
3203                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3204                                 kaddr = (unsigned char *)page_address(page);
3205                                 memset(kaddr, 0, PAGE_SIZE);
3206                                 written_size = 0;
3207                         }
3208                         summary = (struct f2fs_summary *)(kaddr + written_size);
3209                         *summary = seg_i->sum_blk->entries[j];
3210                         written_size += SUMMARY_SIZE;
3211
3212                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3213                                                         SUM_FOOTER_SIZE)
3214                                 continue;
3215
3216                         set_page_dirty(page);
3217                         f2fs_put_page(page, 1);
3218                         page = NULL;
3219                 }
3220         }
3221         if (page) {
3222                 set_page_dirty(page);
3223                 f2fs_put_page(page, 1);
3224         }
3225 }
3226
3227 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3228                                         block_t blkaddr, int type)
3229 {
3230         int i, end;
3231         if (IS_DATASEG(type))
3232                 end = type + NR_CURSEG_DATA_TYPE;
3233         else
3234                 end = type + NR_CURSEG_NODE_TYPE;
3235
3236         for (i = type; i < end; i++)
3237                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3238 }
3239
3240 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3241 {
3242         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3243                 write_compacted_summaries(sbi, start_blk);
3244         else
3245                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3246 }
3247
3248 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3249 {
3250         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3251 }
3252
3253 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3254                                         unsigned int val, int alloc)
3255 {
3256         int i;
3257
3258         if (type == NAT_JOURNAL) {
3259                 for (i = 0; i < nats_in_cursum(journal); i++) {
3260                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3261                                 return i;
3262                 }
3263                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3264                         return update_nats_in_cursum(journal, 1);
3265         } else if (type == SIT_JOURNAL) {
3266                 for (i = 0; i < sits_in_cursum(journal); i++)
3267                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3268                                 return i;
3269                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3270                         return update_sits_in_cursum(journal, 1);
3271         }
3272         return -1;
3273 }
3274
3275 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3276                                         unsigned int segno)
3277 {
3278         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3279 }
3280
3281 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3282                                         unsigned int start)
3283 {
3284         struct sit_info *sit_i = SIT_I(sbi);
3285         struct page *page;
3286         pgoff_t src_off, dst_off;
3287
3288         src_off = current_sit_addr(sbi, start);
3289         dst_off = next_sit_addr(sbi, src_off);
3290
3291         page = f2fs_grab_meta_page(sbi, dst_off);
3292         seg_info_to_sit_page(sbi, page, start);
3293
3294         set_page_dirty(page);
3295         set_to_next_sit(sit_i, start);
3296
3297         return page;
3298 }
3299
3300 static struct sit_entry_set *grab_sit_entry_set(void)
3301 {
3302         struct sit_entry_set *ses =
3303                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3304
3305         ses->entry_cnt = 0;
3306         INIT_LIST_HEAD(&ses->set_list);
3307         return ses;
3308 }
3309
3310 static void release_sit_entry_set(struct sit_entry_set *ses)
3311 {
3312         list_del(&ses->set_list);
3313         kmem_cache_free(sit_entry_set_slab, ses);
3314 }
3315
3316 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3317                                                 struct list_head *head)
3318 {
3319         struct sit_entry_set *next = ses;
3320
3321         if (list_is_last(&ses->set_list, head))
3322                 return;
3323
3324         list_for_each_entry_continue(next, head, set_list)
3325                 if (ses->entry_cnt <= next->entry_cnt)
3326                         break;
3327
3328         list_move_tail(&ses->set_list, &next->set_list);
3329 }
3330
3331 static void add_sit_entry(unsigned int segno, struct list_head *head)
3332 {
3333         struct sit_entry_set *ses;
3334         unsigned int start_segno = START_SEGNO(segno);
3335
3336         list_for_each_entry(ses, head, set_list) {
3337                 if (ses->start_segno == start_segno) {
3338                         ses->entry_cnt++;
3339                         adjust_sit_entry_set(ses, head);
3340                         return;
3341                 }
3342         }
3343
3344         ses = grab_sit_entry_set();
3345
3346         ses->start_segno = start_segno;
3347         ses->entry_cnt++;
3348         list_add(&ses->set_list, head);
3349 }
3350
3351 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3352 {
3353         struct f2fs_sm_info *sm_info = SM_I(sbi);
3354         struct list_head *set_list = &sm_info->sit_entry_set;
3355         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3356         unsigned int segno;
3357
3358         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3359                 add_sit_entry(segno, set_list);
3360 }
3361
3362 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3363 {
3364         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3365         struct f2fs_journal *journal = curseg->journal;
3366         int i;
3367
3368         down_write(&curseg->journal_rwsem);
3369         for (i = 0; i < sits_in_cursum(journal); i++) {
3370                 unsigned int segno;
3371                 bool dirtied;
3372
3373                 segno = le32_to_cpu(segno_in_journal(journal, i));
3374                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3375
3376                 if (!dirtied)
3377                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3378         }
3379         update_sits_in_cursum(journal, -i);
3380         up_write(&curseg->journal_rwsem);
3381 }
3382
3383 /*
3384  * CP calls this function, which flushes SIT entries including sit_journal,
3385  * and moves prefree segs to free segs.
3386  */
3387 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3388 {
3389         struct sit_info *sit_i = SIT_I(sbi);
3390         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3391         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3392         struct f2fs_journal *journal = curseg->journal;
3393         struct sit_entry_set *ses, *tmp;
3394         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3395         bool to_journal = true;
3396         struct seg_entry *se;
3397
3398         down_write(&sit_i->sentry_lock);
3399
3400         if (!sit_i->dirty_sentries)
3401                 goto out;
3402
3403         /*
3404          * add and account sit entries of dirty bitmap in sit entry
3405          * set temporarily
3406          */
3407         add_sits_in_set(sbi);
3408
3409         /*
3410          * if there are no enough space in journal to store dirty sit
3411          * entries, remove all entries from journal and add and account
3412          * them in sit entry set.
3413          */
3414         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3415                 remove_sits_in_journal(sbi);
3416
3417         /*
3418          * there are two steps to flush sit entries:
3419          * #1, flush sit entries to journal in current cold data summary block.
3420          * #2, flush sit entries to sit page.
3421          */
3422         list_for_each_entry_safe(ses, tmp, head, set_list) {
3423                 struct page *page = NULL;
3424                 struct f2fs_sit_block *raw_sit = NULL;
3425                 unsigned int start_segno = ses->start_segno;
3426                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3427                                                 (unsigned long)MAIN_SEGS(sbi));
3428                 unsigned int segno = start_segno;
3429
3430                 if (to_journal &&
3431                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3432                         to_journal = false;
3433
3434                 if (to_journal) {
3435                         down_write(&curseg->journal_rwsem);
3436                 } else {
3437                         page = get_next_sit_page(sbi, start_segno);
3438                         raw_sit = page_address(page);
3439                 }
3440
3441                 /* flush dirty sit entries in region of current sit set */
3442                 for_each_set_bit_from(segno, bitmap, end) {
3443                         int offset, sit_offset;
3444
3445                         se = get_seg_entry(sbi, segno);
3446 #ifdef CONFIG_F2FS_CHECK_FS
3447                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3448                                                 SIT_VBLOCK_MAP_SIZE))
3449                                 f2fs_bug_on(sbi, 1);
3450 #endif
3451
3452                         /* add discard candidates */
3453                         if (!(cpc->reason & CP_DISCARD)) {
3454                                 cpc->trim_start = segno;
3455                                 add_discard_addrs(sbi, cpc, false);
3456                         }
3457
3458                         if (to_journal) {
3459                                 offset = f2fs_lookup_journal_in_cursum(journal,
3460                                                         SIT_JOURNAL, segno, 1);
3461                                 f2fs_bug_on(sbi, offset < 0);
3462                                 segno_in_journal(journal, offset) =
3463                                                         cpu_to_le32(segno);
3464                                 seg_info_to_raw_sit(se,
3465                                         &sit_in_journal(journal, offset));
3466                                 check_block_count(sbi, segno,
3467                                         &sit_in_journal(journal, offset));
3468                         } else {
3469                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3470                                 seg_info_to_raw_sit(se,
3471                                                 &raw_sit->entries[sit_offset]);
3472                                 check_block_count(sbi, segno,
3473                                                 &raw_sit->entries[sit_offset]);
3474                         }
3475
3476                         __clear_bit(segno, bitmap);
3477                         sit_i->dirty_sentries--;
3478                         ses->entry_cnt--;
3479                 }
3480
3481                 if (to_journal)
3482                         up_write(&curseg->journal_rwsem);
3483                 else
3484                         f2fs_put_page(page, 1);
3485
3486                 f2fs_bug_on(sbi, ses->entry_cnt);
3487                 release_sit_entry_set(ses);
3488         }
3489
3490         f2fs_bug_on(sbi, !list_empty(head));
3491         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3492 out:
3493         if (cpc->reason & CP_DISCARD) {
3494                 __u64 trim_start = cpc->trim_start;
3495
3496                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3497                         add_discard_addrs(sbi, cpc, false);
3498
3499                 cpc->trim_start = trim_start;
3500         }
3501         up_write(&sit_i->sentry_lock);
3502
3503         set_prefree_as_free_segments(sbi);
3504 }
3505
3506 static int build_sit_info(struct f2fs_sb_info *sbi)
3507 {
3508         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3509         struct sit_info *sit_i;
3510         unsigned int sit_segs, start;
3511         char *src_bitmap;
3512         unsigned int bitmap_size;
3513
3514         /* allocate memory for SIT information */
3515         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3516         if (!sit_i)
3517                 return -ENOMEM;
3518
3519         SM_I(sbi)->sit_info = sit_i;
3520
3521         sit_i->sentries =
3522                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3523                                               MAIN_SEGS(sbi)),
3524                               GFP_KERNEL);
3525         if (!sit_i->sentries)
3526                 return -ENOMEM;
3527
3528         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3529         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3530                                                                 GFP_KERNEL);
3531         if (!sit_i->dirty_sentries_bitmap)
3532                 return -ENOMEM;
3533
3534         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3535                 sit_i->sentries[start].cur_valid_map
3536                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3537                 sit_i->sentries[start].ckpt_valid_map
3538                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3539                 if (!sit_i->sentries[start].cur_valid_map ||
3540                                 !sit_i->sentries[start].ckpt_valid_map)
3541                         return -ENOMEM;
3542
3543 #ifdef CONFIG_F2FS_CHECK_FS
3544                 sit_i->sentries[start].cur_valid_map_mir
3545                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3546                 if (!sit_i->sentries[start].cur_valid_map_mir)
3547                         return -ENOMEM;
3548 #endif
3549
3550                 if (f2fs_discard_en(sbi)) {
3551                         sit_i->sentries[start].discard_map
3552                                 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3553                                                                 GFP_KERNEL);
3554                         if (!sit_i->sentries[start].discard_map)
3555                                 return -ENOMEM;
3556                 }
3557         }
3558
3559         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3560         if (!sit_i->tmp_map)
3561                 return -ENOMEM;
3562
3563         if (sbi->segs_per_sec > 1) {
3564                 sit_i->sec_entries =
3565                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3566                                                       MAIN_SECS(sbi)),
3567                                       GFP_KERNEL);
3568                 if (!sit_i->sec_entries)
3569                         return -ENOMEM;
3570         }
3571
3572         /* get information related with SIT */
3573         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3574
3575         /* setup SIT bitmap from ckeckpoint pack */
3576         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3577         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3578
3579         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3580         if (!sit_i->sit_bitmap)
3581                 return -ENOMEM;
3582
3583 #ifdef CONFIG_F2FS_CHECK_FS
3584         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3585         if (!sit_i->sit_bitmap_mir)
3586                 return -ENOMEM;
3587 #endif
3588
3589         /* init SIT information */
3590         sit_i->s_ops = &default_salloc_ops;
3591
3592         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3593         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3594         sit_i->written_valid_blocks = 0;
3595         sit_i->bitmap_size = bitmap_size;
3596         sit_i->dirty_sentries = 0;
3597         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3598         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3599         sit_i->mounted_time = ktime_get_real_seconds();
3600         init_rwsem(&sit_i->sentry_lock);
3601         return 0;
3602 }
3603
3604 static int build_free_segmap(struct f2fs_sb_info *sbi)
3605 {
3606         struct free_segmap_info *free_i;
3607         unsigned int bitmap_size, sec_bitmap_size;
3608
3609         /* allocate memory for free segmap information */
3610         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3611         if (!free_i)
3612                 return -ENOMEM;
3613
3614         SM_I(sbi)->free_info = free_i;
3615
3616         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3617         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3618         if (!free_i->free_segmap)
3619                 return -ENOMEM;
3620
3621         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3622         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3623         if (!free_i->free_secmap)
3624                 return -ENOMEM;
3625
3626         /* set all segments as dirty temporarily */
3627         memset(free_i->free_segmap, 0xff, bitmap_size);
3628         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3629
3630         /* init free segmap information */
3631         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3632         free_i->free_segments = 0;
3633         free_i->free_sections = 0;
3634         spin_lock_init(&free_i->segmap_lock);
3635         return 0;
3636 }
3637
3638 static int build_curseg(struct f2fs_sb_info *sbi)
3639 {
3640         struct curseg_info *array;
3641         int i;
3642
3643         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3644                              GFP_KERNEL);
3645         if (!array)
3646                 return -ENOMEM;
3647
3648         SM_I(sbi)->curseg_array = array;
3649
3650         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3651                 mutex_init(&array[i].curseg_mutex);
3652                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3653                 if (!array[i].sum_blk)
3654                         return -ENOMEM;
3655                 init_rwsem(&array[i].journal_rwsem);
3656                 array[i].journal = f2fs_kzalloc(sbi,
3657                                 sizeof(struct f2fs_journal), GFP_KERNEL);
3658                 if (!array[i].journal)
3659                         return -ENOMEM;
3660                 array[i].segno = NULL_SEGNO;
3661                 array[i].next_blkoff = 0;
3662         }
3663         return restore_curseg_summaries(sbi);
3664 }
3665
3666 static int build_sit_entries(struct f2fs_sb_info *sbi)
3667 {
3668         struct sit_info *sit_i = SIT_I(sbi);
3669         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3670         struct f2fs_journal *journal = curseg->journal;
3671         struct seg_entry *se;
3672         struct f2fs_sit_entry sit;
3673         int sit_blk_cnt = SIT_BLK_CNT(sbi);
3674         unsigned int i, start, end;
3675         unsigned int readed, start_blk = 0;
3676         int err = 0;
3677         block_t total_node_blocks = 0;
3678
3679         do {
3680                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3681                                                         META_SIT, true);
3682
3683                 start = start_blk * sit_i->sents_per_block;
3684                 end = (start_blk + readed) * sit_i->sents_per_block;
3685
3686                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3687                         struct f2fs_sit_block *sit_blk;
3688                         struct page *page;
3689
3690                         se = &sit_i->sentries[start];
3691                         page = get_current_sit_page(sbi, start);
3692                         sit_blk = (struct f2fs_sit_block *)page_address(page);
3693                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3694                         f2fs_put_page(page, 1);
3695
3696                         err = check_block_count(sbi, start, &sit);
3697                         if (err)
3698                                 return err;
3699                         seg_info_from_raw_sit(se, &sit);
3700                         if (IS_NODESEG(se->type))
3701                                 total_node_blocks += se->valid_blocks;
3702
3703                         /* build discard map only one time */
3704                         if (f2fs_discard_en(sbi)) {
3705                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3706                                         memset(se->discard_map, 0xff,
3707                                                 SIT_VBLOCK_MAP_SIZE);
3708                                 } else {
3709                                         memcpy(se->discard_map,
3710                                                 se->cur_valid_map,
3711                                                 SIT_VBLOCK_MAP_SIZE);
3712                                         sbi->discard_blks +=
3713                                                 sbi->blocks_per_seg -
3714                                                 se->valid_blocks;
3715                                 }
3716                         }
3717
3718                         if (sbi->segs_per_sec > 1)
3719                                 get_sec_entry(sbi, start)->valid_blocks +=
3720                                                         se->valid_blocks;
3721                 }
3722                 start_blk += readed;
3723         } while (start_blk < sit_blk_cnt);
3724
3725         down_read(&curseg->journal_rwsem);
3726         for (i = 0; i < sits_in_cursum(journal); i++) {
3727                 unsigned int old_valid_blocks;
3728
3729                 start = le32_to_cpu(segno_in_journal(journal, i));
3730                 if (start >= MAIN_SEGS(sbi)) {
3731                         f2fs_msg(sbi->sb, KERN_ERR,
3732                                         "Wrong journal entry on segno %u",
3733                                         start);
3734                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3735                         err = -EINVAL;
3736                         break;
3737                 }
3738
3739                 se = &sit_i->sentries[start];
3740                 sit = sit_in_journal(journal, i);
3741
3742                 old_valid_blocks = se->valid_blocks;
3743                 if (IS_NODESEG(se->type))
3744                         total_node_blocks -= old_valid_blocks;
3745
3746                 err = check_block_count(sbi, start, &sit);
3747                 if (err)
3748                         break;
3749                 seg_info_from_raw_sit(se, &sit);
3750                 if (IS_NODESEG(se->type))
3751                         total_node_blocks += se->valid_blocks;
3752
3753                 if (f2fs_discard_en(sbi)) {
3754                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3755                                 memset(se->discard_map, 0xff,
3756                                                         SIT_VBLOCK_MAP_SIZE);
3757                         } else {
3758                                 memcpy(se->discard_map, se->cur_valid_map,
3759                                                         SIT_VBLOCK_MAP_SIZE);
3760                                 sbi->discard_blks += old_valid_blocks;
3761                                 sbi->discard_blks -= se->valid_blocks;
3762                         }
3763                 }
3764
3765                 if (sbi->segs_per_sec > 1) {
3766                         get_sec_entry(sbi, start)->valid_blocks +=
3767                                                         se->valid_blocks;
3768                         get_sec_entry(sbi, start)->valid_blocks -=
3769                                                         old_valid_blocks;
3770                 }
3771         }
3772         up_read(&curseg->journal_rwsem);
3773
3774         if (!err && total_node_blocks != valid_node_count(sbi)) {
3775                 f2fs_msg(sbi->sb, KERN_ERR,
3776                         "SIT is corrupted node# %u vs %u",
3777                         total_node_blocks, valid_node_count(sbi));
3778                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3779                 err = -EINVAL;
3780         }
3781
3782         return err;
3783 }
3784
3785 static void init_free_segmap(struct f2fs_sb_info *sbi)
3786 {
3787         unsigned int start;
3788         int type;
3789
3790         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3791                 struct seg_entry *sentry = get_seg_entry(sbi, start);
3792                 if (!sentry->valid_blocks)
3793                         __set_free(sbi, start);
3794                 else
3795                         SIT_I(sbi)->written_valid_blocks +=
3796                                                 sentry->valid_blocks;
3797         }
3798
3799         /* set use the current segments */
3800         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3801                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3802                 __set_test_and_inuse(sbi, curseg_t->segno);
3803         }
3804 }
3805
3806 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3807 {
3808         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3809         struct free_segmap_info *free_i = FREE_I(sbi);
3810         unsigned int segno = 0, offset = 0;
3811         unsigned short valid_blocks;
3812
3813         while (1) {
3814                 /* find dirty segment based on free segmap */
3815                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3816                 if (segno >= MAIN_SEGS(sbi))
3817                         break;
3818                 offset = segno + 1;
3819                 valid_blocks = get_valid_blocks(sbi, segno, false);
3820                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3821                         continue;
3822                 if (valid_blocks > sbi->blocks_per_seg) {
3823                         f2fs_bug_on(sbi, 1);
3824                         continue;
3825                 }
3826                 mutex_lock(&dirty_i->seglist_lock);
3827                 __locate_dirty_segment(sbi, segno, DIRTY);
3828                 mutex_unlock(&dirty_i->seglist_lock);
3829         }
3830 }
3831
3832 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3833 {
3834         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3835         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3836
3837         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3838         if (!dirty_i->victim_secmap)
3839                 return -ENOMEM;
3840         return 0;
3841 }
3842
3843 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3844 {
3845         struct dirty_seglist_info *dirty_i;
3846         unsigned int bitmap_size, i;
3847
3848         /* allocate memory for dirty segments list information */
3849         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3850                                                                 GFP_KERNEL);
3851         if (!dirty_i)
3852                 return -ENOMEM;
3853
3854         SM_I(sbi)->dirty_info = dirty_i;
3855         mutex_init(&dirty_i->seglist_lock);
3856
3857         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3858
3859         for (i = 0; i < NR_DIRTY_TYPE; i++) {
3860                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3861                                                                 GFP_KERNEL);
3862                 if (!dirty_i->dirty_segmap[i])
3863                         return -ENOMEM;
3864         }
3865
3866         init_dirty_segmap(sbi);
3867         return init_victim_secmap(sbi);
3868 }
3869
3870 /*
3871  * Update min, max modified time for cost-benefit GC algorithm
3872  */
3873 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3874 {
3875         struct sit_info *sit_i = SIT_I(sbi);
3876         unsigned int segno;
3877
3878         down_write(&sit_i->sentry_lock);
3879
3880         sit_i->min_mtime = ULLONG_MAX;
3881
3882         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3883                 unsigned int i;
3884                 unsigned long long mtime = 0;
3885
3886                 for (i = 0; i < sbi->segs_per_sec; i++)
3887                         mtime += get_seg_entry(sbi, segno + i)->mtime;
3888
3889                 mtime = div_u64(mtime, sbi->segs_per_sec);
3890
3891                 if (sit_i->min_mtime > mtime)
3892                         sit_i->min_mtime = mtime;
3893         }
3894         sit_i->max_mtime = get_mtime(sbi, false);
3895         up_write(&sit_i->sentry_lock);
3896 }
3897
3898 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
3899 {
3900         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3901         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3902         struct f2fs_sm_info *sm_info;
3903         int err;
3904
3905         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3906         if (!sm_info)
3907                 return -ENOMEM;
3908
3909         /* init sm info */
3910         sbi->sm_info = sm_info;
3911         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3912         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3913         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3914         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3915         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3916         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3917         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3918         sm_info->rec_prefree_segments = sm_info->main_segments *
3919                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3920         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3921                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3922
3923         if (!test_opt(sbi, LFS))
3924                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3925         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3926         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3927         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3928         sm_info->min_ssr_sections = reserved_sections(sbi);
3929
3930         INIT_LIST_HEAD(&sm_info->sit_entry_set);
3931
3932         init_rwsem(&sm_info->curseg_lock);
3933
3934         if (!f2fs_readonly(sbi->sb)) {
3935                 err = f2fs_create_flush_cmd_control(sbi);
3936                 if (err)
3937                         return err;
3938         }
3939
3940         err = create_discard_cmd_control(sbi);
3941         if (err)
3942                 return err;
3943
3944         err = build_sit_info(sbi);
3945         if (err)
3946                 return err;
3947         err = build_free_segmap(sbi);
3948         if (err)
3949                 return err;
3950         err = build_curseg(sbi);
3951         if (err)
3952                 return err;
3953
3954         /* reinit free segmap based on SIT */
3955         err = build_sit_entries(sbi);
3956         if (err)
3957                 return err;
3958
3959         init_free_segmap(sbi);
3960         err = build_dirty_segmap(sbi);
3961         if (err)
3962                 return err;
3963
3964         init_min_max_mtime(sbi);
3965         return 0;
3966 }
3967
3968 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3969                 enum dirty_type dirty_type)
3970 {
3971         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3972
3973         mutex_lock(&dirty_i->seglist_lock);
3974         kvfree(dirty_i->dirty_segmap[dirty_type]);
3975         dirty_i->nr_dirty[dirty_type] = 0;
3976         mutex_unlock(&dirty_i->seglist_lock);
3977 }
3978
3979 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3980 {
3981         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3982         kvfree(dirty_i->victim_secmap);
3983 }
3984
3985 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3986 {
3987         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3988         int i;
3989
3990         if (!dirty_i)
3991                 return;
3992
3993         /* discard pre-free/dirty segments list */
3994         for (i = 0; i < NR_DIRTY_TYPE; i++)
3995                 discard_dirty_segmap(sbi, i);
3996
3997         destroy_victim_secmap(sbi);
3998         SM_I(sbi)->dirty_info = NULL;
3999         kfree(dirty_i);
4000 }
4001
4002 static void destroy_curseg(struct f2fs_sb_info *sbi)
4003 {
4004         struct curseg_info *array = SM_I(sbi)->curseg_array;
4005         int i;
4006
4007         if (!array)
4008                 return;
4009         SM_I(sbi)->curseg_array = NULL;
4010         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4011                 kfree(array[i].sum_blk);
4012                 kfree(array[i].journal);
4013         }
4014         kfree(array);
4015 }
4016
4017 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4018 {
4019         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4020         if (!free_i)
4021                 return;
4022         SM_I(sbi)->free_info = NULL;
4023         kvfree(free_i->free_segmap);
4024         kvfree(free_i->free_secmap);
4025         kfree(free_i);
4026 }
4027
4028 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4029 {
4030         struct sit_info *sit_i = SIT_I(sbi);
4031         unsigned int start;
4032
4033         if (!sit_i)
4034                 return;
4035
4036         if (sit_i->sentries) {
4037                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4038                         kfree(sit_i->sentries[start].cur_valid_map);
4039 #ifdef CONFIG_F2FS_CHECK_FS
4040                         kfree(sit_i->sentries[start].cur_valid_map_mir);
4041 #endif
4042                         kfree(sit_i->sentries[start].ckpt_valid_map);
4043                         kfree(sit_i->sentries[start].discard_map);
4044                 }
4045         }
4046         kfree(sit_i->tmp_map);
4047
4048         kvfree(sit_i->sentries);
4049         kvfree(sit_i->sec_entries);
4050         kvfree(sit_i->dirty_sentries_bitmap);
4051
4052         SM_I(sbi)->sit_info = NULL;
4053         kfree(sit_i->sit_bitmap);
4054 #ifdef CONFIG_F2FS_CHECK_FS
4055         kfree(sit_i->sit_bitmap_mir);
4056 #endif
4057         kfree(sit_i);
4058 }
4059
4060 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4061 {
4062         struct f2fs_sm_info *sm_info = SM_I(sbi);
4063
4064         if (!sm_info)
4065                 return;
4066         f2fs_destroy_flush_cmd_control(sbi, true);
4067         destroy_discard_cmd_control(sbi);
4068         destroy_dirty_segmap(sbi);
4069         destroy_curseg(sbi);
4070         destroy_free_segmap(sbi);
4071         destroy_sit_info(sbi);
4072         sbi->sm_info = NULL;
4073         kfree(sm_info);
4074 }
4075
4076 int __init f2fs_create_segment_manager_caches(void)
4077 {
4078         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4079                         sizeof(struct discard_entry));
4080         if (!discard_entry_slab)
4081                 goto fail;
4082
4083         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4084                         sizeof(struct discard_cmd));
4085         if (!discard_cmd_slab)
4086                 goto destroy_discard_entry;
4087
4088         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4089                         sizeof(struct sit_entry_set));
4090         if (!sit_entry_set_slab)
4091                 goto destroy_discard_cmd;
4092
4093         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4094                         sizeof(struct inmem_pages));
4095         if (!inmem_entry_slab)
4096                 goto destroy_sit_entry_set;
4097         return 0;
4098
4099 destroy_sit_entry_set:
4100         kmem_cache_destroy(sit_entry_set_slab);
4101 destroy_discard_cmd:
4102         kmem_cache_destroy(discard_cmd_slab);
4103 destroy_discard_entry:
4104         kmem_cache_destroy(discard_entry_slab);
4105 fail:
4106         return -ENOMEM;
4107 }
4108
4109 void f2fs_destroy_segment_manager_caches(void)
4110 {
4111         kmem_cache_destroy(sit_entry_set_slab);
4112         kmem_cache_destroy(discard_cmd_slab);
4113         kmem_cache_destroy(discard_entry_slab);
4114         kmem_cache_destroy(inmem_entry_slab);
4115 }