Merge tag 'x86_mtrr_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37         unsigned long tmp = 0;
38         int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41         shift = 56;
42 #endif
43         while (shift >= 0) {
44                 tmp |= (unsigned long)str[idx++] << shift;
45                 shift -= BITS_PER_BYTE;
46         }
47         return tmp;
48 }
49
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56         int num = 0;
57
58 #if BITS_PER_LONG == 64
59         if ((word & 0xffffffff00000000UL) == 0)
60                 num += 32;
61         else
62                 word >>= 32;
63 #endif
64         if ((word & 0xffff0000) == 0)
65                 num += 16;
66         else
67                 word >>= 16;
68
69         if ((word & 0xff00) == 0)
70                 num += 8;
71         else
72                 word >>= 8;
73
74         if ((word & 0xf0) == 0)
75                 num += 4;
76         else
77                 word >>= 4;
78
79         if ((word & 0xc) == 0)
80                 num += 2;
81         else
82                 word >>= 2;
83
84         if ((word & 0x2) == 0)
85                 num += 1;
86         return num;
87 }
88
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99                         unsigned long size, unsigned long offset)
100 {
101         const unsigned long *p = addr + BIT_WORD(offset);
102         unsigned long result = size;
103         unsigned long tmp;
104
105         if (offset >= size)
106                 return size;
107
108         size -= (offset & ~(BITS_PER_LONG - 1));
109         offset %= BITS_PER_LONG;
110
111         while (1) {
112                 if (*p == 0)
113                         goto pass;
114
115                 tmp = __reverse_ulong((unsigned char *)p);
116
117                 tmp &= ~0UL >> offset;
118                 if (size < BITS_PER_LONG)
119                         tmp &= (~0UL << (BITS_PER_LONG - size));
120                 if (tmp)
121                         goto found;
122 pass:
123                 if (size <= BITS_PER_LONG)
124                         break;
125                 size -= BITS_PER_LONG;
126                 offset = 0;
127                 p++;
128         }
129         return result;
130 found:
131         return result - size + __reverse_ffs(tmp);
132 }
133
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135                         unsigned long size, unsigned long offset)
136 {
137         const unsigned long *p = addr + BIT_WORD(offset);
138         unsigned long result = size;
139         unsigned long tmp;
140
141         if (offset >= size)
142                 return size;
143
144         size -= (offset & ~(BITS_PER_LONG - 1));
145         offset %= BITS_PER_LONG;
146
147         while (1) {
148                 if (*p == ~0UL)
149                         goto pass;
150
151                 tmp = __reverse_ulong((unsigned char *)p);
152
153                 if (offset)
154                         tmp |= ~0UL << (BITS_PER_LONG - offset);
155                 if (size < BITS_PER_LONG)
156                         tmp |= ~0UL >> size;
157                 if (tmp != ~0UL)
158                         goto found;
159 pass:
160                 if (size <= BITS_PER_LONG)
161                         break;
162                 size -= BITS_PER_LONG;
163                 offset = 0;
164                 p++;
165         }
166         return result;
167 found:
168         return result - size + __reverse_ffz(tmp);
169 }
170
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177         if (f2fs_lfs_mode(sbi))
178                 return false;
179         if (sbi->gc_mode == GC_URGENT_HIGH)
180                 return true;
181         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182                 return true;
183
184         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191
192         if (!f2fs_is_atomic_file(inode))
193                 return;
194
195         release_atomic_write_cnt(inode);
196         clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197         clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198         clear_inode_flag(inode, FI_ATOMIC_FILE);
199         stat_dec_atomic_inode(inode);
200
201         F2FS_I(inode)->atomic_write_task = NULL;
202
203         if (clean) {
204                 truncate_inode_pages_final(inode->i_mapping);
205                 f2fs_i_size_write(inode, fi->original_i_size);
206                 fi->original_i_size = 0;
207         }
208         /* avoid stale dirty inode during eviction */
209         sync_inode_metadata(inode, 0);
210 }
211
212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
213                         block_t new_addr, block_t *old_addr, bool recover)
214 {
215         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216         struct dnode_of_data dn;
217         struct node_info ni;
218         int err;
219
220 retry:
221         set_new_dnode(&dn, inode, NULL, NULL, 0);
222         err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
223         if (err) {
224                 if (err == -ENOMEM) {
225                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
226                         goto retry;
227                 }
228                 return err;
229         }
230
231         err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
232         if (err) {
233                 f2fs_put_dnode(&dn);
234                 return err;
235         }
236
237         if (recover) {
238                 /* dn.data_blkaddr is always valid */
239                 if (!__is_valid_data_blkaddr(new_addr)) {
240                         if (new_addr == NULL_ADDR)
241                                 dec_valid_block_count(sbi, inode, 1);
242                         f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
243                         f2fs_update_data_blkaddr(&dn, new_addr);
244                 } else {
245                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
246                                 new_addr, ni.version, true, true);
247                 }
248         } else {
249                 blkcnt_t count = 1;
250
251                 err = inc_valid_block_count(sbi, inode, &count);
252                 if (err) {
253                         f2fs_put_dnode(&dn);
254                         return err;
255                 }
256
257                 *old_addr = dn.data_blkaddr;
258                 f2fs_truncate_data_blocks_range(&dn, 1);
259                 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
260
261                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
262                                         ni.version, true, false);
263         }
264
265         f2fs_put_dnode(&dn);
266
267         trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
268                         index, old_addr ? *old_addr : 0, new_addr, recover);
269         return 0;
270 }
271
272 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
273                                         bool revoke)
274 {
275         struct revoke_entry *cur, *tmp;
276         pgoff_t start_index = 0;
277         bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
278
279         list_for_each_entry_safe(cur, tmp, head, list) {
280                 if (revoke) {
281                         __replace_atomic_write_block(inode, cur->index,
282                                                 cur->old_addr, NULL, true);
283                 } else if (truncate) {
284                         f2fs_truncate_hole(inode, start_index, cur->index);
285                         start_index = cur->index + 1;
286                 }
287
288                 list_del(&cur->list);
289                 kmem_cache_free(revoke_entry_slab, cur);
290         }
291
292         if (!revoke && truncate)
293                 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
294 }
295
296 static int __f2fs_commit_atomic_write(struct inode *inode)
297 {
298         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
299         struct f2fs_inode_info *fi = F2FS_I(inode);
300         struct inode *cow_inode = fi->cow_inode;
301         struct revoke_entry *new;
302         struct list_head revoke_list;
303         block_t blkaddr;
304         struct dnode_of_data dn;
305         pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306         pgoff_t off = 0, blen, index;
307         int ret = 0, i;
308
309         INIT_LIST_HEAD(&revoke_list);
310
311         while (len) {
312                 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
313
314                 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
315                 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
316                 if (ret && ret != -ENOENT) {
317                         goto out;
318                 } else if (ret == -ENOENT) {
319                         ret = 0;
320                         if (dn.max_level == 0)
321                                 goto out;
322                         goto next;
323                 }
324
325                 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
326                                 len);
327                 index = off;
328                 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
329                         blkaddr = f2fs_data_blkaddr(&dn);
330
331                         if (!__is_valid_data_blkaddr(blkaddr)) {
332                                 continue;
333                         } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
334                                         DATA_GENERIC_ENHANCE)) {
335                                 f2fs_put_dnode(&dn);
336                                 ret = -EFSCORRUPTED;
337                                 f2fs_handle_error(sbi,
338                                                 ERROR_INVALID_BLKADDR);
339                                 goto out;
340                         }
341
342                         new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343                                                         true, NULL);
344
345                         ret = __replace_atomic_write_block(inode, index, blkaddr,
346                                                         &new->old_addr, false);
347                         if (ret) {
348                                 f2fs_put_dnode(&dn);
349                                 kmem_cache_free(revoke_entry_slab, new);
350                                 goto out;
351                         }
352
353                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354                         new->index = index;
355                         list_add_tail(&new->list, &revoke_list);
356                 }
357                 f2fs_put_dnode(&dn);
358 next:
359                 off += blen;
360                 len -= blen;
361         }
362
363 out:
364         if (ret) {
365                 sbi->revoked_atomic_block += fi->atomic_write_cnt;
366         } else {
367                 sbi->committed_atomic_block += fi->atomic_write_cnt;
368                 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369         }
370
371         __complete_revoke_list(inode, &revoke_list, ret ? true : false);
372
373         return ret;
374 }
375
376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379         struct f2fs_inode_info *fi = F2FS_I(inode);
380         int err;
381
382         err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383         if (err)
384                 return err;
385
386         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387         f2fs_lock_op(sbi);
388
389         err = __f2fs_commit_atomic_write(inode);
390
391         f2fs_unlock_op(sbi);
392         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393
394         return err;
395 }
396
397 /*
398  * This function balances dirty node and dentry pages.
399  * In addition, it controls garbage collection.
400  */
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403         if (time_to_inject(sbi, FAULT_CHECKPOINT))
404                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
405
406         /* balance_fs_bg is able to be pending */
407         if (need && excess_cached_nats(sbi))
408                 f2fs_balance_fs_bg(sbi, false);
409
410         if (!f2fs_is_checkpoint_ready(sbi))
411                 return;
412
413         /*
414          * We should do GC or end up with checkpoint, if there are so many dirty
415          * dir/node pages without enough free segments.
416          */
417         if (has_enough_free_secs(sbi, 0, 0))
418                 return;
419
420         if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
421                                 sbi->gc_thread->f2fs_gc_task) {
422                 DEFINE_WAIT(wait);
423
424                 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
425                                         TASK_UNINTERRUPTIBLE);
426                 wake_up(&sbi->gc_thread->gc_wait_queue_head);
427                 io_schedule();
428                 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
429         } else {
430                 struct f2fs_gc_control gc_control = {
431                         .victim_segno = NULL_SEGNO,
432                         .init_gc_type = BG_GC,
433                         .no_bg_gc = true,
434                         .should_migrate_blocks = false,
435                         .err_gc_skipped = false,
436                         .nr_free_secs = 1 };
437                 f2fs_down_write(&sbi->gc_lock);
438                 stat_inc_gc_call_count(sbi, FOREGROUND);
439                 f2fs_gc(sbi, &gc_control);
440         }
441 }
442
443 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
444 {
445         int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
446         unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
447         unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
448         unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
449         unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
450         unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
451         unsigned int threshold = sbi->blocks_per_seg * factor *
452                                         DEFAULT_DIRTY_THRESHOLD;
453         unsigned int global_threshold = threshold * 3 / 2;
454
455         if (dents >= threshold || qdata >= threshold ||
456                 nodes >= threshold || meta >= threshold ||
457                 imeta >= threshold)
458                 return true;
459         return dents + qdata + nodes + meta + imeta >  global_threshold;
460 }
461
462 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
463 {
464         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
465                 return;
466
467         /* try to shrink extent cache when there is no enough memory */
468         if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
469                 f2fs_shrink_read_extent_tree(sbi,
470                                 READ_EXTENT_CACHE_SHRINK_NUMBER);
471
472         /* try to shrink age extent cache when there is no enough memory */
473         if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
474                 f2fs_shrink_age_extent_tree(sbi,
475                                 AGE_EXTENT_CACHE_SHRINK_NUMBER);
476
477         /* check the # of cached NAT entries */
478         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
479                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
480
481         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
482                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
483         else
484                 f2fs_build_free_nids(sbi, false, false);
485
486         if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
487                 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
488                 goto do_sync;
489
490         /* there is background inflight IO or foreground operation recently */
491         if (is_inflight_io(sbi, REQ_TIME) ||
492                 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
493                 return;
494
495         /* exceed periodical checkpoint timeout threshold */
496         if (f2fs_time_over(sbi, CP_TIME))
497                 goto do_sync;
498
499         /* checkpoint is the only way to shrink partial cached entries */
500         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
501                 f2fs_available_free_memory(sbi, INO_ENTRIES))
502                 return;
503
504 do_sync:
505         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
506                 struct blk_plug plug;
507
508                 mutex_lock(&sbi->flush_lock);
509
510                 blk_start_plug(&plug);
511                 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
512                 blk_finish_plug(&plug);
513
514                 mutex_unlock(&sbi->flush_lock);
515         }
516         stat_inc_cp_call_count(sbi, BACKGROUND);
517         f2fs_sync_fs(sbi->sb, 1);
518 }
519
520 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
521                                 struct block_device *bdev)
522 {
523         int ret = blkdev_issue_flush(bdev);
524
525         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
526                                 test_opt(sbi, FLUSH_MERGE), ret);
527         if (!ret)
528                 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
529         return ret;
530 }
531
532 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
533 {
534         int ret = 0;
535         int i;
536
537         if (!f2fs_is_multi_device(sbi))
538                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
539
540         for (i = 0; i < sbi->s_ndevs; i++) {
541                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
542                         continue;
543                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
544                 if (ret)
545                         break;
546         }
547         return ret;
548 }
549
550 static int issue_flush_thread(void *data)
551 {
552         struct f2fs_sb_info *sbi = data;
553         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
554         wait_queue_head_t *q = &fcc->flush_wait_queue;
555 repeat:
556         if (kthread_should_stop())
557                 return 0;
558
559         if (!llist_empty(&fcc->issue_list)) {
560                 struct flush_cmd *cmd, *next;
561                 int ret;
562
563                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
564                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
565
566                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
567
568                 ret = submit_flush_wait(sbi, cmd->ino);
569                 atomic_inc(&fcc->issued_flush);
570
571                 llist_for_each_entry_safe(cmd, next,
572                                           fcc->dispatch_list, llnode) {
573                         cmd->ret = ret;
574                         complete(&cmd->wait);
575                 }
576                 fcc->dispatch_list = NULL;
577         }
578
579         wait_event_interruptible(*q,
580                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
581         goto repeat;
582 }
583
584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
585 {
586         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
587         struct flush_cmd cmd;
588         int ret;
589
590         if (test_opt(sbi, NOBARRIER))
591                 return 0;
592
593         if (!test_opt(sbi, FLUSH_MERGE)) {
594                 atomic_inc(&fcc->queued_flush);
595                 ret = submit_flush_wait(sbi, ino);
596                 atomic_dec(&fcc->queued_flush);
597                 atomic_inc(&fcc->issued_flush);
598                 return ret;
599         }
600
601         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
602             f2fs_is_multi_device(sbi)) {
603                 ret = submit_flush_wait(sbi, ino);
604                 atomic_dec(&fcc->queued_flush);
605
606                 atomic_inc(&fcc->issued_flush);
607                 return ret;
608         }
609
610         cmd.ino = ino;
611         init_completion(&cmd.wait);
612
613         llist_add(&cmd.llnode, &fcc->issue_list);
614
615         /*
616          * update issue_list before we wake up issue_flush thread, this
617          * smp_mb() pairs with another barrier in ___wait_event(), see
618          * more details in comments of waitqueue_active().
619          */
620         smp_mb();
621
622         if (waitqueue_active(&fcc->flush_wait_queue))
623                 wake_up(&fcc->flush_wait_queue);
624
625         if (fcc->f2fs_issue_flush) {
626                 wait_for_completion(&cmd.wait);
627                 atomic_dec(&fcc->queued_flush);
628         } else {
629                 struct llist_node *list;
630
631                 list = llist_del_all(&fcc->issue_list);
632                 if (!list) {
633                         wait_for_completion(&cmd.wait);
634                         atomic_dec(&fcc->queued_flush);
635                 } else {
636                         struct flush_cmd *tmp, *next;
637
638                         ret = submit_flush_wait(sbi, ino);
639
640                         llist_for_each_entry_safe(tmp, next, list, llnode) {
641                                 if (tmp == &cmd) {
642                                         cmd.ret = ret;
643                                         atomic_dec(&fcc->queued_flush);
644                                         continue;
645                                 }
646                                 tmp->ret = ret;
647                                 complete(&tmp->wait);
648                         }
649                 }
650         }
651
652         return cmd.ret;
653 }
654
655 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
656 {
657         dev_t dev = sbi->sb->s_bdev->bd_dev;
658         struct flush_cmd_control *fcc;
659
660         if (SM_I(sbi)->fcc_info) {
661                 fcc = SM_I(sbi)->fcc_info;
662                 if (fcc->f2fs_issue_flush)
663                         return 0;
664                 goto init_thread;
665         }
666
667         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668         if (!fcc)
669                 return -ENOMEM;
670         atomic_set(&fcc->issued_flush, 0);
671         atomic_set(&fcc->queued_flush, 0);
672         init_waitqueue_head(&fcc->flush_wait_queue);
673         init_llist_head(&fcc->issue_list);
674         SM_I(sbi)->fcc_info = fcc;
675         if (!test_opt(sbi, FLUSH_MERGE))
676                 return 0;
677
678 init_thread:
679         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681         if (IS_ERR(fcc->f2fs_issue_flush)) {
682                 int err = PTR_ERR(fcc->f2fs_issue_flush);
683
684                 fcc->f2fs_issue_flush = NULL;
685                 return err;
686         }
687
688         return 0;
689 }
690
691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692 {
693         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694
695         if (fcc && fcc->f2fs_issue_flush) {
696                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697
698                 fcc->f2fs_issue_flush = NULL;
699                 kthread_stop(flush_thread);
700         }
701         if (free) {
702                 kfree(fcc);
703                 SM_I(sbi)->fcc_info = NULL;
704         }
705 }
706
707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708 {
709         int ret = 0, i;
710
711         if (!f2fs_is_multi_device(sbi))
712                 return 0;
713
714         if (test_opt(sbi, NOBARRIER))
715                 return 0;
716
717         for (i = 1; i < sbi->s_ndevs; i++) {
718                 int count = DEFAULT_RETRY_IO_COUNT;
719
720                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
721                         continue;
722
723                 do {
724                         ret = __submit_flush_wait(sbi, FDEV(i).bdev);
725                         if (ret)
726                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
727                 } while (ret && --count);
728
729                 if (ret) {
730                         f2fs_stop_checkpoint(sbi, false,
731                                         STOP_CP_REASON_FLUSH_FAIL);
732                         break;
733                 }
734
735                 spin_lock(&sbi->dev_lock);
736                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
737                 spin_unlock(&sbi->dev_lock);
738         }
739
740         return ret;
741 }
742
743 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
744                 enum dirty_type dirty_type)
745 {
746         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
747
748         /* need not be added */
749         if (IS_CURSEG(sbi, segno))
750                 return;
751
752         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753                 dirty_i->nr_dirty[dirty_type]++;
754
755         if (dirty_type == DIRTY) {
756                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757                 enum dirty_type t = sentry->type;
758
759                 if (unlikely(t >= DIRTY)) {
760                         f2fs_bug_on(sbi, 1);
761                         return;
762                 }
763                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
764                         dirty_i->nr_dirty[t]++;
765
766                 if (__is_large_section(sbi)) {
767                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
768                         block_t valid_blocks =
769                                 get_valid_blocks(sbi, segno, true);
770
771                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
772                                         valid_blocks == CAP_BLKS_PER_SEC(sbi)));
773
774                         if (!IS_CURSEC(sbi, secno))
775                                 set_bit(secno, dirty_i->dirty_secmap);
776                 }
777         }
778 }
779
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781                 enum dirty_type dirty_type)
782 {
783         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784         block_t valid_blocks;
785
786         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787                 dirty_i->nr_dirty[dirty_type]--;
788
789         if (dirty_type == DIRTY) {
790                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791                 enum dirty_type t = sentry->type;
792
793                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
794                         dirty_i->nr_dirty[t]--;
795
796                 valid_blocks = get_valid_blocks(sbi, segno, true);
797                 if (valid_blocks == 0) {
798                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
799                                                 dirty_i->victim_secmap);
800 #ifdef CONFIG_F2FS_CHECK_FS
801                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
802 #endif
803                 }
804                 if (__is_large_section(sbi)) {
805                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
806
807                         if (!valid_blocks ||
808                                         valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
809                                 clear_bit(secno, dirty_i->dirty_secmap);
810                                 return;
811                         }
812
813                         if (!IS_CURSEC(sbi, secno))
814                                 set_bit(secno, dirty_i->dirty_secmap);
815                 }
816         }
817 }
818
819 /*
820  * Should not occur error such as -ENOMEM.
821  * Adding dirty entry into seglist is not critical operation.
822  * If a given segment is one of current working segments, it won't be added.
823  */
824 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
825 {
826         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827         unsigned short valid_blocks, ckpt_valid_blocks;
828         unsigned int usable_blocks;
829
830         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
831                 return;
832
833         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
834         mutex_lock(&dirty_i->seglist_lock);
835
836         valid_blocks = get_valid_blocks(sbi, segno, false);
837         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
838
839         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840                 ckpt_valid_blocks == usable_blocks)) {
841                 __locate_dirty_segment(sbi, segno, PRE);
842                 __remove_dirty_segment(sbi, segno, DIRTY);
843         } else if (valid_blocks < usable_blocks) {
844                 __locate_dirty_segment(sbi, segno, DIRTY);
845         } else {
846                 /* Recovery routine with SSR needs this */
847                 __remove_dirty_segment(sbi, segno, DIRTY);
848         }
849
850         mutex_unlock(&dirty_i->seglist_lock);
851 }
852
853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855 {
856         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857         unsigned int segno;
858
859         mutex_lock(&dirty_i->seglist_lock);
860         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861                 if (get_valid_blocks(sbi, segno, false))
862                         continue;
863                 if (IS_CURSEG(sbi, segno))
864                         continue;
865                 __locate_dirty_segment(sbi, segno, PRE);
866                 __remove_dirty_segment(sbi, segno, DIRTY);
867         }
868         mutex_unlock(&dirty_i->seglist_lock);
869 }
870
871 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
872 {
873         int ovp_hole_segs =
874                 (overprovision_segments(sbi) - reserved_segments(sbi));
875         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
876         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877         block_t holes[2] = {0, 0};      /* DATA and NODE */
878         block_t unusable;
879         struct seg_entry *se;
880         unsigned int segno;
881
882         mutex_lock(&dirty_i->seglist_lock);
883         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
884                 se = get_seg_entry(sbi, segno);
885                 if (IS_NODESEG(se->type))
886                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
887                                                         se->valid_blocks;
888                 else
889                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
890                                                         se->valid_blocks;
891         }
892         mutex_unlock(&dirty_i->seglist_lock);
893
894         unusable = max(holes[DATA], holes[NODE]);
895         if (unusable > ovp_holes)
896                 return unusable - ovp_holes;
897         return 0;
898 }
899
900 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
901 {
902         int ovp_hole_segs =
903                 (overprovision_segments(sbi) - reserved_segments(sbi));
904         if (unusable > F2FS_OPTION(sbi).unusable_cap)
905                 return -EAGAIN;
906         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
907                 dirty_segments(sbi) > ovp_hole_segs)
908                 return -EAGAIN;
909         return 0;
910 }
911
912 /* This is only used by SBI_CP_DISABLED */
913 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
914 {
915         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
916         unsigned int segno = 0;
917
918         mutex_lock(&dirty_i->seglist_lock);
919         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
920                 if (get_valid_blocks(sbi, segno, false))
921                         continue;
922                 if (get_ckpt_valid_blocks(sbi, segno, false))
923                         continue;
924                 mutex_unlock(&dirty_i->seglist_lock);
925                 return segno;
926         }
927         mutex_unlock(&dirty_i->seglist_lock);
928         return NULL_SEGNO;
929 }
930
931 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
932                 struct block_device *bdev, block_t lstart,
933                 block_t start, block_t len)
934 {
935         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936         struct list_head *pend_list;
937         struct discard_cmd *dc;
938
939         f2fs_bug_on(sbi, !len);
940
941         pend_list = &dcc->pend_list[plist_idx(len)];
942
943         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
944         INIT_LIST_HEAD(&dc->list);
945         dc->bdev = bdev;
946         dc->di.lstart = lstart;
947         dc->di.start = start;
948         dc->di.len = len;
949         dc->ref = 0;
950         dc->state = D_PREP;
951         dc->queued = 0;
952         dc->error = 0;
953         init_completion(&dc->wait);
954         list_add_tail(&dc->list, pend_list);
955         spin_lock_init(&dc->lock);
956         dc->bio_ref = 0;
957         atomic_inc(&dcc->discard_cmd_cnt);
958         dcc->undiscard_blks += len;
959
960         return dc;
961 }
962
963 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
964 {
965 #ifdef CONFIG_F2FS_CHECK_FS
966         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
967         struct rb_node *cur = rb_first_cached(&dcc->root), *next;
968         struct discard_cmd *cur_dc, *next_dc;
969
970         while (cur) {
971                 next = rb_next(cur);
972                 if (!next)
973                         return true;
974
975                 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
976                 next_dc = rb_entry(next, struct discard_cmd, rb_node);
977
978                 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
979                         f2fs_info(sbi, "broken discard_rbtree, "
980                                 "cur(%u, %u) next(%u, %u)",
981                                 cur_dc->di.lstart, cur_dc->di.len,
982                                 next_dc->di.lstart, next_dc->di.len);
983                         return false;
984                 }
985                 cur = next;
986         }
987 #endif
988         return true;
989 }
990
991 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
992                                                 block_t blkaddr)
993 {
994         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
995         struct rb_node *node = dcc->root.rb_root.rb_node;
996         struct discard_cmd *dc;
997
998         while (node) {
999                 dc = rb_entry(node, struct discard_cmd, rb_node);
1000
1001                 if (blkaddr < dc->di.lstart)
1002                         node = node->rb_left;
1003                 else if (blkaddr >= dc->di.lstart + dc->di.len)
1004                         node = node->rb_right;
1005                 else
1006                         return dc;
1007         }
1008         return NULL;
1009 }
1010
1011 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1012                                 block_t blkaddr,
1013                                 struct discard_cmd **prev_entry,
1014                                 struct discard_cmd **next_entry,
1015                                 struct rb_node ***insert_p,
1016                                 struct rb_node **insert_parent)
1017 {
1018         struct rb_node **pnode = &root->rb_root.rb_node;
1019         struct rb_node *parent = NULL, *tmp_node;
1020         struct discard_cmd *dc;
1021
1022         *insert_p = NULL;
1023         *insert_parent = NULL;
1024         *prev_entry = NULL;
1025         *next_entry = NULL;
1026
1027         if (RB_EMPTY_ROOT(&root->rb_root))
1028                 return NULL;
1029
1030         while (*pnode) {
1031                 parent = *pnode;
1032                 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1033
1034                 if (blkaddr < dc->di.lstart)
1035                         pnode = &(*pnode)->rb_left;
1036                 else if (blkaddr >= dc->di.lstart + dc->di.len)
1037                         pnode = &(*pnode)->rb_right;
1038                 else
1039                         goto lookup_neighbors;
1040         }
1041
1042         *insert_p = pnode;
1043         *insert_parent = parent;
1044
1045         dc = rb_entry(parent, struct discard_cmd, rb_node);
1046         tmp_node = parent;
1047         if (parent && blkaddr > dc->di.lstart)
1048                 tmp_node = rb_next(parent);
1049         *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1050
1051         tmp_node = parent;
1052         if (parent && blkaddr < dc->di.lstart)
1053                 tmp_node = rb_prev(parent);
1054         *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1055         return NULL;
1056
1057 lookup_neighbors:
1058         /* lookup prev node for merging backward later */
1059         tmp_node = rb_prev(&dc->rb_node);
1060         *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061
1062         /* lookup next node for merging frontward later */
1063         tmp_node = rb_next(&dc->rb_node);
1064         *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065         return dc;
1066 }
1067
1068 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1069                                                         struct discard_cmd *dc)
1070 {
1071         if (dc->state == D_DONE)
1072                 atomic_sub(dc->queued, &dcc->queued_discard);
1073
1074         list_del(&dc->list);
1075         rb_erase_cached(&dc->rb_node, &dcc->root);
1076         dcc->undiscard_blks -= dc->di.len;
1077
1078         kmem_cache_free(discard_cmd_slab, dc);
1079
1080         atomic_dec(&dcc->discard_cmd_cnt);
1081 }
1082
1083 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1084                                                         struct discard_cmd *dc)
1085 {
1086         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1087         unsigned long flags;
1088
1089         trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1090
1091         spin_lock_irqsave(&dc->lock, flags);
1092         if (dc->bio_ref) {
1093                 spin_unlock_irqrestore(&dc->lock, flags);
1094                 return;
1095         }
1096         spin_unlock_irqrestore(&dc->lock, flags);
1097
1098         f2fs_bug_on(sbi, dc->ref);
1099
1100         if (dc->error == -EOPNOTSUPP)
1101                 dc->error = 0;
1102
1103         if (dc->error)
1104                 printk_ratelimited(
1105                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1106                         KERN_INFO, sbi->sb->s_id,
1107                         dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1108         __detach_discard_cmd(dcc, dc);
1109 }
1110
1111 static void f2fs_submit_discard_endio(struct bio *bio)
1112 {
1113         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1114         unsigned long flags;
1115
1116         spin_lock_irqsave(&dc->lock, flags);
1117         if (!dc->error)
1118                 dc->error = blk_status_to_errno(bio->bi_status);
1119         dc->bio_ref--;
1120         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1121                 dc->state = D_DONE;
1122                 complete_all(&dc->wait);
1123         }
1124         spin_unlock_irqrestore(&dc->lock, flags);
1125         bio_put(bio);
1126 }
1127
1128 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1129                                 block_t start, block_t end)
1130 {
1131 #ifdef CONFIG_F2FS_CHECK_FS
1132         struct seg_entry *sentry;
1133         unsigned int segno;
1134         block_t blk = start;
1135         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1136         unsigned long *map;
1137
1138         while (blk < end) {
1139                 segno = GET_SEGNO(sbi, blk);
1140                 sentry = get_seg_entry(sbi, segno);
1141                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142
1143                 if (end < START_BLOCK(sbi, segno + 1))
1144                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145                 else
1146                         size = max_blocks;
1147                 map = (unsigned long *)(sentry->cur_valid_map);
1148                 offset = __find_rev_next_bit(map, size, offset);
1149                 f2fs_bug_on(sbi, offset != size);
1150                 blk = START_BLOCK(sbi, segno + 1);
1151         }
1152 #endif
1153 }
1154
1155 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156                                 struct discard_policy *dpolicy,
1157                                 int discard_type, unsigned int granularity)
1158 {
1159         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160
1161         /* common policy */
1162         dpolicy->type = discard_type;
1163         dpolicy->sync = true;
1164         dpolicy->ordered = false;
1165         dpolicy->granularity = granularity;
1166
1167         dpolicy->max_requests = dcc->max_discard_request;
1168         dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169         dpolicy->timeout = false;
1170
1171         if (discard_type == DPOLICY_BG) {
1172                 dpolicy->min_interval = dcc->min_discard_issue_time;
1173                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174                 dpolicy->max_interval = dcc->max_discard_issue_time;
1175                 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1176                         dpolicy->io_aware = true;
1177                 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1178                         dpolicy->io_aware = false;
1179                 dpolicy->sync = false;
1180                 dpolicy->ordered = true;
1181                 if (utilization(sbi) > dcc->discard_urgent_util) {
1182                         dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1183                         if (atomic_read(&dcc->discard_cmd_cnt))
1184                                 dpolicy->max_interval =
1185                                         dcc->min_discard_issue_time;
1186                 }
1187         } else if (discard_type == DPOLICY_FORCE) {
1188                 dpolicy->min_interval = dcc->min_discard_issue_time;
1189                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190                 dpolicy->max_interval = dcc->max_discard_issue_time;
1191                 dpolicy->io_aware = false;
1192         } else if (discard_type == DPOLICY_FSTRIM) {
1193                 dpolicy->io_aware = false;
1194         } else if (discard_type == DPOLICY_UMOUNT) {
1195                 dpolicy->io_aware = false;
1196                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1197                 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1198                 dpolicy->timeout = true;
1199         }
1200 }
1201
1202 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1203                                 struct block_device *bdev, block_t lstart,
1204                                 block_t start, block_t len);
1205
1206 #ifdef CONFIG_BLK_DEV_ZONED
1207 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1208                                    struct discard_cmd *dc, blk_opf_t flag,
1209                                    struct list_head *wait_list,
1210                                    unsigned int *issued)
1211 {
1212         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1213         struct block_device *bdev = dc->bdev;
1214         struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1215         unsigned long flags;
1216
1217         trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1218
1219         spin_lock_irqsave(&dc->lock, flags);
1220         dc->state = D_SUBMIT;
1221         dc->bio_ref++;
1222         spin_unlock_irqrestore(&dc->lock, flags);
1223
1224         if (issued)
1225                 (*issued)++;
1226
1227         atomic_inc(&dcc->queued_discard);
1228         dc->queued++;
1229         list_move_tail(&dc->list, wait_list);
1230
1231         /* sanity check on discard range */
1232         __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1233
1234         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1235         bio->bi_private = dc;
1236         bio->bi_end_io = f2fs_submit_discard_endio;
1237         submit_bio(bio);
1238
1239         atomic_inc(&dcc->issued_discard);
1240         f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1241 }
1242 #endif
1243
1244 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1245 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1246                                 struct discard_policy *dpolicy,
1247                                 struct discard_cmd *dc, int *issued)
1248 {
1249         struct block_device *bdev = dc->bdev;
1250         unsigned int max_discard_blocks =
1251                         SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1252         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1254                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1255         blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1256         block_t lstart, start, len, total_len;
1257         int err = 0;
1258
1259         if (dc->state != D_PREP)
1260                 return 0;
1261
1262         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1263                 return 0;
1264
1265 #ifdef CONFIG_BLK_DEV_ZONED
1266         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1267                 int devi = f2fs_bdev_index(sbi, bdev);
1268
1269                 if (devi < 0)
1270                         return -EINVAL;
1271
1272                 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1273                         __submit_zone_reset_cmd(sbi, dc, flag,
1274                                                 wait_list, issued);
1275                         return 0;
1276                 }
1277         }
1278 #endif
1279
1280         trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1281
1282         lstart = dc->di.lstart;
1283         start = dc->di.start;
1284         len = dc->di.len;
1285         total_len = len;
1286
1287         dc->di.len = 0;
1288
1289         while (total_len && *issued < dpolicy->max_requests && !err) {
1290                 struct bio *bio = NULL;
1291                 unsigned long flags;
1292                 bool last = true;
1293
1294                 if (len > max_discard_blocks) {
1295                         len = max_discard_blocks;
1296                         last = false;
1297                 }
1298
1299                 (*issued)++;
1300                 if (*issued == dpolicy->max_requests)
1301                         last = true;
1302
1303                 dc->di.len += len;
1304
1305                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1306                         err = -EIO;
1307                 } else {
1308                         err = __blkdev_issue_discard(bdev,
1309                                         SECTOR_FROM_BLOCK(start),
1310                                         SECTOR_FROM_BLOCK(len),
1311                                         GFP_NOFS, &bio);
1312                 }
1313                 if (err) {
1314                         spin_lock_irqsave(&dc->lock, flags);
1315                         if (dc->state == D_PARTIAL)
1316                                 dc->state = D_SUBMIT;
1317                         spin_unlock_irqrestore(&dc->lock, flags);
1318
1319                         break;
1320                 }
1321
1322                 f2fs_bug_on(sbi, !bio);
1323
1324                 /*
1325                  * should keep before submission to avoid D_DONE
1326                  * right away
1327                  */
1328                 spin_lock_irqsave(&dc->lock, flags);
1329                 if (last)
1330                         dc->state = D_SUBMIT;
1331                 else
1332                         dc->state = D_PARTIAL;
1333                 dc->bio_ref++;
1334                 spin_unlock_irqrestore(&dc->lock, flags);
1335
1336                 atomic_inc(&dcc->queued_discard);
1337                 dc->queued++;
1338                 list_move_tail(&dc->list, wait_list);
1339
1340                 /* sanity check on discard range */
1341                 __check_sit_bitmap(sbi, lstart, lstart + len);
1342
1343                 bio->bi_private = dc;
1344                 bio->bi_end_io = f2fs_submit_discard_endio;
1345                 bio->bi_opf |= flag;
1346                 submit_bio(bio);
1347
1348                 atomic_inc(&dcc->issued_discard);
1349
1350                 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1351
1352                 lstart += len;
1353                 start += len;
1354                 total_len -= len;
1355                 len = total_len;
1356         }
1357
1358         if (!err && len) {
1359                 dcc->undiscard_blks -= len;
1360                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1361         }
1362         return err;
1363 }
1364
1365 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1366                                 struct block_device *bdev, block_t lstart,
1367                                 block_t start, block_t len)
1368 {
1369         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370         struct rb_node **p = &dcc->root.rb_root.rb_node;
1371         struct rb_node *parent = NULL;
1372         struct discard_cmd *dc;
1373         bool leftmost = true;
1374
1375         /* look up rb tree to find parent node */
1376         while (*p) {
1377                 parent = *p;
1378                 dc = rb_entry(parent, struct discard_cmd, rb_node);
1379
1380                 if (lstart < dc->di.lstart) {
1381                         p = &(*p)->rb_left;
1382                 } else if (lstart >= dc->di.lstart + dc->di.len) {
1383                         p = &(*p)->rb_right;
1384                         leftmost = false;
1385                 } else {
1386                         /* Let's skip to add, if exists */
1387                         return;
1388                 }
1389         }
1390
1391         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1392
1393         rb_link_node(&dc->rb_node, parent, p);
1394         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1395 }
1396
1397 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1398                                                 struct discard_cmd *dc)
1399 {
1400         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1401 }
1402
1403 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1404                                 struct discard_cmd *dc, block_t blkaddr)
1405 {
1406         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407         struct discard_info di = dc->di;
1408         bool modified = false;
1409
1410         if (dc->state == D_DONE || dc->di.len == 1) {
1411                 __remove_discard_cmd(sbi, dc);
1412                 return;
1413         }
1414
1415         dcc->undiscard_blks -= di.len;
1416
1417         if (blkaddr > di.lstart) {
1418                 dc->di.len = blkaddr - dc->di.lstart;
1419                 dcc->undiscard_blks += dc->di.len;
1420                 __relocate_discard_cmd(dcc, dc);
1421                 modified = true;
1422         }
1423
1424         if (blkaddr < di.lstart + di.len - 1) {
1425                 if (modified) {
1426                         __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1427                                         di.start + blkaddr + 1 - di.lstart,
1428                                         di.lstart + di.len - 1 - blkaddr);
1429                 } else {
1430                         dc->di.lstart++;
1431                         dc->di.len--;
1432                         dc->di.start++;
1433                         dcc->undiscard_blks += dc->di.len;
1434                         __relocate_discard_cmd(dcc, dc);
1435                 }
1436         }
1437 }
1438
1439 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1440                                 struct block_device *bdev, block_t lstart,
1441                                 block_t start, block_t len)
1442 {
1443         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1445         struct discard_cmd *dc;
1446         struct discard_info di = {0};
1447         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1448         unsigned int max_discard_blocks =
1449                         SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1450         block_t end = lstart + len;
1451
1452         dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1453                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
1454         if (dc)
1455                 prev_dc = dc;
1456
1457         if (!prev_dc) {
1458                 di.lstart = lstart;
1459                 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1460                 di.len = min(di.len, len);
1461                 di.start = start;
1462         }
1463
1464         while (1) {
1465                 struct rb_node *node;
1466                 bool merged = false;
1467                 struct discard_cmd *tdc = NULL;
1468
1469                 if (prev_dc) {
1470                         di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1471                         if (di.lstart < lstart)
1472                                 di.lstart = lstart;
1473                         if (di.lstart >= end)
1474                                 break;
1475
1476                         if (!next_dc || next_dc->di.lstart > end)
1477                                 di.len = end - di.lstart;
1478                         else
1479                                 di.len = next_dc->di.lstart - di.lstart;
1480                         di.start = start + di.lstart - lstart;
1481                 }
1482
1483                 if (!di.len)
1484                         goto next;
1485
1486                 if (prev_dc && prev_dc->state == D_PREP &&
1487                         prev_dc->bdev == bdev &&
1488                         __is_discard_back_mergeable(&di, &prev_dc->di,
1489                                                         max_discard_blocks)) {
1490                         prev_dc->di.len += di.len;
1491                         dcc->undiscard_blks += di.len;
1492                         __relocate_discard_cmd(dcc, prev_dc);
1493                         di = prev_dc->di;
1494                         tdc = prev_dc;
1495                         merged = true;
1496                 }
1497
1498                 if (next_dc && next_dc->state == D_PREP &&
1499                         next_dc->bdev == bdev &&
1500                         __is_discard_front_mergeable(&di, &next_dc->di,
1501                                                         max_discard_blocks)) {
1502                         next_dc->di.lstart = di.lstart;
1503                         next_dc->di.len += di.len;
1504                         next_dc->di.start = di.start;
1505                         dcc->undiscard_blks += di.len;
1506                         __relocate_discard_cmd(dcc, next_dc);
1507                         if (tdc)
1508                                 __remove_discard_cmd(sbi, tdc);
1509                         merged = true;
1510                 }
1511
1512                 if (!merged)
1513                         __insert_discard_cmd(sbi, bdev,
1514                                                 di.lstart, di.start, di.len);
1515  next:
1516                 prev_dc = next_dc;
1517                 if (!prev_dc)
1518                         break;
1519
1520                 node = rb_next(&prev_dc->rb_node);
1521                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1522         }
1523 }
1524
1525 #ifdef CONFIG_BLK_DEV_ZONED
1526 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1527                 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1528                 block_t blklen)
1529 {
1530         trace_f2fs_queue_reset_zone(bdev, blkstart);
1531
1532         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1533         __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1534         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1535 }
1536 #endif
1537
1538 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1539                 struct block_device *bdev, block_t blkstart, block_t blklen)
1540 {
1541         block_t lblkstart = blkstart;
1542
1543         if (!f2fs_bdev_support_discard(bdev))
1544                 return;
1545
1546         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1547
1548         if (f2fs_is_multi_device(sbi)) {
1549                 int devi = f2fs_target_device_index(sbi, blkstart);
1550
1551                 blkstart -= FDEV(devi).start_blk;
1552         }
1553         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1554         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1555         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1556 }
1557
1558 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1559                 struct discard_policy *dpolicy, int *issued)
1560 {
1561         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1562         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1563         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1564         struct discard_cmd *dc;
1565         struct blk_plug plug;
1566         bool io_interrupted = false;
1567
1568         mutex_lock(&dcc->cmd_lock);
1569         dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1570                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
1571         if (!dc)
1572                 dc = next_dc;
1573
1574         blk_start_plug(&plug);
1575
1576         while (dc) {
1577                 struct rb_node *node;
1578                 int err = 0;
1579
1580                 if (dc->state != D_PREP)
1581                         goto next;
1582
1583                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1584                         io_interrupted = true;
1585                         break;
1586                 }
1587
1588                 dcc->next_pos = dc->di.lstart + dc->di.len;
1589                 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1590
1591                 if (*issued >= dpolicy->max_requests)
1592                         break;
1593 next:
1594                 node = rb_next(&dc->rb_node);
1595                 if (err)
1596                         __remove_discard_cmd(sbi, dc);
1597                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1598         }
1599
1600         blk_finish_plug(&plug);
1601
1602         if (!dc)
1603                 dcc->next_pos = 0;
1604
1605         mutex_unlock(&dcc->cmd_lock);
1606
1607         if (!(*issued) && io_interrupted)
1608                 *issued = -1;
1609 }
1610 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1611                                         struct discard_policy *dpolicy);
1612
1613 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1614                                         struct discard_policy *dpolicy)
1615 {
1616         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617         struct list_head *pend_list;
1618         struct discard_cmd *dc, *tmp;
1619         struct blk_plug plug;
1620         int i, issued;
1621         bool io_interrupted = false;
1622
1623         if (dpolicy->timeout)
1624                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1625
1626 retry:
1627         issued = 0;
1628         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1629                 if (dpolicy->timeout &&
1630                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1631                         break;
1632
1633                 if (i + 1 < dpolicy->granularity)
1634                         break;
1635
1636                 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1637                         __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1638                         return issued;
1639                 }
1640
1641                 pend_list = &dcc->pend_list[i];
1642
1643                 mutex_lock(&dcc->cmd_lock);
1644                 if (list_empty(pend_list))
1645                         goto next;
1646                 if (unlikely(dcc->rbtree_check))
1647                         f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1648                 blk_start_plug(&plug);
1649                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1650                         f2fs_bug_on(sbi, dc->state != D_PREP);
1651
1652                         if (dpolicy->timeout &&
1653                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1654                                 break;
1655
1656                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1657                                                 !is_idle(sbi, DISCARD_TIME)) {
1658                                 io_interrupted = true;
1659                                 break;
1660                         }
1661
1662                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1663
1664                         if (issued >= dpolicy->max_requests)
1665                                 break;
1666                 }
1667                 blk_finish_plug(&plug);
1668 next:
1669                 mutex_unlock(&dcc->cmd_lock);
1670
1671                 if (issued >= dpolicy->max_requests || io_interrupted)
1672                         break;
1673         }
1674
1675         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1676                 __wait_all_discard_cmd(sbi, dpolicy);
1677                 goto retry;
1678         }
1679
1680         if (!issued && io_interrupted)
1681                 issued = -1;
1682
1683         return issued;
1684 }
1685
1686 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1687 {
1688         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1689         struct list_head *pend_list;
1690         struct discard_cmd *dc, *tmp;
1691         int i;
1692         bool dropped = false;
1693
1694         mutex_lock(&dcc->cmd_lock);
1695         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1696                 pend_list = &dcc->pend_list[i];
1697                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1698                         f2fs_bug_on(sbi, dc->state != D_PREP);
1699                         __remove_discard_cmd(sbi, dc);
1700                         dropped = true;
1701                 }
1702         }
1703         mutex_unlock(&dcc->cmd_lock);
1704
1705         return dropped;
1706 }
1707
1708 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1709 {
1710         __drop_discard_cmd(sbi);
1711 }
1712
1713 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1714                                                         struct discard_cmd *dc)
1715 {
1716         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1717         unsigned int len = 0;
1718
1719         wait_for_completion_io(&dc->wait);
1720         mutex_lock(&dcc->cmd_lock);
1721         f2fs_bug_on(sbi, dc->state != D_DONE);
1722         dc->ref--;
1723         if (!dc->ref) {
1724                 if (!dc->error)
1725                         len = dc->di.len;
1726                 __remove_discard_cmd(sbi, dc);
1727         }
1728         mutex_unlock(&dcc->cmd_lock);
1729
1730         return len;
1731 }
1732
1733 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1734                                                 struct discard_policy *dpolicy,
1735                                                 block_t start, block_t end)
1736 {
1737         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1738         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1739                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1740         struct discard_cmd *dc = NULL, *iter, *tmp;
1741         unsigned int trimmed = 0;
1742
1743 next:
1744         dc = NULL;
1745
1746         mutex_lock(&dcc->cmd_lock);
1747         list_for_each_entry_safe(iter, tmp, wait_list, list) {
1748                 if (iter->di.lstart + iter->di.len <= start ||
1749                                         end <= iter->di.lstart)
1750                         continue;
1751                 if (iter->di.len < dpolicy->granularity)
1752                         continue;
1753                 if (iter->state == D_DONE && !iter->ref) {
1754                         wait_for_completion_io(&iter->wait);
1755                         if (!iter->error)
1756                                 trimmed += iter->di.len;
1757                         __remove_discard_cmd(sbi, iter);
1758                 } else {
1759                         iter->ref++;
1760                         dc = iter;
1761                         break;
1762                 }
1763         }
1764         mutex_unlock(&dcc->cmd_lock);
1765
1766         if (dc) {
1767                 trimmed += __wait_one_discard_bio(sbi, dc);
1768                 goto next;
1769         }
1770
1771         return trimmed;
1772 }
1773
1774 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1775                                                 struct discard_policy *dpolicy)
1776 {
1777         struct discard_policy dp;
1778         unsigned int discard_blks;
1779
1780         if (dpolicy)
1781                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1782
1783         /* wait all */
1784         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1785         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1786         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1787         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1788
1789         return discard_blks;
1790 }
1791
1792 /* This should be covered by global mutex, &sit_i->sentry_lock */
1793 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1794 {
1795         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1796         struct discard_cmd *dc;
1797         bool need_wait = false;
1798
1799         mutex_lock(&dcc->cmd_lock);
1800         dc = __lookup_discard_cmd(sbi, blkaddr);
1801 #ifdef CONFIG_BLK_DEV_ZONED
1802         if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1803                 int devi = f2fs_bdev_index(sbi, dc->bdev);
1804
1805                 if (devi < 0) {
1806                         mutex_unlock(&dcc->cmd_lock);
1807                         return;
1808                 }
1809
1810                 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1811                         /* force submit zone reset */
1812                         if (dc->state == D_PREP)
1813                                 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1814                                                         &dcc->wait_list, NULL);
1815                         dc->ref++;
1816                         mutex_unlock(&dcc->cmd_lock);
1817                         /* wait zone reset */
1818                         __wait_one_discard_bio(sbi, dc);
1819                         return;
1820                 }
1821         }
1822 #endif
1823         if (dc) {
1824                 if (dc->state == D_PREP) {
1825                         __punch_discard_cmd(sbi, dc, blkaddr);
1826                 } else {
1827                         dc->ref++;
1828                         need_wait = true;
1829                 }
1830         }
1831         mutex_unlock(&dcc->cmd_lock);
1832
1833         if (need_wait)
1834                 __wait_one_discard_bio(sbi, dc);
1835 }
1836
1837 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1838 {
1839         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1840
1841         if (dcc && dcc->f2fs_issue_discard) {
1842                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1843
1844                 dcc->f2fs_issue_discard = NULL;
1845                 kthread_stop(discard_thread);
1846         }
1847 }
1848
1849 /**
1850  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1851  * @sbi: the f2fs_sb_info data for discard cmd to issue
1852  *
1853  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1854  *
1855  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1856  */
1857 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1858 {
1859         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1860         struct discard_policy dpolicy;
1861         bool dropped;
1862
1863         if (!atomic_read(&dcc->discard_cmd_cnt))
1864                 return true;
1865
1866         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1867                                         dcc->discard_granularity);
1868         __issue_discard_cmd(sbi, &dpolicy);
1869         dropped = __drop_discard_cmd(sbi);
1870
1871         /* just to make sure there is no pending discard commands */
1872         __wait_all_discard_cmd(sbi, NULL);
1873
1874         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1875         return !dropped;
1876 }
1877
1878 static int issue_discard_thread(void *data)
1879 {
1880         struct f2fs_sb_info *sbi = data;
1881         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1882         wait_queue_head_t *q = &dcc->discard_wait_queue;
1883         struct discard_policy dpolicy;
1884         unsigned int wait_ms = dcc->min_discard_issue_time;
1885         int issued;
1886
1887         set_freezable();
1888
1889         do {
1890                 wait_event_freezable_timeout(*q,
1891                                 kthread_should_stop() || dcc->discard_wake,
1892                                 msecs_to_jiffies(wait_ms));
1893
1894                 if (sbi->gc_mode == GC_URGENT_HIGH ||
1895                         !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1896                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1897                                                 MIN_DISCARD_GRANULARITY);
1898                 else
1899                         __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1900                                                 dcc->discard_granularity);
1901
1902                 if (dcc->discard_wake)
1903                         dcc->discard_wake = false;
1904
1905                 /* clean up pending candidates before going to sleep */
1906                 if (atomic_read(&dcc->queued_discard))
1907                         __wait_all_discard_cmd(sbi, NULL);
1908
1909                 if (f2fs_readonly(sbi->sb))
1910                         continue;
1911                 if (kthread_should_stop())
1912                         return 0;
1913                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1914                         !atomic_read(&dcc->discard_cmd_cnt)) {
1915                         wait_ms = dpolicy.max_interval;
1916                         continue;
1917                 }
1918
1919                 sb_start_intwrite(sbi->sb);
1920
1921                 issued = __issue_discard_cmd(sbi, &dpolicy);
1922                 if (issued > 0) {
1923                         __wait_all_discard_cmd(sbi, &dpolicy);
1924                         wait_ms = dpolicy.min_interval;
1925                 } else if (issued == -1) {
1926                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1927                         if (!wait_ms)
1928                                 wait_ms = dpolicy.mid_interval;
1929                 } else {
1930                         wait_ms = dpolicy.max_interval;
1931                 }
1932                 if (!atomic_read(&dcc->discard_cmd_cnt))
1933                         wait_ms = dpolicy.max_interval;
1934
1935                 sb_end_intwrite(sbi->sb);
1936
1937         } while (!kthread_should_stop());
1938         return 0;
1939 }
1940
1941 #ifdef CONFIG_BLK_DEV_ZONED
1942 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1943                 struct block_device *bdev, block_t blkstart, block_t blklen)
1944 {
1945         sector_t sector, nr_sects;
1946         block_t lblkstart = blkstart;
1947         int devi = 0;
1948         u64 remainder = 0;
1949
1950         if (f2fs_is_multi_device(sbi)) {
1951                 devi = f2fs_target_device_index(sbi, blkstart);
1952                 if (blkstart < FDEV(devi).start_blk ||
1953                     blkstart > FDEV(devi).end_blk) {
1954                         f2fs_err(sbi, "Invalid block %x", blkstart);
1955                         return -EIO;
1956                 }
1957                 blkstart -= FDEV(devi).start_blk;
1958         }
1959
1960         /* For sequential zones, reset the zone write pointer */
1961         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1962                 sector = SECTOR_FROM_BLOCK(blkstart);
1963                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1964                 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1965
1966                 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1967                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1968                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1969                                  blkstart, blklen);
1970                         return -EIO;
1971                 }
1972
1973                 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1974                         unsigned int nofs_flags;
1975                         int ret;
1976
1977                         trace_f2fs_issue_reset_zone(bdev, blkstart);
1978                         nofs_flags = memalloc_nofs_save();
1979                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1980                                                 sector, nr_sects);
1981                         memalloc_nofs_restore(nofs_flags);
1982                         return ret;
1983                 }
1984
1985                 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1986                 return 0;
1987         }
1988
1989         /* For conventional zones, use regular discard if supported */
1990         __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1991         return 0;
1992 }
1993 #endif
1994
1995 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1996                 struct block_device *bdev, block_t blkstart, block_t blklen)
1997 {
1998 #ifdef CONFIG_BLK_DEV_ZONED
1999         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2000                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2001 #endif
2002         __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2003         return 0;
2004 }
2005
2006 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2007                                 block_t blkstart, block_t blklen)
2008 {
2009         sector_t start = blkstart, len = 0;
2010         struct block_device *bdev;
2011         struct seg_entry *se;
2012         unsigned int offset;
2013         block_t i;
2014         int err = 0;
2015
2016         bdev = f2fs_target_device(sbi, blkstart, NULL);
2017
2018         for (i = blkstart; i < blkstart + blklen; i++, len++) {
2019                 if (i != start) {
2020                         struct block_device *bdev2 =
2021                                 f2fs_target_device(sbi, i, NULL);
2022
2023                         if (bdev2 != bdev) {
2024                                 err = __issue_discard_async(sbi, bdev,
2025                                                 start, len);
2026                                 if (err)
2027                                         return err;
2028                                 bdev = bdev2;
2029                                 start = i;
2030                                 len = 0;
2031                         }
2032                 }
2033
2034                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2035                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2036
2037                 if (f2fs_block_unit_discard(sbi) &&
2038                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2039                         sbi->discard_blks--;
2040         }
2041
2042         if (len)
2043                 err = __issue_discard_async(sbi, bdev, start, len);
2044         return err;
2045 }
2046
2047 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2048                                                         bool check_only)
2049 {
2050         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2051         int max_blocks = sbi->blocks_per_seg;
2052         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2053         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2054         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2055         unsigned long *discard_map = (unsigned long *)se->discard_map;
2056         unsigned long *dmap = SIT_I(sbi)->tmp_map;
2057         unsigned int start = 0, end = -1;
2058         bool force = (cpc->reason & CP_DISCARD);
2059         struct discard_entry *de = NULL;
2060         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2061         int i;
2062
2063         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2064                         !f2fs_block_unit_discard(sbi))
2065                 return false;
2066
2067         if (!force) {
2068                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2069                         SM_I(sbi)->dcc_info->nr_discards >=
2070                                 SM_I(sbi)->dcc_info->max_discards)
2071                         return false;
2072         }
2073
2074         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2075         for (i = 0; i < entries; i++)
2076                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2077                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2078
2079         while (force || SM_I(sbi)->dcc_info->nr_discards <=
2080                                 SM_I(sbi)->dcc_info->max_discards) {
2081                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2082                 if (start >= max_blocks)
2083                         break;
2084
2085                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2086                 if (force && start && end != max_blocks
2087                                         && (end - start) < cpc->trim_minlen)
2088                         continue;
2089
2090                 if (check_only)
2091                         return true;
2092
2093                 if (!de) {
2094                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
2095                                                 GFP_F2FS_ZERO, true, NULL);
2096                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2097                         list_add_tail(&de->list, head);
2098                 }
2099
2100                 for (i = start; i < end; i++)
2101                         __set_bit_le(i, (void *)de->discard_map);
2102
2103                 SM_I(sbi)->dcc_info->nr_discards += end - start;
2104         }
2105         return false;
2106 }
2107
2108 static void release_discard_addr(struct discard_entry *entry)
2109 {
2110         list_del(&entry->list);
2111         kmem_cache_free(discard_entry_slab, entry);
2112 }
2113
2114 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2115 {
2116         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2117         struct discard_entry *entry, *this;
2118
2119         /* drop caches */
2120         list_for_each_entry_safe(entry, this, head, list)
2121                 release_discard_addr(entry);
2122 }
2123
2124 /*
2125  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2126  */
2127 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2128 {
2129         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2130         unsigned int segno;
2131
2132         mutex_lock(&dirty_i->seglist_lock);
2133         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2134                 __set_test_and_free(sbi, segno, false);
2135         mutex_unlock(&dirty_i->seglist_lock);
2136 }
2137
2138 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2139                                                 struct cp_control *cpc)
2140 {
2141         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2142         struct list_head *head = &dcc->entry_list;
2143         struct discard_entry *entry, *this;
2144         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2145         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2146         unsigned int start = 0, end = -1;
2147         unsigned int secno, start_segno;
2148         bool force = (cpc->reason & CP_DISCARD);
2149         bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2150                                                 DISCARD_UNIT_SECTION;
2151
2152         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2153                 section_alignment = true;
2154
2155         mutex_lock(&dirty_i->seglist_lock);
2156
2157         while (1) {
2158                 int i;
2159
2160                 if (section_alignment && end != -1)
2161                         end--;
2162                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2163                 if (start >= MAIN_SEGS(sbi))
2164                         break;
2165                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2166                                                                 start + 1);
2167
2168                 if (section_alignment) {
2169                         start = rounddown(start, sbi->segs_per_sec);
2170                         end = roundup(end, sbi->segs_per_sec);
2171                 }
2172
2173                 for (i = start; i < end; i++) {
2174                         if (test_and_clear_bit(i, prefree_map))
2175                                 dirty_i->nr_dirty[PRE]--;
2176                 }
2177
2178                 if (!f2fs_realtime_discard_enable(sbi))
2179                         continue;
2180
2181                 if (force && start >= cpc->trim_start &&
2182                                         (end - 1) <= cpc->trim_end)
2183                         continue;
2184
2185                 /* Should cover 2MB zoned device for zone-based reset */
2186                 if (!f2fs_sb_has_blkzoned(sbi) &&
2187                     (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2188                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2189                                 (end - start) << sbi->log_blocks_per_seg);
2190                         continue;
2191                 }
2192 next:
2193                 secno = GET_SEC_FROM_SEG(sbi, start);
2194                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2195                 if (!IS_CURSEC(sbi, secno) &&
2196                         !get_valid_blocks(sbi, start, true))
2197                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2198                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2199
2200                 start = start_segno + sbi->segs_per_sec;
2201                 if (start < end)
2202                         goto next;
2203                 else
2204                         end = start - 1;
2205         }
2206         mutex_unlock(&dirty_i->seglist_lock);
2207
2208         if (!f2fs_block_unit_discard(sbi))
2209                 goto wakeup;
2210
2211         /* send small discards */
2212         list_for_each_entry_safe(entry, this, head, list) {
2213                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2214                 bool is_valid = test_bit_le(0, entry->discard_map);
2215
2216 find_next:
2217                 if (is_valid) {
2218                         next_pos = find_next_zero_bit_le(entry->discard_map,
2219                                         sbi->blocks_per_seg, cur_pos);
2220                         len = next_pos - cur_pos;
2221
2222                         if (f2fs_sb_has_blkzoned(sbi) ||
2223                             (force && len < cpc->trim_minlen))
2224                                 goto skip;
2225
2226                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2227                                                                         len);
2228                         total_len += len;
2229                 } else {
2230                         next_pos = find_next_bit_le(entry->discard_map,
2231                                         sbi->blocks_per_seg, cur_pos);
2232                 }
2233 skip:
2234                 cur_pos = next_pos;
2235                 is_valid = !is_valid;
2236
2237                 if (cur_pos < sbi->blocks_per_seg)
2238                         goto find_next;
2239
2240                 release_discard_addr(entry);
2241                 dcc->nr_discards -= total_len;
2242         }
2243
2244 wakeup:
2245         wake_up_discard_thread(sbi, false);
2246 }
2247
2248 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2249 {
2250         dev_t dev = sbi->sb->s_bdev->bd_dev;
2251         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2252         int err = 0;
2253
2254         if (!f2fs_realtime_discard_enable(sbi))
2255                 return 0;
2256
2257         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2258                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2259         if (IS_ERR(dcc->f2fs_issue_discard)) {
2260                 err = PTR_ERR(dcc->f2fs_issue_discard);
2261                 dcc->f2fs_issue_discard = NULL;
2262         }
2263
2264         return err;
2265 }
2266
2267 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2268 {
2269         struct discard_cmd_control *dcc;
2270         int err = 0, i;
2271
2272         if (SM_I(sbi)->dcc_info) {
2273                 dcc = SM_I(sbi)->dcc_info;
2274                 goto init_thread;
2275         }
2276
2277         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2278         if (!dcc)
2279                 return -ENOMEM;
2280
2281         dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2282         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2283         dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2284         dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2285         if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2286                 dcc->discard_granularity = sbi->blocks_per_seg;
2287         else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2288                 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2289
2290         INIT_LIST_HEAD(&dcc->entry_list);
2291         for (i = 0; i < MAX_PLIST_NUM; i++)
2292                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2293         INIT_LIST_HEAD(&dcc->wait_list);
2294         INIT_LIST_HEAD(&dcc->fstrim_list);
2295         mutex_init(&dcc->cmd_lock);
2296         atomic_set(&dcc->issued_discard, 0);
2297         atomic_set(&dcc->queued_discard, 0);
2298         atomic_set(&dcc->discard_cmd_cnt, 0);
2299         dcc->nr_discards = 0;
2300         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2301         dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2302         dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2303         dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2304         dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2305         dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2306         dcc->undiscard_blks = 0;
2307         dcc->next_pos = 0;
2308         dcc->root = RB_ROOT_CACHED;
2309         dcc->rbtree_check = false;
2310
2311         init_waitqueue_head(&dcc->discard_wait_queue);
2312         SM_I(sbi)->dcc_info = dcc;
2313 init_thread:
2314         err = f2fs_start_discard_thread(sbi);
2315         if (err) {
2316                 kfree(dcc);
2317                 SM_I(sbi)->dcc_info = NULL;
2318         }
2319
2320         return err;
2321 }
2322
2323 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2324 {
2325         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2326
2327         if (!dcc)
2328                 return;
2329
2330         f2fs_stop_discard_thread(sbi);
2331
2332         /*
2333          * Recovery can cache discard commands, so in error path of
2334          * fill_super(), it needs to give a chance to handle them.
2335          */
2336         f2fs_issue_discard_timeout(sbi);
2337
2338         kfree(dcc);
2339         SM_I(sbi)->dcc_info = NULL;
2340 }
2341
2342 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2343 {
2344         struct sit_info *sit_i = SIT_I(sbi);
2345
2346         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2347                 sit_i->dirty_sentries++;
2348                 return false;
2349         }
2350
2351         return true;
2352 }
2353
2354 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2355                                         unsigned int segno, int modified)
2356 {
2357         struct seg_entry *se = get_seg_entry(sbi, segno);
2358
2359         se->type = type;
2360         if (modified)
2361                 __mark_sit_entry_dirty(sbi, segno);
2362 }
2363
2364 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2365                                                                 block_t blkaddr)
2366 {
2367         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2368
2369         if (segno == NULL_SEGNO)
2370                 return 0;
2371         return get_seg_entry(sbi, segno)->mtime;
2372 }
2373
2374 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2375                                                 unsigned long long old_mtime)
2376 {
2377         struct seg_entry *se;
2378         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2379         unsigned long long ctime = get_mtime(sbi, false);
2380         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2381
2382         if (segno == NULL_SEGNO)
2383                 return;
2384
2385         se = get_seg_entry(sbi, segno);
2386
2387         if (!se->mtime)
2388                 se->mtime = mtime;
2389         else
2390                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2391                                                 se->valid_blocks + 1);
2392
2393         if (ctime > SIT_I(sbi)->max_mtime)
2394                 SIT_I(sbi)->max_mtime = ctime;
2395 }
2396
2397 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2398 {
2399         struct seg_entry *se;
2400         unsigned int segno, offset;
2401         long int new_vblocks;
2402         bool exist;
2403 #ifdef CONFIG_F2FS_CHECK_FS
2404         bool mir_exist;
2405 #endif
2406
2407         segno = GET_SEGNO(sbi, blkaddr);
2408
2409         se = get_seg_entry(sbi, segno);
2410         new_vblocks = se->valid_blocks + del;
2411         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2412
2413         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2414                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2415
2416         se->valid_blocks = new_vblocks;
2417
2418         /* Update valid block bitmap */
2419         if (del > 0) {
2420                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2421 #ifdef CONFIG_F2FS_CHECK_FS
2422                 mir_exist = f2fs_test_and_set_bit(offset,
2423                                                 se->cur_valid_map_mir);
2424                 if (unlikely(exist != mir_exist)) {
2425                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2426                                  blkaddr, exist);
2427                         f2fs_bug_on(sbi, 1);
2428                 }
2429 #endif
2430                 if (unlikely(exist)) {
2431                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2432                                  blkaddr);
2433                         f2fs_bug_on(sbi, 1);
2434                         se->valid_blocks--;
2435                         del = 0;
2436                 }
2437
2438                 if (f2fs_block_unit_discard(sbi) &&
2439                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2440                         sbi->discard_blks--;
2441
2442                 /*
2443                  * SSR should never reuse block which is checkpointed
2444                  * or newly invalidated.
2445                  */
2446                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2447                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2448                                 se->ckpt_valid_blocks++;
2449                 }
2450         } else {
2451                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2452 #ifdef CONFIG_F2FS_CHECK_FS
2453                 mir_exist = f2fs_test_and_clear_bit(offset,
2454                                                 se->cur_valid_map_mir);
2455                 if (unlikely(exist != mir_exist)) {
2456                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2457                                  blkaddr, exist);
2458                         f2fs_bug_on(sbi, 1);
2459                 }
2460 #endif
2461                 if (unlikely(!exist)) {
2462                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2463                                  blkaddr);
2464                         f2fs_bug_on(sbi, 1);
2465                         se->valid_blocks++;
2466                         del = 0;
2467                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2468                         /*
2469                          * If checkpoints are off, we must not reuse data that
2470                          * was used in the previous checkpoint. If it was used
2471                          * before, we must track that to know how much space we
2472                          * really have.
2473                          */
2474                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2475                                 spin_lock(&sbi->stat_lock);
2476                                 sbi->unusable_block_count++;
2477                                 spin_unlock(&sbi->stat_lock);
2478                         }
2479                 }
2480
2481                 if (f2fs_block_unit_discard(sbi) &&
2482                         f2fs_test_and_clear_bit(offset, se->discard_map))
2483                         sbi->discard_blks++;
2484         }
2485         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2486                 se->ckpt_valid_blocks += del;
2487
2488         __mark_sit_entry_dirty(sbi, segno);
2489
2490         /* update total number of valid blocks to be written in ckpt area */
2491         SIT_I(sbi)->written_valid_blocks += del;
2492
2493         if (__is_large_section(sbi))
2494                 get_sec_entry(sbi, segno)->valid_blocks += del;
2495 }
2496
2497 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2498 {
2499         unsigned int segno = GET_SEGNO(sbi, addr);
2500         struct sit_info *sit_i = SIT_I(sbi);
2501
2502         f2fs_bug_on(sbi, addr == NULL_ADDR);
2503         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2504                 return;
2505
2506         f2fs_invalidate_internal_cache(sbi, addr);
2507
2508         /* add it into sit main buffer */
2509         down_write(&sit_i->sentry_lock);
2510
2511         update_segment_mtime(sbi, addr, 0);
2512         update_sit_entry(sbi, addr, -1);
2513
2514         /* add it into dirty seglist */
2515         locate_dirty_segment(sbi, segno);
2516
2517         up_write(&sit_i->sentry_lock);
2518 }
2519
2520 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2521 {
2522         struct sit_info *sit_i = SIT_I(sbi);
2523         unsigned int segno, offset;
2524         struct seg_entry *se;
2525         bool is_cp = false;
2526
2527         if (!__is_valid_data_blkaddr(blkaddr))
2528                 return true;
2529
2530         down_read(&sit_i->sentry_lock);
2531
2532         segno = GET_SEGNO(sbi, blkaddr);
2533         se = get_seg_entry(sbi, segno);
2534         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2535
2536         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2537                 is_cp = true;
2538
2539         up_read(&sit_i->sentry_lock);
2540
2541         return is_cp;
2542 }
2543
2544 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2545 {
2546         struct curseg_info *curseg = CURSEG_I(sbi, type);
2547
2548         if (sbi->ckpt->alloc_type[type] == SSR)
2549                 return sbi->blocks_per_seg;
2550         return curseg->next_blkoff;
2551 }
2552
2553 /*
2554  * Calculate the number of current summary pages for writing
2555  */
2556 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2557 {
2558         int valid_sum_count = 0;
2559         int i, sum_in_page;
2560
2561         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2562                 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2563                         valid_sum_count +=
2564                                 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2565                 else
2566                         valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2567         }
2568
2569         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2570                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2571         if (valid_sum_count <= sum_in_page)
2572                 return 1;
2573         else if ((valid_sum_count - sum_in_page) <=
2574                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2575                 return 2;
2576         return 3;
2577 }
2578
2579 /*
2580  * Caller should put this summary page
2581  */
2582 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2583 {
2584         if (unlikely(f2fs_cp_error(sbi)))
2585                 return ERR_PTR(-EIO);
2586         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2587 }
2588
2589 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2590                                         void *src, block_t blk_addr)
2591 {
2592         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2593
2594         memcpy(page_address(page), src, PAGE_SIZE);
2595         set_page_dirty(page);
2596         f2fs_put_page(page, 1);
2597 }
2598
2599 static void write_sum_page(struct f2fs_sb_info *sbi,
2600                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2601 {
2602         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2603 }
2604
2605 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2606                                                 int type, block_t blk_addr)
2607 {
2608         struct curseg_info *curseg = CURSEG_I(sbi, type);
2609         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2610         struct f2fs_summary_block *src = curseg->sum_blk;
2611         struct f2fs_summary_block *dst;
2612
2613         dst = (struct f2fs_summary_block *)page_address(page);
2614         memset(dst, 0, PAGE_SIZE);
2615
2616         mutex_lock(&curseg->curseg_mutex);
2617
2618         down_read(&curseg->journal_rwsem);
2619         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2620         up_read(&curseg->journal_rwsem);
2621
2622         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2623         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2624
2625         mutex_unlock(&curseg->curseg_mutex);
2626
2627         set_page_dirty(page);
2628         f2fs_put_page(page, 1);
2629 }
2630
2631 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2632                                 struct curseg_info *curseg, int type)
2633 {
2634         unsigned int segno = curseg->segno + 1;
2635         struct free_segmap_info *free_i = FREE_I(sbi);
2636
2637         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2638                 return !test_bit(segno, free_i->free_segmap);
2639         return 0;
2640 }
2641
2642 /*
2643  * Find a new segment from the free segments bitmap to right order
2644  * This function should be returned with success, otherwise BUG
2645  */
2646 static void get_new_segment(struct f2fs_sb_info *sbi,
2647                         unsigned int *newseg, bool new_sec, int dir)
2648 {
2649         struct free_segmap_info *free_i = FREE_I(sbi);
2650         unsigned int segno, secno, zoneno;
2651         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2652         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2653         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2654         unsigned int left_start = hint;
2655         bool init = true;
2656         int go_left = 0;
2657         int i;
2658
2659         spin_lock(&free_i->segmap_lock);
2660
2661         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2662                 segno = find_next_zero_bit(free_i->free_segmap,
2663                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2664                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2665                         goto got_it;
2666         }
2667 find_other_zone:
2668         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2669         if (secno >= MAIN_SECS(sbi)) {
2670                 if (dir == ALLOC_RIGHT) {
2671                         secno = find_first_zero_bit(free_i->free_secmap,
2672                                                         MAIN_SECS(sbi));
2673                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2674                 } else {
2675                         go_left = 1;
2676                         left_start = hint - 1;
2677                 }
2678         }
2679         if (go_left == 0)
2680                 goto skip_left;
2681
2682         while (test_bit(left_start, free_i->free_secmap)) {
2683                 if (left_start > 0) {
2684                         left_start--;
2685                         continue;
2686                 }
2687                 left_start = find_first_zero_bit(free_i->free_secmap,
2688                                                         MAIN_SECS(sbi));
2689                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2690                 break;
2691         }
2692         secno = left_start;
2693 skip_left:
2694         segno = GET_SEG_FROM_SEC(sbi, secno);
2695         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2696
2697         /* give up on finding another zone */
2698         if (!init)
2699                 goto got_it;
2700         if (sbi->secs_per_zone == 1)
2701                 goto got_it;
2702         if (zoneno == old_zoneno)
2703                 goto got_it;
2704         if (dir == ALLOC_LEFT) {
2705                 if (!go_left && zoneno + 1 >= total_zones)
2706                         goto got_it;
2707                 if (go_left && zoneno == 0)
2708                         goto got_it;
2709         }
2710         for (i = 0; i < NR_CURSEG_TYPE; i++)
2711                 if (CURSEG_I(sbi, i)->zone == zoneno)
2712                         break;
2713
2714         if (i < NR_CURSEG_TYPE) {
2715                 /* zone is in user, try another */
2716                 if (go_left)
2717                         hint = zoneno * sbi->secs_per_zone - 1;
2718                 else if (zoneno + 1 >= total_zones)
2719                         hint = 0;
2720                 else
2721                         hint = (zoneno + 1) * sbi->secs_per_zone;
2722                 init = false;
2723                 goto find_other_zone;
2724         }
2725 got_it:
2726         /* set it as dirty segment in free segmap */
2727         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2728         __set_inuse(sbi, segno);
2729         *newseg = segno;
2730         spin_unlock(&free_i->segmap_lock);
2731 }
2732
2733 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2734 {
2735         struct curseg_info *curseg = CURSEG_I(sbi, type);
2736         struct summary_footer *sum_footer;
2737         unsigned short seg_type = curseg->seg_type;
2738
2739         curseg->inited = true;
2740         curseg->segno = curseg->next_segno;
2741         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2742         curseg->next_blkoff = 0;
2743         curseg->next_segno = NULL_SEGNO;
2744
2745         sum_footer = &(curseg->sum_blk->footer);
2746         memset(sum_footer, 0, sizeof(struct summary_footer));
2747
2748         sanity_check_seg_type(sbi, seg_type);
2749
2750         if (IS_DATASEG(seg_type))
2751                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2752         if (IS_NODESEG(seg_type))
2753                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2754         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2755 }
2756
2757 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2758 {
2759         struct curseg_info *curseg = CURSEG_I(sbi, type);
2760         unsigned short seg_type = curseg->seg_type;
2761
2762         sanity_check_seg_type(sbi, seg_type);
2763         if (f2fs_need_rand_seg(sbi))
2764                 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2765
2766         /* if segs_per_sec is large than 1, we need to keep original policy. */
2767         if (__is_large_section(sbi))
2768                 return curseg->segno;
2769
2770         /* inmem log may not locate on any segment after mount */
2771         if (!curseg->inited)
2772                 return 0;
2773
2774         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2775                 return 0;
2776
2777         if (test_opt(sbi, NOHEAP) &&
2778                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2779                 return 0;
2780
2781         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2782                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2783
2784         /* find segments from 0 to reuse freed segments */
2785         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2786                 return 0;
2787
2788         return curseg->segno;
2789 }
2790
2791 /*
2792  * Allocate a current working segment.
2793  * This function always allocates a free segment in LFS manner.
2794  */
2795 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2796 {
2797         struct curseg_info *curseg = CURSEG_I(sbi, type);
2798         unsigned short seg_type = curseg->seg_type;
2799         unsigned int segno = curseg->segno;
2800         int dir = ALLOC_LEFT;
2801
2802         if (curseg->inited)
2803                 write_sum_page(sbi, curseg->sum_blk,
2804                                 GET_SUM_BLOCK(sbi, segno));
2805         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2806                 dir = ALLOC_RIGHT;
2807
2808         if (test_opt(sbi, NOHEAP))
2809                 dir = ALLOC_RIGHT;
2810
2811         segno = __get_next_segno(sbi, type);
2812         get_new_segment(sbi, &segno, new_sec, dir);
2813         curseg->next_segno = segno;
2814         reset_curseg(sbi, type, 1);
2815         curseg->alloc_type = LFS;
2816         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2817                 curseg->fragment_remained_chunk =
2818                                 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2819 }
2820
2821 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2822                                         int segno, block_t start)
2823 {
2824         struct seg_entry *se = get_seg_entry(sbi, segno);
2825         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2826         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2827         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2828         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2829         int i;
2830
2831         for (i = 0; i < entries; i++)
2832                 target_map[i] = ckpt_map[i] | cur_map[i];
2833
2834         return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2835 }
2836
2837 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2838                 struct curseg_info *seg)
2839 {
2840         return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2841 }
2842
2843 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2844 {
2845         return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2846 }
2847
2848 /*
2849  * This function always allocates a used segment(from dirty seglist) by SSR
2850  * manner, so it should recover the existing segment information of valid blocks
2851  */
2852 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2853 {
2854         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2855         struct curseg_info *curseg = CURSEG_I(sbi, type);
2856         unsigned int new_segno = curseg->next_segno;
2857         struct f2fs_summary_block *sum_node;
2858         struct page *sum_page;
2859
2860         write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2861
2862         __set_test_and_inuse(sbi, new_segno);
2863
2864         mutex_lock(&dirty_i->seglist_lock);
2865         __remove_dirty_segment(sbi, new_segno, PRE);
2866         __remove_dirty_segment(sbi, new_segno, DIRTY);
2867         mutex_unlock(&dirty_i->seglist_lock);
2868
2869         reset_curseg(sbi, type, 1);
2870         curseg->alloc_type = SSR;
2871         curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2872
2873         sum_page = f2fs_get_sum_page(sbi, new_segno);
2874         if (IS_ERR(sum_page)) {
2875                 /* GC won't be able to use stale summary pages by cp_error */
2876                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2877                 return;
2878         }
2879         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2880         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2881         f2fs_put_page(sum_page, 1);
2882 }
2883
2884 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2885                                 int alloc_mode, unsigned long long age);
2886
2887 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2888                                         int target_type, int alloc_mode,
2889                                         unsigned long long age)
2890 {
2891         struct curseg_info *curseg = CURSEG_I(sbi, type);
2892
2893         curseg->seg_type = target_type;
2894
2895         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2896                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2897
2898                 curseg->seg_type = se->type;
2899                 change_curseg(sbi, type);
2900         } else {
2901                 /* allocate cold segment by default */
2902                 curseg->seg_type = CURSEG_COLD_DATA;
2903                 new_curseg(sbi, type, true);
2904         }
2905         stat_inc_seg_type(sbi, curseg);
2906 }
2907
2908 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2909 {
2910         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2911
2912         if (!sbi->am.atgc_enabled)
2913                 return;
2914
2915         f2fs_down_read(&SM_I(sbi)->curseg_lock);
2916
2917         mutex_lock(&curseg->curseg_mutex);
2918         down_write(&SIT_I(sbi)->sentry_lock);
2919
2920         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2921
2922         up_write(&SIT_I(sbi)->sentry_lock);
2923         mutex_unlock(&curseg->curseg_mutex);
2924
2925         f2fs_up_read(&SM_I(sbi)->curseg_lock);
2926
2927 }
2928 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2929 {
2930         __f2fs_init_atgc_curseg(sbi);
2931 }
2932
2933 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2934 {
2935         struct curseg_info *curseg = CURSEG_I(sbi, type);
2936
2937         mutex_lock(&curseg->curseg_mutex);
2938         if (!curseg->inited)
2939                 goto out;
2940
2941         if (get_valid_blocks(sbi, curseg->segno, false)) {
2942                 write_sum_page(sbi, curseg->sum_blk,
2943                                 GET_SUM_BLOCK(sbi, curseg->segno));
2944         } else {
2945                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2946                 __set_test_and_free(sbi, curseg->segno, true);
2947                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2948         }
2949 out:
2950         mutex_unlock(&curseg->curseg_mutex);
2951 }
2952
2953 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2954 {
2955         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2956
2957         if (sbi->am.atgc_enabled)
2958                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2959 }
2960
2961 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2962 {
2963         struct curseg_info *curseg = CURSEG_I(sbi, type);
2964
2965         mutex_lock(&curseg->curseg_mutex);
2966         if (!curseg->inited)
2967                 goto out;
2968         if (get_valid_blocks(sbi, curseg->segno, false))
2969                 goto out;
2970
2971         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2972         __set_test_and_inuse(sbi, curseg->segno);
2973         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2974 out:
2975         mutex_unlock(&curseg->curseg_mutex);
2976 }
2977
2978 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2979 {
2980         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2981
2982         if (sbi->am.atgc_enabled)
2983                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2984 }
2985
2986 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2987                                 int alloc_mode, unsigned long long age)
2988 {
2989         struct curseg_info *curseg = CURSEG_I(sbi, type);
2990         unsigned segno = NULL_SEGNO;
2991         unsigned short seg_type = curseg->seg_type;
2992         int i, cnt;
2993         bool reversed = false;
2994
2995         sanity_check_seg_type(sbi, seg_type);
2996
2997         /* f2fs_need_SSR() already forces to do this */
2998         if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2999                 curseg->next_segno = segno;
3000                 return 1;
3001         }
3002
3003         /* For node segments, let's do SSR more intensively */
3004         if (IS_NODESEG(seg_type)) {
3005                 if (seg_type >= CURSEG_WARM_NODE) {
3006                         reversed = true;
3007                         i = CURSEG_COLD_NODE;
3008                 } else {
3009                         i = CURSEG_HOT_NODE;
3010                 }
3011                 cnt = NR_CURSEG_NODE_TYPE;
3012         } else {
3013                 if (seg_type >= CURSEG_WARM_DATA) {
3014                         reversed = true;
3015                         i = CURSEG_COLD_DATA;
3016                 } else {
3017                         i = CURSEG_HOT_DATA;
3018                 }
3019                 cnt = NR_CURSEG_DATA_TYPE;
3020         }
3021
3022         for (; cnt-- > 0; reversed ? i-- : i++) {
3023                 if (i == seg_type)
3024                         continue;
3025                 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3026                         curseg->next_segno = segno;
3027                         return 1;
3028                 }
3029         }
3030
3031         /* find valid_blocks=0 in dirty list */
3032         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3033                 segno = get_free_segment(sbi);
3034                 if (segno != NULL_SEGNO) {
3035                         curseg->next_segno = segno;
3036                         return 1;
3037                 }
3038         }
3039         return 0;
3040 }
3041
3042 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3043 {
3044         struct curseg_info *curseg = CURSEG_I(sbi, type);
3045
3046         if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3047             curseg->seg_type == CURSEG_WARM_NODE)
3048                 return true;
3049         if (curseg->alloc_type == LFS &&
3050             is_next_segment_free(sbi, curseg, type) &&
3051             likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3052                 return true;
3053         if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3054                 return true;
3055         return false;
3056 }
3057
3058 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3059                                         unsigned int start, unsigned int end)
3060 {
3061         struct curseg_info *curseg = CURSEG_I(sbi, type);
3062         unsigned int segno;
3063
3064         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3065         mutex_lock(&curseg->curseg_mutex);
3066         down_write(&SIT_I(sbi)->sentry_lock);
3067
3068         segno = CURSEG_I(sbi, type)->segno;
3069         if (segno < start || segno > end)
3070                 goto unlock;
3071
3072         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3073                 change_curseg(sbi, type);
3074         else
3075                 new_curseg(sbi, type, true);
3076
3077         stat_inc_seg_type(sbi, curseg);
3078
3079         locate_dirty_segment(sbi, segno);
3080 unlock:
3081         up_write(&SIT_I(sbi)->sentry_lock);
3082
3083         if (segno != curseg->segno)
3084                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3085                             type, segno, curseg->segno);
3086
3087         mutex_unlock(&curseg->curseg_mutex);
3088         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3089 }
3090
3091 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3092                                                 bool new_sec, bool force)
3093 {
3094         struct curseg_info *curseg = CURSEG_I(sbi, type);
3095         unsigned int old_segno;
3096
3097         if (!force && curseg->inited &&
3098             !curseg->next_blkoff &&
3099             !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3100             !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3101                 return;
3102
3103         old_segno = curseg->segno;
3104         new_curseg(sbi, type, true);
3105         stat_inc_seg_type(sbi, curseg);
3106         locate_dirty_segment(sbi, old_segno);
3107 }
3108
3109 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3110 {
3111         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3112         down_write(&SIT_I(sbi)->sentry_lock);
3113         __allocate_new_segment(sbi, type, true, force);
3114         up_write(&SIT_I(sbi)->sentry_lock);
3115         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3116 }
3117
3118 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3119 {
3120         int i;
3121
3122         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3123         down_write(&SIT_I(sbi)->sentry_lock);
3124         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3125                 __allocate_new_segment(sbi, i, false, false);
3126         up_write(&SIT_I(sbi)->sentry_lock);
3127         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3128 }
3129
3130 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3131                                                 struct cp_control *cpc)
3132 {
3133         __u64 trim_start = cpc->trim_start;
3134         bool has_candidate = false;
3135
3136         down_write(&SIT_I(sbi)->sentry_lock);
3137         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3138                 if (add_discard_addrs(sbi, cpc, true)) {
3139                         has_candidate = true;
3140                         break;
3141                 }
3142         }
3143         up_write(&SIT_I(sbi)->sentry_lock);
3144
3145         cpc->trim_start = trim_start;
3146         return has_candidate;
3147 }
3148
3149 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3150                                         struct discard_policy *dpolicy,
3151                                         unsigned int start, unsigned int end)
3152 {
3153         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3154         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3155         struct rb_node **insert_p = NULL, *insert_parent = NULL;
3156         struct discard_cmd *dc;
3157         struct blk_plug plug;
3158         int issued;
3159         unsigned int trimmed = 0;
3160
3161 next:
3162         issued = 0;
3163
3164         mutex_lock(&dcc->cmd_lock);
3165         if (unlikely(dcc->rbtree_check))
3166                 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3167
3168         dc = __lookup_discard_cmd_ret(&dcc->root, start,
3169                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
3170         if (!dc)
3171                 dc = next_dc;
3172
3173         blk_start_plug(&plug);
3174
3175         while (dc && dc->di.lstart <= end) {
3176                 struct rb_node *node;
3177                 int err = 0;
3178
3179                 if (dc->di.len < dpolicy->granularity)
3180                         goto skip;
3181
3182                 if (dc->state != D_PREP) {
3183                         list_move_tail(&dc->list, &dcc->fstrim_list);
3184                         goto skip;
3185                 }
3186
3187                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3188
3189                 if (issued >= dpolicy->max_requests) {
3190                         start = dc->di.lstart + dc->di.len;
3191
3192                         if (err)
3193                                 __remove_discard_cmd(sbi, dc);
3194
3195                         blk_finish_plug(&plug);
3196                         mutex_unlock(&dcc->cmd_lock);
3197                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3198                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3199                         goto next;
3200                 }
3201 skip:
3202                 node = rb_next(&dc->rb_node);
3203                 if (err)
3204                         __remove_discard_cmd(sbi, dc);
3205                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3206
3207                 if (fatal_signal_pending(current))
3208                         break;
3209         }
3210
3211         blk_finish_plug(&plug);
3212         mutex_unlock(&dcc->cmd_lock);
3213
3214         return trimmed;
3215 }
3216
3217 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3218 {
3219         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3220         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3221         unsigned int start_segno, end_segno;
3222         block_t start_block, end_block;
3223         struct cp_control cpc;
3224         struct discard_policy dpolicy;
3225         unsigned long long trimmed = 0;
3226         int err = 0;
3227         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3228
3229         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3230                 return -EINVAL;
3231
3232         if (end < MAIN_BLKADDR(sbi))
3233                 goto out;
3234
3235         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3236                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3237                 return -EFSCORRUPTED;
3238         }
3239
3240         /* start/end segment number in main_area */
3241         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3242         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3243                                                 GET_SEGNO(sbi, end);
3244         if (need_align) {
3245                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3246                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3247         }
3248
3249         cpc.reason = CP_DISCARD;
3250         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3251         cpc.trim_start = start_segno;
3252         cpc.trim_end = end_segno;
3253
3254         if (sbi->discard_blks == 0)
3255                 goto out;
3256
3257         f2fs_down_write(&sbi->gc_lock);
3258         stat_inc_cp_call_count(sbi, TOTAL_CALL);
3259         err = f2fs_write_checkpoint(sbi, &cpc);
3260         f2fs_up_write(&sbi->gc_lock);
3261         if (err)
3262                 goto out;
3263
3264         /*
3265          * We filed discard candidates, but actually we don't need to wait for
3266          * all of them, since they'll be issued in idle time along with runtime
3267          * discard option. User configuration looks like using runtime discard
3268          * or periodic fstrim instead of it.
3269          */
3270         if (f2fs_realtime_discard_enable(sbi))
3271                 goto out;
3272
3273         start_block = START_BLOCK(sbi, start_segno);
3274         end_block = START_BLOCK(sbi, end_segno + 1);
3275
3276         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3277         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3278                                         start_block, end_block);
3279
3280         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3281                                         start_block, end_block);
3282 out:
3283         if (!err)
3284                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3285         return err;
3286 }
3287
3288 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3289 {
3290         switch (hint) {
3291         case WRITE_LIFE_SHORT:
3292                 return CURSEG_HOT_DATA;
3293         case WRITE_LIFE_EXTREME:
3294                 return CURSEG_COLD_DATA;
3295         default:
3296                 return CURSEG_WARM_DATA;
3297         }
3298 }
3299
3300 static int __get_segment_type_2(struct f2fs_io_info *fio)
3301 {
3302         if (fio->type == DATA)
3303                 return CURSEG_HOT_DATA;
3304         else
3305                 return CURSEG_HOT_NODE;
3306 }
3307
3308 static int __get_segment_type_4(struct f2fs_io_info *fio)
3309 {
3310         if (fio->type == DATA) {
3311                 struct inode *inode = fio->page->mapping->host;
3312
3313                 if (S_ISDIR(inode->i_mode))
3314                         return CURSEG_HOT_DATA;
3315                 else
3316                         return CURSEG_COLD_DATA;
3317         } else {
3318                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3319                         return CURSEG_WARM_NODE;
3320                 else
3321                         return CURSEG_COLD_NODE;
3322         }
3323 }
3324
3325 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3326 {
3327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3328         struct extent_info ei = {};
3329
3330         if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3331                 if (!ei.age)
3332                         return NO_CHECK_TYPE;
3333                 if (ei.age <= sbi->hot_data_age_threshold)
3334                         return CURSEG_HOT_DATA;
3335                 if (ei.age <= sbi->warm_data_age_threshold)
3336                         return CURSEG_WARM_DATA;
3337                 return CURSEG_COLD_DATA;
3338         }
3339         return NO_CHECK_TYPE;
3340 }
3341
3342 static int __get_segment_type_6(struct f2fs_io_info *fio)
3343 {
3344         if (fio->type == DATA) {
3345                 struct inode *inode = fio->page->mapping->host;
3346                 int type;
3347
3348                 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3349                         return CURSEG_COLD_DATA_PINNED;
3350
3351                 if (page_private_gcing(fio->page)) {
3352                         if (fio->sbi->am.atgc_enabled &&
3353                                 (fio->io_type == FS_DATA_IO) &&
3354                                 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3355                                 return CURSEG_ALL_DATA_ATGC;
3356                         else
3357                                 return CURSEG_COLD_DATA;
3358                 }
3359                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3360                         return CURSEG_COLD_DATA;
3361
3362                 type = __get_age_segment_type(inode, fio->page->index);
3363                 if (type != NO_CHECK_TYPE)
3364                         return type;
3365
3366                 if (file_is_hot(inode) ||
3367                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3368                                 f2fs_is_cow_file(inode))
3369                         return CURSEG_HOT_DATA;
3370                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3371         } else {
3372                 if (IS_DNODE(fio->page))
3373                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3374                                                 CURSEG_HOT_NODE;
3375                 return CURSEG_COLD_NODE;
3376         }
3377 }
3378
3379 static int __get_segment_type(struct f2fs_io_info *fio)
3380 {
3381         int type = 0;
3382
3383         switch (F2FS_OPTION(fio->sbi).active_logs) {
3384         case 2:
3385                 type = __get_segment_type_2(fio);
3386                 break;
3387         case 4:
3388                 type = __get_segment_type_4(fio);
3389                 break;
3390         case 6:
3391                 type = __get_segment_type_6(fio);
3392                 break;
3393         default:
3394                 f2fs_bug_on(fio->sbi, true);
3395         }
3396
3397         if (IS_HOT(type))
3398                 fio->temp = HOT;
3399         else if (IS_WARM(type))
3400                 fio->temp = WARM;
3401         else
3402                 fio->temp = COLD;
3403         return type;
3404 }
3405
3406 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3407                 struct curseg_info *seg)
3408 {
3409         /* To allocate block chunks in different sizes, use random number */
3410         if (--seg->fragment_remained_chunk > 0)
3411                 return;
3412
3413         seg->fragment_remained_chunk =
3414                 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3415         seg->next_blkoff +=
3416                 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3417 }
3418
3419 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3420                 block_t old_blkaddr, block_t *new_blkaddr,
3421                 struct f2fs_summary *sum, int type,
3422                 struct f2fs_io_info *fio)
3423 {
3424         struct sit_info *sit_i = SIT_I(sbi);
3425         struct curseg_info *curseg = CURSEG_I(sbi, type);
3426         unsigned long long old_mtime;
3427         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3428         struct seg_entry *se = NULL;
3429         bool segment_full = false;
3430
3431         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3432
3433         mutex_lock(&curseg->curseg_mutex);
3434         down_write(&sit_i->sentry_lock);
3435
3436         if (from_gc) {
3437                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3438                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3439                 sanity_check_seg_type(sbi, se->type);
3440                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3441         }
3442         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3443
3444         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3445
3446         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3447
3448         curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3449         if (curseg->alloc_type == SSR) {
3450                 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3451         } else {
3452                 curseg->next_blkoff++;
3453                 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3454                         f2fs_randomize_chunk(sbi, curseg);
3455         }
3456         if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3457                 segment_full = true;
3458         stat_inc_block_count(sbi, curseg);
3459
3460         if (from_gc) {
3461                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3462         } else {
3463                 update_segment_mtime(sbi, old_blkaddr, 0);
3464                 old_mtime = 0;
3465         }
3466         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3467
3468         /*
3469          * SIT information should be updated before segment allocation,
3470          * since SSR needs latest valid block information.
3471          */
3472         update_sit_entry(sbi, *new_blkaddr, 1);
3473         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3474                 update_sit_entry(sbi, old_blkaddr, -1);
3475
3476         /*
3477          * If the current segment is full, flush it out and replace it with a
3478          * new segment.
3479          */
3480         if (segment_full) {
3481                 if (from_gc) {
3482                         get_atssr_segment(sbi, type, se->type,
3483                                                 AT_SSR, se->mtime);
3484                 } else {
3485                         if (need_new_seg(sbi, type))
3486                                 new_curseg(sbi, type, false);
3487                         else
3488                                 change_curseg(sbi, type);
3489                         stat_inc_seg_type(sbi, curseg);
3490                 }
3491         }
3492         /*
3493          * segment dirty status should be updated after segment allocation,
3494          * so we just need to update status only one time after previous
3495          * segment being closed.
3496          */
3497         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3498         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3499
3500         if (IS_DATASEG(type))
3501                 atomic64_inc(&sbi->allocated_data_blocks);
3502
3503         up_write(&sit_i->sentry_lock);
3504
3505         if (page && IS_NODESEG(type)) {
3506                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3507
3508                 f2fs_inode_chksum_set(sbi, page);
3509         }
3510
3511         if (fio) {
3512                 struct f2fs_bio_info *io;
3513
3514                 if (F2FS_IO_ALIGNED(sbi))
3515                         fio->retry = 0;
3516
3517                 INIT_LIST_HEAD(&fio->list);
3518                 fio->in_list = 1;
3519                 io = sbi->write_io[fio->type] + fio->temp;
3520                 spin_lock(&io->io_lock);
3521                 list_add_tail(&fio->list, &io->io_list);
3522                 spin_unlock(&io->io_lock);
3523         }
3524
3525         mutex_unlock(&curseg->curseg_mutex);
3526
3527         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3528 }
3529
3530 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3531                                         block_t blkaddr, unsigned int blkcnt)
3532 {
3533         if (!f2fs_is_multi_device(sbi))
3534                 return;
3535
3536         while (1) {
3537                 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3538                 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3539
3540                 /* update device state for fsync */
3541                 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3542
3543                 /* update device state for checkpoint */
3544                 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3545                         spin_lock(&sbi->dev_lock);
3546                         f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3547                         spin_unlock(&sbi->dev_lock);
3548                 }
3549
3550                 if (blkcnt <= blks)
3551                         break;
3552                 blkcnt -= blks;
3553                 blkaddr += blks;
3554         }
3555 }
3556
3557 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3558 {
3559         int type = __get_segment_type(fio);
3560         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3561
3562         if (keep_order)
3563                 f2fs_down_read(&fio->sbi->io_order_lock);
3564 reallocate:
3565         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3566                         &fio->new_blkaddr, sum, type, fio);
3567         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3568                 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3569
3570         /* writeout dirty page into bdev */
3571         f2fs_submit_page_write(fio);
3572         if (fio->retry) {
3573                 fio->old_blkaddr = fio->new_blkaddr;
3574                 goto reallocate;
3575         }
3576
3577         f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3578
3579         if (keep_order)
3580                 f2fs_up_read(&fio->sbi->io_order_lock);
3581 }
3582
3583 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3584                                         enum iostat_type io_type)
3585 {
3586         struct f2fs_io_info fio = {
3587                 .sbi = sbi,
3588                 .type = META,
3589                 .temp = HOT,
3590                 .op = REQ_OP_WRITE,
3591                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3592                 .old_blkaddr = page->index,
3593                 .new_blkaddr = page->index,
3594                 .page = page,
3595                 .encrypted_page = NULL,
3596                 .in_list = 0,
3597         };
3598
3599         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3600                 fio.op_flags &= ~REQ_META;
3601
3602         set_page_writeback(page);
3603         f2fs_submit_page_write(&fio);
3604
3605         stat_inc_meta_count(sbi, page->index);
3606         f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3607 }
3608
3609 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3610 {
3611         struct f2fs_summary sum;
3612
3613         set_summary(&sum, nid, 0, 0);
3614         do_write_page(&sum, fio);
3615
3616         f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3617 }
3618
3619 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3620                                         struct f2fs_io_info *fio)
3621 {
3622         struct f2fs_sb_info *sbi = fio->sbi;
3623         struct f2fs_summary sum;
3624
3625         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3626         if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3627                 f2fs_update_age_extent_cache(dn);
3628         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3629         do_write_page(&sum, fio);
3630         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3631
3632         f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3633 }
3634
3635 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3636 {
3637         int err;
3638         struct f2fs_sb_info *sbi = fio->sbi;
3639         unsigned int segno;
3640
3641         fio->new_blkaddr = fio->old_blkaddr;
3642         /* i/o temperature is needed for passing down write hints */
3643         __get_segment_type(fio);
3644
3645         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3646
3647         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3648                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3649                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3650                           __func__, segno);
3651                 err = -EFSCORRUPTED;
3652                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3653                 goto drop_bio;
3654         }
3655
3656         if (f2fs_cp_error(sbi)) {
3657                 err = -EIO;
3658                 goto drop_bio;
3659         }
3660
3661         if (fio->post_read)
3662                 invalidate_mapping_pages(META_MAPPING(sbi),
3663                                 fio->new_blkaddr, fio->new_blkaddr);
3664
3665         stat_inc_inplace_blocks(fio->sbi);
3666
3667         if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3668                 err = f2fs_merge_page_bio(fio);
3669         else
3670                 err = f2fs_submit_page_bio(fio);
3671         if (!err) {
3672                 f2fs_update_device_state(fio->sbi, fio->ino,
3673                                                 fio->new_blkaddr, 1);
3674                 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3675                                                 fio->io_type, F2FS_BLKSIZE);
3676         }
3677
3678         return err;
3679 drop_bio:
3680         if (fio->bio && *(fio->bio)) {
3681                 struct bio *bio = *(fio->bio);
3682
3683                 bio->bi_status = BLK_STS_IOERR;
3684                 bio_endio(bio);
3685                 *(fio->bio) = NULL;
3686         }
3687         return err;
3688 }
3689
3690 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3691                                                 unsigned int segno)
3692 {
3693         int i;
3694
3695         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3696                 if (CURSEG_I(sbi, i)->segno == segno)
3697                         break;
3698         }
3699         return i;
3700 }
3701
3702 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3703                                 block_t old_blkaddr, block_t new_blkaddr,
3704                                 bool recover_curseg, bool recover_newaddr,
3705                                 bool from_gc)
3706 {
3707         struct sit_info *sit_i = SIT_I(sbi);
3708         struct curseg_info *curseg;
3709         unsigned int segno, old_cursegno;
3710         struct seg_entry *se;
3711         int type;
3712         unsigned short old_blkoff;
3713         unsigned char old_alloc_type;
3714
3715         segno = GET_SEGNO(sbi, new_blkaddr);
3716         se = get_seg_entry(sbi, segno);
3717         type = se->type;
3718
3719         f2fs_down_write(&SM_I(sbi)->curseg_lock);
3720
3721         if (!recover_curseg) {
3722                 /* for recovery flow */
3723                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3724                         if (old_blkaddr == NULL_ADDR)
3725                                 type = CURSEG_COLD_DATA;
3726                         else
3727                                 type = CURSEG_WARM_DATA;
3728                 }
3729         } else {
3730                 if (IS_CURSEG(sbi, segno)) {
3731                         /* se->type is volatile as SSR allocation */
3732                         type = __f2fs_get_curseg(sbi, segno);
3733                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3734                 } else {
3735                         type = CURSEG_WARM_DATA;
3736                 }
3737         }
3738
3739         f2fs_bug_on(sbi, !IS_DATASEG(type));
3740         curseg = CURSEG_I(sbi, type);
3741
3742         mutex_lock(&curseg->curseg_mutex);
3743         down_write(&sit_i->sentry_lock);
3744
3745         old_cursegno = curseg->segno;
3746         old_blkoff = curseg->next_blkoff;
3747         old_alloc_type = curseg->alloc_type;
3748
3749         /* change the current segment */
3750         if (segno != curseg->segno) {
3751                 curseg->next_segno = segno;
3752                 change_curseg(sbi, type);
3753         }
3754
3755         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3756         curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3757
3758         if (!recover_curseg || recover_newaddr) {
3759                 if (!from_gc)
3760                         update_segment_mtime(sbi, new_blkaddr, 0);
3761                 update_sit_entry(sbi, new_blkaddr, 1);
3762         }
3763         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3764                 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3765                 if (!from_gc)
3766                         update_segment_mtime(sbi, old_blkaddr, 0);
3767                 update_sit_entry(sbi, old_blkaddr, -1);
3768         }
3769
3770         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3771         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3772
3773         locate_dirty_segment(sbi, old_cursegno);
3774
3775         if (recover_curseg) {
3776                 if (old_cursegno != curseg->segno) {
3777                         curseg->next_segno = old_cursegno;
3778                         change_curseg(sbi, type);
3779                 }
3780                 curseg->next_blkoff = old_blkoff;
3781                 curseg->alloc_type = old_alloc_type;
3782         }
3783
3784         up_write(&sit_i->sentry_lock);
3785         mutex_unlock(&curseg->curseg_mutex);
3786         f2fs_up_write(&SM_I(sbi)->curseg_lock);
3787 }
3788
3789 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3790                                 block_t old_addr, block_t new_addr,
3791                                 unsigned char version, bool recover_curseg,
3792                                 bool recover_newaddr)
3793 {
3794         struct f2fs_summary sum;
3795
3796         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3797
3798         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3799                                         recover_curseg, recover_newaddr, false);
3800
3801         f2fs_update_data_blkaddr(dn, new_addr);
3802 }
3803
3804 void f2fs_wait_on_page_writeback(struct page *page,
3805                                 enum page_type type, bool ordered, bool locked)
3806 {
3807         if (PageWriteback(page)) {
3808                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3809
3810                 /* submit cached LFS IO */
3811                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3812                 /* submit cached IPU IO */
3813                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3814                 if (ordered) {
3815                         wait_on_page_writeback(page);
3816                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3817                 } else {
3818                         wait_for_stable_page(page);
3819                 }
3820         }
3821 }
3822
3823 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3824 {
3825         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3826         struct page *cpage;
3827
3828         if (!f2fs_post_read_required(inode))
3829                 return;
3830
3831         if (!__is_valid_data_blkaddr(blkaddr))
3832                 return;
3833
3834         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3835         if (cpage) {
3836                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3837                 f2fs_put_page(cpage, 1);
3838         }
3839 }
3840
3841 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3842                                                                 block_t len)
3843 {
3844         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3845         block_t i;
3846
3847         if (!f2fs_post_read_required(inode))
3848                 return;
3849
3850         for (i = 0; i < len; i++)
3851                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3852
3853         invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3854 }
3855
3856 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3857 {
3858         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3859         struct curseg_info *seg_i;
3860         unsigned char *kaddr;
3861         struct page *page;
3862         block_t start;
3863         int i, j, offset;
3864
3865         start = start_sum_block(sbi);
3866
3867         page = f2fs_get_meta_page(sbi, start++);
3868         if (IS_ERR(page))
3869                 return PTR_ERR(page);
3870         kaddr = (unsigned char *)page_address(page);
3871
3872         /* Step 1: restore nat cache */
3873         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3874         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3875
3876         /* Step 2: restore sit cache */
3877         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3878         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3879         offset = 2 * SUM_JOURNAL_SIZE;
3880
3881         /* Step 3: restore summary entries */
3882         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3883                 unsigned short blk_off;
3884                 unsigned int segno;
3885
3886                 seg_i = CURSEG_I(sbi, i);
3887                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3888                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3889                 seg_i->next_segno = segno;
3890                 reset_curseg(sbi, i, 0);
3891                 seg_i->alloc_type = ckpt->alloc_type[i];
3892                 seg_i->next_blkoff = blk_off;
3893
3894                 if (seg_i->alloc_type == SSR)
3895                         blk_off = sbi->blocks_per_seg;
3896
3897                 for (j = 0; j < blk_off; j++) {
3898                         struct f2fs_summary *s;
3899
3900                         s = (struct f2fs_summary *)(kaddr + offset);
3901                         seg_i->sum_blk->entries[j] = *s;
3902                         offset += SUMMARY_SIZE;
3903                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3904                                                 SUM_FOOTER_SIZE)
3905                                 continue;
3906
3907                         f2fs_put_page(page, 1);
3908                         page = NULL;
3909
3910                         page = f2fs_get_meta_page(sbi, start++);
3911                         if (IS_ERR(page))
3912                                 return PTR_ERR(page);
3913                         kaddr = (unsigned char *)page_address(page);
3914                         offset = 0;
3915                 }
3916         }
3917         f2fs_put_page(page, 1);
3918         return 0;
3919 }
3920
3921 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3922 {
3923         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3924         struct f2fs_summary_block *sum;
3925         struct curseg_info *curseg;
3926         struct page *new;
3927         unsigned short blk_off;
3928         unsigned int segno = 0;
3929         block_t blk_addr = 0;
3930         int err = 0;
3931
3932         /* get segment number and block addr */
3933         if (IS_DATASEG(type)) {
3934                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3935                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3936                                                         CURSEG_HOT_DATA]);
3937                 if (__exist_node_summaries(sbi))
3938                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3939                 else
3940                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3941         } else {
3942                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3943                                                         CURSEG_HOT_NODE]);
3944                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3945                                                         CURSEG_HOT_NODE]);
3946                 if (__exist_node_summaries(sbi))
3947                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3948                                                         type - CURSEG_HOT_NODE);
3949                 else
3950                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3951         }
3952
3953         new = f2fs_get_meta_page(sbi, blk_addr);
3954         if (IS_ERR(new))
3955                 return PTR_ERR(new);
3956         sum = (struct f2fs_summary_block *)page_address(new);
3957
3958         if (IS_NODESEG(type)) {
3959                 if (__exist_node_summaries(sbi)) {
3960                         struct f2fs_summary *ns = &sum->entries[0];
3961                         int i;
3962
3963                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3964                                 ns->version = 0;
3965                                 ns->ofs_in_node = 0;
3966                         }
3967                 } else {
3968                         err = f2fs_restore_node_summary(sbi, segno, sum);
3969                         if (err)
3970                                 goto out;
3971                 }
3972         }
3973
3974         /* set uncompleted segment to curseg */
3975         curseg = CURSEG_I(sbi, type);
3976         mutex_lock(&curseg->curseg_mutex);
3977
3978         /* update journal info */
3979         down_write(&curseg->journal_rwsem);
3980         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3981         up_write(&curseg->journal_rwsem);
3982
3983         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3984         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3985         curseg->next_segno = segno;
3986         reset_curseg(sbi, type, 0);
3987         curseg->alloc_type = ckpt->alloc_type[type];
3988         curseg->next_blkoff = blk_off;
3989         mutex_unlock(&curseg->curseg_mutex);
3990 out:
3991         f2fs_put_page(new, 1);
3992         return err;
3993 }
3994
3995 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3996 {
3997         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3998         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3999         int type = CURSEG_HOT_DATA;
4000         int err;
4001
4002         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4003                 int npages = f2fs_npages_for_summary_flush(sbi, true);
4004
4005                 if (npages >= 2)
4006                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4007                                                         META_CP, true);
4008
4009                 /* restore for compacted data summary */
4010                 err = read_compacted_summaries(sbi);
4011                 if (err)
4012                         return err;
4013                 type = CURSEG_HOT_NODE;
4014         }
4015
4016         if (__exist_node_summaries(sbi))
4017                 f2fs_ra_meta_pages(sbi,
4018                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4019                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4020
4021         for (; type <= CURSEG_COLD_NODE; type++) {
4022                 err = read_normal_summaries(sbi, type);
4023                 if (err)
4024                         return err;
4025         }
4026
4027         /* sanity check for summary blocks */
4028         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4029                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4030                 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4031                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4032                 return -EINVAL;
4033         }
4034
4035         return 0;
4036 }
4037
4038 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4039 {
4040         struct page *page;
4041         unsigned char *kaddr;
4042         struct f2fs_summary *summary;
4043         struct curseg_info *seg_i;
4044         int written_size = 0;
4045         int i, j;
4046
4047         page = f2fs_grab_meta_page(sbi, blkaddr++);
4048         kaddr = (unsigned char *)page_address(page);
4049         memset(kaddr, 0, PAGE_SIZE);
4050
4051         /* Step 1: write nat cache */
4052         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4053         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4054         written_size += SUM_JOURNAL_SIZE;
4055
4056         /* Step 2: write sit cache */
4057         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4058         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4059         written_size += SUM_JOURNAL_SIZE;
4060
4061         /* Step 3: write summary entries */
4062         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4063                 seg_i = CURSEG_I(sbi, i);
4064                 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4065                         if (!page) {
4066                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
4067                                 kaddr = (unsigned char *)page_address(page);
4068                                 memset(kaddr, 0, PAGE_SIZE);
4069                                 written_size = 0;
4070                         }
4071                         summary = (struct f2fs_summary *)(kaddr + written_size);
4072                         *summary = seg_i->sum_blk->entries[j];
4073                         written_size += SUMMARY_SIZE;
4074
4075                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4076                                                         SUM_FOOTER_SIZE)
4077                                 continue;
4078
4079                         set_page_dirty(page);
4080                         f2fs_put_page(page, 1);
4081                         page = NULL;
4082                 }
4083         }
4084         if (page) {
4085                 set_page_dirty(page);
4086                 f2fs_put_page(page, 1);
4087         }
4088 }
4089
4090 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4091                                         block_t blkaddr, int type)
4092 {
4093         int i, end;
4094
4095         if (IS_DATASEG(type))
4096                 end = type + NR_CURSEG_DATA_TYPE;
4097         else
4098                 end = type + NR_CURSEG_NODE_TYPE;
4099
4100         for (i = type; i < end; i++)
4101                 write_current_sum_page(sbi, i, blkaddr + (i - type));
4102 }
4103
4104 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4105 {
4106         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4107                 write_compacted_summaries(sbi, start_blk);
4108         else
4109                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4110 }
4111
4112 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4113 {
4114         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4115 }
4116
4117 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4118                                         unsigned int val, int alloc)
4119 {
4120         int i;
4121
4122         if (type == NAT_JOURNAL) {
4123                 for (i = 0; i < nats_in_cursum(journal); i++) {
4124                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4125                                 return i;
4126                 }
4127                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4128                         return update_nats_in_cursum(journal, 1);
4129         } else if (type == SIT_JOURNAL) {
4130                 for (i = 0; i < sits_in_cursum(journal); i++)
4131                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4132                                 return i;
4133                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4134                         return update_sits_in_cursum(journal, 1);
4135         }
4136         return -1;
4137 }
4138
4139 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4140                                         unsigned int segno)
4141 {
4142         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4143 }
4144
4145 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4146                                         unsigned int start)
4147 {
4148         struct sit_info *sit_i = SIT_I(sbi);
4149         struct page *page;
4150         pgoff_t src_off, dst_off;
4151
4152         src_off = current_sit_addr(sbi, start);
4153         dst_off = next_sit_addr(sbi, src_off);
4154
4155         page = f2fs_grab_meta_page(sbi, dst_off);
4156         seg_info_to_sit_page(sbi, page, start);
4157
4158         set_page_dirty(page);
4159         set_to_next_sit(sit_i, start);
4160
4161         return page;
4162 }
4163
4164 static struct sit_entry_set *grab_sit_entry_set(void)
4165 {
4166         struct sit_entry_set *ses =
4167                         f2fs_kmem_cache_alloc(sit_entry_set_slab,
4168                                                 GFP_NOFS, true, NULL);
4169
4170         ses->entry_cnt = 0;
4171         INIT_LIST_HEAD(&ses->set_list);
4172         return ses;
4173 }
4174
4175 static void release_sit_entry_set(struct sit_entry_set *ses)
4176 {
4177         list_del(&ses->set_list);
4178         kmem_cache_free(sit_entry_set_slab, ses);
4179 }
4180
4181 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4182                                                 struct list_head *head)
4183 {
4184         struct sit_entry_set *next = ses;
4185
4186         if (list_is_last(&ses->set_list, head))
4187                 return;
4188
4189         list_for_each_entry_continue(next, head, set_list)
4190                 if (ses->entry_cnt <= next->entry_cnt) {
4191                         list_move_tail(&ses->set_list, &next->set_list);
4192                         return;
4193                 }
4194
4195         list_move_tail(&ses->set_list, head);
4196 }
4197
4198 static void add_sit_entry(unsigned int segno, struct list_head *head)
4199 {
4200         struct sit_entry_set *ses;
4201         unsigned int start_segno = START_SEGNO(segno);
4202
4203         list_for_each_entry(ses, head, set_list) {
4204                 if (ses->start_segno == start_segno) {
4205                         ses->entry_cnt++;
4206                         adjust_sit_entry_set(ses, head);
4207                         return;
4208                 }
4209         }
4210
4211         ses = grab_sit_entry_set();
4212
4213         ses->start_segno = start_segno;
4214         ses->entry_cnt++;
4215         list_add(&ses->set_list, head);
4216 }
4217
4218 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4219 {
4220         struct f2fs_sm_info *sm_info = SM_I(sbi);
4221         struct list_head *set_list = &sm_info->sit_entry_set;
4222         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4223         unsigned int segno;
4224
4225         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4226                 add_sit_entry(segno, set_list);
4227 }
4228
4229 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4230 {
4231         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4232         struct f2fs_journal *journal = curseg->journal;
4233         int i;
4234
4235         down_write(&curseg->journal_rwsem);
4236         for (i = 0; i < sits_in_cursum(journal); i++) {
4237                 unsigned int segno;
4238                 bool dirtied;
4239
4240                 segno = le32_to_cpu(segno_in_journal(journal, i));
4241                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4242
4243                 if (!dirtied)
4244                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4245         }
4246         update_sits_in_cursum(journal, -i);
4247         up_write(&curseg->journal_rwsem);
4248 }
4249
4250 /*
4251  * CP calls this function, which flushes SIT entries including sit_journal,
4252  * and moves prefree segs to free segs.
4253  */
4254 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4255 {
4256         struct sit_info *sit_i = SIT_I(sbi);
4257         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4258         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4259         struct f2fs_journal *journal = curseg->journal;
4260         struct sit_entry_set *ses, *tmp;
4261         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4262         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4263         struct seg_entry *se;
4264
4265         down_write(&sit_i->sentry_lock);
4266
4267         if (!sit_i->dirty_sentries)
4268                 goto out;
4269
4270         /*
4271          * add and account sit entries of dirty bitmap in sit entry
4272          * set temporarily
4273          */
4274         add_sits_in_set(sbi);
4275
4276         /*
4277          * if there are no enough space in journal to store dirty sit
4278          * entries, remove all entries from journal and add and account
4279          * them in sit entry set.
4280          */
4281         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4282                                                                 !to_journal)
4283                 remove_sits_in_journal(sbi);
4284
4285         /*
4286          * there are two steps to flush sit entries:
4287          * #1, flush sit entries to journal in current cold data summary block.
4288          * #2, flush sit entries to sit page.
4289          */
4290         list_for_each_entry_safe(ses, tmp, head, set_list) {
4291                 struct page *page = NULL;
4292                 struct f2fs_sit_block *raw_sit = NULL;
4293                 unsigned int start_segno = ses->start_segno;
4294                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4295                                                 (unsigned long)MAIN_SEGS(sbi));
4296                 unsigned int segno = start_segno;
4297
4298                 if (to_journal &&
4299                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4300                         to_journal = false;
4301
4302                 if (to_journal) {
4303                         down_write(&curseg->journal_rwsem);
4304                 } else {
4305                         page = get_next_sit_page(sbi, start_segno);
4306                         raw_sit = page_address(page);
4307                 }
4308
4309                 /* flush dirty sit entries in region of current sit set */
4310                 for_each_set_bit_from(segno, bitmap, end) {
4311                         int offset, sit_offset;
4312
4313                         se = get_seg_entry(sbi, segno);
4314 #ifdef CONFIG_F2FS_CHECK_FS
4315                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4316                                                 SIT_VBLOCK_MAP_SIZE))
4317                                 f2fs_bug_on(sbi, 1);
4318 #endif
4319
4320                         /* add discard candidates */
4321                         if (!(cpc->reason & CP_DISCARD)) {
4322                                 cpc->trim_start = segno;
4323                                 add_discard_addrs(sbi, cpc, false);
4324                         }
4325
4326                         if (to_journal) {
4327                                 offset = f2fs_lookup_journal_in_cursum(journal,
4328                                                         SIT_JOURNAL, segno, 1);
4329                                 f2fs_bug_on(sbi, offset < 0);
4330                                 segno_in_journal(journal, offset) =
4331                                                         cpu_to_le32(segno);
4332                                 seg_info_to_raw_sit(se,
4333                                         &sit_in_journal(journal, offset));
4334                                 check_block_count(sbi, segno,
4335                                         &sit_in_journal(journal, offset));
4336                         } else {
4337                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4338                                 seg_info_to_raw_sit(se,
4339                                                 &raw_sit->entries[sit_offset]);
4340                                 check_block_count(sbi, segno,
4341                                                 &raw_sit->entries[sit_offset]);
4342                         }
4343
4344                         __clear_bit(segno, bitmap);
4345                         sit_i->dirty_sentries--;
4346                         ses->entry_cnt--;
4347                 }
4348
4349                 if (to_journal)
4350                         up_write(&curseg->journal_rwsem);
4351                 else
4352                         f2fs_put_page(page, 1);
4353
4354                 f2fs_bug_on(sbi, ses->entry_cnt);
4355                 release_sit_entry_set(ses);
4356         }
4357
4358         f2fs_bug_on(sbi, !list_empty(head));
4359         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4360 out:
4361         if (cpc->reason & CP_DISCARD) {
4362                 __u64 trim_start = cpc->trim_start;
4363
4364                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4365                         add_discard_addrs(sbi, cpc, false);
4366
4367                 cpc->trim_start = trim_start;
4368         }
4369         up_write(&sit_i->sentry_lock);
4370
4371         set_prefree_as_free_segments(sbi);
4372 }
4373
4374 static int build_sit_info(struct f2fs_sb_info *sbi)
4375 {
4376         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4377         struct sit_info *sit_i;
4378         unsigned int sit_segs, start;
4379         char *src_bitmap, *bitmap;
4380         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4381         unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4382
4383         /* allocate memory for SIT information */
4384         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4385         if (!sit_i)
4386                 return -ENOMEM;
4387
4388         SM_I(sbi)->sit_info = sit_i;
4389
4390         sit_i->sentries =
4391                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4392                                               MAIN_SEGS(sbi)),
4393                               GFP_KERNEL);
4394         if (!sit_i->sentries)
4395                 return -ENOMEM;
4396
4397         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4398         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4399                                                                 GFP_KERNEL);
4400         if (!sit_i->dirty_sentries_bitmap)
4401                 return -ENOMEM;
4402
4403 #ifdef CONFIG_F2FS_CHECK_FS
4404         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4405 #else
4406         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4407 #endif
4408         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4409         if (!sit_i->bitmap)
4410                 return -ENOMEM;
4411
4412         bitmap = sit_i->bitmap;
4413
4414         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4415                 sit_i->sentries[start].cur_valid_map = bitmap;
4416                 bitmap += SIT_VBLOCK_MAP_SIZE;
4417
4418                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4419                 bitmap += SIT_VBLOCK_MAP_SIZE;
4420
4421 #ifdef CONFIG_F2FS_CHECK_FS
4422                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4423                 bitmap += SIT_VBLOCK_MAP_SIZE;
4424 #endif
4425
4426                 if (discard_map) {
4427                         sit_i->sentries[start].discard_map = bitmap;
4428                         bitmap += SIT_VBLOCK_MAP_SIZE;
4429                 }
4430         }
4431
4432         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4433         if (!sit_i->tmp_map)
4434                 return -ENOMEM;
4435
4436         if (__is_large_section(sbi)) {
4437                 sit_i->sec_entries =
4438                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4439                                                       MAIN_SECS(sbi)),
4440                                       GFP_KERNEL);
4441                 if (!sit_i->sec_entries)
4442                         return -ENOMEM;
4443         }
4444
4445         /* get information related with SIT */
4446         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4447
4448         /* setup SIT bitmap from ckeckpoint pack */
4449         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4450         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4451
4452         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4453         if (!sit_i->sit_bitmap)
4454                 return -ENOMEM;
4455
4456 #ifdef CONFIG_F2FS_CHECK_FS
4457         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4458                                         sit_bitmap_size, GFP_KERNEL);
4459         if (!sit_i->sit_bitmap_mir)
4460                 return -ENOMEM;
4461
4462         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4463                                         main_bitmap_size, GFP_KERNEL);
4464         if (!sit_i->invalid_segmap)
4465                 return -ENOMEM;
4466 #endif
4467
4468         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4469         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4470         sit_i->written_valid_blocks = 0;
4471         sit_i->bitmap_size = sit_bitmap_size;
4472         sit_i->dirty_sentries = 0;
4473         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4474         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4475         sit_i->mounted_time = ktime_get_boottime_seconds();
4476         init_rwsem(&sit_i->sentry_lock);
4477         return 0;
4478 }
4479
4480 static int build_free_segmap(struct f2fs_sb_info *sbi)
4481 {
4482         struct free_segmap_info *free_i;
4483         unsigned int bitmap_size, sec_bitmap_size;
4484
4485         /* allocate memory for free segmap information */
4486         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4487         if (!free_i)
4488                 return -ENOMEM;
4489
4490         SM_I(sbi)->free_info = free_i;
4491
4492         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4493         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4494         if (!free_i->free_segmap)
4495                 return -ENOMEM;
4496
4497         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4498         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4499         if (!free_i->free_secmap)
4500                 return -ENOMEM;
4501
4502         /* set all segments as dirty temporarily */
4503         memset(free_i->free_segmap, 0xff, bitmap_size);
4504         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4505
4506         /* init free segmap information */
4507         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4508         free_i->free_segments = 0;
4509         free_i->free_sections = 0;
4510         spin_lock_init(&free_i->segmap_lock);
4511         return 0;
4512 }
4513
4514 static int build_curseg(struct f2fs_sb_info *sbi)
4515 {
4516         struct curseg_info *array;
4517         int i;
4518
4519         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4520                                         sizeof(*array)), GFP_KERNEL);
4521         if (!array)
4522                 return -ENOMEM;
4523
4524         SM_I(sbi)->curseg_array = array;
4525
4526         for (i = 0; i < NO_CHECK_TYPE; i++) {
4527                 mutex_init(&array[i].curseg_mutex);
4528                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4529                 if (!array[i].sum_blk)
4530                         return -ENOMEM;
4531                 init_rwsem(&array[i].journal_rwsem);
4532                 array[i].journal = f2fs_kzalloc(sbi,
4533                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4534                 if (!array[i].journal)
4535                         return -ENOMEM;
4536                 if (i < NR_PERSISTENT_LOG)
4537                         array[i].seg_type = CURSEG_HOT_DATA + i;
4538                 else if (i == CURSEG_COLD_DATA_PINNED)
4539                         array[i].seg_type = CURSEG_COLD_DATA;
4540                 else if (i == CURSEG_ALL_DATA_ATGC)
4541                         array[i].seg_type = CURSEG_COLD_DATA;
4542                 array[i].segno = NULL_SEGNO;
4543                 array[i].next_blkoff = 0;
4544                 array[i].inited = false;
4545         }
4546         return restore_curseg_summaries(sbi);
4547 }
4548
4549 static int build_sit_entries(struct f2fs_sb_info *sbi)
4550 {
4551         struct sit_info *sit_i = SIT_I(sbi);
4552         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4553         struct f2fs_journal *journal = curseg->journal;
4554         struct seg_entry *se;
4555         struct f2fs_sit_entry sit;
4556         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4557         unsigned int i, start, end;
4558         unsigned int readed, start_blk = 0;
4559         int err = 0;
4560         block_t sit_valid_blocks[2] = {0, 0};
4561
4562         do {
4563                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4564                                                         META_SIT, true);
4565
4566                 start = start_blk * sit_i->sents_per_block;
4567                 end = (start_blk + readed) * sit_i->sents_per_block;
4568
4569                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4570                         struct f2fs_sit_block *sit_blk;
4571                         struct page *page;
4572
4573                         se = &sit_i->sentries[start];
4574                         page = get_current_sit_page(sbi, start);
4575                         if (IS_ERR(page))
4576                                 return PTR_ERR(page);
4577                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4578                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4579                         f2fs_put_page(page, 1);
4580
4581                         err = check_block_count(sbi, start, &sit);
4582                         if (err)
4583                                 return err;
4584                         seg_info_from_raw_sit(se, &sit);
4585
4586                         if (se->type >= NR_PERSISTENT_LOG) {
4587                                 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4588                                                         se->type, start);
4589                                 f2fs_handle_error(sbi,
4590                                                 ERROR_INCONSISTENT_SUM_TYPE);
4591                                 return -EFSCORRUPTED;
4592                         }
4593
4594                         sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4595
4596                         if (f2fs_block_unit_discard(sbi)) {
4597                                 /* build discard map only one time */
4598                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4599                                         memset(se->discard_map, 0xff,
4600                                                 SIT_VBLOCK_MAP_SIZE);
4601                                 } else {
4602                                         memcpy(se->discard_map,
4603                                                 se->cur_valid_map,
4604                                                 SIT_VBLOCK_MAP_SIZE);
4605                                         sbi->discard_blks +=
4606                                                 sbi->blocks_per_seg -
4607                                                 se->valid_blocks;
4608                                 }
4609                         }
4610
4611                         if (__is_large_section(sbi))
4612                                 get_sec_entry(sbi, start)->valid_blocks +=
4613                                                         se->valid_blocks;
4614                 }
4615                 start_blk += readed;
4616         } while (start_blk < sit_blk_cnt);
4617
4618         down_read(&curseg->journal_rwsem);
4619         for (i = 0; i < sits_in_cursum(journal); i++) {
4620                 unsigned int old_valid_blocks;
4621
4622                 start = le32_to_cpu(segno_in_journal(journal, i));
4623                 if (start >= MAIN_SEGS(sbi)) {
4624                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4625                                  start);
4626                         err = -EFSCORRUPTED;
4627                         f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4628                         break;
4629                 }
4630
4631                 se = &sit_i->sentries[start];
4632                 sit = sit_in_journal(journal, i);
4633
4634                 old_valid_blocks = se->valid_blocks;
4635
4636                 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4637
4638                 err = check_block_count(sbi, start, &sit);
4639                 if (err)
4640                         break;
4641                 seg_info_from_raw_sit(se, &sit);
4642
4643                 if (se->type >= NR_PERSISTENT_LOG) {
4644                         f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4645                                                         se->type, start);
4646                         err = -EFSCORRUPTED;
4647                         f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4648                         break;
4649                 }
4650
4651                 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4652
4653                 if (f2fs_block_unit_discard(sbi)) {
4654                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4655                                 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4656                         } else {
4657                                 memcpy(se->discard_map, se->cur_valid_map,
4658                                                         SIT_VBLOCK_MAP_SIZE);
4659                                 sbi->discard_blks += old_valid_blocks;
4660                                 sbi->discard_blks -= se->valid_blocks;
4661                         }
4662                 }
4663
4664                 if (__is_large_section(sbi)) {
4665                         get_sec_entry(sbi, start)->valid_blocks +=
4666                                                         se->valid_blocks;
4667                         get_sec_entry(sbi, start)->valid_blocks -=
4668                                                         old_valid_blocks;
4669                 }
4670         }
4671         up_read(&curseg->journal_rwsem);
4672
4673         if (err)
4674                 return err;
4675
4676         if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4677                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4678                          sit_valid_blocks[NODE], valid_node_count(sbi));
4679                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4680                 return -EFSCORRUPTED;
4681         }
4682
4683         if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4684                                 valid_user_blocks(sbi)) {
4685                 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4686                          sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4687                          valid_user_blocks(sbi));
4688                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4689                 return -EFSCORRUPTED;
4690         }
4691
4692         return 0;
4693 }
4694
4695 static void init_free_segmap(struct f2fs_sb_info *sbi)
4696 {
4697         unsigned int start;
4698         int type;
4699         struct seg_entry *sentry;
4700
4701         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4702                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4703                         continue;
4704                 sentry = get_seg_entry(sbi, start);
4705                 if (!sentry->valid_blocks)
4706                         __set_free(sbi, start);
4707                 else
4708                         SIT_I(sbi)->written_valid_blocks +=
4709                                                 sentry->valid_blocks;
4710         }
4711
4712         /* set use the current segments */
4713         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4714                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4715
4716                 __set_test_and_inuse(sbi, curseg_t->segno);
4717         }
4718 }
4719
4720 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4721 {
4722         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4723         struct free_segmap_info *free_i = FREE_I(sbi);
4724         unsigned int segno = 0, offset = 0, secno;
4725         block_t valid_blocks, usable_blks_in_seg;
4726
4727         while (1) {
4728                 /* find dirty segment based on free segmap */
4729                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4730                 if (segno >= MAIN_SEGS(sbi))
4731                         break;
4732                 offset = segno + 1;
4733                 valid_blocks = get_valid_blocks(sbi, segno, false);
4734                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4735                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4736                         continue;
4737                 if (valid_blocks > usable_blks_in_seg) {
4738                         f2fs_bug_on(sbi, 1);
4739                         continue;
4740                 }
4741                 mutex_lock(&dirty_i->seglist_lock);
4742                 __locate_dirty_segment(sbi, segno, DIRTY);
4743                 mutex_unlock(&dirty_i->seglist_lock);
4744         }
4745
4746         if (!__is_large_section(sbi))
4747                 return;
4748
4749         mutex_lock(&dirty_i->seglist_lock);
4750         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4751                 valid_blocks = get_valid_blocks(sbi, segno, true);
4752                 secno = GET_SEC_FROM_SEG(sbi, segno);
4753
4754                 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4755                         continue;
4756                 if (IS_CURSEC(sbi, secno))
4757                         continue;
4758                 set_bit(secno, dirty_i->dirty_secmap);
4759         }
4760         mutex_unlock(&dirty_i->seglist_lock);
4761 }
4762
4763 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4764 {
4765         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4766         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4767
4768         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4769         if (!dirty_i->victim_secmap)
4770                 return -ENOMEM;
4771
4772         dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4773         if (!dirty_i->pinned_secmap)
4774                 return -ENOMEM;
4775
4776         dirty_i->pinned_secmap_cnt = 0;
4777         dirty_i->enable_pin_section = true;
4778         return 0;
4779 }
4780
4781 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4782 {
4783         struct dirty_seglist_info *dirty_i;
4784         unsigned int bitmap_size, i;
4785
4786         /* allocate memory for dirty segments list information */
4787         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4788                                                                 GFP_KERNEL);
4789         if (!dirty_i)
4790                 return -ENOMEM;
4791
4792         SM_I(sbi)->dirty_info = dirty_i;
4793         mutex_init(&dirty_i->seglist_lock);
4794
4795         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4796
4797         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4798                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4799                                                                 GFP_KERNEL);
4800                 if (!dirty_i->dirty_segmap[i])
4801                         return -ENOMEM;
4802         }
4803
4804         if (__is_large_section(sbi)) {
4805                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4806                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4807                                                 bitmap_size, GFP_KERNEL);
4808                 if (!dirty_i->dirty_secmap)
4809                         return -ENOMEM;
4810         }
4811
4812         init_dirty_segmap(sbi);
4813         return init_victim_secmap(sbi);
4814 }
4815
4816 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4817 {
4818         int i;
4819
4820         /*
4821          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4822          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4823          */
4824         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4825                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4826                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4827                 unsigned int blkofs = curseg->next_blkoff;
4828
4829                 if (f2fs_sb_has_readonly(sbi) &&
4830                         i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4831                         continue;
4832
4833                 sanity_check_seg_type(sbi, curseg->seg_type);
4834
4835                 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4836                         f2fs_err(sbi,
4837                                  "Current segment has invalid alloc_type:%d",
4838                                  curseg->alloc_type);
4839                         f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4840                         return -EFSCORRUPTED;
4841                 }
4842
4843                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4844                         goto out;
4845
4846                 if (curseg->alloc_type == SSR)
4847                         continue;
4848
4849                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4850                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4851                                 continue;
4852 out:
4853                         f2fs_err(sbi,
4854                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4855                                  i, curseg->segno, curseg->alloc_type,
4856                                  curseg->next_blkoff, blkofs);
4857                         f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4858                         return -EFSCORRUPTED;
4859                 }
4860         }
4861         return 0;
4862 }
4863
4864 #ifdef CONFIG_BLK_DEV_ZONED
4865
4866 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4867                                     struct f2fs_dev_info *fdev,
4868                                     struct blk_zone *zone)
4869 {
4870         unsigned int zone_segno;
4871         block_t zone_block, valid_block_cnt;
4872         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4873         int ret;
4874         unsigned int nofs_flags;
4875
4876         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4877                 return 0;
4878
4879         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4880         zone_segno = GET_SEGNO(sbi, zone_block);
4881
4882         /*
4883          * Skip check of zones cursegs point to, since
4884          * fix_curseg_write_pointer() checks them.
4885          */
4886         if (zone_segno >= MAIN_SEGS(sbi) ||
4887             IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno)))
4888                 return 0;
4889
4890         /*
4891          * Get # of valid block of the zone.
4892          */
4893         valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
4894
4895         if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
4896             (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
4897                 return 0;
4898
4899         if (!valid_block_cnt) {
4900                 f2fs_notice(sbi, "Zone without valid block has non-zero write "
4901                             "pointer. Reset the write pointer: cond[0x%x]",
4902                             zone->cond);
4903                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4904                                         zone->len >> log_sectors_per_block);
4905                 if (ret)
4906                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4907                                  fdev->path, ret);
4908                 return ret;
4909         }
4910
4911         /*
4912          * If there are valid blocks and the write pointer doesn't match
4913          * with them, we need to report the inconsistency and fill
4914          * the zone till the end to close the zone. This inconsistency
4915          * does not cause write error because the zone will not be
4916          * selected for write operation until it get discarded.
4917          */
4918         f2fs_notice(sbi, "Valid blocks are not aligned with write "
4919                     "pointer: valid block[0x%x,0x%x] cond[0x%x]",
4920                     zone_segno, valid_block_cnt, zone->cond);
4921
4922         nofs_flags = memalloc_nofs_save();
4923         ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4924                                 zone->start, zone->len);
4925         memalloc_nofs_restore(nofs_flags);
4926         if (ret == -EOPNOTSUPP) {
4927                 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4928                                         zone->len - (zone->wp - zone->start),
4929                                         GFP_NOFS, 0);
4930                 if (ret)
4931                         f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4932                                         fdev->path, ret);
4933         } else if (ret) {
4934                 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4935                                 fdev->path, ret);
4936         }
4937
4938         return ret;
4939 }
4940
4941 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4942                                                   block_t zone_blkaddr)
4943 {
4944         int i;
4945
4946         for (i = 0; i < sbi->s_ndevs; i++) {
4947                 if (!bdev_is_zoned(FDEV(i).bdev))
4948                         continue;
4949                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4950                                 zone_blkaddr <= FDEV(i).end_blk))
4951                         return &FDEV(i);
4952         }
4953
4954         return NULL;
4955 }
4956
4957 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4958                               void *data)
4959 {
4960         memcpy(data, zone, sizeof(struct blk_zone));
4961         return 0;
4962 }
4963
4964 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4965 {
4966         struct curseg_info *cs = CURSEG_I(sbi, type);
4967         struct f2fs_dev_info *zbd;
4968         struct blk_zone zone;
4969         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4970         block_t cs_zone_block, wp_block;
4971         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4972         sector_t zone_sector;
4973         int err;
4974
4975         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4976         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4977
4978         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4979         if (!zbd)
4980                 return 0;
4981
4982         /* report zone for the sector the curseg points to */
4983         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4984                 << log_sectors_per_block;
4985         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4986                                   report_one_zone_cb, &zone);
4987         if (err != 1) {
4988                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4989                          zbd->path, err);
4990                 return err;
4991         }
4992
4993         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4994                 return 0;
4995
4996         /*
4997          * When safely unmounted in the previous mount, we could use current
4998          * segments. Otherwise, allocate new sections.
4999          */
5000         if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5001                 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5002                 wp_segno = GET_SEGNO(sbi, wp_block);
5003                 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5004                 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5005
5006                 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5007                                 wp_sector_off == 0)
5008                         return 0;
5009
5010                 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5011                             "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5012                             cs->next_blkoff, wp_segno, wp_blkoff);
5013         }
5014
5015         /* Allocate a new section if it's not new. */
5016         if (cs->next_blkoff) {
5017                 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5018
5019                 f2fs_allocate_new_section(sbi, type, true);
5020                 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5021                                 "[0x%x,0x%x] -> [0x%x,0x%x]",
5022                                 type, old_segno, old_blkoff,
5023                                 cs->segno, cs->next_blkoff);
5024         }
5025
5026         /* check consistency of the zone curseg pointed to */
5027         if (check_zone_write_pointer(sbi, zbd, &zone))
5028                 return -EIO;
5029
5030         /* check newly assigned zone */
5031         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5032         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5033
5034         zbd = get_target_zoned_dev(sbi, cs_zone_block);
5035         if (!zbd)
5036                 return 0;
5037
5038         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5039                 << log_sectors_per_block;
5040         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5041                                   report_one_zone_cb, &zone);
5042         if (err != 1) {
5043                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5044                          zbd->path, err);
5045                 return err;
5046         }
5047
5048         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5049                 return 0;
5050
5051         if (zone.wp != zone.start) {
5052                 f2fs_notice(sbi,
5053                             "New zone for curseg[%d] is not yet discarded. "
5054                             "Reset the zone: curseg[0x%x,0x%x]",
5055                             type, cs->segno, cs->next_blkoff);
5056                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5057                                         zone.len >> log_sectors_per_block);
5058                 if (err) {
5059                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5060                                  zbd->path, err);
5061                         return err;
5062                 }
5063         }
5064
5065         return 0;
5066 }
5067
5068 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5069 {
5070         int i, ret;
5071
5072         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5073                 ret = fix_curseg_write_pointer(sbi, i);
5074                 if (ret)
5075                         return ret;
5076         }
5077
5078         return 0;
5079 }
5080
5081 struct check_zone_write_pointer_args {
5082         struct f2fs_sb_info *sbi;
5083         struct f2fs_dev_info *fdev;
5084 };
5085
5086 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5087                                       void *data)
5088 {
5089         struct check_zone_write_pointer_args *args;
5090
5091         args = (struct check_zone_write_pointer_args *)data;
5092
5093         return check_zone_write_pointer(args->sbi, args->fdev, zone);
5094 }
5095
5096 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5097 {
5098         int i, ret;
5099         struct check_zone_write_pointer_args args;
5100
5101         for (i = 0; i < sbi->s_ndevs; i++) {
5102                 if (!bdev_is_zoned(FDEV(i).bdev))
5103                         continue;
5104
5105                 args.sbi = sbi;
5106                 args.fdev = &FDEV(i);
5107                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5108                                           check_zone_write_pointer_cb, &args);
5109                 if (ret < 0)
5110                         return ret;
5111         }
5112
5113         return 0;
5114 }
5115
5116 /*
5117  * Return the number of usable blocks in a segment. The number of blocks
5118  * returned is always equal to the number of blocks in a segment for
5119  * segments fully contained within a sequential zone capacity or a
5120  * conventional zone. For segments partially contained in a sequential
5121  * zone capacity, the number of usable blocks up to the zone capacity
5122  * is returned. 0 is returned in all other cases.
5123  */
5124 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5125                         struct f2fs_sb_info *sbi, unsigned int segno)
5126 {
5127         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5128         unsigned int secno;
5129
5130         if (!sbi->unusable_blocks_per_sec)
5131                 return sbi->blocks_per_seg;
5132
5133         secno = GET_SEC_FROM_SEG(sbi, segno);
5134         seg_start = START_BLOCK(sbi, segno);
5135         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5136         sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5137
5138         /*
5139          * If segment starts before zone capacity and spans beyond
5140          * zone capacity, then usable blocks are from seg start to
5141          * zone capacity. If the segment starts after the zone capacity,
5142          * then there are no usable blocks.
5143          */
5144         if (seg_start >= sec_cap_blkaddr)
5145                 return 0;
5146         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5147                 return sec_cap_blkaddr - seg_start;
5148
5149         return sbi->blocks_per_seg;
5150 }
5151 #else
5152 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5153 {
5154         return 0;
5155 }
5156
5157 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5158 {
5159         return 0;
5160 }
5161
5162 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5163                                                         unsigned int segno)
5164 {
5165         return 0;
5166 }
5167
5168 #endif
5169 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5170                                         unsigned int segno)
5171 {
5172         if (f2fs_sb_has_blkzoned(sbi))
5173                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5174
5175         return sbi->blocks_per_seg;
5176 }
5177
5178 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5179                                         unsigned int segno)
5180 {
5181         if (f2fs_sb_has_blkzoned(sbi))
5182                 return CAP_SEGS_PER_SEC(sbi);
5183
5184         return sbi->segs_per_sec;
5185 }
5186
5187 /*
5188  * Update min, max modified time for cost-benefit GC algorithm
5189  */
5190 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5191 {
5192         struct sit_info *sit_i = SIT_I(sbi);
5193         unsigned int segno;
5194
5195         down_write(&sit_i->sentry_lock);
5196
5197         sit_i->min_mtime = ULLONG_MAX;
5198
5199         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5200                 unsigned int i;
5201                 unsigned long long mtime = 0;
5202
5203                 for (i = 0; i < sbi->segs_per_sec; i++)
5204                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5205
5206                 mtime = div_u64(mtime, sbi->segs_per_sec);
5207
5208                 if (sit_i->min_mtime > mtime)
5209                         sit_i->min_mtime = mtime;
5210         }
5211         sit_i->max_mtime = get_mtime(sbi, false);
5212         sit_i->dirty_max_mtime = 0;
5213         up_write(&sit_i->sentry_lock);
5214 }
5215
5216 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5217 {
5218         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5219         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5220         struct f2fs_sm_info *sm_info;
5221         int err;
5222
5223         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5224         if (!sm_info)
5225                 return -ENOMEM;
5226
5227         /* init sm info */
5228         sbi->sm_info = sm_info;
5229         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5230         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5231         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5232         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5233         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5234         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5235         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5236         sm_info->rec_prefree_segments = sm_info->main_segments *
5237                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5238         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5239                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5240
5241         if (!f2fs_lfs_mode(sbi))
5242                 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5243         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5244         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5245         sm_info->min_seq_blocks = sbi->blocks_per_seg;
5246         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5247         sm_info->min_ssr_sections = reserved_sections(sbi);
5248
5249         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5250
5251         init_f2fs_rwsem(&sm_info->curseg_lock);
5252
5253         err = f2fs_create_flush_cmd_control(sbi);
5254         if (err)
5255                 return err;
5256
5257         err = create_discard_cmd_control(sbi);
5258         if (err)
5259                 return err;
5260
5261         err = build_sit_info(sbi);
5262         if (err)
5263                 return err;
5264         err = build_free_segmap(sbi);
5265         if (err)
5266                 return err;
5267         err = build_curseg(sbi);
5268         if (err)
5269                 return err;
5270
5271         /* reinit free segmap based on SIT */
5272         err = build_sit_entries(sbi);
5273         if (err)
5274                 return err;
5275
5276         init_free_segmap(sbi);
5277         err = build_dirty_segmap(sbi);
5278         if (err)
5279                 return err;
5280
5281         err = sanity_check_curseg(sbi);
5282         if (err)
5283                 return err;
5284
5285         init_min_max_mtime(sbi);
5286         return 0;
5287 }
5288
5289 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5290                 enum dirty_type dirty_type)
5291 {
5292         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5293
5294         mutex_lock(&dirty_i->seglist_lock);
5295         kvfree(dirty_i->dirty_segmap[dirty_type]);
5296         dirty_i->nr_dirty[dirty_type] = 0;
5297         mutex_unlock(&dirty_i->seglist_lock);
5298 }
5299
5300 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5301 {
5302         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5303
5304         kvfree(dirty_i->pinned_secmap);
5305         kvfree(dirty_i->victim_secmap);
5306 }
5307
5308 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5309 {
5310         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5311         int i;
5312
5313         if (!dirty_i)
5314                 return;
5315
5316         /* discard pre-free/dirty segments list */
5317         for (i = 0; i < NR_DIRTY_TYPE; i++)
5318                 discard_dirty_segmap(sbi, i);
5319
5320         if (__is_large_section(sbi)) {
5321                 mutex_lock(&dirty_i->seglist_lock);
5322                 kvfree(dirty_i->dirty_secmap);
5323                 mutex_unlock(&dirty_i->seglist_lock);
5324         }
5325
5326         destroy_victim_secmap(sbi);
5327         SM_I(sbi)->dirty_info = NULL;
5328         kfree(dirty_i);
5329 }
5330
5331 static void destroy_curseg(struct f2fs_sb_info *sbi)
5332 {
5333         struct curseg_info *array = SM_I(sbi)->curseg_array;
5334         int i;
5335
5336         if (!array)
5337                 return;
5338         SM_I(sbi)->curseg_array = NULL;
5339         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5340                 kfree(array[i].sum_blk);
5341                 kfree(array[i].journal);
5342         }
5343         kfree(array);
5344 }
5345
5346 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5347 {
5348         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5349
5350         if (!free_i)
5351                 return;
5352         SM_I(sbi)->free_info = NULL;
5353         kvfree(free_i->free_segmap);
5354         kvfree(free_i->free_secmap);
5355         kfree(free_i);
5356 }
5357
5358 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5359 {
5360         struct sit_info *sit_i = SIT_I(sbi);
5361
5362         if (!sit_i)
5363                 return;
5364
5365         if (sit_i->sentries)
5366                 kvfree(sit_i->bitmap);
5367         kfree(sit_i->tmp_map);
5368
5369         kvfree(sit_i->sentries);
5370         kvfree(sit_i->sec_entries);
5371         kvfree(sit_i->dirty_sentries_bitmap);
5372
5373         SM_I(sbi)->sit_info = NULL;
5374         kvfree(sit_i->sit_bitmap);
5375 #ifdef CONFIG_F2FS_CHECK_FS
5376         kvfree(sit_i->sit_bitmap_mir);
5377         kvfree(sit_i->invalid_segmap);
5378 #endif
5379         kfree(sit_i);
5380 }
5381
5382 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5383 {
5384         struct f2fs_sm_info *sm_info = SM_I(sbi);
5385
5386         if (!sm_info)
5387                 return;
5388         f2fs_destroy_flush_cmd_control(sbi, true);
5389         destroy_discard_cmd_control(sbi);
5390         destroy_dirty_segmap(sbi);
5391         destroy_curseg(sbi);
5392         destroy_free_segmap(sbi);
5393         destroy_sit_info(sbi);
5394         sbi->sm_info = NULL;
5395         kfree(sm_info);
5396 }
5397
5398 int __init f2fs_create_segment_manager_caches(void)
5399 {
5400         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5401                         sizeof(struct discard_entry));
5402         if (!discard_entry_slab)
5403                 goto fail;
5404
5405         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5406                         sizeof(struct discard_cmd));
5407         if (!discard_cmd_slab)
5408                 goto destroy_discard_entry;
5409
5410         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5411                         sizeof(struct sit_entry_set));
5412         if (!sit_entry_set_slab)
5413                 goto destroy_discard_cmd;
5414
5415         revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5416                         sizeof(struct revoke_entry));
5417         if (!revoke_entry_slab)
5418                 goto destroy_sit_entry_set;
5419         return 0;
5420
5421 destroy_sit_entry_set:
5422         kmem_cache_destroy(sit_entry_set_slab);
5423 destroy_discard_cmd:
5424         kmem_cache_destroy(discard_cmd_slab);
5425 destroy_discard_entry:
5426         kmem_cache_destroy(discard_entry_slab);
5427 fail:
5428         return -ENOMEM;
5429 }
5430
5431 void f2fs_destroy_segment_manager_caches(void)
5432 {
5433         kmem_cache_destroy(sit_entry_set_slab);
5434         kmem_cache_destroy(discard_cmd_slab);
5435         kmem_cache_destroy(discard_entry_slab);
5436         kmem_cache_destroy(revoke_entry_slab);
5437 }