Merge tag 'linux-watchdog-5.7-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux-2.6-block.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (f2fs_lfs_mode(sbi))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189
190         f2fs_trace_pid(page);
191
192         f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC,
249                                                         DEFAULT_IO_TIMEOUT);
250                                         cond_resched();
251                                         goto retry;
252                                 }
253                                 err = -EAGAIN;
254                                 goto next;
255                         }
256
257                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
258                         if (err) {
259                                 f2fs_put_dnode(&dn);
260                                 return err;
261                         }
262
263                         if (cur->old_addr == NEW_ADDR) {
264                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266                         } else
267                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268                                         cur->old_addr, ni.version, true, true);
269                         f2fs_put_dnode(&dn);
270                 }
271 next:
272                 /* we don't need to invalidate this in the sccessful status */
273                 if (drop || recover) {
274                         ClearPageUptodate(page);
275                         clear_cold_data(page);
276                 }
277                 f2fs_clear_page_private(page);
278                 f2fs_put_page(page, 1);
279
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317         cond_resched();
318         if (gc_failure) {
319                 if (++looped >= count)
320                         return;
321         }
322         goto next;
323 }
324
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328         struct f2fs_inode_info *fi = F2FS_I(inode);
329
330         while (!list_empty(&fi->inmem_pages)) {
331                 mutex_lock(&fi->inmem_lock);
332                 __revoke_inmem_pages(inode, &fi->inmem_pages,
333                                                 true, false, true);
334                 mutex_unlock(&fi->inmem_lock);
335         }
336
337         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338
339         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340         if (!list_empty(&fi->inmem_ilist))
341                 list_del_init(&fi->inmem_ilist);
342         if (f2fs_is_atomic_file(inode)) {
343                 clear_inode_flag(inode, FI_ATOMIC_FILE);
344                 sbi->atomic_files--;
345         }
346         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351         struct f2fs_inode_info *fi = F2FS_I(inode);
352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353         struct list_head *head = &fi->inmem_pages;
354         struct inmem_pages *cur = NULL;
355
356         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358         mutex_lock(&fi->inmem_lock);
359         list_for_each_entry(cur, head, list) {
360                 if (cur->page == page)
361                         break;
362         }
363
364         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365         list_del(&cur->list);
366         mutex_unlock(&fi->inmem_lock);
367
368         dec_page_count(sbi, F2FS_INMEM_PAGES);
369         kmem_cache_free(inmem_entry_slab, cur);
370
371         ClearPageUptodate(page);
372         f2fs_clear_page_private(page);
373         f2fs_put_page(page, 0);
374
375         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381         struct f2fs_inode_info *fi = F2FS_I(inode);
382         struct inmem_pages *cur, *tmp;
383         struct f2fs_io_info fio = {
384                 .sbi = sbi,
385                 .ino = inode->i_ino,
386                 .type = DATA,
387                 .op = REQ_OP_WRITE,
388                 .op_flags = REQ_SYNC | REQ_PRIO,
389                 .io_type = FS_DATA_IO,
390         };
391         struct list_head revoke_list;
392         bool submit_bio = false;
393         int err = 0;
394
395         INIT_LIST_HEAD(&revoke_list);
396
397         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398                 struct page *page = cur->page;
399
400                 lock_page(page);
401                 if (page->mapping == inode->i_mapping) {
402                         trace_f2fs_commit_inmem_page(page, INMEM);
403
404                         f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406                         set_page_dirty(page);
407                         if (clear_page_dirty_for_io(page)) {
408                                 inode_dec_dirty_pages(inode);
409                                 f2fs_remove_dirty_inode(inode);
410                         }
411 retry:
412                         fio.page = page;
413                         fio.old_blkaddr = NULL_ADDR;
414                         fio.encrypted_page = NULL;
415                         fio.need_lock = LOCK_DONE;
416                         err = f2fs_do_write_data_page(&fio);
417                         if (err) {
418                                 if (err == -ENOMEM) {
419                                         congestion_wait(BLK_RW_ASYNC,
420                                                         DEFAULT_IO_TIMEOUT);
421                                         cond_resched();
422                                         goto retry;
423                                 }
424                                 unlock_page(page);
425                                 break;
426                         }
427                         /* record old blkaddr for revoking */
428                         cur->old_addr = fio.old_blkaddr;
429                         submit_bio = true;
430                 }
431                 unlock_page(page);
432                 list_move_tail(&cur->list, &revoke_list);
433         }
434
435         if (submit_bio)
436                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437
438         if (err) {
439                 /*
440                  * try to revoke all committed pages, but still we could fail
441                  * due to no memory or other reason, if that happened, EAGAIN
442                  * will be returned, which means in such case, transaction is
443                  * already not integrity, caller should use journal to do the
444                  * recovery or rewrite & commit last transaction. For other
445                  * error number, revoking was done by filesystem itself.
446                  */
447                 err = __revoke_inmem_pages(inode, &revoke_list,
448                                                 false, true, false);
449
450                 /* drop all uncommitted pages */
451                 __revoke_inmem_pages(inode, &fi->inmem_pages,
452                                                 true, false, false);
453         } else {
454                 __revoke_inmem_pages(inode, &revoke_list,
455                                                 false, false, false);
456         }
457
458         return err;
459 }
460
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464         struct f2fs_inode_info *fi = F2FS_I(inode);
465         int err;
466
467         f2fs_balance_fs(sbi, true);
468
469         down_write(&fi->i_gc_rwsem[WRITE]);
470
471         f2fs_lock_op(sbi);
472         set_inode_flag(inode, FI_ATOMIC_COMMIT);
473
474         mutex_lock(&fi->inmem_lock);
475         err = __f2fs_commit_inmem_pages(inode);
476         mutex_unlock(&fi->inmem_lock);
477
478         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479
480         f2fs_unlock_op(sbi);
481         up_write(&fi->i_gc_rwsem[WRITE]);
482
483         return err;
484 }
485
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494                 f2fs_stop_checkpoint(sbi, false);
495         }
496
497         /* balance_fs_bg is able to be pending */
498         if (need && excess_cached_nats(sbi))
499                 f2fs_balance_fs_bg(sbi, false);
500
501         if (!f2fs_is_checkpoint_ready(sbi))
502                 return;
503
504         /*
505          * We should do GC or end up with checkpoint, if there are so many dirty
506          * dir/node pages without enough free segments.
507          */
508         if (has_not_enough_free_secs(sbi, 0, 0)) {
509                 down_write(&sbi->gc_lock);
510                 f2fs_gc(sbi, false, false, NULL_SEGNO);
511         }
512 }
513
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517                 return;
518
519         /* try to shrink extent cache when there is no enough memory */
520         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522
523         /* check the # of cached NAT entries */
524         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526
527         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529         else
530                 f2fs_build_free_nids(sbi, false, false);
531
532         if (!is_idle(sbi, REQ_TIME) &&
533                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534                 return;
535
536         /* checkpoint is the only way to shrink partial cached entries */
537         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539                         excess_prefree_segs(sbi) ||
540                         excess_dirty_nats(sbi) ||
541                         excess_dirty_nodes(sbi) ||
542                         f2fs_time_over(sbi, CP_TIME)) {
543                 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544                         struct blk_plug plug;
545
546                         mutex_lock(&sbi->flush_lock);
547
548                         blk_start_plug(&plug);
549                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550                         blk_finish_plug(&plug);
551
552                         mutex_unlock(&sbi->flush_lock);
553                 }
554                 f2fs_sync_fs(sbi->sb, true);
555                 stat_inc_bg_cp_count(sbi->stat_info);
556         }
557 }
558
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560                                 struct block_device *bdev)
561 {
562         struct bio *bio;
563         int ret;
564
565         bio = f2fs_bio_alloc(sbi, 0, false);
566         if (!bio)
567                 return -ENOMEM;
568
569         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570         bio_set_dev(bio, bdev);
571         ret = submit_bio_wait(bio);
572         bio_put(bio);
573
574         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575                                 test_opt(sbi, FLUSH_MERGE), ret);
576         return ret;
577 }
578
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581         int ret = 0;
582         int i;
583
584         if (!f2fs_is_multi_device(sbi))
585                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586
587         for (i = 0; i < sbi->s_ndevs; i++) {
588                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589                         continue;
590                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591                 if (ret)
592                         break;
593         }
594         return ret;
595 }
596
597 static int issue_flush_thread(void *data)
598 {
599         struct f2fs_sb_info *sbi = data;
600         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601         wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603         if (kthread_should_stop())
604                 return 0;
605
606         sb_start_intwrite(sbi->sb);
607
608         if (!llist_empty(&fcc->issue_list)) {
609                 struct flush_cmd *cmd, *next;
610                 int ret;
611
612                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614
615                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616
617                 ret = submit_flush_wait(sbi, cmd->ino);
618                 atomic_inc(&fcc->issued_flush);
619
620                 llist_for_each_entry_safe(cmd, next,
621                                           fcc->dispatch_list, llnode) {
622                         cmd->ret = ret;
623                         complete(&cmd->wait);
624                 }
625                 fcc->dispatch_list = NULL;
626         }
627
628         sb_end_intwrite(sbi->sb);
629
630         wait_event_interruptible(*q,
631                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632         goto repeat;
633 }
634
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638         struct flush_cmd cmd;
639         int ret;
640
641         if (test_opt(sbi, NOBARRIER))
642                 return 0;
643
644         if (!test_opt(sbi, FLUSH_MERGE)) {
645                 atomic_inc(&fcc->queued_flush);
646                 ret = submit_flush_wait(sbi, ino);
647                 atomic_dec(&fcc->queued_flush);
648                 atomic_inc(&fcc->issued_flush);
649                 return ret;
650         }
651
652         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653             f2fs_is_multi_device(sbi)) {
654                 ret = submit_flush_wait(sbi, ino);
655                 atomic_dec(&fcc->queued_flush);
656
657                 atomic_inc(&fcc->issued_flush);
658                 return ret;
659         }
660
661         cmd.ino = ino;
662         init_completion(&cmd.wait);
663
664         llist_add(&cmd.llnode, &fcc->issue_list);
665
666         /* update issue_list before we wake up issue_flush thread */
667         smp_mb();
668
669         if (waitqueue_active(&fcc->flush_wait_queue))
670                 wake_up(&fcc->flush_wait_queue);
671
672         if (fcc->f2fs_issue_flush) {
673                 wait_for_completion(&cmd.wait);
674                 atomic_dec(&fcc->queued_flush);
675         } else {
676                 struct llist_node *list;
677
678                 list = llist_del_all(&fcc->issue_list);
679                 if (!list) {
680                         wait_for_completion(&cmd.wait);
681                         atomic_dec(&fcc->queued_flush);
682                 } else {
683                         struct flush_cmd *tmp, *next;
684
685                         ret = submit_flush_wait(sbi, ino);
686
687                         llist_for_each_entry_safe(tmp, next, list, llnode) {
688                                 if (tmp == &cmd) {
689                                         cmd.ret = ret;
690                                         atomic_dec(&fcc->queued_flush);
691                                         continue;
692                                 }
693                                 tmp->ret = ret;
694                                 complete(&tmp->wait);
695                         }
696                 }
697         }
698
699         return cmd.ret;
700 }
701
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704         dev_t dev = sbi->sb->s_bdev->bd_dev;
705         struct flush_cmd_control *fcc;
706         int err = 0;
707
708         if (SM_I(sbi)->fcc_info) {
709                 fcc = SM_I(sbi)->fcc_info;
710                 if (fcc->f2fs_issue_flush)
711                         return err;
712                 goto init_thread;
713         }
714
715         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716         if (!fcc)
717                 return -ENOMEM;
718         atomic_set(&fcc->issued_flush, 0);
719         atomic_set(&fcc->queued_flush, 0);
720         init_waitqueue_head(&fcc->flush_wait_queue);
721         init_llist_head(&fcc->issue_list);
722         SM_I(sbi)->fcc_info = fcc;
723         if (!test_opt(sbi, FLUSH_MERGE))
724                 return err;
725
726 init_thread:
727         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729         if (IS_ERR(fcc->f2fs_issue_flush)) {
730                 err = PTR_ERR(fcc->f2fs_issue_flush);
731                 kvfree(fcc);
732                 SM_I(sbi)->fcc_info = NULL;
733                 return err;
734         }
735
736         return err;
737 }
738
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742
743         if (fcc && fcc->f2fs_issue_flush) {
744                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745
746                 fcc->f2fs_issue_flush = NULL;
747                 kthread_stop(flush_thread);
748         }
749         if (free) {
750                 kvfree(fcc);
751                 SM_I(sbi)->fcc_info = NULL;
752         }
753 }
754
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757         int ret = 0, i;
758
759         if (!f2fs_is_multi_device(sbi))
760                 return 0;
761
762         for (i = 1; i < sbi->s_ndevs; i++) {
763                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764                         continue;
765                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766                 if (ret)
767                         break;
768
769                 spin_lock(&sbi->dev_lock);
770                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771                 spin_unlock(&sbi->dev_lock);
772         }
773
774         return ret;
775 }
776
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778                 enum dirty_type dirty_type)
779 {
780         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781
782         /* need not be added */
783         if (IS_CURSEG(sbi, segno))
784                 return;
785
786         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787                 dirty_i->nr_dirty[dirty_type]++;
788
789         if (dirty_type == DIRTY) {
790                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791                 enum dirty_type t = sentry->type;
792
793                 if (unlikely(t >= DIRTY)) {
794                         f2fs_bug_on(sbi, 1);
795                         return;
796                 }
797                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798                         dirty_i->nr_dirty[t]++;
799         }
800 }
801
802 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
803                 enum dirty_type dirty_type)
804 {
805         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
806
807         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
808                 dirty_i->nr_dirty[dirty_type]--;
809
810         if (dirty_type == DIRTY) {
811                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
812                 enum dirty_type t = sentry->type;
813
814                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
815                         dirty_i->nr_dirty[t]--;
816
817                 if (get_valid_blocks(sbi, segno, true) == 0) {
818                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
819                                                 dirty_i->victim_secmap);
820 #ifdef CONFIG_F2FS_CHECK_FS
821                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
822 #endif
823                 }
824         }
825 }
826
827 /*
828  * Should not occur error such as -ENOMEM.
829  * Adding dirty entry into seglist is not critical operation.
830  * If a given segment is one of current working segments, it won't be added.
831  */
832 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
833 {
834         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
835         unsigned short valid_blocks, ckpt_valid_blocks;
836
837         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
838                 return;
839
840         mutex_lock(&dirty_i->seglist_lock);
841
842         valid_blocks = get_valid_blocks(sbi, segno, false);
843         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
844
845         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
846                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
847                 __locate_dirty_segment(sbi, segno, PRE);
848                 __remove_dirty_segment(sbi, segno, DIRTY);
849         } else if (valid_blocks < sbi->blocks_per_seg) {
850                 __locate_dirty_segment(sbi, segno, DIRTY);
851         } else {
852                 /* Recovery routine with SSR needs this */
853                 __remove_dirty_segment(sbi, segno, DIRTY);
854         }
855
856         mutex_unlock(&dirty_i->seglist_lock);
857 }
858
859 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
860 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
861 {
862         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
863         unsigned int segno;
864
865         mutex_lock(&dirty_i->seglist_lock);
866         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
867                 if (get_valid_blocks(sbi, segno, false))
868                         continue;
869                 if (IS_CURSEG(sbi, segno))
870                         continue;
871                 __locate_dirty_segment(sbi, segno, PRE);
872                 __remove_dirty_segment(sbi, segno, DIRTY);
873         }
874         mutex_unlock(&dirty_i->seglist_lock);
875 }
876
877 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
878 {
879         int ovp_hole_segs =
880                 (overprovision_segments(sbi) - reserved_segments(sbi));
881         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
882         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883         block_t holes[2] = {0, 0};      /* DATA and NODE */
884         block_t unusable;
885         struct seg_entry *se;
886         unsigned int segno;
887
888         mutex_lock(&dirty_i->seglist_lock);
889         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890                 se = get_seg_entry(sbi, segno);
891                 if (IS_NODESEG(se->type))
892                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
893                 else
894                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
895         }
896         mutex_unlock(&dirty_i->seglist_lock);
897
898         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
899         if (unusable > ovp_holes)
900                 return unusable - ovp_holes;
901         return 0;
902 }
903
904 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
905 {
906         int ovp_hole_segs =
907                 (overprovision_segments(sbi) - reserved_segments(sbi));
908         if (unusable > F2FS_OPTION(sbi).unusable_cap)
909                 return -EAGAIN;
910         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
911                 dirty_segments(sbi) > ovp_hole_segs)
912                 return -EAGAIN;
913         return 0;
914 }
915
916 /* This is only used by SBI_CP_DISABLED */
917 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
918 {
919         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
920         unsigned int segno = 0;
921
922         mutex_lock(&dirty_i->seglist_lock);
923         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
924                 if (get_valid_blocks(sbi, segno, false))
925                         continue;
926                 if (get_ckpt_valid_blocks(sbi, segno))
927                         continue;
928                 mutex_unlock(&dirty_i->seglist_lock);
929                 return segno;
930         }
931         mutex_unlock(&dirty_i->seglist_lock);
932         return NULL_SEGNO;
933 }
934
935 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
936                 struct block_device *bdev, block_t lstart,
937                 block_t start, block_t len)
938 {
939         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
940         struct list_head *pend_list;
941         struct discard_cmd *dc;
942
943         f2fs_bug_on(sbi, !len);
944
945         pend_list = &dcc->pend_list[plist_idx(len)];
946
947         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
948         INIT_LIST_HEAD(&dc->list);
949         dc->bdev = bdev;
950         dc->lstart = lstart;
951         dc->start = start;
952         dc->len = len;
953         dc->ref = 0;
954         dc->state = D_PREP;
955         dc->queued = 0;
956         dc->error = 0;
957         init_completion(&dc->wait);
958         list_add_tail(&dc->list, pend_list);
959         spin_lock_init(&dc->lock);
960         dc->bio_ref = 0;
961         atomic_inc(&dcc->discard_cmd_cnt);
962         dcc->undiscard_blks += len;
963
964         return dc;
965 }
966
967 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
968                                 struct block_device *bdev, block_t lstart,
969                                 block_t start, block_t len,
970                                 struct rb_node *parent, struct rb_node **p,
971                                 bool leftmost)
972 {
973         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
974         struct discard_cmd *dc;
975
976         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
977
978         rb_link_node(&dc->rb_node, parent, p);
979         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
980
981         return dc;
982 }
983
984 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
985                                                         struct discard_cmd *dc)
986 {
987         if (dc->state == D_DONE)
988                 atomic_sub(dc->queued, &dcc->queued_discard);
989
990         list_del(&dc->list);
991         rb_erase_cached(&dc->rb_node, &dcc->root);
992         dcc->undiscard_blks -= dc->len;
993
994         kmem_cache_free(discard_cmd_slab, dc);
995
996         atomic_dec(&dcc->discard_cmd_cnt);
997 }
998
999 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1000                                                         struct discard_cmd *dc)
1001 {
1002         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1003         unsigned long flags;
1004
1005         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1006
1007         spin_lock_irqsave(&dc->lock, flags);
1008         if (dc->bio_ref) {
1009                 spin_unlock_irqrestore(&dc->lock, flags);
1010                 return;
1011         }
1012         spin_unlock_irqrestore(&dc->lock, flags);
1013
1014         f2fs_bug_on(sbi, dc->ref);
1015
1016         if (dc->error == -EOPNOTSUPP)
1017                 dc->error = 0;
1018
1019         if (dc->error)
1020                 printk_ratelimited(
1021                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1022                         KERN_INFO, sbi->sb->s_id,
1023                         dc->lstart, dc->start, dc->len, dc->error);
1024         __detach_discard_cmd(dcc, dc);
1025 }
1026
1027 static void f2fs_submit_discard_endio(struct bio *bio)
1028 {
1029         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1030         unsigned long flags;
1031
1032         dc->error = blk_status_to_errno(bio->bi_status);
1033
1034         spin_lock_irqsave(&dc->lock, flags);
1035         dc->bio_ref--;
1036         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1037                 dc->state = D_DONE;
1038                 complete_all(&dc->wait);
1039         }
1040         spin_unlock_irqrestore(&dc->lock, flags);
1041         bio_put(bio);
1042 }
1043
1044 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1045                                 block_t start, block_t end)
1046 {
1047 #ifdef CONFIG_F2FS_CHECK_FS
1048         struct seg_entry *sentry;
1049         unsigned int segno;
1050         block_t blk = start;
1051         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1052         unsigned long *map;
1053
1054         while (blk < end) {
1055                 segno = GET_SEGNO(sbi, blk);
1056                 sentry = get_seg_entry(sbi, segno);
1057                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1058
1059                 if (end < START_BLOCK(sbi, segno + 1))
1060                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1061                 else
1062                         size = max_blocks;
1063                 map = (unsigned long *)(sentry->cur_valid_map);
1064                 offset = __find_rev_next_bit(map, size, offset);
1065                 f2fs_bug_on(sbi, offset != size);
1066                 blk = START_BLOCK(sbi, segno + 1);
1067         }
1068 #endif
1069 }
1070
1071 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1072                                 struct discard_policy *dpolicy,
1073                                 int discard_type, unsigned int granularity)
1074 {
1075         /* common policy */
1076         dpolicy->type = discard_type;
1077         dpolicy->sync = true;
1078         dpolicy->ordered = false;
1079         dpolicy->granularity = granularity;
1080
1081         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1082         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1083         dpolicy->timeout = false;
1084
1085         if (discard_type == DPOLICY_BG) {
1086                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089                 dpolicy->io_aware = true;
1090                 dpolicy->sync = false;
1091                 dpolicy->ordered = true;
1092                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1093                         dpolicy->granularity = 1;
1094                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1095                 }
1096         } else if (discard_type == DPOLICY_FORCE) {
1097                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1098                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1099                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1100                 dpolicy->io_aware = false;
1101         } else if (discard_type == DPOLICY_FSTRIM) {
1102                 dpolicy->io_aware = false;
1103         } else if (discard_type == DPOLICY_UMOUNT) {
1104                 dpolicy->max_requests = UINT_MAX;
1105                 dpolicy->io_aware = false;
1106                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1107                 dpolicy->granularity = 1;
1108                 dpolicy->timeout = true;
1109         }
1110 }
1111
1112 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1113                                 struct block_device *bdev, block_t lstart,
1114                                 block_t start, block_t len);
1115 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1116 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1117                                                 struct discard_policy *dpolicy,
1118                                                 struct discard_cmd *dc,
1119                                                 unsigned int *issued)
1120 {
1121         struct block_device *bdev = dc->bdev;
1122         struct request_queue *q = bdev_get_queue(bdev);
1123         unsigned int max_discard_blocks =
1124                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1125         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1126         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1127                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1128         int flag = dpolicy->sync ? REQ_SYNC : 0;
1129         block_t lstart, start, len, total_len;
1130         int err = 0;
1131
1132         if (dc->state != D_PREP)
1133                 return 0;
1134
1135         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1136                 return 0;
1137
1138         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1139
1140         lstart = dc->lstart;
1141         start = dc->start;
1142         len = dc->len;
1143         total_len = len;
1144
1145         dc->len = 0;
1146
1147         while (total_len && *issued < dpolicy->max_requests && !err) {
1148                 struct bio *bio = NULL;
1149                 unsigned long flags;
1150                 bool last = true;
1151
1152                 if (len > max_discard_blocks) {
1153                         len = max_discard_blocks;
1154                         last = false;
1155                 }
1156
1157                 (*issued)++;
1158                 if (*issued == dpolicy->max_requests)
1159                         last = true;
1160
1161                 dc->len += len;
1162
1163                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1164                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1165                         err = -EIO;
1166                         goto submit;
1167                 }
1168                 err = __blkdev_issue_discard(bdev,
1169                                         SECTOR_FROM_BLOCK(start),
1170                                         SECTOR_FROM_BLOCK(len),
1171                                         GFP_NOFS, 0, &bio);
1172 submit:
1173                 if (err) {
1174                         spin_lock_irqsave(&dc->lock, flags);
1175                         if (dc->state == D_PARTIAL)
1176                                 dc->state = D_SUBMIT;
1177                         spin_unlock_irqrestore(&dc->lock, flags);
1178
1179                         break;
1180                 }
1181
1182                 f2fs_bug_on(sbi, !bio);
1183
1184                 /*
1185                  * should keep before submission to avoid D_DONE
1186                  * right away
1187                  */
1188                 spin_lock_irqsave(&dc->lock, flags);
1189                 if (last)
1190                         dc->state = D_SUBMIT;
1191                 else
1192                         dc->state = D_PARTIAL;
1193                 dc->bio_ref++;
1194                 spin_unlock_irqrestore(&dc->lock, flags);
1195
1196                 atomic_inc(&dcc->queued_discard);
1197                 dc->queued++;
1198                 list_move_tail(&dc->list, wait_list);
1199
1200                 /* sanity check on discard range */
1201                 __check_sit_bitmap(sbi, lstart, lstart + len);
1202
1203                 bio->bi_private = dc;
1204                 bio->bi_end_io = f2fs_submit_discard_endio;
1205                 bio->bi_opf |= flag;
1206                 submit_bio(bio);
1207
1208                 atomic_inc(&dcc->issued_discard);
1209
1210                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1211
1212                 lstart += len;
1213                 start += len;
1214                 total_len -= len;
1215                 len = total_len;
1216         }
1217
1218         if (!err && len)
1219                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1220         return err;
1221 }
1222
1223 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1224                                 struct block_device *bdev, block_t lstart,
1225                                 block_t start, block_t len,
1226                                 struct rb_node **insert_p,
1227                                 struct rb_node *insert_parent)
1228 {
1229         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1230         struct rb_node **p;
1231         struct rb_node *parent = NULL;
1232         struct discard_cmd *dc = NULL;
1233         bool leftmost = true;
1234
1235         if (insert_p && insert_parent) {
1236                 parent = insert_parent;
1237                 p = insert_p;
1238                 goto do_insert;
1239         }
1240
1241         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1242                                                         lstart, &leftmost);
1243 do_insert:
1244         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1245                                                                 p, leftmost);
1246         if (!dc)
1247                 return NULL;
1248
1249         return dc;
1250 }
1251
1252 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1253                                                 struct discard_cmd *dc)
1254 {
1255         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1256 }
1257
1258 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1259                                 struct discard_cmd *dc, block_t blkaddr)
1260 {
1261         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1262         struct discard_info di = dc->di;
1263         bool modified = false;
1264
1265         if (dc->state == D_DONE || dc->len == 1) {
1266                 __remove_discard_cmd(sbi, dc);
1267                 return;
1268         }
1269
1270         dcc->undiscard_blks -= di.len;
1271
1272         if (blkaddr > di.lstart) {
1273                 dc->len = blkaddr - dc->lstart;
1274                 dcc->undiscard_blks += dc->len;
1275                 __relocate_discard_cmd(dcc, dc);
1276                 modified = true;
1277         }
1278
1279         if (blkaddr < di.lstart + di.len - 1) {
1280                 if (modified) {
1281                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1282                                         di.start + blkaddr + 1 - di.lstart,
1283                                         di.lstart + di.len - 1 - blkaddr,
1284                                         NULL, NULL);
1285                 } else {
1286                         dc->lstart++;
1287                         dc->len--;
1288                         dc->start++;
1289                         dcc->undiscard_blks += dc->len;
1290                         __relocate_discard_cmd(dcc, dc);
1291                 }
1292         }
1293 }
1294
1295 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1296                                 struct block_device *bdev, block_t lstart,
1297                                 block_t start, block_t len)
1298 {
1299         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1300         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1301         struct discard_cmd *dc;
1302         struct discard_info di = {0};
1303         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1304         struct request_queue *q = bdev_get_queue(bdev);
1305         unsigned int max_discard_blocks =
1306                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1307         block_t end = lstart + len;
1308
1309         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1310                                         NULL, lstart,
1311                                         (struct rb_entry **)&prev_dc,
1312                                         (struct rb_entry **)&next_dc,
1313                                         &insert_p, &insert_parent, true, NULL);
1314         if (dc)
1315                 prev_dc = dc;
1316
1317         if (!prev_dc) {
1318                 di.lstart = lstart;
1319                 di.len = next_dc ? next_dc->lstart - lstart : len;
1320                 di.len = min(di.len, len);
1321                 di.start = start;
1322         }
1323
1324         while (1) {
1325                 struct rb_node *node;
1326                 bool merged = false;
1327                 struct discard_cmd *tdc = NULL;
1328
1329                 if (prev_dc) {
1330                         di.lstart = prev_dc->lstart + prev_dc->len;
1331                         if (di.lstart < lstart)
1332                                 di.lstart = lstart;
1333                         if (di.lstart >= end)
1334                                 break;
1335
1336                         if (!next_dc || next_dc->lstart > end)
1337                                 di.len = end - di.lstart;
1338                         else
1339                                 di.len = next_dc->lstart - di.lstart;
1340                         di.start = start + di.lstart - lstart;
1341                 }
1342
1343                 if (!di.len)
1344                         goto next;
1345
1346                 if (prev_dc && prev_dc->state == D_PREP &&
1347                         prev_dc->bdev == bdev &&
1348                         __is_discard_back_mergeable(&di, &prev_dc->di,
1349                                                         max_discard_blocks)) {
1350                         prev_dc->di.len += di.len;
1351                         dcc->undiscard_blks += di.len;
1352                         __relocate_discard_cmd(dcc, prev_dc);
1353                         di = prev_dc->di;
1354                         tdc = prev_dc;
1355                         merged = true;
1356                 }
1357
1358                 if (next_dc && next_dc->state == D_PREP &&
1359                         next_dc->bdev == bdev &&
1360                         __is_discard_front_mergeable(&di, &next_dc->di,
1361                                                         max_discard_blocks)) {
1362                         next_dc->di.lstart = di.lstart;
1363                         next_dc->di.len += di.len;
1364                         next_dc->di.start = di.start;
1365                         dcc->undiscard_blks += di.len;
1366                         __relocate_discard_cmd(dcc, next_dc);
1367                         if (tdc)
1368                                 __remove_discard_cmd(sbi, tdc);
1369                         merged = true;
1370                 }
1371
1372                 if (!merged) {
1373                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1374                                                         di.len, NULL, NULL);
1375                 }
1376  next:
1377                 prev_dc = next_dc;
1378                 if (!prev_dc)
1379                         break;
1380
1381                 node = rb_next(&prev_dc->rb_node);
1382                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1383         }
1384 }
1385
1386 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1387                 struct block_device *bdev, block_t blkstart, block_t blklen)
1388 {
1389         block_t lblkstart = blkstart;
1390
1391         if (!f2fs_bdev_support_discard(bdev))
1392                 return 0;
1393
1394         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1395
1396         if (f2fs_is_multi_device(sbi)) {
1397                 int devi = f2fs_target_device_index(sbi, blkstart);
1398
1399                 blkstart -= FDEV(devi).start_blk;
1400         }
1401         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1402         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1403         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1404         return 0;
1405 }
1406
1407 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1408                                         struct discard_policy *dpolicy)
1409 {
1410         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1411         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1412         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1413         struct discard_cmd *dc;
1414         struct blk_plug plug;
1415         unsigned int pos = dcc->next_pos;
1416         unsigned int issued = 0;
1417         bool io_interrupted = false;
1418
1419         mutex_lock(&dcc->cmd_lock);
1420         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1421                                         NULL, pos,
1422                                         (struct rb_entry **)&prev_dc,
1423                                         (struct rb_entry **)&next_dc,
1424                                         &insert_p, &insert_parent, true, NULL);
1425         if (!dc)
1426                 dc = next_dc;
1427
1428         blk_start_plug(&plug);
1429
1430         while (dc) {
1431                 struct rb_node *node;
1432                 int err = 0;
1433
1434                 if (dc->state != D_PREP)
1435                         goto next;
1436
1437                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1438                         io_interrupted = true;
1439                         break;
1440                 }
1441
1442                 dcc->next_pos = dc->lstart + dc->len;
1443                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1444
1445                 if (issued >= dpolicy->max_requests)
1446                         break;
1447 next:
1448                 node = rb_next(&dc->rb_node);
1449                 if (err)
1450                         __remove_discard_cmd(sbi, dc);
1451                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1452         }
1453
1454         blk_finish_plug(&plug);
1455
1456         if (!dc)
1457                 dcc->next_pos = 0;
1458
1459         mutex_unlock(&dcc->cmd_lock);
1460
1461         if (!issued && io_interrupted)
1462                 issued = -1;
1463
1464         return issued;
1465 }
1466
1467 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1468                                         struct discard_policy *dpolicy)
1469 {
1470         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1471         struct list_head *pend_list;
1472         struct discard_cmd *dc, *tmp;
1473         struct blk_plug plug;
1474         int i, issued = 0;
1475         bool io_interrupted = false;
1476
1477         if (dpolicy->timeout)
1478                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1479
1480         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481                 if (dpolicy->timeout &&
1482                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483                         break;
1484
1485                 if (i + 1 < dpolicy->granularity)
1486                         break;
1487
1488                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1489                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1490
1491                 pend_list = &dcc->pend_list[i];
1492
1493                 mutex_lock(&dcc->cmd_lock);
1494                 if (list_empty(pend_list))
1495                         goto next;
1496                 if (unlikely(dcc->rbtree_check))
1497                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1498                                                                 &dcc->root));
1499                 blk_start_plug(&plug);
1500                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1501                         f2fs_bug_on(sbi, dc->state != D_PREP);
1502
1503                         if (dpolicy->timeout &&
1504                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1505                                 break;
1506
1507                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1508                                                 !is_idle(sbi, DISCARD_TIME)) {
1509                                 io_interrupted = true;
1510                                 break;
1511                         }
1512
1513                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1514
1515                         if (issued >= dpolicy->max_requests)
1516                                 break;
1517                 }
1518                 blk_finish_plug(&plug);
1519 next:
1520                 mutex_unlock(&dcc->cmd_lock);
1521
1522                 if (issued >= dpolicy->max_requests || io_interrupted)
1523                         break;
1524         }
1525
1526         if (!issued && io_interrupted)
1527                 issued = -1;
1528
1529         return issued;
1530 }
1531
1532 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1533 {
1534         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1535         struct list_head *pend_list;
1536         struct discard_cmd *dc, *tmp;
1537         int i;
1538         bool dropped = false;
1539
1540         mutex_lock(&dcc->cmd_lock);
1541         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1542                 pend_list = &dcc->pend_list[i];
1543                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1544                         f2fs_bug_on(sbi, dc->state != D_PREP);
1545                         __remove_discard_cmd(sbi, dc);
1546                         dropped = true;
1547                 }
1548         }
1549         mutex_unlock(&dcc->cmd_lock);
1550
1551         return dropped;
1552 }
1553
1554 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1555 {
1556         __drop_discard_cmd(sbi);
1557 }
1558
1559 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1560                                                         struct discard_cmd *dc)
1561 {
1562         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563         unsigned int len = 0;
1564
1565         wait_for_completion_io(&dc->wait);
1566         mutex_lock(&dcc->cmd_lock);
1567         f2fs_bug_on(sbi, dc->state != D_DONE);
1568         dc->ref--;
1569         if (!dc->ref) {
1570                 if (!dc->error)
1571                         len = dc->len;
1572                 __remove_discard_cmd(sbi, dc);
1573         }
1574         mutex_unlock(&dcc->cmd_lock);
1575
1576         return len;
1577 }
1578
1579 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1580                                                 struct discard_policy *dpolicy,
1581                                                 block_t start, block_t end)
1582 {
1583         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1584         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1585                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1586         struct discard_cmd *dc, *tmp;
1587         bool need_wait;
1588         unsigned int trimmed = 0;
1589
1590 next:
1591         need_wait = false;
1592
1593         mutex_lock(&dcc->cmd_lock);
1594         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1595                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1596                         continue;
1597                 if (dc->len < dpolicy->granularity)
1598                         continue;
1599                 if (dc->state == D_DONE && !dc->ref) {
1600                         wait_for_completion_io(&dc->wait);
1601                         if (!dc->error)
1602                                 trimmed += dc->len;
1603                         __remove_discard_cmd(sbi, dc);
1604                 } else {
1605                         dc->ref++;
1606                         need_wait = true;
1607                         break;
1608                 }
1609         }
1610         mutex_unlock(&dcc->cmd_lock);
1611
1612         if (need_wait) {
1613                 trimmed += __wait_one_discard_bio(sbi, dc);
1614                 goto next;
1615         }
1616
1617         return trimmed;
1618 }
1619
1620 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1621                                                 struct discard_policy *dpolicy)
1622 {
1623         struct discard_policy dp;
1624         unsigned int discard_blks;
1625
1626         if (dpolicy)
1627                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1628
1629         /* wait all */
1630         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1631         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1632         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1633         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1634
1635         return discard_blks;
1636 }
1637
1638 /* This should be covered by global mutex, &sit_i->sentry_lock */
1639 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1640 {
1641         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642         struct discard_cmd *dc;
1643         bool need_wait = false;
1644
1645         mutex_lock(&dcc->cmd_lock);
1646         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1647                                                         NULL, blkaddr);
1648         if (dc) {
1649                 if (dc->state == D_PREP) {
1650                         __punch_discard_cmd(sbi, dc, blkaddr);
1651                 } else {
1652                         dc->ref++;
1653                         need_wait = true;
1654                 }
1655         }
1656         mutex_unlock(&dcc->cmd_lock);
1657
1658         if (need_wait)
1659                 __wait_one_discard_bio(sbi, dc);
1660 }
1661
1662 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1663 {
1664         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1665
1666         if (dcc && dcc->f2fs_issue_discard) {
1667                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1668
1669                 dcc->f2fs_issue_discard = NULL;
1670                 kthread_stop(discard_thread);
1671         }
1672 }
1673
1674 /* This comes from f2fs_put_super */
1675 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1676 {
1677         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1678         struct discard_policy dpolicy;
1679         bool dropped;
1680
1681         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1682                                         dcc->discard_granularity);
1683         __issue_discard_cmd(sbi, &dpolicy);
1684         dropped = __drop_discard_cmd(sbi);
1685
1686         /* just to make sure there is no pending discard commands */
1687         __wait_all_discard_cmd(sbi, NULL);
1688
1689         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1690         return dropped;
1691 }
1692
1693 static int issue_discard_thread(void *data)
1694 {
1695         struct f2fs_sb_info *sbi = data;
1696         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697         wait_queue_head_t *q = &dcc->discard_wait_queue;
1698         struct discard_policy dpolicy;
1699         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1700         int issued;
1701
1702         set_freezable();
1703
1704         do {
1705                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1706                                         dcc->discard_granularity);
1707
1708                 wait_event_interruptible_timeout(*q,
1709                                 kthread_should_stop() || freezing(current) ||
1710                                 dcc->discard_wake,
1711                                 msecs_to_jiffies(wait_ms));
1712
1713                 if (dcc->discard_wake)
1714                         dcc->discard_wake = 0;
1715
1716                 /* clean up pending candidates before going to sleep */
1717                 if (atomic_read(&dcc->queued_discard))
1718                         __wait_all_discard_cmd(sbi, NULL);
1719
1720                 if (try_to_freeze())
1721                         continue;
1722                 if (f2fs_readonly(sbi->sb))
1723                         continue;
1724                 if (kthread_should_stop())
1725                         return 0;
1726                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1727                         wait_ms = dpolicy.max_interval;
1728                         continue;
1729                 }
1730
1731                 if (sbi->gc_mode == GC_URGENT)
1732                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1733
1734                 sb_start_intwrite(sbi->sb);
1735
1736                 issued = __issue_discard_cmd(sbi, &dpolicy);
1737                 if (issued > 0) {
1738                         __wait_all_discard_cmd(sbi, &dpolicy);
1739                         wait_ms = dpolicy.min_interval;
1740                 } else if (issued == -1){
1741                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1742                         if (!wait_ms)
1743                                 wait_ms = dpolicy.mid_interval;
1744                 } else {
1745                         wait_ms = dpolicy.max_interval;
1746                 }
1747
1748                 sb_end_intwrite(sbi->sb);
1749
1750         } while (!kthread_should_stop());
1751         return 0;
1752 }
1753
1754 #ifdef CONFIG_BLK_DEV_ZONED
1755 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1756                 struct block_device *bdev, block_t blkstart, block_t blklen)
1757 {
1758         sector_t sector, nr_sects;
1759         block_t lblkstart = blkstart;
1760         int devi = 0;
1761
1762         if (f2fs_is_multi_device(sbi)) {
1763                 devi = f2fs_target_device_index(sbi, blkstart);
1764                 if (blkstart < FDEV(devi).start_blk ||
1765                     blkstart > FDEV(devi).end_blk) {
1766                         f2fs_err(sbi, "Invalid block %x", blkstart);
1767                         return -EIO;
1768                 }
1769                 blkstart -= FDEV(devi).start_blk;
1770         }
1771
1772         /* For sequential zones, reset the zone write pointer */
1773         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1774                 sector = SECTOR_FROM_BLOCK(blkstart);
1775                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1776
1777                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1778                                 nr_sects != bdev_zone_sectors(bdev)) {
1779                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1780                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1781                                  blkstart, blklen);
1782                         return -EIO;
1783                 }
1784                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1785                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1786                                         sector, nr_sects, GFP_NOFS);
1787         }
1788
1789         /* For conventional zones, use regular discard if supported */
1790         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1791 }
1792 #endif
1793
1794 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1795                 struct block_device *bdev, block_t blkstart, block_t blklen)
1796 {
1797 #ifdef CONFIG_BLK_DEV_ZONED
1798         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1799                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1800 #endif
1801         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1802 }
1803
1804 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1805                                 block_t blkstart, block_t blklen)
1806 {
1807         sector_t start = blkstart, len = 0;
1808         struct block_device *bdev;
1809         struct seg_entry *se;
1810         unsigned int offset;
1811         block_t i;
1812         int err = 0;
1813
1814         bdev = f2fs_target_device(sbi, blkstart, NULL);
1815
1816         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1817                 if (i != start) {
1818                         struct block_device *bdev2 =
1819                                 f2fs_target_device(sbi, i, NULL);
1820
1821                         if (bdev2 != bdev) {
1822                                 err = __issue_discard_async(sbi, bdev,
1823                                                 start, len);
1824                                 if (err)
1825                                         return err;
1826                                 bdev = bdev2;
1827                                 start = i;
1828                                 len = 0;
1829                         }
1830                 }
1831
1832                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1833                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1834
1835                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1836                         sbi->discard_blks--;
1837         }
1838
1839         if (len)
1840                 err = __issue_discard_async(sbi, bdev, start, len);
1841         return err;
1842 }
1843
1844 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1845                                                         bool check_only)
1846 {
1847         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1848         int max_blocks = sbi->blocks_per_seg;
1849         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1850         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1851         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1852         unsigned long *discard_map = (unsigned long *)se->discard_map;
1853         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1854         unsigned int start = 0, end = -1;
1855         bool force = (cpc->reason & CP_DISCARD);
1856         struct discard_entry *de = NULL;
1857         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1858         int i;
1859
1860         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1861                 return false;
1862
1863         if (!force) {
1864                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1865                         SM_I(sbi)->dcc_info->nr_discards >=
1866                                 SM_I(sbi)->dcc_info->max_discards)
1867                         return false;
1868         }
1869
1870         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1871         for (i = 0; i < entries; i++)
1872                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1873                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1874
1875         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1876                                 SM_I(sbi)->dcc_info->max_discards) {
1877                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1878                 if (start >= max_blocks)
1879                         break;
1880
1881                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1882                 if (force && start && end != max_blocks
1883                                         && (end - start) < cpc->trim_minlen)
1884                         continue;
1885
1886                 if (check_only)
1887                         return true;
1888
1889                 if (!de) {
1890                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1891                                                                 GFP_F2FS_ZERO);
1892                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1893                         list_add_tail(&de->list, head);
1894                 }
1895
1896                 for (i = start; i < end; i++)
1897                         __set_bit_le(i, (void *)de->discard_map);
1898
1899                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1900         }
1901         return false;
1902 }
1903
1904 static void release_discard_addr(struct discard_entry *entry)
1905 {
1906         list_del(&entry->list);
1907         kmem_cache_free(discard_entry_slab, entry);
1908 }
1909
1910 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1911 {
1912         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1913         struct discard_entry *entry, *this;
1914
1915         /* drop caches */
1916         list_for_each_entry_safe(entry, this, head, list)
1917                 release_discard_addr(entry);
1918 }
1919
1920 /*
1921  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1922  */
1923 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1924 {
1925         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1926         unsigned int segno;
1927
1928         mutex_lock(&dirty_i->seglist_lock);
1929         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1930                 __set_test_and_free(sbi, segno);
1931         mutex_unlock(&dirty_i->seglist_lock);
1932 }
1933
1934 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1935                                                 struct cp_control *cpc)
1936 {
1937         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1938         struct list_head *head = &dcc->entry_list;
1939         struct discard_entry *entry, *this;
1940         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1941         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1942         unsigned int start = 0, end = -1;
1943         unsigned int secno, start_segno;
1944         bool force = (cpc->reason & CP_DISCARD);
1945         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1946
1947         mutex_lock(&dirty_i->seglist_lock);
1948
1949         while (1) {
1950                 int i;
1951
1952                 if (need_align && end != -1)
1953                         end--;
1954                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1955                 if (start >= MAIN_SEGS(sbi))
1956                         break;
1957                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1958                                                                 start + 1);
1959
1960                 if (need_align) {
1961                         start = rounddown(start, sbi->segs_per_sec);
1962                         end = roundup(end, sbi->segs_per_sec);
1963                 }
1964
1965                 for (i = start; i < end; i++) {
1966                         if (test_and_clear_bit(i, prefree_map))
1967                                 dirty_i->nr_dirty[PRE]--;
1968                 }
1969
1970                 if (!f2fs_realtime_discard_enable(sbi))
1971                         continue;
1972
1973                 if (force && start >= cpc->trim_start &&
1974                                         (end - 1) <= cpc->trim_end)
1975                                 continue;
1976
1977                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1978                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1979                                 (end - start) << sbi->log_blocks_per_seg);
1980                         continue;
1981                 }
1982 next:
1983                 secno = GET_SEC_FROM_SEG(sbi, start);
1984                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1985                 if (!IS_CURSEC(sbi, secno) &&
1986                         !get_valid_blocks(sbi, start, true))
1987                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1988                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1989
1990                 start = start_segno + sbi->segs_per_sec;
1991                 if (start < end)
1992                         goto next;
1993                 else
1994                         end = start - 1;
1995         }
1996         mutex_unlock(&dirty_i->seglist_lock);
1997
1998         /* send small discards */
1999         list_for_each_entry_safe(entry, this, head, list) {
2000                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001                 bool is_valid = test_bit_le(0, entry->discard_map);
2002
2003 find_next:
2004                 if (is_valid) {
2005                         next_pos = find_next_zero_bit_le(entry->discard_map,
2006                                         sbi->blocks_per_seg, cur_pos);
2007                         len = next_pos - cur_pos;
2008
2009                         if (f2fs_sb_has_blkzoned(sbi) ||
2010                             (force && len < cpc->trim_minlen))
2011                                 goto skip;
2012
2013                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2014                                                                         len);
2015                         total_len += len;
2016                 } else {
2017                         next_pos = find_next_bit_le(entry->discard_map,
2018                                         sbi->blocks_per_seg, cur_pos);
2019                 }
2020 skip:
2021                 cur_pos = next_pos;
2022                 is_valid = !is_valid;
2023
2024                 if (cur_pos < sbi->blocks_per_seg)
2025                         goto find_next;
2026
2027                 release_discard_addr(entry);
2028                 dcc->nr_discards -= total_len;
2029         }
2030
2031         wake_up_discard_thread(sbi, false);
2032 }
2033
2034 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2035 {
2036         dev_t dev = sbi->sb->s_bdev->bd_dev;
2037         struct discard_cmd_control *dcc;
2038         int err = 0, i;
2039
2040         if (SM_I(sbi)->dcc_info) {
2041                 dcc = SM_I(sbi)->dcc_info;
2042                 goto init_thread;
2043         }
2044
2045         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2046         if (!dcc)
2047                 return -ENOMEM;
2048
2049         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2050         INIT_LIST_HEAD(&dcc->entry_list);
2051         for (i = 0; i < MAX_PLIST_NUM; i++)
2052                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2053         INIT_LIST_HEAD(&dcc->wait_list);
2054         INIT_LIST_HEAD(&dcc->fstrim_list);
2055         mutex_init(&dcc->cmd_lock);
2056         atomic_set(&dcc->issued_discard, 0);
2057         atomic_set(&dcc->queued_discard, 0);
2058         atomic_set(&dcc->discard_cmd_cnt, 0);
2059         dcc->nr_discards = 0;
2060         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2061         dcc->undiscard_blks = 0;
2062         dcc->next_pos = 0;
2063         dcc->root = RB_ROOT_CACHED;
2064         dcc->rbtree_check = false;
2065
2066         init_waitqueue_head(&dcc->discard_wait_queue);
2067         SM_I(sbi)->dcc_info = dcc;
2068 init_thread:
2069         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2070                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2071         if (IS_ERR(dcc->f2fs_issue_discard)) {
2072                 err = PTR_ERR(dcc->f2fs_issue_discard);
2073                 kvfree(dcc);
2074                 SM_I(sbi)->dcc_info = NULL;
2075                 return err;
2076         }
2077
2078         return err;
2079 }
2080
2081 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2082 {
2083         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2084
2085         if (!dcc)
2086                 return;
2087
2088         f2fs_stop_discard_thread(sbi);
2089
2090         /*
2091          * Recovery can cache discard commands, so in error path of
2092          * fill_super(), it needs to give a chance to handle them.
2093          */
2094         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2095                 f2fs_issue_discard_timeout(sbi);
2096
2097         kvfree(dcc);
2098         SM_I(sbi)->dcc_info = NULL;
2099 }
2100
2101 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2102 {
2103         struct sit_info *sit_i = SIT_I(sbi);
2104
2105         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2106                 sit_i->dirty_sentries++;
2107                 return false;
2108         }
2109
2110         return true;
2111 }
2112
2113 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2114                                         unsigned int segno, int modified)
2115 {
2116         struct seg_entry *se = get_seg_entry(sbi, segno);
2117         se->type = type;
2118         if (modified)
2119                 __mark_sit_entry_dirty(sbi, segno);
2120 }
2121
2122 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2123 {
2124         struct seg_entry *se;
2125         unsigned int segno, offset;
2126         long int new_vblocks;
2127         bool exist;
2128 #ifdef CONFIG_F2FS_CHECK_FS
2129         bool mir_exist;
2130 #endif
2131
2132         segno = GET_SEGNO(sbi, blkaddr);
2133
2134         se = get_seg_entry(sbi, segno);
2135         new_vblocks = se->valid_blocks + del;
2136         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2137
2138         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2139                                 (new_vblocks > sbi->blocks_per_seg)));
2140
2141         se->valid_blocks = new_vblocks;
2142         se->mtime = get_mtime(sbi, false);
2143         if (se->mtime > SIT_I(sbi)->max_mtime)
2144                 SIT_I(sbi)->max_mtime = se->mtime;
2145
2146         /* Update valid block bitmap */
2147         if (del > 0) {
2148                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150                 mir_exist = f2fs_test_and_set_bit(offset,
2151                                                 se->cur_valid_map_mir);
2152                 if (unlikely(exist != mir_exist)) {
2153                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2154                                  blkaddr, exist);
2155                         f2fs_bug_on(sbi, 1);
2156                 }
2157 #endif
2158                 if (unlikely(exist)) {
2159                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2160                                  blkaddr);
2161                         f2fs_bug_on(sbi, 1);
2162                         se->valid_blocks--;
2163                         del = 0;
2164                 }
2165
2166                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2167                         sbi->discard_blks--;
2168
2169                 /*
2170                  * SSR should never reuse block which is checkpointed
2171                  * or newly invalidated.
2172                  */
2173                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2174                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2175                                 se->ckpt_valid_blocks++;
2176                 }
2177         } else {
2178                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2179 #ifdef CONFIG_F2FS_CHECK_FS
2180                 mir_exist = f2fs_test_and_clear_bit(offset,
2181                                                 se->cur_valid_map_mir);
2182                 if (unlikely(exist != mir_exist)) {
2183                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2184                                  blkaddr, exist);
2185                         f2fs_bug_on(sbi, 1);
2186                 }
2187 #endif
2188                 if (unlikely(!exist)) {
2189                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2190                                  blkaddr);
2191                         f2fs_bug_on(sbi, 1);
2192                         se->valid_blocks++;
2193                         del = 0;
2194                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2195                         /*
2196                          * If checkpoints are off, we must not reuse data that
2197                          * was used in the previous checkpoint. If it was used
2198                          * before, we must track that to know how much space we
2199                          * really have.
2200                          */
2201                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2202                                 spin_lock(&sbi->stat_lock);
2203                                 sbi->unusable_block_count++;
2204                                 spin_unlock(&sbi->stat_lock);
2205                         }
2206                 }
2207
2208                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2209                         sbi->discard_blks++;
2210         }
2211         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2212                 se->ckpt_valid_blocks += del;
2213
2214         __mark_sit_entry_dirty(sbi, segno);
2215
2216         /* update total number of valid blocks to be written in ckpt area */
2217         SIT_I(sbi)->written_valid_blocks += del;
2218
2219         if (__is_large_section(sbi))
2220                 get_sec_entry(sbi, segno)->valid_blocks += del;
2221 }
2222
2223 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2224 {
2225         unsigned int segno = GET_SEGNO(sbi, addr);
2226         struct sit_info *sit_i = SIT_I(sbi);
2227
2228         f2fs_bug_on(sbi, addr == NULL_ADDR);
2229         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2230                 return;
2231
2232         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2233
2234         /* add it into sit main buffer */
2235         down_write(&sit_i->sentry_lock);
2236
2237         update_sit_entry(sbi, addr, -1);
2238
2239         /* add it into dirty seglist */
2240         locate_dirty_segment(sbi, segno);
2241
2242         up_write(&sit_i->sentry_lock);
2243 }
2244
2245 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2246 {
2247         struct sit_info *sit_i = SIT_I(sbi);
2248         unsigned int segno, offset;
2249         struct seg_entry *se;
2250         bool is_cp = false;
2251
2252         if (!__is_valid_data_blkaddr(blkaddr))
2253                 return true;
2254
2255         down_read(&sit_i->sentry_lock);
2256
2257         segno = GET_SEGNO(sbi, blkaddr);
2258         se = get_seg_entry(sbi, segno);
2259         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2260
2261         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2262                 is_cp = true;
2263
2264         up_read(&sit_i->sentry_lock);
2265
2266         return is_cp;
2267 }
2268
2269 /*
2270  * This function should be resided under the curseg_mutex lock
2271  */
2272 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2273                                         struct f2fs_summary *sum)
2274 {
2275         struct curseg_info *curseg = CURSEG_I(sbi, type);
2276         void *addr = curseg->sum_blk;
2277         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2278         memcpy(addr, sum, sizeof(struct f2fs_summary));
2279 }
2280
2281 /*
2282  * Calculate the number of current summary pages for writing
2283  */
2284 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2285 {
2286         int valid_sum_count = 0;
2287         int i, sum_in_page;
2288
2289         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2290                 if (sbi->ckpt->alloc_type[i] == SSR)
2291                         valid_sum_count += sbi->blocks_per_seg;
2292                 else {
2293                         if (for_ra)
2294                                 valid_sum_count += le16_to_cpu(
2295                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2296                         else
2297                                 valid_sum_count += curseg_blkoff(sbi, i);
2298                 }
2299         }
2300
2301         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2302                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2303         if (valid_sum_count <= sum_in_page)
2304                 return 1;
2305         else if ((valid_sum_count - sum_in_page) <=
2306                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2307                 return 2;
2308         return 3;
2309 }
2310
2311 /*
2312  * Caller should put this summary page
2313  */
2314 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2315 {
2316         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2317 }
2318
2319 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2320                                         void *src, block_t blk_addr)
2321 {
2322         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2323
2324         memcpy(page_address(page), src, PAGE_SIZE);
2325         set_page_dirty(page);
2326         f2fs_put_page(page, 1);
2327 }
2328
2329 static void write_sum_page(struct f2fs_sb_info *sbi,
2330                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2331 {
2332         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2333 }
2334
2335 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2336                                                 int type, block_t blk_addr)
2337 {
2338         struct curseg_info *curseg = CURSEG_I(sbi, type);
2339         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2340         struct f2fs_summary_block *src = curseg->sum_blk;
2341         struct f2fs_summary_block *dst;
2342
2343         dst = (struct f2fs_summary_block *)page_address(page);
2344         memset(dst, 0, PAGE_SIZE);
2345
2346         mutex_lock(&curseg->curseg_mutex);
2347
2348         down_read(&curseg->journal_rwsem);
2349         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2350         up_read(&curseg->journal_rwsem);
2351
2352         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2353         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2354
2355         mutex_unlock(&curseg->curseg_mutex);
2356
2357         set_page_dirty(page);
2358         f2fs_put_page(page, 1);
2359 }
2360
2361 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2362 {
2363         struct curseg_info *curseg = CURSEG_I(sbi, type);
2364         unsigned int segno = curseg->segno + 1;
2365         struct free_segmap_info *free_i = FREE_I(sbi);
2366
2367         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2368                 return !test_bit(segno, free_i->free_segmap);
2369         return 0;
2370 }
2371
2372 /*
2373  * Find a new segment from the free segments bitmap to right order
2374  * This function should be returned with success, otherwise BUG
2375  */
2376 static void get_new_segment(struct f2fs_sb_info *sbi,
2377                         unsigned int *newseg, bool new_sec, int dir)
2378 {
2379         struct free_segmap_info *free_i = FREE_I(sbi);
2380         unsigned int segno, secno, zoneno;
2381         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2382         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2383         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2384         unsigned int left_start = hint;
2385         bool init = true;
2386         int go_left = 0;
2387         int i;
2388
2389         spin_lock(&free_i->segmap_lock);
2390
2391         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2392                 segno = find_next_zero_bit(free_i->free_segmap,
2393                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2394                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2395                         goto got_it;
2396         }
2397 find_other_zone:
2398         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2399         if (secno >= MAIN_SECS(sbi)) {
2400                 if (dir == ALLOC_RIGHT) {
2401                         secno = find_next_zero_bit(free_i->free_secmap,
2402                                                         MAIN_SECS(sbi), 0);
2403                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2404                 } else {
2405                         go_left = 1;
2406                         left_start = hint - 1;
2407                 }
2408         }
2409         if (go_left == 0)
2410                 goto skip_left;
2411
2412         while (test_bit(left_start, free_i->free_secmap)) {
2413                 if (left_start > 0) {
2414                         left_start--;
2415                         continue;
2416                 }
2417                 left_start = find_next_zero_bit(free_i->free_secmap,
2418                                                         MAIN_SECS(sbi), 0);
2419                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2420                 break;
2421         }
2422         secno = left_start;
2423 skip_left:
2424         segno = GET_SEG_FROM_SEC(sbi, secno);
2425         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2426
2427         /* give up on finding another zone */
2428         if (!init)
2429                 goto got_it;
2430         if (sbi->secs_per_zone == 1)
2431                 goto got_it;
2432         if (zoneno == old_zoneno)
2433                 goto got_it;
2434         if (dir == ALLOC_LEFT) {
2435                 if (!go_left && zoneno + 1 >= total_zones)
2436                         goto got_it;
2437                 if (go_left && zoneno == 0)
2438                         goto got_it;
2439         }
2440         for (i = 0; i < NR_CURSEG_TYPE; i++)
2441                 if (CURSEG_I(sbi, i)->zone == zoneno)
2442                         break;
2443
2444         if (i < NR_CURSEG_TYPE) {
2445                 /* zone is in user, try another */
2446                 if (go_left)
2447                         hint = zoneno * sbi->secs_per_zone - 1;
2448                 else if (zoneno + 1 >= total_zones)
2449                         hint = 0;
2450                 else
2451                         hint = (zoneno + 1) * sbi->secs_per_zone;
2452                 init = false;
2453                 goto find_other_zone;
2454         }
2455 got_it:
2456         /* set it as dirty segment in free segmap */
2457         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2458         __set_inuse(sbi, segno);
2459         *newseg = segno;
2460         spin_unlock(&free_i->segmap_lock);
2461 }
2462
2463 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2464 {
2465         struct curseg_info *curseg = CURSEG_I(sbi, type);
2466         struct summary_footer *sum_footer;
2467
2468         curseg->segno = curseg->next_segno;
2469         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2470         curseg->next_blkoff = 0;
2471         curseg->next_segno = NULL_SEGNO;
2472
2473         sum_footer = &(curseg->sum_blk->footer);
2474         memset(sum_footer, 0, sizeof(struct summary_footer));
2475         if (IS_DATASEG(type))
2476                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2477         if (IS_NODESEG(type))
2478                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2479         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2480 }
2481
2482 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2483 {
2484         /* if segs_per_sec is large than 1, we need to keep original policy. */
2485         if (__is_large_section(sbi))
2486                 return CURSEG_I(sbi, type)->segno;
2487
2488         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2489                 return 0;
2490
2491         if (test_opt(sbi, NOHEAP) &&
2492                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2493                 return 0;
2494
2495         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2496                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2497
2498         /* find segments from 0 to reuse freed segments */
2499         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2500                 return 0;
2501
2502         return CURSEG_I(sbi, type)->segno;
2503 }
2504
2505 /*
2506  * Allocate a current working segment.
2507  * This function always allocates a free segment in LFS manner.
2508  */
2509 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2510 {
2511         struct curseg_info *curseg = CURSEG_I(sbi, type);
2512         unsigned int segno = curseg->segno;
2513         int dir = ALLOC_LEFT;
2514
2515         write_sum_page(sbi, curseg->sum_blk,
2516                                 GET_SUM_BLOCK(sbi, segno));
2517         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2518                 dir = ALLOC_RIGHT;
2519
2520         if (test_opt(sbi, NOHEAP))
2521                 dir = ALLOC_RIGHT;
2522
2523         segno = __get_next_segno(sbi, type);
2524         get_new_segment(sbi, &segno, new_sec, dir);
2525         curseg->next_segno = segno;
2526         reset_curseg(sbi, type, 1);
2527         curseg->alloc_type = LFS;
2528 }
2529
2530 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2531                         struct curseg_info *seg, block_t start)
2532 {
2533         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2534         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2535         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2536         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2537         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2538         int i, pos;
2539
2540         for (i = 0; i < entries; i++)
2541                 target_map[i] = ckpt_map[i] | cur_map[i];
2542
2543         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2544
2545         seg->next_blkoff = pos;
2546 }
2547
2548 /*
2549  * If a segment is written by LFS manner, next block offset is just obtained
2550  * by increasing the current block offset. However, if a segment is written by
2551  * SSR manner, next block offset obtained by calling __next_free_blkoff
2552  */
2553 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2554                                 struct curseg_info *seg)
2555 {
2556         if (seg->alloc_type == SSR)
2557                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2558         else
2559                 seg->next_blkoff++;
2560 }
2561
2562 /*
2563  * This function always allocates a used segment(from dirty seglist) by SSR
2564  * manner, so it should recover the existing segment information of valid blocks
2565  */
2566 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2567 {
2568         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2569         struct curseg_info *curseg = CURSEG_I(sbi, type);
2570         unsigned int new_segno = curseg->next_segno;
2571         struct f2fs_summary_block *sum_node;
2572         struct page *sum_page;
2573
2574         write_sum_page(sbi, curseg->sum_blk,
2575                                 GET_SUM_BLOCK(sbi, curseg->segno));
2576         __set_test_and_inuse(sbi, new_segno);
2577
2578         mutex_lock(&dirty_i->seglist_lock);
2579         __remove_dirty_segment(sbi, new_segno, PRE);
2580         __remove_dirty_segment(sbi, new_segno, DIRTY);
2581         mutex_unlock(&dirty_i->seglist_lock);
2582
2583         reset_curseg(sbi, type, 1);
2584         curseg->alloc_type = SSR;
2585         __next_free_blkoff(sbi, curseg, 0);
2586
2587         sum_page = f2fs_get_sum_page(sbi, new_segno);
2588         f2fs_bug_on(sbi, IS_ERR(sum_page));
2589         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2590         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2591         f2fs_put_page(sum_page, 1);
2592 }
2593
2594 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2595 {
2596         struct curseg_info *curseg = CURSEG_I(sbi, type);
2597         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2598         unsigned segno = NULL_SEGNO;
2599         int i, cnt;
2600         bool reversed = false;
2601
2602         /* f2fs_need_SSR() already forces to do this */
2603         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2604                 curseg->next_segno = segno;
2605                 return 1;
2606         }
2607
2608         /* For node segments, let's do SSR more intensively */
2609         if (IS_NODESEG(type)) {
2610                 if (type >= CURSEG_WARM_NODE) {
2611                         reversed = true;
2612                         i = CURSEG_COLD_NODE;
2613                 } else {
2614                         i = CURSEG_HOT_NODE;
2615                 }
2616                 cnt = NR_CURSEG_NODE_TYPE;
2617         } else {
2618                 if (type >= CURSEG_WARM_DATA) {
2619                         reversed = true;
2620                         i = CURSEG_COLD_DATA;
2621                 } else {
2622                         i = CURSEG_HOT_DATA;
2623                 }
2624                 cnt = NR_CURSEG_DATA_TYPE;
2625         }
2626
2627         for (; cnt-- > 0; reversed ? i-- : i++) {
2628                 if (i == type)
2629                         continue;
2630                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2631                         curseg->next_segno = segno;
2632                         return 1;
2633                 }
2634         }
2635
2636         /* find valid_blocks=0 in dirty list */
2637         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2638                 segno = get_free_segment(sbi);
2639                 if (segno != NULL_SEGNO) {
2640                         curseg->next_segno = segno;
2641                         return 1;
2642                 }
2643         }
2644         return 0;
2645 }
2646
2647 /*
2648  * flush out current segment and replace it with new segment
2649  * This function should be returned with success, otherwise BUG
2650  */
2651 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2652                                                 int type, bool force)
2653 {
2654         struct curseg_info *curseg = CURSEG_I(sbi, type);
2655
2656         if (force)
2657                 new_curseg(sbi, type, true);
2658         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2659                                         type == CURSEG_WARM_NODE)
2660                 new_curseg(sbi, type, false);
2661         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2662                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2663                 new_curseg(sbi, type, false);
2664         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2665                 change_curseg(sbi, type);
2666         else
2667                 new_curseg(sbi, type, false);
2668
2669         stat_inc_seg_type(sbi, curseg);
2670 }
2671
2672 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2673                                         unsigned int start, unsigned int end)
2674 {
2675         struct curseg_info *curseg = CURSEG_I(sbi, type);
2676         unsigned int segno;
2677
2678         down_read(&SM_I(sbi)->curseg_lock);
2679         mutex_lock(&curseg->curseg_mutex);
2680         down_write(&SIT_I(sbi)->sentry_lock);
2681
2682         segno = CURSEG_I(sbi, type)->segno;
2683         if (segno < start || segno > end)
2684                 goto unlock;
2685
2686         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2687                 change_curseg(sbi, type);
2688         else
2689                 new_curseg(sbi, type, true);
2690
2691         stat_inc_seg_type(sbi, curseg);
2692
2693         locate_dirty_segment(sbi, segno);
2694 unlock:
2695         up_write(&SIT_I(sbi)->sentry_lock);
2696
2697         if (segno != curseg->segno)
2698                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2699                             type, segno, curseg->segno);
2700
2701         mutex_unlock(&curseg->curseg_mutex);
2702         up_read(&SM_I(sbi)->curseg_lock);
2703 }
2704
2705 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2706 {
2707         struct curseg_info *curseg;
2708         unsigned int old_segno;
2709         int i;
2710
2711         down_write(&SIT_I(sbi)->sentry_lock);
2712
2713         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2714                 if (type != NO_CHECK_TYPE && i != type)
2715                         continue;
2716
2717                 curseg = CURSEG_I(sbi, i);
2718                 if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2719                                 get_valid_blocks(sbi, curseg->segno, false) ||
2720                                 get_ckpt_valid_blocks(sbi, curseg->segno)) {
2721                         old_segno = curseg->segno;
2722                         SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2723                         locate_dirty_segment(sbi, old_segno);
2724                 }
2725         }
2726
2727         up_write(&SIT_I(sbi)->sentry_lock);
2728 }
2729
2730 static const struct segment_allocation default_salloc_ops = {
2731         .allocate_segment = allocate_segment_by_default,
2732 };
2733
2734 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2735                                                 struct cp_control *cpc)
2736 {
2737         __u64 trim_start = cpc->trim_start;
2738         bool has_candidate = false;
2739
2740         down_write(&SIT_I(sbi)->sentry_lock);
2741         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2742                 if (add_discard_addrs(sbi, cpc, true)) {
2743                         has_candidate = true;
2744                         break;
2745                 }
2746         }
2747         up_write(&SIT_I(sbi)->sentry_lock);
2748
2749         cpc->trim_start = trim_start;
2750         return has_candidate;
2751 }
2752
2753 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2754                                         struct discard_policy *dpolicy,
2755                                         unsigned int start, unsigned int end)
2756 {
2757         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2758         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2759         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2760         struct discard_cmd *dc;
2761         struct blk_plug plug;
2762         int issued;
2763         unsigned int trimmed = 0;
2764
2765 next:
2766         issued = 0;
2767
2768         mutex_lock(&dcc->cmd_lock);
2769         if (unlikely(dcc->rbtree_check))
2770                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2771                                                                 &dcc->root));
2772
2773         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2774                                         NULL, start,
2775                                         (struct rb_entry **)&prev_dc,
2776                                         (struct rb_entry **)&next_dc,
2777                                         &insert_p, &insert_parent, true, NULL);
2778         if (!dc)
2779                 dc = next_dc;
2780
2781         blk_start_plug(&plug);
2782
2783         while (dc && dc->lstart <= end) {
2784                 struct rb_node *node;
2785                 int err = 0;
2786
2787                 if (dc->len < dpolicy->granularity)
2788                         goto skip;
2789
2790                 if (dc->state != D_PREP) {
2791                         list_move_tail(&dc->list, &dcc->fstrim_list);
2792                         goto skip;
2793                 }
2794
2795                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2796
2797                 if (issued >= dpolicy->max_requests) {
2798                         start = dc->lstart + dc->len;
2799
2800                         if (err)
2801                                 __remove_discard_cmd(sbi, dc);
2802
2803                         blk_finish_plug(&plug);
2804                         mutex_unlock(&dcc->cmd_lock);
2805                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2806                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2807                         goto next;
2808                 }
2809 skip:
2810                 node = rb_next(&dc->rb_node);
2811                 if (err)
2812                         __remove_discard_cmd(sbi, dc);
2813                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2814
2815                 if (fatal_signal_pending(current))
2816                         break;
2817         }
2818
2819         blk_finish_plug(&plug);
2820         mutex_unlock(&dcc->cmd_lock);
2821
2822         return trimmed;
2823 }
2824
2825 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2826 {
2827         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2828         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2829         unsigned int start_segno, end_segno;
2830         block_t start_block, end_block;
2831         struct cp_control cpc;
2832         struct discard_policy dpolicy;
2833         unsigned long long trimmed = 0;
2834         int err = 0;
2835         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2836
2837         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2838                 return -EINVAL;
2839
2840         if (end < MAIN_BLKADDR(sbi))
2841                 goto out;
2842
2843         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2844                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2845                 return -EFSCORRUPTED;
2846         }
2847
2848         /* start/end segment number in main_area */
2849         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2850         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2851                                                 GET_SEGNO(sbi, end);
2852         if (need_align) {
2853                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2854                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2855         }
2856
2857         cpc.reason = CP_DISCARD;
2858         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2859         cpc.trim_start = start_segno;
2860         cpc.trim_end = end_segno;
2861
2862         if (sbi->discard_blks == 0)
2863                 goto out;
2864
2865         down_write(&sbi->gc_lock);
2866         err = f2fs_write_checkpoint(sbi, &cpc);
2867         up_write(&sbi->gc_lock);
2868         if (err)
2869                 goto out;
2870
2871         /*
2872          * We filed discard candidates, but actually we don't need to wait for
2873          * all of them, since they'll be issued in idle time along with runtime
2874          * discard option. User configuration looks like using runtime discard
2875          * or periodic fstrim instead of it.
2876          */
2877         if (f2fs_realtime_discard_enable(sbi))
2878                 goto out;
2879
2880         start_block = START_BLOCK(sbi, start_segno);
2881         end_block = START_BLOCK(sbi, end_segno + 1);
2882
2883         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2884         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2885                                         start_block, end_block);
2886
2887         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2888                                         start_block, end_block);
2889 out:
2890         if (!err)
2891                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2892         return err;
2893 }
2894
2895 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2896 {
2897         struct curseg_info *curseg = CURSEG_I(sbi, type);
2898         if (curseg->next_blkoff < sbi->blocks_per_seg)
2899                 return true;
2900         return false;
2901 }
2902
2903 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2904 {
2905         switch (hint) {
2906         case WRITE_LIFE_SHORT:
2907                 return CURSEG_HOT_DATA;
2908         case WRITE_LIFE_EXTREME:
2909                 return CURSEG_COLD_DATA;
2910         default:
2911                 return CURSEG_WARM_DATA;
2912         }
2913 }
2914
2915 /* This returns write hints for each segment type. This hints will be
2916  * passed down to block layer. There are mapping tables which depend on
2917  * the mount option 'whint_mode'.
2918  *
2919  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2920  *
2921  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2922  *
2923  * User                  F2FS                     Block
2924  * ----                  ----                     -----
2925  *                       META                     WRITE_LIFE_NOT_SET
2926  *                       HOT_NODE                 "
2927  *                       WARM_NODE                "
2928  *                       COLD_NODE                "
2929  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2930  * extension list        "                        "
2931  *
2932  * -- buffered io
2933  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2934  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2935  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2936  * WRITE_LIFE_NONE       "                        "
2937  * WRITE_LIFE_MEDIUM     "                        "
2938  * WRITE_LIFE_LONG       "                        "
2939  *
2940  * -- direct io
2941  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2944  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2945  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2946  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2947  *
2948  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2949  *
2950  * User                  F2FS                     Block
2951  * ----                  ----                     -----
2952  *                       META                     WRITE_LIFE_MEDIUM;
2953  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2954  *                       WARM_NODE                "
2955  *                       COLD_NODE                WRITE_LIFE_NONE
2956  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2957  * extension list        "                        "
2958  *
2959  * -- buffered io
2960  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2961  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2962  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2963  * WRITE_LIFE_NONE       "                        "
2964  * WRITE_LIFE_MEDIUM     "                        "
2965  * WRITE_LIFE_LONG       "                        "
2966  *
2967  * -- direct io
2968  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2969  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2970  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2971  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2972  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2973  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2974  */
2975
2976 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2977                                 enum page_type type, enum temp_type temp)
2978 {
2979         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2980                 if (type == DATA) {
2981                         if (temp == WARM)
2982                                 return WRITE_LIFE_NOT_SET;
2983                         else if (temp == HOT)
2984                                 return WRITE_LIFE_SHORT;
2985                         else if (temp == COLD)
2986                                 return WRITE_LIFE_EXTREME;
2987                 } else {
2988                         return WRITE_LIFE_NOT_SET;
2989                 }
2990         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2991                 if (type == DATA) {
2992                         if (temp == WARM)
2993                                 return WRITE_LIFE_LONG;
2994                         else if (temp == HOT)
2995                                 return WRITE_LIFE_SHORT;
2996                         else if (temp == COLD)
2997                                 return WRITE_LIFE_EXTREME;
2998                 } else if (type == NODE) {
2999                         if (temp == WARM || temp == HOT)
3000                                 return WRITE_LIFE_NOT_SET;
3001                         else if (temp == COLD)
3002                                 return WRITE_LIFE_NONE;
3003                 } else if (type == META) {
3004                         return WRITE_LIFE_MEDIUM;
3005                 }
3006         }
3007         return WRITE_LIFE_NOT_SET;
3008 }
3009
3010 static int __get_segment_type_2(struct f2fs_io_info *fio)
3011 {
3012         if (fio->type == DATA)
3013                 return CURSEG_HOT_DATA;
3014         else
3015                 return CURSEG_HOT_NODE;
3016 }
3017
3018 static int __get_segment_type_4(struct f2fs_io_info *fio)
3019 {
3020         if (fio->type == DATA) {
3021                 struct inode *inode = fio->page->mapping->host;
3022
3023                 if (S_ISDIR(inode->i_mode))
3024                         return CURSEG_HOT_DATA;
3025                 else
3026                         return CURSEG_COLD_DATA;
3027         } else {
3028                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3029                         return CURSEG_WARM_NODE;
3030                 else
3031                         return CURSEG_COLD_NODE;
3032         }
3033 }
3034
3035 static int __get_segment_type_6(struct f2fs_io_info *fio)
3036 {
3037         if (fio->type == DATA) {
3038                 struct inode *inode = fio->page->mapping->host;
3039
3040                 if (is_cold_data(fio->page) || file_is_cold(inode) ||
3041                                 f2fs_compressed_file(inode))
3042                         return CURSEG_COLD_DATA;
3043                 if (file_is_hot(inode) ||
3044                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3045                                 f2fs_is_atomic_file(inode) ||
3046                                 f2fs_is_volatile_file(inode))
3047                         return CURSEG_HOT_DATA;
3048                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3049         } else {
3050                 if (IS_DNODE(fio->page))
3051                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3052                                                 CURSEG_HOT_NODE;
3053                 return CURSEG_COLD_NODE;
3054         }
3055 }
3056
3057 static int __get_segment_type(struct f2fs_io_info *fio)
3058 {
3059         int type = 0;
3060
3061         switch (F2FS_OPTION(fio->sbi).active_logs) {
3062         case 2:
3063                 type = __get_segment_type_2(fio);
3064                 break;
3065         case 4:
3066                 type = __get_segment_type_4(fio);
3067                 break;
3068         case 6:
3069                 type = __get_segment_type_6(fio);
3070                 break;
3071         default:
3072                 f2fs_bug_on(fio->sbi, true);
3073         }
3074
3075         if (IS_HOT(type))
3076                 fio->temp = HOT;
3077         else if (IS_WARM(type))
3078                 fio->temp = WARM;
3079         else
3080                 fio->temp = COLD;
3081         return type;
3082 }
3083
3084 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3085                 block_t old_blkaddr, block_t *new_blkaddr,
3086                 struct f2fs_summary *sum, int type,
3087                 struct f2fs_io_info *fio, bool add_list)
3088 {
3089         struct sit_info *sit_i = SIT_I(sbi);
3090         struct curseg_info *curseg = CURSEG_I(sbi, type);
3091         bool put_pin_sem = false;
3092
3093         if (type == CURSEG_COLD_DATA) {
3094                 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3095                 if (down_read_trylock(&sbi->pin_sem)) {
3096                         put_pin_sem = true;
3097                 } else {
3098                         type = CURSEG_WARM_DATA;
3099                         curseg = CURSEG_I(sbi, type);
3100                 }
3101         } else if (type == CURSEG_COLD_DATA_PINNED) {
3102                 type = CURSEG_COLD_DATA;
3103         }
3104
3105         down_read(&SM_I(sbi)->curseg_lock);
3106
3107         mutex_lock(&curseg->curseg_mutex);
3108         down_write(&sit_i->sentry_lock);
3109
3110         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3111
3112         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3113
3114         /*
3115          * __add_sum_entry should be resided under the curseg_mutex
3116          * because, this function updates a summary entry in the
3117          * current summary block.
3118          */
3119         __add_sum_entry(sbi, type, sum);
3120
3121         __refresh_next_blkoff(sbi, curseg);
3122
3123         stat_inc_block_count(sbi, curseg);
3124
3125         /*
3126          * SIT information should be updated before segment allocation,
3127          * since SSR needs latest valid block information.
3128          */
3129         update_sit_entry(sbi, *new_blkaddr, 1);
3130         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3131                 update_sit_entry(sbi, old_blkaddr, -1);
3132
3133         if (!__has_curseg_space(sbi, type))
3134                 sit_i->s_ops->allocate_segment(sbi, type, false);
3135
3136         /*
3137          * segment dirty status should be updated after segment allocation,
3138          * so we just need to update status only one time after previous
3139          * segment being closed.
3140          */
3141         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3142         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3143
3144         up_write(&sit_i->sentry_lock);
3145
3146         if (page && IS_NODESEG(type)) {
3147                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3148
3149                 f2fs_inode_chksum_set(sbi, page);
3150         }
3151
3152         if (F2FS_IO_ALIGNED(sbi))
3153                 fio->retry = false;
3154
3155         if (add_list) {
3156                 struct f2fs_bio_info *io;
3157
3158                 INIT_LIST_HEAD(&fio->list);
3159                 fio->in_list = true;
3160                 io = sbi->write_io[fio->type] + fio->temp;
3161                 spin_lock(&io->io_lock);
3162                 list_add_tail(&fio->list, &io->io_list);
3163                 spin_unlock(&io->io_lock);
3164         }
3165
3166         mutex_unlock(&curseg->curseg_mutex);
3167
3168         up_read(&SM_I(sbi)->curseg_lock);
3169
3170         if (put_pin_sem)
3171                 up_read(&sbi->pin_sem);
3172 }
3173
3174 static void update_device_state(struct f2fs_io_info *fio)
3175 {
3176         struct f2fs_sb_info *sbi = fio->sbi;
3177         unsigned int devidx;
3178
3179         if (!f2fs_is_multi_device(sbi))
3180                 return;
3181
3182         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3183
3184         /* update device state for fsync */
3185         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3186
3187         /* update device state for checkpoint */
3188         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3189                 spin_lock(&sbi->dev_lock);
3190                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3191                 spin_unlock(&sbi->dev_lock);
3192         }
3193 }
3194
3195 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3196 {
3197         int type = __get_segment_type(fio);
3198         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3199
3200         if (keep_order)
3201                 down_read(&fio->sbi->io_order_lock);
3202 reallocate:
3203         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3204                         &fio->new_blkaddr, sum, type, fio, true);
3205         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3206                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3207                                         fio->old_blkaddr, fio->old_blkaddr);
3208
3209         /* writeout dirty page into bdev */
3210         f2fs_submit_page_write(fio);
3211         if (fio->retry) {
3212                 fio->old_blkaddr = fio->new_blkaddr;
3213                 goto reallocate;
3214         }
3215
3216         update_device_state(fio);
3217
3218         if (keep_order)
3219                 up_read(&fio->sbi->io_order_lock);
3220 }
3221
3222 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3223                                         enum iostat_type io_type)
3224 {
3225         struct f2fs_io_info fio = {
3226                 .sbi = sbi,
3227                 .type = META,
3228                 .temp = HOT,
3229                 .op = REQ_OP_WRITE,
3230                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3231                 .old_blkaddr = page->index,
3232                 .new_blkaddr = page->index,
3233                 .page = page,
3234                 .encrypted_page = NULL,
3235                 .in_list = false,
3236         };
3237
3238         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3239                 fio.op_flags &= ~REQ_META;
3240
3241         set_page_writeback(page);
3242         ClearPageError(page);
3243         f2fs_submit_page_write(&fio);
3244
3245         stat_inc_meta_count(sbi, page->index);
3246         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3247 }
3248
3249 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3250 {
3251         struct f2fs_summary sum;
3252
3253         set_summary(&sum, nid, 0, 0);
3254         do_write_page(&sum, fio);
3255
3256         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3257 }
3258
3259 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3260                                         struct f2fs_io_info *fio)
3261 {
3262         struct f2fs_sb_info *sbi = fio->sbi;
3263         struct f2fs_summary sum;
3264
3265         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3266         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3267         do_write_page(&sum, fio);
3268         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3269
3270         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3271 }
3272
3273 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3274 {
3275         int err;
3276         struct f2fs_sb_info *sbi = fio->sbi;
3277         unsigned int segno;
3278
3279         fio->new_blkaddr = fio->old_blkaddr;
3280         /* i/o temperature is needed for passing down write hints */
3281         __get_segment_type(fio);
3282
3283         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3284
3285         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3286                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3287                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3288                           __func__, segno);
3289                 return -EFSCORRUPTED;
3290         }
3291
3292         stat_inc_inplace_blocks(fio->sbi);
3293
3294         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3295                 err = f2fs_merge_page_bio(fio);
3296         else
3297                 err = f2fs_submit_page_bio(fio);
3298         if (!err) {
3299                 update_device_state(fio);
3300                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3301         }
3302
3303         return err;
3304 }
3305
3306 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3307                                                 unsigned int segno)
3308 {
3309         int i;
3310
3311         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3312                 if (CURSEG_I(sbi, i)->segno == segno)
3313                         break;
3314         }
3315         return i;
3316 }
3317
3318 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3319                                 block_t old_blkaddr, block_t new_blkaddr,
3320                                 bool recover_curseg, bool recover_newaddr)
3321 {
3322         struct sit_info *sit_i = SIT_I(sbi);
3323         struct curseg_info *curseg;
3324         unsigned int segno, old_cursegno;
3325         struct seg_entry *se;
3326         int type;
3327         unsigned short old_blkoff;
3328
3329         segno = GET_SEGNO(sbi, new_blkaddr);
3330         se = get_seg_entry(sbi, segno);
3331         type = se->type;
3332
3333         down_write(&SM_I(sbi)->curseg_lock);
3334
3335         if (!recover_curseg) {
3336                 /* for recovery flow */
3337                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3338                         if (old_blkaddr == NULL_ADDR)
3339                                 type = CURSEG_COLD_DATA;
3340                         else
3341                                 type = CURSEG_WARM_DATA;
3342                 }
3343         } else {
3344                 if (IS_CURSEG(sbi, segno)) {
3345                         /* se->type is volatile as SSR allocation */
3346                         type = __f2fs_get_curseg(sbi, segno);
3347                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3348                 } else {
3349                         type = CURSEG_WARM_DATA;
3350                 }
3351         }
3352
3353         f2fs_bug_on(sbi, !IS_DATASEG(type));
3354         curseg = CURSEG_I(sbi, type);
3355
3356         mutex_lock(&curseg->curseg_mutex);
3357         down_write(&sit_i->sentry_lock);
3358
3359         old_cursegno = curseg->segno;
3360         old_blkoff = curseg->next_blkoff;
3361
3362         /* change the current segment */
3363         if (segno != curseg->segno) {
3364                 curseg->next_segno = segno;
3365                 change_curseg(sbi, type);
3366         }
3367
3368         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3369         __add_sum_entry(sbi, type, sum);
3370
3371         if (!recover_curseg || recover_newaddr)
3372                 update_sit_entry(sbi, new_blkaddr, 1);
3373         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3374                 invalidate_mapping_pages(META_MAPPING(sbi),
3375                                         old_blkaddr, old_blkaddr);
3376                 update_sit_entry(sbi, old_blkaddr, -1);
3377         }
3378
3379         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3380         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3381
3382         locate_dirty_segment(sbi, old_cursegno);
3383
3384         if (recover_curseg) {
3385                 if (old_cursegno != curseg->segno) {
3386                         curseg->next_segno = old_cursegno;
3387                         change_curseg(sbi, type);
3388                 }
3389                 curseg->next_blkoff = old_blkoff;
3390         }
3391
3392         up_write(&sit_i->sentry_lock);
3393         mutex_unlock(&curseg->curseg_mutex);
3394         up_write(&SM_I(sbi)->curseg_lock);
3395 }
3396
3397 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3398                                 block_t old_addr, block_t new_addr,
3399                                 unsigned char version, bool recover_curseg,
3400                                 bool recover_newaddr)
3401 {
3402         struct f2fs_summary sum;
3403
3404         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3405
3406         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3407                                         recover_curseg, recover_newaddr);
3408
3409         f2fs_update_data_blkaddr(dn, new_addr);
3410 }
3411
3412 void f2fs_wait_on_page_writeback(struct page *page,
3413                                 enum page_type type, bool ordered, bool locked)
3414 {
3415         if (PageWriteback(page)) {
3416                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3417
3418                 /* submit cached LFS IO */
3419                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3420                 /* sbumit cached IPU IO */
3421                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3422                 if (ordered) {
3423                         wait_on_page_writeback(page);
3424                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3425                 } else {
3426                         wait_for_stable_page(page);
3427                 }
3428         }
3429 }
3430
3431 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3432 {
3433         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3434         struct page *cpage;
3435
3436         if (!f2fs_post_read_required(inode))
3437                 return;
3438
3439         if (!__is_valid_data_blkaddr(blkaddr))
3440                 return;
3441
3442         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3443         if (cpage) {
3444                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3445                 f2fs_put_page(cpage, 1);
3446         }
3447 }
3448
3449 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3450                                                                 block_t len)
3451 {
3452         block_t i;
3453
3454         for (i = 0; i < len; i++)
3455                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3456 }
3457
3458 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3459 {
3460         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3461         struct curseg_info *seg_i;
3462         unsigned char *kaddr;
3463         struct page *page;
3464         block_t start;
3465         int i, j, offset;
3466
3467         start = start_sum_block(sbi);
3468
3469         page = f2fs_get_meta_page(sbi, start++);
3470         if (IS_ERR(page))
3471                 return PTR_ERR(page);
3472         kaddr = (unsigned char *)page_address(page);
3473
3474         /* Step 1: restore nat cache */
3475         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3476         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3477
3478         /* Step 2: restore sit cache */
3479         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3480         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3481         offset = 2 * SUM_JOURNAL_SIZE;
3482
3483         /* Step 3: restore summary entries */
3484         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3485                 unsigned short blk_off;
3486                 unsigned int segno;
3487
3488                 seg_i = CURSEG_I(sbi, i);
3489                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3490                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3491                 seg_i->next_segno = segno;
3492                 reset_curseg(sbi, i, 0);
3493                 seg_i->alloc_type = ckpt->alloc_type[i];
3494                 seg_i->next_blkoff = blk_off;
3495
3496                 if (seg_i->alloc_type == SSR)
3497                         blk_off = sbi->blocks_per_seg;
3498
3499                 for (j = 0; j < blk_off; j++) {
3500                         struct f2fs_summary *s;
3501                         s = (struct f2fs_summary *)(kaddr + offset);
3502                         seg_i->sum_blk->entries[j] = *s;
3503                         offset += SUMMARY_SIZE;
3504                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3505                                                 SUM_FOOTER_SIZE)
3506                                 continue;
3507
3508                         f2fs_put_page(page, 1);
3509                         page = NULL;
3510
3511                         page = f2fs_get_meta_page(sbi, start++);
3512                         if (IS_ERR(page))
3513                                 return PTR_ERR(page);
3514                         kaddr = (unsigned char *)page_address(page);
3515                         offset = 0;
3516                 }
3517         }
3518         f2fs_put_page(page, 1);
3519         return 0;
3520 }
3521
3522 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3523 {
3524         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3525         struct f2fs_summary_block *sum;
3526         struct curseg_info *curseg;
3527         struct page *new;
3528         unsigned short blk_off;
3529         unsigned int segno = 0;
3530         block_t blk_addr = 0;
3531         int err = 0;
3532
3533         /* get segment number and block addr */
3534         if (IS_DATASEG(type)) {
3535                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3536                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3537                                                         CURSEG_HOT_DATA]);
3538                 if (__exist_node_summaries(sbi))
3539                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3540                 else
3541                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3542         } else {
3543                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3544                                                         CURSEG_HOT_NODE]);
3545                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3546                                                         CURSEG_HOT_NODE]);
3547                 if (__exist_node_summaries(sbi))
3548                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3549                                                         type - CURSEG_HOT_NODE);
3550                 else
3551                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3552         }
3553
3554         new = f2fs_get_meta_page(sbi, blk_addr);
3555         if (IS_ERR(new))
3556                 return PTR_ERR(new);
3557         sum = (struct f2fs_summary_block *)page_address(new);
3558
3559         if (IS_NODESEG(type)) {
3560                 if (__exist_node_summaries(sbi)) {
3561                         struct f2fs_summary *ns = &sum->entries[0];
3562                         int i;
3563                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3564                                 ns->version = 0;
3565                                 ns->ofs_in_node = 0;
3566                         }
3567                 } else {
3568                         err = f2fs_restore_node_summary(sbi, segno, sum);
3569                         if (err)
3570                                 goto out;
3571                 }
3572         }
3573
3574         /* set uncompleted segment to curseg */
3575         curseg = CURSEG_I(sbi, type);
3576         mutex_lock(&curseg->curseg_mutex);
3577
3578         /* update journal info */
3579         down_write(&curseg->journal_rwsem);
3580         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3581         up_write(&curseg->journal_rwsem);
3582
3583         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3584         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3585         curseg->next_segno = segno;
3586         reset_curseg(sbi, type, 0);
3587         curseg->alloc_type = ckpt->alloc_type[type];
3588         curseg->next_blkoff = blk_off;
3589         mutex_unlock(&curseg->curseg_mutex);
3590 out:
3591         f2fs_put_page(new, 1);
3592         return err;
3593 }
3594
3595 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3596 {
3597         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3598         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3599         int type = CURSEG_HOT_DATA;
3600         int err;
3601
3602         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3603                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3604
3605                 if (npages >= 2)
3606                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3607                                                         META_CP, true);
3608
3609                 /* restore for compacted data summary */
3610                 err = read_compacted_summaries(sbi);
3611                 if (err)
3612                         return err;
3613                 type = CURSEG_HOT_NODE;
3614         }
3615
3616         if (__exist_node_summaries(sbi))
3617                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3618                                         NR_CURSEG_TYPE - type, META_CP, true);
3619
3620         for (; type <= CURSEG_COLD_NODE; type++) {
3621                 err = read_normal_summaries(sbi, type);
3622                 if (err)
3623                         return err;
3624         }
3625
3626         /* sanity check for summary blocks */
3627         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3628                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3629                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3630                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3631                 return -EINVAL;
3632         }
3633
3634         return 0;
3635 }
3636
3637 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3638 {
3639         struct page *page;
3640         unsigned char *kaddr;
3641         struct f2fs_summary *summary;
3642         struct curseg_info *seg_i;
3643         int written_size = 0;
3644         int i, j;
3645
3646         page = f2fs_grab_meta_page(sbi, blkaddr++);
3647         kaddr = (unsigned char *)page_address(page);
3648         memset(kaddr, 0, PAGE_SIZE);
3649
3650         /* Step 1: write nat cache */
3651         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3652         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3653         written_size += SUM_JOURNAL_SIZE;
3654
3655         /* Step 2: write sit cache */
3656         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3657         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3658         written_size += SUM_JOURNAL_SIZE;
3659
3660         /* Step 3: write summary entries */
3661         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3662                 unsigned short blkoff;
3663                 seg_i = CURSEG_I(sbi, i);
3664                 if (sbi->ckpt->alloc_type[i] == SSR)
3665                         blkoff = sbi->blocks_per_seg;
3666                 else
3667                         blkoff = curseg_blkoff(sbi, i);
3668
3669                 for (j = 0; j < blkoff; j++) {
3670                         if (!page) {
3671                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3672                                 kaddr = (unsigned char *)page_address(page);
3673                                 memset(kaddr, 0, PAGE_SIZE);
3674                                 written_size = 0;
3675                         }
3676                         summary = (struct f2fs_summary *)(kaddr + written_size);
3677                         *summary = seg_i->sum_blk->entries[j];
3678                         written_size += SUMMARY_SIZE;
3679
3680                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3681                                                         SUM_FOOTER_SIZE)
3682                                 continue;
3683
3684                         set_page_dirty(page);
3685                         f2fs_put_page(page, 1);
3686                         page = NULL;
3687                 }
3688         }
3689         if (page) {
3690                 set_page_dirty(page);
3691                 f2fs_put_page(page, 1);
3692         }
3693 }
3694
3695 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3696                                         block_t blkaddr, int type)
3697 {
3698         int i, end;
3699         if (IS_DATASEG(type))
3700                 end = type + NR_CURSEG_DATA_TYPE;
3701         else
3702                 end = type + NR_CURSEG_NODE_TYPE;
3703
3704         for (i = type; i < end; i++)
3705                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3706 }
3707
3708 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3709 {
3710         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3711                 write_compacted_summaries(sbi, start_blk);
3712         else
3713                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3714 }
3715
3716 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3717 {
3718         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3719 }
3720
3721 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3722                                         unsigned int val, int alloc)
3723 {
3724         int i;
3725
3726         if (type == NAT_JOURNAL) {
3727                 for (i = 0; i < nats_in_cursum(journal); i++) {
3728                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3729                                 return i;
3730                 }
3731                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3732                         return update_nats_in_cursum(journal, 1);
3733         } else if (type == SIT_JOURNAL) {
3734                 for (i = 0; i < sits_in_cursum(journal); i++)
3735                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3736                                 return i;
3737                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3738                         return update_sits_in_cursum(journal, 1);
3739         }
3740         return -1;
3741 }
3742
3743 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3744                                         unsigned int segno)
3745 {
3746         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3747 }
3748
3749 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3750                                         unsigned int start)
3751 {
3752         struct sit_info *sit_i = SIT_I(sbi);
3753         struct page *page;
3754         pgoff_t src_off, dst_off;
3755
3756         src_off = current_sit_addr(sbi, start);
3757         dst_off = next_sit_addr(sbi, src_off);
3758
3759         page = f2fs_grab_meta_page(sbi, dst_off);
3760         seg_info_to_sit_page(sbi, page, start);
3761
3762         set_page_dirty(page);
3763         set_to_next_sit(sit_i, start);
3764
3765         return page;
3766 }
3767
3768 static struct sit_entry_set *grab_sit_entry_set(void)
3769 {
3770         struct sit_entry_set *ses =
3771                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3772
3773         ses->entry_cnt = 0;
3774         INIT_LIST_HEAD(&ses->set_list);
3775         return ses;
3776 }
3777
3778 static void release_sit_entry_set(struct sit_entry_set *ses)
3779 {
3780         list_del(&ses->set_list);
3781         kmem_cache_free(sit_entry_set_slab, ses);
3782 }
3783
3784 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3785                                                 struct list_head *head)
3786 {
3787         struct sit_entry_set *next = ses;
3788
3789         if (list_is_last(&ses->set_list, head))
3790                 return;
3791
3792         list_for_each_entry_continue(next, head, set_list)
3793                 if (ses->entry_cnt <= next->entry_cnt)
3794                         break;
3795
3796         list_move_tail(&ses->set_list, &next->set_list);
3797 }
3798
3799 static void add_sit_entry(unsigned int segno, struct list_head *head)
3800 {
3801         struct sit_entry_set *ses;
3802         unsigned int start_segno = START_SEGNO(segno);
3803
3804         list_for_each_entry(ses, head, set_list) {
3805                 if (ses->start_segno == start_segno) {
3806                         ses->entry_cnt++;
3807                         adjust_sit_entry_set(ses, head);
3808                         return;
3809                 }
3810         }
3811
3812         ses = grab_sit_entry_set();
3813
3814         ses->start_segno = start_segno;
3815         ses->entry_cnt++;
3816         list_add(&ses->set_list, head);
3817 }
3818
3819 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3820 {
3821         struct f2fs_sm_info *sm_info = SM_I(sbi);
3822         struct list_head *set_list = &sm_info->sit_entry_set;
3823         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3824         unsigned int segno;
3825
3826         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3827                 add_sit_entry(segno, set_list);
3828 }
3829
3830 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3831 {
3832         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3833         struct f2fs_journal *journal = curseg->journal;
3834         int i;
3835
3836         down_write(&curseg->journal_rwsem);
3837         for (i = 0; i < sits_in_cursum(journal); i++) {
3838                 unsigned int segno;
3839                 bool dirtied;
3840
3841                 segno = le32_to_cpu(segno_in_journal(journal, i));
3842                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3843
3844                 if (!dirtied)
3845                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3846         }
3847         update_sits_in_cursum(journal, -i);
3848         up_write(&curseg->journal_rwsem);
3849 }
3850
3851 /*
3852  * CP calls this function, which flushes SIT entries including sit_journal,
3853  * and moves prefree segs to free segs.
3854  */
3855 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3856 {
3857         struct sit_info *sit_i = SIT_I(sbi);
3858         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3859         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3860         struct f2fs_journal *journal = curseg->journal;
3861         struct sit_entry_set *ses, *tmp;
3862         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3863         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3864         struct seg_entry *se;
3865
3866         down_write(&sit_i->sentry_lock);
3867
3868         if (!sit_i->dirty_sentries)
3869                 goto out;
3870
3871         /*
3872          * add and account sit entries of dirty bitmap in sit entry
3873          * set temporarily
3874          */
3875         add_sits_in_set(sbi);
3876
3877         /*
3878          * if there are no enough space in journal to store dirty sit
3879          * entries, remove all entries from journal and add and account
3880          * them in sit entry set.
3881          */
3882         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3883                                                                 !to_journal)
3884                 remove_sits_in_journal(sbi);
3885
3886         /*
3887          * there are two steps to flush sit entries:
3888          * #1, flush sit entries to journal in current cold data summary block.
3889          * #2, flush sit entries to sit page.
3890          */
3891         list_for_each_entry_safe(ses, tmp, head, set_list) {
3892                 struct page *page = NULL;
3893                 struct f2fs_sit_block *raw_sit = NULL;
3894                 unsigned int start_segno = ses->start_segno;
3895                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3896                                                 (unsigned long)MAIN_SEGS(sbi));
3897                 unsigned int segno = start_segno;
3898
3899                 if (to_journal &&
3900                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3901                         to_journal = false;
3902
3903                 if (to_journal) {
3904                         down_write(&curseg->journal_rwsem);
3905                 } else {
3906                         page = get_next_sit_page(sbi, start_segno);
3907                         raw_sit = page_address(page);
3908                 }
3909
3910                 /* flush dirty sit entries in region of current sit set */
3911                 for_each_set_bit_from(segno, bitmap, end) {
3912                         int offset, sit_offset;
3913
3914                         se = get_seg_entry(sbi, segno);
3915 #ifdef CONFIG_F2FS_CHECK_FS
3916                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3917                                                 SIT_VBLOCK_MAP_SIZE))
3918                                 f2fs_bug_on(sbi, 1);
3919 #endif
3920
3921                         /* add discard candidates */
3922                         if (!(cpc->reason & CP_DISCARD)) {
3923                                 cpc->trim_start = segno;
3924                                 add_discard_addrs(sbi, cpc, false);
3925                         }
3926
3927                         if (to_journal) {
3928                                 offset = f2fs_lookup_journal_in_cursum(journal,
3929                                                         SIT_JOURNAL, segno, 1);
3930                                 f2fs_bug_on(sbi, offset < 0);
3931                                 segno_in_journal(journal, offset) =
3932                                                         cpu_to_le32(segno);
3933                                 seg_info_to_raw_sit(se,
3934                                         &sit_in_journal(journal, offset));
3935                                 check_block_count(sbi, segno,
3936                                         &sit_in_journal(journal, offset));
3937                         } else {
3938                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3939                                 seg_info_to_raw_sit(se,
3940                                                 &raw_sit->entries[sit_offset]);
3941                                 check_block_count(sbi, segno,
3942                                                 &raw_sit->entries[sit_offset]);
3943                         }
3944
3945                         __clear_bit(segno, bitmap);
3946                         sit_i->dirty_sentries--;
3947                         ses->entry_cnt--;
3948                 }
3949
3950                 if (to_journal)
3951                         up_write(&curseg->journal_rwsem);
3952                 else
3953                         f2fs_put_page(page, 1);
3954
3955                 f2fs_bug_on(sbi, ses->entry_cnt);
3956                 release_sit_entry_set(ses);
3957         }
3958
3959         f2fs_bug_on(sbi, !list_empty(head));
3960         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3961 out:
3962         if (cpc->reason & CP_DISCARD) {
3963                 __u64 trim_start = cpc->trim_start;
3964
3965                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3966                         add_discard_addrs(sbi, cpc, false);
3967
3968                 cpc->trim_start = trim_start;
3969         }
3970         up_write(&sit_i->sentry_lock);
3971
3972         set_prefree_as_free_segments(sbi);
3973 }
3974
3975 static int build_sit_info(struct f2fs_sb_info *sbi)
3976 {
3977         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3978         struct sit_info *sit_i;
3979         unsigned int sit_segs, start;
3980         char *src_bitmap, *bitmap;
3981         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3982
3983         /* allocate memory for SIT information */
3984         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3985         if (!sit_i)
3986                 return -ENOMEM;
3987
3988         SM_I(sbi)->sit_info = sit_i;
3989
3990         sit_i->sentries =
3991                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3992                                               MAIN_SEGS(sbi)),
3993                               GFP_KERNEL);
3994         if (!sit_i->sentries)
3995                 return -ENOMEM;
3996
3997         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3998         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3999                                                                 GFP_KERNEL);
4000         if (!sit_i->dirty_sentries_bitmap)
4001                 return -ENOMEM;
4002
4003 #ifdef CONFIG_F2FS_CHECK_FS
4004         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4005 #else
4006         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4007 #endif
4008         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4009         if (!sit_i->bitmap)
4010                 return -ENOMEM;
4011
4012         bitmap = sit_i->bitmap;
4013
4014         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4015                 sit_i->sentries[start].cur_valid_map = bitmap;
4016                 bitmap += SIT_VBLOCK_MAP_SIZE;
4017
4018                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4019                 bitmap += SIT_VBLOCK_MAP_SIZE;
4020
4021 #ifdef CONFIG_F2FS_CHECK_FS
4022                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4023                 bitmap += SIT_VBLOCK_MAP_SIZE;
4024 #endif
4025
4026                 sit_i->sentries[start].discard_map = bitmap;
4027                 bitmap += SIT_VBLOCK_MAP_SIZE;
4028         }
4029
4030         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4031         if (!sit_i->tmp_map)
4032                 return -ENOMEM;
4033
4034         if (__is_large_section(sbi)) {
4035                 sit_i->sec_entries =
4036                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4037                                                       MAIN_SECS(sbi)),
4038                                       GFP_KERNEL);
4039                 if (!sit_i->sec_entries)
4040                         return -ENOMEM;
4041         }
4042
4043         /* get information related with SIT */
4044         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4045
4046         /* setup SIT bitmap from ckeckpoint pack */
4047         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4048         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4049
4050         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4051         if (!sit_i->sit_bitmap)
4052                 return -ENOMEM;
4053
4054 #ifdef CONFIG_F2FS_CHECK_FS
4055         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4056                                         sit_bitmap_size, GFP_KERNEL);
4057         if (!sit_i->sit_bitmap_mir)
4058                 return -ENOMEM;
4059
4060         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4061                                         main_bitmap_size, GFP_KERNEL);
4062         if (!sit_i->invalid_segmap)
4063                 return -ENOMEM;
4064 #endif
4065
4066         /* init SIT information */
4067         sit_i->s_ops = &default_salloc_ops;
4068
4069         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4070         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4071         sit_i->written_valid_blocks = 0;
4072         sit_i->bitmap_size = sit_bitmap_size;
4073         sit_i->dirty_sentries = 0;
4074         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4075         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4076         sit_i->mounted_time = ktime_get_boottime_seconds();
4077         init_rwsem(&sit_i->sentry_lock);
4078         return 0;
4079 }
4080
4081 static int build_free_segmap(struct f2fs_sb_info *sbi)
4082 {
4083         struct free_segmap_info *free_i;
4084         unsigned int bitmap_size, sec_bitmap_size;
4085
4086         /* allocate memory for free segmap information */
4087         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4088         if (!free_i)
4089                 return -ENOMEM;
4090
4091         SM_I(sbi)->free_info = free_i;
4092
4093         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4094         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4095         if (!free_i->free_segmap)
4096                 return -ENOMEM;
4097
4098         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4099         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4100         if (!free_i->free_secmap)
4101                 return -ENOMEM;
4102
4103         /* set all segments as dirty temporarily */
4104         memset(free_i->free_segmap, 0xff, bitmap_size);
4105         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4106
4107         /* init free segmap information */
4108         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4109         free_i->free_segments = 0;
4110         free_i->free_sections = 0;
4111         spin_lock_init(&free_i->segmap_lock);
4112         return 0;
4113 }
4114
4115 static int build_curseg(struct f2fs_sb_info *sbi)
4116 {
4117         struct curseg_info *array;
4118         int i;
4119
4120         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4121                              GFP_KERNEL);
4122         if (!array)
4123                 return -ENOMEM;
4124
4125         SM_I(sbi)->curseg_array = array;
4126
4127         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4128                 mutex_init(&array[i].curseg_mutex);
4129                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4130                 if (!array[i].sum_blk)
4131                         return -ENOMEM;
4132                 init_rwsem(&array[i].journal_rwsem);
4133                 array[i].journal = f2fs_kzalloc(sbi,
4134                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4135                 if (!array[i].journal)
4136                         return -ENOMEM;
4137                 array[i].segno = NULL_SEGNO;
4138                 array[i].next_blkoff = 0;
4139         }
4140         return restore_curseg_summaries(sbi);
4141 }
4142
4143 static int build_sit_entries(struct f2fs_sb_info *sbi)
4144 {
4145         struct sit_info *sit_i = SIT_I(sbi);
4146         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4147         struct f2fs_journal *journal = curseg->journal;
4148         struct seg_entry *se;
4149         struct f2fs_sit_entry sit;
4150         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4151         unsigned int i, start, end;
4152         unsigned int readed, start_blk = 0;
4153         int err = 0;
4154         block_t total_node_blocks = 0;
4155
4156         do {
4157                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4158                                                         META_SIT, true);
4159
4160                 start = start_blk * sit_i->sents_per_block;
4161                 end = (start_blk + readed) * sit_i->sents_per_block;
4162
4163                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4164                         struct f2fs_sit_block *sit_blk;
4165                         struct page *page;
4166
4167                         se = &sit_i->sentries[start];
4168                         page = get_current_sit_page(sbi, start);
4169                         if (IS_ERR(page))
4170                                 return PTR_ERR(page);
4171                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4172                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4173                         f2fs_put_page(page, 1);
4174
4175                         err = check_block_count(sbi, start, &sit);
4176                         if (err)
4177                                 return err;
4178                         seg_info_from_raw_sit(se, &sit);
4179                         if (IS_NODESEG(se->type))
4180                                 total_node_blocks += se->valid_blocks;
4181
4182                         /* build discard map only one time */
4183                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4184                                 memset(se->discard_map, 0xff,
4185                                         SIT_VBLOCK_MAP_SIZE);
4186                         } else {
4187                                 memcpy(se->discard_map,
4188                                         se->cur_valid_map,
4189                                         SIT_VBLOCK_MAP_SIZE);
4190                                 sbi->discard_blks +=
4191                                         sbi->blocks_per_seg -
4192                                         se->valid_blocks;
4193                         }
4194
4195                         if (__is_large_section(sbi))
4196                                 get_sec_entry(sbi, start)->valid_blocks +=
4197                                                         se->valid_blocks;
4198                 }
4199                 start_blk += readed;
4200         } while (start_blk < sit_blk_cnt);
4201
4202         down_read(&curseg->journal_rwsem);
4203         for (i = 0; i < sits_in_cursum(journal); i++) {
4204                 unsigned int old_valid_blocks;
4205
4206                 start = le32_to_cpu(segno_in_journal(journal, i));
4207                 if (start >= MAIN_SEGS(sbi)) {
4208                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4209                                  start);
4210                         err = -EFSCORRUPTED;
4211                         break;
4212                 }
4213
4214                 se = &sit_i->sentries[start];
4215                 sit = sit_in_journal(journal, i);
4216
4217                 old_valid_blocks = se->valid_blocks;
4218                 if (IS_NODESEG(se->type))
4219                         total_node_blocks -= old_valid_blocks;
4220
4221                 err = check_block_count(sbi, start, &sit);
4222                 if (err)
4223                         break;
4224                 seg_info_from_raw_sit(se, &sit);
4225                 if (IS_NODESEG(se->type))
4226                         total_node_blocks += se->valid_blocks;
4227
4228                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4229                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4230                 } else {
4231                         memcpy(se->discard_map, se->cur_valid_map,
4232                                                 SIT_VBLOCK_MAP_SIZE);
4233                         sbi->discard_blks += old_valid_blocks;
4234                         sbi->discard_blks -= se->valid_blocks;
4235                 }
4236
4237                 if (__is_large_section(sbi)) {
4238                         get_sec_entry(sbi, start)->valid_blocks +=
4239                                                         se->valid_blocks;
4240                         get_sec_entry(sbi, start)->valid_blocks -=
4241                                                         old_valid_blocks;
4242                 }
4243         }
4244         up_read(&curseg->journal_rwsem);
4245
4246         if (!err && total_node_blocks != valid_node_count(sbi)) {
4247                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4248                          total_node_blocks, valid_node_count(sbi));
4249                 err = -EFSCORRUPTED;
4250         }
4251
4252         return err;
4253 }
4254
4255 static void init_free_segmap(struct f2fs_sb_info *sbi)
4256 {
4257         unsigned int start;
4258         int type;
4259
4260         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4261                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4262                 if (!sentry->valid_blocks)
4263                         __set_free(sbi, start);
4264                 else
4265                         SIT_I(sbi)->written_valid_blocks +=
4266                                                 sentry->valid_blocks;
4267         }
4268
4269         /* set use the current segments */
4270         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4271                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4272                 __set_test_and_inuse(sbi, curseg_t->segno);
4273         }
4274 }
4275
4276 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4277 {
4278         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4279         struct free_segmap_info *free_i = FREE_I(sbi);
4280         unsigned int segno = 0, offset = 0;
4281         unsigned short valid_blocks;
4282
4283         while (1) {
4284                 /* find dirty segment based on free segmap */
4285                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4286                 if (segno >= MAIN_SEGS(sbi))
4287                         break;
4288                 offset = segno + 1;
4289                 valid_blocks = get_valid_blocks(sbi, segno, false);
4290                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4291                         continue;
4292                 if (valid_blocks > sbi->blocks_per_seg) {
4293                         f2fs_bug_on(sbi, 1);
4294                         continue;
4295                 }
4296                 mutex_lock(&dirty_i->seglist_lock);
4297                 __locate_dirty_segment(sbi, segno, DIRTY);
4298                 mutex_unlock(&dirty_i->seglist_lock);
4299         }
4300 }
4301
4302 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4303 {
4304         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4305         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4306
4307         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4308         if (!dirty_i->victim_secmap)
4309                 return -ENOMEM;
4310         return 0;
4311 }
4312
4313 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4314 {
4315         struct dirty_seglist_info *dirty_i;
4316         unsigned int bitmap_size, i;
4317
4318         /* allocate memory for dirty segments list information */
4319         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4320                                                                 GFP_KERNEL);
4321         if (!dirty_i)
4322                 return -ENOMEM;
4323
4324         SM_I(sbi)->dirty_info = dirty_i;
4325         mutex_init(&dirty_i->seglist_lock);
4326
4327         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4328
4329         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4330                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4331                                                                 GFP_KERNEL);
4332                 if (!dirty_i->dirty_segmap[i])
4333                         return -ENOMEM;
4334         }
4335
4336         init_dirty_segmap(sbi);
4337         return init_victim_secmap(sbi);
4338 }
4339
4340 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4341 {
4342         int i;
4343
4344         /*
4345          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4346          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4347          */
4348         for (i = 0; i < NO_CHECK_TYPE; i++) {
4349                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4350                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4351                 unsigned int blkofs = curseg->next_blkoff;
4352
4353                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4354                         goto out;
4355
4356                 if (curseg->alloc_type == SSR)
4357                         continue;
4358
4359                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4360                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4361                                 continue;
4362 out:
4363                         f2fs_err(sbi,
4364                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4365                                  i, curseg->segno, curseg->alloc_type,
4366                                  curseg->next_blkoff, blkofs);
4367                         return -EFSCORRUPTED;
4368                 }
4369         }
4370         return 0;
4371 }
4372
4373 #ifdef CONFIG_BLK_DEV_ZONED
4374
4375 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4376                                     struct f2fs_dev_info *fdev,
4377                                     struct blk_zone *zone)
4378 {
4379         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4380         block_t zone_block, wp_block, last_valid_block;
4381         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4382         int i, s, b, ret;
4383         struct seg_entry *se;
4384
4385         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4386                 return 0;
4387
4388         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4389         wp_segno = GET_SEGNO(sbi, wp_block);
4390         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4391         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4392         zone_segno = GET_SEGNO(sbi, zone_block);
4393         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4394
4395         if (zone_segno >= MAIN_SEGS(sbi))
4396                 return 0;
4397
4398         /*
4399          * Skip check of zones cursegs point to, since
4400          * fix_curseg_write_pointer() checks them.
4401          */
4402         for (i = 0; i < NO_CHECK_TYPE; i++)
4403                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4404                                                    CURSEG_I(sbi, i)->segno))
4405                         return 0;
4406
4407         /*
4408          * Get last valid block of the zone.
4409          */
4410         last_valid_block = zone_block - 1;
4411         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4412                 segno = zone_segno + s;
4413                 se = get_seg_entry(sbi, segno);
4414                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4415                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4416                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4417                                 break;
4418                         }
4419                 if (last_valid_block >= zone_block)
4420                         break;
4421         }
4422
4423         /*
4424          * If last valid block is beyond the write pointer, report the
4425          * inconsistency. This inconsistency does not cause write error
4426          * because the zone will not be selected for write operation until
4427          * it get discarded. Just report it.
4428          */
4429         if (last_valid_block >= wp_block) {
4430                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4431                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4432                             GET_SEGNO(sbi, last_valid_block),
4433                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4434                             wp_segno, wp_blkoff);
4435                 return 0;
4436         }
4437
4438         /*
4439          * If there is no valid block in the zone and if write pointer is
4440          * not at zone start, reset the write pointer.
4441          */
4442         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4443                 f2fs_notice(sbi,
4444                             "Zone without valid block has non-zero write "
4445                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4446                             wp_segno, wp_blkoff);
4447                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4448                                         zone->len >> log_sectors_per_block);
4449                 if (ret) {
4450                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4451                                  fdev->path, ret);
4452                         return ret;
4453                 }
4454         }
4455
4456         return 0;
4457 }
4458
4459 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4460                                                   block_t zone_blkaddr)
4461 {
4462         int i;
4463
4464         for (i = 0; i < sbi->s_ndevs; i++) {
4465                 if (!bdev_is_zoned(FDEV(i).bdev))
4466                         continue;
4467                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4468                                 zone_blkaddr <= FDEV(i).end_blk))
4469                         return &FDEV(i);
4470         }
4471
4472         return NULL;
4473 }
4474
4475 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4476                               void *data) {
4477         memcpy(data, zone, sizeof(struct blk_zone));
4478         return 0;
4479 }
4480
4481 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4482 {
4483         struct curseg_info *cs = CURSEG_I(sbi, type);
4484         struct f2fs_dev_info *zbd;
4485         struct blk_zone zone;
4486         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4487         block_t cs_zone_block, wp_block;
4488         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4489         sector_t zone_sector;
4490         int err;
4491
4492         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4493         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4494
4495         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4496         if (!zbd)
4497                 return 0;
4498
4499         /* report zone for the sector the curseg points to */
4500         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4501                 << log_sectors_per_block;
4502         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4503                                   report_one_zone_cb, &zone);
4504         if (err != 1) {
4505                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4506                          zbd->path, err);
4507                 return err;
4508         }
4509
4510         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4511                 return 0;
4512
4513         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4514         wp_segno = GET_SEGNO(sbi, wp_block);
4515         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4516         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4517
4518         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4519                 wp_sector_off == 0)
4520                 return 0;
4521
4522         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4523                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4524                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4525
4526         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4527                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4528         allocate_segment_by_default(sbi, type, true);
4529
4530         /* check consistency of the zone curseg pointed to */
4531         if (check_zone_write_pointer(sbi, zbd, &zone))
4532                 return -EIO;
4533
4534         /* check newly assigned zone */
4535         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4536         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4537
4538         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4539         if (!zbd)
4540                 return 0;
4541
4542         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4543                 << log_sectors_per_block;
4544         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4545                                   report_one_zone_cb, &zone);
4546         if (err != 1) {
4547                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4548                          zbd->path, err);
4549                 return err;
4550         }
4551
4552         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4553                 return 0;
4554
4555         if (zone.wp != zone.start) {
4556                 f2fs_notice(sbi,
4557                             "New zone for curseg[%d] is not yet discarded. "
4558                             "Reset the zone: curseg[0x%x,0x%x]",
4559                             type, cs->segno, cs->next_blkoff);
4560                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4561                                 zone_sector >> log_sectors_per_block,
4562                                 zone.len >> log_sectors_per_block);
4563                 if (err) {
4564                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4565                                  zbd->path, err);
4566                         return err;
4567                 }
4568         }
4569
4570         return 0;
4571 }
4572
4573 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4574 {
4575         int i, ret;
4576
4577         for (i = 0; i < NO_CHECK_TYPE; i++) {
4578                 ret = fix_curseg_write_pointer(sbi, i);
4579                 if (ret)
4580                         return ret;
4581         }
4582
4583         return 0;
4584 }
4585
4586 struct check_zone_write_pointer_args {
4587         struct f2fs_sb_info *sbi;
4588         struct f2fs_dev_info *fdev;
4589 };
4590
4591 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4592                                       void *data) {
4593         struct check_zone_write_pointer_args *args;
4594         args = (struct check_zone_write_pointer_args *)data;
4595
4596         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4597 }
4598
4599 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4600 {
4601         int i, ret;
4602         struct check_zone_write_pointer_args args;
4603
4604         for (i = 0; i < sbi->s_ndevs; i++) {
4605                 if (!bdev_is_zoned(FDEV(i).bdev))
4606                         continue;
4607
4608                 args.sbi = sbi;
4609                 args.fdev = &FDEV(i);
4610                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4611                                           check_zone_write_pointer_cb, &args);
4612                 if (ret < 0)
4613                         return ret;
4614         }
4615
4616         return 0;
4617 }
4618 #else
4619 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4620 {
4621         return 0;
4622 }
4623
4624 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4625 {
4626         return 0;
4627 }
4628 #endif
4629
4630 /*
4631  * Update min, max modified time for cost-benefit GC algorithm
4632  */
4633 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4634 {
4635         struct sit_info *sit_i = SIT_I(sbi);
4636         unsigned int segno;
4637
4638         down_write(&sit_i->sentry_lock);
4639
4640         sit_i->min_mtime = ULLONG_MAX;
4641
4642         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4643                 unsigned int i;
4644                 unsigned long long mtime = 0;
4645
4646                 for (i = 0; i < sbi->segs_per_sec; i++)
4647                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4648
4649                 mtime = div_u64(mtime, sbi->segs_per_sec);
4650
4651                 if (sit_i->min_mtime > mtime)
4652                         sit_i->min_mtime = mtime;
4653         }
4654         sit_i->max_mtime = get_mtime(sbi, false);
4655         up_write(&sit_i->sentry_lock);
4656 }
4657
4658 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4659 {
4660         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4661         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4662         struct f2fs_sm_info *sm_info;
4663         int err;
4664
4665         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4666         if (!sm_info)
4667                 return -ENOMEM;
4668
4669         /* init sm info */
4670         sbi->sm_info = sm_info;
4671         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4672         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4673         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4674         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4675         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4676         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4677         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4678         sm_info->rec_prefree_segments = sm_info->main_segments *
4679                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4680         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4681                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4682
4683         if (!f2fs_lfs_mode(sbi))
4684                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4685         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4686         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4687         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4688         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4689         sm_info->min_ssr_sections = reserved_sections(sbi);
4690
4691         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4692
4693         init_rwsem(&sm_info->curseg_lock);
4694
4695         if (!f2fs_readonly(sbi->sb)) {
4696                 err = f2fs_create_flush_cmd_control(sbi);
4697                 if (err)
4698                         return err;
4699         }
4700
4701         err = create_discard_cmd_control(sbi);
4702         if (err)
4703                 return err;
4704
4705         err = build_sit_info(sbi);
4706         if (err)
4707                 return err;
4708         err = build_free_segmap(sbi);
4709         if (err)
4710                 return err;
4711         err = build_curseg(sbi);
4712         if (err)
4713                 return err;
4714
4715         /* reinit free segmap based on SIT */
4716         err = build_sit_entries(sbi);
4717         if (err)
4718                 return err;
4719
4720         init_free_segmap(sbi);
4721         err = build_dirty_segmap(sbi);
4722         if (err)
4723                 return err;
4724
4725         err = sanity_check_curseg(sbi);
4726         if (err)
4727                 return err;
4728
4729         init_min_max_mtime(sbi);
4730         return 0;
4731 }
4732
4733 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4734                 enum dirty_type dirty_type)
4735 {
4736         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4737
4738         mutex_lock(&dirty_i->seglist_lock);
4739         kvfree(dirty_i->dirty_segmap[dirty_type]);
4740         dirty_i->nr_dirty[dirty_type] = 0;
4741         mutex_unlock(&dirty_i->seglist_lock);
4742 }
4743
4744 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4745 {
4746         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4747         kvfree(dirty_i->victim_secmap);
4748 }
4749
4750 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4751 {
4752         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4753         int i;
4754
4755         if (!dirty_i)
4756                 return;
4757
4758         /* discard pre-free/dirty segments list */
4759         for (i = 0; i < NR_DIRTY_TYPE; i++)
4760                 discard_dirty_segmap(sbi, i);
4761
4762         destroy_victim_secmap(sbi);
4763         SM_I(sbi)->dirty_info = NULL;
4764         kvfree(dirty_i);
4765 }
4766
4767 static void destroy_curseg(struct f2fs_sb_info *sbi)
4768 {
4769         struct curseg_info *array = SM_I(sbi)->curseg_array;
4770         int i;
4771
4772         if (!array)
4773                 return;
4774         SM_I(sbi)->curseg_array = NULL;
4775         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4776                 kvfree(array[i].sum_blk);
4777                 kvfree(array[i].journal);
4778         }
4779         kvfree(array);
4780 }
4781
4782 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4783 {
4784         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4785         if (!free_i)
4786                 return;
4787         SM_I(sbi)->free_info = NULL;
4788         kvfree(free_i->free_segmap);
4789         kvfree(free_i->free_secmap);
4790         kvfree(free_i);
4791 }
4792
4793 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4794 {
4795         struct sit_info *sit_i = SIT_I(sbi);
4796
4797         if (!sit_i)
4798                 return;
4799
4800         if (sit_i->sentries)
4801                 kvfree(sit_i->bitmap);
4802         kvfree(sit_i->tmp_map);
4803
4804         kvfree(sit_i->sentries);
4805         kvfree(sit_i->sec_entries);
4806         kvfree(sit_i->dirty_sentries_bitmap);
4807
4808         SM_I(sbi)->sit_info = NULL;
4809         kvfree(sit_i->sit_bitmap);
4810 #ifdef CONFIG_F2FS_CHECK_FS
4811         kvfree(sit_i->sit_bitmap_mir);
4812         kvfree(sit_i->invalid_segmap);
4813 #endif
4814         kvfree(sit_i);
4815 }
4816
4817 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4818 {
4819         struct f2fs_sm_info *sm_info = SM_I(sbi);
4820
4821         if (!sm_info)
4822                 return;
4823         f2fs_destroy_flush_cmd_control(sbi, true);
4824         destroy_discard_cmd_control(sbi);
4825         destroy_dirty_segmap(sbi);
4826         destroy_curseg(sbi);
4827         destroy_free_segmap(sbi);
4828         destroy_sit_info(sbi);
4829         sbi->sm_info = NULL;
4830         kvfree(sm_info);
4831 }
4832
4833 int __init f2fs_create_segment_manager_caches(void)
4834 {
4835         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4836                         sizeof(struct discard_entry));
4837         if (!discard_entry_slab)
4838                 goto fail;
4839
4840         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4841                         sizeof(struct discard_cmd));
4842         if (!discard_cmd_slab)
4843                 goto destroy_discard_entry;
4844
4845         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4846                         sizeof(struct sit_entry_set));
4847         if (!sit_entry_set_slab)
4848                 goto destroy_discard_cmd;
4849
4850         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4851                         sizeof(struct inmem_pages));
4852         if (!inmem_entry_slab)
4853                 goto destroy_sit_entry_set;
4854         return 0;
4855
4856 destroy_sit_entry_set:
4857         kmem_cache_destroy(sit_entry_set_slab);
4858 destroy_discard_cmd:
4859         kmem_cache_destroy(discard_cmd_slab);
4860 destroy_discard_entry:
4861         kmem_cache_destroy(discard_entry_slab);
4862 fail:
4863         return -ENOMEM;
4864 }
4865
4866 void f2fs_destroy_segment_manager_caches(void)
4867 {
4868         kmem_cache_destroy(sit_entry_set_slab);
4869         kmem_cache_destroy(discard_cmd_slab);
4870         kmem_cache_destroy(discard_entry_slab);
4871         kmem_cache_destroy(inmem_entry_slab);
4872 }