Merge drm-misc-next-fixes-2024-01-19 into drm-misc-fixes
[linux-2.6-block.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37         unsigned long tmp = 0;
38         int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41         shift = 56;
42 #endif
43         while (shift >= 0) {
44                 tmp |= (unsigned long)str[idx++] << shift;
45                 shift -= BITS_PER_BYTE;
46         }
47         return tmp;
48 }
49
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56         int num = 0;
57
58 #if BITS_PER_LONG == 64
59         if ((word & 0xffffffff00000000UL) == 0)
60                 num += 32;
61         else
62                 word >>= 32;
63 #endif
64         if ((word & 0xffff0000) == 0)
65                 num += 16;
66         else
67                 word >>= 16;
68
69         if ((word & 0xff00) == 0)
70                 num += 8;
71         else
72                 word >>= 8;
73
74         if ((word & 0xf0) == 0)
75                 num += 4;
76         else
77                 word >>= 4;
78
79         if ((word & 0xc) == 0)
80                 num += 2;
81         else
82                 word >>= 2;
83
84         if ((word & 0x2) == 0)
85                 num += 1;
86         return num;
87 }
88
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99                         unsigned long size, unsigned long offset)
100 {
101         const unsigned long *p = addr + BIT_WORD(offset);
102         unsigned long result = size;
103         unsigned long tmp;
104
105         if (offset >= size)
106                 return size;
107
108         size -= (offset & ~(BITS_PER_LONG - 1));
109         offset %= BITS_PER_LONG;
110
111         while (1) {
112                 if (*p == 0)
113                         goto pass;
114
115                 tmp = __reverse_ulong((unsigned char *)p);
116
117                 tmp &= ~0UL >> offset;
118                 if (size < BITS_PER_LONG)
119                         tmp &= (~0UL << (BITS_PER_LONG - size));
120                 if (tmp)
121                         goto found;
122 pass:
123                 if (size <= BITS_PER_LONG)
124                         break;
125                 size -= BITS_PER_LONG;
126                 offset = 0;
127                 p++;
128         }
129         return result;
130 found:
131         return result - size + __reverse_ffs(tmp);
132 }
133
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135                         unsigned long size, unsigned long offset)
136 {
137         const unsigned long *p = addr + BIT_WORD(offset);
138         unsigned long result = size;
139         unsigned long tmp;
140
141         if (offset >= size)
142                 return size;
143
144         size -= (offset & ~(BITS_PER_LONG - 1));
145         offset %= BITS_PER_LONG;
146
147         while (1) {
148                 if (*p == ~0UL)
149                         goto pass;
150
151                 tmp = __reverse_ulong((unsigned char *)p);
152
153                 if (offset)
154                         tmp |= ~0UL << (BITS_PER_LONG - offset);
155                 if (size < BITS_PER_LONG)
156                         tmp |= ~0UL >> size;
157                 if (tmp != ~0UL)
158                         goto found;
159 pass:
160                 if (size <= BITS_PER_LONG)
161                         break;
162                 size -= BITS_PER_LONG;
163                 offset = 0;
164                 p++;
165         }
166         return result;
167 found:
168         return result - size + __reverse_ffz(tmp);
169 }
170
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177         if (f2fs_lfs_mode(sbi))
178                 return false;
179         if (sbi->gc_mode == GC_URGENT_HIGH)
180                 return true;
181         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182                 return true;
183
184         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191
192         if (!f2fs_is_atomic_file(inode))
193                 return;
194
195         release_atomic_write_cnt(inode);
196         clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197         clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198         clear_inode_flag(inode, FI_ATOMIC_FILE);
199         stat_dec_atomic_inode(inode);
200
201         F2FS_I(inode)->atomic_write_task = NULL;
202
203         if (clean) {
204                 truncate_inode_pages_final(inode->i_mapping);
205                 f2fs_i_size_write(inode, fi->original_i_size);
206                 fi->original_i_size = 0;
207         }
208         /* avoid stale dirty inode during eviction */
209         sync_inode_metadata(inode, 0);
210 }
211
212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
213                         block_t new_addr, block_t *old_addr, bool recover)
214 {
215         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216         struct dnode_of_data dn;
217         struct node_info ni;
218         int err;
219
220 retry:
221         set_new_dnode(&dn, inode, NULL, NULL, 0);
222         err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
223         if (err) {
224                 if (err == -ENOMEM) {
225                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
226                         goto retry;
227                 }
228                 return err;
229         }
230
231         err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
232         if (err) {
233                 f2fs_put_dnode(&dn);
234                 return err;
235         }
236
237         if (recover) {
238                 /* dn.data_blkaddr is always valid */
239                 if (!__is_valid_data_blkaddr(new_addr)) {
240                         if (new_addr == NULL_ADDR)
241                                 dec_valid_block_count(sbi, inode, 1);
242                         f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
243                         f2fs_update_data_blkaddr(&dn, new_addr);
244                 } else {
245                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
246                                 new_addr, ni.version, true, true);
247                 }
248         } else {
249                 blkcnt_t count = 1;
250
251                 err = inc_valid_block_count(sbi, inode, &count);
252                 if (err) {
253                         f2fs_put_dnode(&dn);
254                         return err;
255                 }
256
257                 *old_addr = dn.data_blkaddr;
258                 f2fs_truncate_data_blocks_range(&dn, 1);
259                 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
260
261                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
262                                         ni.version, true, false);
263         }
264
265         f2fs_put_dnode(&dn);
266
267         trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
268                         index, old_addr ? *old_addr : 0, new_addr, recover);
269         return 0;
270 }
271
272 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
273                                         bool revoke)
274 {
275         struct revoke_entry *cur, *tmp;
276         pgoff_t start_index = 0;
277         bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
278
279         list_for_each_entry_safe(cur, tmp, head, list) {
280                 if (revoke) {
281                         __replace_atomic_write_block(inode, cur->index,
282                                                 cur->old_addr, NULL, true);
283                 } else if (truncate) {
284                         f2fs_truncate_hole(inode, start_index, cur->index);
285                         start_index = cur->index + 1;
286                 }
287
288                 list_del(&cur->list);
289                 kmem_cache_free(revoke_entry_slab, cur);
290         }
291
292         if (!revoke && truncate)
293                 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
294 }
295
296 static int __f2fs_commit_atomic_write(struct inode *inode)
297 {
298         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
299         struct f2fs_inode_info *fi = F2FS_I(inode);
300         struct inode *cow_inode = fi->cow_inode;
301         struct revoke_entry *new;
302         struct list_head revoke_list;
303         block_t blkaddr;
304         struct dnode_of_data dn;
305         pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306         pgoff_t off = 0, blen, index;
307         int ret = 0, i;
308
309         INIT_LIST_HEAD(&revoke_list);
310
311         while (len) {
312                 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
313
314                 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
315                 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
316                 if (ret && ret != -ENOENT) {
317                         goto out;
318                 } else if (ret == -ENOENT) {
319                         ret = 0;
320                         if (dn.max_level == 0)
321                                 goto out;
322                         goto next;
323                 }
324
325                 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
326                                 len);
327                 index = off;
328                 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
329                         blkaddr = f2fs_data_blkaddr(&dn);
330
331                         if (!__is_valid_data_blkaddr(blkaddr)) {
332                                 continue;
333                         } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
334                                         DATA_GENERIC_ENHANCE)) {
335                                 f2fs_put_dnode(&dn);
336                                 ret = -EFSCORRUPTED;
337                                 f2fs_handle_error(sbi,
338                                                 ERROR_INVALID_BLKADDR);
339                                 goto out;
340                         }
341
342                         new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343                                                         true, NULL);
344
345                         ret = __replace_atomic_write_block(inode, index, blkaddr,
346                                                         &new->old_addr, false);
347                         if (ret) {
348                                 f2fs_put_dnode(&dn);
349                                 kmem_cache_free(revoke_entry_slab, new);
350                                 goto out;
351                         }
352
353                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354                         new->index = index;
355                         list_add_tail(&new->list, &revoke_list);
356                 }
357                 f2fs_put_dnode(&dn);
358 next:
359                 off += blen;
360                 len -= blen;
361         }
362
363 out:
364         if (ret) {
365                 sbi->revoked_atomic_block += fi->atomic_write_cnt;
366         } else {
367                 sbi->committed_atomic_block += fi->atomic_write_cnt;
368                 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369         }
370
371         __complete_revoke_list(inode, &revoke_list, ret ? true : false);
372
373         return ret;
374 }
375
376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379         struct f2fs_inode_info *fi = F2FS_I(inode);
380         int err;
381
382         err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383         if (err)
384                 return err;
385
386         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387         f2fs_lock_op(sbi);
388
389         err = __f2fs_commit_atomic_write(inode);
390
391         f2fs_unlock_op(sbi);
392         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393
394         return err;
395 }
396
397 /*
398  * This function balances dirty node and dentry pages.
399  * In addition, it controls garbage collection.
400  */
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403         if (time_to_inject(sbi, FAULT_CHECKPOINT))
404                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
405
406         /* balance_fs_bg is able to be pending */
407         if (need && excess_cached_nats(sbi))
408                 f2fs_balance_fs_bg(sbi, false);
409
410         if (!f2fs_is_checkpoint_ready(sbi))
411                 return;
412
413         /*
414          * We should do GC or end up with checkpoint, if there are so many dirty
415          * dir/node pages without enough free segments.
416          */
417         if (has_enough_free_secs(sbi, 0, 0))
418                 return;
419
420         if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
421                                 sbi->gc_thread->f2fs_gc_task) {
422                 DEFINE_WAIT(wait);
423
424                 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
425                                         TASK_UNINTERRUPTIBLE);
426                 wake_up(&sbi->gc_thread->gc_wait_queue_head);
427                 io_schedule();
428                 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
429         } else {
430                 struct f2fs_gc_control gc_control = {
431                         .victim_segno = NULL_SEGNO,
432                         .init_gc_type = BG_GC,
433                         .no_bg_gc = true,
434                         .should_migrate_blocks = false,
435                         .err_gc_skipped = false,
436                         .nr_free_secs = 1 };
437                 f2fs_down_write(&sbi->gc_lock);
438                 stat_inc_gc_call_count(sbi, FOREGROUND);
439                 f2fs_gc(sbi, &gc_control);
440         }
441 }
442
443 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
444 {
445         int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
446         unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
447         unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
448         unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
449         unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
450         unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
451         unsigned int threshold = sbi->blocks_per_seg * factor *
452                                         DEFAULT_DIRTY_THRESHOLD;
453         unsigned int global_threshold = threshold * 3 / 2;
454
455         if (dents >= threshold || qdata >= threshold ||
456                 nodes >= threshold || meta >= threshold ||
457                 imeta >= threshold)
458                 return true;
459         return dents + qdata + nodes + meta + imeta >  global_threshold;
460 }
461
462 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
463 {
464         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
465                 return;
466
467         /* try to shrink extent cache when there is no enough memory */
468         if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
469                 f2fs_shrink_read_extent_tree(sbi,
470                                 READ_EXTENT_CACHE_SHRINK_NUMBER);
471
472         /* try to shrink age extent cache when there is no enough memory */
473         if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
474                 f2fs_shrink_age_extent_tree(sbi,
475                                 AGE_EXTENT_CACHE_SHRINK_NUMBER);
476
477         /* check the # of cached NAT entries */
478         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
479                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
480
481         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
482                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
483         else
484                 f2fs_build_free_nids(sbi, false, false);
485
486         if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
487                 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
488                 goto do_sync;
489
490         /* there is background inflight IO or foreground operation recently */
491         if (is_inflight_io(sbi, REQ_TIME) ||
492                 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
493                 return;
494
495         /* exceed periodical checkpoint timeout threshold */
496         if (f2fs_time_over(sbi, CP_TIME))
497                 goto do_sync;
498
499         /* checkpoint is the only way to shrink partial cached entries */
500         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
501                 f2fs_available_free_memory(sbi, INO_ENTRIES))
502                 return;
503
504 do_sync:
505         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
506                 struct blk_plug plug;
507
508                 mutex_lock(&sbi->flush_lock);
509
510                 blk_start_plug(&plug);
511                 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
512                 blk_finish_plug(&plug);
513
514                 mutex_unlock(&sbi->flush_lock);
515         }
516         stat_inc_cp_call_count(sbi, BACKGROUND);
517         f2fs_sync_fs(sbi->sb, 1);
518 }
519
520 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
521                                 struct block_device *bdev)
522 {
523         int ret = blkdev_issue_flush(bdev);
524
525         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
526                                 test_opt(sbi, FLUSH_MERGE), ret);
527         if (!ret)
528                 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
529         return ret;
530 }
531
532 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
533 {
534         int ret = 0;
535         int i;
536
537         if (!f2fs_is_multi_device(sbi))
538                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
539
540         for (i = 0; i < sbi->s_ndevs; i++) {
541                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
542                         continue;
543                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
544                 if (ret)
545                         break;
546         }
547         return ret;
548 }
549
550 static int issue_flush_thread(void *data)
551 {
552         struct f2fs_sb_info *sbi = data;
553         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
554         wait_queue_head_t *q = &fcc->flush_wait_queue;
555 repeat:
556         if (kthread_should_stop())
557                 return 0;
558
559         if (!llist_empty(&fcc->issue_list)) {
560                 struct flush_cmd *cmd, *next;
561                 int ret;
562
563                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
564                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
565
566                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
567
568                 ret = submit_flush_wait(sbi, cmd->ino);
569                 atomic_inc(&fcc->issued_flush);
570
571                 llist_for_each_entry_safe(cmd, next,
572                                           fcc->dispatch_list, llnode) {
573                         cmd->ret = ret;
574                         complete(&cmd->wait);
575                 }
576                 fcc->dispatch_list = NULL;
577         }
578
579         wait_event_interruptible(*q,
580                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
581         goto repeat;
582 }
583
584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
585 {
586         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
587         struct flush_cmd cmd;
588         int ret;
589
590         if (test_opt(sbi, NOBARRIER))
591                 return 0;
592
593         if (!test_opt(sbi, FLUSH_MERGE)) {
594                 atomic_inc(&fcc->queued_flush);
595                 ret = submit_flush_wait(sbi, ino);
596                 atomic_dec(&fcc->queued_flush);
597                 atomic_inc(&fcc->issued_flush);
598                 return ret;
599         }
600
601         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
602             f2fs_is_multi_device(sbi)) {
603                 ret = submit_flush_wait(sbi, ino);
604                 atomic_dec(&fcc->queued_flush);
605
606                 atomic_inc(&fcc->issued_flush);
607                 return ret;
608         }
609
610         cmd.ino = ino;
611         init_completion(&cmd.wait);
612
613         llist_add(&cmd.llnode, &fcc->issue_list);
614
615         /*
616          * update issue_list before we wake up issue_flush thread, this
617          * smp_mb() pairs with another barrier in ___wait_event(), see
618          * more details in comments of waitqueue_active().
619          */
620         smp_mb();
621
622         if (waitqueue_active(&fcc->flush_wait_queue))
623                 wake_up(&fcc->flush_wait_queue);
624
625         if (fcc->f2fs_issue_flush) {
626                 wait_for_completion(&cmd.wait);
627                 atomic_dec(&fcc->queued_flush);
628         } else {
629                 struct llist_node *list;
630
631                 list = llist_del_all(&fcc->issue_list);
632                 if (!list) {
633                         wait_for_completion(&cmd.wait);
634                         atomic_dec(&fcc->queued_flush);
635                 } else {
636                         struct flush_cmd *tmp, *next;
637
638                         ret = submit_flush_wait(sbi, ino);
639
640                         llist_for_each_entry_safe(tmp, next, list, llnode) {
641                                 if (tmp == &cmd) {
642                                         cmd.ret = ret;
643                                         atomic_dec(&fcc->queued_flush);
644                                         continue;
645                                 }
646                                 tmp->ret = ret;
647                                 complete(&tmp->wait);
648                         }
649                 }
650         }
651
652         return cmd.ret;
653 }
654
655 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
656 {
657         dev_t dev = sbi->sb->s_bdev->bd_dev;
658         struct flush_cmd_control *fcc;
659
660         if (SM_I(sbi)->fcc_info) {
661                 fcc = SM_I(sbi)->fcc_info;
662                 if (fcc->f2fs_issue_flush)
663                         return 0;
664                 goto init_thread;
665         }
666
667         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668         if (!fcc)
669                 return -ENOMEM;
670         atomic_set(&fcc->issued_flush, 0);
671         atomic_set(&fcc->queued_flush, 0);
672         init_waitqueue_head(&fcc->flush_wait_queue);
673         init_llist_head(&fcc->issue_list);
674         SM_I(sbi)->fcc_info = fcc;
675         if (!test_opt(sbi, FLUSH_MERGE))
676                 return 0;
677
678 init_thread:
679         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681         if (IS_ERR(fcc->f2fs_issue_flush)) {
682                 int err = PTR_ERR(fcc->f2fs_issue_flush);
683
684                 fcc->f2fs_issue_flush = NULL;
685                 return err;
686         }
687
688         return 0;
689 }
690
691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692 {
693         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694
695         if (fcc && fcc->f2fs_issue_flush) {
696                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697
698                 fcc->f2fs_issue_flush = NULL;
699                 kthread_stop(flush_thread);
700         }
701         if (free) {
702                 kfree(fcc);
703                 SM_I(sbi)->fcc_info = NULL;
704         }
705 }
706
707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708 {
709         int ret = 0, i;
710
711         if (!f2fs_is_multi_device(sbi))
712                 return 0;
713
714         if (test_opt(sbi, NOBARRIER))
715                 return 0;
716
717         for (i = 1; i < sbi->s_ndevs; i++) {
718                 int count = DEFAULT_RETRY_IO_COUNT;
719
720                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
721                         continue;
722
723                 do {
724                         ret = __submit_flush_wait(sbi, FDEV(i).bdev);
725                         if (ret)
726                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
727                 } while (ret && --count);
728
729                 if (ret) {
730                         f2fs_stop_checkpoint(sbi, false,
731                                         STOP_CP_REASON_FLUSH_FAIL);
732                         break;
733                 }
734
735                 spin_lock(&sbi->dev_lock);
736                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
737                 spin_unlock(&sbi->dev_lock);
738         }
739
740         return ret;
741 }
742
743 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
744                 enum dirty_type dirty_type)
745 {
746         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
747
748         /* need not be added */
749         if (IS_CURSEG(sbi, segno))
750                 return;
751
752         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753                 dirty_i->nr_dirty[dirty_type]++;
754
755         if (dirty_type == DIRTY) {
756                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757                 enum dirty_type t = sentry->type;
758
759                 if (unlikely(t >= DIRTY)) {
760                         f2fs_bug_on(sbi, 1);
761                         return;
762                 }
763                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
764                         dirty_i->nr_dirty[t]++;
765
766                 if (__is_large_section(sbi)) {
767                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
768                         block_t valid_blocks =
769                                 get_valid_blocks(sbi, segno, true);
770
771                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
772                                         valid_blocks == CAP_BLKS_PER_SEC(sbi)));
773
774                         if (!IS_CURSEC(sbi, secno))
775                                 set_bit(secno, dirty_i->dirty_secmap);
776                 }
777         }
778 }
779
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781                 enum dirty_type dirty_type)
782 {
783         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784         block_t valid_blocks;
785
786         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787                 dirty_i->nr_dirty[dirty_type]--;
788
789         if (dirty_type == DIRTY) {
790                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791                 enum dirty_type t = sentry->type;
792
793                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
794                         dirty_i->nr_dirty[t]--;
795
796                 valid_blocks = get_valid_blocks(sbi, segno, true);
797                 if (valid_blocks == 0) {
798                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
799                                                 dirty_i->victim_secmap);
800 #ifdef CONFIG_F2FS_CHECK_FS
801                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
802 #endif
803                 }
804                 if (__is_large_section(sbi)) {
805                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
806
807                         if (!valid_blocks ||
808                                         valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
809                                 clear_bit(secno, dirty_i->dirty_secmap);
810                                 return;
811                         }
812
813                         if (!IS_CURSEC(sbi, secno))
814                                 set_bit(secno, dirty_i->dirty_secmap);
815                 }
816         }
817 }
818
819 /*
820  * Should not occur error such as -ENOMEM.
821  * Adding dirty entry into seglist is not critical operation.
822  * If a given segment is one of current working segments, it won't be added.
823  */
824 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
825 {
826         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827         unsigned short valid_blocks, ckpt_valid_blocks;
828         unsigned int usable_blocks;
829
830         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
831                 return;
832
833         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
834         mutex_lock(&dirty_i->seglist_lock);
835
836         valid_blocks = get_valid_blocks(sbi, segno, false);
837         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
838
839         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840                 ckpt_valid_blocks == usable_blocks)) {
841                 __locate_dirty_segment(sbi, segno, PRE);
842                 __remove_dirty_segment(sbi, segno, DIRTY);
843         } else if (valid_blocks < usable_blocks) {
844                 __locate_dirty_segment(sbi, segno, DIRTY);
845         } else {
846                 /* Recovery routine with SSR needs this */
847                 __remove_dirty_segment(sbi, segno, DIRTY);
848         }
849
850         mutex_unlock(&dirty_i->seglist_lock);
851 }
852
853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855 {
856         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857         unsigned int segno;
858
859         mutex_lock(&dirty_i->seglist_lock);
860         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861                 if (get_valid_blocks(sbi, segno, false))
862                         continue;
863                 if (IS_CURSEG(sbi, segno))
864                         continue;
865                 __locate_dirty_segment(sbi, segno, PRE);
866                 __remove_dirty_segment(sbi, segno, DIRTY);
867         }
868         mutex_unlock(&dirty_i->seglist_lock);
869 }
870
871 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
872 {
873         int ovp_hole_segs =
874                 (overprovision_segments(sbi) - reserved_segments(sbi));
875         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
876         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877         block_t holes[2] = {0, 0};      /* DATA and NODE */
878         block_t unusable;
879         struct seg_entry *se;
880         unsigned int segno;
881
882         mutex_lock(&dirty_i->seglist_lock);
883         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
884                 se = get_seg_entry(sbi, segno);
885                 if (IS_NODESEG(se->type))
886                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
887                                                         se->valid_blocks;
888                 else
889                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
890                                                         se->valid_blocks;
891         }
892         mutex_unlock(&dirty_i->seglist_lock);
893
894         unusable = max(holes[DATA], holes[NODE]);
895         if (unusable > ovp_holes)
896                 return unusable - ovp_holes;
897         return 0;
898 }
899
900 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
901 {
902         int ovp_hole_segs =
903                 (overprovision_segments(sbi) - reserved_segments(sbi));
904         if (unusable > F2FS_OPTION(sbi).unusable_cap)
905                 return -EAGAIN;
906         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
907                 dirty_segments(sbi) > ovp_hole_segs)
908                 return -EAGAIN;
909         return 0;
910 }
911
912 /* This is only used by SBI_CP_DISABLED */
913 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
914 {
915         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
916         unsigned int segno = 0;
917
918         mutex_lock(&dirty_i->seglist_lock);
919         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
920                 if (get_valid_blocks(sbi, segno, false))
921                         continue;
922                 if (get_ckpt_valid_blocks(sbi, segno, false))
923                         continue;
924                 mutex_unlock(&dirty_i->seglist_lock);
925                 return segno;
926         }
927         mutex_unlock(&dirty_i->seglist_lock);
928         return NULL_SEGNO;
929 }
930
931 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
932                 struct block_device *bdev, block_t lstart,
933                 block_t start, block_t len)
934 {
935         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936         struct list_head *pend_list;
937         struct discard_cmd *dc;
938
939         f2fs_bug_on(sbi, !len);
940
941         pend_list = &dcc->pend_list[plist_idx(len)];
942
943         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
944         INIT_LIST_HEAD(&dc->list);
945         dc->bdev = bdev;
946         dc->di.lstart = lstart;
947         dc->di.start = start;
948         dc->di.len = len;
949         dc->ref = 0;
950         dc->state = D_PREP;
951         dc->queued = 0;
952         dc->error = 0;
953         init_completion(&dc->wait);
954         list_add_tail(&dc->list, pend_list);
955         spin_lock_init(&dc->lock);
956         dc->bio_ref = 0;
957         atomic_inc(&dcc->discard_cmd_cnt);
958         dcc->undiscard_blks += len;
959
960         return dc;
961 }
962
963 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
964 {
965 #ifdef CONFIG_F2FS_CHECK_FS
966         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
967         struct rb_node *cur = rb_first_cached(&dcc->root), *next;
968         struct discard_cmd *cur_dc, *next_dc;
969
970         while (cur) {
971                 next = rb_next(cur);
972                 if (!next)
973                         return true;
974
975                 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
976                 next_dc = rb_entry(next, struct discard_cmd, rb_node);
977
978                 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
979                         f2fs_info(sbi, "broken discard_rbtree, "
980                                 "cur(%u, %u) next(%u, %u)",
981                                 cur_dc->di.lstart, cur_dc->di.len,
982                                 next_dc->di.lstart, next_dc->di.len);
983                         return false;
984                 }
985                 cur = next;
986         }
987 #endif
988         return true;
989 }
990
991 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
992                                                 block_t blkaddr)
993 {
994         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
995         struct rb_node *node = dcc->root.rb_root.rb_node;
996         struct discard_cmd *dc;
997
998         while (node) {
999                 dc = rb_entry(node, struct discard_cmd, rb_node);
1000
1001                 if (blkaddr < dc->di.lstart)
1002                         node = node->rb_left;
1003                 else if (blkaddr >= dc->di.lstart + dc->di.len)
1004                         node = node->rb_right;
1005                 else
1006                         return dc;
1007         }
1008         return NULL;
1009 }
1010
1011 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1012                                 block_t blkaddr,
1013                                 struct discard_cmd **prev_entry,
1014                                 struct discard_cmd **next_entry,
1015                                 struct rb_node ***insert_p,
1016                                 struct rb_node **insert_parent)
1017 {
1018         struct rb_node **pnode = &root->rb_root.rb_node;
1019         struct rb_node *parent = NULL, *tmp_node;
1020         struct discard_cmd *dc;
1021
1022         *insert_p = NULL;
1023         *insert_parent = NULL;
1024         *prev_entry = NULL;
1025         *next_entry = NULL;
1026
1027         if (RB_EMPTY_ROOT(&root->rb_root))
1028                 return NULL;
1029
1030         while (*pnode) {
1031                 parent = *pnode;
1032                 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1033
1034                 if (blkaddr < dc->di.lstart)
1035                         pnode = &(*pnode)->rb_left;
1036                 else if (blkaddr >= dc->di.lstart + dc->di.len)
1037                         pnode = &(*pnode)->rb_right;
1038                 else
1039                         goto lookup_neighbors;
1040         }
1041
1042         *insert_p = pnode;
1043         *insert_parent = parent;
1044
1045         dc = rb_entry(parent, struct discard_cmd, rb_node);
1046         tmp_node = parent;
1047         if (parent && blkaddr > dc->di.lstart)
1048                 tmp_node = rb_next(parent);
1049         *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1050
1051         tmp_node = parent;
1052         if (parent && blkaddr < dc->di.lstart)
1053                 tmp_node = rb_prev(parent);
1054         *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1055         return NULL;
1056
1057 lookup_neighbors:
1058         /* lookup prev node for merging backward later */
1059         tmp_node = rb_prev(&dc->rb_node);
1060         *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061
1062         /* lookup next node for merging frontward later */
1063         tmp_node = rb_next(&dc->rb_node);
1064         *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065         return dc;
1066 }
1067
1068 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1069                                                         struct discard_cmd *dc)
1070 {
1071         if (dc->state == D_DONE)
1072                 atomic_sub(dc->queued, &dcc->queued_discard);
1073
1074         list_del(&dc->list);
1075         rb_erase_cached(&dc->rb_node, &dcc->root);
1076         dcc->undiscard_blks -= dc->di.len;
1077
1078         kmem_cache_free(discard_cmd_slab, dc);
1079
1080         atomic_dec(&dcc->discard_cmd_cnt);
1081 }
1082
1083 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1084                                                         struct discard_cmd *dc)
1085 {
1086         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1087         unsigned long flags;
1088
1089         trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1090
1091         spin_lock_irqsave(&dc->lock, flags);
1092         if (dc->bio_ref) {
1093                 spin_unlock_irqrestore(&dc->lock, flags);
1094                 return;
1095         }
1096         spin_unlock_irqrestore(&dc->lock, flags);
1097
1098         f2fs_bug_on(sbi, dc->ref);
1099
1100         if (dc->error == -EOPNOTSUPP)
1101                 dc->error = 0;
1102
1103         if (dc->error)
1104                 printk_ratelimited(
1105                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1106                         KERN_INFO, sbi->sb->s_id,
1107                         dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1108         __detach_discard_cmd(dcc, dc);
1109 }
1110
1111 static void f2fs_submit_discard_endio(struct bio *bio)
1112 {
1113         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1114         unsigned long flags;
1115
1116         spin_lock_irqsave(&dc->lock, flags);
1117         if (!dc->error)
1118                 dc->error = blk_status_to_errno(bio->bi_status);
1119         dc->bio_ref--;
1120         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1121                 dc->state = D_DONE;
1122                 complete_all(&dc->wait);
1123         }
1124         spin_unlock_irqrestore(&dc->lock, flags);
1125         bio_put(bio);
1126 }
1127
1128 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1129                                 block_t start, block_t end)
1130 {
1131 #ifdef CONFIG_F2FS_CHECK_FS
1132         struct seg_entry *sentry;
1133         unsigned int segno;
1134         block_t blk = start;
1135         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1136         unsigned long *map;
1137
1138         while (blk < end) {
1139                 segno = GET_SEGNO(sbi, blk);
1140                 sentry = get_seg_entry(sbi, segno);
1141                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142
1143                 if (end < START_BLOCK(sbi, segno + 1))
1144                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145                 else
1146                         size = max_blocks;
1147                 map = (unsigned long *)(sentry->cur_valid_map);
1148                 offset = __find_rev_next_bit(map, size, offset);
1149                 f2fs_bug_on(sbi, offset != size);
1150                 blk = START_BLOCK(sbi, segno + 1);
1151         }
1152 #endif
1153 }
1154
1155 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156                                 struct discard_policy *dpolicy,
1157                                 int discard_type, unsigned int granularity)
1158 {
1159         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160
1161         /* common policy */
1162         dpolicy->type = discard_type;
1163         dpolicy->sync = true;
1164         dpolicy->ordered = false;
1165         dpolicy->granularity = granularity;
1166
1167         dpolicy->max_requests = dcc->max_discard_request;
1168         dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169         dpolicy->timeout = false;
1170
1171         if (discard_type == DPOLICY_BG) {
1172                 dpolicy->min_interval = dcc->min_discard_issue_time;
1173                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174                 dpolicy->max_interval = dcc->max_discard_issue_time;
1175                 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1176                         dpolicy->io_aware = true;
1177                 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1178                         dpolicy->io_aware = false;
1179                 dpolicy->sync = false;
1180                 dpolicy->ordered = true;
1181                 if (utilization(sbi) > dcc->discard_urgent_util) {
1182                         dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1183                         if (atomic_read(&dcc->discard_cmd_cnt))
1184                                 dpolicy->max_interval =
1185                                         dcc->min_discard_issue_time;
1186                 }
1187         } else if (discard_type == DPOLICY_FORCE) {
1188                 dpolicy->min_interval = dcc->min_discard_issue_time;
1189                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190                 dpolicy->max_interval = dcc->max_discard_issue_time;
1191                 dpolicy->io_aware = false;
1192         } else if (discard_type == DPOLICY_FSTRIM) {
1193                 dpolicy->io_aware = false;
1194         } else if (discard_type == DPOLICY_UMOUNT) {
1195                 dpolicy->io_aware = false;
1196                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1197                 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1198                 dpolicy->timeout = true;
1199         }
1200 }
1201
1202 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1203                                 struct block_device *bdev, block_t lstart,
1204                                 block_t start, block_t len);
1205
1206 #ifdef CONFIG_BLK_DEV_ZONED
1207 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1208                                    struct discard_cmd *dc, blk_opf_t flag,
1209                                    struct list_head *wait_list,
1210                                    unsigned int *issued)
1211 {
1212         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1213         struct block_device *bdev = dc->bdev;
1214         struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1215         unsigned long flags;
1216
1217         trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1218
1219         spin_lock_irqsave(&dc->lock, flags);
1220         dc->state = D_SUBMIT;
1221         dc->bio_ref++;
1222         spin_unlock_irqrestore(&dc->lock, flags);
1223
1224         if (issued)
1225                 (*issued)++;
1226
1227         atomic_inc(&dcc->queued_discard);
1228         dc->queued++;
1229         list_move_tail(&dc->list, wait_list);
1230
1231         /* sanity check on discard range */
1232         __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1233
1234         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1235         bio->bi_private = dc;
1236         bio->bi_end_io = f2fs_submit_discard_endio;
1237         submit_bio(bio);
1238
1239         atomic_inc(&dcc->issued_discard);
1240         f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1241 }
1242 #endif
1243
1244 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1245 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1246                                 struct discard_policy *dpolicy,
1247                                 struct discard_cmd *dc, int *issued)
1248 {
1249         struct block_device *bdev = dc->bdev;
1250         unsigned int max_discard_blocks =
1251                         SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1252         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1254                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1255         blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1256         block_t lstart, start, len, total_len;
1257         int err = 0;
1258
1259         if (dc->state != D_PREP)
1260                 return 0;
1261
1262         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1263                 return 0;
1264
1265 #ifdef CONFIG_BLK_DEV_ZONED
1266         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1267                 int devi = f2fs_bdev_index(sbi, bdev);
1268
1269                 if (devi < 0)
1270                         return -EINVAL;
1271
1272                 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1273                         __submit_zone_reset_cmd(sbi, dc, flag,
1274                                                 wait_list, issued);
1275                         return 0;
1276                 }
1277         }
1278 #endif
1279
1280         trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1281
1282         lstart = dc->di.lstart;
1283         start = dc->di.start;
1284         len = dc->di.len;
1285         total_len = len;
1286
1287         dc->di.len = 0;
1288
1289         while (total_len && *issued < dpolicy->max_requests && !err) {
1290                 struct bio *bio = NULL;
1291                 unsigned long flags;
1292                 bool last = true;
1293
1294                 if (len > max_discard_blocks) {
1295                         len = max_discard_blocks;
1296                         last = false;
1297                 }
1298
1299                 (*issued)++;
1300                 if (*issued == dpolicy->max_requests)
1301                         last = true;
1302
1303                 dc->di.len += len;
1304
1305                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1306                         err = -EIO;
1307                 } else {
1308                         err = __blkdev_issue_discard(bdev,
1309                                         SECTOR_FROM_BLOCK(start),
1310                                         SECTOR_FROM_BLOCK(len),
1311                                         GFP_NOFS, &bio);
1312                 }
1313                 if (err) {
1314                         spin_lock_irqsave(&dc->lock, flags);
1315                         if (dc->state == D_PARTIAL)
1316                                 dc->state = D_SUBMIT;
1317                         spin_unlock_irqrestore(&dc->lock, flags);
1318
1319                         break;
1320                 }
1321
1322                 f2fs_bug_on(sbi, !bio);
1323
1324                 /*
1325                  * should keep before submission to avoid D_DONE
1326                  * right away
1327                  */
1328                 spin_lock_irqsave(&dc->lock, flags);
1329                 if (last)
1330                         dc->state = D_SUBMIT;
1331                 else
1332                         dc->state = D_PARTIAL;
1333                 dc->bio_ref++;
1334                 spin_unlock_irqrestore(&dc->lock, flags);
1335
1336                 atomic_inc(&dcc->queued_discard);
1337                 dc->queued++;
1338                 list_move_tail(&dc->list, wait_list);
1339
1340                 /* sanity check on discard range */
1341                 __check_sit_bitmap(sbi, lstart, lstart + len);
1342
1343                 bio->bi_private = dc;
1344                 bio->bi_end_io = f2fs_submit_discard_endio;
1345                 bio->bi_opf |= flag;
1346                 submit_bio(bio);
1347
1348                 atomic_inc(&dcc->issued_discard);
1349
1350                 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1351
1352                 lstart += len;
1353                 start += len;
1354                 total_len -= len;
1355                 len = total_len;
1356         }
1357
1358         if (!err && len) {
1359                 dcc->undiscard_blks -= len;
1360                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1361         }
1362         return err;
1363 }
1364
1365 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1366                                 struct block_device *bdev, block_t lstart,
1367                                 block_t start, block_t len)
1368 {
1369         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370         struct rb_node **p = &dcc->root.rb_root.rb_node;
1371         struct rb_node *parent = NULL;
1372         struct discard_cmd *dc;
1373         bool leftmost = true;
1374
1375         /* look up rb tree to find parent node */
1376         while (*p) {
1377                 parent = *p;
1378                 dc = rb_entry(parent, struct discard_cmd, rb_node);
1379
1380                 if (lstart < dc->di.lstart) {
1381                         p = &(*p)->rb_left;
1382                 } else if (lstart >= dc->di.lstart + dc->di.len) {
1383                         p = &(*p)->rb_right;
1384                         leftmost = false;
1385                 } else {
1386                         /* Let's skip to add, if exists */
1387                         return;
1388                 }
1389         }
1390
1391         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1392
1393         rb_link_node(&dc->rb_node, parent, p);
1394         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1395 }
1396
1397 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1398                                                 struct discard_cmd *dc)
1399 {
1400         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1401 }
1402
1403 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1404                                 struct discard_cmd *dc, block_t blkaddr)
1405 {
1406         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407         struct discard_info di = dc->di;
1408         bool modified = false;
1409
1410         if (dc->state == D_DONE || dc->di.len == 1) {
1411                 __remove_discard_cmd(sbi, dc);
1412                 return;
1413         }
1414
1415         dcc->undiscard_blks -= di.len;
1416
1417         if (blkaddr > di.lstart) {
1418                 dc->di.len = blkaddr - dc->di.lstart;
1419                 dcc->undiscard_blks += dc->di.len;
1420                 __relocate_discard_cmd(dcc, dc);
1421                 modified = true;
1422         }
1423
1424         if (blkaddr < di.lstart + di.len - 1) {
1425                 if (modified) {
1426                         __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1427                                         di.start + blkaddr + 1 - di.lstart,
1428                                         di.lstart + di.len - 1 - blkaddr);
1429                 } else {
1430                         dc->di.lstart++;
1431                         dc->di.len--;
1432                         dc->di.start++;
1433                         dcc->undiscard_blks += dc->di.len;
1434                         __relocate_discard_cmd(dcc, dc);
1435                 }
1436         }
1437 }
1438
1439 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1440                                 struct block_device *bdev, block_t lstart,
1441                                 block_t start, block_t len)
1442 {
1443         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1445         struct discard_cmd *dc;
1446         struct discard_info di = {0};
1447         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1448         unsigned int max_discard_blocks =
1449                         SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1450         block_t end = lstart + len;
1451
1452         dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1453                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
1454         if (dc)
1455                 prev_dc = dc;
1456
1457         if (!prev_dc) {
1458                 di.lstart = lstart;
1459                 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1460                 di.len = min(di.len, len);
1461                 di.start = start;
1462         }
1463
1464         while (1) {
1465                 struct rb_node *node;
1466                 bool merged = false;
1467                 struct discard_cmd *tdc = NULL;
1468
1469                 if (prev_dc) {
1470                         di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1471                         if (di.lstart < lstart)
1472                                 di.lstart = lstart;
1473                         if (di.lstart >= end)
1474                                 break;
1475
1476                         if (!next_dc || next_dc->di.lstart > end)
1477                                 di.len = end - di.lstart;
1478                         else
1479                                 di.len = next_dc->di.lstart - di.lstart;
1480                         di.start = start + di.lstart - lstart;
1481                 }
1482
1483                 if (!di.len)
1484                         goto next;
1485
1486                 if (prev_dc && prev_dc->state == D_PREP &&
1487                         prev_dc->bdev == bdev &&
1488                         __is_discard_back_mergeable(&di, &prev_dc->di,
1489                                                         max_discard_blocks)) {
1490                         prev_dc->di.len += di.len;
1491                         dcc->undiscard_blks += di.len;
1492                         __relocate_discard_cmd(dcc, prev_dc);
1493                         di = prev_dc->di;
1494                         tdc = prev_dc;
1495                         merged = true;
1496                 }
1497
1498                 if (next_dc && next_dc->state == D_PREP &&
1499                         next_dc->bdev == bdev &&
1500                         __is_discard_front_mergeable(&di, &next_dc->di,
1501                                                         max_discard_blocks)) {
1502                         next_dc->di.lstart = di.lstart;
1503                         next_dc->di.len += di.len;
1504                         next_dc->di.start = di.start;
1505                         dcc->undiscard_blks += di.len;
1506                         __relocate_discard_cmd(dcc, next_dc);
1507                         if (tdc)
1508                                 __remove_discard_cmd(sbi, tdc);
1509                         merged = true;
1510                 }
1511
1512                 if (!merged)
1513                         __insert_discard_cmd(sbi, bdev,
1514                                                 di.lstart, di.start, di.len);
1515  next:
1516                 prev_dc = next_dc;
1517                 if (!prev_dc)
1518                         break;
1519
1520                 node = rb_next(&prev_dc->rb_node);
1521                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1522         }
1523 }
1524
1525 #ifdef CONFIG_BLK_DEV_ZONED
1526 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1527                 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1528                 block_t blklen)
1529 {
1530         trace_f2fs_queue_reset_zone(bdev, blkstart);
1531
1532         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1533         __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1534         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1535 }
1536 #endif
1537
1538 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1539                 struct block_device *bdev, block_t blkstart, block_t blklen)
1540 {
1541         block_t lblkstart = blkstart;
1542
1543         if (!f2fs_bdev_support_discard(bdev))
1544                 return;
1545
1546         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1547
1548         if (f2fs_is_multi_device(sbi)) {
1549                 int devi = f2fs_target_device_index(sbi, blkstart);
1550
1551                 blkstart -= FDEV(devi).start_blk;
1552         }
1553         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1554         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1555         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1556 }
1557
1558 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1559                 struct discard_policy *dpolicy, int *issued)
1560 {
1561         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1562         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1563         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1564         struct discard_cmd *dc;
1565         struct blk_plug plug;
1566         bool io_interrupted = false;
1567
1568         mutex_lock(&dcc->cmd_lock);
1569         dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1570                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
1571         if (!dc)
1572                 dc = next_dc;
1573
1574         blk_start_plug(&plug);
1575
1576         while (dc) {
1577                 struct rb_node *node;
1578                 int err = 0;
1579
1580                 if (dc->state != D_PREP)
1581                         goto next;
1582
1583                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1584                         io_interrupted = true;
1585                         break;
1586                 }
1587
1588                 dcc->next_pos = dc->di.lstart + dc->di.len;
1589                 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1590
1591                 if (*issued >= dpolicy->max_requests)
1592                         break;
1593 next:
1594                 node = rb_next(&dc->rb_node);
1595                 if (err)
1596                         __remove_discard_cmd(sbi, dc);
1597                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1598         }
1599
1600         blk_finish_plug(&plug);
1601
1602         if (!dc)
1603                 dcc->next_pos = 0;
1604
1605         mutex_unlock(&dcc->cmd_lock);
1606
1607         if (!(*issued) && io_interrupted)
1608                 *issued = -1;
1609 }
1610 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1611                                         struct discard_policy *dpolicy);
1612
1613 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1614                                         struct discard_policy *dpolicy)
1615 {
1616         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617         struct list_head *pend_list;
1618         struct discard_cmd *dc, *tmp;
1619         struct blk_plug plug;
1620         int i, issued;
1621         bool io_interrupted = false;
1622
1623         if (dpolicy->timeout)
1624                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1625
1626 retry:
1627         issued = 0;
1628         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1629                 if (dpolicy->timeout &&
1630                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1631                         break;
1632
1633                 if (i + 1 < dpolicy->granularity)
1634                         break;
1635
1636                 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1637                         __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1638                         return issued;
1639                 }
1640
1641                 pend_list = &dcc->pend_list[i];
1642
1643                 mutex_lock(&dcc->cmd_lock);
1644                 if (list_empty(pend_list))
1645                         goto next;
1646                 if (unlikely(dcc->rbtree_check))
1647                         f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1648                 blk_start_plug(&plug);
1649                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1650                         f2fs_bug_on(sbi, dc->state != D_PREP);
1651
1652                         if (dpolicy->timeout &&
1653                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1654                                 break;
1655
1656                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1657                                                 !is_idle(sbi, DISCARD_TIME)) {
1658                                 io_interrupted = true;
1659                                 break;
1660                         }
1661
1662                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1663
1664                         if (issued >= dpolicy->max_requests)
1665                                 break;
1666                 }
1667                 blk_finish_plug(&plug);
1668 next:
1669                 mutex_unlock(&dcc->cmd_lock);
1670
1671                 if (issued >= dpolicy->max_requests || io_interrupted)
1672                         break;
1673         }
1674
1675         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1676                 __wait_all_discard_cmd(sbi, dpolicy);
1677                 goto retry;
1678         }
1679
1680         if (!issued && io_interrupted)
1681                 issued = -1;
1682
1683         return issued;
1684 }
1685
1686 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1687 {
1688         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1689         struct list_head *pend_list;
1690         struct discard_cmd *dc, *tmp;
1691         int i;
1692         bool dropped = false;
1693
1694         mutex_lock(&dcc->cmd_lock);
1695         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1696                 pend_list = &dcc->pend_list[i];
1697                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1698                         f2fs_bug_on(sbi, dc->state != D_PREP);
1699                         __remove_discard_cmd(sbi, dc);
1700                         dropped = true;
1701                 }
1702         }
1703         mutex_unlock(&dcc->cmd_lock);
1704
1705         return dropped;
1706 }
1707
1708 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1709 {
1710         __drop_discard_cmd(sbi);
1711 }
1712
1713 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1714                                                         struct discard_cmd *dc)
1715 {
1716         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1717         unsigned int len = 0;
1718
1719         wait_for_completion_io(&dc->wait);
1720         mutex_lock(&dcc->cmd_lock);
1721         f2fs_bug_on(sbi, dc->state != D_DONE);
1722         dc->ref--;
1723         if (!dc->ref) {
1724                 if (!dc->error)
1725                         len = dc->di.len;
1726                 __remove_discard_cmd(sbi, dc);
1727         }
1728         mutex_unlock(&dcc->cmd_lock);
1729
1730         return len;
1731 }
1732
1733 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1734                                                 struct discard_policy *dpolicy,
1735                                                 block_t start, block_t end)
1736 {
1737         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1738         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1739                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1740         struct discard_cmd *dc = NULL, *iter, *tmp;
1741         unsigned int trimmed = 0;
1742
1743 next:
1744         dc = NULL;
1745
1746         mutex_lock(&dcc->cmd_lock);
1747         list_for_each_entry_safe(iter, tmp, wait_list, list) {
1748                 if (iter->di.lstart + iter->di.len <= start ||
1749                                         end <= iter->di.lstart)
1750                         continue;
1751                 if (iter->di.len < dpolicy->granularity)
1752                         continue;
1753                 if (iter->state == D_DONE && !iter->ref) {
1754                         wait_for_completion_io(&iter->wait);
1755                         if (!iter->error)
1756                                 trimmed += iter->di.len;
1757                         __remove_discard_cmd(sbi, iter);
1758                 } else {
1759                         iter->ref++;
1760                         dc = iter;
1761                         break;
1762                 }
1763         }
1764         mutex_unlock(&dcc->cmd_lock);
1765
1766         if (dc) {
1767                 trimmed += __wait_one_discard_bio(sbi, dc);
1768                 goto next;
1769         }
1770
1771         return trimmed;
1772 }
1773
1774 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1775                                                 struct discard_policy *dpolicy)
1776 {
1777         struct discard_policy dp;
1778         unsigned int discard_blks;
1779
1780         if (dpolicy)
1781                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1782
1783         /* wait all */
1784         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1785         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1786         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1787         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1788
1789         return discard_blks;
1790 }
1791
1792 /* This should be covered by global mutex, &sit_i->sentry_lock */
1793 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1794 {
1795         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1796         struct discard_cmd *dc;
1797         bool need_wait = false;
1798
1799         mutex_lock(&dcc->cmd_lock);
1800         dc = __lookup_discard_cmd(sbi, blkaddr);
1801 #ifdef CONFIG_BLK_DEV_ZONED
1802         if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1803                 int devi = f2fs_bdev_index(sbi, dc->bdev);
1804
1805                 if (devi < 0) {
1806                         mutex_unlock(&dcc->cmd_lock);
1807                         return;
1808                 }
1809
1810                 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1811                         /* force submit zone reset */
1812                         if (dc->state == D_PREP)
1813                                 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1814                                                         &dcc->wait_list, NULL);
1815                         dc->ref++;
1816                         mutex_unlock(&dcc->cmd_lock);
1817                         /* wait zone reset */
1818                         __wait_one_discard_bio(sbi, dc);
1819                         return;
1820                 }
1821         }
1822 #endif
1823         if (dc) {
1824                 if (dc->state == D_PREP) {
1825                         __punch_discard_cmd(sbi, dc, blkaddr);
1826                 } else {
1827                         dc->ref++;
1828                         need_wait = true;
1829                 }
1830         }
1831         mutex_unlock(&dcc->cmd_lock);
1832
1833         if (need_wait)
1834                 __wait_one_discard_bio(sbi, dc);
1835 }
1836
1837 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1838 {
1839         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1840
1841         if (dcc && dcc->f2fs_issue_discard) {
1842                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1843
1844                 dcc->f2fs_issue_discard = NULL;
1845                 kthread_stop(discard_thread);
1846         }
1847 }
1848
1849 /**
1850  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1851  * @sbi: the f2fs_sb_info data for discard cmd to issue
1852  *
1853  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1854  *
1855  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1856  */
1857 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1858 {
1859         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1860         struct discard_policy dpolicy;
1861         bool dropped;
1862
1863         if (!atomic_read(&dcc->discard_cmd_cnt))
1864                 return true;
1865
1866         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1867                                         dcc->discard_granularity);
1868         __issue_discard_cmd(sbi, &dpolicy);
1869         dropped = __drop_discard_cmd(sbi);
1870
1871         /* just to make sure there is no pending discard commands */
1872         __wait_all_discard_cmd(sbi, NULL);
1873
1874         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1875         return !dropped;
1876 }
1877
1878 static int issue_discard_thread(void *data)
1879 {
1880         struct f2fs_sb_info *sbi = data;
1881         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1882         wait_queue_head_t *q = &dcc->discard_wait_queue;
1883         struct discard_policy dpolicy;
1884         unsigned int wait_ms = dcc->min_discard_issue_time;
1885         int issued;
1886
1887         set_freezable();
1888
1889         do {
1890                 wait_event_freezable_timeout(*q,
1891                                 kthread_should_stop() || dcc->discard_wake,
1892                                 msecs_to_jiffies(wait_ms));
1893
1894                 if (sbi->gc_mode == GC_URGENT_HIGH ||
1895                         !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1896                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1897                                                 MIN_DISCARD_GRANULARITY);
1898                 else
1899                         __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1900                                                 dcc->discard_granularity);
1901
1902                 if (dcc->discard_wake)
1903                         dcc->discard_wake = false;
1904
1905                 /* clean up pending candidates before going to sleep */
1906                 if (atomic_read(&dcc->queued_discard))
1907                         __wait_all_discard_cmd(sbi, NULL);
1908
1909                 if (f2fs_readonly(sbi->sb))
1910                         continue;
1911                 if (kthread_should_stop())
1912                         return 0;
1913                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1914                         !atomic_read(&dcc->discard_cmd_cnt)) {
1915                         wait_ms = dpolicy.max_interval;
1916                         continue;
1917                 }
1918
1919                 sb_start_intwrite(sbi->sb);
1920
1921                 issued = __issue_discard_cmd(sbi, &dpolicy);
1922                 if (issued > 0) {
1923                         __wait_all_discard_cmd(sbi, &dpolicy);
1924                         wait_ms = dpolicy.min_interval;
1925                 } else if (issued == -1) {
1926                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1927                         if (!wait_ms)
1928                                 wait_ms = dpolicy.mid_interval;
1929                 } else {
1930                         wait_ms = dpolicy.max_interval;
1931                 }
1932                 if (!atomic_read(&dcc->discard_cmd_cnt))
1933                         wait_ms = dpolicy.max_interval;
1934
1935                 sb_end_intwrite(sbi->sb);
1936
1937         } while (!kthread_should_stop());
1938         return 0;
1939 }
1940
1941 #ifdef CONFIG_BLK_DEV_ZONED
1942 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1943                 struct block_device *bdev, block_t blkstart, block_t blklen)
1944 {
1945         sector_t sector, nr_sects;
1946         block_t lblkstart = blkstart;
1947         int devi = 0;
1948         u64 remainder = 0;
1949
1950         if (f2fs_is_multi_device(sbi)) {
1951                 devi = f2fs_target_device_index(sbi, blkstart);
1952                 if (blkstart < FDEV(devi).start_blk ||
1953                     blkstart > FDEV(devi).end_blk) {
1954                         f2fs_err(sbi, "Invalid block %x", blkstart);
1955                         return -EIO;
1956                 }
1957                 blkstart -= FDEV(devi).start_blk;
1958         }
1959
1960         /* For sequential zones, reset the zone write pointer */
1961         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1962                 sector = SECTOR_FROM_BLOCK(blkstart);
1963                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1964                 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1965
1966                 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1967                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1968                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1969                                  blkstart, blklen);
1970                         return -EIO;
1971                 }
1972
1973                 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1974                         trace_f2fs_issue_reset_zone(bdev, blkstart);
1975                         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1976                                                 sector, nr_sects, GFP_NOFS);
1977                 }
1978
1979                 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1980                 return 0;
1981         }
1982
1983         /* For conventional zones, use regular discard if supported */
1984         __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1985         return 0;
1986 }
1987 #endif
1988
1989 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1990                 struct block_device *bdev, block_t blkstart, block_t blklen)
1991 {
1992 #ifdef CONFIG_BLK_DEV_ZONED
1993         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1994                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1995 #endif
1996         __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1997         return 0;
1998 }
1999
2000 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2001                                 block_t blkstart, block_t blklen)
2002 {
2003         sector_t start = blkstart, len = 0;
2004         struct block_device *bdev;
2005         struct seg_entry *se;
2006         unsigned int offset;
2007         block_t i;
2008         int err = 0;
2009
2010         bdev = f2fs_target_device(sbi, blkstart, NULL);
2011
2012         for (i = blkstart; i < blkstart + blklen; i++, len++) {
2013                 if (i != start) {
2014                         struct block_device *bdev2 =
2015                                 f2fs_target_device(sbi, i, NULL);
2016
2017                         if (bdev2 != bdev) {
2018                                 err = __issue_discard_async(sbi, bdev,
2019                                                 start, len);
2020                                 if (err)
2021                                         return err;
2022                                 bdev = bdev2;
2023                                 start = i;
2024                                 len = 0;
2025                         }
2026                 }
2027
2028                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2029                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2030
2031                 if (f2fs_block_unit_discard(sbi) &&
2032                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2033                         sbi->discard_blks--;
2034         }
2035
2036         if (len)
2037                 err = __issue_discard_async(sbi, bdev, start, len);
2038         return err;
2039 }
2040
2041 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2042                                                         bool check_only)
2043 {
2044         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2045         int max_blocks = sbi->blocks_per_seg;
2046         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2047         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2048         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2049         unsigned long *discard_map = (unsigned long *)se->discard_map;
2050         unsigned long *dmap = SIT_I(sbi)->tmp_map;
2051         unsigned int start = 0, end = -1;
2052         bool force = (cpc->reason & CP_DISCARD);
2053         struct discard_entry *de = NULL;
2054         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2055         int i;
2056
2057         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2058                         !f2fs_block_unit_discard(sbi))
2059                 return false;
2060
2061         if (!force) {
2062                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2063                         SM_I(sbi)->dcc_info->nr_discards >=
2064                                 SM_I(sbi)->dcc_info->max_discards)
2065                         return false;
2066         }
2067
2068         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2069         for (i = 0; i < entries; i++)
2070                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2071                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2072
2073         while (force || SM_I(sbi)->dcc_info->nr_discards <=
2074                                 SM_I(sbi)->dcc_info->max_discards) {
2075                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2076                 if (start >= max_blocks)
2077                         break;
2078
2079                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2080                 if (force && start && end != max_blocks
2081                                         && (end - start) < cpc->trim_minlen)
2082                         continue;
2083
2084                 if (check_only)
2085                         return true;
2086
2087                 if (!de) {
2088                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
2089                                                 GFP_F2FS_ZERO, true, NULL);
2090                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2091                         list_add_tail(&de->list, head);
2092                 }
2093
2094                 for (i = start; i < end; i++)
2095                         __set_bit_le(i, (void *)de->discard_map);
2096
2097                 SM_I(sbi)->dcc_info->nr_discards += end - start;
2098         }
2099         return false;
2100 }
2101
2102 static void release_discard_addr(struct discard_entry *entry)
2103 {
2104         list_del(&entry->list);
2105         kmem_cache_free(discard_entry_slab, entry);
2106 }
2107
2108 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2109 {
2110         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2111         struct discard_entry *entry, *this;
2112
2113         /* drop caches */
2114         list_for_each_entry_safe(entry, this, head, list)
2115                 release_discard_addr(entry);
2116 }
2117
2118 /*
2119  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2120  */
2121 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2122 {
2123         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2124         unsigned int segno;
2125
2126         mutex_lock(&dirty_i->seglist_lock);
2127         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2128                 __set_test_and_free(sbi, segno, false);
2129         mutex_unlock(&dirty_i->seglist_lock);
2130 }
2131
2132 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2133                                                 struct cp_control *cpc)
2134 {
2135         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2136         struct list_head *head = &dcc->entry_list;
2137         struct discard_entry *entry, *this;
2138         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2139         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2140         unsigned int start = 0, end = -1;
2141         unsigned int secno, start_segno;
2142         bool force = (cpc->reason & CP_DISCARD);
2143         bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2144                                                 DISCARD_UNIT_SECTION;
2145
2146         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2147                 section_alignment = true;
2148
2149         mutex_lock(&dirty_i->seglist_lock);
2150
2151         while (1) {
2152                 int i;
2153
2154                 if (section_alignment && end != -1)
2155                         end--;
2156                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2157                 if (start >= MAIN_SEGS(sbi))
2158                         break;
2159                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2160                                                                 start + 1);
2161
2162                 if (section_alignment) {
2163                         start = rounddown(start, sbi->segs_per_sec);
2164                         end = roundup(end, sbi->segs_per_sec);
2165                 }
2166
2167                 for (i = start; i < end; i++) {
2168                         if (test_and_clear_bit(i, prefree_map))
2169                                 dirty_i->nr_dirty[PRE]--;
2170                 }
2171
2172                 if (!f2fs_realtime_discard_enable(sbi))
2173                         continue;
2174
2175                 if (force && start >= cpc->trim_start &&
2176                                         (end - 1) <= cpc->trim_end)
2177                         continue;
2178
2179                 /* Should cover 2MB zoned device for zone-based reset */
2180                 if (!f2fs_sb_has_blkzoned(sbi) &&
2181                     (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2182                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2183                                 (end - start) << sbi->log_blocks_per_seg);
2184                         continue;
2185                 }
2186 next:
2187                 secno = GET_SEC_FROM_SEG(sbi, start);
2188                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2189                 if (!IS_CURSEC(sbi, secno) &&
2190                         !get_valid_blocks(sbi, start, true))
2191                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2192                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2193
2194                 start = start_segno + sbi->segs_per_sec;
2195                 if (start < end)
2196                         goto next;
2197                 else
2198                         end = start - 1;
2199         }
2200         mutex_unlock(&dirty_i->seglist_lock);
2201
2202         if (!f2fs_block_unit_discard(sbi))
2203                 goto wakeup;
2204
2205         /* send small discards */
2206         list_for_each_entry_safe(entry, this, head, list) {
2207                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2208                 bool is_valid = test_bit_le(0, entry->discard_map);
2209
2210 find_next:
2211                 if (is_valid) {
2212                         next_pos = find_next_zero_bit_le(entry->discard_map,
2213                                         sbi->blocks_per_seg, cur_pos);
2214                         len = next_pos - cur_pos;
2215
2216                         if (f2fs_sb_has_blkzoned(sbi) ||
2217                             (force && len < cpc->trim_minlen))
2218                                 goto skip;
2219
2220                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2221                                                                         len);
2222                         total_len += len;
2223                 } else {
2224                         next_pos = find_next_bit_le(entry->discard_map,
2225                                         sbi->blocks_per_seg, cur_pos);
2226                 }
2227 skip:
2228                 cur_pos = next_pos;
2229                 is_valid = !is_valid;
2230
2231                 if (cur_pos < sbi->blocks_per_seg)
2232                         goto find_next;
2233
2234                 release_discard_addr(entry);
2235                 dcc->nr_discards -= total_len;
2236         }
2237
2238 wakeup:
2239         wake_up_discard_thread(sbi, false);
2240 }
2241
2242 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2243 {
2244         dev_t dev = sbi->sb->s_bdev->bd_dev;
2245         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2246         int err = 0;
2247
2248         if (!f2fs_realtime_discard_enable(sbi))
2249                 return 0;
2250
2251         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2252                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2253         if (IS_ERR(dcc->f2fs_issue_discard)) {
2254                 err = PTR_ERR(dcc->f2fs_issue_discard);
2255                 dcc->f2fs_issue_discard = NULL;
2256         }
2257
2258         return err;
2259 }
2260
2261 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2262 {
2263         struct discard_cmd_control *dcc;
2264         int err = 0, i;
2265
2266         if (SM_I(sbi)->dcc_info) {
2267                 dcc = SM_I(sbi)->dcc_info;
2268                 goto init_thread;
2269         }
2270
2271         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2272         if (!dcc)
2273                 return -ENOMEM;
2274
2275         dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2276         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2277         dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2278         dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2279         if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2280                 dcc->discard_granularity = sbi->blocks_per_seg;
2281         else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2282                 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2283
2284         INIT_LIST_HEAD(&dcc->entry_list);
2285         for (i = 0; i < MAX_PLIST_NUM; i++)
2286                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2287         INIT_LIST_HEAD(&dcc->wait_list);
2288         INIT_LIST_HEAD(&dcc->fstrim_list);
2289         mutex_init(&dcc->cmd_lock);
2290         atomic_set(&dcc->issued_discard, 0);
2291         atomic_set(&dcc->queued_discard, 0);
2292         atomic_set(&dcc->discard_cmd_cnt, 0);
2293         dcc->nr_discards = 0;
2294         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2295         dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2296         dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2297         dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2298         dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2299         dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2300         dcc->undiscard_blks = 0;
2301         dcc->next_pos = 0;
2302         dcc->root = RB_ROOT_CACHED;
2303         dcc->rbtree_check = false;
2304
2305         init_waitqueue_head(&dcc->discard_wait_queue);
2306         SM_I(sbi)->dcc_info = dcc;
2307 init_thread:
2308         err = f2fs_start_discard_thread(sbi);
2309         if (err) {
2310                 kfree(dcc);
2311                 SM_I(sbi)->dcc_info = NULL;
2312         }
2313
2314         return err;
2315 }
2316
2317 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2318 {
2319         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2320
2321         if (!dcc)
2322                 return;
2323
2324         f2fs_stop_discard_thread(sbi);
2325
2326         /*
2327          * Recovery can cache discard commands, so in error path of
2328          * fill_super(), it needs to give a chance to handle them.
2329          */
2330         f2fs_issue_discard_timeout(sbi);
2331
2332         kfree(dcc);
2333         SM_I(sbi)->dcc_info = NULL;
2334 }
2335
2336 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2337 {
2338         struct sit_info *sit_i = SIT_I(sbi);
2339
2340         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2341                 sit_i->dirty_sentries++;
2342                 return false;
2343         }
2344
2345         return true;
2346 }
2347
2348 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2349                                         unsigned int segno, int modified)
2350 {
2351         struct seg_entry *se = get_seg_entry(sbi, segno);
2352
2353         se->type = type;
2354         if (modified)
2355                 __mark_sit_entry_dirty(sbi, segno);
2356 }
2357
2358 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2359                                                                 block_t blkaddr)
2360 {
2361         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2362
2363         if (segno == NULL_SEGNO)
2364                 return 0;
2365         return get_seg_entry(sbi, segno)->mtime;
2366 }
2367
2368 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2369                                                 unsigned long long old_mtime)
2370 {
2371         struct seg_entry *se;
2372         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2373         unsigned long long ctime = get_mtime(sbi, false);
2374         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2375
2376         if (segno == NULL_SEGNO)
2377                 return;
2378
2379         se = get_seg_entry(sbi, segno);
2380
2381         if (!se->mtime)
2382                 se->mtime = mtime;
2383         else
2384                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2385                                                 se->valid_blocks + 1);
2386
2387         if (ctime > SIT_I(sbi)->max_mtime)
2388                 SIT_I(sbi)->max_mtime = ctime;
2389 }
2390
2391 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2392 {
2393         struct seg_entry *se;
2394         unsigned int segno, offset;
2395         long int new_vblocks;
2396         bool exist;
2397 #ifdef CONFIG_F2FS_CHECK_FS
2398         bool mir_exist;
2399 #endif
2400
2401         segno = GET_SEGNO(sbi, blkaddr);
2402
2403         se = get_seg_entry(sbi, segno);
2404         new_vblocks = se->valid_blocks + del;
2405         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2406
2407         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2408                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2409
2410         se->valid_blocks = new_vblocks;
2411
2412         /* Update valid block bitmap */
2413         if (del > 0) {
2414                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2415 #ifdef CONFIG_F2FS_CHECK_FS
2416                 mir_exist = f2fs_test_and_set_bit(offset,
2417                                                 se->cur_valid_map_mir);
2418                 if (unlikely(exist != mir_exist)) {
2419                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2420                                  blkaddr, exist);
2421                         f2fs_bug_on(sbi, 1);
2422                 }
2423 #endif
2424                 if (unlikely(exist)) {
2425                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2426                                  blkaddr);
2427                         f2fs_bug_on(sbi, 1);
2428                         se->valid_blocks--;
2429                         del = 0;
2430                 }
2431
2432                 if (f2fs_block_unit_discard(sbi) &&
2433                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2434                         sbi->discard_blks--;
2435
2436                 /*
2437                  * SSR should never reuse block which is checkpointed
2438                  * or newly invalidated.
2439                  */
2440                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2441                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2442                                 se->ckpt_valid_blocks++;
2443                 }
2444         } else {
2445                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2446 #ifdef CONFIG_F2FS_CHECK_FS
2447                 mir_exist = f2fs_test_and_clear_bit(offset,
2448                                                 se->cur_valid_map_mir);
2449                 if (unlikely(exist != mir_exist)) {
2450                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2451                                  blkaddr, exist);
2452                         f2fs_bug_on(sbi, 1);
2453                 }
2454 #endif
2455                 if (unlikely(!exist)) {
2456                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2457                                  blkaddr);
2458                         f2fs_bug_on(sbi, 1);
2459                         se->valid_blocks++;
2460                         del = 0;
2461                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2462                         /*
2463                          * If checkpoints are off, we must not reuse data that
2464                          * was used in the previous checkpoint. If it was used
2465                          * before, we must track that to know how much space we
2466                          * really have.
2467                          */
2468                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2469                                 spin_lock(&sbi->stat_lock);
2470                                 sbi->unusable_block_count++;
2471                                 spin_unlock(&sbi->stat_lock);
2472                         }
2473                 }
2474
2475                 if (f2fs_block_unit_discard(sbi) &&
2476                         f2fs_test_and_clear_bit(offset, se->discard_map))
2477                         sbi->discard_blks++;
2478         }
2479         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2480                 se->ckpt_valid_blocks += del;
2481
2482         __mark_sit_entry_dirty(sbi, segno);
2483
2484         /* update total number of valid blocks to be written in ckpt area */
2485         SIT_I(sbi)->written_valid_blocks += del;
2486
2487         if (__is_large_section(sbi))
2488                 get_sec_entry(sbi, segno)->valid_blocks += del;
2489 }
2490
2491 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2492 {
2493         unsigned int segno = GET_SEGNO(sbi, addr);
2494         struct sit_info *sit_i = SIT_I(sbi);
2495
2496         f2fs_bug_on(sbi, addr == NULL_ADDR);
2497         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2498                 return;
2499
2500         f2fs_invalidate_internal_cache(sbi, addr);
2501
2502         /* add it into sit main buffer */
2503         down_write(&sit_i->sentry_lock);
2504
2505         update_segment_mtime(sbi, addr, 0);
2506         update_sit_entry(sbi, addr, -1);
2507
2508         /* add it into dirty seglist */
2509         locate_dirty_segment(sbi, segno);
2510
2511         up_write(&sit_i->sentry_lock);
2512 }
2513
2514 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2515 {
2516         struct sit_info *sit_i = SIT_I(sbi);
2517         unsigned int segno, offset;
2518         struct seg_entry *se;
2519         bool is_cp = false;
2520
2521         if (!__is_valid_data_blkaddr(blkaddr))
2522                 return true;
2523
2524         down_read(&sit_i->sentry_lock);
2525
2526         segno = GET_SEGNO(sbi, blkaddr);
2527         se = get_seg_entry(sbi, segno);
2528         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2529
2530         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2531                 is_cp = true;
2532
2533         up_read(&sit_i->sentry_lock);
2534
2535         return is_cp;
2536 }
2537
2538 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2539 {
2540         struct curseg_info *curseg = CURSEG_I(sbi, type);
2541
2542         if (sbi->ckpt->alloc_type[type] == SSR)
2543                 return sbi->blocks_per_seg;
2544         return curseg->next_blkoff;
2545 }
2546
2547 /*
2548  * Calculate the number of current summary pages for writing
2549  */
2550 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2551 {
2552         int valid_sum_count = 0;
2553         int i, sum_in_page;
2554
2555         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2556                 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2557                         valid_sum_count +=
2558                                 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2559                 else
2560                         valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2561         }
2562
2563         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2564                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2565         if (valid_sum_count <= sum_in_page)
2566                 return 1;
2567         else if ((valid_sum_count - sum_in_page) <=
2568                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2569                 return 2;
2570         return 3;
2571 }
2572
2573 /*
2574  * Caller should put this summary page
2575  */
2576 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2577 {
2578         if (unlikely(f2fs_cp_error(sbi)))
2579                 return ERR_PTR(-EIO);
2580         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2581 }
2582
2583 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2584                                         void *src, block_t blk_addr)
2585 {
2586         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2587
2588         memcpy(page_address(page), src, PAGE_SIZE);
2589         set_page_dirty(page);
2590         f2fs_put_page(page, 1);
2591 }
2592
2593 static void write_sum_page(struct f2fs_sb_info *sbi,
2594                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2595 {
2596         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2597 }
2598
2599 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2600                                                 int type, block_t blk_addr)
2601 {
2602         struct curseg_info *curseg = CURSEG_I(sbi, type);
2603         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2604         struct f2fs_summary_block *src = curseg->sum_blk;
2605         struct f2fs_summary_block *dst;
2606
2607         dst = (struct f2fs_summary_block *)page_address(page);
2608         memset(dst, 0, PAGE_SIZE);
2609
2610         mutex_lock(&curseg->curseg_mutex);
2611
2612         down_read(&curseg->journal_rwsem);
2613         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2614         up_read(&curseg->journal_rwsem);
2615
2616         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2617         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2618
2619         mutex_unlock(&curseg->curseg_mutex);
2620
2621         set_page_dirty(page);
2622         f2fs_put_page(page, 1);
2623 }
2624
2625 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2626                                 struct curseg_info *curseg, int type)
2627 {
2628         unsigned int segno = curseg->segno + 1;
2629         struct free_segmap_info *free_i = FREE_I(sbi);
2630
2631         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2632                 return !test_bit(segno, free_i->free_segmap);
2633         return 0;
2634 }
2635
2636 /*
2637  * Find a new segment from the free segments bitmap to right order
2638  * This function should be returned with success, otherwise BUG
2639  */
2640 static void get_new_segment(struct f2fs_sb_info *sbi,
2641                         unsigned int *newseg, bool new_sec, int dir)
2642 {
2643         struct free_segmap_info *free_i = FREE_I(sbi);
2644         unsigned int segno, secno, zoneno;
2645         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2646         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2647         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2648         unsigned int left_start = hint;
2649         bool init = true;
2650         int go_left = 0;
2651         int i;
2652
2653         spin_lock(&free_i->segmap_lock);
2654
2655         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2656                 segno = find_next_zero_bit(free_i->free_segmap,
2657                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2658                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2659                         goto got_it;
2660         }
2661 find_other_zone:
2662         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2663         if (secno >= MAIN_SECS(sbi)) {
2664                 if (dir == ALLOC_RIGHT) {
2665                         secno = find_first_zero_bit(free_i->free_secmap,
2666                                                         MAIN_SECS(sbi));
2667                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2668                 } else {
2669                         go_left = 1;
2670                         left_start = hint - 1;
2671                 }
2672         }
2673         if (go_left == 0)
2674                 goto skip_left;
2675
2676         while (test_bit(left_start, free_i->free_secmap)) {
2677                 if (left_start > 0) {
2678                         left_start--;
2679                         continue;
2680                 }
2681                 left_start = find_first_zero_bit(free_i->free_secmap,
2682                                                         MAIN_SECS(sbi));
2683                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2684                 break;
2685         }
2686         secno = left_start;
2687 skip_left:
2688         segno = GET_SEG_FROM_SEC(sbi, secno);
2689         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2690
2691         /* give up on finding another zone */
2692         if (!init)
2693                 goto got_it;
2694         if (sbi->secs_per_zone == 1)
2695                 goto got_it;
2696         if (zoneno == old_zoneno)
2697                 goto got_it;
2698         if (dir == ALLOC_LEFT) {
2699                 if (!go_left && zoneno + 1 >= total_zones)
2700                         goto got_it;
2701                 if (go_left && zoneno == 0)
2702                         goto got_it;
2703         }
2704         for (i = 0; i < NR_CURSEG_TYPE; i++)
2705                 if (CURSEG_I(sbi, i)->zone == zoneno)
2706                         break;
2707
2708         if (i < NR_CURSEG_TYPE) {
2709                 /* zone is in user, try another */
2710                 if (go_left)
2711                         hint = zoneno * sbi->secs_per_zone - 1;
2712                 else if (zoneno + 1 >= total_zones)
2713                         hint = 0;
2714                 else
2715                         hint = (zoneno + 1) * sbi->secs_per_zone;
2716                 init = false;
2717                 goto find_other_zone;
2718         }
2719 got_it:
2720         /* set it as dirty segment in free segmap */
2721         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2722         __set_inuse(sbi, segno);
2723         *newseg = segno;
2724         spin_unlock(&free_i->segmap_lock);
2725 }
2726
2727 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2728 {
2729         struct curseg_info *curseg = CURSEG_I(sbi, type);
2730         struct summary_footer *sum_footer;
2731         unsigned short seg_type = curseg->seg_type;
2732
2733         curseg->inited = true;
2734         curseg->segno = curseg->next_segno;
2735         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2736         curseg->next_blkoff = 0;
2737         curseg->next_segno = NULL_SEGNO;
2738
2739         sum_footer = &(curseg->sum_blk->footer);
2740         memset(sum_footer, 0, sizeof(struct summary_footer));
2741
2742         sanity_check_seg_type(sbi, seg_type);
2743
2744         if (IS_DATASEG(seg_type))
2745                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2746         if (IS_NODESEG(seg_type))
2747                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2748         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2749 }
2750
2751 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2752 {
2753         struct curseg_info *curseg = CURSEG_I(sbi, type);
2754         unsigned short seg_type = curseg->seg_type;
2755
2756         sanity_check_seg_type(sbi, seg_type);
2757         if (f2fs_need_rand_seg(sbi))
2758                 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2759
2760         /* if segs_per_sec is large than 1, we need to keep original policy. */
2761         if (__is_large_section(sbi))
2762                 return curseg->segno;
2763
2764         /* inmem log may not locate on any segment after mount */
2765         if (!curseg->inited)
2766                 return 0;
2767
2768         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2769                 return 0;
2770
2771         if (test_opt(sbi, NOHEAP) &&
2772                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2773                 return 0;
2774
2775         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2776                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2777
2778         /* find segments from 0 to reuse freed segments */
2779         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2780                 return 0;
2781
2782         return curseg->segno;
2783 }
2784
2785 /*
2786  * Allocate a current working segment.
2787  * This function always allocates a free segment in LFS manner.
2788  */
2789 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2790 {
2791         struct curseg_info *curseg = CURSEG_I(sbi, type);
2792         unsigned short seg_type = curseg->seg_type;
2793         unsigned int segno = curseg->segno;
2794         int dir = ALLOC_LEFT;
2795
2796         if (curseg->inited)
2797                 write_sum_page(sbi, curseg->sum_blk,
2798                                 GET_SUM_BLOCK(sbi, segno));
2799         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2800                 dir = ALLOC_RIGHT;
2801
2802         if (test_opt(sbi, NOHEAP))
2803                 dir = ALLOC_RIGHT;
2804
2805         segno = __get_next_segno(sbi, type);
2806         get_new_segment(sbi, &segno, new_sec, dir);
2807         curseg->next_segno = segno;
2808         reset_curseg(sbi, type, 1);
2809         curseg->alloc_type = LFS;
2810         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2811                 curseg->fragment_remained_chunk =
2812                                 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2813 }
2814
2815 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2816                                         int segno, block_t start)
2817 {
2818         struct seg_entry *se = get_seg_entry(sbi, segno);
2819         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2820         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2821         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2822         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2823         int i;
2824
2825         for (i = 0; i < entries; i++)
2826                 target_map[i] = ckpt_map[i] | cur_map[i];
2827
2828         return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2829 }
2830
2831 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2832                 struct curseg_info *seg)
2833 {
2834         return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2835 }
2836
2837 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2838 {
2839         return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2840 }
2841
2842 /*
2843  * This function always allocates a used segment(from dirty seglist) by SSR
2844  * manner, so it should recover the existing segment information of valid blocks
2845  */
2846 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2847 {
2848         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2849         struct curseg_info *curseg = CURSEG_I(sbi, type);
2850         unsigned int new_segno = curseg->next_segno;
2851         struct f2fs_summary_block *sum_node;
2852         struct page *sum_page;
2853
2854         write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2855
2856         __set_test_and_inuse(sbi, new_segno);
2857
2858         mutex_lock(&dirty_i->seglist_lock);
2859         __remove_dirty_segment(sbi, new_segno, PRE);
2860         __remove_dirty_segment(sbi, new_segno, DIRTY);
2861         mutex_unlock(&dirty_i->seglist_lock);
2862
2863         reset_curseg(sbi, type, 1);
2864         curseg->alloc_type = SSR;
2865         curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2866
2867         sum_page = f2fs_get_sum_page(sbi, new_segno);
2868         if (IS_ERR(sum_page)) {
2869                 /* GC won't be able to use stale summary pages by cp_error */
2870                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2871                 return;
2872         }
2873         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2874         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2875         f2fs_put_page(sum_page, 1);
2876 }
2877
2878 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2879                                 int alloc_mode, unsigned long long age);
2880
2881 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2882                                         int target_type, int alloc_mode,
2883                                         unsigned long long age)
2884 {
2885         struct curseg_info *curseg = CURSEG_I(sbi, type);
2886
2887         curseg->seg_type = target_type;
2888
2889         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2890                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2891
2892                 curseg->seg_type = se->type;
2893                 change_curseg(sbi, type);
2894         } else {
2895                 /* allocate cold segment by default */
2896                 curseg->seg_type = CURSEG_COLD_DATA;
2897                 new_curseg(sbi, type, true);
2898         }
2899         stat_inc_seg_type(sbi, curseg);
2900 }
2901
2902 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2903 {
2904         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2905
2906         if (!sbi->am.atgc_enabled)
2907                 return;
2908
2909         f2fs_down_read(&SM_I(sbi)->curseg_lock);
2910
2911         mutex_lock(&curseg->curseg_mutex);
2912         down_write(&SIT_I(sbi)->sentry_lock);
2913
2914         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2915
2916         up_write(&SIT_I(sbi)->sentry_lock);
2917         mutex_unlock(&curseg->curseg_mutex);
2918
2919         f2fs_up_read(&SM_I(sbi)->curseg_lock);
2920
2921 }
2922 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2923 {
2924         __f2fs_init_atgc_curseg(sbi);
2925 }
2926
2927 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2928 {
2929         struct curseg_info *curseg = CURSEG_I(sbi, type);
2930
2931         mutex_lock(&curseg->curseg_mutex);
2932         if (!curseg->inited)
2933                 goto out;
2934
2935         if (get_valid_blocks(sbi, curseg->segno, false)) {
2936                 write_sum_page(sbi, curseg->sum_blk,
2937                                 GET_SUM_BLOCK(sbi, curseg->segno));
2938         } else {
2939                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2940                 __set_test_and_free(sbi, curseg->segno, true);
2941                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2942         }
2943 out:
2944         mutex_unlock(&curseg->curseg_mutex);
2945 }
2946
2947 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2948 {
2949         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2950
2951         if (sbi->am.atgc_enabled)
2952                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2953 }
2954
2955 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2956 {
2957         struct curseg_info *curseg = CURSEG_I(sbi, type);
2958
2959         mutex_lock(&curseg->curseg_mutex);
2960         if (!curseg->inited)
2961                 goto out;
2962         if (get_valid_blocks(sbi, curseg->segno, false))
2963                 goto out;
2964
2965         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2966         __set_test_and_inuse(sbi, curseg->segno);
2967         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2968 out:
2969         mutex_unlock(&curseg->curseg_mutex);
2970 }
2971
2972 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2973 {
2974         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2975
2976         if (sbi->am.atgc_enabled)
2977                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2978 }
2979
2980 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2981                                 int alloc_mode, unsigned long long age)
2982 {
2983         struct curseg_info *curseg = CURSEG_I(sbi, type);
2984         unsigned segno = NULL_SEGNO;
2985         unsigned short seg_type = curseg->seg_type;
2986         int i, cnt;
2987         bool reversed = false;
2988
2989         sanity_check_seg_type(sbi, seg_type);
2990
2991         /* f2fs_need_SSR() already forces to do this */
2992         if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2993                 curseg->next_segno = segno;
2994                 return 1;
2995         }
2996
2997         /* For node segments, let's do SSR more intensively */
2998         if (IS_NODESEG(seg_type)) {
2999                 if (seg_type >= CURSEG_WARM_NODE) {
3000                         reversed = true;
3001                         i = CURSEG_COLD_NODE;
3002                 } else {
3003                         i = CURSEG_HOT_NODE;
3004                 }
3005                 cnt = NR_CURSEG_NODE_TYPE;
3006         } else {
3007                 if (seg_type >= CURSEG_WARM_DATA) {
3008                         reversed = true;
3009                         i = CURSEG_COLD_DATA;
3010                 } else {
3011                         i = CURSEG_HOT_DATA;
3012                 }
3013                 cnt = NR_CURSEG_DATA_TYPE;
3014         }
3015
3016         for (; cnt-- > 0; reversed ? i-- : i++) {
3017                 if (i == seg_type)
3018                         continue;
3019                 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3020                         curseg->next_segno = segno;
3021                         return 1;
3022                 }
3023         }
3024
3025         /* find valid_blocks=0 in dirty list */
3026         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3027                 segno = get_free_segment(sbi);
3028                 if (segno != NULL_SEGNO) {
3029                         curseg->next_segno = segno;
3030                         return 1;
3031                 }
3032         }
3033         return 0;
3034 }
3035
3036 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3037 {
3038         struct curseg_info *curseg = CURSEG_I(sbi, type);
3039
3040         if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3041             curseg->seg_type == CURSEG_WARM_NODE)
3042                 return true;
3043         if (curseg->alloc_type == LFS &&
3044             is_next_segment_free(sbi, curseg, type) &&
3045             likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3046                 return true;
3047         if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3048                 return true;
3049         return false;
3050 }
3051
3052 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3053                                         unsigned int start, unsigned int end)
3054 {
3055         struct curseg_info *curseg = CURSEG_I(sbi, type);
3056         unsigned int segno;
3057
3058         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3059         mutex_lock(&curseg->curseg_mutex);
3060         down_write(&SIT_I(sbi)->sentry_lock);
3061
3062         segno = CURSEG_I(sbi, type)->segno;
3063         if (segno < start || segno > end)
3064                 goto unlock;
3065
3066         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3067                 change_curseg(sbi, type);
3068         else
3069                 new_curseg(sbi, type, true);
3070
3071         stat_inc_seg_type(sbi, curseg);
3072
3073         locate_dirty_segment(sbi, segno);
3074 unlock:
3075         up_write(&SIT_I(sbi)->sentry_lock);
3076
3077         if (segno != curseg->segno)
3078                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3079                             type, segno, curseg->segno);
3080
3081         mutex_unlock(&curseg->curseg_mutex);
3082         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3083 }
3084
3085 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3086                                                 bool new_sec, bool force)
3087 {
3088         struct curseg_info *curseg = CURSEG_I(sbi, type);
3089         unsigned int old_segno;
3090
3091         if (!force && curseg->inited &&
3092             !curseg->next_blkoff &&
3093             !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3094             !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3095                 return;
3096
3097         old_segno = curseg->segno;
3098         new_curseg(sbi, type, true);
3099         stat_inc_seg_type(sbi, curseg);
3100         locate_dirty_segment(sbi, old_segno);
3101 }
3102
3103 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3104 {
3105         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3106         down_write(&SIT_I(sbi)->sentry_lock);
3107         __allocate_new_segment(sbi, type, true, force);
3108         up_write(&SIT_I(sbi)->sentry_lock);
3109         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3110 }
3111
3112 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3113 {
3114         int i;
3115
3116         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3117         down_write(&SIT_I(sbi)->sentry_lock);
3118         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3119                 __allocate_new_segment(sbi, i, false, false);
3120         up_write(&SIT_I(sbi)->sentry_lock);
3121         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3122 }
3123
3124 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3125                                                 struct cp_control *cpc)
3126 {
3127         __u64 trim_start = cpc->trim_start;
3128         bool has_candidate = false;
3129
3130         down_write(&SIT_I(sbi)->sentry_lock);
3131         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3132                 if (add_discard_addrs(sbi, cpc, true)) {
3133                         has_candidate = true;
3134                         break;
3135                 }
3136         }
3137         up_write(&SIT_I(sbi)->sentry_lock);
3138
3139         cpc->trim_start = trim_start;
3140         return has_candidate;
3141 }
3142
3143 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3144                                         struct discard_policy *dpolicy,
3145                                         unsigned int start, unsigned int end)
3146 {
3147         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3148         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3149         struct rb_node **insert_p = NULL, *insert_parent = NULL;
3150         struct discard_cmd *dc;
3151         struct blk_plug plug;
3152         int issued;
3153         unsigned int trimmed = 0;
3154
3155 next:
3156         issued = 0;
3157
3158         mutex_lock(&dcc->cmd_lock);
3159         if (unlikely(dcc->rbtree_check))
3160                 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3161
3162         dc = __lookup_discard_cmd_ret(&dcc->root, start,
3163                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
3164         if (!dc)
3165                 dc = next_dc;
3166
3167         blk_start_plug(&plug);
3168
3169         while (dc && dc->di.lstart <= end) {
3170                 struct rb_node *node;
3171                 int err = 0;
3172
3173                 if (dc->di.len < dpolicy->granularity)
3174                         goto skip;
3175
3176                 if (dc->state != D_PREP) {
3177                         list_move_tail(&dc->list, &dcc->fstrim_list);
3178                         goto skip;
3179                 }
3180
3181                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3182
3183                 if (issued >= dpolicy->max_requests) {
3184                         start = dc->di.lstart + dc->di.len;
3185
3186                         if (err)
3187                                 __remove_discard_cmd(sbi, dc);
3188
3189                         blk_finish_plug(&plug);
3190                         mutex_unlock(&dcc->cmd_lock);
3191                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3192                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3193                         goto next;
3194                 }
3195 skip:
3196                 node = rb_next(&dc->rb_node);
3197                 if (err)
3198                         __remove_discard_cmd(sbi, dc);
3199                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3200
3201                 if (fatal_signal_pending(current))
3202                         break;
3203         }
3204
3205         blk_finish_plug(&plug);
3206         mutex_unlock(&dcc->cmd_lock);
3207
3208         return trimmed;
3209 }
3210
3211 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3212 {
3213         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3214         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3215         unsigned int start_segno, end_segno;
3216         block_t start_block, end_block;
3217         struct cp_control cpc;
3218         struct discard_policy dpolicy;
3219         unsigned long long trimmed = 0;
3220         int err = 0;
3221         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3222
3223         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3224                 return -EINVAL;
3225
3226         if (end < MAIN_BLKADDR(sbi))
3227                 goto out;
3228
3229         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3230                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3231                 return -EFSCORRUPTED;
3232         }
3233
3234         /* start/end segment number in main_area */
3235         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3236         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3237                                                 GET_SEGNO(sbi, end);
3238         if (need_align) {
3239                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3240                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3241         }
3242
3243         cpc.reason = CP_DISCARD;
3244         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3245         cpc.trim_start = start_segno;
3246         cpc.trim_end = end_segno;
3247
3248         if (sbi->discard_blks == 0)
3249                 goto out;
3250
3251         f2fs_down_write(&sbi->gc_lock);
3252         stat_inc_cp_call_count(sbi, TOTAL_CALL);
3253         err = f2fs_write_checkpoint(sbi, &cpc);
3254         f2fs_up_write(&sbi->gc_lock);
3255         if (err)
3256                 goto out;
3257
3258         /*
3259          * We filed discard candidates, but actually we don't need to wait for
3260          * all of them, since they'll be issued in idle time along with runtime
3261          * discard option. User configuration looks like using runtime discard
3262          * or periodic fstrim instead of it.
3263          */
3264         if (f2fs_realtime_discard_enable(sbi))
3265                 goto out;
3266
3267         start_block = START_BLOCK(sbi, start_segno);
3268         end_block = START_BLOCK(sbi, end_segno + 1);
3269
3270         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3271         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3272                                         start_block, end_block);
3273
3274         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3275                                         start_block, end_block);
3276 out:
3277         if (!err)
3278                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3279         return err;
3280 }
3281
3282 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3283 {
3284         switch (hint) {
3285         case WRITE_LIFE_SHORT:
3286                 return CURSEG_HOT_DATA;
3287         case WRITE_LIFE_EXTREME:
3288                 return CURSEG_COLD_DATA;
3289         default:
3290                 return CURSEG_WARM_DATA;
3291         }
3292 }
3293
3294 static int __get_segment_type_2(struct f2fs_io_info *fio)
3295 {
3296         if (fio->type == DATA)
3297                 return CURSEG_HOT_DATA;
3298         else
3299                 return CURSEG_HOT_NODE;
3300 }
3301
3302 static int __get_segment_type_4(struct f2fs_io_info *fio)
3303 {
3304         if (fio->type == DATA) {
3305                 struct inode *inode = fio->page->mapping->host;
3306
3307                 if (S_ISDIR(inode->i_mode))
3308                         return CURSEG_HOT_DATA;
3309                 else
3310                         return CURSEG_COLD_DATA;
3311         } else {
3312                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3313                         return CURSEG_WARM_NODE;
3314                 else
3315                         return CURSEG_COLD_NODE;
3316         }
3317 }
3318
3319 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3320 {
3321         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322         struct extent_info ei = {};
3323
3324         if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3325                 if (!ei.age)
3326                         return NO_CHECK_TYPE;
3327                 if (ei.age <= sbi->hot_data_age_threshold)
3328                         return CURSEG_HOT_DATA;
3329                 if (ei.age <= sbi->warm_data_age_threshold)
3330                         return CURSEG_WARM_DATA;
3331                 return CURSEG_COLD_DATA;
3332         }
3333         return NO_CHECK_TYPE;
3334 }
3335
3336 static int __get_segment_type_6(struct f2fs_io_info *fio)
3337 {
3338         if (fio->type == DATA) {
3339                 struct inode *inode = fio->page->mapping->host;
3340                 int type;
3341
3342                 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3343                         return CURSEG_COLD_DATA_PINNED;
3344
3345                 if (page_private_gcing(fio->page)) {
3346                         if (fio->sbi->am.atgc_enabled &&
3347                                 (fio->io_type == FS_DATA_IO) &&
3348                                 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3349                                 return CURSEG_ALL_DATA_ATGC;
3350                         else
3351                                 return CURSEG_COLD_DATA;
3352                 }
3353                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3354                         return CURSEG_COLD_DATA;
3355
3356                 type = __get_age_segment_type(inode, fio->page->index);
3357                 if (type != NO_CHECK_TYPE)
3358                         return type;
3359
3360                 if (file_is_hot(inode) ||
3361                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3362                                 f2fs_is_cow_file(inode))
3363                         return CURSEG_HOT_DATA;
3364                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3365         } else {
3366                 if (IS_DNODE(fio->page))
3367                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3368                                                 CURSEG_HOT_NODE;
3369                 return CURSEG_COLD_NODE;
3370         }
3371 }
3372
3373 static int __get_segment_type(struct f2fs_io_info *fio)
3374 {
3375         int type = 0;
3376
3377         switch (F2FS_OPTION(fio->sbi).active_logs) {
3378         case 2:
3379                 type = __get_segment_type_2(fio);
3380                 break;
3381         case 4:
3382                 type = __get_segment_type_4(fio);
3383                 break;
3384         case 6:
3385                 type = __get_segment_type_6(fio);
3386                 break;
3387         default:
3388                 f2fs_bug_on(fio->sbi, true);
3389         }
3390
3391         if (IS_HOT(type))
3392                 fio->temp = HOT;
3393         else if (IS_WARM(type))
3394                 fio->temp = WARM;
3395         else
3396                 fio->temp = COLD;
3397         return type;
3398 }
3399
3400 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3401                 struct curseg_info *seg)
3402 {
3403         /* To allocate block chunks in different sizes, use random number */
3404         if (--seg->fragment_remained_chunk > 0)
3405                 return;
3406
3407         seg->fragment_remained_chunk =
3408                 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3409         seg->next_blkoff +=
3410                 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3411 }
3412
3413 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3414                 block_t old_blkaddr, block_t *new_blkaddr,
3415                 struct f2fs_summary *sum, int type,
3416                 struct f2fs_io_info *fio)
3417 {
3418         struct sit_info *sit_i = SIT_I(sbi);
3419         struct curseg_info *curseg = CURSEG_I(sbi, type);
3420         unsigned long long old_mtime;
3421         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3422         struct seg_entry *se = NULL;
3423         bool segment_full = false;
3424
3425         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3426
3427         mutex_lock(&curseg->curseg_mutex);
3428         down_write(&sit_i->sentry_lock);
3429
3430         if (from_gc) {
3431                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3432                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3433                 sanity_check_seg_type(sbi, se->type);
3434                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3435         }
3436         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3437
3438         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3439
3440         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3441
3442         curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3443         if (curseg->alloc_type == SSR) {
3444                 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3445         } else {
3446                 curseg->next_blkoff++;
3447                 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3448                         f2fs_randomize_chunk(sbi, curseg);
3449         }
3450         if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3451                 segment_full = true;
3452         stat_inc_block_count(sbi, curseg);
3453
3454         if (from_gc) {
3455                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3456         } else {
3457                 update_segment_mtime(sbi, old_blkaddr, 0);
3458                 old_mtime = 0;
3459         }
3460         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3461
3462         /*
3463          * SIT information should be updated before segment allocation,
3464          * since SSR needs latest valid block information.
3465          */
3466         update_sit_entry(sbi, *new_blkaddr, 1);
3467         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3468                 update_sit_entry(sbi, old_blkaddr, -1);
3469
3470         /*
3471          * If the current segment is full, flush it out and replace it with a
3472          * new segment.
3473          */
3474         if (segment_full) {
3475                 if (from_gc) {
3476                         get_atssr_segment(sbi, type, se->type,
3477                                                 AT_SSR, se->mtime);
3478                 } else {
3479                         if (need_new_seg(sbi, type))
3480                                 new_curseg(sbi, type, false);
3481                         else
3482                                 change_curseg(sbi, type);
3483                         stat_inc_seg_type(sbi, curseg);
3484                 }
3485         }
3486         /*
3487          * segment dirty status should be updated after segment allocation,
3488          * so we just need to update status only one time after previous
3489          * segment being closed.
3490          */
3491         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3492         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3493
3494         if (IS_DATASEG(type))
3495                 atomic64_inc(&sbi->allocated_data_blocks);
3496
3497         up_write(&sit_i->sentry_lock);
3498
3499         if (page && IS_NODESEG(type)) {
3500                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3501
3502                 f2fs_inode_chksum_set(sbi, page);
3503         }
3504
3505         if (fio) {
3506                 struct f2fs_bio_info *io;
3507
3508                 if (F2FS_IO_ALIGNED(sbi))
3509                         fio->retry = 0;
3510
3511                 INIT_LIST_HEAD(&fio->list);
3512                 fio->in_list = 1;
3513                 io = sbi->write_io[fio->type] + fio->temp;
3514                 spin_lock(&io->io_lock);
3515                 list_add_tail(&fio->list, &io->io_list);
3516                 spin_unlock(&io->io_lock);
3517         }
3518
3519         mutex_unlock(&curseg->curseg_mutex);
3520
3521         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3522 }
3523
3524 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3525                                         block_t blkaddr, unsigned int blkcnt)
3526 {
3527         if (!f2fs_is_multi_device(sbi))
3528                 return;
3529
3530         while (1) {
3531                 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3532                 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3533
3534                 /* update device state for fsync */
3535                 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3536
3537                 /* update device state for checkpoint */
3538                 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3539                         spin_lock(&sbi->dev_lock);
3540                         f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3541                         spin_unlock(&sbi->dev_lock);
3542                 }
3543
3544                 if (blkcnt <= blks)
3545                         break;
3546                 blkcnt -= blks;
3547                 blkaddr += blks;
3548         }
3549 }
3550
3551 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3552 {
3553         int type = __get_segment_type(fio);
3554         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3555
3556         if (keep_order)
3557                 f2fs_down_read(&fio->sbi->io_order_lock);
3558 reallocate:
3559         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3560                         &fio->new_blkaddr, sum, type, fio);
3561         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3562                 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3563
3564         /* writeout dirty page into bdev */
3565         f2fs_submit_page_write(fio);
3566         if (fio->retry) {
3567                 fio->old_blkaddr = fio->new_blkaddr;
3568                 goto reallocate;
3569         }
3570
3571         f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3572
3573         if (keep_order)
3574                 f2fs_up_read(&fio->sbi->io_order_lock);
3575 }
3576
3577 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3578                                         enum iostat_type io_type)
3579 {
3580         struct f2fs_io_info fio = {
3581                 .sbi = sbi,
3582                 .type = META,
3583                 .temp = HOT,
3584                 .op = REQ_OP_WRITE,
3585                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3586                 .old_blkaddr = page->index,
3587                 .new_blkaddr = page->index,
3588                 .page = page,
3589                 .encrypted_page = NULL,
3590                 .in_list = 0,
3591         };
3592
3593         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3594                 fio.op_flags &= ~REQ_META;
3595
3596         set_page_writeback(page);
3597         f2fs_submit_page_write(&fio);
3598
3599         stat_inc_meta_count(sbi, page->index);
3600         f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3601 }
3602
3603 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604 {
3605         struct f2fs_summary sum;
3606
3607         set_summary(&sum, nid, 0, 0);
3608         do_write_page(&sum, fio);
3609
3610         f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3611 }
3612
3613 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614                                         struct f2fs_io_info *fio)
3615 {
3616         struct f2fs_sb_info *sbi = fio->sbi;
3617         struct f2fs_summary sum;
3618
3619         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620         if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3621                 f2fs_update_age_extent_cache(dn);
3622         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3623         do_write_page(&sum, fio);
3624         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3625
3626         f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3627 }
3628
3629 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3630 {
3631         int err;
3632         struct f2fs_sb_info *sbi = fio->sbi;
3633         unsigned int segno;
3634
3635         fio->new_blkaddr = fio->old_blkaddr;
3636         /* i/o temperature is needed for passing down write hints */
3637         __get_segment_type(fio);
3638
3639         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3640
3641         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3642                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3643                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3644                           __func__, segno);
3645                 err = -EFSCORRUPTED;
3646                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3647                 goto drop_bio;
3648         }
3649
3650         if (f2fs_cp_error(sbi)) {
3651                 err = -EIO;
3652                 goto drop_bio;
3653         }
3654
3655         if (fio->post_read)
3656                 invalidate_mapping_pages(META_MAPPING(sbi),
3657                                 fio->new_blkaddr, fio->new_blkaddr);
3658
3659         stat_inc_inplace_blocks(fio->sbi);
3660
3661         if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3662                 err = f2fs_merge_page_bio(fio);
3663         else
3664                 err = f2fs_submit_page_bio(fio);
3665         if (!err) {
3666                 f2fs_update_device_state(fio->sbi, fio->ino,
3667                                                 fio->new_blkaddr, 1);
3668                 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3669                                                 fio->io_type, F2FS_BLKSIZE);
3670         }
3671
3672         return err;
3673 drop_bio:
3674         if (fio->bio && *(fio->bio)) {
3675                 struct bio *bio = *(fio->bio);
3676
3677                 bio->bi_status = BLK_STS_IOERR;
3678                 bio_endio(bio);
3679                 *(fio->bio) = NULL;
3680         }
3681         return err;
3682 }
3683
3684 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3685                                                 unsigned int segno)
3686 {
3687         int i;
3688
3689         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3690                 if (CURSEG_I(sbi, i)->segno == segno)
3691                         break;
3692         }
3693         return i;
3694 }
3695
3696 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3697                                 block_t old_blkaddr, block_t new_blkaddr,
3698                                 bool recover_curseg, bool recover_newaddr,
3699                                 bool from_gc)
3700 {
3701         struct sit_info *sit_i = SIT_I(sbi);
3702         struct curseg_info *curseg;
3703         unsigned int segno, old_cursegno;
3704         struct seg_entry *se;
3705         int type;
3706         unsigned short old_blkoff;
3707         unsigned char old_alloc_type;
3708
3709         segno = GET_SEGNO(sbi, new_blkaddr);
3710         se = get_seg_entry(sbi, segno);
3711         type = se->type;
3712
3713         f2fs_down_write(&SM_I(sbi)->curseg_lock);
3714
3715         if (!recover_curseg) {
3716                 /* for recovery flow */
3717                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3718                         if (old_blkaddr == NULL_ADDR)
3719                                 type = CURSEG_COLD_DATA;
3720                         else
3721                                 type = CURSEG_WARM_DATA;
3722                 }
3723         } else {
3724                 if (IS_CURSEG(sbi, segno)) {
3725                         /* se->type is volatile as SSR allocation */
3726                         type = __f2fs_get_curseg(sbi, segno);
3727                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3728                 } else {
3729                         type = CURSEG_WARM_DATA;
3730                 }
3731         }
3732
3733         f2fs_bug_on(sbi, !IS_DATASEG(type));
3734         curseg = CURSEG_I(sbi, type);
3735
3736         mutex_lock(&curseg->curseg_mutex);
3737         down_write(&sit_i->sentry_lock);
3738
3739         old_cursegno = curseg->segno;
3740         old_blkoff = curseg->next_blkoff;
3741         old_alloc_type = curseg->alloc_type;
3742
3743         /* change the current segment */
3744         if (segno != curseg->segno) {
3745                 curseg->next_segno = segno;
3746                 change_curseg(sbi, type);
3747         }
3748
3749         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3750         curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3751
3752         if (!recover_curseg || recover_newaddr) {
3753                 if (!from_gc)
3754                         update_segment_mtime(sbi, new_blkaddr, 0);
3755                 update_sit_entry(sbi, new_blkaddr, 1);
3756         }
3757         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3758                 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3759                 if (!from_gc)
3760                         update_segment_mtime(sbi, old_blkaddr, 0);
3761                 update_sit_entry(sbi, old_blkaddr, -1);
3762         }
3763
3764         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3765         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3766
3767         locate_dirty_segment(sbi, old_cursegno);
3768
3769         if (recover_curseg) {
3770                 if (old_cursegno != curseg->segno) {
3771                         curseg->next_segno = old_cursegno;
3772                         change_curseg(sbi, type);
3773                 }
3774                 curseg->next_blkoff = old_blkoff;
3775                 curseg->alloc_type = old_alloc_type;
3776         }
3777
3778         up_write(&sit_i->sentry_lock);
3779         mutex_unlock(&curseg->curseg_mutex);
3780         f2fs_up_write(&SM_I(sbi)->curseg_lock);
3781 }
3782
3783 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3784                                 block_t old_addr, block_t new_addr,
3785                                 unsigned char version, bool recover_curseg,
3786                                 bool recover_newaddr)
3787 {
3788         struct f2fs_summary sum;
3789
3790         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3791
3792         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3793                                         recover_curseg, recover_newaddr, false);
3794
3795         f2fs_update_data_blkaddr(dn, new_addr);
3796 }
3797
3798 void f2fs_wait_on_page_writeback(struct page *page,
3799                                 enum page_type type, bool ordered, bool locked)
3800 {
3801         if (PageWriteback(page)) {
3802                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3803
3804                 /* submit cached LFS IO */
3805                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3806                 /* submit cached IPU IO */
3807                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3808                 if (ordered) {
3809                         wait_on_page_writeback(page);
3810                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3811                 } else {
3812                         wait_for_stable_page(page);
3813                 }
3814         }
3815 }
3816
3817 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3818 {
3819         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3820         struct page *cpage;
3821
3822         if (!f2fs_post_read_required(inode))
3823                 return;
3824
3825         if (!__is_valid_data_blkaddr(blkaddr))
3826                 return;
3827
3828         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3829         if (cpage) {
3830                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3831                 f2fs_put_page(cpage, 1);
3832         }
3833 }
3834
3835 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3836                                                                 block_t len)
3837 {
3838         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839         block_t i;
3840
3841         if (!f2fs_post_read_required(inode))
3842                 return;
3843
3844         for (i = 0; i < len; i++)
3845                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3846
3847         invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3848 }
3849
3850 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3851 {
3852         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3853         struct curseg_info *seg_i;
3854         unsigned char *kaddr;
3855         struct page *page;
3856         block_t start;
3857         int i, j, offset;
3858
3859         start = start_sum_block(sbi);
3860
3861         page = f2fs_get_meta_page(sbi, start++);
3862         if (IS_ERR(page))
3863                 return PTR_ERR(page);
3864         kaddr = (unsigned char *)page_address(page);
3865
3866         /* Step 1: restore nat cache */
3867         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3868         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3869
3870         /* Step 2: restore sit cache */
3871         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3872         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3873         offset = 2 * SUM_JOURNAL_SIZE;
3874
3875         /* Step 3: restore summary entries */
3876         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3877                 unsigned short blk_off;
3878                 unsigned int segno;
3879
3880                 seg_i = CURSEG_I(sbi, i);
3881                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3882                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3883                 seg_i->next_segno = segno;
3884                 reset_curseg(sbi, i, 0);
3885                 seg_i->alloc_type = ckpt->alloc_type[i];
3886                 seg_i->next_blkoff = blk_off;
3887
3888                 if (seg_i->alloc_type == SSR)
3889                         blk_off = sbi->blocks_per_seg;
3890
3891                 for (j = 0; j < blk_off; j++) {
3892                         struct f2fs_summary *s;
3893
3894                         s = (struct f2fs_summary *)(kaddr + offset);
3895                         seg_i->sum_blk->entries[j] = *s;
3896                         offset += SUMMARY_SIZE;
3897                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3898                                                 SUM_FOOTER_SIZE)
3899                                 continue;
3900
3901                         f2fs_put_page(page, 1);
3902                         page = NULL;
3903
3904                         page = f2fs_get_meta_page(sbi, start++);
3905                         if (IS_ERR(page))
3906                                 return PTR_ERR(page);
3907                         kaddr = (unsigned char *)page_address(page);
3908                         offset = 0;
3909                 }
3910         }
3911         f2fs_put_page(page, 1);
3912         return 0;
3913 }
3914
3915 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3916 {
3917         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3918         struct f2fs_summary_block *sum;
3919         struct curseg_info *curseg;
3920         struct page *new;
3921         unsigned short blk_off;
3922         unsigned int segno = 0;
3923         block_t blk_addr = 0;
3924         int err = 0;
3925
3926         /* get segment number and block addr */
3927         if (IS_DATASEG(type)) {
3928                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3929                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3930                                                         CURSEG_HOT_DATA]);
3931                 if (__exist_node_summaries(sbi))
3932                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3933                 else
3934                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3935         } else {
3936                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3937                                                         CURSEG_HOT_NODE]);
3938                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3939                                                         CURSEG_HOT_NODE]);
3940                 if (__exist_node_summaries(sbi))
3941                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3942                                                         type - CURSEG_HOT_NODE);
3943                 else
3944                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3945         }
3946
3947         new = f2fs_get_meta_page(sbi, blk_addr);
3948         if (IS_ERR(new))
3949                 return PTR_ERR(new);
3950         sum = (struct f2fs_summary_block *)page_address(new);
3951
3952         if (IS_NODESEG(type)) {
3953                 if (__exist_node_summaries(sbi)) {
3954                         struct f2fs_summary *ns = &sum->entries[0];
3955                         int i;
3956
3957                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3958                                 ns->version = 0;
3959                                 ns->ofs_in_node = 0;
3960                         }
3961                 } else {
3962                         err = f2fs_restore_node_summary(sbi, segno, sum);
3963                         if (err)
3964                                 goto out;
3965                 }
3966         }
3967
3968         /* set uncompleted segment to curseg */
3969         curseg = CURSEG_I(sbi, type);
3970         mutex_lock(&curseg->curseg_mutex);
3971
3972         /* update journal info */
3973         down_write(&curseg->journal_rwsem);
3974         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3975         up_write(&curseg->journal_rwsem);
3976
3977         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3978         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3979         curseg->next_segno = segno;
3980         reset_curseg(sbi, type, 0);
3981         curseg->alloc_type = ckpt->alloc_type[type];
3982         curseg->next_blkoff = blk_off;
3983         mutex_unlock(&curseg->curseg_mutex);
3984 out:
3985         f2fs_put_page(new, 1);
3986         return err;
3987 }
3988
3989 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3990 {
3991         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3992         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3993         int type = CURSEG_HOT_DATA;
3994         int err;
3995
3996         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3997                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3998
3999                 if (npages >= 2)
4000                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4001                                                         META_CP, true);
4002
4003                 /* restore for compacted data summary */
4004                 err = read_compacted_summaries(sbi);
4005                 if (err)
4006                         return err;
4007                 type = CURSEG_HOT_NODE;
4008         }
4009
4010         if (__exist_node_summaries(sbi))
4011                 f2fs_ra_meta_pages(sbi,
4012                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4013                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4014
4015         for (; type <= CURSEG_COLD_NODE; type++) {
4016                 err = read_normal_summaries(sbi, type);
4017                 if (err)
4018                         return err;
4019         }
4020
4021         /* sanity check for summary blocks */
4022         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4023                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4024                 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4025                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4026                 return -EINVAL;
4027         }
4028
4029         return 0;
4030 }
4031
4032 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4033 {
4034         struct page *page;
4035         unsigned char *kaddr;
4036         struct f2fs_summary *summary;
4037         struct curseg_info *seg_i;
4038         int written_size = 0;
4039         int i, j;
4040
4041         page = f2fs_grab_meta_page(sbi, blkaddr++);
4042         kaddr = (unsigned char *)page_address(page);
4043         memset(kaddr, 0, PAGE_SIZE);
4044
4045         /* Step 1: write nat cache */
4046         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4047         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4048         written_size += SUM_JOURNAL_SIZE;
4049
4050         /* Step 2: write sit cache */
4051         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4052         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4053         written_size += SUM_JOURNAL_SIZE;
4054
4055         /* Step 3: write summary entries */
4056         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4057                 seg_i = CURSEG_I(sbi, i);
4058                 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4059                         if (!page) {
4060                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
4061                                 kaddr = (unsigned char *)page_address(page);
4062                                 memset(kaddr, 0, PAGE_SIZE);
4063                                 written_size = 0;
4064                         }
4065                         summary = (struct f2fs_summary *)(kaddr + written_size);
4066                         *summary = seg_i->sum_blk->entries[j];
4067                         written_size += SUMMARY_SIZE;
4068
4069                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4070                                                         SUM_FOOTER_SIZE)
4071                                 continue;
4072
4073                         set_page_dirty(page);
4074                         f2fs_put_page(page, 1);
4075                         page = NULL;
4076                 }
4077         }
4078         if (page) {
4079                 set_page_dirty(page);
4080                 f2fs_put_page(page, 1);
4081         }
4082 }
4083
4084 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4085                                         block_t blkaddr, int type)
4086 {
4087         int i, end;
4088
4089         if (IS_DATASEG(type))
4090                 end = type + NR_CURSEG_DATA_TYPE;
4091         else
4092                 end = type + NR_CURSEG_NODE_TYPE;
4093
4094         for (i = type; i < end; i++)
4095                 write_current_sum_page(sbi, i, blkaddr + (i - type));
4096 }
4097
4098 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4099 {
4100         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4101                 write_compacted_summaries(sbi, start_blk);
4102         else
4103                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4104 }
4105
4106 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4107 {
4108         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4109 }
4110
4111 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4112                                         unsigned int val, int alloc)
4113 {
4114         int i;
4115
4116         if (type == NAT_JOURNAL) {
4117                 for (i = 0; i < nats_in_cursum(journal); i++) {
4118                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4119                                 return i;
4120                 }
4121                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4122                         return update_nats_in_cursum(journal, 1);
4123         } else if (type == SIT_JOURNAL) {
4124                 for (i = 0; i < sits_in_cursum(journal); i++)
4125                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4126                                 return i;
4127                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4128                         return update_sits_in_cursum(journal, 1);
4129         }
4130         return -1;
4131 }
4132
4133 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4134                                         unsigned int segno)
4135 {
4136         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4137 }
4138
4139 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4140                                         unsigned int start)
4141 {
4142         struct sit_info *sit_i = SIT_I(sbi);
4143         struct page *page;
4144         pgoff_t src_off, dst_off;
4145
4146         src_off = current_sit_addr(sbi, start);
4147         dst_off = next_sit_addr(sbi, src_off);
4148
4149         page = f2fs_grab_meta_page(sbi, dst_off);
4150         seg_info_to_sit_page(sbi, page, start);
4151
4152         set_page_dirty(page);
4153         set_to_next_sit(sit_i, start);
4154
4155         return page;
4156 }
4157
4158 static struct sit_entry_set *grab_sit_entry_set(void)
4159 {
4160         struct sit_entry_set *ses =
4161                         f2fs_kmem_cache_alloc(sit_entry_set_slab,
4162                                                 GFP_NOFS, true, NULL);
4163
4164         ses->entry_cnt = 0;
4165         INIT_LIST_HEAD(&ses->set_list);
4166         return ses;
4167 }
4168
4169 static void release_sit_entry_set(struct sit_entry_set *ses)
4170 {
4171         list_del(&ses->set_list);
4172         kmem_cache_free(sit_entry_set_slab, ses);
4173 }
4174
4175 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4176                                                 struct list_head *head)
4177 {
4178         struct sit_entry_set *next = ses;
4179
4180         if (list_is_last(&ses->set_list, head))
4181                 return;
4182
4183         list_for_each_entry_continue(next, head, set_list)
4184                 if (ses->entry_cnt <= next->entry_cnt) {
4185                         list_move_tail(&ses->set_list, &next->set_list);
4186                         return;
4187                 }
4188
4189         list_move_tail(&ses->set_list, head);
4190 }
4191
4192 static void add_sit_entry(unsigned int segno, struct list_head *head)
4193 {
4194         struct sit_entry_set *ses;
4195         unsigned int start_segno = START_SEGNO(segno);
4196
4197         list_for_each_entry(ses, head, set_list) {
4198                 if (ses->start_segno == start_segno) {
4199                         ses->entry_cnt++;
4200                         adjust_sit_entry_set(ses, head);
4201                         return;
4202                 }
4203         }
4204
4205         ses = grab_sit_entry_set();
4206
4207         ses->start_segno = start_segno;
4208         ses->entry_cnt++;
4209         list_add(&ses->set_list, head);
4210 }
4211
4212 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4213 {
4214         struct f2fs_sm_info *sm_info = SM_I(sbi);
4215         struct list_head *set_list = &sm_info->sit_entry_set;
4216         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4217         unsigned int segno;
4218
4219         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4220                 add_sit_entry(segno, set_list);
4221 }
4222
4223 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4224 {
4225         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4226         struct f2fs_journal *journal = curseg->journal;
4227         int i;
4228
4229         down_write(&curseg->journal_rwsem);
4230         for (i = 0; i < sits_in_cursum(journal); i++) {
4231                 unsigned int segno;
4232                 bool dirtied;
4233
4234                 segno = le32_to_cpu(segno_in_journal(journal, i));
4235                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4236
4237                 if (!dirtied)
4238                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4239         }
4240         update_sits_in_cursum(journal, -i);
4241         up_write(&curseg->journal_rwsem);
4242 }
4243
4244 /*
4245  * CP calls this function, which flushes SIT entries including sit_journal,
4246  * and moves prefree segs to free segs.
4247  */
4248 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4249 {
4250         struct sit_info *sit_i = SIT_I(sbi);
4251         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4252         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4253         struct f2fs_journal *journal = curseg->journal;
4254         struct sit_entry_set *ses, *tmp;
4255         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4256         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4257         struct seg_entry *se;
4258
4259         down_write(&sit_i->sentry_lock);
4260
4261         if (!sit_i->dirty_sentries)
4262                 goto out;
4263
4264         /*
4265          * add and account sit entries of dirty bitmap in sit entry
4266          * set temporarily
4267          */
4268         add_sits_in_set(sbi);
4269
4270         /*
4271          * if there are no enough space in journal to store dirty sit
4272          * entries, remove all entries from journal and add and account
4273          * them in sit entry set.
4274          */
4275         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4276                                                                 !to_journal)
4277                 remove_sits_in_journal(sbi);
4278
4279         /*
4280          * there are two steps to flush sit entries:
4281          * #1, flush sit entries to journal in current cold data summary block.
4282          * #2, flush sit entries to sit page.
4283          */
4284         list_for_each_entry_safe(ses, tmp, head, set_list) {
4285                 struct page *page = NULL;
4286                 struct f2fs_sit_block *raw_sit = NULL;
4287                 unsigned int start_segno = ses->start_segno;
4288                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4289                                                 (unsigned long)MAIN_SEGS(sbi));
4290                 unsigned int segno = start_segno;
4291
4292                 if (to_journal &&
4293                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4294                         to_journal = false;
4295
4296                 if (to_journal) {
4297                         down_write(&curseg->journal_rwsem);
4298                 } else {
4299                         page = get_next_sit_page(sbi, start_segno);
4300                         raw_sit = page_address(page);
4301                 }
4302
4303                 /* flush dirty sit entries in region of current sit set */
4304                 for_each_set_bit_from(segno, bitmap, end) {
4305                         int offset, sit_offset;
4306
4307                         se = get_seg_entry(sbi, segno);
4308 #ifdef CONFIG_F2FS_CHECK_FS
4309                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4310                                                 SIT_VBLOCK_MAP_SIZE))
4311                                 f2fs_bug_on(sbi, 1);
4312 #endif
4313
4314                         /* add discard candidates */
4315                         if (!(cpc->reason & CP_DISCARD)) {
4316                                 cpc->trim_start = segno;
4317                                 add_discard_addrs(sbi, cpc, false);
4318                         }
4319
4320                         if (to_journal) {
4321                                 offset = f2fs_lookup_journal_in_cursum(journal,
4322                                                         SIT_JOURNAL, segno, 1);
4323                                 f2fs_bug_on(sbi, offset < 0);
4324                                 segno_in_journal(journal, offset) =
4325                                                         cpu_to_le32(segno);
4326                                 seg_info_to_raw_sit(se,
4327                                         &sit_in_journal(journal, offset));
4328                                 check_block_count(sbi, segno,
4329                                         &sit_in_journal(journal, offset));
4330                         } else {
4331                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4332                                 seg_info_to_raw_sit(se,
4333                                                 &raw_sit->entries[sit_offset]);
4334                                 check_block_count(sbi, segno,
4335                                                 &raw_sit->entries[sit_offset]);
4336                         }
4337
4338                         __clear_bit(segno, bitmap);
4339                         sit_i->dirty_sentries--;
4340                         ses->entry_cnt--;
4341                 }
4342
4343                 if (to_journal)
4344                         up_write(&curseg->journal_rwsem);
4345                 else
4346                         f2fs_put_page(page, 1);
4347
4348                 f2fs_bug_on(sbi, ses->entry_cnt);
4349                 release_sit_entry_set(ses);
4350         }
4351
4352         f2fs_bug_on(sbi, !list_empty(head));
4353         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4354 out:
4355         if (cpc->reason & CP_DISCARD) {
4356                 __u64 trim_start = cpc->trim_start;
4357
4358                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4359                         add_discard_addrs(sbi, cpc, false);
4360
4361                 cpc->trim_start = trim_start;
4362         }
4363         up_write(&sit_i->sentry_lock);
4364
4365         set_prefree_as_free_segments(sbi);
4366 }
4367
4368 static int build_sit_info(struct f2fs_sb_info *sbi)
4369 {
4370         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4371         struct sit_info *sit_i;
4372         unsigned int sit_segs, start;
4373         char *src_bitmap, *bitmap;
4374         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4375         unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4376
4377         /* allocate memory for SIT information */
4378         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4379         if (!sit_i)
4380                 return -ENOMEM;
4381
4382         SM_I(sbi)->sit_info = sit_i;
4383
4384         sit_i->sentries =
4385                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4386                                               MAIN_SEGS(sbi)),
4387                               GFP_KERNEL);
4388         if (!sit_i->sentries)
4389                 return -ENOMEM;
4390
4391         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4392         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4393                                                                 GFP_KERNEL);
4394         if (!sit_i->dirty_sentries_bitmap)
4395                 return -ENOMEM;
4396
4397 #ifdef CONFIG_F2FS_CHECK_FS
4398         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4399 #else
4400         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4401 #endif
4402         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4403         if (!sit_i->bitmap)
4404                 return -ENOMEM;
4405
4406         bitmap = sit_i->bitmap;
4407
4408         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4409                 sit_i->sentries[start].cur_valid_map = bitmap;
4410                 bitmap += SIT_VBLOCK_MAP_SIZE;
4411
4412                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4413                 bitmap += SIT_VBLOCK_MAP_SIZE;
4414
4415 #ifdef CONFIG_F2FS_CHECK_FS
4416                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4417                 bitmap += SIT_VBLOCK_MAP_SIZE;
4418 #endif
4419
4420                 if (discard_map) {
4421                         sit_i->sentries[start].discard_map = bitmap;
4422                         bitmap += SIT_VBLOCK_MAP_SIZE;
4423                 }
4424         }
4425
4426         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4427         if (!sit_i->tmp_map)
4428                 return -ENOMEM;
4429
4430         if (__is_large_section(sbi)) {
4431                 sit_i->sec_entries =
4432                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4433                                                       MAIN_SECS(sbi)),
4434                                       GFP_KERNEL);
4435                 if (!sit_i->sec_entries)
4436                         return -ENOMEM;
4437         }
4438
4439         /* get information related with SIT */
4440         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4441
4442         /* setup SIT bitmap from ckeckpoint pack */
4443         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4444         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4445
4446         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4447         if (!sit_i->sit_bitmap)
4448                 return -ENOMEM;
4449
4450 #ifdef CONFIG_F2FS_CHECK_FS
4451         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4452                                         sit_bitmap_size, GFP_KERNEL);
4453         if (!sit_i->sit_bitmap_mir)
4454                 return -ENOMEM;
4455
4456         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4457                                         main_bitmap_size, GFP_KERNEL);
4458         if (!sit_i->invalid_segmap)
4459                 return -ENOMEM;
4460 #endif
4461
4462         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4463         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4464         sit_i->written_valid_blocks = 0;
4465         sit_i->bitmap_size = sit_bitmap_size;
4466         sit_i->dirty_sentries = 0;
4467         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4468         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4469         sit_i->mounted_time = ktime_get_boottime_seconds();
4470         init_rwsem(&sit_i->sentry_lock);
4471         return 0;
4472 }
4473
4474 static int build_free_segmap(struct f2fs_sb_info *sbi)
4475 {
4476         struct free_segmap_info *free_i;
4477         unsigned int bitmap_size, sec_bitmap_size;
4478
4479         /* allocate memory for free segmap information */
4480         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4481         if (!free_i)
4482                 return -ENOMEM;
4483
4484         SM_I(sbi)->free_info = free_i;
4485
4486         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4487         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4488         if (!free_i->free_segmap)
4489                 return -ENOMEM;
4490
4491         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4492         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4493         if (!free_i->free_secmap)
4494                 return -ENOMEM;
4495
4496         /* set all segments as dirty temporarily */
4497         memset(free_i->free_segmap, 0xff, bitmap_size);
4498         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4499
4500         /* init free segmap information */
4501         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4502         free_i->free_segments = 0;
4503         free_i->free_sections = 0;
4504         spin_lock_init(&free_i->segmap_lock);
4505         return 0;
4506 }
4507
4508 static int build_curseg(struct f2fs_sb_info *sbi)
4509 {
4510         struct curseg_info *array;
4511         int i;
4512
4513         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4514                                         sizeof(*array)), GFP_KERNEL);
4515         if (!array)
4516                 return -ENOMEM;
4517
4518         SM_I(sbi)->curseg_array = array;
4519
4520         for (i = 0; i < NO_CHECK_TYPE; i++) {
4521                 mutex_init(&array[i].curseg_mutex);
4522                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4523                 if (!array[i].sum_blk)
4524                         return -ENOMEM;
4525                 init_rwsem(&array[i].journal_rwsem);
4526                 array[i].journal = f2fs_kzalloc(sbi,
4527                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4528                 if (!array[i].journal)
4529                         return -ENOMEM;
4530                 if (i < NR_PERSISTENT_LOG)
4531                         array[i].seg_type = CURSEG_HOT_DATA + i;
4532                 else if (i == CURSEG_COLD_DATA_PINNED)
4533                         array[i].seg_type = CURSEG_COLD_DATA;
4534                 else if (i == CURSEG_ALL_DATA_ATGC)
4535                         array[i].seg_type = CURSEG_COLD_DATA;
4536                 array[i].segno = NULL_SEGNO;
4537                 array[i].next_blkoff = 0;
4538                 array[i].inited = false;
4539         }
4540         return restore_curseg_summaries(sbi);
4541 }
4542
4543 static int build_sit_entries(struct f2fs_sb_info *sbi)
4544 {
4545         struct sit_info *sit_i = SIT_I(sbi);
4546         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4547         struct f2fs_journal *journal = curseg->journal;
4548         struct seg_entry *se;
4549         struct f2fs_sit_entry sit;
4550         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4551         unsigned int i, start, end;
4552         unsigned int readed, start_blk = 0;
4553         int err = 0;
4554         block_t sit_valid_blocks[2] = {0, 0};
4555
4556         do {
4557                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4558                                                         META_SIT, true);
4559
4560                 start = start_blk * sit_i->sents_per_block;
4561                 end = (start_blk + readed) * sit_i->sents_per_block;
4562
4563                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4564                         struct f2fs_sit_block *sit_blk;
4565                         struct page *page;
4566
4567                         se = &sit_i->sentries[start];
4568                         page = get_current_sit_page(sbi, start);
4569                         if (IS_ERR(page))
4570                                 return PTR_ERR(page);
4571                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4572                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4573                         f2fs_put_page(page, 1);
4574
4575                         err = check_block_count(sbi, start, &sit);
4576                         if (err)
4577                                 return err;
4578                         seg_info_from_raw_sit(se, &sit);
4579
4580                         if (se->type >= NR_PERSISTENT_LOG) {
4581                                 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4582                                                         se->type, start);
4583                                 f2fs_handle_error(sbi,
4584                                                 ERROR_INCONSISTENT_SUM_TYPE);
4585                                 return -EFSCORRUPTED;
4586                         }
4587
4588                         sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4589
4590                         if (f2fs_block_unit_discard(sbi)) {
4591                                 /* build discard map only one time */
4592                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4593                                         memset(se->discard_map, 0xff,
4594                                                 SIT_VBLOCK_MAP_SIZE);
4595                                 } else {
4596                                         memcpy(se->discard_map,
4597                                                 se->cur_valid_map,
4598                                                 SIT_VBLOCK_MAP_SIZE);
4599                                         sbi->discard_blks +=
4600                                                 sbi->blocks_per_seg -
4601                                                 se->valid_blocks;
4602                                 }
4603                         }
4604
4605                         if (__is_large_section(sbi))
4606                                 get_sec_entry(sbi, start)->valid_blocks +=
4607                                                         se->valid_blocks;
4608                 }
4609                 start_blk += readed;
4610         } while (start_blk < sit_blk_cnt);
4611
4612         down_read(&curseg->journal_rwsem);
4613         for (i = 0; i < sits_in_cursum(journal); i++) {
4614                 unsigned int old_valid_blocks;
4615
4616                 start = le32_to_cpu(segno_in_journal(journal, i));
4617                 if (start >= MAIN_SEGS(sbi)) {
4618                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4619                                  start);
4620                         err = -EFSCORRUPTED;
4621                         f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4622                         break;
4623                 }
4624
4625                 se = &sit_i->sentries[start];
4626                 sit = sit_in_journal(journal, i);
4627
4628                 old_valid_blocks = se->valid_blocks;
4629
4630                 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4631
4632                 err = check_block_count(sbi, start, &sit);
4633                 if (err)
4634                         break;
4635                 seg_info_from_raw_sit(se, &sit);
4636
4637                 if (se->type >= NR_PERSISTENT_LOG) {
4638                         f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4639                                                         se->type, start);
4640                         err = -EFSCORRUPTED;
4641                         f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4642                         break;
4643                 }
4644
4645                 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4646
4647                 if (f2fs_block_unit_discard(sbi)) {
4648                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4649                                 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4650                         } else {
4651                                 memcpy(se->discard_map, se->cur_valid_map,
4652                                                         SIT_VBLOCK_MAP_SIZE);
4653                                 sbi->discard_blks += old_valid_blocks;
4654                                 sbi->discard_blks -= se->valid_blocks;
4655                         }
4656                 }
4657
4658                 if (__is_large_section(sbi)) {
4659                         get_sec_entry(sbi, start)->valid_blocks +=
4660                                                         se->valid_blocks;
4661                         get_sec_entry(sbi, start)->valid_blocks -=
4662                                                         old_valid_blocks;
4663                 }
4664         }
4665         up_read(&curseg->journal_rwsem);
4666
4667         if (err)
4668                 return err;
4669
4670         if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4671                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4672                          sit_valid_blocks[NODE], valid_node_count(sbi));
4673                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4674                 return -EFSCORRUPTED;
4675         }
4676
4677         if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4678                                 valid_user_blocks(sbi)) {
4679                 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4680                          sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4681                          valid_user_blocks(sbi));
4682                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4683                 return -EFSCORRUPTED;
4684         }
4685
4686         return 0;
4687 }
4688
4689 static void init_free_segmap(struct f2fs_sb_info *sbi)
4690 {
4691         unsigned int start;
4692         int type;
4693         struct seg_entry *sentry;
4694
4695         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4696                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4697                         continue;
4698                 sentry = get_seg_entry(sbi, start);
4699                 if (!sentry->valid_blocks)
4700                         __set_free(sbi, start);
4701                 else
4702                         SIT_I(sbi)->written_valid_blocks +=
4703                                                 sentry->valid_blocks;
4704         }
4705
4706         /* set use the current segments */
4707         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4708                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4709
4710                 __set_test_and_inuse(sbi, curseg_t->segno);
4711         }
4712 }
4713
4714 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4715 {
4716         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4717         struct free_segmap_info *free_i = FREE_I(sbi);
4718         unsigned int segno = 0, offset = 0, secno;
4719         block_t valid_blocks, usable_blks_in_seg;
4720
4721         while (1) {
4722                 /* find dirty segment based on free segmap */
4723                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4724                 if (segno >= MAIN_SEGS(sbi))
4725                         break;
4726                 offset = segno + 1;
4727                 valid_blocks = get_valid_blocks(sbi, segno, false);
4728                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4729                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4730                         continue;
4731                 if (valid_blocks > usable_blks_in_seg) {
4732                         f2fs_bug_on(sbi, 1);
4733                         continue;
4734                 }
4735                 mutex_lock(&dirty_i->seglist_lock);
4736                 __locate_dirty_segment(sbi, segno, DIRTY);
4737                 mutex_unlock(&dirty_i->seglist_lock);
4738         }
4739
4740         if (!__is_large_section(sbi))
4741                 return;
4742
4743         mutex_lock(&dirty_i->seglist_lock);
4744         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4745                 valid_blocks = get_valid_blocks(sbi, segno, true);
4746                 secno = GET_SEC_FROM_SEG(sbi, segno);
4747
4748                 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4749                         continue;
4750                 if (IS_CURSEC(sbi, secno))
4751                         continue;
4752                 set_bit(secno, dirty_i->dirty_secmap);
4753         }
4754         mutex_unlock(&dirty_i->seglist_lock);
4755 }
4756
4757 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4758 {
4759         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4760         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4761
4762         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4763         if (!dirty_i->victim_secmap)
4764                 return -ENOMEM;
4765
4766         dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4767         if (!dirty_i->pinned_secmap)
4768                 return -ENOMEM;
4769
4770         dirty_i->pinned_secmap_cnt = 0;
4771         dirty_i->enable_pin_section = true;
4772         return 0;
4773 }
4774
4775 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4776 {
4777         struct dirty_seglist_info *dirty_i;
4778         unsigned int bitmap_size, i;
4779
4780         /* allocate memory for dirty segments list information */
4781         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4782                                                                 GFP_KERNEL);
4783         if (!dirty_i)
4784                 return -ENOMEM;
4785
4786         SM_I(sbi)->dirty_info = dirty_i;
4787         mutex_init(&dirty_i->seglist_lock);
4788
4789         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4790
4791         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4792                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4793                                                                 GFP_KERNEL);
4794                 if (!dirty_i->dirty_segmap[i])
4795                         return -ENOMEM;
4796         }
4797
4798         if (__is_large_section(sbi)) {
4799                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4800                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4801                                                 bitmap_size, GFP_KERNEL);
4802                 if (!dirty_i->dirty_secmap)
4803                         return -ENOMEM;
4804         }
4805
4806         init_dirty_segmap(sbi);
4807         return init_victim_secmap(sbi);
4808 }
4809
4810 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4811 {
4812         int i;
4813
4814         /*
4815          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4816          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4817          */
4818         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4819                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4820                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4821                 unsigned int blkofs = curseg->next_blkoff;
4822
4823                 if (f2fs_sb_has_readonly(sbi) &&
4824                         i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4825                         continue;
4826
4827                 sanity_check_seg_type(sbi, curseg->seg_type);
4828
4829                 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4830                         f2fs_err(sbi,
4831                                  "Current segment has invalid alloc_type:%d",
4832                                  curseg->alloc_type);
4833                         f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4834                         return -EFSCORRUPTED;
4835                 }
4836
4837                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4838                         goto out;
4839
4840                 if (curseg->alloc_type == SSR)
4841                         continue;
4842
4843                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4844                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4845                                 continue;
4846 out:
4847                         f2fs_err(sbi,
4848                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4849                                  i, curseg->segno, curseg->alloc_type,
4850                                  curseg->next_blkoff, blkofs);
4851                         f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4852                         return -EFSCORRUPTED;
4853                 }
4854         }
4855         return 0;
4856 }
4857
4858 #ifdef CONFIG_BLK_DEV_ZONED
4859
4860 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4861                                     struct f2fs_dev_info *fdev,
4862                                     struct blk_zone *zone)
4863 {
4864         unsigned int zone_segno;
4865         block_t zone_block, valid_block_cnt;
4866         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4867         int ret;
4868
4869         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4870                 return 0;
4871
4872         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4873         zone_segno = GET_SEGNO(sbi, zone_block);
4874
4875         /*
4876          * Skip check of zones cursegs point to, since
4877          * fix_curseg_write_pointer() checks them.
4878          */
4879         if (zone_segno >= MAIN_SEGS(sbi) ||
4880             IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno)))
4881                 return 0;
4882
4883         /*
4884          * Get # of valid block of the zone.
4885          */
4886         valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
4887
4888         if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
4889             (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
4890                 return 0;
4891
4892         if (!valid_block_cnt) {
4893                 f2fs_notice(sbi, "Zone without valid block has non-zero write "
4894                             "pointer. Reset the write pointer: cond[0x%x]",
4895                             zone->cond);
4896                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4897                                         zone->len >> log_sectors_per_block);
4898                 if (ret)
4899                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4900                                  fdev->path, ret);
4901                 return ret;
4902         }
4903
4904         /*
4905          * If there are valid blocks and the write pointer doesn't match
4906          * with them, we need to report the inconsistency and fill
4907          * the zone till the end to close the zone. This inconsistency
4908          * does not cause write error because the zone will not be
4909          * selected for write operation until it get discarded.
4910          */
4911         f2fs_notice(sbi, "Valid blocks are not aligned with write "
4912                     "pointer: valid block[0x%x,0x%x] cond[0x%x]",
4913                     zone_segno, valid_block_cnt, zone->cond);
4914
4915         ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4916                                 zone->start, zone->len, GFP_NOFS);
4917         if (ret == -EOPNOTSUPP) {
4918                 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4919                                         zone->len - (zone->wp - zone->start),
4920                                         GFP_NOFS, 0);
4921                 if (ret)
4922                         f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4923                                         fdev->path, ret);
4924         } else if (ret) {
4925                 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4926                                 fdev->path, ret);
4927         }
4928
4929         return ret;
4930 }
4931
4932 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4933                                                   block_t zone_blkaddr)
4934 {
4935         int i;
4936
4937         for (i = 0; i < sbi->s_ndevs; i++) {
4938                 if (!bdev_is_zoned(FDEV(i).bdev))
4939                         continue;
4940                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4941                                 zone_blkaddr <= FDEV(i).end_blk))
4942                         return &FDEV(i);
4943         }
4944
4945         return NULL;
4946 }
4947
4948 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4949                               void *data)
4950 {
4951         memcpy(data, zone, sizeof(struct blk_zone));
4952         return 0;
4953 }
4954
4955 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4956 {
4957         struct curseg_info *cs = CURSEG_I(sbi, type);
4958         struct f2fs_dev_info *zbd;
4959         struct blk_zone zone;
4960         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4961         block_t cs_zone_block, wp_block;
4962         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4963         sector_t zone_sector;
4964         int err;
4965
4966         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4967         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4968
4969         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4970         if (!zbd)
4971                 return 0;
4972
4973         /* report zone for the sector the curseg points to */
4974         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4975                 << log_sectors_per_block;
4976         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4977                                   report_one_zone_cb, &zone);
4978         if (err != 1) {
4979                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4980                          zbd->path, err);
4981                 return err;
4982         }
4983
4984         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4985                 return 0;
4986
4987         /*
4988          * When safely unmounted in the previous mount, we could use current
4989          * segments. Otherwise, allocate new sections.
4990          */
4991         if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4992                 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4993                 wp_segno = GET_SEGNO(sbi, wp_block);
4994                 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4995                 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4996
4997                 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4998                                 wp_sector_off == 0)
4999                         return 0;
5000
5001                 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5002                             "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5003                             cs->next_blkoff, wp_segno, wp_blkoff);
5004         }
5005
5006         /* Allocate a new section if it's not new. */
5007         if (cs->next_blkoff) {
5008                 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5009
5010                 f2fs_allocate_new_section(sbi, type, true);
5011                 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5012                                 "[0x%x,0x%x] -> [0x%x,0x%x]",
5013                                 type, old_segno, old_blkoff,
5014                                 cs->segno, cs->next_blkoff);
5015         }
5016
5017         /* check consistency of the zone curseg pointed to */
5018         if (check_zone_write_pointer(sbi, zbd, &zone))
5019                 return -EIO;
5020
5021         /* check newly assigned zone */
5022         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5023         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5024
5025         zbd = get_target_zoned_dev(sbi, cs_zone_block);
5026         if (!zbd)
5027                 return 0;
5028
5029         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5030                 << log_sectors_per_block;
5031         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5032                                   report_one_zone_cb, &zone);
5033         if (err != 1) {
5034                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5035                          zbd->path, err);
5036                 return err;
5037         }
5038
5039         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5040                 return 0;
5041
5042         if (zone.wp != zone.start) {
5043                 f2fs_notice(sbi,
5044                             "New zone for curseg[%d] is not yet discarded. "
5045                             "Reset the zone: curseg[0x%x,0x%x]",
5046                             type, cs->segno, cs->next_blkoff);
5047                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5048                                         zone.len >> log_sectors_per_block);
5049                 if (err) {
5050                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5051                                  zbd->path, err);
5052                         return err;
5053                 }
5054         }
5055
5056         return 0;
5057 }
5058
5059 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5060 {
5061         int i, ret;
5062
5063         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5064                 ret = fix_curseg_write_pointer(sbi, i);
5065                 if (ret)
5066                         return ret;
5067         }
5068
5069         return 0;
5070 }
5071
5072 struct check_zone_write_pointer_args {
5073         struct f2fs_sb_info *sbi;
5074         struct f2fs_dev_info *fdev;
5075 };
5076
5077 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5078                                       void *data)
5079 {
5080         struct check_zone_write_pointer_args *args;
5081
5082         args = (struct check_zone_write_pointer_args *)data;
5083
5084         return check_zone_write_pointer(args->sbi, args->fdev, zone);
5085 }
5086
5087 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5088 {
5089         int i, ret;
5090         struct check_zone_write_pointer_args args;
5091
5092         for (i = 0; i < sbi->s_ndevs; i++) {
5093                 if (!bdev_is_zoned(FDEV(i).bdev))
5094                         continue;
5095
5096                 args.sbi = sbi;
5097                 args.fdev = &FDEV(i);
5098                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5099                                           check_zone_write_pointer_cb, &args);
5100                 if (ret < 0)
5101                         return ret;
5102         }
5103
5104         return 0;
5105 }
5106
5107 /*
5108  * Return the number of usable blocks in a segment. The number of blocks
5109  * returned is always equal to the number of blocks in a segment for
5110  * segments fully contained within a sequential zone capacity or a
5111  * conventional zone. For segments partially contained in a sequential
5112  * zone capacity, the number of usable blocks up to the zone capacity
5113  * is returned. 0 is returned in all other cases.
5114  */
5115 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5116                         struct f2fs_sb_info *sbi, unsigned int segno)
5117 {
5118         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5119         unsigned int secno;
5120
5121         if (!sbi->unusable_blocks_per_sec)
5122                 return sbi->blocks_per_seg;
5123
5124         secno = GET_SEC_FROM_SEG(sbi, segno);
5125         seg_start = START_BLOCK(sbi, segno);
5126         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5127         sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5128
5129         /*
5130          * If segment starts before zone capacity and spans beyond
5131          * zone capacity, then usable blocks are from seg start to
5132          * zone capacity. If the segment starts after the zone capacity,
5133          * then there are no usable blocks.
5134          */
5135         if (seg_start >= sec_cap_blkaddr)
5136                 return 0;
5137         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5138                 return sec_cap_blkaddr - seg_start;
5139
5140         return sbi->blocks_per_seg;
5141 }
5142 #else
5143 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5144 {
5145         return 0;
5146 }
5147
5148 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5149 {
5150         return 0;
5151 }
5152
5153 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5154                                                         unsigned int segno)
5155 {
5156         return 0;
5157 }
5158
5159 #endif
5160 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5161                                         unsigned int segno)
5162 {
5163         if (f2fs_sb_has_blkzoned(sbi))
5164                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5165
5166         return sbi->blocks_per_seg;
5167 }
5168
5169 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5170                                         unsigned int segno)
5171 {
5172         if (f2fs_sb_has_blkzoned(sbi))
5173                 return CAP_SEGS_PER_SEC(sbi);
5174
5175         return sbi->segs_per_sec;
5176 }
5177
5178 /*
5179  * Update min, max modified time for cost-benefit GC algorithm
5180  */
5181 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5182 {
5183         struct sit_info *sit_i = SIT_I(sbi);
5184         unsigned int segno;
5185
5186         down_write(&sit_i->sentry_lock);
5187
5188         sit_i->min_mtime = ULLONG_MAX;
5189
5190         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5191                 unsigned int i;
5192                 unsigned long long mtime = 0;
5193
5194                 for (i = 0; i < sbi->segs_per_sec; i++)
5195                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5196
5197                 mtime = div_u64(mtime, sbi->segs_per_sec);
5198
5199                 if (sit_i->min_mtime > mtime)
5200                         sit_i->min_mtime = mtime;
5201         }
5202         sit_i->max_mtime = get_mtime(sbi, false);
5203         sit_i->dirty_max_mtime = 0;
5204         up_write(&sit_i->sentry_lock);
5205 }
5206
5207 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5208 {
5209         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5210         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5211         struct f2fs_sm_info *sm_info;
5212         int err;
5213
5214         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5215         if (!sm_info)
5216                 return -ENOMEM;
5217
5218         /* init sm info */
5219         sbi->sm_info = sm_info;
5220         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5221         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5222         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5223         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5224         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5225         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5226         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5227         sm_info->rec_prefree_segments = sm_info->main_segments *
5228                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5229         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5230                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5231
5232         if (!f2fs_lfs_mode(sbi))
5233                 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5234         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5235         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5236         sm_info->min_seq_blocks = sbi->blocks_per_seg;
5237         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5238         sm_info->min_ssr_sections = reserved_sections(sbi);
5239
5240         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5241
5242         init_f2fs_rwsem(&sm_info->curseg_lock);
5243
5244         err = f2fs_create_flush_cmd_control(sbi);
5245         if (err)
5246                 return err;
5247
5248         err = create_discard_cmd_control(sbi);
5249         if (err)
5250                 return err;
5251
5252         err = build_sit_info(sbi);
5253         if (err)
5254                 return err;
5255         err = build_free_segmap(sbi);
5256         if (err)
5257                 return err;
5258         err = build_curseg(sbi);
5259         if (err)
5260                 return err;
5261
5262         /* reinit free segmap based on SIT */
5263         err = build_sit_entries(sbi);
5264         if (err)
5265                 return err;
5266
5267         init_free_segmap(sbi);
5268         err = build_dirty_segmap(sbi);
5269         if (err)
5270                 return err;
5271
5272         err = sanity_check_curseg(sbi);
5273         if (err)
5274                 return err;
5275
5276         init_min_max_mtime(sbi);
5277         return 0;
5278 }
5279
5280 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5281                 enum dirty_type dirty_type)
5282 {
5283         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5284
5285         mutex_lock(&dirty_i->seglist_lock);
5286         kvfree(dirty_i->dirty_segmap[dirty_type]);
5287         dirty_i->nr_dirty[dirty_type] = 0;
5288         mutex_unlock(&dirty_i->seglist_lock);
5289 }
5290
5291 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5292 {
5293         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5294
5295         kvfree(dirty_i->pinned_secmap);
5296         kvfree(dirty_i->victim_secmap);
5297 }
5298
5299 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5300 {
5301         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5302         int i;
5303
5304         if (!dirty_i)
5305                 return;
5306
5307         /* discard pre-free/dirty segments list */
5308         for (i = 0; i < NR_DIRTY_TYPE; i++)
5309                 discard_dirty_segmap(sbi, i);
5310
5311         if (__is_large_section(sbi)) {
5312                 mutex_lock(&dirty_i->seglist_lock);
5313                 kvfree(dirty_i->dirty_secmap);
5314                 mutex_unlock(&dirty_i->seglist_lock);
5315         }
5316
5317         destroy_victim_secmap(sbi);
5318         SM_I(sbi)->dirty_info = NULL;
5319         kfree(dirty_i);
5320 }
5321
5322 static void destroy_curseg(struct f2fs_sb_info *sbi)
5323 {
5324         struct curseg_info *array = SM_I(sbi)->curseg_array;
5325         int i;
5326
5327         if (!array)
5328                 return;
5329         SM_I(sbi)->curseg_array = NULL;
5330         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5331                 kfree(array[i].sum_blk);
5332                 kfree(array[i].journal);
5333         }
5334         kfree(array);
5335 }
5336
5337 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5338 {
5339         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5340
5341         if (!free_i)
5342                 return;
5343         SM_I(sbi)->free_info = NULL;
5344         kvfree(free_i->free_segmap);
5345         kvfree(free_i->free_secmap);
5346         kfree(free_i);
5347 }
5348
5349 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5350 {
5351         struct sit_info *sit_i = SIT_I(sbi);
5352
5353         if (!sit_i)
5354                 return;
5355
5356         if (sit_i->sentries)
5357                 kvfree(sit_i->bitmap);
5358         kfree(sit_i->tmp_map);
5359
5360         kvfree(sit_i->sentries);
5361         kvfree(sit_i->sec_entries);
5362         kvfree(sit_i->dirty_sentries_bitmap);
5363
5364         SM_I(sbi)->sit_info = NULL;
5365         kvfree(sit_i->sit_bitmap);
5366 #ifdef CONFIG_F2FS_CHECK_FS
5367         kvfree(sit_i->sit_bitmap_mir);
5368         kvfree(sit_i->invalid_segmap);
5369 #endif
5370         kfree(sit_i);
5371 }
5372
5373 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5374 {
5375         struct f2fs_sm_info *sm_info = SM_I(sbi);
5376
5377         if (!sm_info)
5378                 return;
5379         f2fs_destroy_flush_cmd_control(sbi, true);
5380         destroy_discard_cmd_control(sbi);
5381         destroy_dirty_segmap(sbi);
5382         destroy_curseg(sbi);
5383         destroy_free_segmap(sbi);
5384         destroy_sit_info(sbi);
5385         sbi->sm_info = NULL;
5386         kfree(sm_info);
5387 }
5388
5389 int __init f2fs_create_segment_manager_caches(void)
5390 {
5391         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5392                         sizeof(struct discard_entry));
5393         if (!discard_entry_slab)
5394                 goto fail;
5395
5396         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5397                         sizeof(struct discard_cmd));
5398         if (!discard_cmd_slab)
5399                 goto destroy_discard_entry;
5400
5401         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5402                         sizeof(struct sit_entry_set));
5403         if (!sit_entry_set_slab)
5404                 goto destroy_discard_cmd;
5405
5406         revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5407                         sizeof(struct revoke_entry));
5408         if (!revoke_entry_slab)
5409                 goto destroy_sit_entry_set;
5410         return 0;
5411
5412 destroy_sit_entry_set:
5413         kmem_cache_destroy(sit_entry_set_slab);
5414 destroy_discard_cmd:
5415         kmem_cache_destroy(discard_cmd_slab);
5416 destroy_discard_entry:
5417         kmem_cache_destroy(discard_entry_slab);
5418 fail:
5419         return -ENOMEM;
5420 }
5421
5422 void f2fs_destroy_segment_manager_caches(void)
5423 {
5424         kmem_cache_destroy(sit_entry_set_slab);
5425         kmem_cache_destroy(discard_cmd_slab);
5426         kmem_cache_destroy(discard_entry_slab);
5427         kmem_cache_destroy(revoke_entry_slab);
5428 }