Merge tag 'dmaengine-4.17-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-block.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38         unsigned long tmp = 0;
39         int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42         shift = 56;
43 #endif
44         while (shift >= 0) {
45                 tmp |= (unsigned long)str[idx++] << shift;
46                 shift -= BITS_PER_BYTE;
47         }
48         return tmp;
49 }
50
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57         int num = 0;
58
59 #if BITS_PER_LONG == 64
60         if ((word & 0xffffffff00000000UL) == 0)
61                 num += 32;
62         else
63                 word >>= 32;
64 #endif
65         if ((word & 0xffff0000) == 0)
66                 num += 16;
67         else
68                 word >>= 16;
69
70         if ((word & 0xff00) == 0)
71                 num += 8;
72         else
73                 word >>= 8;
74
75         if ((word & 0xf0) == 0)
76                 num += 4;
77         else
78                 word >>= 4;
79
80         if ((word & 0xc) == 0)
81                 num += 2;
82         else
83                 word >>= 2;
84
85         if ((word & 0x2) == 0)
86                 num += 1;
87         return num;
88 }
89
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100                         unsigned long size, unsigned long offset)
101 {
102         const unsigned long *p = addr + BIT_WORD(offset);
103         unsigned long result = size;
104         unsigned long tmp;
105
106         if (offset >= size)
107                 return size;
108
109         size -= (offset & ~(BITS_PER_LONG - 1));
110         offset %= BITS_PER_LONG;
111
112         while (1) {
113                 if (*p == 0)
114                         goto pass;
115
116                 tmp = __reverse_ulong((unsigned char *)p);
117
118                 tmp &= ~0UL >> offset;
119                 if (size < BITS_PER_LONG)
120                         tmp &= (~0UL << (BITS_PER_LONG - size));
121                 if (tmp)
122                         goto found;
123 pass:
124                 if (size <= BITS_PER_LONG)
125                         break;
126                 size -= BITS_PER_LONG;
127                 offset = 0;
128                 p++;
129         }
130         return result;
131 found:
132         return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136                         unsigned long size, unsigned long offset)
137 {
138         const unsigned long *p = addr + BIT_WORD(offset);
139         unsigned long result = size;
140         unsigned long tmp;
141
142         if (offset >= size)
143                 return size;
144
145         size -= (offset & ~(BITS_PER_LONG - 1));
146         offset %= BITS_PER_LONG;
147
148         while (1) {
149                 if (*p == ~0UL)
150                         goto pass;
151
152                 tmp = __reverse_ulong((unsigned char *)p);
153
154                 if (offset)
155                         tmp |= ~0UL << (BITS_PER_LONG - offset);
156                 if (size < BITS_PER_LONG)
157                         tmp |= ~0UL >> size;
158                 if (tmp != ~0UL)
159                         goto found;
160 pass:
161                 if (size <= BITS_PER_LONG)
162                         break;
163                 size -= BITS_PER_LONG;
164                 offset = 0;
165                 p++;
166         }
167         return result;
168 found:
169         return result - size + __reverse_ffz(tmp);
170 }
171
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178         if (test_opt(sbi, LFS))
179                 return false;
180         if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181                 return true;
182
183         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191         struct inmem_pages *new;
192
193         f2fs_trace_pid(page);
194
195         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196         SetPagePrivate(page);
197
198         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200         /* add atomic page indices to the list */
201         new->page = page;
202         INIT_LIST_HEAD(&new->list);
203
204         /* increase reference count with clean state */
205         mutex_lock(&fi->inmem_lock);
206         get_page(page);
207         list_add_tail(&new->list, &fi->inmem_pages);
208         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209         if (list_empty(&fi->inmem_ilist))
210                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213         mutex_unlock(&fi->inmem_lock);
214
215         trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219                                 struct list_head *head, bool drop, bool recover)
220 {
221         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222         struct inmem_pages *cur, *tmp;
223         int err = 0;
224
225         list_for_each_entry_safe(cur, tmp, head, list) {
226                 struct page *page = cur->page;
227
228                 if (drop)
229                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231                 lock_page(page);
232
233                 if (recover) {
234                         struct dnode_of_data dn;
235                         struct node_info ni;
236
237                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239                         set_new_dnode(&dn, inode, NULL, NULL, 0);
240                         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241                         if (err) {
242                                 if (err == -ENOMEM) {
243                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
244                                         cond_resched();
245                                         goto retry;
246                                 }
247                                 err = -EAGAIN;
248                                 goto next;
249                         }
250                         get_node_info(sbi, dn.nid, &ni);
251                         if (cur->old_addr == NEW_ADDR) {
252                                 invalidate_blocks(sbi, dn.data_blkaddr);
253                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254                         } else
255                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256                                         cur->old_addr, ni.version, true, true);
257                         f2fs_put_dnode(&dn);
258                 }
259 next:
260                 /* we don't need to invalidate this in the sccessful status */
261                 if (drop || recover)
262                         ClearPageUptodate(page);
263                 set_page_private(page, 0);
264                 ClearPagePrivate(page);
265                 f2fs_put_page(page, 1);
266
267                 list_del(&cur->list);
268                 kmem_cache_free(inmem_entry_slab, cur);
269                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270         }
271         return err;
272 }
273
274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275 {
276         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277         struct inode *inode;
278         struct f2fs_inode_info *fi;
279 next:
280         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281         if (list_empty(head)) {
282                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283                 return;
284         }
285         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286         inode = igrab(&fi->vfs_inode);
287         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288
289         if (inode) {
290                 drop_inmem_pages(inode);
291                 iput(inode);
292         }
293         congestion_wait(BLK_RW_ASYNC, HZ/50);
294         cond_resched();
295         goto next;
296 }
297
298 void drop_inmem_pages(struct inode *inode)
299 {
300         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301         struct f2fs_inode_info *fi = F2FS_I(inode);
302
303         mutex_lock(&fi->inmem_lock);
304         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306         if (!list_empty(&fi->inmem_ilist))
307                 list_del_init(&fi->inmem_ilist);
308         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309         mutex_unlock(&fi->inmem_lock);
310
311         clear_inode_flag(inode, FI_ATOMIC_FILE);
312         clear_inode_flag(inode, FI_HOT_DATA);
313         stat_dec_atomic_write(inode);
314 }
315
316 void drop_inmem_page(struct inode *inode, struct page *page)
317 {
318         struct f2fs_inode_info *fi = F2FS_I(inode);
319         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320         struct list_head *head = &fi->inmem_pages;
321         struct inmem_pages *cur = NULL;
322
323         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324
325         mutex_lock(&fi->inmem_lock);
326         list_for_each_entry(cur, head, list) {
327                 if (cur->page == page)
328                         break;
329         }
330
331         f2fs_bug_on(sbi, !cur || cur->page != page);
332         list_del(&cur->list);
333         mutex_unlock(&fi->inmem_lock);
334
335         dec_page_count(sbi, F2FS_INMEM_PAGES);
336         kmem_cache_free(inmem_entry_slab, cur);
337
338         ClearPageUptodate(page);
339         set_page_private(page, 0);
340         ClearPagePrivate(page);
341         f2fs_put_page(page, 0);
342
343         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344 }
345
346 static int __commit_inmem_pages(struct inode *inode,
347                                         struct list_head *revoke_list)
348 {
349         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350         struct f2fs_inode_info *fi = F2FS_I(inode);
351         struct inmem_pages *cur, *tmp;
352         struct f2fs_io_info fio = {
353                 .sbi = sbi,
354                 .ino = inode->i_ino,
355                 .type = DATA,
356                 .op = REQ_OP_WRITE,
357                 .op_flags = REQ_SYNC | REQ_PRIO,
358                 .io_type = FS_DATA_IO,
359         };
360         pgoff_t last_idx = ULONG_MAX;
361         int err = 0;
362
363         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364                 struct page *page = cur->page;
365
366                 lock_page(page);
367                 if (page->mapping == inode->i_mapping) {
368                         trace_f2fs_commit_inmem_page(page, INMEM);
369
370                         set_page_dirty(page);
371                         f2fs_wait_on_page_writeback(page, DATA, true);
372                         if (clear_page_dirty_for_io(page)) {
373                                 inode_dec_dirty_pages(inode);
374                                 remove_dirty_inode(inode);
375                         }
376 retry:
377                         fio.page = page;
378                         fio.old_blkaddr = NULL_ADDR;
379                         fio.encrypted_page = NULL;
380                         fio.need_lock = LOCK_DONE;
381                         err = do_write_data_page(&fio);
382                         if (err) {
383                                 if (err == -ENOMEM) {
384                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
385                                         cond_resched();
386                                         goto retry;
387                                 }
388                                 unlock_page(page);
389                                 break;
390                         }
391                         /* record old blkaddr for revoking */
392                         cur->old_addr = fio.old_blkaddr;
393                         last_idx = page->index;
394                 }
395                 unlock_page(page);
396                 list_move_tail(&cur->list, revoke_list);
397         }
398
399         if (last_idx != ULONG_MAX)
400                 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401
402         if (!err)
403                 __revoke_inmem_pages(inode, revoke_list, false, false);
404
405         return err;
406 }
407
408 int commit_inmem_pages(struct inode *inode)
409 {
410         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411         struct f2fs_inode_info *fi = F2FS_I(inode);
412         struct list_head revoke_list;
413         int err;
414
415         INIT_LIST_HEAD(&revoke_list);
416         f2fs_balance_fs(sbi, true);
417         f2fs_lock_op(sbi);
418
419         set_inode_flag(inode, FI_ATOMIC_COMMIT);
420
421         mutex_lock(&fi->inmem_lock);
422         err = __commit_inmem_pages(inode, &revoke_list);
423         if (err) {
424                 int ret;
425                 /*
426                  * try to revoke all committed pages, but still we could fail
427                  * due to no memory or other reason, if that happened, EAGAIN
428                  * will be returned, which means in such case, transaction is
429                  * already not integrity, caller should use journal to do the
430                  * recovery or rewrite & commit last transaction. For other
431                  * error number, revoking was done by filesystem itself.
432                  */
433                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434                 if (ret)
435                         err = ret;
436
437                 /* drop all uncommitted pages */
438                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439         }
440         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441         if (!list_empty(&fi->inmem_ilist))
442                 list_del_init(&fi->inmem_ilist);
443         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444         mutex_unlock(&fi->inmem_lock);
445
446         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447
448         f2fs_unlock_op(sbi);
449         return err;
450 }
451
452 /*
453  * This function balances dirty node and dentry pages.
454  * In addition, it controls garbage collection.
455  */
456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457 {
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460                 f2fs_show_injection_info(FAULT_CHECKPOINT);
461                 f2fs_stop_checkpoint(sbi, false);
462         }
463 #endif
464
465         /* balance_fs_bg is able to be pending */
466         if (need && excess_cached_nats(sbi))
467                 f2fs_balance_fs_bg(sbi);
468
469         /*
470          * We should do GC or end up with checkpoint, if there are so many dirty
471          * dir/node pages without enough free segments.
472          */
473         if (has_not_enough_free_secs(sbi, 0, 0)) {
474                 mutex_lock(&sbi->gc_mutex);
475                 f2fs_gc(sbi, false, false, NULL_SEGNO);
476         }
477 }
478
479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480 {
481         /* try to shrink extent cache when there is no enough memory */
482         if (!available_free_memory(sbi, EXTENT_CACHE))
483                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
484
485         /* check the # of cached NAT entries */
486         if (!available_free_memory(sbi, NAT_ENTRIES))
487                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
488
489         if (!available_free_memory(sbi, FREE_NIDS))
490                 try_to_free_nids(sbi, MAX_FREE_NIDS);
491         else
492                 build_free_nids(sbi, false, false);
493
494         if (!is_idle(sbi) && !excess_dirty_nats(sbi))
495                 return;
496
497         /* checkpoint is the only way to shrink partial cached entries */
498         if (!available_free_memory(sbi, NAT_ENTRIES) ||
499                         !available_free_memory(sbi, INO_ENTRIES) ||
500                         excess_prefree_segs(sbi) ||
501                         excess_dirty_nats(sbi) ||
502                         f2fs_time_over(sbi, CP_TIME)) {
503                 if (test_opt(sbi, DATA_FLUSH)) {
504                         struct blk_plug plug;
505
506                         blk_start_plug(&plug);
507                         sync_dirty_inodes(sbi, FILE_INODE);
508                         blk_finish_plug(&plug);
509                 }
510                 f2fs_sync_fs(sbi->sb, true);
511                 stat_inc_bg_cp_count(sbi->stat_info);
512         }
513 }
514
515 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
516                                 struct block_device *bdev)
517 {
518         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
519         int ret;
520
521         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
522         bio_set_dev(bio, bdev);
523         ret = submit_bio_wait(bio);
524         bio_put(bio);
525
526         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
527                                 test_opt(sbi, FLUSH_MERGE), ret);
528         return ret;
529 }
530
531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533         int ret = 0;
534         int i;
535
536         if (!sbi->s_ndevs)
537                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
538
539         for (i = 0; i < sbi->s_ndevs; i++) {
540                 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
541                         continue;
542                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543                 if (ret)
544                         break;
545         }
546         return ret;
547 }
548
549 static int issue_flush_thread(void *data)
550 {
551         struct f2fs_sb_info *sbi = data;
552         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553         wait_queue_head_t *q = &fcc->flush_wait_queue;
554 repeat:
555         if (kthread_should_stop())
556                 return 0;
557
558         sb_start_intwrite(sbi->sb);
559
560         if (!llist_empty(&fcc->issue_list)) {
561                 struct flush_cmd *cmd, *next;
562                 int ret;
563
564                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
565                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
566
567                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
568
569                 ret = submit_flush_wait(sbi, cmd->ino);
570                 atomic_inc(&fcc->issued_flush);
571
572                 llist_for_each_entry_safe(cmd, next,
573                                           fcc->dispatch_list, llnode) {
574                         cmd->ret = ret;
575                         complete(&cmd->wait);
576                 }
577                 fcc->dispatch_list = NULL;
578         }
579
580         sb_end_intwrite(sbi->sb);
581
582         wait_event_interruptible(*q,
583                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
584         goto repeat;
585 }
586
587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588 {
589         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590         struct flush_cmd cmd;
591         int ret;
592
593         if (test_opt(sbi, NOBARRIER))
594                 return 0;
595
596         if (!test_opt(sbi, FLUSH_MERGE)) {
597                 ret = submit_flush_wait(sbi, ino);
598                 atomic_inc(&fcc->issued_flush);
599                 return ret;
600         }
601
602         if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
603                 ret = submit_flush_wait(sbi, ino);
604                 atomic_dec(&fcc->issing_flush);
605
606                 atomic_inc(&fcc->issued_flush);
607                 return ret;
608         }
609
610         cmd.ino = ino;
611         init_completion(&cmd.wait);
612
613         llist_add(&cmd.llnode, &fcc->issue_list);
614
615         /* update issue_list before we wake up issue_flush thread */
616         smp_mb();
617
618         if (waitqueue_active(&fcc->flush_wait_queue))
619                 wake_up(&fcc->flush_wait_queue);
620
621         if (fcc->f2fs_issue_flush) {
622                 wait_for_completion(&cmd.wait);
623                 atomic_dec(&fcc->issing_flush);
624         } else {
625                 struct llist_node *list;
626
627                 list = llist_del_all(&fcc->issue_list);
628                 if (!list) {
629                         wait_for_completion(&cmd.wait);
630                         atomic_dec(&fcc->issing_flush);
631                 } else {
632                         struct flush_cmd *tmp, *next;
633
634                         ret = submit_flush_wait(sbi, ino);
635
636                         llist_for_each_entry_safe(tmp, next, list, llnode) {
637                                 if (tmp == &cmd) {
638                                         cmd.ret = ret;
639                                         atomic_dec(&fcc->issing_flush);
640                                         continue;
641                                 }
642                                 tmp->ret = ret;
643                                 complete(&tmp->wait);
644                         }
645                 }
646         }
647
648         return cmd.ret;
649 }
650
651 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
652 {
653         dev_t dev = sbi->sb->s_bdev->bd_dev;
654         struct flush_cmd_control *fcc;
655         int err = 0;
656
657         if (SM_I(sbi)->fcc_info) {
658                 fcc = SM_I(sbi)->fcc_info;
659                 if (fcc->f2fs_issue_flush)
660                         return err;
661                 goto init_thread;
662         }
663
664         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665         if (!fcc)
666                 return -ENOMEM;
667         atomic_set(&fcc->issued_flush, 0);
668         atomic_set(&fcc->issing_flush, 0);
669         init_waitqueue_head(&fcc->flush_wait_queue);
670         init_llist_head(&fcc->issue_list);
671         SM_I(sbi)->fcc_info = fcc;
672         if (!test_opt(sbi, FLUSH_MERGE))
673                 return err;
674
675 init_thread:
676         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678         if (IS_ERR(fcc->f2fs_issue_flush)) {
679                 err = PTR_ERR(fcc->f2fs_issue_flush);
680                 kfree(fcc);
681                 SM_I(sbi)->fcc_info = NULL;
682                 return err;
683         }
684
685         return err;
686 }
687
688 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
689 {
690         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
691
692         if (fcc && fcc->f2fs_issue_flush) {
693                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
694
695                 fcc->f2fs_issue_flush = NULL;
696                 kthread_stop(flush_thread);
697         }
698         if (free) {
699                 kfree(fcc);
700                 SM_I(sbi)->fcc_info = NULL;
701         }
702 }
703
704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
705 {
706         int ret = 0, i;
707
708         if (!sbi->s_ndevs)
709                 return 0;
710
711         for (i = 1; i < sbi->s_ndevs; i++) {
712                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
713                         continue;
714                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715                 if (ret)
716                         break;
717
718                 spin_lock(&sbi->dev_lock);
719                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720                 spin_unlock(&sbi->dev_lock);
721         }
722
723         return ret;
724 }
725
726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727                 enum dirty_type dirty_type)
728 {
729         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730
731         /* need not be added */
732         if (IS_CURSEG(sbi, segno))
733                 return;
734
735         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736                 dirty_i->nr_dirty[dirty_type]++;
737
738         if (dirty_type == DIRTY) {
739                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
740                 enum dirty_type t = sentry->type;
741
742                 if (unlikely(t >= DIRTY)) {
743                         f2fs_bug_on(sbi, 1);
744                         return;
745                 }
746                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747                         dirty_i->nr_dirty[t]++;
748         }
749 }
750
751 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
752                 enum dirty_type dirty_type)
753 {
754         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
755
756         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
757                 dirty_i->nr_dirty[dirty_type]--;
758
759         if (dirty_type == DIRTY) {
760                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
761                 enum dirty_type t = sentry->type;
762
763                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
764                         dirty_i->nr_dirty[t]--;
765
766                 if (get_valid_blocks(sbi, segno, true) == 0)
767                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
768                                                 dirty_i->victim_secmap);
769         }
770 }
771
772 /*
773  * Should not occur error such as -ENOMEM.
774  * Adding dirty entry into seglist is not critical operation.
775  * If a given segment is one of current working segments, it won't be added.
776  */
777 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
778 {
779         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780         unsigned short valid_blocks;
781
782         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
783                 return;
784
785         mutex_lock(&dirty_i->seglist_lock);
786
787         valid_blocks = get_valid_blocks(sbi, segno, false);
788
789         if (valid_blocks == 0) {
790                 __locate_dirty_segment(sbi, segno, PRE);
791                 __remove_dirty_segment(sbi, segno, DIRTY);
792         } else if (valid_blocks < sbi->blocks_per_seg) {
793                 __locate_dirty_segment(sbi, segno, DIRTY);
794         } else {
795                 /* Recovery routine with SSR needs this */
796                 __remove_dirty_segment(sbi, segno, DIRTY);
797         }
798
799         mutex_unlock(&dirty_i->seglist_lock);
800 }
801
802 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
803                 struct block_device *bdev, block_t lstart,
804                 block_t start, block_t len)
805 {
806         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
807         struct list_head *pend_list;
808         struct discard_cmd *dc;
809
810         f2fs_bug_on(sbi, !len);
811
812         pend_list = &dcc->pend_list[plist_idx(len)];
813
814         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
815         INIT_LIST_HEAD(&dc->list);
816         dc->bdev = bdev;
817         dc->lstart = lstart;
818         dc->start = start;
819         dc->len = len;
820         dc->ref = 0;
821         dc->state = D_PREP;
822         dc->error = 0;
823         init_completion(&dc->wait);
824         list_add_tail(&dc->list, pend_list);
825         atomic_inc(&dcc->discard_cmd_cnt);
826         dcc->undiscard_blks += len;
827
828         return dc;
829 }
830
831 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
832                                 struct block_device *bdev, block_t lstart,
833                                 block_t start, block_t len,
834                                 struct rb_node *parent, struct rb_node **p)
835 {
836         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
837         struct discard_cmd *dc;
838
839         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
840
841         rb_link_node(&dc->rb_node, parent, p);
842         rb_insert_color(&dc->rb_node, &dcc->root);
843
844         return dc;
845 }
846
847 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
848                                                         struct discard_cmd *dc)
849 {
850         if (dc->state == D_DONE)
851                 atomic_dec(&dcc->issing_discard);
852
853         list_del(&dc->list);
854         rb_erase(&dc->rb_node, &dcc->root);
855         dcc->undiscard_blks -= dc->len;
856
857         kmem_cache_free(discard_cmd_slab, dc);
858
859         atomic_dec(&dcc->discard_cmd_cnt);
860 }
861
862 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
863                                                         struct discard_cmd *dc)
864 {
865         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
866
867         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
868
869         f2fs_bug_on(sbi, dc->ref);
870
871         if (dc->error == -EOPNOTSUPP)
872                 dc->error = 0;
873
874         if (dc->error)
875                 f2fs_msg(sbi->sb, KERN_INFO,
876                         "Issue discard(%u, %u, %u) failed, ret: %d",
877                         dc->lstart, dc->start, dc->len, dc->error);
878         __detach_discard_cmd(dcc, dc);
879 }
880
881 static void f2fs_submit_discard_endio(struct bio *bio)
882 {
883         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
884
885         dc->error = blk_status_to_errno(bio->bi_status);
886         dc->state = D_DONE;
887         complete_all(&dc->wait);
888         bio_put(bio);
889 }
890
891 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
892                                 block_t start, block_t end)
893 {
894 #ifdef CONFIG_F2FS_CHECK_FS
895         struct seg_entry *sentry;
896         unsigned int segno;
897         block_t blk = start;
898         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
899         unsigned long *map;
900
901         while (blk < end) {
902                 segno = GET_SEGNO(sbi, blk);
903                 sentry = get_seg_entry(sbi, segno);
904                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
905
906                 if (end < START_BLOCK(sbi, segno + 1))
907                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
908                 else
909                         size = max_blocks;
910                 map = (unsigned long *)(sentry->cur_valid_map);
911                 offset = __find_rev_next_bit(map, size, offset);
912                 f2fs_bug_on(sbi, offset != size);
913                 blk = START_BLOCK(sbi, segno + 1);
914         }
915 #endif
916 }
917
918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
920                                                 struct discard_policy *dpolicy,
921                                                 struct discard_cmd *dc)
922 {
923         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
924         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
925                                         &(dcc->fstrim_list) : &(dcc->wait_list);
926         struct bio *bio = NULL;
927         int flag = dpolicy->sync ? REQ_SYNC : 0;
928
929         if (dc->state != D_PREP)
930                 return;
931
932         trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
933
934         dc->error = __blkdev_issue_discard(dc->bdev,
935                                 SECTOR_FROM_BLOCK(dc->start),
936                                 SECTOR_FROM_BLOCK(dc->len),
937                                 GFP_NOFS, 0, &bio);
938         if (!dc->error) {
939                 /* should keep before submission to avoid D_DONE right away */
940                 dc->state = D_SUBMIT;
941                 atomic_inc(&dcc->issued_discard);
942                 atomic_inc(&dcc->issing_discard);
943                 if (bio) {
944                         bio->bi_private = dc;
945                         bio->bi_end_io = f2fs_submit_discard_endio;
946                         bio->bi_opf |= flag;
947                         submit_bio(bio);
948                         list_move_tail(&dc->list, wait_list);
949                         __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
950
951                         f2fs_update_iostat(sbi, FS_DISCARD, 1);
952                 }
953         } else {
954                 __remove_discard_cmd(sbi, dc);
955         }
956 }
957
958 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
959                                 struct block_device *bdev, block_t lstart,
960                                 block_t start, block_t len,
961                                 struct rb_node **insert_p,
962                                 struct rb_node *insert_parent)
963 {
964         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
965         struct rb_node **p;
966         struct rb_node *parent = NULL;
967         struct discard_cmd *dc = NULL;
968
969         if (insert_p && insert_parent) {
970                 parent = insert_parent;
971                 p = insert_p;
972                 goto do_insert;
973         }
974
975         p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
976 do_insert:
977         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
978         if (!dc)
979                 return NULL;
980
981         return dc;
982 }
983
984 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
985                                                 struct discard_cmd *dc)
986 {
987         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
988 }
989
990 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
991                                 struct discard_cmd *dc, block_t blkaddr)
992 {
993         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994         struct discard_info di = dc->di;
995         bool modified = false;
996
997         if (dc->state == D_DONE || dc->len == 1) {
998                 __remove_discard_cmd(sbi, dc);
999                 return;
1000         }
1001
1002         dcc->undiscard_blks -= di.len;
1003
1004         if (blkaddr > di.lstart) {
1005                 dc->len = blkaddr - dc->lstart;
1006                 dcc->undiscard_blks += dc->len;
1007                 __relocate_discard_cmd(dcc, dc);
1008                 modified = true;
1009         }
1010
1011         if (blkaddr < di.lstart + di.len - 1) {
1012                 if (modified) {
1013                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1014                                         di.start + blkaddr + 1 - di.lstart,
1015                                         di.lstart + di.len - 1 - blkaddr,
1016                                         NULL, NULL);
1017                 } else {
1018                         dc->lstart++;
1019                         dc->len--;
1020                         dc->start++;
1021                         dcc->undiscard_blks += dc->len;
1022                         __relocate_discard_cmd(dcc, dc);
1023                 }
1024         }
1025 }
1026
1027 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1028                                 struct block_device *bdev, block_t lstart,
1029                                 block_t start, block_t len)
1030 {
1031         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1033         struct discard_cmd *dc;
1034         struct discard_info di = {0};
1035         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1036         block_t end = lstart + len;
1037
1038         mutex_lock(&dcc->cmd_lock);
1039
1040         dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1041                                         NULL, lstart,
1042                                         (struct rb_entry **)&prev_dc,
1043                                         (struct rb_entry **)&next_dc,
1044                                         &insert_p, &insert_parent, true);
1045         if (dc)
1046                 prev_dc = dc;
1047
1048         if (!prev_dc) {
1049                 di.lstart = lstart;
1050                 di.len = next_dc ? next_dc->lstart - lstart : len;
1051                 di.len = min(di.len, len);
1052                 di.start = start;
1053         }
1054
1055         while (1) {
1056                 struct rb_node *node;
1057                 bool merged = false;
1058                 struct discard_cmd *tdc = NULL;
1059
1060                 if (prev_dc) {
1061                         di.lstart = prev_dc->lstart + prev_dc->len;
1062                         if (di.lstart < lstart)
1063                                 di.lstart = lstart;
1064                         if (di.lstart >= end)
1065                                 break;
1066
1067                         if (!next_dc || next_dc->lstart > end)
1068                                 di.len = end - di.lstart;
1069                         else
1070                                 di.len = next_dc->lstart - di.lstart;
1071                         di.start = start + di.lstart - lstart;
1072                 }
1073
1074                 if (!di.len)
1075                         goto next;
1076
1077                 if (prev_dc && prev_dc->state == D_PREP &&
1078                         prev_dc->bdev == bdev &&
1079                         __is_discard_back_mergeable(&di, &prev_dc->di)) {
1080                         prev_dc->di.len += di.len;
1081                         dcc->undiscard_blks += di.len;
1082                         __relocate_discard_cmd(dcc, prev_dc);
1083                         di = prev_dc->di;
1084                         tdc = prev_dc;
1085                         merged = true;
1086                 }
1087
1088                 if (next_dc && next_dc->state == D_PREP &&
1089                         next_dc->bdev == bdev &&
1090                         __is_discard_front_mergeable(&di, &next_dc->di)) {
1091                         next_dc->di.lstart = di.lstart;
1092                         next_dc->di.len += di.len;
1093                         next_dc->di.start = di.start;
1094                         dcc->undiscard_blks += di.len;
1095                         __relocate_discard_cmd(dcc, next_dc);
1096                         if (tdc)
1097                                 __remove_discard_cmd(sbi, tdc);
1098                         merged = true;
1099                 }
1100
1101                 if (!merged) {
1102                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1103                                                         di.len, NULL, NULL);
1104                 }
1105  next:
1106                 prev_dc = next_dc;
1107                 if (!prev_dc)
1108                         break;
1109
1110                 node = rb_next(&prev_dc->rb_node);
1111                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1112         }
1113
1114         mutex_unlock(&dcc->cmd_lock);
1115 }
1116
1117 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1118                 struct block_device *bdev, block_t blkstart, block_t blklen)
1119 {
1120         block_t lblkstart = blkstart;
1121
1122         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1123
1124         if (sbi->s_ndevs) {
1125                 int devi = f2fs_target_device_index(sbi, blkstart);
1126
1127                 blkstart -= FDEV(devi).start_blk;
1128         }
1129         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1130         return 0;
1131 }
1132
1133 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1134                                         struct discard_policy *dpolicy,
1135                                         unsigned int start, unsigned int end)
1136 {
1137         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1139         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1140         struct discard_cmd *dc;
1141         struct blk_plug plug;
1142         int issued;
1143
1144 next:
1145         issued = 0;
1146
1147         mutex_lock(&dcc->cmd_lock);
1148         f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1149
1150         dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1151                                         NULL, start,
1152                                         (struct rb_entry **)&prev_dc,
1153                                         (struct rb_entry **)&next_dc,
1154                                         &insert_p, &insert_parent, true);
1155         if (!dc)
1156                 dc = next_dc;
1157
1158         blk_start_plug(&plug);
1159
1160         while (dc && dc->lstart <= end) {
1161                 struct rb_node *node;
1162
1163                 if (dc->len < dpolicy->granularity)
1164                         goto skip;
1165
1166                 if (dc->state != D_PREP) {
1167                         list_move_tail(&dc->list, &dcc->fstrim_list);
1168                         goto skip;
1169                 }
1170
1171                 __submit_discard_cmd(sbi, dpolicy, dc);
1172
1173                 if (++issued >= dpolicy->max_requests) {
1174                         start = dc->lstart + dc->len;
1175
1176                         blk_finish_plug(&plug);
1177                         mutex_unlock(&dcc->cmd_lock);
1178
1179                         schedule();
1180
1181                         goto next;
1182                 }
1183 skip:
1184                 node = rb_next(&dc->rb_node);
1185                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1186
1187                 if (fatal_signal_pending(current))
1188                         break;
1189         }
1190
1191         blk_finish_plug(&plug);
1192         mutex_unlock(&dcc->cmd_lock);
1193 }
1194
1195 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1196                                         struct discard_policy *dpolicy)
1197 {
1198         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1199         struct list_head *pend_list;
1200         struct discard_cmd *dc, *tmp;
1201         struct blk_plug plug;
1202         int i, iter = 0, issued = 0;
1203         bool io_interrupted = false;
1204
1205         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1206                 if (i + 1 < dpolicy->granularity)
1207                         break;
1208                 pend_list = &dcc->pend_list[i];
1209
1210                 mutex_lock(&dcc->cmd_lock);
1211                 if (list_empty(pend_list))
1212                         goto next;
1213                 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1214                 blk_start_plug(&plug);
1215                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1216                         f2fs_bug_on(sbi, dc->state != D_PREP);
1217
1218                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1219                                                                 !is_idle(sbi)) {
1220                                 io_interrupted = true;
1221                                 goto skip;
1222                         }
1223
1224                         __submit_discard_cmd(sbi, dpolicy, dc);
1225                         issued++;
1226 skip:
1227                         if (++iter >= dpolicy->max_requests)
1228                                 break;
1229                 }
1230                 blk_finish_plug(&plug);
1231 next:
1232                 mutex_unlock(&dcc->cmd_lock);
1233
1234                 if (iter >= dpolicy->max_requests)
1235                         break;
1236         }
1237
1238         if (!issued && io_interrupted)
1239                 issued = -1;
1240
1241         return issued;
1242 }
1243
1244 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1245 {
1246         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247         struct list_head *pend_list;
1248         struct discard_cmd *dc, *tmp;
1249         int i;
1250         bool dropped = false;
1251
1252         mutex_lock(&dcc->cmd_lock);
1253         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1254                 pend_list = &dcc->pend_list[i];
1255                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1256                         f2fs_bug_on(sbi, dc->state != D_PREP);
1257                         __remove_discard_cmd(sbi, dc);
1258                         dropped = true;
1259                 }
1260         }
1261         mutex_unlock(&dcc->cmd_lock);
1262
1263         return dropped;
1264 }
1265
1266 void drop_discard_cmd(struct f2fs_sb_info *sbi)
1267 {
1268         __drop_discard_cmd(sbi);
1269 }
1270
1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1272                                                         struct discard_cmd *dc)
1273 {
1274         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275         unsigned int len = 0;
1276
1277         wait_for_completion_io(&dc->wait);
1278         mutex_lock(&dcc->cmd_lock);
1279         f2fs_bug_on(sbi, dc->state != D_DONE);
1280         dc->ref--;
1281         if (!dc->ref) {
1282                 if (!dc->error)
1283                         len = dc->len;
1284                 __remove_discard_cmd(sbi, dc);
1285         }
1286         mutex_unlock(&dcc->cmd_lock);
1287
1288         return len;
1289 }
1290
1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1292                                                 struct discard_policy *dpolicy,
1293                                                 block_t start, block_t end)
1294 {
1295         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1297                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1298         struct discard_cmd *dc, *tmp;
1299         bool need_wait;
1300         unsigned int trimmed = 0;
1301
1302 next:
1303         need_wait = false;
1304
1305         mutex_lock(&dcc->cmd_lock);
1306         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1307                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1308                         continue;
1309                 if (dc->len < dpolicy->granularity)
1310                         continue;
1311                 if (dc->state == D_DONE && !dc->ref) {
1312                         wait_for_completion_io(&dc->wait);
1313                         if (!dc->error)
1314                                 trimmed += dc->len;
1315                         __remove_discard_cmd(sbi, dc);
1316                 } else {
1317                         dc->ref++;
1318                         need_wait = true;
1319                         break;
1320                 }
1321         }
1322         mutex_unlock(&dcc->cmd_lock);
1323
1324         if (need_wait) {
1325                 trimmed += __wait_one_discard_bio(sbi, dc);
1326                 goto next;
1327         }
1328
1329         return trimmed;
1330 }
1331
1332 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1333                                                 struct discard_policy *dpolicy)
1334 {
1335         __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1336 }
1337
1338 /* This should be covered by global mutex, &sit_i->sentry_lock */
1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1340 {
1341         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1342         struct discard_cmd *dc;
1343         bool need_wait = false;
1344
1345         mutex_lock(&dcc->cmd_lock);
1346         dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1347         if (dc) {
1348                 if (dc->state == D_PREP) {
1349                         __punch_discard_cmd(sbi, dc, blkaddr);
1350                 } else {
1351                         dc->ref++;
1352                         need_wait = true;
1353                 }
1354         }
1355         mutex_unlock(&dcc->cmd_lock);
1356
1357         if (need_wait)
1358                 __wait_one_discard_bio(sbi, dc);
1359 }
1360
1361 void stop_discard_thread(struct f2fs_sb_info *sbi)
1362 {
1363         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364
1365         if (dcc && dcc->f2fs_issue_discard) {
1366                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1367
1368                 dcc->f2fs_issue_discard = NULL;
1369                 kthread_stop(discard_thread);
1370         }
1371 }
1372
1373 /* This comes from f2fs_put_super */
1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1375 {
1376         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377         struct discard_policy dpolicy;
1378         bool dropped;
1379
1380         init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1381         __issue_discard_cmd(sbi, &dpolicy);
1382         dropped = __drop_discard_cmd(sbi);
1383         __wait_all_discard_cmd(sbi, &dpolicy);
1384
1385         return dropped;
1386 }
1387
1388 static int issue_discard_thread(void *data)
1389 {
1390         struct f2fs_sb_info *sbi = data;
1391         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392         wait_queue_head_t *q = &dcc->discard_wait_queue;
1393         struct discard_policy dpolicy;
1394         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1395         int issued;
1396
1397         set_freezable();
1398
1399         do {
1400                 init_discard_policy(&dpolicy, DPOLICY_BG,
1401                                         dcc->discard_granularity);
1402
1403                 wait_event_interruptible_timeout(*q,
1404                                 kthread_should_stop() || freezing(current) ||
1405                                 dcc->discard_wake,
1406                                 msecs_to_jiffies(wait_ms));
1407                 if (try_to_freeze())
1408                         continue;
1409                 if (f2fs_readonly(sbi->sb))
1410                         continue;
1411                 if (kthread_should_stop())
1412                         return 0;
1413
1414                 if (dcc->discard_wake)
1415                         dcc->discard_wake = 0;
1416
1417                 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1418                         init_discard_policy(&dpolicy, DPOLICY_FORCE, 1);
1419
1420                 sb_start_intwrite(sbi->sb);
1421
1422                 issued = __issue_discard_cmd(sbi, &dpolicy);
1423                 if (issued) {
1424                         __wait_all_discard_cmd(sbi, &dpolicy);
1425                         wait_ms = dpolicy.min_interval;
1426                 } else {
1427                         wait_ms = dpolicy.max_interval;
1428                 }
1429
1430                 sb_end_intwrite(sbi->sb);
1431
1432         } while (!kthread_should_stop());
1433         return 0;
1434 }
1435
1436 #ifdef CONFIG_BLK_DEV_ZONED
1437 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1438                 struct block_device *bdev, block_t blkstart, block_t blklen)
1439 {
1440         sector_t sector, nr_sects;
1441         block_t lblkstart = blkstart;
1442         int devi = 0;
1443
1444         if (sbi->s_ndevs) {
1445                 devi = f2fs_target_device_index(sbi, blkstart);
1446                 blkstart -= FDEV(devi).start_blk;
1447         }
1448
1449         /*
1450          * We need to know the type of the zone: for conventional zones,
1451          * use regular discard if the drive supports it. For sequential
1452          * zones, reset the zone write pointer.
1453          */
1454         switch (get_blkz_type(sbi, bdev, blkstart)) {
1455
1456         case BLK_ZONE_TYPE_CONVENTIONAL:
1457                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1458                         return 0;
1459                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1460         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1461         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1462                 sector = SECTOR_FROM_BLOCK(blkstart);
1463                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1464
1465                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1466                                 nr_sects != bdev_zone_sectors(bdev)) {
1467                         f2fs_msg(sbi->sb, KERN_INFO,
1468                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1469                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1470                                 blkstart, blklen);
1471                         return -EIO;
1472                 }
1473                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1474                 return blkdev_reset_zones(bdev, sector,
1475                                           nr_sects, GFP_NOFS);
1476         default:
1477                 /* Unknown zone type: broken device ? */
1478                 return -EIO;
1479         }
1480 }
1481 #endif
1482
1483 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1484                 struct block_device *bdev, block_t blkstart, block_t blklen)
1485 {
1486 #ifdef CONFIG_BLK_DEV_ZONED
1487         if (f2fs_sb_has_blkzoned(sbi->sb) &&
1488                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1489                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1490 #endif
1491         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1492 }
1493
1494 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1495                                 block_t blkstart, block_t blklen)
1496 {
1497         sector_t start = blkstart, len = 0;
1498         struct block_device *bdev;
1499         struct seg_entry *se;
1500         unsigned int offset;
1501         block_t i;
1502         int err = 0;
1503
1504         bdev = f2fs_target_device(sbi, blkstart, NULL);
1505
1506         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1507                 if (i != start) {
1508                         struct block_device *bdev2 =
1509                                 f2fs_target_device(sbi, i, NULL);
1510
1511                         if (bdev2 != bdev) {
1512                                 err = __issue_discard_async(sbi, bdev,
1513                                                 start, len);
1514                                 if (err)
1515                                         return err;
1516                                 bdev = bdev2;
1517                                 start = i;
1518                                 len = 0;
1519                         }
1520                 }
1521
1522                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1523                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1524
1525                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1526                         sbi->discard_blks--;
1527         }
1528
1529         if (len)
1530                 err = __issue_discard_async(sbi, bdev, start, len);
1531         return err;
1532 }
1533
1534 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1535                                                         bool check_only)
1536 {
1537         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1538         int max_blocks = sbi->blocks_per_seg;
1539         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1540         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1541         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1542         unsigned long *discard_map = (unsigned long *)se->discard_map;
1543         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1544         unsigned int start = 0, end = -1;
1545         bool force = (cpc->reason & CP_DISCARD);
1546         struct discard_entry *de = NULL;
1547         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1548         int i;
1549
1550         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1551                 return false;
1552
1553         if (!force) {
1554                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1555                         SM_I(sbi)->dcc_info->nr_discards >=
1556                                 SM_I(sbi)->dcc_info->max_discards)
1557                         return false;
1558         }
1559
1560         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1561         for (i = 0; i < entries; i++)
1562                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1563                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1564
1565         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1566                                 SM_I(sbi)->dcc_info->max_discards) {
1567                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1568                 if (start >= max_blocks)
1569                         break;
1570
1571                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1572                 if (force && start && end != max_blocks
1573                                         && (end - start) < cpc->trim_minlen)
1574                         continue;
1575
1576                 if (check_only)
1577                         return true;
1578
1579                 if (!de) {
1580                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1581                                                                 GFP_F2FS_ZERO);
1582                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1583                         list_add_tail(&de->list, head);
1584                 }
1585
1586                 for (i = start; i < end; i++)
1587                         __set_bit_le(i, (void *)de->discard_map);
1588
1589                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1590         }
1591         return false;
1592 }
1593
1594 void release_discard_addrs(struct f2fs_sb_info *sbi)
1595 {
1596         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1597         struct discard_entry *entry, *this;
1598
1599         /* drop caches */
1600         list_for_each_entry_safe(entry, this, head, list) {
1601                 list_del(&entry->list);
1602                 kmem_cache_free(discard_entry_slab, entry);
1603         }
1604 }
1605
1606 /*
1607  * Should call clear_prefree_segments after checkpoint is done.
1608  */
1609 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1610 {
1611         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1612         unsigned int segno;
1613
1614         mutex_lock(&dirty_i->seglist_lock);
1615         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1616                 __set_test_and_free(sbi, segno);
1617         mutex_unlock(&dirty_i->seglist_lock);
1618 }
1619
1620 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1621 {
1622         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1623         struct list_head *head = &dcc->entry_list;
1624         struct discard_entry *entry, *this;
1625         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1626         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1627         unsigned int start = 0, end = -1;
1628         unsigned int secno, start_segno;
1629         bool force = (cpc->reason & CP_DISCARD);
1630
1631         mutex_lock(&dirty_i->seglist_lock);
1632
1633         while (1) {
1634                 int i;
1635                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1636                 if (start >= MAIN_SEGS(sbi))
1637                         break;
1638                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1639                                                                 start + 1);
1640
1641                 for (i = start; i < end; i++)
1642                         clear_bit(i, prefree_map);
1643
1644                 dirty_i->nr_dirty[PRE] -= end - start;
1645
1646                 if (!test_opt(sbi, DISCARD))
1647                         continue;
1648
1649                 if (force && start >= cpc->trim_start &&
1650                                         (end - 1) <= cpc->trim_end)
1651                                 continue;
1652
1653                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1654                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1655                                 (end - start) << sbi->log_blocks_per_seg);
1656                         continue;
1657                 }
1658 next:
1659                 secno = GET_SEC_FROM_SEG(sbi, start);
1660                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1661                 if (!IS_CURSEC(sbi, secno) &&
1662                         !get_valid_blocks(sbi, start, true))
1663                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1664                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1665
1666                 start = start_segno + sbi->segs_per_sec;
1667                 if (start < end)
1668                         goto next;
1669                 else
1670                         end = start - 1;
1671         }
1672         mutex_unlock(&dirty_i->seglist_lock);
1673
1674         /* send small discards */
1675         list_for_each_entry_safe(entry, this, head, list) {
1676                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1677                 bool is_valid = test_bit_le(0, entry->discard_map);
1678
1679 find_next:
1680                 if (is_valid) {
1681                         next_pos = find_next_zero_bit_le(entry->discard_map,
1682                                         sbi->blocks_per_seg, cur_pos);
1683                         len = next_pos - cur_pos;
1684
1685                         if (f2fs_sb_has_blkzoned(sbi->sb) ||
1686                             (force && len < cpc->trim_minlen))
1687                                 goto skip;
1688
1689                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1690                                                                         len);
1691                         total_len += len;
1692                 } else {
1693                         next_pos = find_next_bit_le(entry->discard_map,
1694                                         sbi->blocks_per_seg, cur_pos);
1695                 }
1696 skip:
1697                 cur_pos = next_pos;
1698                 is_valid = !is_valid;
1699
1700                 if (cur_pos < sbi->blocks_per_seg)
1701                         goto find_next;
1702
1703                 list_del(&entry->list);
1704                 dcc->nr_discards -= total_len;
1705                 kmem_cache_free(discard_entry_slab, entry);
1706         }
1707
1708         wake_up_discard_thread(sbi, false);
1709 }
1710
1711 void init_discard_policy(struct discard_policy *dpolicy,
1712                                 int discard_type, unsigned int granularity)
1713 {
1714         /* common policy */
1715         dpolicy->type = discard_type;
1716         dpolicy->sync = true;
1717         dpolicy->granularity = granularity;
1718
1719         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1720         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1721
1722         if (discard_type == DPOLICY_BG) {
1723                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1724                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1725                 dpolicy->io_aware = true;
1726         } else if (discard_type == DPOLICY_FORCE) {
1727                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1728                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1729                 dpolicy->io_aware = false;
1730         } else if (discard_type == DPOLICY_FSTRIM) {
1731                 dpolicy->io_aware = false;
1732         } else if (discard_type == DPOLICY_UMOUNT) {
1733                 dpolicy->io_aware = false;
1734         }
1735 }
1736
1737 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1738 {
1739         dev_t dev = sbi->sb->s_bdev->bd_dev;
1740         struct discard_cmd_control *dcc;
1741         int err = 0, i;
1742
1743         if (SM_I(sbi)->dcc_info) {
1744                 dcc = SM_I(sbi)->dcc_info;
1745                 goto init_thread;
1746         }
1747
1748         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1749         if (!dcc)
1750                 return -ENOMEM;
1751
1752         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1753         INIT_LIST_HEAD(&dcc->entry_list);
1754         for (i = 0; i < MAX_PLIST_NUM; i++)
1755                 INIT_LIST_HEAD(&dcc->pend_list[i]);
1756         INIT_LIST_HEAD(&dcc->wait_list);
1757         INIT_LIST_HEAD(&dcc->fstrim_list);
1758         mutex_init(&dcc->cmd_lock);
1759         atomic_set(&dcc->issued_discard, 0);
1760         atomic_set(&dcc->issing_discard, 0);
1761         atomic_set(&dcc->discard_cmd_cnt, 0);
1762         dcc->nr_discards = 0;
1763         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1764         dcc->undiscard_blks = 0;
1765         dcc->root = RB_ROOT;
1766
1767         init_waitqueue_head(&dcc->discard_wait_queue);
1768         SM_I(sbi)->dcc_info = dcc;
1769 init_thread:
1770         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1771                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1772         if (IS_ERR(dcc->f2fs_issue_discard)) {
1773                 err = PTR_ERR(dcc->f2fs_issue_discard);
1774                 kfree(dcc);
1775                 SM_I(sbi)->dcc_info = NULL;
1776                 return err;
1777         }
1778
1779         return err;
1780 }
1781
1782 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1783 {
1784         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1785
1786         if (!dcc)
1787                 return;
1788
1789         stop_discard_thread(sbi);
1790
1791         kfree(dcc);
1792         SM_I(sbi)->dcc_info = NULL;
1793 }
1794
1795 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1796 {
1797         struct sit_info *sit_i = SIT_I(sbi);
1798
1799         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1800                 sit_i->dirty_sentries++;
1801                 return false;
1802         }
1803
1804         return true;
1805 }
1806
1807 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1808                                         unsigned int segno, int modified)
1809 {
1810         struct seg_entry *se = get_seg_entry(sbi, segno);
1811         se->type = type;
1812         if (modified)
1813                 __mark_sit_entry_dirty(sbi, segno);
1814 }
1815
1816 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1817 {
1818         struct seg_entry *se;
1819         unsigned int segno, offset;
1820         long int new_vblocks;
1821         bool exist;
1822 #ifdef CONFIG_F2FS_CHECK_FS
1823         bool mir_exist;
1824 #endif
1825
1826         segno = GET_SEGNO(sbi, blkaddr);
1827
1828         se = get_seg_entry(sbi, segno);
1829         new_vblocks = se->valid_blocks + del;
1830         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1831
1832         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1833                                 (new_vblocks > sbi->blocks_per_seg)));
1834
1835         se->valid_blocks = new_vblocks;
1836         se->mtime = get_mtime(sbi);
1837         SIT_I(sbi)->max_mtime = se->mtime;
1838
1839         /* Update valid block bitmap */
1840         if (del > 0) {
1841                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1842 #ifdef CONFIG_F2FS_CHECK_FS
1843                 mir_exist = f2fs_test_and_set_bit(offset,
1844                                                 se->cur_valid_map_mir);
1845                 if (unlikely(exist != mir_exist)) {
1846                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1847                                 "when setting bitmap, blk:%u, old bit:%d",
1848                                 blkaddr, exist);
1849                         f2fs_bug_on(sbi, 1);
1850                 }
1851 #endif
1852                 if (unlikely(exist)) {
1853                         f2fs_msg(sbi->sb, KERN_ERR,
1854                                 "Bitmap was wrongly set, blk:%u", blkaddr);
1855                         f2fs_bug_on(sbi, 1);
1856                         se->valid_blocks--;
1857                         del = 0;
1858                 }
1859
1860                 if (f2fs_discard_en(sbi) &&
1861                         !f2fs_test_and_set_bit(offset, se->discard_map))
1862                         sbi->discard_blks--;
1863
1864                 /* don't overwrite by SSR to keep node chain */
1865                 if (IS_NODESEG(se->type)) {
1866                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1867                                 se->ckpt_valid_blocks++;
1868                 }
1869         } else {
1870                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1871 #ifdef CONFIG_F2FS_CHECK_FS
1872                 mir_exist = f2fs_test_and_clear_bit(offset,
1873                                                 se->cur_valid_map_mir);
1874                 if (unlikely(exist != mir_exist)) {
1875                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1876                                 "when clearing bitmap, blk:%u, old bit:%d",
1877                                 blkaddr, exist);
1878                         f2fs_bug_on(sbi, 1);
1879                 }
1880 #endif
1881                 if (unlikely(!exist)) {
1882                         f2fs_msg(sbi->sb, KERN_ERR,
1883                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1884                         f2fs_bug_on(sbi, 1);
1885                         se->valid_blocks++;
1886                         del = 0;
1887                 }
1888
1889                 if (f2fs_discard_en(sbi) &&
1890                         f2fs_test_and_clear_bit(offset, se->discard_map))
1891                         sbi->discard_blks++;
1892         }
1893         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1894                 se->ckpt_valid_blocks += del;
1895
1896         __mark_sit_entry_dirty(sbi, segno);
1897
1898         /* update total number of valid blocks to be written in ckpt area */
1899         SIT_I(sbi)->written_valid_blocks += del;
1900
1901         if (sbi->segs_per_sec > 1)
1902                 get_sec_entry(sbi, segno)->valid_blocks += del;
1903 }
1904
1905 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1906 {
1907         unsigned int segno = GET_SEGNO(sbi, addr);
1908         struct sit_info *sit_i = SIT_I(sbi);
1909
1910         f2fs_bug_on(sbi, addr == NULL_ADDR);
1911         if (addr == NEW_ADDR)
1912                 return;
1913
1914         /* add it into sit main buffer */
1915         down_write(&sit_i->sentry_lock);
1916
1917         update_sit_entry(sbi, addr, -1);
1918
1919         /* add it into dirty seglist */
1920         locate_dirty_segment(sbi, segno);
1921
1922         up_write(&sit_i->sentry_lock);
1923 }
1924
1925 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1926 {
1927         struct sit_info *sit_i = SIT_I(sbi);
1928         unsigned int segno, offset;
1929         struct seg_entry *se;
1930         bool is_cp = false;
1931
1932         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1933                 return true;
1934
1935         down_read(&sit_i->sentry_lock);
1936
1937         segno = GET_SEGNO(sbi, blkaddr);
1938         se = get_seg_entry(sbi, segno);
1939         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1940
1941         if (f2fs_test_bit(offset, se->ckpt_valid_map))
1942                 is_cp = true;
1943
1944         up_read(&sit_i->sentry_lock);
1945
1946         return is_cp;
1947 }
1948
1949 /*
1950  * This function should be resided under the curseg_mutex lock
1951  */
1952 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1953                                         struct f2fs_summary *sum)
1954 {
1955         struct curseg_info *curseg = CURSEG_I(sbi, type);
1956         void *addr = curseg->sum_blk;
1957         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1958         memcpy(addr, sum, sizeof(struct f2fs_summary));
1959 }
1960
1961 /*
1962  * Calculate the number of current summary pages for writing
1963  */
1964 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1965 {
1966         int valid_sum_count = 0;
1967         int i, sum_in_page;
1968
1969         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1970                 if (sbi->ckpt->alloc_type[i] == SSR)
1971                         valid_sum_count += sbi->blocks_per_seg;
1972                 else {
1973                         if (for_ra)
1974                                 valid_sum_count += le16_to_cpu(
1975                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1976                         else
1977                                 valid_sum_count += curseg_blkoff(sbi, i);
1978                 }
1979         }
1980
1981         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1982                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1983         if (valid_sum_count <= sum_in_page)
1984                 return 1;
1985         else if ((valid_sum_count - sum_in_page) <=
1986                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1987                 return 2;
1988         return 3;
1989 }
1990
1991 /*
1992  * Caller should put this summary page
1993  */
1994 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1995 {
1996         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1997 }
1998
1999 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2000 {
2001         struct page *page = grab_meta_page(sbi, blk_addr);
2002
2003         memcpy(page_address(page), src, PAGE_SIZE);
2004         set_page_dirty(page);
2005         f2fs_put_page(page, 1);
2006 }
2007
2008 static void write_sum_page(struct f2fs_sb_info *sbi,
2009                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2010 {
2011         update_meta_page(sbi, (void *)sum_blk, blk_addr);
2012 }
2013
2014 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2015                                                 int type, block_t blk_addr)
2016 {
2017         struct curseg_info *curseg = CURSEG_I(sbi, type);
2018         struct page *page = grab_meta_page(sbi, blk_addr);
2019         struct f2fs_summary_block *src = curseg->sum_blk;
2020         struct f2fs_summary_block *dst;
2021
2022         dst = (struct f2fs_summary_block *)page_address(page);
2023
2024         mutex_lock(&curseg->curseg_mutex);
2025
2026         down_read(&curseg->journal_rwsem);
2027         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2028         up_read(&curseg->journal_rwsem);
2029
2030         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2031         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2032
2033         mutex_unlock(&curseg->curseg_mutex);
2034
2035         set_page_dirty(page);
2036         f2fs_put_page(page, 1);
2037 }
2038
2039 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2040 {
2041         struct curseg_info *curseg = CURSEG_I(sbi, type);
2042         unsigned int segno = curseg->segno + 1;
2043         struct free_segmap_info *free_i = FREE_I(sbi);
2044
2045         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2046                 return !test_bit(segno, free_i->free_segmap);
2047         return 0;
2048 }
2049
2050 /*
2051  * Find a new segment from the free segments bitmap to right order
2052  * This function should be returned with success, otherwise BUG
2053  */
2054 static void get_new_segment(struct f2fs_sb_info *sbi,
2055                         unsigned int *newseg, bool new_sec, int dir)
2056 {
2057         struct free_segmap_info *free_i = FREE_I(sbi);
2058         unsigned int segno, secno, zoneno;
2059         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2060         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2061         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2062         unsigned int left_start = hint;
2063         bool init = true;
2064         int go_left = 0;
2065         int i;
2066
2067         spin_lock(&free_i->segmap_lock);
2068
2069         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2070                 segno = find_next_zero_bit(free_i->free_segmap,
2071                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2072                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2073                         goto got_it;
2074         }
2075 find_other_zone:
2076         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2077         if (secno >= MAIN_SECS(sbi)) {
2078                 if (dir == ALLOC_RIGHT) {
2079                         secno = find_next_zero_bit(free_i->free_secmap,
2080                                                         MAIN_SECS(sbi), 0);
2081                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2082                 } else {
2083                         go_left = 1;
2084                         left_start = hint - 1;
2085                 }
2086         }
2087         if (go_left == 0)
2088                 goto skip_left;
2089
2090         while (test_bit(left_start, free_i->free_secmap)) {
2091                 if (left_start > 0) {
2092                         left_start--;
2093                         continue;
2094                 }
2095                 left_start = find_next_zero_bit(free_i->free_secmap,
2096                                                         MAIN_SECS(sbi), 0);
2097                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2098                 break;
2099         }
2100         secno = left_start;
2101 skip_left:
2102         segno = GET_SEG_FROM_SEC(sbi, secno);
2103         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2104
2105         /* give up on finding another zone */
2106         if (!init)
2107                 goto got_it;
2108         if (sbi->secs_per_zone == 1)
2109                 goto got_it;
2110         if (zoneno == old_zoneno)
2111                 goto got_it;
2112         if (dir == ALLOC_LEFT) {
2113                 if (!go_left && zoneno + 1 >= total_zones)
2114                         goto got_it;
2115                 if (go_left && zoneno == 0)
2116                         goto got_it;
2117         }
2118         for (i = 0; i < NR_CURSEG_TYPE; i++)
2119                 if (CURSEG_I(sbi, i)->zone == zoneno)
2120                         break;
2121
2122         if (i < NR_CURSEG_TYPE) {
2123                 /* zone is in user, try another */
2124                 if (go_left)
2125                         hint = zoneno * sbi->secs_per_zone - 1;
2126                 else if (zoneno + 1 >= total_zones)
2127                         hint = 0;
2128                 else
2129                         hint = (zoneno + 1) * sbi->secs_per_zone;
2130                 init = false;
2131                 goto find_other_zone;
2132         }
2133 got_it:
2134         /* set it as dirty segment in free segmap */
2135         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2136         __set_inuse(sbi, segno);
2137         *newseg = segno;
2138         spin_unlock(&free_i->segmap_lock);
2139 }
2140
2141 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2142 {
2143         struct curseg_info *curseg = CURSEG_I(sbi, type);
2144         struct summary_footer *sum_footer;
2145
2146         curseg->segno = curseg->next_segno;
2147         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2148         curseg->next_blkoff = 0;
2149         curseg->next_segno = NULL_SEGNO;
2150
2151         sum_footer = &(curseg->sum_blk->footer);
2152         memset(sum_footer, 0, sizeof(struct summary_footer));
2153         if (IS_DATASEG(type))
2154                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2155         if (IS_NODESEG(type))
2156                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2157         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2158 }
2159
2160 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2161 {
2162         /* if segs_per_sec is large than 1, we need to keep original policy. */
2163         if (sbi->segs_per_sec != 1)
2164                 return CURSEG_I(sbi, type)->segno;
2165
2166         if (test_opt(sbi, NOHEAP) &&
2167                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2168                 return 0;
2169
2170         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2171                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2172
2173         /* find segments from 0 to reuse freed segments */
2174         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2175                 return 0;
2176
2177         return CURSEG_I(sbi, type)->segno;
2178 }
2179
2180 /*
2181  * Allocate a current working segment.
2182  * This function always allocates a free segment in LFS manner.
2183  */
2184 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2185 {
2186         struct curseg_info *curseg = CURSEG_I(sbi, type);
2187         unsigned int segno = curseg->segno;
2188         int dir = ALLOC_LEFT;
2189
2190         write_sum_page(sbi, curseg->sum_blk,
2191                                 GET_SUM_BLOCK(sbi, segno));
2192         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2193                 dir = ALLOC_RIGHT;
2194
2195         if (test_opt(sbi, NOHEAP))
2196                 dir = ALLOC_RIGHT;
2197
2198         segno = __get_next_segno(sbi, type);
2199         get_new_segment(sbi, &segno, new_sec, dir);
2200         curseg->next_segno = segno;
2201         reset_curseg(sbi, type, 1);
2202         curseg->alloc_type = LFS;
2203 }
2204
2205 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2206                         struct curseg_info *seg, block_t start)
2207 {
2208         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2209         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2210         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2211         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2212         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2213         int i, pos;
2214
2215         for (i = 0; i < entries; i++)
2216                 target_map[i] = ckpt_map[i] | cur_map[i];
2217
2218         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2219
2220         seg->next_blkoff = pos;
2221 }
2222
2223 /*
2224  * If a segment is written by LFS manner, next block offset is just obtained
2225  * by increasing the current block offset. However, if a segment is written by
2226  * SSR manner, next block offset obtained by calling __next_free_blkoff
2227  */
2228 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2229                                 struct curseg_info *seg)
2230 {
2231         if (seg->alloc_type == SSR)
2232                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2233         else
2234                 seg->next_blkoff++;
2235 }
2236
2237 /*
2238  * This function always allocates a used segment(from dirty seglist) by SSR
2239  * manner, so it should recover the existing segment information of valid blocks
2240  */
2241 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2242 {
2243         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2244         struct curseg_info *curseg = CURSEG_I(sbi, type);
2245         unsigned int new_segno = curseg->next_segno;
2246         struct f2fs_summary_block *sum_node;
2247         struct page *sum_page;
2248
2249         write_sum_page(sbi, curseg->sum_blk,
2250                                 GET_SUM_BLOCK(sbi, curseg->segno));
2251         __set_test_and_inuse(sbi, new_segno);
2252
2253         mutex_lock(&dirty_i->seglist_lock);
2254         __remove_dirty_segment(sbi, new_segno, PRE);
2255         __remove_dirty_segment(sbi, new_segno, DIRTY);
2256         mutex_unlock(&dirty_i->seglist_lock);
2257
2258         reset_curseg(sbi, type, 1);
2259         curseg->alloc_type = SSR;
2260         __next_free_blkoff(sbi, curseg, 0);
2261
2262         sum_page = get_sum_page(sbi, new_segno);
2263         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2264         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2265         f2fs_put_page(sum_page, 1);
2266 }
2267
2268 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2269 {
2270         struct curseg_info *curseg = CURSEG_I(sbi, type);
2271         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2272         unsigned segno = NULL_SEGNO;
2273         int i, cnt;
2274         bool reversed = false;
2275
2276         /* need_SSR() already forces to do this */
2277         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2278                 curseg->next_segno = segno;
2279                 return 1;
2280         }
2281
2282         /* For node segments, let's do SSR more intensively */
2283         if (IS_NODESEG(type)) {
2284                 if (type >= CURSEG_WARM_NODE) {
2285                         reversed = true;
2286                         i = CURSEG_COLD_NODE;
2287                 } else {
2288                         i = CURSEG_HOT_NODE;
2289                 }
2290                 cnt = NR_CURSEG_NODE_TYPE;
2291         } else {
2292                 if (type >= CURSEG_WARM_DATA) {
2293                         reversed = true;
2294                         i = CURSEG_COLD_DATA;
2295                 } else {
2296                         i = CURSEG_HOT_DATA;
2297                 }
2298                 cnt = NR_CURSEG_DATA_TYPE;
2299         }
2300
2301         for (; cnt-- > 0; reversed ? i-- : i++) {
2302                 if (i == type)
2303                         continue;
2304                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2305                         curseg->next_segno = segno;
2306                         return 1;
2307                 }
2308         }
2309         return 0;
2310 }
2311
2312 /*
2313  * flush out current segment and replace it with new segment
2314  * This function should be returned with success, otherwise BUG
2315  */
2316 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2317                                                 int type, bool force)
2318 {
2319         struct curseg_info *curseg = CURSEG_I(sbi, type);
2320
2321         if (force)
2322                 new_curseg(sbi, type, true);
2323         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2324                                         type == CURSEG_WARM_NODE)
2325                 new_curseg(sbi, type, false);
2326         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2327                 new_curseg(sbi, type, false);
2328         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2329                 change_curseg(sbi, type);
2330         else
2331                 new_curseg(sbi, type, false);
2332
2333         stat_inc_seg_type(sbi, curseg);
2334 }
2335
2336 void allocate_new_segments(struct f2fs_sb_info *sbi)
2337 {
2338         struct curseg_info *curseg;
2339         unsigned int old_segno;
2340         int i;
2341
2342         down_write(&SIT_I(sbi)->sentry_lock);
2343
2344         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2345                 curseg = CURSEG_I(sbi, i);
2346                 old_segno = curseg->segno;
2347                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2348                 locate_dirty_segment(sbi, old_segno);
2349         }
2350
2351         up_write(&SIT_I(sbi)->sentry_lock);
2352 }
2353
2354 static const struct segment_allocation default_salloc_ops = {
2355         .allocate_segment = allocate_segment_by_default,
2356 };
2357
2358 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2359 {
2360         __u64 trim_start = cpc->trim_start;
2361         bool has_candidate = false;
2362
2363         down_write(&SIT_I(sbi)->sentry_lock);
2364         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2365                 if (add_discard_addrs(sbi, cpc, true)) {
2366                         has_candidate = true;
2367                         break;
2368                 }
2369         }
2370         up_write(&SIT_I(sbi)->sentry_lock);
2371
2372         cpc->trim_start = trim_start;
2373         return has_candidate;
2374 }
2375
2376 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2377 {
2378         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2379         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2380         unsigned int start_segno, end_segno, cur_segno;
2381         block_t start_block, end_block;
2382         struct cp_control cpc;
2383         struct discard_policy dpolicy;
2384         unsigned long long trimmed = 0;
2385         int err = 0;
2386
2387         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2388                 return -EINVAL;
2389
2390         if (end <= MAIN_BLKADDR(sbi))
2391                 goto out;
2392
2393         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2394                 f2fs_msg(sbi->sb, KERN_WARNING,
2395                         "Found FS corruption, run fsck to fix.");
2396                 goto out;
2397         }
2398
2399         /* start/end segment number in main_area */
2400         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2401         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2402                                                 GET_SEGNO(sbi, end);
2403
2404         cpc.reason = CP_DISCARD;
2405         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2406
2407         /* do checkpoint to issue discard commands safely */
2408         for (cur_segno = start_segno; cur_segno <= end_segno;
2409                                         cur_segno = cpc.trim_end + 1) {
2410                 cpc.trim_start = cur_segno;
2411
2412                 if (sbi->discard_blks == 0)
2413                         break;
2414                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2415                         cpc.trim_end = end_segno;
2416                 else
2417                         cpc.trim_end = min_t(unsigned int,
2418                                 rounddown(cur_segno +
2419                                 BATCHED_TRIM_SEGMENTS(sbi),
2420                                 sbi->segs_per_sec) - 1, end_segno);
2421
2422                 mutex_lock(&sbi->gc_mutex);
2423                 err = write_checkpoint(sbi, &cpc);
2424                 mutex_unlock(&sbi->gc_mutex);
2425                 if (err)
2426                         break;
2427
2428                 schedule();
2429         }
2430
2431         start_block = START_BLOCK(sbi, start_segno);
2432         end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2433
2434         init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2435         __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2436         trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2437                                         start_block, end_block);
2438 out:
2439         range->len = F2FS_BLK_TO_BYTES(trimmed);
2440         return err;
2441 }
2442
2443 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2444 {
2445         struct curseg_info *curseg = CURSEG_I(sbi, type);
2446         if (curseg->next_blkoff < sbi->blocks_per_seg)
2447                 return true;
2448         return false;
2449 }
2450
2451 int rw_hint_to_seg_type(enum rw_hint hint)
2452 {
2453         switch (hint) {
2454         case WRITE_LIFE_SHORT:
2455                 return CURSEG_HOT_DATA;
2456         case WRITE_LIFE_EXTREME:
2457                 return CURSEG_COLD_DATA;
2458         default:
2459                 return CURSEG_WARM_DATA;
2460         }
2461 }
2462
2463 /* This returns write hints for each segment type. This hints will be
2464  * passed down to block layer. There are mapping tables which depend on
2465  * the mount option 'whint_mode'.
2466  *
2467  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2468  *
2469  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2470  *
2471  * User                  F2FS                     Block
2472  * ----                  ----                     -----
2473  *                       META                     WRITE_LIFE_NOT_SET
2474  *                       HOT_NODE                 "
2475  *                       WARM_NODE                "
2476  *                       COLD_NODE                "
2477  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2478  * extension list        "                        "
2479  *
2480  * -- buffered io
2481  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2482  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2483  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2484  * WRITE_LIFE_NONE       "                        "
2485  * WRITE_LIFE_MEDIUM     "                        "
2486  * WRITE_LIFE_LONG       "                        "
2487  *
2488  * -- direct io
2489  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2490  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2491  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2492  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2493  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2494  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2495  *
2496  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2497  *
2498  * User                  F2FS                     Block
2499  * ----                  ----                     -----
2500  *                       META                     WRITE_LIFE_MEDIUM;
2501  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2502  *                       WARM_NODE                "
2503  *                       COLD_NODE                WRITE_LIFE_NONE
2504  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2505  * extension list        "                        "
2506  *
2507  * -- buffered io
2508  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2509  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2510  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2511  * WRITE_LIFE_NONE       "                        "
2512  * WRITE_LIFE_MEDIUM     "                        "
2513  * WRITE_LIFE_LONG       "                        "
2514  *
2515  * -- direct io
2516  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2517  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2518  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2519  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2520  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2521  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2522  */
2523
2524 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2525                                 enum page_type type, enum temp_type temp)
2526 {
2527         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2528                 if (type == DATA) {
2529                         if (temp == WARM)
2530                                 return WRITE_LIFE_NOT_SET;
2531                         else if (temp == HOT)
2532                                 return WRITE_LIFE_SHORT;
2533                         else if (temp == COLD)
2534                                 return WRITE_LIFE_EXTREME;
2535                 } else {
2536                         return WRITE_LIFE_NOT_SET;
2537                 }
2538         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2539                 if (type == DATA) {
2540                         if (temp == WARM)
2541                                 return WRITE_LIFE_LONG;
2542                         else if (temp == HOT)
2543                                 return WRITE_LIFE_SHORT;
2544                         else if (temp == COLD)
2545                                 return WRITE_LIFE_EXTREME;
2546                 } else if (type == NODE) {
2547                         if (temp == WARM || temp == HOT)
2548                                 return WRITE_LIFE_NOT_SET;
2549                         else if (temp == COLD)
2550                                 return WRITE_LIFE_NONE;
2551                 } else if (type == META) {
2552                         return WRITE_LIFE_MEDIUM;
2553                 }
2554         }
2555         return WRITE_LIFE_NOT_SET;
2556 }
2557
2558 static int __get_segment_type_2(struct f2fs_io_info *fio)
2559 {
2560         if (fio->type == DATA)
2561                 return CURSEG_HOT_DATA;
2562         else
2563                 return CURSEG_HOT_NODE;
2564 }
2565
2566 static int __get_segment_type_4(struct f2fs_io_info *fio)
2567 {
2568         if (fio->type == DATA) {
2569                 struct inode *inode = fio->page->mapping->host;
2570
2571                 if (S_ISDIR(inode->i_mode))
2572                         return CURSEG_HOT_DATA;
2573                 else
2574                         return CURSEG_COLD_DATA;
2575         } else {
2576                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2577                         return CURSEG_WARM_NODE;
2578                 else
2579                         return CURSEG_COLD_NODE;
2580         }
2581 }
2582
2583 static int __get_segment_type_6(struct f2fs_io_info *fio)
2584 {
2585         if (fio->type == DATA) {
2586                 struct inode *inode = fio->page->mapping->host;
2587
2588                 if (is_cold_data(fio->page) || file_is_cold(inode))
2589                         return CURSEG_COLD_DATA;
2590                 if (file_is_hot(inode) ||
2591                                 is_inode_flag_set(inode, FI_HOT_DATA))
2592                         return CURSEG_HOT_DATA;
2593                 return rw_hint_to_seg_type(inode->i_write_hint);
2594         } else {
2595                 if (IS_DNODE(fio->page))
2596                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2597                                                 CURSEG_HOT_NODE;
2598                 return CURSEG_COLD_NODE;
2599         }
2600 }
2601
2602 static int __get_segment_type(struct f2fs_io_info *fio)
2603 {
2604         int type = 0;
2605
2606         switch (F2FS_OPTION(fio->sbi).active_logs) {
2607         case 2:
2608                 type = __get_segment_type_2(fio);
2609                 break;
2610         case 4:
2611                 type = __get_segment_type_4(fio);
2612                 break;
2613         case 6:
2614                 type = __get_segment_type_6(fio);
2615                 break;
2616         default:
2617                 f2fs_bug_on(fio->sbi, true);
2618         }
2619
2620         if (IS_HOT(type))
2621                 fio->temp = HOT;
2622         else if (IS_WARM(type))
2623                 fio->temp = WARM;
2624         else
2625                 fio->temp = COLD;
2626         return type;
2627 }
2628
2629 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2630                 block_t old_blkaddr, block_t *new_blkaddr,
2631                 struct f2fs_summary *sum, int type,
2632                 struct f2fs_io_info *fio, bool add_list)
2633 {
2634         struct sit_info *sit_i = SIT_I(sbi);
2635         struct curseg_info *curseg = CURSEG_I(sbi, type);
2636
2637         down_read(&SM_I(sbi)->curseg_lock);
2638
2639         mutex_lock(&curseg->curseg_mutex);
2640         down_write(&sit_i->sentry_lock);
2641
2642         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2643
2644         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2645
2646         /*
2647          * __add_sum_entry should be resided under the curseg_mutex
2648          * because, this function updates a summary entry in the
2649          * current summary block.
2650          */
2651         __add_sum_entry(sbi, type, sum);
2652
2653         __refresh_next_blkoff(sbi, curseg);
2654
2655         stat_inc_block_count(sbi, curseg);
2656
2657         /*
2658          * SIT information should be updated before segment allocation,
2659          * since SSR needs latest valid block information.
2660          */
2661         update_sit_entry(sbi, *new_blkaddr, 1);
2662         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2663                 update_sit_entry(sbi, old_blkaddr, -1);
2664
2665         if (!__has_curseg_space(sbi, type))
2666                 sit_i->s_ops->allocate_segment(sbi, type, false);
2667
2668         /*
2669          * segment dirty status should be updated after segment allocation,
2670          * so we just need to update status only one time after previous
2671          * segment being closed.
2672          */
2673         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2674         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2675
2676         up_write(&sit_i->sentry_lock);
2677
2678         if (page && IS_NODESEG(type)) {
2679                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2680
2681                 f2fs_inode_chksum_set(sbi, page);
2682         }
2683
2684         if (add_list) {
2685                 struct f2fs_bio_info *io;
2686
2687                 INIT_LIST_HEAD(&fio->list);
2688                 fio->in_list = true;
2689                 io = sbi->write_io[fio->type] + fio->temp;
2690                 spin_lock(&io->io_lock);
2691                 list_add_tail(&fio->list, &io->io_list);
2692                 spin_unlock(&io->io_lock);
2693         }
2694
2695         mutex_unlock(&curseg->curseg_mutex);
2696
2697         up_read(&SM_I(sbi)->curseg_lock);
2698 }
2699
2700 static void update_device_state(struct f2fs_io_info *fio)
2701 {
2702         struct f2fs_sb_info *sbi = fio->sbi;
2703         unsigned int devidx;
2704
2705         if (!sbi->s_ndevs)
2706                 return;
2707
2708         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2709
2710         /* update device state for fsync */
2711         set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2712
2713         /* update device state for checkpoint */
2714         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2715                 spin_lock(&sbi->dev_lock);
2716                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2717                 spin_unlock(&sbi->dev_lock);
2718         }
2719 }
2720
2721 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2722 {
2723         int type = __get_segment_type(fio);
2724         int err;
2725
2726 reallocate:
2727         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2728                         &fio->new_blkaddr, sum, type, fio, true);
2729
2730         /* writeout dirty page into bdev */
2731         err = f2fs_submit_page_write(fio);
2732         if (err == -EAGAIN) {
2733                 fio->old_blkaddr = fio->new_blkaddr;
2734                 goto reallocate;
2735         } else if (!err) {
2736                 update_device_state(fio);
2737         }
2738 }
2739
2740 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2741                                         enum iostat_type io_type)
2742 {
2743         struct f2fs_io_info fio = {
2744                 .sbi = sbi,
2745                 .type = META,
2746                 .temp = HOT,
2747                 .op = REQ_OP_WRITE,
2748                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2749                 .old_blkaddr = page->index,
2750                 .new_blkaddr = page->index,
2751                 .page = page,
2752                 .encrypted_page = NULL,
2753                 .in_list = false,
2754         };
2755
2756         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2757                 fio.op_flags &= ~REQ_META;
2758
2759         set_page_writeback(page);
2760         f2fs_submit_page_write(&fio);
2761
2762         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2763 }
2764
2765 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2766 {
2767         struct f2fs_summary sum;
2768
2769         set_summary(&sum, nid, 0, 0);
2770         do_write_page(&sum, fio);
2771
2772         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2773 }
2774
2775 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2776 {
2777         struct f2fs_sb_info *sbi = fio->sbi;
2778         struct f2fs_summary sum;
2779         struct node_info ni;
2780
2781         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2782         get_node_info(sbi, dn->nid, &ni);
2783         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2784         do_write_page(&sum, fio);
2785         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2786
2787         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2788 }
2789
2790 int rewrite_data_page(struct f2fs_io_info *fio)
2791 {
2792         int err;
2793         struct f2fs_sb_info *sbi = fio->sbi;
2794
2795         fio->new_blkaddr = fio->old_blkaddr;
2796         /* i/o temperature is needed for passing down write hints */
2797         __get_segment_type(fio);
2798
2799         f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2800                         GET_SEGNO(sbi, fio->new_blkaddr))->type));
2801
2802         stat_inc_inplace_blocks(fio->sbi);
2803
2804         err = f2fs_submit_page_bio(fio);
2805         if (!err)
2806                 update_device_state(fio);
2807
2808         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2809
2810         return err;
2811 }
2812
2813 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2814                                                 unsigned int segno)
2815 {
2816         int i;
2817
2818         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2819                 if (CURSEG_I(sbi, i)->segno == segno)
2820                         break;
2821         }
2822         return i;
2823 }
2824
2825 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2826                                 block_t old_blkaddr, block_t new_blkaddr,
2827                                 bool recover_curseg, bool recover_newaddr)
2828 {
2829         struct sit_info *sit_i = SIT_I(sbi);
2830         struct curseg_info *curseg;
2831         unsigned int segno, old_cursegno;
2832         struct seg_entry *se;
2833         int type;
2834         unsigned short old_blkoff;
2835
2836         segno = GET_SEGNO(sbi, new_blkaddr);
2837         se = get_seg_entry(sbi, segno);
2838         type = se->type;
2839
2840         down_write(&SM_I(sbi)->curseg_lock);
2841
2842         if (!recover_curseg) {
2843                 /* for recovery flow */
2844                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2845                         if (old_blkaddr == NULL_ADDR)
2846                                 type = CURSEG_COLD_DATA;
2847                         else
2848                                 type = CURSEG_WARM_DATA;
2849                 }
2850         } else {
2851                 if (IS_CURSEG(sbi, segno)) {
2852                         /* se->type is volatile as SSR allocation */
2853                         type = __f2fs_get_curseg(sbi, segno);
2854                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2855                 } else {
2856                         type = CURSEG_WARM_DATA;
2857                 }
2858         }
2859
2860         f2fs_bug_on(sbi, !IS_DATASEG(type));
2861         curseg = CURSEG_I(sbi, type);
2862
2863         mutex_lock(&curseg->curseg_mutex);
2864         down_write(&sit_i->sentry_lock);
2865
2866         old_cursegno = curseg->segno;
2867         old_blkoff = curseg->next_blkoff;
2868
2869         /* change the current segment */
2870         if (segno != curseg->segno) {
2871                 curseg->next_segno = segno;
2872                 change_curseg(sbi, type);
2873         }
2874
2875         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2876         __add_sum_entry(sbi, type, sum);
2877
2878         if (!recover_curseg || recover_newaddr)
2879                 update_sit_entry(sbi, new_blkaddr, 1);
2880         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2881                 update_sit_entry(sbi, old_blkaddr, -1);
2882
2883         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2884         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2885
2886         locate_dirty_segment(sbi, old_cursegno);
2887
2888         if (recover_curseg) {
2889                 if (old_cursegno != curseg->segno) {
2890                         curseg->next_segno = old_cursegno;
2891                         change_curseg(sbi, type);
2892                 }
2893                 curseg->next_blkoff = old_blkoff;
2894         }
2895
2896         up_write(&sit_i->sentry_lock);
2897         mutex_unlock(&curseg->curseg_mutex);
2898         up_write(&SM_I(sbi)->curseg_lock);
2899 }
2900
2901 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2902                                 block_t old_addr, block_t new_addr,
2903                                 unsigned char version, bool recover_curseg,
2904                                 bool recover_newaddr)
2905 {
2906         struct f2fs_summary sum;
2907
2908         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2909
2910         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2911                                         recover_curseg, recover_newaddr);
2912
2913         f2fs_update_data_blkaddr(dn, new_addr);
2914 }
2915
2916 void f2fs_wait_on_page_writeback(struct page *page,
2917                                 enum page_type type, bool ordered)
2918 {
2919         if (PageWriteback(page)) {
2920                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2921
2922                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2923                                                 0, page->index, type);
2924                 if (ordered)
2925                         wait_on_page_writeback(page);
2926                 else
2927                         wait_for_stable_page(page);
2928         }
2929 }
2930
2931 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2932 {
2933         struct page *cpage;
2934
2935         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2936                 return;
2937
2938         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2939         if (cpage) {
2940                 f2fs_wait_on_page_writeback(cpage, DATA, true);
2941                 f2fs_put_page(cpage, 1);
2942         }
2943 }
2944
2945 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
2946 {
2947         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2948         struct curseg_info *seg_i;
2949         unsigned char *kaddr;
2950         struct page *page;
2951         block_t start;
2952         int i, j, offset;
2953
2954         start = start_sum_block(sbi);
2955
2956         page = get_meta_page(sbi, start++);
2957         kaddr = (unsigned char *)page_address(page);
2958
2959         /* Step 1: restore nat cache */
2960         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2961         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2962
2963         /* Step 2: restore sit cache */
2964         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2965         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2966         offset = 2 * SUM_JOURNAL_SIZE;
2967
2968         /* Step 3: restore summary entries */
2969         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2970                 unsigned short blk_off;
2971                 unsigned int segno;
2972
2973                 seg_i = CURSEG_I(sbi, i);
2974                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2975                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2976                 seg_i->next_segno = segno;
2977                 reset_curseg(sbi, i, 0);
2978                 seg_i->alloc_type = ckpt->alloc_type[i];
2979                 seg_i->next_blkoff = blk_off;
2980
2981                 if (seg_i->alloc_type == SSR)
2982                         blk_off = sbi->blocks_per_seg;
2983
2984                 for (j = 0; j < blk_off; j++) {
2985                         struct f2fs_summary *s;
2986                         s = (struct f2fs_summary *)(kaddr + offset);
2987                         seg_i->sum_blk->entries[j] = *s;
2988                         offset += SUMMARY_SIZE;
2989                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2990                                                 SUM_FOOTER_SIZE)
2991                                 continue;
2992
2993                         f2fs_put_page(page, 1);
2994                         page = NULL;
2995
2996                         page = get_meta_page(sbi, start++);
2997                         kaddr = (unsigned char *)page_address(page);
2998                         offset = 0;
2999                 }
3000         }
3001         f2fs_put_page(page, 1);
3002 }
3003
3004 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3005 {
3006         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3007         struct f2fs_summary_block *sum;
3008         struct curseg_info *curseg;
3009         struct page *new;
3010         unsigned short blk_off;
3011         unsigned int segno = 0;
3012         block_t blk_addr = 0;
3013
3014         /* get segment number and block addr */
3015         if (IS_DATASEG(type)) {
3016                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3017                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3018                                                         CURSEG_HOT_DATA]);
3019                 if (__exist_node_summaries(sbi))
3020                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3021                 else
3022                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3023         } else {
3024                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3025                                                         CURSEG_HOT_NODE]);
3026                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3027                                                         CURSEG_HOT_NODE]);
3028                 if (__exist_node_summaries(sbi))
3029                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3030                                                         type - CURSEG_HOT_NODE);
3031                 else
3032                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3033         }
3034
3035         new = get_meta_page(sbi, blk_addr);
3036         sum = (struct f2fs_summary_block *)page_address(new);
3037
3038         if (IS_NODESEG(type)) {
3039                 if (__exist_node_summaries(sbi)) {
3040                         struct f2fs_summary *ns = &sum->entries[0];
3041                         int i;
3042                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3043                                 ns->version = 0;
3044                                 ns->ofs_in_node = 0;
3045                         }
3046                 } else {
3047                         restore_node_summary(sbi, segno, sum);
3048                 }
3049         }
3050
3051         /* set uncompleted segment to curseg */
3052         curseg = CURSEG_I(sbi, type);
3053         mutex_lock(&curseg->curseg_mutex);
3054
3055         /* update journal info */
3056         down_write(&curseg->journal_rwsem);
3057         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3058         up_write(&curseg->journal_rwsem);
3059
3060         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3061         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3062         curseg->next_segno = segno;
3063         reset_curseg(sbi, type, 0);
3064         curseg->alloc_type = ckpt->alloc_type[type];
3065         curseg->next_blkoff = blk_off;
3066         mutex_unlock(&curseg->curseg_mutex);
3067         f2fs_put_page(new, 1);
3068         return 0;
3069 }
3070
3071 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3072 {
3073         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3074         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3075         int type = CURSEG_HOT_DATA;
3076         int err;
3077
3078         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3079                 int npages = npages_for_summary_flush(sbi, true);
3080
3081                 if (npages >= 2)
3082                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
3083                                                         META_CP, true);
3084
3085                 /* restore for compacted data summary */
3086                 read_compacted_summaries(sbi);
3087                 type = CURSEG_HOT_NODE;
3088         }
3089
3090         if (__exist_node_summaries(sbi))
3091                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3092                                         NR_CURSEG_TYPE - type, META_CP, true);
3093
3094         for (; type <= CURSEG_COLD_NODE; type++) {
3095                 err = read_normal_summaries(sbi, type);
3096                 if (err)
3097                         return err;
3098         }
3099
3100         /* sanity check for summary blocks */
3101         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3102                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3103                 return -EINVAL;
3104
3105         return 0;
3106 }
3107
3108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3109 {
3110         struct page *page;
3111         unsigned char *kaddr;
3112         struct f2fs_summary *summary;
3113         struct curseg_info *seg_i;
3114         int written_size = 0;
3115         int i, j;
3116
3117         page = grab_meta_page(sbi, blkaddr++);
3118         kaddr = (unsigned char *)page_address(page);
3119
3120         /* Step 1: write nat cache */
3121         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3122         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3123         written_size += SUM_JOURNAL_SIZE;
3124
3125         /* Step 2: write sit cache */
3126         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3127         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3128         written_size += SUM_JOURNAL_SIZE;
3129
3130         /* Step 3: write summary entries */
3131         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3132                 unsigned short blkoff;
3133                 seg_i = CURSEG_I(sbi, i);
3134                 if (sbi->ckpt->alloc_type[i] == SSR)
3135                         blkoff = sbi->blocks_per_seg;
3136                 else
3137                         blkoff = curseg_blkoff(sbi, i);
3138
3139                 for (j = 0; j < blkoff; j++) {
3140                         if (!page) {
3141                                 page = grab_meta_page(sbi, blkaddr++);
3142                                 kaddr = (unsigned char *)page_address(page);
3143                                 written_size = 0;
3144                         }
3145                         summary = (struct f2fs_summary *)(kaddr + written_size);
3146                         *summary = seg_i->sum_blk->entries[j];
3147                         written_size += SUMMARY_SIZE;
3148
3149                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3150                                                         SUM_FOOTER_SIZE)
3151                                 continue;
3152
3153                         set_page_dirty(page);
3154                         f2fs_put_page(page, 1);
3155                         page = NULL;
3156                 }
3157         }
3158         if (page) {
3159                 set_page_dirty(page);
3160                 f2fs_put_page(page, 1);
3161         }
3162 }
3163
3164 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3165                                         block_t blkaddr, int type)
3166 {
3167         int i, end;
3168         if (IS_DATASEG(type))
3169                 end = type + NR_CURSEG_DATA_TYPE;
3170         else
3171                 end = type + NR_CURSEG_NODE_TYPE;
3172
3173         for (i = type; i < end; i++)
3174                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3175 }
3176
3177 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3178 {
3179         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3180                 write_compacted_summaries(sbi, start_blk);
3181         else
3182                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3183 }
3184
3185 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3186 {
3187         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3188 }
3189
3190 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3191                                         unsigned int val, int alloc)
3192 {
3193         int i;
3194
3195         if (type == NAT_JOURNAL) {
3196                 for (i = 0; i < nats_in_cursum(journal); i++) {
3197                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3198                                 return i;
3199                 }
3200                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3201                         return update_nats_in_cursum(journal, 1);
3202         } else if (type == SIT_JOURNAL) {
3203                 for (i = 0; i < sits_in_cursum(journal); i++)
3204                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3205                                 return i;
3206                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3207                         return update_sits_in_cursum(journal, 1);
3208         }
3209         return -1;
3210 }
3211
3212 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3213                                         unsigned int segno)
3214 {
3215         return get_meta_page(sbi, current_sit_addr(sbi, segno));
3216 }
3217
3218 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3219                                         unsigned int start)
3220 {
3221         struct sit_info *sit_i = SIT_I(sbi);
3222         struct page *page;
3223         pgoff_t src_off, dst_off;
3224
3225         src_off = current_sit_addr(sbi, start);
3226         dst_off = next_sit_addr(sbi, src_off);
3227
3228         page = grab_meta_page(sbi, dst_off);
3229         seg_info_to_sit_page(sbi, page, start);
3230
3231         set_page_dirty(page);
3232         set_to_next_sit(sit_i, start);
3233
3234         return page;
3235 }
3236
3237 static struct sit_entry_set *grab_sit_entry_set(void)
3238 {
3239         struct sit_entry_set *ses =
3240                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3241
3242         ses->entry_cnt = 0;
3243         INIT_LIST_HEAD(&ses->set_list);
3244         return ses;
3245 }
3246
3247 static void release_sit_entry_set(struct sit_entry_set *ses)
3248 {
3249         list_del(&ses->set_list);
3250         kmem_cache_free(sit_entry_set_slab, ses);
3251 }
3252
3253 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3254                                                 struct list_head *head)
3255 {
3256         struct sit_entry_set *next = ses;
3257
3258         if (list_is_last(&ses->set_list, head))
3259                 return;
3260
3261         list_for_each_entry_continue(next, head, set_list)
3262                 if (ses->entry_cnt <= next->entry_cnt)
3263                         break;
3264
3265         list_move_tail(&ses->set_list, &next->set_list);
3266 }
3267
3268 static void add_sit_entry(unsigned int segno, struct list_head *head)
3269 {
3270         struct sit_entry_set *ses;
3271         unsigned int start_segno = START_SEGNO(segno);
3272
3273         list_for_each_entry(ses, head, set_list) {
3274                 if (ses->start_segno == start_segno) {
3275                         ses->entry_cnt++;
3276                         adjust_sit_entry_set(ses, head);
3277                         return;
3278                 }
3279         }
3280
3281         ses = grab_sit_entry_set();
3282
3283         ses->start_segno = start_segno;
3284         ses->entry_cnt++;
3285         list_add(&ses->set_list, head);
3286 }
3287
3288 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3289 {
3290         struct f2fs_sm_info *sm_info = SM_I(sbi);
3291         struct list_head *set_list = &sm_info->sit_entry_set;
3292         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3293         unsigned int segno;
3294
3295         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3296                 add_sit_entry(segno, set_list);
3297 }
3298
3299 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3300 {
3301         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3302         struct f2fs_journal *journal = curseg->journal;
3303         int i;
3304
3305         down_write(&curseg->journal_rwsem);
3306         for (i = 0; i < sits_in_cursum(journal); i++) {
3307                 unsigned int segno;
3308                 bool dirtied;
3309
3310                 segno = le32_to_cpu(segno_in_journal(journal, i));
3311                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3312
3313                 if (!dirtied)
3314                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3315         }
3316         update_sits_in_cursum(journal, -i);
3317         up_write(&curseg->journal_rwsem);
3318 }
3319
3320 /*
3321  * CP calls this function, which flushes SIT entries including sit_journal,
3322  * and moves prefree segs to free segs.
3323  */
3324 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3325 {
3326         struct sit_info *sit_i = SIT_I(sbi);
3327         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3328         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3329         struct f2fs_journal *journal = curseg->journal;
3330         struct sit_entry_set *ses, *tmp;
3331         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3332         bool to_journal = true;
3333         struct seg_entry *se;
3334
3335         down_write(&sit_i->sentry_lock);
3336
3337         if (!sit_i->dirty_sentries)
3338                 goto out;
3339
3340         /*
3341          * add and account sit entries of dirty bitmap in sit entry
3342          * set temporarily
3343          */
3344         add_sits_in_set(sbi);
3345
3346         /*
3347          * if there are no enough space in journal to store dirty sit
3348          * entries, remove all entries from journal and add and account
3349          * them in sit entry set.
3350          */
3351         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3352                 remove_sits_in_journal(sbi);
3353
3354         /*
3355          * there are two steps to flush sit entries:
3356          * #1, flush sit entries to journal in current cold data summary block.
3357          * #2, flush sit entries to sit page.
3358          */
3359         list_for_each_entry_safe(ses, tmp, head, set_list) {
3360                 struct page *page = NULL;
3361                 struct f2fs_sit_block *raw_sit = NULL;
3362                 unsigned int start_segno = ses->start_segno;
3363                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3364                                                 (unsigned long)MAIN_SEGS(sbi));
3365                 unsigned int segno = start_segno;
3366
3367                 if (to_journal &&
3368                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3369                         to_journal = false;
3370
3371                 if (to_journal) {
3372                         down_write(&curseg->journal_rwsem);
3373                 } else {
3374                         page = get_next_sit_page(sbi, start_segno);
3375                         raw_sit = page_address(page);
3376                 }
3377
3378                 /* flush dirty sit entries in region of current sit set */
3379                 for_each_set_bit_from(segno, bitmap, end) {
3380                         int offset, sit_offset;
3381
3382                         se = get_seg_entry(sbi, segno);
3383
3384                         /* add discard candidates */
3385                         if (!(cpc->reason & CP_DISCARD)) {
3386                                 cpc->trim_start = segno;
3387                                 add_discard_addrs(sbi, cpc, false);
3388                         }
3389
3390                         if (to_journal) {
3391                                 offset = lookup_journal_in_cursum(journal,
3392                                                         SIT_JOURNAL, segno, 1);
3393                                 f2fs_bug_on(sbi, offset < 0);
3394                                 segno_in_journal(journal, offset) =
3395                                                         cpu_to_le32(segno);
3396                                 seg_info_to_raw_sit(se,
3397                                         &sit_in_journal(journal, offset));
3398                         } else {
3399                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3400                                 seg_info_to_raw_sit(se,
3401                                                 &raw_sit->entries[sit_offset]);
3402                         }
3403
3404                         __clear_bit(segno, bitmap);
3405                         sit_i->dirty_sentries--;
3406                         ses->entry_cnt--;
3407                 }
3408
3409                 if (to_journal)
3410                         up_write(&curseg->journal_rwsem);
3411                 else
3412                         f2fs_put_page(page, 1);
3413
3414                 f2fs_bug_on(sbi, ses->entry_cnt);
3415                 release_sit_entry_set(ses);
3416         }
3417
3418         f2fs_bug_on(sbi, !list_empty(head));
3419         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3420 out:
3421         if (cpc->reason & CP_DISCARD) {
3422                 __u64 trim_start = cpc->trim_start;
3423
3424                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3425                         add_discard_addrs(sbi, cpc, false);
3426
3427                 cpc->trim_start = trim_start;
3428         }
3429         up_write(&sit_i->sentry_lock);
3430
3431         set_prefree_as_free_segments(sbi);
3432 }
3433
3434 static int build_sit_info(struct f2fs_sb_info *sbi)
3435 {
3436         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3437         struct sit_info *sit_i;
3438         unsigned int sit_segs, start;
3439         char *src_bitmap;
3440         unsigned int bitmap_size;
3441
3442         /* allocate memory for SIT information */
3443         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3444         if (!sit_i)
3445                 return -ENOMEM;
3446
3447         SM_I(sbi)->sit_info = sit_i;
3448
3449         sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3450                                         sizeof(struct seg_entry), GFP_KERNEL);
3451         if (!sit_i->sentries)
3452                 return -ENOMEM;
3453
3454         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3455         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3456                                                                 GFP_KERNEL);
3457         if (!sit_i->dirty_sentries_bitmap)
3458                 return -ENOMEM;
3459
3460         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3461                 sit_i->sentries[start].cur_valid_map
3462                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3463                 sit_i->sentries[start].ckpt_valid_map
3464                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3465                 if (!sit_i->sentries[start].cur_valid_map ||
3466                                 !sit_i->sentries[start].ckpt_valid_map)
3467                         return -ENOMEM;
3468
3469 #ifdef CONFIG_F2FS_CHECK_FS
3470                 sit_i->sentries[start].cur_valid_map_mir
3471                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3472                 if (!sit_i->sentries[start].cur_valid_map_mir)
3473                         return -ENOMEM;
3474 #endif
3475
3476                 if (f2fs_discard_en(sbi)) {
3477                         sit_i->sentries[start].discard_map
3478                                 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3479                                                                 GFP_KERNEL);
3480                         if (!sit_i->sentries[start].discard_map)
3481                                 return -ENOMEM;
3482                 }
3483         }
3484
3485         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3486         if (!sit_i->tmp_map)
3487                 return -ENOMEM;
3488
3489         if (sbi->segs_per_sec > 1) {
3490                 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3491                                         sizeof(struct sec_entry), GFP_KERNEL);
3492                 if (!sit_i->sec_entries)
3493                         return -ENOMEM;
3494         }
3495
3496         /* get information related with SIT */
3497         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3498
3499         /* setup SIT bitmap from ckeckpoint pack */
3500         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3501         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3502
3503         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3504         if (!sit_i->sit_bitmap)
3505                 return -ENOMEM;
3506
3507 #ifdef CONFIG_F2FS_CHECK_FS
3508         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3509         if (!sit_i->sit_bitmap_mir)
3510                 return -ENOMEM;
3511 #endif
3512
3513         /* init SIT information */
3514         sit_i->s_ops = &default_salloc_ops;
3515
3516         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3517         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3518         sit_i->written_valid_blocks = 0;
3519         sit_i->bitmap_size = bitmap_size;
3520         sit_i->dirty_sentries = 0;
3521         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3522         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3523         sit_i->mounted_time = ktime_get_real_seconds();
3524         init_rwsem(&sit_i->sentry_lock);
3525         return 0;
3526 }
3527
3528 static int build_free_segmap(struct f2fs_sb_info *sbi)
3529 {
3530         struct free_segmap_info *free_i;
3531         unsigned int bitmap_size, sec_bitmap_size;
3532
3533         /* allocate memory for free segmap information */
3534         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3535         if (!free_i)
3536                 return -ENOMEM;
3537
3538         SM_I(sbi)->free_info = free_i;
3539
3540         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3541         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3542         if (!free_i->free_segmap)
3543                 return -ENOMEM;
3544
3545         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3546         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3547         if (!free_i->free_secmap)
3548                 return -ENOMEM;
3549
3550         /* set all segments as dirty temporarily */
3551         memset(free_i->free_segmap, 0xff, bitmap_size);
3552         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3553
3554         /* init free segmap information */
3555         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3556         free_i->free_segments = 0;
3557         free_i->free_sections = 0;
3558         spin_lock_init(&free_i->segmap_lock);
3559         return 0;
3560 }
3561
3562 static int build_curseg(struct f2fs_sb_info *sbi)
3563 {
3564         struct curseg_info *array;
3565         int i;
3566
3567         array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3568         if (!array)
3569                 return -ENOMEM;
3570
3571         SM_I(sbi)->curseg_array = array;
3572
3573         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3574                 mutex_init(&array[i].curseg_mutex);
3575                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3576                 if (!array[i].sum_blk)
3577                         return -ENOMEM;
3578                 init_rwsem(&array[i].journal_rwsem);
3579                 array[i].journal = f2fs_kzalloc(sbi,
3580                                 sizeof(struct f2fs_journal), GFP_KERNEL);
3581                 if (!array[i].journal)
3582                         return -ENOMEM;
3583                 array[i].segno = NULL_SEGNO;
3584                 array[i].next_blkoff = 0;
3585         }
3586         return restore_curseg_summaries(sbi);
3587 }
3588
3589 static int build_sit_entries(struct f2fs_sb_info *sbi)
3590 {
3591         struct sit_info *sit_i = SIT_I(sbi);
3592         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3593         struct f2fs_journal *journal = curseg->journal;
3594         struct seg_entry *se;
3595         struct f2fs_sit_entry sit;
3596         int sit_blk_cnt = SIT_BLK_CNT(sbi);
3597         unsigned int i, start, end;
3598         unsigned int readed, start_blk = 0;
3599         int err = 0;
3600
3601         do {
3602                 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3603                                                         META_SIT, true);
3604
3605                 start = start_blk * sit_i->sents_per_block;
3606                 end = (start_blk + readed) * sit_i->sents_per_block;
3607
3608                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3609                         struct f2fs_sit_block *sit_blk;
3610                         struct page *page;
3611
3612                         se = &sit_i->sentries[start];
3613                         page = get_current_sit_page(sbi, start);
3614                         sit_blk = (struct f2fs_sit_block *)page_address(page);
3615                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3616                         f2fs_put_page(page, 1);
3617
3618                         err = check_block_count(sbi, start, &sit);
3619                         if (err)
3620                                 return err;
3621                         seg_info_from_raw_sit(se, &sit);
3622
3623                         /* build discard map only one time */
3624                         if (f2fs_discard_en(sbi)) {
3625                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3626                                         memset(se->discard_map, 0xff,
3627                                                 SIT_VBLOCK_MAP_SIZE);
3628                                 } else {
3629                                         memcpy(se->discard_map,
3630                                                 se->cur_valid_map,
3631                                                 SIT_VBLOCK_MAP_SIZE);
3632                                         sbi->discard_blks +=
3633                                                 sbi->blocks_per_seg -
3634                                                 se->valid_blocks;
3635                                 }
3636                         }
3637
3638                         if (sbi->segs_per_sec > 1)
3639                                 get_sec_entry(sbi, start)->valid_blocks +=
3640                                                         se->valid_blocks;
3641                 }
3642                 start_blk += readed;
3643         } while (start_blk < sit_blk_cnt);
3644
3645         down_read(&curseg->journal_rwsem);
3646         for (i = 0; i < sits_in_cursum(journal); i++) {
3647                 unsigned int old_valid_blocks;
3648
3649                 start = le32_to_cpu(segno_in_journal(journal, i));
3650                 se = &sit_i->sentries[start];
3651                 sit = sit_in_journal(journal, i);
3652
3653                 old_valid_blocks = se->valid_blocks;
3654
3655                 err = check_block_count(sbi, start, &sit);
3656                 if (err)
3657                         break;
3658                 seg_info_from_raw_sit(se, &sit);
3659
3660                 if (f2fs_discard_en(sbi)) {
3661                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3662                                 memset(se->discard_map, 0xff,
3663                                                         SIT_VBLOCK_MAP_SIZE);
3664                         } else {
3665                                 memcpy(se->discard_map, se->cur_valid_map,
3666                                                         SIT_VBLOCK_MAP_SIZE);
3667                                 sbi->discard_blks += old_valid_blocks -
3668                                                         se->valid_blocks;
3669                         }
3670                 }
3671
3672                 if (sbi->segs_per_sec > 1)
3673                         get_sec_entry(sbi, start)->valid_blocks +=
3674                                 se->valid_blocks - old_valid_blocks;
3675         }
3676         up_read(&curseg->journal_rwsem);
3677         return err;
3678 }
3679
3680 static void init_free_segmap(struct f2fs_sb_info *sbi)
3681 {
3682         unsigned int start;
3683         int type;
3684
3685         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3686                 struct seg_entry *sentry = get_seg_entry(sbi, start);
3687                 if (!sentry->valid_blocks)
3688                         __set_free(sbi, start);
3689                 else
3690                         SIT_I(sbi)->written_valid_blocks +=
3691                                                 sentry->valid_blocks;
3692         }
3693
3694         /* set use the current segments */
3695         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3696                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3697                 __set_test_and_inuse(sbi, curseg_t->segno);
3698         }
3699 }
3700
3701 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3702 {
3703         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3704         struct free_segmap_info *free_i = FREE_I(sbi);
3705         unsigned int segno = 0, offset = 0;
3706         unsigned short valid_blocks;
3707
3708         while (1) {
3709                 /* find dirty segment based on free segmap */
3710                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3711                 if (segno >= MAIN_SEGS(sbi))
3712                         break;
3713                 offset = segno + 1;
3714                 valid_blocks = get_valid_blocks(sbi, segno, false);
3715                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3716                         continue;
3717                 if (valid_blocks > sbi->blocks_per_seg) {
3718                         f2fs_bug_on(sbi, 1);
3719                         continue;
3720                 }
3721                 mutex_lock(&dirty_i->seglist_lock);
3722                 __locate_dirty_segment(sbi, segno, DIRTY);
3723                 mutex_unlock(&dirty_i->seglist_lock);
3724         }
3725 }
3726
3727 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3728 {
3729         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3730         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3731
3732         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3733         if (!dirty_i->victim_secmap)
3734                 return -ENOMEM;
3735         return 0;
3736 }
3737
3738 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3739 {
3740         struct dirty_seglist_info *dirty_i;
3741         unsigned int bitmap_size, i;
3742
3743         /* allocate memory for dirty segments list information */
3744         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3745                                                                 GFP_KERNEL);
3746         if (!dirty_i)
3747                 return -ENOMEM;
3748
3749         SM_I(sbi)->dirty_info = dirty_i;
3750         mutex_init(&dirty_i->seglist_lock);
3751
3752         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3753
3754         for (i = 0; i < NR_DIRTY_TYPE; i++) {
3755                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3756                                                                 GFP_KERNEL);
3757                 if (!dirty_i->dirty_segmap[i])
3758                         return -ENOMEM;
3759         }
3760
3761         init_dirty_segmap(sbi);
3762         return init_victim_secmap(sbi);
3763 }
3764
3765 /*
3766  * Update min, max modified time for cost-benefit GC algorithm
3767  */
3768 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3769 {
3770         struct sit_info *sit_i = SIT_I(sbi);
3771         unsigned int segno;
3772
3773         down_write(&sit_i->sentry_lock);
3774
3775         sit_i->min_mtime = LLONG_MAX;
3776
3777         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3778                 unsigned int i;
3779                 unsigned long long mtime = 0;
3780
3781                 for (i = 0; i < sbi->segs_per_sec; i++)
3782                         mtime += get_seg_entry(sbi, segno + i)->mtime;
3783
3784                 mtime = div_u64(mtime, sbi->segs_per_sec);
3785
3786                 if (sit_i->min_mtime > mtime)
3787                         sit_i->min_mtime = mtime;
3788         }
3789         sit_i->max_mtime = get_mtime(sbi);
3790         up_write(&sit_i->sentry_lock);
3791 }
3792
3793 int build_segment_manager(struct f2fs_sb_info *sbi)
3794 {
3795         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3796         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3797         struct f2fs_sm_info *sm_info;
3798         int err;
3799
3800         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3801         if (!sm_info)
3802                 return -ENOMEM;
3803
3804         /* init sm info */
3805         sbi->sm_info = sm_info;
3806         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3807         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3808         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3809         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3810         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3811         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3812         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3813         sm_info->rec_prefree_segments = sm_info->main_segments *
3814                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3815         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3816                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3817
3818         if (!test_opt(sbi, LFS))
3819                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3820         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3821         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3822         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3823         sm_info->min_ssr_sections = reserved_sections(sbi);
3824
3825         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3826
3827         INIT_LIST_HEAD(&sm_info->sit_entry_set);
3828
3829         init_rwsem(&sm_info->curseg_lock);
3830
3831         if (!f2fs_readonly(sbi->sb)) {
3832                 err = create_flush_cmd_control(sbi);
3833                 if (err)
3834                         return err;
3835         }
3836
3837         err = create_discard_cmd_control(sbi);
3838         if (err)
3839                 return err;
3840
3841         err = build_sit_info(sbi);
3842         if (err)
3843                 return err;
3844         err = build_free_segmap(sbi);
3845         if (err)
3846                 return err;
3847         err = build_curseg(sbi);
3848         if (err)
3849                 return err;
3850
3851         /* reinit free segmap based on SIT */
3852         err = build_sit_entries(sbi);
3853         if (err)
3854                 return err;
3855
3856         init_free_segmap(sbi);
3857         err = build_dirty_segmap(sbi);
3858         if (err)
3859                 return err;
3860
3861         init_min_max_mtime(sbi);
3862         return 0;
3863 }
3864
3865 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3866                 enum dirty_type dirty_type)
3867 {
3868         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3869
3870         mutex_lock(&dirty_i->seglist_lock);
3871         kvfree(dirty_i->dirty_segmap[dirty_type]);
3872         dirty_i->nr_dirty[dirty_type] = 0;
3873         mutex_unlock(&dirty_i->seglist_lock);
3874 }
3875
3876 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3877 {
3878         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3879         kvfree(dirty_i->victim_secmap);
3880 }
3881
3882 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3883 {
3884         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3885         int i;
3886
3887         if (!dirty_i)
3888                 return;
3889
3890         /* discard pre-free/dirty segments list */
3891         for (i = 0; i < NR_DIRTY_TYPE; i++)
3892                 discard_dirty_segmap(sbi, i);
3893
3894         destroy_victim_secmap(sbi);
3895         SM_I(sbi)->dirty_info = NULL;
3896         kfree(dirty_i);
3897 }
3898
3899 static void destroy_curseg(struct f2fs_sb_info *sbi)
3900 {
3901         struct curseg_info *array = SM_I(sbi)->curseg_array;
3902         int i;
3903
3904         if (!array)
3905                 return;
3906         SM_I(sbi)->curseg_array = NULL;
3907         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3908                 kfree(array[i].sum_blk);
3909                 kfree(array[i].journal);
3910         }
3911         kfree(array);
3912 }
3913
3914 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3915 {
3916         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3917         if (!free_i)
3918                 return;
3919         SM_I(sbi)->free_info = NULL;
3920         kvfree(free_i->free_segmap);
3921         kvfree(free_i->free_secmap);
3922         kfree(free_i);
3923 }
3924
3925 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3926 {
3927         struct sit_info *sit_i = SIT_I(sbi);
3928         unsigned int start;
3929
3930         if (!sit_i)
3931                 return;
3932
3933         if (sit_i->sentries) {
3934                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3935                         kfree(sit_i->sentries[start].cur_valid_map);
3936 #ifdef CONFIG_F2FS_CHECK_FS
3937                         kfree(sit_i->sentries[start].cur_valid_map_mir);
3938 #endif
3939                         kfree(sit_i->sentries[start].ckpt_valid_map);
3940                         kfree(sit_i->sentries[start].discard_map);
3941                 }
3942         }
3943         kfree(sit_i->tmp_map);
3944
3945         kvfree(sit_i->sentries);
3946         kvfree(sit_i->sec_entries);
3947         kvfree(sit_i->dirty_sentries_bitmap);
3948
3949         SM_I(sbi)->sit_info = NULL;
3950         kfree(sit_i->sit_bitmap);
3951 #ifdef CONFIG_F2FS_CHECK_FS
3952         kfree(sit_i->sit_bitmap_mir);
3953 #endif
3954         kfree(sit_i);
3955 }
3956
3957 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3958 {
3959         struct f2fs_sm_info *sm_info = SM_I(sbi);
3960
3961         if (!sm_info)
3962                 return;
3963         destroy_flush_cmd_control(sbi, true);
3964         destroy_discard_cmd_control(sbi);
3965         destroy_dirty_segmap(sbi);
3966         destroy_curseg(sbi);
3967         destroy_free_segmap(sbi);
3968         destroy_sit_info(sbi);
3969         sbi->sm_info = NULL;
3970         kfree(sm_info);
3971 }
3972
3973 int __init create_segment_manager_caches(void)
3974 {
3975         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3976                         sizeof(struct discard_entry));
3977         if (!discard_entry_slab)
3978                 goto fail;
3979
3980         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3981                         sizeof(struct discard_cmd));
3982         if (!discard_cmd_slab)
3983                 goto destroy_discard_entry;
3984
3985         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3986                         sizeof(struct sit_entry_set));
3987         if (!sit_entry_set_slab)
3988                 goto destroy_discard_cmd;
3989
3990         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3991                         sizeof(struct inmem_pages));
3992         if (!inmem_entry_slab)
3993                 goto destroy_sit_entry_set;
3994         return 0;
3995
3996 destroy_sit_entry_set:
3997         kmem_cache_destroy(sit_entry_set_slab);
3998 destroy_discard_cmd:
3999         kmem_cache_destroy(discard_cmd_slab);
4000 destroy_discard_entry:
4001         kmem_cache_destroy(discard_entry_slab);
4002 fail:
4003         return -ENOMEM;
4004 }
4005
4006 void destroy_segment_manager_caches(void)
4007 {
4008         kmem_cache_destroy(sit_entry_set_slab);
4009         kmem_cache_destroy(discard_cmd_slab);
4010         kmem_cache_destroy(discard_entry_slab);
4011         kmem_cache_destroy(inmem_entry_slab);
4012 }