f2fs: reassign new segment for mode=lfs
[linux-2.6-block.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171         struct f2fs_inode_info *fi = F2FS_I(inode);
172         struct inmem_pages *new;
173
174         f2fs_trace_pid(page);
175
176         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177         SetPagePrivate(page);
178
179         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181         /* add atomic page indices to the list */
182         new->page = page;
183         INIT_LIST_HEAD(&new->list);
184
185         /* increase reference count with clean state */
186         mutex_lock(&fi->inmem_lock);
187         get_page(page);
188         list_add_tail(&new->list, &fi->inmem_pages);
189         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190         mutex_unlock(&fi->inmem_lock);
191
192         trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196                                 struct list_head *head, bool drop, bool recover)
197 {
198         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199         struct inmem_pages *cur, *tmp;
200         int err = 0;
201
202         list_for_each_entry_safe(cur, tmp, head, list) {
203                 struct page *page = cur->page;
204
205                 if (drop)
206                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208                 lock_page(page);
209
210                 if (recover) {
211                         struct dnode_of_data dn;
212                         struct node_info ni;
213
214                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216                         set_new_dnode(&dn, inode, NULL, NULL, 0);
217                         if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218                                 err = -EAGAIN;
219                                 goto next;
220                         }
221                         get_node_info(sbi, dn.nid, &ni);
222                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223                                         cur->old_addr, ni.version, true, true);
224                         f2fs_put_dnode(&dn);
225                 }
226 next:
227                 /* we don't need to invalidate this in the sccessful status */
228                 if (drop || recover)
229                         ClearPageUptodate(page);
230                 set_page_private(page, 0);
231                 ClearPagePrivate(page);
232                 f2fs_put_page(page, 1);
233
234                 list_del(&cur->list);
235                 kmem_cache_free(inmem_entry_slab, cur);
236                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237         }
238         return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243         struct f2fs_inode_info *fi = F2FS_I(inode);
244
245         clear_inode_flag(inode, FI_ATOMIC_FILE);
246
247         mutex_lock(&fi->inmem_lock);
248         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249         mutex_unlock(&fi->inmem_lock);
250 }
251
252 static int __commit_inmem_pages(struct inode *inode,
253                                         struct list_head *revoke_list)
254 {
255         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256         struct f2fs_inode_info *fi = F2FS_I(inode);
257         struct inmem_pages *cur, *tmp;
258         struct f2fs_io_info fio = {
259                 .sbi = sbi,
260                 .type = DATA,
261                 .op = REQ_OP_WRITE,
262                 .op_flags = REQ_SYNC | REQ_PRIO,
263                 .encrypted_page = NULL,
264         };
265         bool submit_bio = false;
266         int err = 0;
267
268         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269                 struct page *page = cur->page;
270
271                 lock_page(page);
272                 if (page->mapping == inode->i_mapping) {
273                         trace_f2fs_commit_inmem_page(page, INMEM);
274
275                         set_page_dirty(page);
276                         f2fs_wait_on_page_writeback(page, DATA, true);
277                         if (clear_page_dirty_for_io(page)) {
278                                 inode_dec_dirty_pages(inode);
279                                 remove_dirty_inode(inode);
280                         }
281
282                         fio.page = page;
283                         err = do_write_data_page(&fio);
284                         if (err) {
285                                 unlock_page(page);
286                                 break;
287                         }
288
289                         /* record old blkaddr for revoking */
290                         cur->old_addr = fio.old_blkaddr;
291
292                         submit_bio = true;
293                 }
294                 unlock_page(page);
295                 list_move_tail(&cur->list, revoke_list);
296         }
297
298         if (submit_bio)
299                 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
300
301         if (!err)
302                 __revoke_inmem_pages(inode, revoke_list, false, false);
303
304         return err;
305 }
306
307 int commit_inmem_pages(struct inode *inode)
308 {
309         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
310         struct f2fs_inode_info *fi = F2FS_I(inode);
311         struct list_head revoke_list;
312         int err;
313
314         INIT_LIST_HEAD(&revoke_list);
315         f2fs_balance_fs(sbi, true);
316         f2fs_lock_op(sbi);
317
318         mutex_lock(&fi->inmem_lock);
319         err = __commit_inmem_pages(inode, &revoke_list);
320         if (err) {
321                 int ret;
322                 /*
323                  * try to revoke all committed pages, but still we could fail
324                  * due to no memory or other reason, if that happened, EAGAIN
325                  * will be returned, which means in such case, transaction is
326                  * already not integrity, caller should use journal to do the
327                  * recovery or rewrite & commit last transaction. For other
328                  * error number, revoking was done by filesystem itself.
329                  */
330                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
331                 if (ret)
332                         err = ret;
333
334                 /* drop all uncommitted pages */
335                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
336         }
337         mutex_unlock(&fi->inmem_lock);
338
339         f2fs_unlock_op(sbi);
340         return err;
341 }
342
343 /*
344  * This function balances dirty node and dentry pages.
345  * In addition, it controls garbage collection.
346  */
347 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
348 {
349 #ifdef CONFIG_F2FS_FAULT_INJECTION
350         if (time_to_inject(sbi, FAULT_CHECKPOINT))
351                 f2fs_stop_checkpoint(sbi, false);
352 #endif
353
354         if (!need)
355                 return;
356
357         /* balance_fs_bg is able to be pending */
358         if (excess_cached_nats(sbi))
359                 f2fs_balance_fs_bg(sbi);
360
361         /*
362          * We should do GC or end up with checkpoint, if there are so many dirty
363          * dir/node pages without enough free segments.
364          */
365         if (has_not_enough_free_secs(sbi, 0, 0)) {
366                 mutex_lock(&sbi->gc_mutex);
367                 f2fs_gc(sbi, false, false);
368         }
369 }
370
371 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
372 {
373         /* try to shrink extent cache when there is no enough memory */
374         if (!available_free_memory(sbi, EXTENT_CACHE))
375                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
376
377         /* check the # of cached NAT entries */
378         if (!available_free_memory(sbi, NAT_ENTRIES))
379                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
380
381         if (!available_free_memory(sbi, FREE_NIDS))
382                 try_to_free_nids(sbi, MAX_FREE_NIDS);
383         else
384                 build_free_nids(sbi, false);
385
386         if (!is_idle(sbi))
387                 return;
388
389         /* checkpoint is the only way to shrink partial cached entries */
390         if (!available_free_memory(sbi, NAT_ENTRIES) ||
391                         !available_free_memory(sbi, INO_ENTRIES) ||
392                         excess_prefree_segs(sbi) ||
393                         excess_dirty_nats(sbi) ||
394                         f2fs_time_over(sbi, CP_TIME)) {
395                 if (test_opt(sbi, DATA_FLUSH)) {
396                         struct blk_plug plug;
397
398                         blk_start_plug(&plug);
399                         sync_dirty_inodes(sbi, FILE_INODE);
400                         blk_finish_plug(&plug);
401                 }
402                 f2fs_sync_fs(sbi->sb, true);
403                 stat_inc_bg_cp_count(sbi->stat_info);
404         }
405 }
406
407 static int __submit_flush_wait(struct block_device *bdev)
408 {
409         struct bio *bio = f2fs_bio_alloc(0);
410         int ret;
411
412         bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
413         bio->bi_bdev = bdev;
414         ret = submit_bio_wait(bio);
415         bio_put(bio);
416         return ret;
417 }
418
419 static int submit_flush_wait(struct f2fs_sb_info *sbi)
420 {
421         int ret = __submit_flush_wait(sbi->sb->s_bdev);
422         int i;
423
424         if (sbi->s_ndevs && !ret) {
425                 for (i = 1; i < sbi->s_ndevs; i++) {
426                         ret = __submit_flush_wait(FDEV(i).bdev);
427                         if (ret)
428                                 break;
429                 }
430         }
431         return ret;
432 }
433
434 static int issue_flush_thread(void *data)
435 {
436         struct f2fs_sb_info *sbi = data;
437         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
438         wait_queue_head_t *q = &fcc->flush_wait_queue;
439 repeat:
440         if (kthread_should_stop())
441                 return 0;
442
443         if (!llist_empty(&fcc->issue_list)) {
444                 struct flush_cmd *cmd, *next;
445                 int ret;
446
447                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
448                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
449
450                 ret = submit_flush_wait(sbi);
451                 llist_for_each_entry_safe(cmd, next,
452                                           fcc->dispatch_list, llnode) {
453                         cmd->ret = ret;
454                         complete(&cmd->wait);
455                 }
456                 fcc->dispatch_list = NULL;
457         }
458
459         wait_event_interruptible(*q,
460                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
461         goto repeat;
462 }
463
464 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
465 {
466         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
467         struct flush_cmd cmd;
468
469         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
470                                         test_opt(sbi, FLUSH_MERGE));
471
472         if (test_opt(sbi, NOBARRIER))
473                 return 0;
474
475         if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
476                 int ret;
477
478                 atomic_inc(&fcc->submit_flush);
479                 ret = submit_flush_wait(sbi);
480                 atomic_dec(&fcc->submit_flush);
481                 return ret;
482         }
483
484         init_completion(&cmd.wait);
485
486         atomic_inc(&fcc->submit_flush);
487         llist_add(&cmd.llnode, &fcc->issue_list);
488
489         if (!fcc->dispatch_list)
490                 wake_up(&fcc->flush_wait_queue);
491
492         if (fcc->f2fs_issue_flush) {
493                 wait_for_completion(&cmd.wait);
494                 atomic_dec(&fcc->submit_flush);
495         } else {
496                 llist_del_all(&fcc->issue_list);
497                 atomic_set(&fcc->submit_flush, 0);
498         }
499
500         return cmd.ret;
501 }
502
503 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
504 {
505         dev_t dev = sbi->sb->s_bdev->bd_dev;
506         struct flush_cmd_control *fcc;
507         int err = 0;
508
509         if (SM_I(sbi)->cmd_control_info) {
510                 fcc = SM_I(sbi)->cmd_control_info;
511                 goto init_thread;
512         }
513
514         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
515         if (!fcc)
516                 return -ENOMEM;
517         atomic_set(&fcc->submit_flush, 0);
518         init_waitqueue_head(&fcc->flush_wait_queue);
519         init_llist_head(&fcc->issue_list);
520         SM_I(sbi)->cmd_control_info = fcc;
521 init_thread:
522         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
523                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
524         if (IS_ERR(fcc->f2fs_issue_flush)) {
525                 err = PTR_ERR(fcc->f2fs_issue_flush);
526                 kfree(fcc);
527                 SM_I(sbi)->cmd_control_info = NULL;
528                 return err;
529         }
530
531         return err;
532 }
533
534 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
535 {
536         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
537
538         if (fcc && fcc->f2fs_issue_flush) {
539                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
540
541                 fcc->f2fs_issue_flush = NULL;
542                 kthread_stop(flush_thread);
543         }
544         if (free) {
545                 kfree(fcc);
546                 SM_I(sbi)->cmd_control_info = NULL;
547         }
548 }
549
550 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
551                 enum dirty_type dirty_type)
552 {
553         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
554
555         /* need not be added */
556         if (IS_CURSEG(sbi, segno))
557                 return;
558
559         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
560                 dirty_i->nr_dirty[dirty_type]++;
561
562         if (dirty_type == DIRTY) {
563                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
564                 enum dirty_type t = sentry->type;
565
566                 if (unlikely(t >= DIRTY)) {
567                         f2fs_bug_on(sbi, 1);
568                         return;
569                 }
570                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
571                         dirty_i->nr_dirty[t]++;
572         }
573 }
574
575 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
576                 enum dirty_type dirty_type)
577 {
578         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
579
580         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
581                 dirty_i->nr_dirty[dirty_type]--;
582
583         if (dirty_type == DIRTY) {
584                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
585                 enum dirty_type t = sentry->type;
586
587                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
588                         dirty_i->nr_dirty[t]--;
589
590                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
591                         clear_bit(GET_SECNO(sbi, segno),
592                                                 dirty_i->victim_secmap);
593         }
594 }
595
596 /*
597  * Should not occur error such as -ENOMEM.
598  * Adding dirty entry into seglist is not critical operation.
599  * If a given segment is one of current working segments, it won't be added.
600  */
601 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
602 {
603         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
604         unsigned short valid_blocks;
605
606         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
607                 return;
608
609         mutex_lock(&dirty_i->seglist_lock);
610
611         valid_blocks = get_valid_blocks(sbi, segno, 0);
612
613         if (valid_blocks == 0) {
614                 __locate_dirty_segment(sbi, segno, PRE);
615                 __remove_dirty_segment(sbi, segno, DIRTY);
616         } else if (valid_blocks < sbi->blocks_per_seg) {
617                 __locate_dirty_segment(sbi, segno, DIRTY);
618         } else {
619                 /* Recovery routine with SSR needs this */
620                 __remove_dirty_segment(sbi, segno, DIRTY);
621         }
622
623         mutex_unlock(&dirty_i->seglist_lock);
624 }
625
626 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
627                                                         struct bio *bio)
628 {
629         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
630         struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
631
632         INIT_LIST_HEAD(&be->list);
633         be->bio = bio;
634         init_completion(&be->event);
635         list_add_tail(&be->list, wait_list);
636
637         return be;
638 }
639
640 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
641 {
642         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
643         struct bio_entry *be, *tmp;
644
645         list_for_each_entry_safe(be, tmp, wait_list, list) {
646                 struct bio *bio = be->bio;
647                 int err;
648
649                 wait_for_completion_io(&be->event);
650                 err = be->error;
651                 if (err == -EOPNOTSUPP)
652                         err = 0;
653
654                 if (err)
655                         f2fs_msg(sbi->sb, KERN_INFO,
656                                 "Issue discard failed, ret: %d", err);
657
658                 bio_put(bio);
659                 list_del(&be->list);
660                 kmem_cache_free(bio_entry_slab, be);
661         }
662 }
663
664 static void f2fs_submit_bio_wait_endio(struct bio *bio)
665 {
666         struct bio_entry *be = (struct bio_entry *)bio->bi_private;
667
668         be->error = bio->bi_error;
669         complete(&be->event);
670 }
671
672 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
673 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
674                 struct block_device *bdev, block_t blkstart, block_t blklen)
675 {
676         struct bio *bio = NULL;
677         int err;
678
679         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
680
681         if (sbi->s_ndevs) {
682                 int devi = f2fs_target_device_index(sbi, blkstart);
683
684                 blkstart -= FDEV(devi).start_blk;
685         }
686         err = __blkdev_issue_discard(bdev,
687                                 SECTOR_FROM_BLOCK(blkstart),
688                                 SECTOR_FROM_BLOCK(blklen),
689                                 GFP_NOFS, 0, &bio);
690         if (!err && bio) {
691                 struct bio_entry *be = __add_bio_entry(sbi, bio);
692
693                 bio->bi_private = be;
694                 bio->bi_end_io = f2fs_submit_bio_wait_endio;
695                 bio->bi_opf |= REQ_SYNC;
696                 submit_bio(bio);
697         }
698
699         return err;
700 }
701
702 #ifdef CONFIG_BLK_DEV_ZONED
703 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
704                 struct block_device *bdev, block_t blkstart, block_t blklen)
705 {
706         sector_t nr_sects = SECTOR_FROM_BLOCK(blklen);
707         sector_t sector;
708         int devi = 0;
709
710         if (sbi->s_ndevs) {
711                 devi = f2fs_target_device_index(sbi, blkstart);
712                 blkstart -= FDEV(devi).start_blk;
713         }
714         sector = SECTOR_FROM_BLOCK(blkstart);
715
716         if (sector & (bdev_zone_sectors(bdev) - 1) ||
717             nr_sects != bdev_zone_sectors(bdev)) {
718                 f2fs_msg(sbi->sb, KERN_INFO,
719                         "(%d) %s: Unaligned discard attempted (block %x + %x)",
720                         devi, sbi->s_ndevs ? FDEV(devi).path: "",
721                         blkstart, blklen);
722                 return -EIO;
723         }
724
725         /*
726          * We need to know the type of the zone: for conventional zones,
727          * use regular discard if the drive supports it. For sequential
728          * zones, reset the zone write pointer.
729          */
730         switch (get_blkz_type(sbi, bdev, blkstart)) {
731
732         case BLK_ZONE_TYPE_CONVENTIONAL:
733                 if (!blk_queue_discard(bdev_get_queue(bdev)))
734                         return 0;
735                 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
736         case BLK_ZONE_TYPE_SEQWRITE_REQ:
737         case BLK_ZONE_TYPE_SEQWRITE_PREF:
738                 trace_f2fs_issue_reset_zone(sbi->sb, blkstart);
739                 return blkdev_reset_zones(bdev, sector,
740                                           nr_sects, GFP_NOFS);
741         default:
742                 /* Unknown zone type: broken device ? */
743                 return -EIO;
744         }
745 }
746 #endif
747
748 static int __issue_discard_async(struct f2fs_sb_info *sbi,
749                 struct block_device *bdev, block_t blkstart, block_t blklen)
750 {
751 #ifdef CONFIG_BLK_DEV_ZONED
752         if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
753                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
754                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
755 #endif
756         return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
757 }
758
759 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
760                                 block_t blkstart, block_t blklen)
761 {
762         sector_t start = blkstart, len = 0;
763         struct block_device *bdev;
764         struct seg_entry *se;
765         unsigned int offset;
766         block_t i;
767         int err = 0;
768
769         bdev = f2fs_target_device(sbi, blkstart, NULL);
770
771         for (i = blkstart; i < blkstart + blklen; i++, len++) {
772                 if (i != start) {
773                         struct block_device *bdev2 =
774                                 f2fs_target_device(sbi, i, NULL);
775
776                         if (bdev2 != bdev) {
777                                 err = __issue_discard_async(sbi, bdev,
778                                                 start, len);
779                                 if (err)
780                                         return err;
781                                 bdev = bdev2;
782                                 start = i;
783                                 len = 0;
784                         }
785                 }
786
787                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
788                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
789
790                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
791                         sbi->discard_blks--;
792         }
793
794         if (len)
795                 err = __issue_discard_async(sbi, bdev, start, len);
796         return err;
797 }
798
799 static void __add_discard_entry(struct f2fs_sb_info *sbi,
800                 struct cp_control *cpc, struct seg_entry *se,
801                 unsigned int start, unsigned int end)
802 {
803         struct list_head *head = &SM_I(sbi)->discard_list;
804         struct discard_entry *new, *last;
805
806         if (!list_empty(head)) {
807                 last = list_last_entry(head, struct discard_entry, list);
808                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
809                                                 last->blkaddr + last->len) {
810                         last->len += end - start;
811                         goto done;
812                 }
813         }
814
815         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
816         INIT_LIST_HEAD(&new->list);
817         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
818         new->len = end - start;
819         list_add_tail(&new->list, head);
820 done:
821         SM_I(sbi)->nr_discards += end - start;
822 }
823
824 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
825 {
826         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
827         int max_blocks = sbi->blocks_per_seg;
828         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
829         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
830         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
831         unsigned long *discard_map = (unsigned long *)se->discard_map;
832         unsigned long *dmap = SIT_I(sbi)->tmp_map;
833         unsigned int start = 0, end = -1;
834         bool force = (cpc->reason == CP_DISCARD);
835         int i;
836
837         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
838                 return;
839
840         if (!force) {
841                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
842                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
843                         return;
844         }
845
846         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
847         for (i = 0; i < entries; i++)
848                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
849                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
850
851         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
852                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
853                 if (start >= max_blocks)
854                         break;
855
856                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
857                 if (force && start && end != max_blocks
858                                         && (end - start) < cpc->trim_minlen)
859                         continue;
860
861                 __add_discard_entry(sbi, cpc, se, start, end);
862         }
863 }
864
865 void release_discard_addrs(struct f2fs_sb_info *sbi)
866 {
867         struct list_head *head = &(SM_I(sbi)->discard_list);
868         struct discard_entry *entry, *this;
869
870         /* drop caches */
871         list_for_each_entry_safe(entry, this, head, list) {
872                 list_del(&entry->list);
873                 kmem_cache_free(discard_entry_slab, entry);
874         }
875 }
876
877 /*
878  * Should call clear_prefree_segments after checkpoint is done.
879  */
880 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
881 {
882         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883         unsigned int segno;
884
885         mutex_lock(&dirty_i->seglist_lock);
886         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
887                 __set_test_and_free(sbi, segno);
888         mutex_unlock(&dirty_i->seglist_lock);
889 }
890
891 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
892 {
893         struct list_head *head = &(SM_I(sbi)->discard_list);
894         struct discard_entry *entry, *this;
895         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896         struct blk_plug plug;
897         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
898         unsigned int start = 0, end = -1;
899         unsigned int secno, start_segno;
900         bool force = (cpc->reason == CP_DISCARD);
901
902         blk_start_plug(&plug);
903
904         mutex_lock(&dirty_i->seglist_lock);
905
906         while (1) {
907                 int i;
908                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
909                 if (start >= MAIN_SEGS(sbi))
910                         break;
911                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
912                                                                 start + 1);
913
914                 for (i = start; i < end; i++)
915                         clear_bit(i, prefree_map);
916
917                 dirty_i->nr_dirty[PRE] -= end - start;
918
919                 if (!test_opt(sbi, DISCARD))
920                         continue;
921
922                 if (force && start >= cpc->trim_start &&
923                                         (end - 1) <= cpc->trim_end)
924                                 continue;
925
926                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
927                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
928                                 (end - start) << sbi->log_blocks_per_seg);
929                         continue;
930                 }
931 next:
932                 secno = GET_SECNO(sbi, start);
933                 start_segno = secno * sbi->segs_per_sec;
934                 if (!IS_CURSEC(sbi, secno) &&
935                         !get_valid_blocks(sbi, start, sbi->segs_per_sec))
936                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
937                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
938
939                 start = start_segno + sbi->segs_per_sec;
940                 if (start < end)
941                         goto next;
942         }
943         mutex_unlock(&dirty_i->seglist_lock);
944
945         /* send small discards */
946         list_for_each_entry_safe(entry, this, head, list) {
947                 if (force && entry->len < cpc->trim_minlen)
948                         goto skip;
949                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
950                 cpc->trimmed += entry->len;
951 skip:
952                 list_del(&entry->list);
953                 SM_I(sbi)->nr_discards -= entry->len;
954                 kmem_cache_free(discard_entry_slab, entry);
955         }
956
957         blk_finish_plug(&plug);
958 }
959
960 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
961 {
962         struct sit_info *sit_i = SIT_I(sbi);
963
964         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
965                 sit_i->dirty_sentries++;
966                 return false;
967         }
968
969         return true;
970 }
971
972 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
973                                         unsigned int segno, int modified)
974 {
975         struct seg_entry *se = get_seg_entry(sbi, segno);
976         se->type = type;
977         if (modified)
978                 __mark_sit_entry_dirty(sbi, segno);
979 }
980
981 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
982 {
983         struct seg_entry *se;
984         unsigned int segno, offset;
985         long int new_vblocks;
986
987         segno = GET_SEGNO(sbi, blkaddr);
988
989         se = get_seg_entry(sbi, segno);
990         new_vblocks = se->valid_blocks + del;
991         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
992
993         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
994                                 (new_vblocks > sbi->blocks_per_seg)));
995
996         se->valid_blocks = new_vblocks;
997         se->mtime = get_mtime(sbi);
998         SIT_I(sbi)->max_mtime = se->mtime;
999
1000         /* Update valid block bitmap */
1001         if (del > 0) {
1002                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
1003                         f2fs_bug_on(sbi, 1);
1004                 if (f2fs_discard_en(sbi) &&
1005                         !f2fs_test_and_set_bit(offset, se->discard_map))
1006                         sbi->discard_blks--;
1007         } else {
1008                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
1009                         f2fs_bug_on(sbi, 1);
1010                 if (f2fs_discard_en(sbi) &&
1011                         f2fs_test_and_clear_bit(offset, se->discard_map))
1012                         sbi->discard_blks++;
1013         }
1014         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1015                 se->ckpt_valid_blocks += del;
1016
1017         __mark_sit_entry_dirty(sbi, segno);
1018
1019         /* update total number of valid blocks to be written in ckpt area */
1020         SIT_I(sbi)->written_valid_blocks += del;
1021
1022         if (sbi->segs_per_sec > 1)
1023                 get_sec_entry(sbi, segno)->valid_blocks += del;
1024 }
1025
1026 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1027 {
1028         update_sit_entry(sbi, new, 1);
1029         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1030                 update_sit_entry(sbi, old, -1);
1031
1032         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1033         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1034 }
1035
1036 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1037 {
1038         unsigned int segno = GET_SEGNO(sbi, addr);
1039         struct sit_info *sit_i = SIT_I(sbi);
1040
1041         f2fs_bug_on(sbi, addr == NULL_ADDR);
1042         if (addr == NEW_ADDR)
1043                 return;
1044
1045         /* add it into sit main buffer */
1046         mutex_lock(&sit_i->sentry_lock);
1047
1048         update_sit_entry(sbi, addr, -1);
1049
1050         /* add it into dirty seglist */
1051         locate_dirty_segment(sbi, segno);
1052
1053         mutex_unlock(&sit_i->sentry_lock);
1054 }
1055
1056 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1057 {
1058         struct sit_info *sit_i = SIT_I(sbi);
1059         unsigned int segno, offset;
1060         struct seg_entry *se;
1061         bool is_cp = false;
1062
1063         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1064                 return true;
1065
1066         mutex_lock(&sit_i->sentry_lock);
1067
1068         segno = GET_SEGNO(sbi, blkaddr);
1069         se = get_seg_entry(sbi, segno);
1070         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1071
1072         if (f2fs_test_bit(offset, se->ckpt_valid_map))
1073                 is_cp = true;
1074
1075         mutex_unlock(&sit_i->sentry_lock);
1076
1077         return is_cp;
1078 }
1079
1080 /*
1081  * This function should be resided under the curseg_mutex lock
1082  */
1083 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1084                                         struct f2fs_summary *sum)
1085 {
1086         struct curseg_info *curseg = CURSEG_I(sbi, type);
1087         void *addr = curseg->sum_blk;
1088         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1089         memcpy(addr, sum, sizeof(struct f2fs_summary));
1090 }
1091
1092 /*
1093  * Calculate the number of current summary pages for writing
1094  */
1095 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1096 {
1097         int valid_sum_count = 0;
1098         int i, sum_in_page;
1099
1100         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1101                 if (sbi->ckpt->alloc_type[i] == SSR)
1102                         valid_sum_count += sbi->blocks_per_seg;
1103                 else {
1104                         if (for_ra)
1105                                 valid_sum_count += le16_to_cpu(
1106                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1107                         else
1108                                 valid_sum_count += curseg_blkoff(sbi, i);
1109                 }
1110         }
1111
1112         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1113                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1114         if (valid_sum_count <= sum_in_page)
1115                 return 1;
1116         else if ((valid_sum_count - sum_in_page) <=
1117                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1118                 return 2;
1119         return 3;
1120 }
1121
1122 /*
1123  * Caller should put this summary page
1124  */
1125 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1126 {
1127         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1128 }
1129
1130 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1131 {
1132         struct page *page = grab_meta_page(sbi, blk_addr);
1133         void *dst = page_address(page);
1134
1135         if (src)
1136                 memcpy(dst, src, PAGE_SIZE);
1137         else
1138                 memset(dst, 0, PAGE_SIZE);
1139         set_page_dirty(page);
1140         f2fs_put_page(page, 1);
1141 }
1142
1143 static void write_sum_page(struct f2fs_sb_info *sbi,
1144                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
1145 {
1146         update_meta_page(sbi, (void *)sum_blk, blk_addr);
1147 }
1148
1149 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1150                                                 int type, block_t blk_addr)
1151 {
1152         struct curseg_info *curseg = CURSEG_I(sbi, type);
1153         struct page *page = grab_meta_page(sbi, blk_addr);
1154         struct f2fs_summary_block *src = curseg->sum_blk;
1155         struct f2fs_summary_block *dst;
1156
1157         dst = (struct f2fs_summary_block *)page_address(page);
1158
1159         mutex_lock(&curseg->curseg_mutex);
1160
1161         down_read(&curseg->journal_rwsem);
1162         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1163         up_read(&curseg->journal_rwsem);
1164
1165         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1166         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1167
1168         mutex_unlock(&curseg->curseg_mutex);
1169
1170         set_page_dirty(page);
1171         f2fs_put_page(page, 1);
1172 }
1173
1174 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1175 {
1176         struct curseg_info *curseg = CURSEG_I(sbi, type);
1177         unsigned int segno = curseg->segno + 1;
1178         struct free_segmap_info *free_i = FREE_I(sbi);
1179
1180         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1181                 return !test_bit(segno, free_i->free_segmap);
1182         return 0;
1183 }
1184
1185 /*
1186  * Find a new segment from the free segments bitmap to right order
1187  * This function should be returned with success, otherwise BUG
1188  */
1189 static void get_new_segment(struct f2fs_sb_info *sbi,
1190                         unsigned int *newseg, bool new_sec, int dir)
1191 {
1192         struct free_segmap_info *free_i = FREE_I(sbi);
1193         unsigned int segno, secno, zoneno;
1194         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1195         unsigned int hint = *newseg / sbi->segs_per_sec;
1196         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1197         unsigned int left_start = hint;
1198         bool init = true;
1199         int go_left = 0;
1200         int i;
1201
1202         spin_lock(&free_i->segmap_lock);
1203
1204         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1205                 segno = find_next_zero_bit(free_i->free_segmap,
1206                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1207                 if (segno < (hint + 1) * sbi->segs_per_sec)
1208                         goto got_it;
1209         }
1210 find_other_zone:
1211         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1212         if (secno >= MAIN_SECS(sbi)) {
1213                 if (dir == ALLOC_RIGHT) {
1214                         secno = find_next_zero_bit(free_i->free_secmap,
1215                                                         MAIN_SECS(sbi), 0);
1216                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1217                 } else {
1218                         go_left = 1;
1219                         left_start = hint - 1;
1220                 }
1221         }
1222         if (go_left == 0)
1223                 goto skip_left;
1224
1225         while (test_bit(left_start, free_i->free_secmap)) {
1226                 if (left_start > 0) {
1227                         left_start--;
1228                         continue;
1229                 }
1230                 left_start = find_next_zero_bit(free_i->free_secmap,
1231                                                         MAIN_SECS(sbi), 0);
1232                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1233                 break;
1234         }
1235         secno = left_start;
1236 skip_left:
1237         hint = secno;
1238         segno = secno * sbi->segs_per_sec;
1239         zoneno = secno / sbi->secs_per_zone;
1240
1241         /* give up on finding another zone */
1242         if (!init)
1243                 goto got_it;
1244         if (sbi->secs_per_zone == 1)
1245                 goto got_it;
1246         if (zoneno == old_zoneno)
1247                 goto got_it;
1248         if (dir == ALLOC_LEFT) {
1249                 if (!go_left && zoneno + 1 >= total_zones)
1250                         goto got_it;
1251                 if (go_left && zoneno == 0)
1252                         goto got_it;
1253         }
1254         for (i = 0; i < NR_CURSEG_TYPE; i++)
1255                 if (CURSEG_I(sbi, i)->zone == zoneno)
1256                         break;
1257
1258         if (i < NR_CURSEG_TYPE) {
1259                 /* zone is in user, try another */
1260                 if (go_left)
1261                         hint = zoneno * sbi->secs_per_zone - 1;
1262                 else if (zoneno + 1 >= total_zones)
1263                         hint = 0;
1264                 else
1265                         hint = (zoneno + 1) * sbi->secs_per_zone;
1266                 init = false;
1267                 goto find_other_zone;
1268         }
1269 got_it:
1270         /* set it as dirty segment in free segmap */
1271         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1272         __set_inuse(sbi, segno);
1273         *newseg = segno;
1274         spin_unlock(&free_i->segmap_lock);
1275 }
1276
1277 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1278 {
1279         struct curseg_info *curseg = CURSEG_I(sbi, type);
1280         struct summary_footer *sum_footer;
1281
1282         curseg->segno = curseg->next_segno;
1283         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1284         curseg->next_blkoff = 0;
1285         curseg->next_segno = NULL_SEGNO;
1286
1287         sum_footer = &(curseg->sum_blk->footer);
1288         memset(sum_footer, 0, sizeof(struct summary_footer));
1289         if (IS_DATASEG(type))
1290                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1291         if (IS_NODESEG(type))
1292                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1293         __set_sit_entry_type(sbi, type, curseg->segno, modified);
1294 }
1295
1296 /*
1297  * Allocate a current working segment.
1298  * This function always allocates a free segment in LFS manner.
1299  */
1300 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1301 {
1302         struct curseg_info *curseg = CURSEG_I(sbi, type);
1303         unsigned int segno = curseg->segno;
1304         int dir = ALLOC_LEFT;
1305
1306         write_sum_page(sbi, curseg->sum_blk,
1307                                 GET_SUM_BLOCK(sbi, segno));
1308         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1309                 dir = ALLOC_RIGHT;
1310
1311         if (test_opt(sbi, NOHEAP))
1312                 dir = ALLOC_RIGHT;
1313
1314         get_new_segment(sbi, &segno, new_sec, dir);
1315         curseg->next_segno = segno;
1316         reset_curseg(sbi, type, 1);
1317         curseg->alloc_type = LFS;
1318 }
1319
1320 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1321                         struct curseg_info *seg, block_t start)
1322 {
1323         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1324         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1325         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1326         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1327         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1328         int i, pos;
1329
1330         for (i = 0; i < entries; i++)
1331                 target_map[i] = ckpt_map[i] | cur_map[i];
1332
1333         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1334
1335         seg->next_blkoff = pos;
1336 }
1337
1338 /*
1339  * If a segment is written by LFS manner, next block offset is just obtained
1340  * by increasing the current block offset. However, if a segment is written by
1341  * SSR manner, next block offset obtained by calling __next_free_blkoff
1342  */
1343 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1344                                 struct curseg_info *seg)
1345 {
1346         if (seg->alloc_type == SSR)
1347                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1348         else
1349                 seg->next_blkoff++;
1350 }
1351
1352 /*
1353  * This function always allocates a used segment(from dirty seglist) by SSR
1354  * manner, so it should recover the existing segment information of valid blocks
1355  */
1356 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1357 {
1358         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1359         struct curseg_info *curseg = CURSEG_I(sbi, type);
1360         unsigned int new_segno = curseg->next_segno;
1361         struct f2fs_summary_block *sum_node;
1362         struct page *sum_page;
1363
1364         write_sum_page(sbi, curseg->sum_blk,
1365                                 GET_SUM_BLOCK(sbi, curseg->segno));
1366         __set_test_and_inuse(sbi, new_segno);
1367
1368         mutex_lock(&dirty_i->seglist_lock);
1369         __remove_dirty_segment(sbi, new_segno, PRE);
1370         __remove_dirty_segment(sbi, new_segno, DIRTY);
1371         mutex_unlock(&dirty_i->seglist_lock);
1372
1373         reset_curseg(sbi, type, 1);
1374         curseg->alloc_type = SSR;
1375         __next_free_blkoff(sbi, curseg, 0);
1376
1377         if (reuse) {
1378                 sum_page = get_sum_page(sbi, new_segno);
1379                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1380                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1381                 f2fs_put_page(sum_page, 1);
1382         }
1383 }
1384
1385 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1386 {
1387         struct curseg_info *curseg = CURSEG_I(sbi, type);
1388         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1389
1390         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1391                 return v_ops->get_victim(sbi,
1392                                 &(curseg)->next_segno, BG_GC, type, SSR);
1393
1394         /* For data segments, let's do SSR more intensively */
1395         for (; type >= CURSEG_HOT_DATA; type--)
1396                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1397                                                 BG_GC, type, SSR))
1398                         return 1;
1399         return 0;
1400 }
1401
1402 /*
1403  * flush out current segment and replace it with new segment
1404  * This function should be returned with success, otherwise BUG
1405  */
1406 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1407                                                 int type, bool force)
1408 {
1409         struct curseg_info *curseg = CURSEG_I(sbi, type);
1410
1411         if (force)
1412                 new_curseg(sbi, type, true);
1413         else if (type == CURSEG_WARM_NODE)
1414                 new_curseg(sbi, type, false);
1415         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1416                 new_curseg(sbi, type, false);
1417         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1418                 change_curseg(sbi, type, true);
1419         else
1420                 new_curseg(sbi, type, false);
1421
1422         stat_inc_seg_type(sbi, curseg);
1423 }
1424
1425 void allocate_new_segments(struct f2fs_sb_info *sbi)
1426 {
1427         struct curseg_info *curseg;
1428         unsigned int old_segno;
1429         int i;
1430
1431         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1432                 curseg = CURSEG_I(sbi, i);
1433                 old_segno = curseg->segno;
1434                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1435                 locate_dirty_segment(sbi, old_segno);
1436         }
1437 }
1438
1439 static const struct segment_allocation default_salloc_ops = {
1440         .allocate_segment = allocate_segment_by_default,
1441 };
1442
1443 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1444 {
1445         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1446         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1447         unsigned int start_segno, end_segno;
1448         struct cp_control cpc;
1449         int err = 0;
1450
1451         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1452                 return -EINVAL;
1453
1454         cpc.trimmed = 0;
1455         if (end <= MAIN_BLKADDR(sbi))
1456                 goto out;
1457
1458         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1459                 f2fs_msg(sbi->sb, KERN_WARNING,
1460                         "Found FS corruption, run fsck to fix.");
1461                 goto out;
1462         }
1463
1464         /* start/end segment number in main_area */
1465         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1466         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1467                                                 GET_SEGNO(sbi, end);
1468         cpc.reason = CP_DISCARD;
1469         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1470
1471         /* do checkpoint to issue discard commands safely */
1472         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1473                 cpc.trim_start = start_segno;
1474
1475                 if (sbi->discard_blks == 0)
1476                         break;
1477                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1478                         cpc.trim_end = end_segno;
1479                 else
1480                         cpc.trim_end = min_t(unsigned int,
1481                                 rounddown(start_segno +
1482                                 BATCHED_TRIM_SEGMENTS(sbi),
1483                                 sbi->segs_per_sec) - 1, end_segno);
1484
1485                 mutex_lock(&sbi->gc_mutex);
1486                 err = write_checkpoint(sbi, &cpc);
1487                 mutex_unlock(&sbi->gc_mutex);
1488                 if (err)
1489                         break;
1490
1491                 schedule();
1492         }
1493 out:
1494         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1495         return err;
1496 }
1497
1498 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1499 {
1500         struct curseg_info *curseg = CURSEG_I(sbi, type);
1501         if (curseg->next_blkoff < sbi->blocks_per_seg)
1502                 return true;
1503         return false;
1504 }
1505
1506 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1507 {
1508         if (p_type == DATA)
1509                 return CURSEG_HOT_DATA;
1510         else
1511                 return CURSEG_HOT_NODE;
1512 }
1513
1514 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1515 {
1516         if (p_type == DATA) {
1517                 struct inode *inode = page->mapping->host;
1518
1519                 if (S_ISDIR(inode->i_mode))
1520                         return CURSEG_HOT_DATA;
1521                 else
1522                         return CURSEG_COLD_DATA;
1523         } else {
1524                 if (IS_DNODE(page) && is_cold_node(page))
1525                         return CURSEG_WARM_NODE;
1526                 else
1527                         return CURSEG_COLD_NODE;
1528         }
1529 }
1530
1531 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1532 {
1533         if (p_type == DATA) {
1534                 struct inode *inode = page->mapping->host;
1535
1536                 if (S_ISDIR(inode->i_mode))
1537                         return CURSEG_HOT_DATA;
1538                 else if (is_cold_data(page) || file_is_cold(inode))
1539                         return CURSEG_COLD_DATA;
1540                 else
1541                         return CURSEG_WARM_DATA;
1542         } else {
1543                 if (IS_DNODE(page))
1544                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1545                                                 CURSEG_HOT_NODE;
1546                 else
1547                         return CURSEG_COLD_NODE;
1548         }
1549 }
1550
1551 static int __get_segment_type(struct page *page, enum page_type p_type)
1552 {
1553         switch (F2FS_P_SB(page)->active_logs) {
1554         case 2:
1555                 return __get_segment_type_2(page, p_type);
1556         case 4:
1557                 return __get_segment_type_4(page, p_type);
1558         }
1559         /* NR_CURSEG_TYPE(6) logs by default */
1560         f2fs_bug_on(F2FS_P_SB(page),
1561                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1562         return __get_segment_type_6(page, p_type);
1563 }
1564
1565 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1566                 block_t old_blkaddr, block_t *new_blkaddr,
1567                 struct f2fs_summary *sum, int type)
1568 {
1569         struct sit_info *sit_i = SIT_I(sbi);
1570         struct curseg_info *curseg = CURSEG_I(sbi, type);
1571
1572         mutex_lock(&curseg->curseg_mutex);
1573         mutex_lock(&sit_i->sentry_lock);
1574
1575         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1576
1577         /*
1578          * __add_sum_entry should be resided under the curseg_mutex
1579          * because, this function updates a summary entry in the
1580          * current summary block.
1581          */
1582         __add_sum_entry(sbi, type, sum);
1583
1584         __refresh_next_blkoff(sbi, curseg);
1585
1586         stat_inc_block_count(sbi, curseg);
1587
1588         if (!__has_curseg_space(sbi, type))
1589                 sit_i->s_ops->allocate_segment(sbi, type, false);
1590         /*
1591          * SIT information should be updated before segment allocation,
1592          * since SSR needs latest valid block information.
1593          */
1594         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1595
1596         mutex_unlock(&sit_i->sentry_lock);
1597
1598         if (page && IS_NODESEG(type))
1599                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1600
1601         mutex_unlock(&curseg->curseg_mutex);
1602 }
1603
1604 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1605 {
1606         int type = __get_segment_type(fio->page, fio->type);
1607
1608         if (fio->type == NODE || fio->type == DATA)
1609                 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1610
1611         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1612                                         &fio->new_blkaddr, sum, type);
1613
1614         /* writeout dirty page into bdev */
1615         f2fs_submit_page_mbio(fio);
1616
1617         if (fio->type == NODE || fio->type == DATA)
1618                 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1619 }
1620
1621 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1622 {
1623         struct f2fs_io_info fio = {
1624                 .sbi = sbi,
1625                 .type = META,
1626                 .op = REQ_OP_WRITE,
1627                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1628                 .old_blkaddr = page->index,
1629                 .new_blkaddr = page->index,
1630                 .page = page,
1631                 .encrypted_page = NULL,
1632         };
1633
1634         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1635                 fio.op_flags &= ~REQ_META;
1636
1637         set_page_writeback(page);
1638         f2fs_submit_page_mbio(&fio);
1639 }
1640
1641 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1642 {
1643         struct f2fs_summary sum;
1644
1645         set_summary(&sum, nid, 0, 0);
1646         do_write_page(&sum, fio);
1647 }
1648
1649 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1650 {
1651         struct f2fs_sb_info *sbi = fio->sbi;
1652         struct f2fs_summary sum;
1653         struct node_info ni;
1654
1655         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1656         get_node_info(sbi, dn->nid, &ni);
1657         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1658         do_write_page(&sum, fio);
1659         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1660 }
1661
1662 void rewrite_data_page(struct f2fs_io_info *fio)
1663 {
1664         fio->new_blkaddr = fio->old_blkaddr;
1665         stat_inc_inplace_blocks(fio->sbi);
1666         f2fs_submit_page_mbio(fio);
1667 }
1668
1669 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1670                                 block_t old_blkaddr, block_t new_blkaddr,
1671                                 bool recover_curseg, bool recover_newaddr)
1672 {
1673         struct sit_info *sit_i = SIT_I(sbi);
1674         struct curseg_info *curseg;
1675         unsigned int segno, old_cursegno;
1676         struct seg_entry *se;
1677         int type;
1678         unsigned short old_blkoff;
1679
1680         segno = GET_SEGNO(sbi, new_blkaddr);
1681         se = get_seg_entry(sbi, segno);
1682         type = se->type;
1683
1684         if (!recover_curseg) {
1685                 /* for recovery flow */
1686                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1687                         if (old_blkaddr == NULL_ADDR)
1688                                 type = CURSEG_COLD_DATA;
1689                         else
1690                                 type = CURSEG_WARM_DATA;
1691                 }
1692         } else {
1693                 if (!IS_CURSEG(sbi, segno))
1694                         type = CURSEG_WARM_DATA;
1695         }
1696
1697         curseg = CURSEG_I(sbi, type);
1698
1699         mutex_lock(&curseg->curseg_mutex);
1700         mutex_lock(&sit_i->sentry_lock);
1701
1702         old_cursegno = curseg->segno;
1703         old_blkoff = curseg->next_blkoff;
1704
1705         /* change the current segment */
1706         if (segno != curseg->segno) {
1707                 curseg->next_segno = segno;
1708                 change_curseg(sbi, type, true);
1709         }
1710
1711         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1712         __add_sum_entry(sbi, type, sum);
1713
1714         if (!recover_curseg || recover_newaddr)
1715                 update_sit_entry(sbi, new_blkaddr, 1);
1716         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1717                 update_sit_entry(sbi, old_blkaddr, -1);
1718
1719         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1720         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1721
1722         locate_dirty_segment(sbi, old_cursegno);
1723
1724         if (recover_curseg) {
1725                 if (old_cursegno != curseg->segno) {
1726                         curseg->next_segno = old_cursegno;
1727                         change_curseg(sbi, type, true);
1728                 }
1729                 curseg->next_blkoff = old_blkoff;
1730         }
1731
1732         mutex_unlock(&sit_i->sentry_lock);
1733         mutex_unlock(&curseg->curseg_mutex);
1734 }
1735
1736 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1737                                 block_t old_addr, block_t new_addr,
1738                                 unsigned char version, bool recover_curseg,
1739                                 bool recover_newaddr)
1740 {
1741         struct f2fs_summary sum;
1742
1743         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1744
1745         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1746                                         recover_curseg, recover_newaddr);
1747
1748         f2fs_update_data_blkaddr(dn, new_addr);
1749 }
1750
1751 void f2fs_wait_on_page_writeback(struct page *page,
1752                                 enum page_type type, bool ordered)
1753 {
1754         if (PageWriteback(page)) {
1755                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1756
1757                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1758                 if (ordered)
1759                         wait_on_page_writeback(page);
1760                 else
1761                         wait_for_stable_page(page);
1762         }
1763 }
1764
1765 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1766                                                         block_t blkaddr)
1767 {
1768         struct page *cpage;
1769
1770         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1771                 return;
1772
1773         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1774         if (cpage) {
1775                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1776                 f2fs_put_page(cpage, 1);
1777         }
1778 }
1779
1780 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1781 {
1782         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1783         struct curseg_info *seg_i;
1784         unsigned char *kaddr;
1785         struct page *page;
1786         block_t start;
1787         int i, j, offset;
1788
1789         start = start_sum_block(sbi);
1790
1791         page = get_meta_page(sbi, start++);
1792         kaddr = (unsigned char *)page_address(page);
1793
1794         /* Step 1: restore nat cache */
1795         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1796         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1797
1798         /* Step 2: restore sit cache */
1799         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1800         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1801         offset = 2 * SUM_JOURNAL_SIZE;
1802
1803         /* Step 3: restore summary entries */
1804         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1805                 unsigned short blk_off;
1806                 unsigned int segno;
1807
1808                 seg_i = CURSEG_I(sbi, i);
1809                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1810                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1811                 seg_i->next_segno = segno;
1812                 reset_curseg(sbi, i, 0);
1813                 seg_i->alloc_type = ckpt->alloc_type[i];
1814                 seg_i->next_blkoff = blk_off;
1815
1816                 if (seg_i->alloc_type == SSR)
1817                         blk_off = sbi->blocks_per_seg;
1818
1819                 for (j = 0; j < blk_off; j++) {
1820                         struct f2fs_summary *s;
1821                         s = (struct f2fs_summary *)(kaddr + offset);
1822                         seg_i->sum_blk->entries[j] = *s;
1823                         offset += SUMMARY_SIZE;
1824                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1825                                                 SUM_FOOTER_SIZE)
1826                                 continue;
1827
1828                         f2fs_put_page(page, 1);
1829                         page = NULL;
1830
1831                         page = get_meta_page(sbi, start++);
1832                         kaddr = (unsigned char *)page_address(page);
1833                         offset = 0;
1834                 }
1835         }
1836         f2fs_put_page(page, 1);
1837         return 0;
1838 }
1839
1840 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1841 {
1842         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1843         struct f2fs_summary_block *sum;
1844         struct curseg_info *curseg;
1845         struct page *new;
1846         unsigned short blk_off;
1847         unsigned int segno = 0;
1848         block_t blk_addr = 0;
1849
1850         /* get segment number and block addr */
1851         if (IS_DATASEG(type)) {
1852                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1853                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1854                                                         CURSEG_HOT_DATA]);
1855                 if (__exist_node_summaries(sbi))
1856                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1857                 else
1858                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1859         } else {
1860                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1861                                                         CURSEG_HOT_NODE]);
1862                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1863                                                         CURSEG_HOT_NODE]);
1864                 if (__exist_node_summaries(sbi))
1865                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1866                                                         type - CURSEG_HOT_NODE);
1867                 else
1868                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1869         }
1870
1871         new = get_meta_page(sbi, blk_addr);
1872         sum = (struct f2fs_summary_block *)page_address(new);
1873
1874         if (IS_NODESEG(type)) {
1875                 if (__exist_node_summaries(sbi)) {
1876                         struct f2fs_summary *ns = &sum->entries[0];
1877                         int i;
1878                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1879                                 ns->version = 0;
1880                                 ns->ofs_in_node = 0;
1881                         }
1882                 } else {
1883                         int err;
1884
1885                         err = restore_node_summary(sbi, segno, sum);
1886                         if (err) {
1887                                 f2fs_put_page(new, 1);
1888                                 return err;
1889                         }
1890                 }
1891         }
1892
1893         /* set uncompleted segment to curseg */
1894         curseg = CURSEG_I(sbi, type);
1895         mutex_lock(&curseg->curseg_mutex);
1896
1897         /* update journal info */
1898         down_write(&curseg->journal_rwsem);
1899         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1900         up_write(&curseg->journal_rwsem);
1901
1902         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1903         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1904         curseg->next_segno = segno;
1905         reset_curseg(sbi, type, 0);
1906         curseg->alloc_type = ckpt->alloc_type[type];
1907         curseg->next_blkoff = blk_off;
1908         mutex_unlock(&curseg->curseg_mutex);
1909         f2fs_put_page(new, 1);
1910         return 0;
1911 }
1912
1913 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1914 {
1915         int type = CURSEG_HOT_DATA;
1916         int err;
1917
1918         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1919                 int npages = npages_for_summary_flush(sbi, true);
1920
1921                 if (npages >= 2)
1922                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1923                                                         META_CP, true);
1924
1925                 /* restore for compacted data summary */
1926                 if (read_compacted_summaries(sbi))
1927                         return -EINVAL;
1928                 type = CURSEG_HOT_NODE;
1929         }
1930
1931         if (__exist_node_summaries(sbi))
1932                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1933                                         NR_CURSEG_TYPE - type, META_CP, true);
1934
1935         for (; type <= CURSEG_COLD_NODE; type++) {
1936                 err = read_normal_summaries(sbi, type);
1937                 if (err)
1938                         return err;
1939         }
1940
1941         return 0;
1942 }
1943
1944 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1945 {
1946         struct page *page;
1947         unsigned char *kaddr;
1948         struct f2fs_summary *summary;
1949         struct curseg_info *seg_i;
1950         int written_size = 0;
1951         int i, j;
1952
1953         page = grab_meta_page(sbi, blkaddr++);
1954         kaddr = (unsigned char *)page_address(page);
1955
1956         /* Step 1: write nat cache */
1957         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1958         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1959         written_size += SUM_JOURNAL_SIZE;
1960
1961         /* Step 2: write sit cache */
1962         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1963         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1964         written_size += SUM_JOURNAL_SIZE;
1965
1966         /* Step 3: write summary entries */
1967         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1968                 unsigned short blkoff;
1969                 seg_i = CURSEG_I(sbi, i);
1970                 if (sbi->ckpt->alloc_type[i] == SSR)
1971                         blkoff = sbi->blocks_per_seg;
1972                 else
1973                         blkoff = curseg_blkoff(sbi, i);
1974
1975                 for (j = 0; j < blkoff; j++) {
1976                         if (!page) {
1977                                 page = grab_meta_page(sbi, blkaddr++);
1978                                 kaddr = (unsigned char *)page_address(page);
1979                                 written_size = 0;
1980                         }
1981                         summary = (struct f2fs_summary *)(kaddr + written_size);
1982                         *summary = seg_i->sum_blk->entries[j];
1983                         written_size += SUMMARY_SIZE;
1984
1985                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1986                                                         SUM_FOOTER_SIZE)
1987                                 continue;
1988
1989                         set_page_dirty(page);
1990                         f2fs_put_page(page, 1);
1991                         page = NULL;
1992                 }
1993         }
1994         if (page) {
1995                 set_page_dirty(page);
1996                 f2fs_put_page(page, 1);
1997         }
1998 }
1999
2000 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2001                                         block_t blkaddr, int type)
2002 {
2003         int i, end;
2004         if (IS_DATASEG(type))
2005                 end = type + NR_CURSEG_DATA_TYPE;
2006         else
2007                 end = type + NR_CURSEG_NODE_TYPE;
2008
2009         for (i = type; i < end; i++)
2010                 write_current_sum_page(sbi, i, blkaddr + (i - type));
2011 }
2012
2013 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2014 {
2015         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2016                 write_compacted_summaries(sbi, start_blk);
2017         else
2018                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2019 }
2020
2021 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2022 {
2023         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2024 }
2025
2026 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2027                                         unsigned int val, int alloc)
2028 {
2029         int i;
2030
2031         if (type == NAT_JOURNAL) {
2032                 for (i = 0; i < nats_in_cursum(journal); i++) {
2033                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2034                                 return i;
2035                 }
2036                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2037                         return update_nats_in_cursum(journal, 1);
2038         } else if (type == SIT_JOURNAL) {
2039                 for (i = 0; i < sits_in_cursum(journal); i++)
2040                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2041                                 return i;
2042                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2043                         return update_sits_in_cursum(journal, 1);
2044         }
2045         return -1;
2046 }
2047
2048 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2049                                         unsigned int segno)
2050 {
2051         return get_meta_page(sbi, current_sit_addr(sbi, segno));
2052 }
2053
2054 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2055                                         unsigned int start)
2056 {
2057         struct sit_info *sit_i = SIT_I(sbi);
2058         struct page *src_page, *dst_page;
2059         pgoff_t src_off, dst_off;
2060         void *src_addr, *dst_addr;
2061
2062         src_off = current_sit_addr(sbi, start);
2063         dst_off = next_sit_addr(sbi, src_off);
2064
2065         /* get current sit block page without lock */
2066         src_page = get_meta_page(sbi, src_off);
2067         dst_page = grab_meta_page(sbi, dst_off);
2068         f2fs_bug_on(sbi, PageDirty(src_page));
2069
2070         src_addr = page_address(src_page);
2071         dst_addr = page_address(dst_page);
2072         memcpy(dst_addr, src_addr, PAGE_SIZE);
2073
2074         set_page_dirty(dst_page);
2075         f2fs_put_page(src_page, 1);
2076
2077         set_to_next_sit(sit_i, start);
2078
2079         return dst_page;
2080 }
2081
2082 static struct sit_entry_set *grab_sit_entry_set(void)
2083 {
2084         struct sit_entry_set *ses =
2085                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2086
2087         ses->entry_cnt = 0;
2088         INIT_LIST_HEAD(&ses->set_list);
2089         return ses;
2090 }
2091
2092 static void release_sit_entry_set(struct sit_entry_set *ses)
2093 {
2094         list_del(&ses->set_list);
2095         kmem_cache_free(sit_entry_set_slab, ses);
2096 }
2097
2098 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2099                                                 struct list_head *head)
2100 {
2101         struct sit_entry_set *next = ses;
2102
2103         if (list_is_last(&ses->set_list, head))
2104                 return;
2105
2106         list_for_each_entry_continue(next, head, set_list)
2107                 if (ses->entry_cnt <= next->entry_cnt)
2108                         break;
2109
2110         list_move_tail(&ses->set_list, &next->set_list);
2111 }
2112
2113 static void add_sit_entry(unsigned int segno, struct list_head *head)
2114 {
2115         struct sit_entry_set *ses;
2116         unsigned int start_segno = START_SEGNO(segno);
2117
2118         list_for_each_entry(ses, head, set_list) {
2119                 if (ses->start_segno == start_segno) {
2120                         ses->entry_cnt++;
2121                         adjust_sit_entry_set(ses, head);
2122                         return;
2123                 }
2124         }
2125
2126         ses = grab_sit_entry_set();
2127
2128         ses->start_segno = start_segno;
2129         ses->entry_cnt++;
2130         list_add(&ses->set_list, head);
2131 }
2132
2133 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2134 {
2135         struct f2fs_sm_info *sm_info = SM_I(sbi);
2136         struct list_head *set_list = &sm_info->sit_entry_set;
2137         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2138         unsigned int segno;
2139
2140         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2141                 add_sit_entry(segno, set_list);
2142 }
2143
2144 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2145 {
2146         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2147         struct f2fs_journal *journal = curseg->journal;
2148         int i;
2149
2150         down_write(&curseg->journal_rwsem);
2151         for (i = 0; i < sits_in_cursum(journal); i++) {
2152                 unsigned int segno;
2153                 bool dirtied;
2154
2155                 segno = le32_to_cpu(segno_in_journal(journal, i));
2156                 dirtied = __mark_sit_entry_dirty(sbi, segno);
2157
2158                 if (!dirtied)
2159                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2160         }
2161         update_sits_in_cursum(journal, -i);
2162         up_write(&curseg->journal_rwsem);
2163 }
2164
2165 /*
2166  * CP calls this function, which flushes SIT entries including sit_journal,
2167  * and moves prefree segs to free segs.
2168  */
2169 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2170 {
2171         struct sit_info *sit_i = SIT_I(sbi);
2172         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2173         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2174         struct f2fs_journal *journal = curseg->journal;
2175         struct sit_entry_set *ses, *tmp;
2176         struct list_head *head = &SM_I(sbi)->sit_entry_set;
2177         bool to_journal = true;
2178         struct seg_entry *se;
2179
2180         mutex_lock(&sit_i->sentry_lock);
2181
2182         if (!sit_i->dirty_sentries)
2183                 goto out;
2184
2185         /*
2186          * add and account sit entries of dirty bitmap in sit entry
2187          * set temporarily
2188          */
2189         add_sits_in_set(sbi);
2190
2191         /*
2192          * if there are no enough space in journal to store dirty sit
2193          * entries, remove all entries from journal and add and account
2194          * them in sit entry set.
2195          */
2196         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2197                 remove_sits_in_journal(sbi);
2198
2199         /*
2200          * there are two steps to flush sit entries:
2201          * #1, flush sit entries to journal in current cold data summary block.
2202          * #2, flush sit entries to sit page.
2203          */
2204         list_for_each_entry_safe(ses, tmp, head, set_list) {
2205                 struct page *page = NULL;
2206                 struct f2fs_sit_block *raw_sit = NULL;
2207                 unsigned int start_segno = ses->start_segno;
2208                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2209                                                 (unsigned long)MAIN_SEGS(sbi));
2210                 unsigned int segno = start_segno;
2211
2212                 if (to_journal &&
2213                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2214                         to_journal = false;
2215
2216                 if (to_journal) {
2217                         down_write(&curseg->journal_rwsem);
2218                 } else {
2219                         page = get_next_sit_page(sbi, start_segno);
2220                         raw_sit = page_address(page);
2221                 }
2222
2223                 /* flush dirty sit entries in region of current sit set */
2224                 for_each_set_bit_from(segno, bitmap, end) {
2225                         int offset, sit_offset;
2226
2227                         se = get_seg_entry(sbi, segno);
2228
2229                         /* add discard candidates */
2230                         if (cpc->reason != CP_DISCARD) {
2231                                 cpc->trim_start = segno;
2232                                 add_discard_addrs(sbi, cpc);
2233                         }
2234
2235                         if (to_journal) {
2236                                 offset = lookup_journal_in_cursum(journal,
2237                                                         SIT_JOURNAL, segno, 1);
2238                                 f2fs_bug_on(sbi, offset < 0);
2239                                 segno_in_journal(journal, offset) =
2240                                                         cpu_to_le32(segno);
2241                                 seg_info_to_raw_sit(se,
2242                                         &sit_in_journal(journal, offset));
2243                         } else {
2244                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2245                                 seg_info_to_raw_sit(se,
2246                                                 &raw_sit->entries[sit_offset]);
2247                         }
2248
2249                         __clear_bit(segno, bitmap);
2250                         sit_i->dirty_sentries--;
2251                         ses->entry_cnt--;
2252                 }
2253
2254                 if (to_journal)
2255                         up_write(&curseg->journal_rwsem);
2256                 else
2257                         f2fs_put_page(page, 1);
2258
2259                 f2fs_bug_on(sbi, ses->entry_cnt);
2260                 release_sit_entry_set(ses);
2261         }
2262
2263         f2fs_bug_on(sbi, !list_empty(head));
2264         f2fs_bug_on(sbi, sit_i->dirty_sentries);
2265 out:
2266         if (cpc->reason == CP_DISCARD) {
2267                 __u64 trim_start = cpc->trim_start;
2268
2269                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2270                         add_discard_addrs(sbi, cpc);
2271
2272                 cpc->trim_start = trim_start;
2273         }
2274         mutex_unlock(&sit_i->sentry_lock);
2275
2276         set_prefree_as_free_segments(sbi);
2277 }
2278
2279 static int build_sit_info(struct f2fs_sb_info *sbi)
2280 {
2281         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2282         struct sit_info *sit_i;
2283         unsigned int sit_segs, start;
2284         char *src_bitmap, *dst_bitmap;
2285         unsigned int bitmap_size;
2286
2287         /* allocate memory for SIT information */
2288         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2289         if (!sit_i)
2290                 return -ENOMEM;
2291
2292         SM_I(sbi)->sit_info = sit_i;
2293
2294         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2295                                         sizeof(struct seg_entry), GFP_KERNEL);
2296         if (!sit_i->sentries)
2297                 return -ENOMEM;
2298
2299         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2300         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2301         if (!sit_i->dirty_sentries_bitmap)
2302                 return -ENOMEM;
2303
2304         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2305                 sit_i->sentries[start].cur_valid_map
2306                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2307                 sit_i->sentries[start].ckpt_valid_map
2308                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2309                 if (!sit_i->sentries[start].cur_valid_map ||
2310                                 !sit_i->sentries[start].ckpt_valid_map)
2311                         return -ENOMEM;
2312
2313                 if (f2fs_discard_en(sbi)) {
2314                         sit_i->sentries[start].discard_map
2315                                 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2316                         if (!sit_i->sentries[start].discard_map)
2317                                 return -ENOMEM;
2318                 }
2319         }
2320
2321         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2322         if (!sit_i->tmp_map)
2323                 return -ENOMEM;
2324
2325         if (sbi->segs_per_sec > 1) {
2326                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2327                                         sizeof(struct sec_entry), GFP_KERNEL);
2328                 if (!sit_i->sec_entries)
2329                         return -ENOMEM;
2330         }
2331
2332         /* get information related with SIT */
2333         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2334
2335         /* setup SIT bitmap from ckeckpoint pack */
2336         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2337         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2338
2339         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2340         if (!dst_bitmap)
2341                 return -ENOMEM;
2342
2343         /* init SIT information */
2344         sit_i->s_ops = &default_salloc_ops;
2345
2346         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2347         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2348         sit_i->written_valid_blocks = 0;
2349         sit_i->sit_bitmap = dst_bitmap;
2350         sit_i->bitmap_size = bitmap_size;
2351         sit_i->dirty_sentries = 0;
2352         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2353         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2354         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2355         mutex_init(&sit_i->sentry_lock);
2356         return 0;
2357 }
2358
2359 static int build_free_segmap(struct f2fs_sb_info *sbi)
2360 {
2361         struct free_segmap_info *free_i;
2362         unsigned int bitmap_size, sec_bitmap_size;
2363
2364         /* allocate memory for free segmap information */
2365         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2366         if (!free_i)
2367                 return -ENOMEM;
2368
2369         SM_I(sbi)->free_info = free_i;
2370
2371         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2372         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2373         if (!free_i->free_segmap)
2374                 return -ENOMEM;
2375
2376         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2377         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2378         if (!free_i->free_secmap)
2379                 return -ENOMEM;
2380
2381         /* set all segments as dirty temporarily */
2382         memset(free_i->free_segmap, 0xff, bitmap_size);
2383         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2384
2385         /* init free segmap information */
2386         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2387         free_i->free_segments = 0;
2388         free_i->free_sections = 0;
2389         spin_lock_init(&free_i->segmap_lock);
2390         return 0;
2391 }
2392
2393 static int build_curseg(struct f2fs_sb_info *sbi)
2394 {
2395         struct curseg_info *array;
2396         int i;
2397
2398         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2399         if (!array)
2400                 return -ENOMEM;
2401
2402         SM_I(sbi)->curseg_array = array;
2403
2404         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2405                 mutex_init(&array[i].curseg_mutex);
2406                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2407                 if (!array[i].sum_blk)
2408                         return -ENOMEM;
2409                 init_rwsem(&array[i].journal_rwsem);
2410                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2411                                                         GFP_KERNEL);
2412                 if (!array[i].journal)
2413                         return -ENOMEM;
2414                 array[i].segno = NULL_SEGNO;
2415                 array[i].next_blkoff = 0;
2416         }
2417         return restore_curseg_summaries(sbi);
2418 }
2419
2420 static void build_sit_entries(struct f2fs_sb_info *sbi)
2421 {
2422         struct sit_info *sit_i = SIT_I(sbi);
2423         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2424         struct f2fs_journal *journal = curseg->journal;
2425         struct seg_entry *se;
2426         struct f2fs_sit_entry sit;
2427         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2428         unsigned int i, start, end;
2429         unsigned int readed, start_blk = 0;
2430
2431         do {
2432                 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2433                                                         META_SIT, true);
2434
2435                 start = start_blk * sit_i->sents_per_block;
2436                 end = (start_blk + readed) * sit_i->sents_per_block;
2437
2438                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2439                         struct f2fs_sit_block *sit_blk;
2440                         struct page *page;
2441
2442                         se = &sit_i->sentries[start];
2443                         page = get_current_sit_page(sbi, start);
2444                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2445                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2446                         f2fs_put_page(page, 1);
2447
2448                         check_block_count(sbi, start, &sit);
2449                         seg_info_from_raw_sit(se, &sit);
2450
2451                         /* build discard map only one time */
2452                         if (f2fs_discard_en(sbi)) {
2453                                 memcpy(se->discard_map, se->cur_valid_map,
2454                                                         SIT_VBLOCK_MAP_SIZE);
2455                                 sbi->discard_blks += sbi->blocks_per_seg -
2456                                                         se->valid_blocks;
2457                         }
2458
2459                         if (sbi->segs_per_sec > 1)
2460                                 get_sec_entry(sbi, start)->valid_blocks +=
2461                                                         se->valid_blocks;
2462                 }
2463                 start_blk += readed;
2464         } while (start_blk < sit_blk_cnt);
2465
2466         down_read(&curseg->journal_rwsem);
2467         for (i = 0; i < sits_in_cursum(journal); i++) {
2468                 unsigned int old_valid_blocks;
2469
2470                 start = le32_to_cpu(segno_in_journal(journal, i));
2471                 se = &sit_i->sentries[start];
2472                 sit = sit_in_journal(journal, i);
2473
2474                 old_valid_blocks = se->valid_blocks;
2475
2476                 check_block_count(sbi, start, &sit);
2477                 seg_info_from_raw_sit(se, &sit);
2478
2479                 if (f2fs_discard_en(sbi)) {
2480                         memcpy(se->discard_map, se->cur_valid_map,
2481                                                 SIT_VBLOCK_MAP_SIZE);
2482                         sbi->discard_blks += old_valid_blocks -
2483                                                 se->valid_blocks;
2484                 }
2485
2486                 if (sbi->segs_per_sec > 1)
2487                         get_sec_entry(sbi, start)->valid_blocks +=
2488                                 se->valid_blocks - old_valid_blocks;
2489         }
2490         up_read(&curseg->journal_rwsem);
2491 }
2492
2493 static void init_free_segmap(struct f2fs_sb_info *sbi)
2494 {
2495         unsigned int start;
2496         int type;
2497
2498         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2499                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2500                 if (!sentry->valid_blocks)
2501                         __set_free(sbi, start);
2502                 else
2503                         SIT_I(sbi)->written_valid_blocks +=
2504                                                 sentry->valid_blocks;
2505         }
2506
2507         /* set use the current segments */
2508         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2509                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2510                 __set_test_and_inuse(sbi, curseg_t->segno);
2511         }
2512 }
2513
2514 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2515 {
2516         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2517         struct free_segmap_info *free_i = FREE_I(sbi);
2518         unsigned int segno = 0, offset = 0;
2519         unsigned short valid_blocks;
2520
2521         while (1) {
2522                 /* find dirty segment based on free segmap */
2523                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2524                 if (segno >= MAIN_SEGS(sbi))
2525                         break;
2526                 offset = segno + 1;
2527                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2528                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2529                         continue;
2530                 if (valid_blocks > sbi->blocks_per_seg) {
2531                         f2fs_bug_on(sbi, 1);
2532                         continue;
2533                 }
2534                 mutex_lock(&dirty_i->seglist_lock);
2535                 __locate_dirty_segment(sbi, segno, DIRTY);
2536                 mutex_unlock(&dirty_i->seglist_lock);
2537         }
2538 }
2539
2540 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2541 {
2542         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2543         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2544
2545         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2546         if (!dirty_i->victim_secmap)
2547                 return -ENOMEM;
2548         return 0;
2549 }
2550
2551 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2552 {
2553         struct dirty_seglist_info *dirty_i;
2554         unsigned int bitmap_size, i;
2555
2556         /* allocate memory for dirty segments list information */
2557         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2558         if (!dirty_i)
2559                 return -ENOMEM;
2560
2561         SM_I(sbi)->dirty_info = dirty_i;
2562         mutex_init(&dirty_i->seglist_lock);
2563
2564         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2565
2566         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2567                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2568                 if (!dirty_i->dirty_segmap[i])
2569                         return -ENOMEM;
2570         }
2571
2572         init_dirty_segmap(sbi);
2573         return init_victim_secmap(sbi);
2574 }
2575
2576 /*
2577  * Update min, max modified time for cost-benefit GC algorithm
2578  */
2579 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2580 {
2581         struct sit_info *sit_i = SIT_I(sbi);
2582         unsigned int segno;
2583
2584         mutex_lock(&sit_i->sentry_lock);
2585
2586         sit_i->min_mtime = LLONG_MAX;
2587
2588         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2589                 unsigned int i;
2590                 unsigned long long mtime = 0;
2591
2592                 for (i = 0; i < sbi->segs_per_sec; i++)
2593                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2594
2595                 mtime = div_u64(mtime, sbi->segs_per_sec);
2596
2597                 if (sit_i->min_mtime > mtime)
2598                         sit_i->min_mtime = mtime;
2599         }
2600         sit_i->max_mtime = get_mtime(sbi);
2601         mutex_unlock(&sit_i->sentry_lock);
2602 }
2603
2604 int build_segment_manager(struct f2fs_sb_info *sbi)
2605 {
2606         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2607         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2608         struct f2fs_sm_info *sm_info;
2609         int err;
2610
2611         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2612         if (!sm_info)
2613                 return -ENOMEM;
2614
2615         /* init sm info */
2616         sbi->sm_info = sm_info;
2617         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2618         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2619         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2620         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2621         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2622         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2623         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2624         sm_info->rec_prefree_segments = sm_info->main_segments *
2625                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2626         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2627                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2628
2629         if (!test_opt(sbi, LFS))
2630                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2631         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2632         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2633
2634         INIT_LIST_HEAD(&sm_info->discard_list);
2635         INIT_LIST_HEAD(&sm_info->wait_list);
2636         sm_info->nr_discards = 0;
2637         sm_info->max_discards = 0;
2638
2639         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2640
2641         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2642
2643         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2644                 err = create_flush_cmd_control(sbi);
2645                 if (err)
2646                         return err;
2647         }
2648
2649         err = build_sit_info(sbi);
2650         if (err)
2651                 return err;
2652         err = build_free_segmap(sbi);
2653         if (err)
2654                 return err;
2655         err = build_curseg(sbi);
2656         if (err)
2657                 return err;
2658
2659         /* reinit free segmap based on SIT */
2660         build_sit_entries(sbi);
2661
2662         init_free_segmap(sbi);
2663         err = build_dirty_segmap(sbi);
2664         if (err)
2665                 return err;
2666
2667         init_min_max_mtime(sbi);
2668         return 0;
2669 }
2670
2671 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2672                 enum dirty_type dirty_type)
2673 {
2674         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2675
2676         mutex_lock(&dirty_i->seglist_lock);
2677         kvfree(dirty_i->dirty_segmap[dirty_type]);
2678         dirty_i->nr_dirty[dirty_type] = 0;
2679         mutex_unlock(&dirty_i->seglist_lock);
2680 }
2681
2682 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2683 {
2684         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2685         kvfree(dirty_i->victim_secmap);
2686 }
2687
2688 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2689 {
2690         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2691         int i;
2692
2693         if (!dirty_i)
2694                 return;
2695
2696         /* discard pre-free/dirty segments list */
2697         for (i = 0; i < NR_DIRTY_TYPE; i++)
2698                 discard_dirty_segmap(sbi, i);
2699
2700         destroy_victim_secmap(sbi);
2701         SM_I(sbi)->dirty_info = NULL;
2702         kfree(dirty_i);
2703 }
2704
2705 static void destroy_curseg(struct f2fs_sb_info *sbi)
2706 {
2707         struct curseg_info *array = SM_I(sbi)->curseg_array;
2708         int i;
2709
2710         if (!array)
2711                 return;
2712         SM_I(sbi)->curseg_array = NULL;
2713         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2714                 kfree(array[i].sum_blk);
2715                 kfree(array[i].journal);
2716         }
2717         kfree(array);
2718 }
2719
2720 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2721 {
2722         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2723         if (!free_i)
2724                 return;
2725         SM_I(sbi)->free_info = NULL;
2726         kvfree(free_i->free_segmap);
2727         kvfree(free_i->free_secmap);
2728         kfree(free_i);
2729 }
2730
2731 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2732 {
2733         struct sit_info *sit_i = SIT_I(sbi);
2734         unsigned int start;
2735
2736         if (!sit_i)
2737                 return;
2738
2739         if (sit_i->sentries) {
2740                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2741                         kfree(sit_i->sentries[start].cur_valid_map);
2742                         kfree(sit_i->sentries[start].ckpt_valid_map);
2743                         kfree(sit_i->sentries[start].discard_map);
2744                 }
2745         }
2746         kfree(sit_i->tmp_map);
2747
2748         kvfree(sit_i->sentries);
2749         kvfree(sit_i->sec_entries);
2750         kvfree(sit_i->dirty_sentries_bitmap);
2751
2752         SM_I(sbi)->sit_info = NULL;
2753         kfree(sit_i->sit_bitmap);
2754         kfree(sit_i);
2755 }
2756
2757 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2758 {
2759         struct f2fs_sm_info *sm_info = SM_I(sbi);
2760
2761         if (!sm_info)
2762                 return;
2763         destroy_flush_cmd_control(sbi, true);
2764         destroy_dirty_segmap(sbi);
2765         destroy_curseg(sbi);
2766         destroy_free_segmap(sbi);
2767         destroy_sit_info(sbi);
2768         sbi->sm_info = NULL;
2769         kfree(sm_info);
2770 }
2771
2772 int __init create_segment_manager_caches(void)
2773 {
2774         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2775                         sizeof(struct discard_entry));
2776         if (!discard_entry_slab)
2777                 goto fail;
2778
2779         bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2780                         sizeof(struct bio_entry));
2781         if (!bio_entry_slab)
2782                 goto destroy_discard_entry;
2783
2784         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2785                         sizeof(struct sit_entry_set));
2786         if (!sit_entry_set_slab)
2787                 goto destroy_bio_entry;
2788
2789         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2790                         sizeof(struct inmem_pages));
2791         if (!inmem_entry_slab)
2792                 goto destroy_sit_entry_set;
2793         return 0;
2794
2795 destroy_sit_entry_set:
2796         kmem_cache_destroy(sit_entry_set_slab);
2797 destroy_bio_entry:
2798         kmem_cache_destroy(bio_entry_slab);
2799 destroy_discard_entry:
2800         kmem_cache_destroy(discard_entry_slab);
2801 fail:
2802         return -ENOMEM;
2803 }
2804
2805 void destroy_segment_manager_caches(void)
2806 {
2807         kmem_cache_destroy(sit_entry_set_slab);
2808         kmem_cache_destroy(bio_entry_slab);
2809         kmem_cache_destroy(discard_entry_slab);
2810         kmem_cache_destroy(inmem_entry_slab);
2811 }