Merge tag 'acpi-5.1-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-block.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (test_opt(sbi, LFS))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189         struct f2fs_inode_info *fi = F2FS_I(inode);
190         struct inmem_pages *new;
191
192         f2fs_trace_pid(page);
193
194         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195         SetPagePrivate(page);
196
197         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198
199         /* add atomic page indices to the list */
200         new->page = page;
201         INIT_LIST_HEAD(&new->list);
202
203         /* increase reference count with clean state */
204         mutex_lock(&fi->inmem_lock);
205         get_page(page);
206         list_add_tail(&new->list, &fi->inmem_pages);
207         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
208         if (list_empty(&fi->inmem_ilist))
209                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
210         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
211         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
212         mutex_unlock(&fi->inmem_lock);
213
214         trace_f2fs_register_inmem_page(page, INMEM);
215 }
216
217 static int __revoke_inmem_pages(struct inode *inode,
218                                 struct list_head *head, bool drop, bool recover)
219 {
220         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221         struct inmem_pages *cur, *tmp;
222         int err = 0;
223
224         list_for_each_entry_safe(cur, tmp, head, list) {
225                 struct page *page = cur->page;
226
227                 if (drop)
228                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229
230                 lock_page(page);
231
232                 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234                 if (recover) {
235                         struct dnode_of_data dn;
236                         struct node_info ni;
237
238                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240                         set_new_dnode(&dn, inode, NULL, NULL, 0);
241                         err = f2fs_get_dnode_of_data(&dn, page->index,
242                                                                 LOOKUP_NODE);
243                         if (err) {
244                                 if (err == -ENOMEM) {
245                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
246                                         cond_resched();
247                                         goto retry;
248                                 }
249                                 err = -EAGAIN;
250                                 goto next;
251                         }
252
253                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
254                         if (err) {
255                                 f2fs_put_dnode(&dn);
256                                 return err;
257                         }
258
259                         if (cur->old_addr == NEW_ADDR) {
260                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
261                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
262                         } else
263                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
264                                         cur->old_addr, ni.version, true, true);
265                         f2fs_put_dnode(&dn);
266                 }
267 next:
268                 /* we don't need to invalidate this in the sccessful status */
269                 if (drop || recover) {
270                         ClearPageUptodate(page);
271                         clear_cold_data(page);
272                 }
273                 set_page_private(page, 0);
274                 ClearPagePrivate(page);
275                 f2fs_put_page(page, 1);
276
277                 list_del(&cur->list);
278                 kmem_cache_free(inmem_entry_slab, cur);
279                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
280         }
281         return err;
282 }
283
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
285 {
286         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
287         struct inode *inode;
288         struct f2fs_inode_info *fi;
289 next:
290         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
291         if (list_empty(head)) {
292                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
293                 return;
294         }
295         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
296         inode = igrab(&fi->vfs_inode);
297         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298
299         if (inode) {
300                 if (gc_failure) {
301                         if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
302                                 goto drop;
303                         goto skip;
304                 }
305 drop:
306                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
307                 f2fs_drop_inmem_pages(inode);
308                 iput(inode);
309         }
310 skip:
311         congestion_wait(BLK_RW_ASYNC, HZ/50);
312         cond_resched();
313         goto next;
314 }
315
316 void f2fs_drop_inmem_pages(struct inode *inode)
317 {
318         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
319         struct f2fs_inode_info *fi = F2FS_I(inode);
320
321         mutex_lock(&fi->inmem_lock);
322         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
323         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
324         if (!list_empty(&fi->inmem_ilist))
325                 list_del_init(&fi->inmem_ilist);
326         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
327         mutex_unlock(&fi->inmem_lock);
328
329         clear_inode_flag(inode, FI_ATOMIC_FILE);
330         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
331         stat_dec_atomic_write(inode);
332 }
333
334 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
335 {
336         struct f2fs_inode_info *fi = F2FS_I(inode);
337         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
338         struct list_head *head = &fi->inmem_pages;
339         struct inmem_pages *cur = NULL;
340
341         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
342
343         mutex_lock(&fi->inmem_lock);
344         list_for_each_entry(cur, head, list) {
345                 if (cur->page == page)
346                         break;
347         }
348
349         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
350         list_del(&cur->list);
351         mutex_unlock(&fi->inmem_lock);
352
353         dec_page_count(sbi, F2FS_INMEM_PAGES);
354         kmem_cache_free(inmem_entry_slab, cur);
355
356         ClearPageUptodate(page);
357         set_page_private(page, 0);
358         ClearPagePrivate(page);
359         f2fs_put_page(page, 0);
360
361         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
362 }
363
364 static int __f2fs_commit_inmem_pages(struct inode *inode)
365 {
366         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
367         struct f2fs_inode_info *fi = F2FS_I(inode);
368         struct inmem_pages *cur, *tmp;
369         struct f2fs_io_info fio = {
370                 .sbi = sbi,
371                 .ino = inode->i_ino,
372                 .type = DATA,
373                 .op = REQ_OP_WRITE,
374                 .op_flags = REQ_SYNC | REQ_PRIO,
375                 .io_type = FS_DATA_IO,
376         };
377         struct list_head revoke_list;
378         bool submit_bio = false;
379         int err = 0;
380
381         INIT_LIST_HEAD(&revoke_list);
382
383         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
384                 struct page *page = cur->page;
385
386                 lock_page(page);
387                 if (page->mapping == inode->i_mapping) {
388                         trace_f2fs_commit_inmem_page(page, INMEM);
389
390                         f2fs_wait_on_page_writeback(page, DATA, true, true);
391
392                         set_page_dirty(page);
393                         if (clear_page_dirty_for_io(page)) {
394                                 inode_dec_dirty_pages(inode);
395                                 f2fs_remove_dirty_inode(inode);
396                         }
397 retry:
398                         fio.page = page;
399                         fio.old_blkaddr = NULL_ADDR;
400                         fio.encrypted_page = NULL;
401                         fio.need_lock = LOCK_DONE;
402                         err = f2fs_do_write_data_page(&fio);
403                         if (err) {
404                                 if (err == -ENOMEM) {
405                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
406                                         cond_resched();
407                                         goto retry;
408                                 }
409                                 unlock_page(page);
410                                 break;
411                         }
412                         /* record old blkaddr for revoking */
413                         cur->old_addr = fio.old_blkaddr;
414                         submit_bio = true;
415                 }
416                 unlock_page(page);
417                 list_move_tail(&cur->list, &revoke_list);
418         }
419
420         if (submit_bio)
421                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
422
423         if (err) {
424                 /*
425                  * try to revoke all committed pages, but still we could fail
426                  * due to no memory or other reason, if that happened, EAGAIN
427                  * will be returned, which means in such case, transaction is
428                  * already not integrity, caller should use journal to do the
429                  * recovery or rewrite & commit last transaction. For other
430                  * error number, revoking was done by filesystem itself.
431                  */
432                 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
433
434                 /* drop all uncommitted pages */
435                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
436         } else {
437                 __revoke_inmem_pages(inode, &revoke_list, false, false);
438         }
439
440         return err;
441 }
442
443 int f2fs_commit_inmem_pages(struct inode *inode)
444 {
445         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
446         struct f2fs_inode_info *fi = F2FS_I(inode);
447         int err;
448
449         f2fs_balance_fs(sbi, true);
450
451         down_write(&fi->i_gc_rwsem[WRITE]);
452
453         f2fs_lock_op(sbi);
454         set_inode_flag(inode, FI_ATOMIC_COMMIT);
455
456         mutex_lock(&fi->inmem_lock);
457         err = __f2fs_commit_inmem_pages(inode);
458
459         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
460         if (!list_empty(&fi->inmem_ilist))
461                 list_del_init(&fi->inmem_ilist);
462         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
463         mutex_unlock(&fi->inmem_lock);
464
465         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
466
467         f2fs_unlock_op(sbi);
468         up_write(&fi->i_gc_rwsem[WRITE]);
469
470         return err;
471 }
472
473 /*
474  * This function balances dirty node and dentry pages.
475  * In addition, it controls garbage collection.
476  */
477 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
478 {
479         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
480                 f2fs_show_injection_info(FAULT_CHECKPOINT);
481                 f2fs_stop_checkpoint(sbi, false);
482         }
483
484         /* balance_fs_bg is able to be pending */
485         if (need && excess_cached_nats(sbi))
486                 f2fs_balance_fs_bg(sbi);
487
488         if (f2fs_is_checkpoint_ready(sbi))
489                 return;
490
491         /*
492          * We should do GC or end up with checkpoint, if there are so many dirty
493          * dir/node pages without enough free segments.
494          */
495         if (has_not_enough_free_secs(sbi, 0, 0)) {
496                 mutex_lock(&sbi->gc_mutex);
497                 f2fs_gc(sbi, false, false, NULL_SEGNO);
498         }
499 }
500
501 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
502 {
503         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
504                 return;
505
506         /* try to shrink extent cache when there is no enough memory */
507         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
508                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
509
510         /* check the # of cached NAT entries */
511         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
512                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
513
514         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
515                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
516         else
517                 f2fs_build_free_nids(sbi, false, false);
518
519         if (!is_idle(sbi, REQ_TIME) &&
520                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
521                 return;
522
523         /* checkpoint is the only way to shrink partial cached entries */
524         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
525                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
526                         excess_prefree_segs(sbi) ||
527                         excess_dirty_nats(sbi) ||
528                         excess_dirty_nodes(sbi) ||
529                         f2fs_time_over(sbi, CP_TIME)) {
530                 if (test_opt(sbi, DATA_FLUSH)) {
531                         struct blk_plug plug;
532
533                         blk_start_plug(&plug);
534                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
535                         blk_finish_plug(&plug);
536                 }
537                 f2fs_sync_fs(sbi->sb, true);
538                 stat_inc_bg_cp_count(sbi->stat_info);
539         }
540 }
541
542 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
543                                 struct block_device *bdev)
544 {
545         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
546         int ret;
547
548         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
549         bio_set_dev(bio, bdev);
550         ret = submit_bio_wait(bio);
551         bio_put(bio);
552
553         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
554                                 test_opt(sbi, FLUSH_MERGE), ret);
555         return ret;
556 }
557
558 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
559 {
560         int ret = 0;
561         int i;
562
563         if (!sbi->s_ndevs)
564                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
565
566         for (i = 0; i < sbi->s_ndevs; i++) {
567                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
568                         continue;
569                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
570                 if (ret)
571                         break;
572         }
573         return ret;
574 }
575
576 static int issue_flush_thread(void *data)
577 {
578         struct f2fs_sb_info *sbi = data;
579         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
580         wait_queue_head_t *q = &fcc->flush_wait_queue;
581 repeat:
582         if (kthread_should_stop())
583                 return 0;
584
585         sb_start_intwrite(sbi->sb);
586
587         if (!llist_empty(&fcc->issue_list)) {
588                 struct flush_cmd *cmd, *next;
589                 int ret;
590
591                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
592                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
593
594                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
595
596                 ret = submit_flush_wait(sbi, cmd->ino);
597                 atomic_inc(&fcc->issued_flush);
598
599                 llist_for_each_entry_safe(cmd, next,
600                                           fcc->dispatch_list, llnode) {
601                         cmd->ret = ret;
602                         complete(&cmd->wait);
603                 }
604                 fcc->dispatch_list = NULL;
605         }
606
607         sb_end_intwrite(sbi->sb);
608
609         wait_event_interruptible(*q,
610                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
611         goto repeat;
612 }
613
614 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
615 {
616         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
617         struct flush_cmd cmd;
618         int ret;
619
620         if (test_opt(sbi, NOBARRIER))
621                 return 0;
622
623         if (!test_opt(sbi, FLUSH_MERGE)) {
624                 atomic_inc(&fcc->queued_flush);
625                 ret = submit_flush_wait(sbi, ino);
626                 atomic_dec(&fcc->queued_flush);
627                 atomic_inc(&fcc->issued_flush);
628                 return ret;
629         }
630
631         if (atomic_inc_return(&fcc->queued_flush) == 1 || sbi->s_ndevs > 1) {
632                 ret = submit_flush_wait(sbi, ino);
633                 atomic_dec(&fcc->queued_flush);
634
635                 atomic_inc(&fcc->issued_flush);
636                 return ret;
637         }
638
639         cmd.ino = ino;
640         init_completion(&cmd.wait);
641
642         llist_add(&cmd.llnode, &fcc->issue_list);
643
644         /* update issue_list before we wake up issue_flush thread */
645         smp_mb();
646
647         if (waitqueue_active(&fcc->flush_wait_queue))
648                 wake_up(&fcc->flush_wait_queue);
649
650         if (fcc->f2fs_issue_flush) {
651                 wait_for_completion(&cmd.wait);
652                 atomic_dec(&fcc->queued_flush);
653         } else {
654                 struct llist_node *list;
655
656                 list = llist_del_all(&fcc->issue_list);
657                 if (!list) {
658                         wait_for_completion(&cmd.wait);
659                         atomic_dec(&fcc->queued_flush);
660                 } else {
661                         struct flush_cmd *tmp, *next;
662
663                         ret = submit_flush_wait(sbi, ino);
664
665                         llist_for_each_entry_safe(tmp, next, list, llnode) {
666                                 if (tmp == &cmd) {
667                                         cmd.ret = ret;
668                                         atomic_dec(&fcc->queued_flush);
669                                         continue;
670                                 }
671                                 tmp->ret = ret;
672                                 complete(&tmp->wait);
673                         }
674                 }
675         }
676
677         return cmd.ret;
678 }
679
680 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
681 {
682         dev_t dev = sbi->sb->s_bdev->bd_dev;
683         struct flush_cmd_control *fcc;
684         int err = 0;
685
686         if (SM_I(sbi)->fcc_info) {
687                 fcc = SM_I(sbi)->fcc_info;
688                 if (fcc->f2fs_issue_flush)
689                         return err;
690                 goto init_thread;
691         }
692
693         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
694         if (!fcc)
695                 return -ENOMEM;
696         atomic_set(&fcc->issued_flush, 0);
697         atomic_set(&fcc->queued_flush, 0);
698         init_waitqueue_head(&fcc->flush_wait_queue);
699         init_llist_head(&fcc->issue_list);
700         SM_I(sbi)->fcc_info = fcc;
701         if (!test_opt(sbi, FLUSH_MERGE))
702                 return err;
703
704 init_thread:
705         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
706                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
707         if (IS_ERR(fcc->f2fs_issue_flush)) {
708                 err = PTR_ERR(fcc->f2fs_issue_flush);
709                 kvfree(fcc);
710                 SM_I(sbi)->fcc_info = NULL;
711                 return err;
712         }
713
714         return err;
715 }
716
717 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
718 {
719         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
720
721         if (fcc && fcc->f2fs_issue_flush) {
722                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
723
724                 fcc->f2fs_issue_flush = NULL;
725                 kthread_stop(flush_thread);
726         }
727         if (free) {
728                 kvfree(fcc);
729                 SM_I(sbi)->fcc_info = NULL;
730         }
731 }
732
733 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
734 {
735         int ret = 0, i;
736
737         if (!sbi->s_ndevs)
738                 return 0;
739
740         for (i = 1; i < sbi->s_ndevs; i++) {
741                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
742                         continue;
743                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
744                 if (ret)
745                         break;
746
747                 spin_lock(&sbi->dev_lock);
748                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
749                 spin_unlock(&sbi->dev_lock);
750         }
751
752         return ret;
753 }
754
755 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
756                 enum dirty_type dirty_type)
757 {
758         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
759
760         /* need not be added */
761         if (IS_CURSEG(sbi, segno))
762                 return;
763
764         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
765                 dirty_i->nr_dirty[dirty_type]++;
766
767         if (dirty_type == DIRTY) {
768                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
769                 enum dirty_type t = sentry->type;
770
771                 if (unlikely(t >= DIRTY)) {
772                         f2fs_bug_on(sbi, 1);
773                         return;
774                 }
775                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
776                         dirty_i->nr_dirty[t]++;
777         }
778 }
779
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781                 enum dirty_type dirty_type)
782 {
783         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784
785         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786                 dirty_i->nr_dirty[dirty_type]--;
787
788         if (dirty_type == DIRTY) {
789                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
790                 enum dirty_type t = sentry->type;
791
792                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
793                         dirty_i->nr_dirty[t]--;
794
795                 if (get_valid_blocks(sbi, segno, true) == 0)
796                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
797                                                 dirty_i->victim_secmap);
798         }
799 }
800
801 /*
802  * Should not occur error such as -ENOMEM.
803  * Adding dirty entry into seglist is not critical operation.
804  * If a given segment is one of current working segments, it won't be added.
805  */
806 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
807 {
808         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809         unsigned short valid_blocks, ckpt_valid_blocks;
810
811         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
812                 return;
813
814         mutex_lock(&dirty_i->seglist_lock);
815
816         valid_blocks = get_valid_blocks(sbi, segno, false);
817         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
818
819         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
820                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
821                 __locate_dirty_segment(sbi, segno, PRE);
822                 __remove_dirty_segment(sbi, segno, DIRTY);
823         } else if (valid_blocks < sbi->blocks_per_seg) {
824                 __locate_dirty_segment(sbi, segno, DIRTY);
825         } else {
826                 /* Recovery routine with SSR needs this */
827                 __remove_dirty_segment(sbi, segno, DIRTY);
828         }
829
830         mutex_unlock(&dirty_i->seglist_lock);
831 }
832
833 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
834 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
835 {
836         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
837         unsigned int segno;
838
839         mutex_lock(&dirty_i->seglist_lock);
840         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
841                 if (get_valid_blocks(sbi, segno, false))
842                         continue;
843                 if (IS_CURSEG(sbi, segno))
844                         continue;
845                 __locate_dirty_segment(sbi, segno, PRE);
846                 __remove_dirty_segment(sbi, segno, DIRTY);
847         }
848         mutex_unlock(&dirty_i->seglist_lock);
849 }
850
851 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
852 {
853         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
854         block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
855         block_t holes[2] = {0, 0};      /* DATA and NODE */
856         struct seg_entry *se;
857         unsigned int segno;
858
859         mutex_lock(&dirty_i->seglist_lock);
860         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861                 se = get_seg_entry(sbi, segno);
862                 if (IS_NODESEG(se->type))
863                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
864                 else
865                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
866         }
867         mutex_unlock(&dirty_i->seglist_lock);
868
869         if (holes[DATA] > ovp || holes[NODE] > ovp)
870                 return -EAGAIN;
871         return 0;
872 }
873
874 /* This is only used by SBI_CP_DISABLED */
875 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
876 {
877         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
878         unsigned int segno = 0;
879
880         mutex_lock(&dirty_i->seglist_lock);
881         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
882                 if (get_valid_blocks(sbi, segno, false))
883                         continue;
884                 if (get_ckpt_valid_blocks(sbi, segno))
885                         continue;
886                 mutex_unlock(&dirty_i->seglist_lock);
887                 return segno;
888         }
889         mutex_unlock(&dirty_i->seglist_lock);
890         return NULL_SEGNO;
891 }
892
893 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
894                 struct block_device *bdev, block_t lstart,
895                 block_t start, block_t len)
896 {
897         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
898         struct list_head *pend_list;
899         struct discard_cmd *dc;
900
901         f2fs_bug_on(sbi, !len);
902
903         pend_list = &dcc->pend_list[plist_idx(len)];
904
905         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
906         INIT_LIST_HEAD(&dc->list);
907         dc->bdev = bdev;
908         dc->lstart = lstart;
909         dc->start = start;
910         dc->len = len;
911         dc->ref = 0;
912         dc->state = D_PREP;
913         dc->queued = 0;
914         dc->error = 0;
915         init_completion(&dc->wait);
916         list_add_tail(&dc->list, pend_list);
917         spin_lock_init(&dc->lock);
918         dc->bio_ref = 0;
919         atomic_inc(&dcc->discard_cmd_cnt);
920         dcc->undiscard_blks += len;
921
922         return dc;
923 }
924
925 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
926                                 struct block_device *bdev, block_t lstart,
927                                 block_t start, block_t len,
928                                 struct rb_node *parent, struct rb_node **p,
929                                 bool leftmost)
930 {
931         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
932         struct discard_cmd *dc;
933
934         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
935
936         rb_link_node(&dc->rb_node, parent, p);
937         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
938
939         return dc;
940 }
941
942 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
943                                                         struct discard_cmd *dc)
944 {
945         if (dc->state == D_DONE)
946                 atomic_sub(dc->queued, &dcc->queued_discard);
947
948         list_del(&dc->list);
949         rb_erase_cached(&dc->rb_node, &dcc->root);
950         dcc->undiscard_blks -= dc->len;
951
952         kmem_cache_free(discard_cmd_slab, dc);
953
954         atomic_dec(&dcc->discard_cmd_cnt);
955 }
956
957 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
958                                                         struct discard_cmd *dc)
959 {
960         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
961         unsigned long flags;
962
963         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
964
965         spin_lock_irqsave(&dc->lock, flags);
966         if (dc->bio_ref) {
967                 spin_unlock_irqrestore(&dc->lock, flags);
968                 return;
969         }
970         spin_unlock_irqrestore(&dc->lock, flags);
971
972         f2fs_bug_on(sbi, dc->ref);
973
974         if (dc->error == -EOPNOTSUPP)
975                 dc->error = 0;
976
977         if (dc->error)
978                 printk_ratelimited(
979                         "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
980                         KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
981         __detach_discard_cmd(dcc, dc);
982 }
983
984 static void f2fs_submit_discard_endio(struct bio *bio)
985 {
986         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
987         unsigned long flags;
988
989         dc->error = blk_status_to_errno(bio->bi_status);
990
991         spin_lock_irqsave(&dc->lock, flags);
992         dc->bio_ref--;
993         if (!dc->bio_ref && dc->state == D_SUBMIT) {
994                 dc->state = D_DONE;
995                 complete_all(&dc->wait);
996         }
997         spin_unlock_irqrestore(&dc->lock, flags);
998         bio_put(bio);
999 }
1000
1001 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1002                                 block_t start, block_t end)
1003 {
1004 #ifdef CONFIG_F2FS_CHECK_FS
1005         struct seg_entry *sentry;
1006         unsigned int segno;
1007         block_t blk = start;
1008         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1009         unsigned long *map;
1010
1011         while (blk < end) {
1012                 segno = GET_SEGNO(sbi, blk);
1013                 sentry = get_seg_entry(sbi, segno);
1014                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1015
1016                 if (end < START_BLOCK(sbi, segno + 1))
1017                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1018                 else
1019                         size = max_blocks;
1020                 map = (unsigned long *)(sentry->cur_valid_map);
1021                 offset = __find_rev_next_bit(map, size, offset);
1022                 f2fs_bug_on(sbi, offset != size);
1023                 blk = START_BLOCK(sbi, segno + 1);
1024         }
1025 #endif
1026 }
1027
1028 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1029                                 struct discard_policy *dpolicy,
1030                                 int discard_type, unsigned int granularity)
1031 {
1032         /* common policy */
1033         dpolicy->type = discard_type;
1034         dpolicy->sync = true;
1035         dpolicy->ordered = false;
1036         dpolicy->granularity = granularity;
1037
1038         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1039         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1040
1041         if (discard_type == DPOLICY_BG) {
1042                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1043                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1044                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1045                 dpolicy->io_aware = true;
1046                 dpolicy->sync = false;
1047                 dpolicy->ordered = true;
1048                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1049                         dpolicy->granularity = 1;
1050                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1051                 }
1052         } else if (discard_type == DPOLICY_FORCE) {
1053                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1054                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1055                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1056                 dpolicy->io_aware = false;
1057         } else if (discard_type == DPOLICY_FSTRIM) {
1058                 dpolicy->io_aware = false;
1059         } else if (discard_type == DPOLICY_UMOUNT) {
1060                 dpolicy->max_requests = UINT_MAX;
1061                 dpolicy->io_aware = false;
1062         }
1063 }
1064
1065 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1066                                 struct block_device *bdev, block_t lstart,
1067                                 block_t start, block_t len);
1068 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1069 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1070                                                 struct discard_policy *dpolicy,
1071                                                 struct discard_cmd *dc,
1072                                                 unsigned int *issued)
1073 {
1074         struct block_device *bdev = dc->bdev;
1075         struct request_queue *q = bdev_get_queue(bdev);
1076         unsigned int max_discard_blocks =
1077                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1078         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1079         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1080                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1081         int flag = dpolicy->sync ? REQ_SYNC : 0;
1082         block_t lstart, start, len, total_len;
1083         int err = 0;
1084
1085         if (dc->state != D_PREP)
1086                 return 0;
1087
1088         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1089                 return 0;
1090
1091         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1092
1093         lstart = dc->lstart;
1094         start = dc->start;
1095         len = dc->len;
1096         total_len = len;
1097
1098         dc->len = 0;
1099
1100         while (total_len && *issued < dpolicy->max_requests && !err) {
1101                 struct bio *bio = NULL;
1102                 unsigned long flags;
1103                 bool last = true;
1104
1105                 if (len > max_discard_blocks) {
1106                         len = max_discard_blocks;
1107                         last = false;
1108                 }
1109
1110                 (*issued)++;
1111                 if (*issued == dpolicy->max_requests)
1112                         last = true;
1113
1114                 dc->len += len;
1115
1116                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1117                         f2fs_show_injection_info(FAULT_DISCARD);
1118                         err = -EIO;
1119                         goto submit;
1120                 }
1121                 err = __blkdev_issue_discard(bdev,
1122                                         SECTOR_FROM_BLOCK(start),
1123                                         SECTOR_FROM_BLOCK(len),
1124                                         GFP_NOFS, 0, &bio);
1125 submit:
1126                 if (err) {
1127                         spin_lock_irqsave(&dc->lock, flags);
1128                         if (dc->state == D_PARTIAL)
1129                                 dc->state = D_SUBMIT;
1130                         spin_unlock_irqrestore(&dc->lock, flags);
1131
1132                         break;
1133                 }
1134
1135                 f2fs_bug_on(sbi, !bio);
1136
1137                 /*
1138                  * should keep before submission to avoid D_DONE
1139                  * right away
1140                  */
1141                 spin_lock_irqsave(&dc->lock, flags);
1142                 if (last)
1143                         dc->state = D_SUBMIT;
1144                 else
1145                         dc->state = D_PARTIAL;
1146                 dc->bio_ref++;
1147                 spin_unlock_irqrestore(&dc->lock, flags);
1148
1149                 atomic_inc(&dcc->queued_discard);
1150                 dc->queued++;
1151                 list_move_tail(&dc->list, wait_list);
1152
1153                 /* sanity check on discard range */
1154                 __check_sit_bitmap(sbi, lstart, lstart + len);
1155
1156                 bio->bi_private = dc;
1157                 bio->bi_end_io = f2fs_submit_discard_endio;
1158                 bio->bi_opf |= flag;
1159                 submit_bio(bio);
1160
1161                 atomic_inc(&dcc->issued_discard);
1162
1163                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1164
1165                 lstart += len;
1166                 start += len;
1167                 total_len -= len;
1168                 len = total_len;
1169         }
1170
1171         if (!err && len)
1172                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1173         return err;
1174 }
1175
1176 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1177                                 struct block_device *bdev, block_t lstart,
1178                                 block_t start, block_t len,
1179                                 struct rb_node **insert_p,
1180                                 struct rb_node *insert_parent)
1181 {
1182         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1183         struct rb_node **p;
1184         struct rb_node *parent = NULL;
1185         struct discard_cmd *dc = NULL;
1186         bool leftmost = true;
1187
1188         if (insert_p && insert_parent) {
1189                 parent = insert_parent;
1190                 p = insert_p;
1191                 goto do_insert;
1192         }
1193
1194         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1195                                                         lstart, &leftmost);
1196 do_insert:
1197         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1198                                                                 p, leftmost);
1199         if (!dc)
1200                 return NULL;
1201
1202         return dc;
1203 }
1204
1205 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1206                                                 struct discard_cmd *dc)
1207 {
1208         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1209 }
1210
1211 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1212                                 struct discard_cmd *dc, block_t blkaddr)
1213 {
1214         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1215         struct discard_info di = dc->di;
1216         bool modified = false;
1217
1218         if (dc->state == D_DONE || dc->len == 1) {
1219                 __remove_discard_cmd(sbi, dc);
1220                 return;
1221         }
1222
1223         dcc->undiscard_blks -= di.len;
1224
1225         if (blkaddr > di.lstart) {
1226                 dc->len = blkaddr - dc->lstart;
1227                 dcc->undiscard_blks += dc->len;
1228                 __relocate_discard_cmd(dcc, dc);
1229                 modified = true;
1230         }
1231
1232         if (blkaddr < di.lstart + di.len - 1) {
1233                 if (modified) {
1234                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1235                                         di.start + blkaddr + 1 - di.lstart,
1236                                         di.lstart + di.len - 1 - blkaddr,
1237                                         NULL, NULL);
1238                 } else {
1239                         dc->lstart++;
1240                         dc->len--;
1241                         dc->start++;
1242                         dcc->undiscard_blks += dc->len;
1243                         __relocate_discard_cmd(dcc, dc);
1244                 }
1245         }
1246 }
1247
1248 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1249                                 struct block_device *bdev, block_t lstart,
1250                                 block_t start, block_t len)
1251 {
1252         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1254         struct discard_cmd *dc;
1255         struct discard_info di = {0};
1256         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1257         struct request_queue *q = bdev_get_queue(bdev);
1258         unsigned int max_discard_blocks =
1259                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1260         block_t end = lstart + len;
1261
1262         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1263                                         NULL, lstart,
1264                                         (struct rb_entry **)&prev_dc,
1265                                         (struct rb_entry **)&next_dc,
1266                                         &insert_p, &insert_parent, true, NULL);
1267         if (dc)
1268                 prev_dc = dc;
1269
1270         if (!prev_dc) {
1271                 di.lstart = lstart;
1272                 di.len = next_dc ? next_dc->lstart - lstart : len;
1273                 di.len = min(di.len, len);
1274                 di.start = start;
1275         }
1276
1277         while (1) {
1278                 struct rb_node *node;
1279                 bool merged = false;
1280                 struct discard_cmd *tdc = NULL;
1281
1282                 if (prev_dc) {
1283                         di.lstart = prev_dc->lstart + prev_dc->len;
1284                         if (di.lstart < lstart)
1285                                 di.lstart = lstart;
1286                         if (di.lstart >= end)
1287                                 break;
1288
1289                         if (!next_dc || next_dc->lstart > end)
1290                                 di.len = end - di.lstart;
1291                         else
1292                                 di.len = next_dc->lstart - di.lstart;
1293                         di.start = start + di.lstart - lstart;
1294                 }
1295
1296                 if (!di.len)
1297                         goto next;
1298
1299                 if (prev_dc && prev_dc->state == D_PREP &&
1300                         prev_dc->bdev == bdev &&
1301                         __is_discard_back_mergeable(&di, &prev_dc->di,
1302                                                         max_discard_blocks)) {
1303                         prev_dc->di.len += di.len;
1304                         dcc->undiscard_blks += di.len;
1305                         __relocate_discard_cmd(dcc, prev_dc);
1306                         di = prev_dc->di;
1307                         tdc = prev_dc;
1308                         merged = true;
1309                 }
1310
1311                 if (next_dc && next_dc->state == D_PREP &&
1312                         next_dc->bdev == bdev &&
1313                         __is_discard_front_mergeable(&di, &next_dc->di,
1314                                                         max_discard_blocks)) {
1315                         next_dc->di.lstart = di.lstart;
1316                         next_dc->di.len += di.len;
1317                         next_dc->di.start = di.start;
1318                         dcc->undiscard_blks += di.len;
1319                         __relocate_discard_cmd(dcc, next_dc);
1320                         if (tdc)
1321                                 __remove_discard_cmd(sbi, tdc);
1322                         merged = true;
1323                 }
1324
1325                 if (!merged) {
1326                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1327                                                         di.len, NULL, NULL);
1328                 }
1329  next:
1330                 prev_dc = next_dc;
1331                 if (!prev_dc)
1332                         break;
1333
1334                 node = rb_next(&prev_dc->rb_node);
1335                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1336         }
1337 }
1338
1339 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1340                 struct block_device *bdev, block_t blkstart, block_t blklen)
1341 {
1342         block_t lblkstart = blkstart;
1343
1344         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1345
1346         if (sbi->s_ndevs) {
1347                 int devi = f2fs_target_device_index(sbi, blkstart);
1348
1349                 blkstart -= FDEV(devi).start_blk;
1350         }
1351         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1352         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1353         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1354         return 0;
1355 }
1356
1357 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1358                                         struct discard_policy *dpolicy)
1359 {
1360         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1361         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1362         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1363         struct discard_cmd *dc;
1364         struct blk_plug plug;
1365         unsigned int pos = dcc->next_pos;
1366         unsigned int issued = 0;
1367         bool io_interrupted = false;
1368
1369         mutex_lock(&dcc->cmd_lock);
1370         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1371                                         NULL, pos,
1372                                         (struct rb_entry **)&prev_dc,
1373                                         (struct rb_entry **)&next_dc,
1374                                         &insert_p, &insert_parent, true, NULL);
1375         if (!dc)
1376                 dc = next_dc;
1377
1378         blk_start_plug(&plug);
1379
1380         while (dc) {
1381                 struct rb_node *node;
1382                 int err = 0;
1383
1384                 if (dc->state != D_PREP)
1385                         goto next;
1386
1387                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1388                         io_interrupted = true;
1389                         break;
1390                 }
1391
1392                 dcc->next_pos = dc->lstart + dc->len;
1393                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1394
1395                 if (issued >= dpolicy->max_requests)
1396                         break;
1397 next:
1398                 node = rb_next(&dc->rb_node);
1399                 if (err)
1400                         __remove_discard_cmd(sbi, dc);
1401                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1402         }
1403
1404         blk_finish_plug(&plug);
1405
1406         if (!dc)
1407                 dcc->next_pos = 0;
1408
1409         mutex_unlock(&dcc->cmd_lock);
1410
1411         if (!issued && io_interrupted)
1412                 issued = -1;
1413
1414         return issued;
1415 }
1416
1417 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1418                                         struct discard_policy *dpolicy)
1419 {
1420         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1421         struct list_head *pend_list;
1422         struct discard_cmd *dc, *tmp;
1423         struct blk_plug plug;
1424         int i, issued = 0;
1425         bool io_interrupted = false;
1426
1427         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1428                 if (i + 1 < dpolicy->granularity)
1429                         break;
1430
1431                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1432                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1433
1434                 pend_list = &dcc->pend_list[i];
1435
1436                 mutex_lock(&dcc->cmd_lock);
1437                 if (list_empty(pend_list))
1438                         goto next;
1439                 if (unlikely(dcc->rbtree_check))
1440                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1441                                                                 &dcc->root));
1442                 blk_start_plug(&plug);
1443                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1444                         f2fs_bug_on(sbi, dc->state != D_PREP);
1445
1446                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1447                                                 !is_idle(sbi, DISCARD_TIME)) {
1448                                 io_interrupted = true;
1449                                 break;
1450                         }
1451
1452                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1453
1454                         if (issued >= dpolicy->max_requests)
1455                                 break;
1456                 }
1457                 blk_finish_plug(&plug);
1458 next:
1459                 mutex_unlock(&dcc->cmd_lock);
1460
1461                 if (issued >= dpolicy->max_requests || io_interrupted)
1462                         break;
1463         }
1464
1465         if (!issued && io_interrupted)
1466                 issued = -1;
1467
1468         return issued;
1469 }
1470
1471 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1472 {
1473         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1474         struct list_head *pend_list;
1475         struct discard_cmd *dc, *tmp;
1476         int i;
1477         bool dropped = false;
1478
1479         mutex_lock(&dcc->cmd_lock);
1480         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481                 pend_list = &dcc->pend_list[i];
1482                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1483                         f2fs_bug_on(sbi, dc->state != D_PREP);
1484                         __remove_discard_cmd(sbi, dc);
1485                         dropped = true;
1486                 }
1487         }
1488         mutex_unlock(&dcc->cmd_lock);
1489
1490         return dropped;
1491 }
1492
1493 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1494 {
1495         __drop_discard_cmd(sbi);
1496 }
1497
1498 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1499                                                         struct discard_cmd *dc)
1500 {
1501         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1502         unsigned int len = 0;
1503
1504         wait_for_completion_io(&dc->wait);
1505         mutex_lock(&dcc->cmd_lock);
1506         f2fs_bug_on(sbi, dc->state != D_DONE);
1507         dc->ref--;
1508         if (!dc->ref) {
1509                 if (!dc->error)
1510                         len = dc->len;
1511                 __remove_discard_cmd(sbi, dc);
1512         }
1513         mutex_unlock(&dcc->cmd_lock);
1514
1515         return len;
1516 }
1517
1518 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1519                                                 struct discard_policy *dpolicy,
1520                                                 block_t start, block_t end)
1521 {
1522         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1524                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1525         struct discard_cmd *dc, *tmp;
1526         bool need_wait;
1527         unsigned int trimmed = 0;
1528
1529 next:
1530         need_wait = false;
1531
1532         mutex_lock(&dcc->cmd_lock);
1533         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1534                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1535                         continue;
1536                 if (dc->len < dpolicy->granularity)
1537                         continue;
1538                 if (dc->state == D_DONE && !dc->ref) {
1539                         wait_for_completion_io(&dc->wait);
1540                         if (!dc->error)
1541                                 trimmed += dc->len;
1542                         __remove_discard_cmd(sbi, dc);
1543                 } else {
1544                         dc->ref++;
1545                         need_wait = true;
1546                         break;
1547                 }
1548         }
1549         mutex_unlock(&dcc->cmd_lock);
1550
1551         if (need_wait) {
1552                 trimmed += __wait_one_discard_bio(sbi, dc);
1553                 goto next;
1554         }
1555
1556         return trimmed;
1557 }
1558
1559 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1560                                                 struct discard_policy *dpolicy)
1561 {
1562         struct discard_policy dp;
1563         unsigned int discard_blks;
1564
1565         if (dpolicy)
1566                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1567
1568         /* wait all */
1569         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1570         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1571         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1572         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1573
1574         return discard_blks;
1575 }
1576
1577 /* This should be covered by global mutex, &sit_i->sentry_lock */
1578 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1579 {
1580         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581         struct discard_cmd *dc;
1582         bool need_wait = false;
1583
1584         mutex_lock(&dcc->cmd_lock);
1585         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1586                                                         NULL, blkaddr);
1587         if (dc) {
1588                 if (dc->state == D_PREP) {
1589                         __punch_discard_cmd(sbi, dc, blkaddr);
1590                 } else {
1591                         dc->ref++;
1592                         need_wait = true;
1593                 }
1594         }
1595         mutex_unlock(&dcc->cmd_lock);
1596
1597         if (need_wait)
1598                 __wait_one_discard_bio(sbi, dc);
1599 }
1600
1601 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1602 {
1603         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1604
1605         if (dcc && dcc->f2fs_issue_discard) {
1606                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1607
1608                 dcc->f2fs_issue_discard = NULL;
1609                 kthread_stop(discard_thread);
1610         }
1611 }
1612
1613 /* This comes from f2fs_put_super */
1614 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1615 {
1616         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617         struct discard_policy dpolicy;
1618         bool dropped;
1619
1620         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1621                                         dcc->discard_granularity);
1622         __issue_discard_cmd(sbi, &dpolicy);
1623         dropped = __drop_discard_cmd(sbi);
1624
1625         /* just to make sure there is no pending discard commands */
1626         __wait_all_discard_cmd(sbi, NULL);
1627
1628         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1629         return dropped;
1630 }
1631
1632 static int issue_discard_thread(void *data)
1633 {
1634         struct f2fs_sb_info *sbi = data;
1635         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1636         wait_queue_head_t *q = &dcc->discard_wait_queue;
1637         struct discard_policy dpolicy;
1638         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1639         int issued;
1640
1641         set_freezable();
1642
1643         do {
1644                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1645                                         dcc->discard_granularity);
1646
1647                 wait_event_interruptible_timeout(*q,
1648                                 kthread_should_stop() || freezing(current) ||
1649                                 dcc->discard_wake,
1650                                 msecs_to_jiffies(wait_ms));
1651
1652                 if (dcc->discard_wake)
1653                         dcc->discard_wake = 0;
1654
1655                 /* clean up pending candidates before going to sleep */
1656                 if (atomic_read(&dcc->queued_discard))
1657                         __wait_all_discard_cmd(sbi, NULL);
1658
1659                 if (try_to_freeze())
1660                         continue;
1661                 if (f2fs_readonly(sbi->sb))
1662                         continue;
1663                 if (kthread_should_stop())
1664                         return 0;
1665                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1666                         wait_ms = dpolicy.max_interval;
1667                         continue;
1668                 }
1669
1670                 if (sbi->gc_mode == GC_URGENT)
1671                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1672
1673                 sb_start_intwrite(sbi->sb);
1674
1675                 issued = __issue_discard_cmd(sbi, &dpolicy);
1676                 if (issued > 0) {
1677                         __wait_all_discard_cmd(sbi, &dpolicy);
1678                         wait_ms = dpolicy.min_interval;
1679                 } else if (issued == -1){
1680                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1681                         if (!wait_ms)
1682                                 wait_ms = dpolicy.mid_interval;
1683                 } else {
1684                         wait_ms = dpolicy.max_interval;
1685                 }
1686
1687                 sb_end_intwrite(sbi->sb);
1688
1689         } while (!kthread_should_stop());
1690         return 0;
1691 }
1692
1693 #ifdef CONFIG_BLK_DEV_ZONED
1694 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1695                 struct block_device *bdev, block_t blkstart, block_t blklen)
1696 {
1697         sector_t sector, nr_sects;
1698         block_t lblkstart = blkstart;
1699         int devi = 0;
1700
1701         if (sbi->s_ndevs) {
1702                 devi = f2fs_target_device_index(sbi, blkstart);
1703                 blkstart -= FDEV(devi).start_blk;
1704         }
1705
1706         /*
1707          * We need to know the type of the zone: for conventional zones,
1708          * use regular discard if the drive supports it. For sequential
1709          * zones, reset the zone write pointer.
1710          */
1711         switch (get_blkz_type(sbi, bdev, blkstart)) {
1712
1713         case BLK_ZONE_TYPE_CONVENTIONAL:
1714                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1715                         return 0;
1716                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1717         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1718         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1719                 sector = SECTOR_FROM_BLOCK(blkstart);
1720                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1721
1722                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1723                                 nr_sects != bdev_zone_sectors(bdev)) {
1724                         f2fs_msg(sbi->sb, KERN_INFO,
1725                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1726                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1727                                 blkstart, blklen);
1728                         return -EIO;
1729                 }
1730                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1731                 return blkdev_reset_zones(bdev, sector,
1732                                           nr_sects, GFP_NOFS);
1733         default:
1734                 /* Unknown zone type: broken device ? */
1735                 return -EIO;
1736         }
1737 }
1738 #endif
1739
1740 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1741                 struct block_device *bdev, block_t blkstart, block_t blklen)
1742 {
1743 #ifdef CONFIG_BLK_DEV_ZONED
1744         if (f2fs_sb_has_blkzoned(sbi) &&
1745                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1746                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1747 #endif
1748         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1749 }
1750
1751 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1752                                 block_t blkstart, block_t blklen)
1753 {
1754         sector_t start = blkstart, len = 0;
1755         struct block_device *bdev;
1756         struct seg_entry *se;
1757         unsigned int offset;
1758         block_t i;
1759         int err = 0;
1760
1761         bdev = f2fs_target_device(sbi, blkstart, NULL);
1762
1763         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1764                 if (i != start) {
1765                         struct block_device *bdev2 =
1766                                 f2fs_target_device(sbi, i, NULL);
1767
1768                         if (bdev2 != bdev) {
1769                                 err = __issue_discard_async(sbi, bdev,
1770                                                 start, len);
1771                                 if (err)
1772                                         return err;
1773                                 bdev = bdev2;
1774                                 start = i;
1775                                 len = 0;
1776                         }
1777                 }
1778
1779                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1780                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1781
1782                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1783                         sbi->discard_blks--;
1784         }
1785
1786         if (len)
1787                 err = __issue_discard_async(sbi, bdev, start, len);
1788         return err;
1789 }
1790
1791 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1792                                                         bool check_only)
1793 {
1794         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1795         int max_blocks = sbi->blocks_per_seg;
1796         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1797         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1798         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1799         unsigned long *discard_map = (unsigned long *)se->discard_map;
1800         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1801         unsigned int start = 0, end = -1;
1802         bool force = (cpc->reason & CP_DISCARD);
1803         struct discard_entry *de = NULL;
1804         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1805         int i;
1806
1807         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1808                 return false;
1809
1810         if (!force) {
1811                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1812                         SM_I(sbi)->dcc_info->nr_discards >=
1813                                 SM_I(sbi)->dcc_info->max_discards)
1814                         return false;
1815         }
1816
1817         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1818         for (i = 0; i < entries; i++)
1819                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1820                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1821
1822         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1823                                 SM_I(sbi)->dcc_info->max_discards) {
1824                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1825                 if (start >= max_blocks)
1826                         break;
1827
1828                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1829                 if (force && start && end != max_blocks
1830                                         && (end - start) < cpc->trim_minlen)
1831                         continue;
1832
1833                 if (check_only)
1834                         return true;
1835
1836                 if (!de) {
1837                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1838                                                                 GFP_F2FS_ZERO);
1839                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1840                         list_add_tail(&de->list, head);
1841                 }
1842
1843                 for (i = start; i < end; i++)
1844                         __set_bit_le(i, (void *)de->discard_map);
1845
1846                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1847         }
1848         return false;
1849 }
1850
1851 static void release_discard_addr(struct discard_entry *entry)
1852 {
1853         list_del(&entry->list);
1854         kmem_cache_free(discard_entry_slab, entry);
1855 }
1856
1857 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1858 {
1859         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1860         struct discard_entry *entry, *this;
1861
1862         /* drop caches */
1863         list_for_each_entry_safe(entry, this, head, list)
1864                 release_discard_addr(entry);
1865 }
1866
1867 /*
1868  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1869  */
1870 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1871 {
1872         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1873         unsigned int segno;
1874
1875         mutex_lock(&dirty_i->seglist_lock);
1876         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1877                 __set_test_and_free(sbi, segno);
1878         mutex_unlock(&dirty_i->seglist_lock);
1879 }
1880
1881 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1882                                                 struct cp_control *cpc)
1883 {
1884         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1885         struct list_head *head = &dcc->entry_list;
1886         struct discard_entry *entry, *this;
1887         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1888         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1889         unsigned int start = 0, end = -1;
1890         unsigned int secno, start_segno;
1891         bool force = (cpc->reason & CP_DISCARD);
1892         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1893
1894         mutex_lock(&dirty_i->seglist_lock);
1895
1896         while (1) {
1897                 int i;
1898
1899                 if (need_align && end != -1)
1900                         end--;
1901                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1902                 if (start >= MAIN_SEGS(sbi))
1903                         break;
1904                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1905                                                                 start + 1);
1906
1907                 if (need_align) {
1908                         start = rounddown(start, sbi->segs_per_sec);
1909                         end = roundup(end, sbi->segs_per_sec);
1910                 }
1911
1912                 for (i = start; i < end; i++) {
1913                         if (test_and_clear_bit(i, prefree_map))
1914                                 dirty_i->nr_dirty[PRE]--;
1915                 }
1916
1917                 if (!f2fs_realtime_discard_enable(sbi))
1918                         continue;
1919
1920                 if (force && start >= cpc->trim_start &&
1921                                         (end - 1) <= cpc->trim_end)
1922                                 continue;
1923
1924                 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1925                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1926                                 (end - start) << sbi->log_blocks_per_seg);
1927                         continue;
1928                 }
1929 next:
1930                 secno = GET_SEC_FROM_SEG(sbi, start);
1931                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1932                 if (!IS_CURSEC(sbi, secno) &&
1933                         !get_valid_blocks(sbi, start, true))
1934                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1935                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1936
1937                 start = start_segno + sbi->segs_per_sec;
1938                 if (start < end)
1939                         goto next;
1940                 else
1941                         end = start - 1;
1942         }
1943         mutex_unlock(&dirty_i->seglist_lock);
1944
1945         /* send small discards */
1946         list_for_each_entry_safe(entry, this, head, list) {
1947                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1948                 bool is_valid = test_bit_le(0, entry->discard_map);
1949
1950 find_next:
1951                 if (is_valid) {
1952                         next_pos = find_next_zero_bit_le(entry->discard_map,
1953                                         sbi->blocks_per_seg, cur_pos);
1954                         len = next_pos - cur_pos;
1955
1956                         if (f2fs_sb_has_blkzoned(sbi) ||
1957                             (force && len < cpc->trim_minlen))
1958                                 goto skip;
1959
1960                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1961                                                                         len);
1962                         total_len += len;
1963                 } else {
1964                         next_pos = find_next_bit_le(entry->discard_map,
1965                                         sbi->blocks_per_seg, cur_pos);
1966                 }
1967 skip:
1968                 cur_pos = next_pos;
1969                 is_valid = !is_valid;
1970
1971                 if (cur_pos < sbi->blocks_per_seg)
1972                         goto find_next;
1973
1974                 release_discard_addr(entry);
1975                 dcc->nr_discards -= total_len;
1976         }
1977
1978         wake_up_discard_thread(sbi, false);
1979 }
1980
1981 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1982 {
1983         dev_t dev = sbi->sb->s_bdev->bd_dev;
1984         struct discard_cmd_control *dcc;
1985         int err = 0, i;
1986
1987         if (SM_I(sbi)->dcc_info) {
1988                 dcc = SM_I(sbi)->dcc_info;
1989                 goto init_thread;
1990         }
1991
1992         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1993         if (!dcc)
1994                 return -ENOMEM;
1995
1996         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1997         INIT_LIST_HEAD(&dcc->entry_list);
1998         for (i = 0; i < MAX_PLIST_NUM; i++)
1999                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2000         INIT_LIST_HEAD(&dcc->wait_list);
2001         INIT_LIST_HEAD(&dcc->fstrim_list);
2002         mutex_init(&dcc->cmd_lock);
2003         atomic_set(&dcc->issued_discard, 0);
2004         atomic_set(&dcc->queued_discard, 0);
2005         atomic_set(&dcc->discard_cmd_cnt, 0);
2006         dcc->nr_discards = 0;
2007         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2008         dcc->undiscard_blks = 0;
2009         dcc->next_pos = 0;
2010         dcc->root = RB_ROOT_CACHED;
2011         dcc->rbtree_check = false;
2012
2013         init_waitqueue_head(&dcc->discard_wait_queue);
2014         SM_I(sbi)->dcc_info = dcc;
2015 init_thread:
2016         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2017                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2018         if (IS_ERR(dcc->f2fs_issue_discard)) {
2019                 err = PTR_ERR(dcc->f2fs_issue_discard);
2020                 kvfree(dcc);
2021                 SM_I(sbi)->dcc_info = NULL;
2022                 return err;
2023         }
2024
2025         return err;
2026 }
2027
2028 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2029 {
2030         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2031
2032         if (!dcc)
2033                 return;
2034
2035         f2fs_stop_discard_thread(sbi);
2036
2037         kvfree(dcc);
2038         SM_I(sbi)->dcc_info = NULL;
2039 }
2040
2041 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2042 {
2043         struct sit_info *sit_i = SIT_I(sbi);
2044
2045         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2046                 sit_i->dirty_sentries++;
2047                 return false;
2048         }
2049
2050         return true;
2051 }
2052
2053 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2054                                         unsigned int segno, int modified)
2055 {
2056         struct seg_entry *se = get_seg_entry(sbi, segno);
2057         se->type = type;
2058         if (modified)
2059                 __mark_sit_entry_dirty(sbi, segno);
2060 }
2061
2062 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2063 {
2064         struct seg_entry *se;
2065         unsigned int segno, offset;
2066         long int new_vblocks;
2067         bool exist;
2068 #ifdef CONFIG_F2FS_CHECK_FS
2069         bool mir_exist;
2070 #endif
2071
2072         segno = GET_SEGNO(sbi, blkaddr);
2073
2074         se = get_seg_entry(sbi, segno);
2075         new_vblocks = se->valid_blocks + del;
2076         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2077
2078         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2079                                 (new_vblocks > sbi->blocks_per_seg)));
2080
2081         se->valid_blocks = new_vblocks;
2082         se->mtime = get_mtime(sbi, false);
2083         if (se->mtime > SIT_I(sbi)->max_mtime)
2084                 SIT_I(sbi)->max_mtime = se->mtime;
2085
2086         /* Update valid block bitmap */
2087         if (del > 0) {
2088                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2089 #ifdef CONFIG_F2FS_CHECK_FS
2090                 mir_exist = f2fs_test_and_set_bit(offset,
2091                                                 se->cur_valid_map_mir);
2092                 if (unlikely(exist != mir_exist)) {
2093                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2094                                 "when setting bitmap, blk:%u, old bit:%d",
2095                                 blkaddr, exist);
2096                         f2fs_bug_on(sbi, 1);
2097                 }
2098 #endif
2099                 if (unlikely(exist)) {
2100                         f2fs_msg(sbi->sb, KERN_ERR,
2101                                 "Bitmap was wrongly set, blk:%u", blkaddr);
2102                         f2fs_bug_on(sbi, 1);
2103                         se->valid_blocks--;
2104                         del = 0;
2105                 }
2106
2107                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2108                         sbi->discard_blks--;
2109
2110                 /* don't overwrite by SSR to keep node chain */
2111                 if (IS_NODESEG(se->type) &&
2112                                 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2113                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2114                                 se->ckpt_valid_blocks++;
2115                 }
2116         } else {
2117                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2118 #ifdef CONFIG_F2FS_CHECK_FS
2119                 mir_exist = f2fs_test_and_clear_bit(offset,
2120                                                 se->cur_valid_map_mir);
2121                 if (unlikely(exist != mir_exist)) {
2122                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2123                                 "when clearing bitmap, blk:%u, old bit:%d",
2124                                 blkaddr, exist);
2125                         f2fs_bug_on(sbi, 1);
2126                 }
2127 #endif
2128                 if (unlikely(!exist)) {
2129                         f2fs_msg(sbi->sb, KERN_ERR,
2130                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2131                         f2fs_bug_on(sbi, 1);
2132                         se->valid_blocks++;
2133                         del = 0;
2134                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2135                         /*
2136                          * If checkpoints are off, we must not reuse data that
2137                          * was used in the previous checkpoint. If it was used
2138                          * before, we must track that to know how much space we
2139                          * really have.
2140                          */
2141                         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2142                                 sbi->unusable_block_count++;
2143                 }
2144
2145                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2146                         sbi->discard_blks++;
2147         }
2148         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2149                 se->ckpt_valid_blocks += del;
2150
2151         __mark_sit_entry_dirty(sbi, segno);
2152
2153         /* update total number of valid blocks to be written in ckpt area */
2154         SIT_I(sbi)->written_valid_blocks += del;
2155
2156         if (__is_large_section(sbi))
2157                 get_sec_entry(sbi, segno)->valid_blocks += del;
2158 }
2159
2160 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2161 {
2162         unsigned int segno = GET_SEGNO(sbi, addr);
2163         struct sit_info *sit_i = SIT_I(sbi);
2164
2165         f2fs_bug_on(sbi, addr == NULL_ADDR);
2166         if (addr == NEW_ADDR)
2167                 return;
2168
2169         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2170
2171         /* add it into sit main buffer */
2172         down_write(&sit_i->sentry_lock);
2173
2174         update_sit_entry(sbi, addr, -1);
2175
2176         /* add it into dirty seglist */
2177         locate_dirty_segment(sbi, segno);
2178
2179         up_write(&sit_i->sentry_lock);
2180 }
2181
2182 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2183 {
2184         struct sit_info *sit_i = SIT_I(sbi);
2185         unsigned int segno, offset;
2186         struct seg_entry *se;
2187         bool is_cp = false;
2188
2189         if (!is_valid_data_blkaddr(sbi, blkaddr))
2190                 return true;
2191
2192         down_read(&sit_i->sentry_lock);
2193
2194         segno = GET_SEGNO(sbi, blkaddr);
2195         se = get_seg_entry(sbi, segno);
2196         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2197
2198         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2199                 is_cp = true;
2200
2201         up_read(&sit_i->sentry_lock);
2202
2203         return is_cp;
2204 }
2205
2206 /*
2207  * This function should be resided under the curseg_mutex lock
2208  */
2209 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2210                                         struct f2fs_summary *sum)
2211 {
2212         struct curseg_info *curseg = CURSEG_I(sbi, type);
2213         void *addr = curseg->sum_blk;
2214         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2215         memcpy(addr, sum, sizeof(struct f2fs_summary));
2216 }
2217
2218 /*
2219  * Calculate the number of current summary pages for writing
2220  */
2221 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2222 {
2223         int valid_sum_count = 0;
2224         int i, sum_in_page;
2225
2226         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2227                 if (sbi->ckpt->alloc_type[i] == SSR)
2228                         valid_sum_count += sbi->blocks_per_seg;
2229                 else {
2230                         if (for_ra)
2231                                 valid_sum_count += le16_to_cpu(
2232                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2233                         else
2234                                 valid_sum_count += curseg_blkoff(sbi, i);
2235                 }
2236         }
2237
2238         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2239                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2240         if (valid_sum_count <= sum_in_page)
2241                 return 1;
2242         else if ((valid_sum_count - sum_in_page) <=
2243                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2244                 return 2;
2245         return 3;
2246 }
2247
2248 /*
2249  * Caller should put this summary page
2250  */
2251 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2252 {
2253         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2254 }
2255
2256 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2257                                         void *src, block_t blk_addr)
2258 {
2259         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2260
2261         memcpy(page_address(page), src, PAGE_SIZE);
2262         set_page_dirty(page);
2263         f2fs_put_page(page, 1);
2264 }
2265
2266 static void write_sum_page(struct f2fs_sb_info *sbi,
2267                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2268 {
2269         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2270 }
2271
2272 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2273                                                 int type, block_t blk_addr)
2274 {
2275         struct curseg_info *curseg = CURSEG_I(sbi, type);
2276         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2277         struct f2fs_summary_block *src = curseg->sum_blk;
2278         struct f2fs_summary_block *dst;
2279
2280         dst = (struct f2fs_summary_block *)page_address(page);
2281         memset(dst, 0, PAGE_SIZE);
2282
2283         mutex_lock(&curseg->curseg_mutex);
2284
2285         down_read(&curseg->journal_rwsem);
2286         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2287         up_read(&curseg->journal_rwsem);
2288
2289         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2290         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2291
2292         mutex_unlock(&curseg->curseg_mutex);
2293
2294         set_page_dirty(page);
2295         f2fs_put_page(page, 1);
2296 }
2297
2298 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2299 {
2300         struct curseg_info *curseg = CURSEG_I(sbi, type);
2301         unsigned int segno = curseg->segno + 1;
2302         struct free_segmap_info *free_i = FREE_I(sbi);
2303
2304         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2305                 return !test_bit(segno, free_i->free_segmap);
2306         return 0;
2307 }
2308
2309 /*
2310  * Find a new segment from the free segments bitmap to right order
2311  * This function should be returned with success, otherwise BUG
2312  */
2313 static void get_new_segment(struct f2fs_sb_info *sbi,
2314                         unsigned int *newseg, bool new_sec, int dir)
2315 {
2316         struct free_segmap_info *free_i = FREE_I(sbi);
2317         unsigned int segno, secno, zoneno;
2318         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2319         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2320         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2321         unsigned int left_start = hint;
2322         bool init = true;
2323         int go_left = 0;
2324         int i;
2325
2326         spin_lock(&free_i->segmap_lock);
2327
2328         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2329                 segno = find_next_zero_bit(free_i->free_segmap,
2330                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2331                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2332                         goto got_it;
2333         }
2334 find_other_zone:
2335         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2336         if (secno >= MAIN_SECS(sbi)) {
2337                 if (dir == ALLOC_RIGHT) {
2338                         secno = find_next_zero_bit(free_i->free_secmap,
2339                                                         MAIN_SECS(sbi), 0);
2340                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2341                 } else {
2342                         go_left = 1;
2343                         left_start = hint - 1;
2344                 }
2345         }
2346         if (go_left == 0)
2347                 goto skip_left;
2348
2349         while (test_bit(left_start, free_i->free_secmap)) {
2350                 if (left_start > 0) {
2351                         left_start--;
2352                         continue;
2353                 }
2354                 left_start = find_next_zero_bit(free_i->free_secmap,
2355                                                         MAIN_SECS(sbi), 0);
2356                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2357                 break;
2358         }
2359         secno = left_start;
2360 skip_left:
2361         segno = GET_SEG_FROM_SEC(sbi, secno);
2362         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2363
2364         /* give up on finding another zone */
2365         if (!init)
2366                 goto got_it;
2367         if (sbi->secs_per_zone == 1)
2368                 goto got_it;
2369         if (zoneno == old_zoneno)
2370                 goto got_it;
2371         if (dir == ALLOC_LEFT) {
2372                 if (!go_left && zoneno + 1 >= total_zones)
2373                         goto got_it;
2374                 if (go_left && zoneno == 0)
2375                         goto got_it;
2376         }
2377         for (i = 0; i < NR_CURSEG_TYPE; i++)
2378                 if (CURSEG_I(sbi, i)->zone == zoneno)
2379                         break;
2380
2381         if (i < NR_CURSEG_TYPE) {
2382                 /* zone is in user, try another */
2383                 if (go_left)
2384                         hint = zoneno * sbi->secs_per_zone - 1;
2385                 else if (zoneno + 1 >= total_zones)
2386                         hint = 0;
2387                 else
2388                         hint = (zoneno + 1) * sbi->secs_per_zone;
2389                 init = false;
2390                 goto find_other_zone;
2391         }
2392 got_it:
2393         /* set it as dirty segment in free segmap */
2394         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2395         __set_inuse(sbi, segno);
2396         *newseg = segno;
2397         spin_unlock(&free_i->segmap_lock);
2398 }
2399
2400 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2401 {
2402         struct curseg_info *curseg = CURSEG_I(sbi, type);
2403         struct summary_footer *sum_footer;
2404
2405         curseg->segno = curseg->next_segno;
2406         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2407         curseg->next_blkoff = 0;
2408         curseg->next_segno = NULL_SEGNO;
2409
2410         sum_footer = &(curseg->sum_blk->footer);
2411         memset(sum_footer, 0, sizeof(struct summary_footer));
2412         if (IS_DATASEG(type))
2413                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2414         if (IS_NODESEG(type))
2415                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2416         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2417 }
2418
2419 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2420 {
2421         /* if segs_per_sec is large than 1, we need to keep original policy. */
2422         if (__is_large_section(sbi))
2423                 return CURSEG_I(sbi, type)->segno;
2424
2425         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2426                 return 0;
2427
2428         if (test_opt(sbi, NOHEAP) &&
2429                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2430                 return 0;
2431
2432         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2433                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2434
2435         /* find segments from 0 to reuse freed segments */
2436         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2437                 return 0;
2438
2439         return CURSEG_I(sbi, type)->segno;
2440 }
2441
2442 /*
2443  * Allocate a current working segment.
2444  * This function always allocates a free segment in LFS manner.
2445  */
2446 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2447 {
2448         struct curseg_info *curseg = CURSEG_I(sbi, type);
2449         unsigned int segno = curseg->segno;
2450         int dir = ALLOC_LEFT;
2451
2452         write_sum_page(sbi, curseg->sum_blk,
2453                                 GET_SUM_BLOCK(sbi, segno));
2454         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2455                 dir = ALLOC_RIGHT;
2456
2457         if (test_opt(sbi, NOHEAP))
2458                 dir = ALLOC_RIGHT;
2459
2460         segno = __get_next_segno(sbi, type);
2461         get_new_segment(sbi, &segno, new_sec, dir);
2462         curseg->next_segno = segno;
2463         reset_curseg(sbi, type, 1);
2464         curseg->alloc_type = LFS;
2465 }
2466
2467 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2468                         struct curseg_info *seg, block_t start)
2469 {
2470         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2471         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2472         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2473         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2474         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2475         int i, pos;
2476
2477         for (i = 0; i < entries; i++)
2478                 target_map[i] = ckpt_map[i] | cur_map[i];
2479
2480         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2481
2482         seg->next_blkoff = pos;
2483 }
2484
2485 /*
2486  * If a segment is written by LFS manner, next block offset is just obtained
2487  * by increasing the current block offset. However, if a segment is written by
2488  * SSR manner, next block offset obtained by calling __next_free_blkoff
2489  */
2490 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2491                                 struct curseg_info *seg)
2492 {
2493         if (seg->alloc_type == SSR)
2494                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2495         else
2496                 seg->next_blkoff++;
2497 }
2498
2499 /*
2500  * This function always allocates a used segment(from dirty seglist) by SSR
2501  * manner, so it should recover the existing segment information of valid blocks
2502  */
2503 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2504 {
2505         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2506         struct curseg_info *curseg = CURSEG_I(sbi, type);
2507         unsigned int new_segno = curseg->next_segno;
2508         struct f2fs_summary_block *sum_node;
2509         struct page *sum_page;
2510
2511         write_sum_page(sbi, curseg->sum_blk,
2512                                 GET_SUM_BLOCK(sbi, curseg->segno));
2513         __set_test_and_inuse(sbi, new_segno);
2514
2515         mutex_lock(&dirty_i->seglist_lock);
2516         __remove_dirty_segment(sbi, new_segno, PRE);
2517         __remove_dirty_segment(sbi, new_segno, DIRTY);
2518         mutex_unlock(&dirty_i->seglist_lock);
2519
2520         reset_curseg(sbi, type, 1);
2521         curseg->alloc_type = SSR;
2522         __next_free_blkoff(sbi, curseg, 0);
2523
2524         sum_page = f2fs_get_sum_page(sbi, new_segno);
2525         f2fs_bug_on(sbi, IS_ERR(sum_page));
2526         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2527         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2528         f2fs_put_page(sum_page, 1);
2529 }
2530
2531 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2532 {
2533         struct curseg_info *curseg = CURSEG_I(sbi, type);
2534         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2535         unsigned segno = NULL_SEGNO;
2536         int i, cnt;
2537         bool reversed = false;
2538
2539         /* f2fs_need_SSR() already forces to do this */
2540         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2541                 curseg->next_segno = segno;
2542                 return 1;
2543         }
2544
2545         /* For node segments, let's do SSR more intensively */
2546         if (IS_NODESEG(type)) {
2547                 if (type >= CURSEG_WARM_NODE) {
2548                         reversed = true;
2549                         i = CURSEG_COLD_NODE;
2550                 } else {
2551                         i = CURSEG_HOT_NODE;
2552                 }
2553                 cnt = NR_CURSEG_NODE_TYPE;
2554         } else {
2555                 if (type >= CURSEG_WARM_DATA) {
2556                         reversed = true;
2557                         i = CURSEG_COLD_DATA;
2558                 } else {
2559                         i = CURSEG_HOT_DATA;
2560                 }
2561                 cnt = NR_CURSEG_DATA_TYPE;
2562         }
2563
2564         for (; cnt-- > 0; reversed ? i-- : i++) {
2565                 if (i == type)
2566                         continue;
2567                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2568                         curseg->next_segno = segno;
2569                         return 1;
2570                 }
2571         }
2572
2573         /* find valid_blocks=0 in dirty list */
2574         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2575                 segno = get_free_segment(sbi);
2576                 if (segno != NULL_SEGNO) {
2577                         curseg->next_segno = segno;
2578                         return 1;
2579                 }
2580         }
2581         return 0;
2582 }
2583
2584 /*
2585  * flush out current segment and replace it with new segment
2586  * This function should be returned with success, otherwise BUG
2587  */
2588 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2589                                                 int type, bool force)
2590 {
2591         struct curseg_info *curseg = CURSEG_I(sbi, type);
2592
2593         if (force)
2594                 new_curseg(sbi, type, true);
2595         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2596                                         type == CURSEG_WARM_NODE)
2597                 new_curseg(sbi, type, false);
2598         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2599                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600                 new_curseg(sbi, type, false);
2601         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2602                 change_curseg(sbi, type);
2603         else
2604                 new_curseg(sbi, type, false);
2605
2606         stat_inc_seg_type(sbi, curseg);
2607 }
2608
2609 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2610 {
2611         struct curseg_info *curseg;
2612         unsigned int old_segno;
2613         int i;
2614
2615         down_write(&SIT_I(sbi)->sentry_lock);
2616
2617         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2618                 curseg = CURSEG_I(sbi, i);
2619                 old_segno = curseg->segno;
2620                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2621                 locate_dirty_segment(sbi, old_segno);
2622         }
2623
2624         up_write(&SIT_I(sbi)->sentry_lock);
2625 }
2626
2627 static const struct segment_allocation default_salloc_ops = {
2628         .allocate_segment = allocate_segment_by_default,
2629 };
2630
2631 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2632                                                 struct cp_control *cpc)
2633 {
2634         __u64 trim_start = cpc->trim_start;
2635         bool has_candidate = false;
2636
2637         down_write(&SIT_I(sbi)->sentry_lock);
2638         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2639                 if (add_discard_addrs(sbi, cpc, true)) {
2640                         has_candidate = true;
2641                         break;
2642                 }
2643         }
2644         up_write(&SIT_I(sbi)->sentry_lock);
2645
2646         cpc->trim_start = trim_start;
2647         return has_candidate;
2648 }
2649
2650 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2651                                         struct discard_policy *dpolicy,
2652                                         unsigned int start, unsigned int end)
2653 {
2654         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2655         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2656         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2657         struct discard_cmd *dc;
2658         struct blk_plug plug;
2659         int issued;
2660         unsigned int trimmed = 0;
2661
2662 next:
2663         issued = 0;
2664
2665         mutex_lock(&dcc->cmd_lock);
2666         if (unlikely(dcc->rbtree_check))
2667                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2668                                                                 &dcc->root));
2669
2670         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2671                                         NULL, start,
2672                                         (struct rb_entry **)&prev_dc,
2673                                         (struct rb_entry **)&next_dc,
2674                                         &insert_p, &insert_parent, true, NULL);
2675         if (!dc)
2676                 dc = next_dc;
2677
2678         blk_start_plug(&plug);
2679
2680         while (dc && dc->lstart <= end) {
2681                 struct rb_node *node;
2682                 int err = 0;
2683
2684                 if (dc->len < dpolicy->granularity)
2685                         goto skip;
2686
2687                 if (dc->state != D_PREP) {
2688                         list_move_tail(&dc->list, &dcc->fstrim_list);
2689                         goto skip;
2690                 }
2691
2692                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2693
2694                 if (issued >= dpolicy->max_requests) {
2695                         start = dc->lstart + dc->len;
2696
2697                         if (err)
2698                                 __remove_discard_cmd(sbi, dc);
2699
2700                         blk_finish_plug(&plug);
2701                         mutex_unlock(&dcc->cmd_lock);
2702                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2703                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2704                         goto next;
2705                 }
2706 skip:
2707                 node = rb_next(&dc->rb_node);
2708                 if (err)
2709                         __remove_discard_cmd(sbi, dc);
2710                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2711
2712                 if (fatal_signal_pending(current))
2713                         break;
2714         }
2715
2716         blk_finish_plug(&plug);
2717         mutex_unlock(&dcc->cmd_lock);
2718
2719         return trimmed;
2720 }
2721
2722 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2723 {
2724         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2725         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2726         unsigned int start_segno, end_segno;
2727         block_t start_block, end_block;
2728         struct cp_control cpc;
2729         struct discard_policy dpolicy;
2730         unsigned long long trimmed = 0;
2731         int err = 0;
2732         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2733
2734         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2735                 return -EINVAL;
2736
2737         if (end < MAIN_BLKADDR(sbi))
2738                 goto out;
2739
2740         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2741                 f2fs_msg(sbi->sb, KERN_WARNING,
2742                         "Found FS corruption, run fsck to fix.");
2743                 return -EIO;
2744         }
2745
2746         /* start/end segment number in main_area */
2747         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2748         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2749                                                 GET_SEGNO(sbi, end);
2750         if (need_align) {
2751                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2752                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2753         }
2754
2755         cpc.reason = CP_DISCARD;
2756         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2757         cpc.trim_start = start_segno;
2758         cpc.trim_end = end_segno;
2759
2760         if (sbi->discard_blks == 0)
2761                 goto out;
2762
2763         mutex_lock(&sbi->gc_mutex);
2764         err = f2fs_write_checkpoint(sbi, &cpc);
2765         mutex_unlock(&sbi->gc_mutex);
2766         if (err)
2767                 goto out;
2768
2769         /*
2770          * We filed discard candidates, but actually we don't need to wait for
2771          * all of them, since they'll be issued in idle time along with runtime
2772          * discard option. User configuration looks like using runtime discard
2773          * or periodic fstrim instead of it.
2774          */
2775         if (f2fs_realtime_discard_enable(sbi))
2776                 goto out;
2777
2778         start_block = START_BLOCK(sbi, start_segno);
2779         end_block = START_BLOCK(sbi, end_segno + 1);
2780
2781         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2782         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2783                                         start_block, end_block);
2784
2785         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2786                                         start_block, end_block);
2787 out:
2788         if (!err)
2789                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2790         return err;
2791 }
2792
2793 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2794 {
2795         struct curseg_info *curseg = CURSEG_I(sbi, type);
2796         if (curseg->next_blkoff < sbi->blocks_per_seg)
2797                 return true;
2798         return false;
2799 }
2800
2801 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2802 {
2803         switch (hint) {
2804         case WRITE_LIFE_SHORT:
2805                 return CURSEG_HOT_DATA;
2806         case WRITE_LIFE_EXTREME:
2807                 return CURSEG_COLD_DATA;
2808         default:
2809                 return CURSEG_WARM_DATA;
2810         }
2811 }
2812
2813 /* This returns write hints for each segment type. This hints will be
2814  * passed down to block layer. There are mapping tables which depend on
2815  * the mount option 'whint_mode'.
2816  *
2817  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2818  *
2819  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2820  *
2821  * User                  F2FS                     Block
2822  * ----                  ----                     -----
2823  *                       META                     WRITE_LIFE_NOT_SET
2824  *                       HOT_NODE                 "
2825  *                       WARM_NODE                "
2826  *                       COLD_NODE                "
2827  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2828  * extension list        "                        "
2829  *
2830  * -- buffered io
2831  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2832  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2833  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2834  * WRITE_LIFE_NONE       "                        "
2835  * WRITE_LIFE_MEDIUM     "                        "
2836  * WRITE_LIFE_LONG       "                        "
2837  *
2838  * -- direct io
2839  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2840  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2841  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2842  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2843  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2844  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2845  *
2846  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2847  *
2848  * User                  F2FS                     Block
2849  * ----                  ----                     -----
2850  *                       META                     WRITE_LIFE_MEDIUM;
2851  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2852  *                       WARM_NODE                "
2853  *                       COLD_NODE                WRITE_LIFE_NONE
2854  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2855  * extension list        "                        "
2856  *
2857  * -- buffered io
2858  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2859  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2860  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2861  * WRITE_LIFE_NONE       "                        "
2862  * WRITE_LIFE_MEDIUM     "                        "
2863  * WRITE_LIFE_LONG       "                        "
2864  *
2865  * -- direct io
2866  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2867  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2868  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2869  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2870  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2871  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2872  */
2873
2874 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2875                                 enum page_type type, enum temp_type temp)
2876 {
2877         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2878                 if (type == DATA) {
2879                         if (temp == WARM)
2880                                 return WRITE_LIFE_NOT_SET;
2881                         else if (temp == HOT)
2882                                 return WRITE_LIFE_SHORT;
2883                         else if (temp == COLD)
2884                                 return WRITE_LIFE_EXTREME;
2885                 } else {
2886                         return WRITE_LIFE_NOT_SET;
2887                 }
2888         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2889                 if (type == DATA) {
2890                         if (temp == WARM)
2891                                 return WRITE_LIFE_LONG;
2892                         else if (temp == HOT)
2893                                 return WRITE_LIFE_SHORT;
2894                         else if (temp == COLD)
2895                                 return WRITE_LIFE_EXTREME;
2896                 } else if (type == NODE) {
2897                         if (temp == WARM || temp == HOT)
2898                                 return WRITE_LIFE_NOT_SET;
2899                         else if (temp == COLD)
2900                                 return WRITE_LIFE_NONE;
2901                 } else if (type == META) {
2902                         return WRITE_LIFE_MEDIUM;
2903                 }
2904         }
2905         return WRITE_LIFE_NOT_SET;
2906 }
2907
2908 static int __get_segment_type_2(struct f2fs_io_info *fio)
2909 {
2910         if (fio->type == DATA)
2911                 return CURSEG_HOT_DATA;
2912         else
2913                 return CURSEG_HOT_NODE;
2914 }
2915
2916 static int __get_segment_type_4(struct f2fs_io_info *fio)
2917 {
2918         if (fio->type == DATA) {
2919                 struct inode *inode = fio->page->mapping->host;
2920
2921                 if (S_ISDIR(inode->i_mode))
2922                         return CURSEG_HOT_DATA;
2923                 else
2924                         return CURSEG_COLD_DATA;
2925         } else {
2926                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2927                         return CURSEG_WARM_NODE;
2928                 else
2929                         return CURSEG_COLD_NODE;
2930         }
2931 }
2932
2933 static int __get_segment_type_6(struct f2fs_io_info *fio)
2934 {
2935         if (fio->type == DATA) {
2936                 struct inode *inode = fio->page->mapping->host;
2937
2938                 if (is_cold_data(fio->page) || file_is_cold(inode))
2939                         return CURSEG_COLD_DATA;
2940                 if (file_is_hot(inode) ||
2941                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
2942                                 f2fs_is_atomic_file(inode) ||
2943                                 f2fs_is_volatile_file(inode))
2944                         return CURSEG_HOT_DATA;
2945                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2946         } else {
2947                 if (IS_DNODE(fio->page))
2948                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2949                                                 CURSEG_HOT_NODE;
2950                 return CURSEG_COLD_NODE;
2951         }
2952 }
2953
2954 static int __get_segment_type(struct f2fs_io_info *fio)
2955 {
2956         int type = 0;
2957
2958         switch (F2FS_OPTION(fio->sbi).active_logs) {
2959         case 2:
2960                 type = __get_segment_type_2(fio);
2961                 break;
2962         case 4:
2963                 type = __get_segment_type_4(fio);
2964                 break;
2965         case 6:
2966                 type = __get_segment_type_6(fio);
2967                 break;
2968         default:
2969                 f2fs_bug_on(fio->sbi, true);
2970         }
2971
2972         if (IS_HOT(type))
2973                 fio->temp = HOT;
2974         else if (IS_WARM(type))
2975                 fio->temp = WARM;
2976         else
2977                 fio->temp = COLD;
2978         return type;
2979 }
2980
2981 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2982                 block_t old_blkaddr, block_t *new_blkaddr,
2983                 struct f2fs_summary *sum, int type,
2984                 struct f2fs_io_info *fio, bool add_list)
2985 {
2986         struct sit_info *sit_i = SIT_I(sbi);
2987         struct curseg_info *curseg = CURSEG_I(sbi, type);
2988
2989         down_read(&SM_I(sbi)->curseg_lock);
2990
2991         mutex_lock(&curseg->curseg_mutex);
2992         down_write(&sit_i->sentry_lock);
2993
2994         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2995
2996         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2997
2998         /*
2999          * __add_sum_entry should be resided under the curseg_mutex
3000          * because, this function updates a summary entry in the
3001          * current summary block.
3002          */
3003         __add_sum_entry(sbi, type, sum);
3004
3005         __refresh_next_blkoff(sbi, curseg);
3006
3007         stat_inc_block_count(sbi, curseg);
3008
3009         /*
3010          * SIT information should be updated before segment allocation,
3011          * since SSR needs latest valid block information.
3012          */
3013         update_sit_entry(sbi, *new_blkaddr, 1);
3014         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3015                 update_sit_entry(sbi, old_blkaddr, -1);
3016
3017         if (!__has_curseg_space(sbi, type))
3018                 sit_i->s_ops->allocate_segment(sbi, type, false);
3019
3020         /*
3021          * segment dirty status should be updated after segment allocation,
3022          * so we just need to update status only one time after previous
3023          * segment being closed.
3024          */
3025         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3026         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3027
3028         up_write(&sit_i->sentry_lock);
3029
3030         if (page && IS_NODESEG(type)) {
3031                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3032
3033                 f2fs_inode_chksum_set(sbi, page);
3034         }
3035
3036         if (add_list) {
3037                 struct f2fs_bio_info *io;
3038
3039                 INIT_LIST_HEAD(&fio->list);
3040                 fio->in_list = true;
3041                 fio->retry = false;
3042                 io = sbi->write_io[fio->type] + fio->temp;
3043                 spin_lock(&io->io_lock);
3044                 list_add_tail(&fio->list, &io->io_list);
3045                 spin_unlock(&io->io_lock);
3046         }
3047
3048         mutex_unlock(&curseg->curseg_mutex);
3049
3050         up_read(&SM_I(sbi)->curseg_lock);
3051 }
3052
3053 static void update_device_state(struct f2fs_io_info *fio)
3054 {
3055         struct f2fs_sb_info *sbi = fio->sbi;
3056         unsigned int devidx;
3057
3058         if (!sbi->s_ndevs)
3059                 return;
3060
3061         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3062
3063         /* update device state for fsync */
3064         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3065
3066         /* update device state for checkpoint */
3067         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3068                 spin_lock(&sbi->dev_lock);
3069                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3070                 spin_unlock(&sbi->dev_lock);
3071         }
3072 }
3073
3074 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3075 {
3076         int type = __get_segment_type(fio);
3077         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3078
3079         if (keep_order)
3080                 down_read(&fio->sbi->io_order_lock);
3081 reallocate:
3082         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3083                         &fio->new_blkaddr, sum, type, fio, true);
3084         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3085                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3086                                         fio->old_blkaddr, fio->old_blkaddr);
3087
3088         /* writeout dirty page into bdev */
3089         f2fs_submit_page_write(fio);
3090         if (fio->retry) {
3091                 fio->old_blkaddr = fio->new_blkaddr;
3092                 goto reallocate;
3093         }
3094
3095         update_device_state(fio);
3096
3097         if (keep_order)
3098                 up_read(&fio->sbi->io_order_lock);
3099 }
3100
3101 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3102                                         enum iostat_type io_type)
3103 {
3104         struct f2fs_io_info fio = {
3105                 .sbi = sbi,
3106                 .type = META,
3107                 .temp = HOT,
3108                 .op = REQ_OP_WRITE,
3109                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3110                 .old_blkaddr = page->index,
3111                 .new_blkaddr = page->index,
3112                 .page = page,
3113                 .encrypted_page = NULL,
3114                 .in_list = false,
3115         };
3116
3117         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3118                 fio.op_flags &= ~REQ_META;
3119
3120         set_page_writeback(page);
3121         ClearPageError(page);
3122         f2fs_submit_page_write(&fio);
3123
3124         stat_inc_meta_count(sbi, page->index);
3125         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3126 }
3127
3128 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3129 {
3130         struct f2fs_summary sum;
3131
3132         set_summary(&sum, nid, 0, 0);
3133         do_write_page(&sum, fio);
3134
3135         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3136 }
3137
3138 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3139                                         struct f2fs_io_info *fio)
3140 {
3141         struct f2fs_sb_info *sbi = fio->sbi;
3142         struct f2fs_summary sum;
3143
3144         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3145         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3146         do_write_page(&sum, fio);
3147         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3148
3149         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3150 }
3151
3152 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3153 {
3154         int err;
3155         struct f2fs_sb_info *sbi = fio->sbi;
3156
3157         fio->new_blkaddr = fio->old_blkaddr;
3158         /* i/o temperature is needed for passing down write hints */
3159         __get_segment_type(fio);
3160
3161         f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3162                         GET_SEGNO(sbi, fio->new_blkaddr))->type));
3163
3164         stat_inc_inplace_blocks(fio->sbi);
3165
3166         err = f2fs_submit_page_bio(fio);
3167         if (!err)
3168                 update_device_state(fio);
3169
3170         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3171
3172         return err;
3173 }
3174
3175 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3176                                                 unsigned int segno)
3177 {
3178         int i;
3179
3180         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3181                 if (CURSEG_I(sbi, i)->segno == segno)
3182                         break;
3183         }
3184         return i;
3185 }
3186
3187 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3188                                 block_t old_blkaddr, block_t new_blkaddr,
3189                                 bool recover_curseg, bool recover_newaddr)
3190 {
3191         struct sit_info *sit_i = SIT_I(sbi);
3192         struct curseg_info *curseg;
3193         unsigned int segno, old_cursegno;
3194         struct seg_entry *se;
3195         int type;
3196         unsigned short old_blkoff;
3197
3198         segno = GET_SEGNO(sbi, new_blkaddr);
3199         se = get_seg_entry(sbi, segno);
3200         type = se->type;
3201
3202         down_write(&SM_I(sbi)->curseg_lock);
3203
3204         if (!recover_curseg) {
3205                 /* for recovery flow */
3206                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3207                         if (old_blkaddr == NULL_ADDR)
3208                                 type = CURSEG_COLD_DATA;
3209                         else
3210                                 type = CURSEG_WARM_DATA;
3211                 }
3212         } else {
3213                 if (IS_CURSEG(sbi, segno)) {
3214                         /* se->type is volatile as SSR allocation */
3215                         type = __f2fs_get_curseg(sbi, segno);
3216                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3217                 } else {
3218                         type = CURSEG_WARM_DATA;
3219                 }
3220         }
3221
3222         f2fs_bug_on(sbi, !IS_DATASEG(type));
3223         curseg = CURSEG_I(sbi, type);
3224
3225         mutex_lock(&curseg->curseg_mutex);
3226         down_write(&sit_i->sentry_lock);
3227
3228         old_cursegno = curseg->segno;
3229         old_blkoff = curseg->next_blkoff;
3230
3231         /* change the current segment */
3232         if (segno != curseg->segno) {
3233                 curseg->next_segno = segno;
3234                 change_curseg(sbi, type);
3235         }
3236
3237         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3238         __add_sum_entry(sbi, type, sum);
3239
3240         if (!recover_curseg || recover_newaddr)
3241                 update_sit_entry(sbi, new_blkaddr, 1);
3242         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3243                 invalidate_mapping_pages(META_MAPPING(sbi),
3244                                         old_blkaddr, old_blkaddr);
3245                 update_sit_entry(sbi, old_blkaddr, -1);
3246         }
3247
3248         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3249         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3250
3251         locate_dirty_segment(sbi, old_cursegno);
3252
3253         if (recover_curseg) {
3254                 if (old_cursegno != curseg->segno) {
3255                         curseg->next_segno = old_cursegno;
3256                         change_curseg(sbi, type);
3257                 }
3258                 curseg->next_blkoff = old_blkoff;
3259         }
3260
3261         up_write(&sit_i->sentry_lock);
3262         mutex_unlock(&curseg->curseg_mutex);
3263         up_write(&SM_I(sbi)->curseg_lock);
3264 }
3265
3266 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3267                                 block_t old_addr, block_t new_addr,
3268                                 unsigned char version, bool recover_curseg,
3269                                 bool recover_newaddr)
3270 {
3271         struct f2fs_summary sum;
3272
3273         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3274
3275         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3276                                         recover_curseg, recover_newaddr);
3277
3278         f2fs_update_data_blkaddr(dn, new_addr);
3279 }
3280
3281 void f2fs_wait_on_page_writeback(struct page *page,
3282                                 enum page_type type, bool ordered, bool locked)
3283 {
3284         if (PageWriteback(page)) {
3285                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3286
3287                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3288                 if (ordered) {
3289                         wait_on_page_writeback(page);
3290                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3291                 } else {
3292                         wait_for_stable_page(page);
3293                 }
3294         }
3295 }
3296
3297 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3298 {
3299         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3300         struct page *cpage;
3301
3302         if (!f2fs_post_read_required(inode))
3303                 return;
3304
3305         if (!is_valid_data_blkaddr(sbi, blkaddr))
3306                 return;
3307
3308         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3309         if (cpage) {
3310                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3311                 f2fs_put_page(cpage, 1);
3312         }
3313 }
3314
3315 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3316                                                                 block_t len)
3317 {
3318         block_t i;
3319
3320         for (i = 0; i < len; i++)
3321                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3322 }
3323
3324 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3325 {
3326         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3327         struct curseg_info *seg_i;
3328         unsigned char *kaddr;
3329         struct page *page;
3330         block_t start;
3331         int i, j, offset;
3332
3333         start = start_sum_block(sbi);
3334
3335         page = f2fs_get_meta_page(sbi, start++);
3336         if (IS_ERR(page))
3337                 return PTR_ERR(page);
3338         kaddr = (unsigned char *)page_address(page);
3339
3340         /* Step 1: restore nat cache */
3341         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3342         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3343
3344         /* Step 2: restore sit cache */
3345         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3346         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3347         offset = 2 * SUM_JOURNAL_SIZE;
3348
3349         /* Step 3: restore summary entries */
3350         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3351                 unsigned short blk_off;
3352                 unsigned int segno;
3353
3354                 seg_i = CURSEG_I(sbi, i);
3355                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3356                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3357                 seg_i->next_segno = segno;
3358                 reset_curseg(sbi, i, 0);
3359                 seg_i->alloc_type = ckpt->alloc_type[i];
3360                 seg_i->next_blkoff = blk_off;
3361
3362                 if (seg_i->alloc_type == SSR)
3363                         blk_off = sbi->blocks_per_seg;
3364
3365                 for (j = 0; j < blk_off; j++) {
3366                         struct f2fs_summary *s;
3367                         s = (struct f2fs_summary *)(kaddr + offset);
3368                         seg_i->sum_blk->entries[j] = *s;
3369                         offset += SUMMARY_SIZE;
3370                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3371                                                 SUM_FOOTER_SIZE)
3372                                 continue;
3373
3374                         f2fs_put_page(page, 1);
3375                         page = NULL;
3376
3377                         page = f2fs_get_meta_page(sbi, start++);
3378                         if (IS_ERR(page))
3379                                 return PTR_ERR(page);
3380                         kaddr = (unsigned char *)page_address(page);
3381                         offset = 0;
3382                 }
3383         }
3384         f2fs_put_page(page, 1);
3385         return 0;
3386 }
3387
3388 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3389 {
3390         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3391         struct f2fs_summary_block *sum;
3392         struct curseg_info *curseg;
3393         struct page *new;
3394         unsigned short blk_off;
3395         unsigned int segno = 0;
3396         block_t blk_addr = 0;
3397         int err = 0;
3398
3399         /* get segment number and block addr */
3400         if (IS_DATASEG(type)) {
3401                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3402                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3403                                                         CURSEG_HOT_DATA]);
3404                 if (__exist_node_summaries(sbi))
3405                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3406                 else
3407                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3408         } else {
3409                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3410                                                         CURSEG_HOT_NODE]);
3411                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3412                                                         CURSEG_HOT_NODE]);
3413                 if (__exist_node_summaries(sbi))
3414                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3415                                                         type - CURSEG_HOT_NODE);
3416                 else
3417                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3418         }
3419
3420         new = f2fs_get_meta_page(sbi, blk_addr);
3421         if (IS_ERR(new))
3422                 return PTR_ERR(new);
3423         sum = (struct f2fs_summary_block *)page_address(new);
3424
3425         if (IS_NODESEG(type)) {
3426                 if (__exist_node_summaries(sbi)) {
3427                         struct f2fs_summary *ns = &sum->entries[0];
3428                         int i;
3429                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3430                                 ns->version = 0;
3431                                 ns->ofs_in_node = 0;
3432                         }
3433                 } else {
3434                         err = f2fs_restore_node_summary(sbi, segno, sum);
3435                         if (err)
3436                                 goto out;
3437                 }
3438         }
3439
3440         /* set uncompleted segment to curseg */
3441         curseg = CURSEG_I(sbi, type);
3442         mutex_lock(&curseg->curseg_mutex);
3443
3444         /* update journal info */
3445         down_write(&curseg->journal_rwsem);
3446         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3447         up_write(&curseg->journal_rwsem);
3448
3449         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3450         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3451         curseg->next_segno = segno;
3452         reset_curseg(sbi, type, 0);
3453         curseg->alloc_type = ckpt->alloc_type[type];
3454         curseg->next_blkoff = blk_off;
3455         mutex_unlock(&curseg->curseg_mutex);
3456 out:
3457         f2fs_put_page(new, 1);
3458         return err;
3459 }
3460
3461 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3462 {
3463         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3464         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3465         int type = CURSEG_HOT_DATA;
3466         int err;
3467
3468         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3469                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3470
3471                 if (npages >= 2)
3472                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3473                                                         META_CP, true);
3474
3475                 /* restore for compacted data summary */
3476                 err = read_compacted_summaries(sbi);
3477                 if (err)
3478                         return err;
3479                 type = CURSEG_HOT_NODE;
3480         }
3481
3482         if (__exist_node_summaries(sbi))
3483                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3484                                         NR_CURSEG_TYPE - type, META_CP, true);
3485
3486         for (; type <= CURSEG_COLD_NODE; type++) {
3487                 err = read_normal_summaries(sbi, type);
3488                 if (err)
3489                         return err;
3490         }
3491
3492         /* sanity check for summary blocks */
3493         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3494                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3495                 return -EINVAL;
3496
3497         return 0;
3498 }
3499
3500 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3501 {
3502         struct page *page;
3503         unsigned char *kaddr;
3504         struct f2fs_summary *summary;
3505         struct curseg_info *seg_i;
3506         int written_size = 0;
3507         int i, j;
3508
3509         page = f2fs_grab_meta_page(sbi, blkaddr++);
3510         kaddr = (unsigned char *)page_address(page);
3511         memset(kaddr, 0, PAGE_SIZE);
3512
3513         /* Step 1: write nat cache */
3514         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3515         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3516         written_size += SUM_JOURNAL_SIZE;
3517
3518         /* Step 2: write sit cache */
3519         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3520         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3521         written_size += SUM_JOURNAL_SIZE;
3522
3523         /* Step 3: write summary entries */
3524         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3525                 unsigned short blkoff;
3526                 seg_i = CURSEG_I(sbi, i);
3527                 if (sbi->ckpt->alloc_type[i] == SSR)
3528                         blkoff = sbi->blocks_per_seg;
3529                 else
3530                         blkoff = curseg_blkoff(sbi, i);
3531
3532                 for (j = 0; j < blkoff; j++) {
3533                         if (!page) {
3534                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3535                                 kaddr = (unsigned char *)page_address(page);
3536                                 memset(kaddr, 0, PAGE_SIZE);
3537                                 written_size = 0;
3538                         }
3539                         summary = (struct f2fs_summary *)(kaddr + written_size);
3540                         *summary = seg_i->sum_blk->entries[j];
3541                         written_size += SUMMARY_SIZE;
3542
3543                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3544                                                         SUM_FOOTER_SIZE)
3545                                 continue;
3546
3547                         set_page_dirty(page);
3548                         f2fs_put_page(page, 1);
3549                         page = NULL;
3550                 }
3551         }
3552         if (page) {
3553                 set_page_dirty(page);
3554                 f2fs_put_page(page, 1);
3555         }
3556 }
3557
3558 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3559                                         block_t blkaddr, int type)
3560 {
3561         int i, end;
3562         if (IS_DATASEG(type))
3563                 end = type + NR_CURSEG_DATA_TYPE;
3564         else
3565                 end = type + NR_CURSEG_NODE_TYPE;
3566
3567         for (i = type; i < end; i++)
3568                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3569 }
3570
3571 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3572 {
3573         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3574                 write_compacted_summaries(sbi, start_blk);
3575         else
3576                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3577 }
3578
3579 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3580 {
3581         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3582 }
3583
3584 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3585                                         unsigned int val, int alloc)
3586 {
3587         int i;
3588
3589         if (type == NAT_JOURNAL) {
3590                 for (i = 0; i < nats_in_cursum(journal); i++) {
3591                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3592                                 return i;
3593                 }
3594                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3595                         return update_nats_in_cursum(journal, 1);
3596         } else if (type == SIT_JOURNAL) {
3597                 for (i = 0; i < sits_in_cursum(journal); i++)
3598                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3599                                 return i;
3600                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3601                         return update_sits_in_cursum(journal, 1);
3602         }
3603         return -1;
3604 }
3605
3606 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3607                                         unsigned int segno)
3608 {
3609         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3610 }
3611
3612 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3613                                         unsigned int start)
3614 {
3615         struct sit_info *sit_i = SIT_I(sbi);
3616         struct page *page;
3617         pgoff_t src_off, dst_off;
3618
3619         src_off = current_sit_addr(sbi, start);
3620         dst_off = next_sit_addr(sbi, src_off);
3621
3622         page = f2fs_grab_meta_page(sbi, dst_off);
3623         seg_info_to_sit_page(sbi, page, start);
3624
3625         set_page_dirty(page);
3626         set_to_next_sit(sit_i, start);
3627
3628         return page;
3629 }
3630
3631 static struct sit_entry_set *grab_sit_entry_set(void)
3632 {
3633         struct sit_entry_set *ses =
3634                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3635
3636         ses->entry_cnt = 0;
3637         INIT_LIST_HEAD(&ses->set_list);
3638         return ses;
3639 }
3640
3641 static void release_sit_entry_set(struct sit_entry_set *ses)
3642 {
3643         list_del(&ses->set_list);
3644         kmem_cache_free(sit_entry_set_slab, ses);
3645 }
3646
3647 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3648                                                 struct list_head *head)
3649 {
3650         struct sit_entry_set *next = ses;
3651
3652         if (list_is_last(&ses->set_list, head))
3653                 return;
3654
3655         list_for_each_entry_continue(next, head, set_list)
3656                 if (ses->entry_cnt <= next->entry_cnt)
3657                         break;
3658
3659         list_move_tail(&ses->set_list, &next->set_list);
3660 }
3661
3662 static void add_sit_entry(unsigned int segno, struct list_head *head)
3663 {
3664         struct sit_entry_set *ses;
3665         unsigned int start_segno = START_SEGNO(segno);
3666
3667         list_for_each_entry(ses, head, set_list) {
3668                 if (ses->start_segno == start_segno) {
3669                         ses->entry_cnt++;
3670                         adjust_sit_entry_set(ses, head);
3671                         return;
3672                 }
3673         }
3674
3675         ses = grab_sit_entry_set();
3676
3677         ses->start_segno = start_segno;
3678         ses->entry_cnt++;
3679         list_add(&ses->set_list, head);
3680 }
3681
3682 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3683 {
3684         struct f2fs_sm_info *sm_info = SM_I(sbi);
3685         struct list_head *set_list = &sm_info->sit_entry_set;
3686         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3687         unsigned int segno;
3688
3689         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3690                 add_sit_entry(segno, set_list);
3691 }
3692
3693 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3694 {
3695         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3696         struct f2fs_journal *journal = curseg->journal;
3697         int i;
3698
3699         down_write(&curseg->journal_rwsem);
3700         for (i = 0; i < sits_in_cursum(journal); i++) {
3701                 unsigned int segno;
3702                 bool dirtied;
3703
3704                 segno = le32_to_cpu(segno_in_journal(journal, i));
3705                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3706
3707                 if (!dirtied)
3708                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3709         }
3710         update_sits_in_cursum(journal, -i);
3711         up_write(&curseg->journal_rwsem);
3712 }
3713
3714 /*
3715  * CP calls this function, which flushes SIT entries including sit_journal,
3716  * and moves prefree segs to free segs.
3717  */
3718 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3719 {
3720         struct sit_info *sit_i = SIT_I(sbi);
3721         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3722         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3723         struct f2fs_journal *journal = curseg->journal;
3724         struct sit_entry_set *ses, *tmp;
3725         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3726         bool to_journal = true;
3727         struct seg_entry *se;
3728
3729         down_write(&sit_i->sentry_lock);
3730
3731         if (!sit_i->dirty_sentries)
3732                 goto out;
3733
3734         /*
3735          * add and account sit entries of dirty bitmap in sit entry
3736          * set temporarily
3737          */
3738         add_sits_in_set(sbi);
3739
3740         /*
3741          * if there are no enough space in journal to store dirty sit
3742          * entries, remove all entries from journal and add and account
3743          * them in sit entry set.
3744          */
3745         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3746                 remove_sits_in_journal(sbi);
3747
3748         /*
3749          * there are two steps to flush sit entries:
3750          * #1, flush sit entries to journal in current cold data summary block.
3751          * #2, flush sit entries to sit page.
3752          */
3753         list_for_each_entry_safe(ses, tmp, head, set_list) {
3754                 struct page *page = NULL;
3755                 struct f2fs_sit_block *raw_sit = NULL;
3756                 unsigned int start_segno = ses->start_segno;
3757                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3758                                                 (unsigned long)MAIN_SEGS(sbi));
3759                 unsigned int segno = start_segno;
3760
3761                 if (to_journal &&
3762                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3763                         to_journal = false;
3764
3765                 if (to_journal) {
3766                         down_write(&curseg->journal_rwsem);
3767                 } else {
3768                         page = get_next_sit_page(sbi, start_segno);
3769                         raw_sit = page_address(page);
3770                 }
3771
3772                 /* flush dirty sit entries in region of current sit set */
3773                 for_each_set_bit_from(segno, bitmap, end) {
3774                         int offset, sit_offset;
3775
3776                         se = get_seg_entry(sbi, segno);
3777 #ifdef CONFIG_F2FS_CHECK_FS
3778                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3779                                                 SIT_VBLOCK_MAP_SIZE))
3780                                 f2fs_bug_on(sbi, 1);
3781 #endif
3782
3783                         /* add discard candidates */
3784                         if (!(cpc->reason & CP_DISCARD)) {
3785                                 cpc->trim_start = segno;
3786                                 add_discard_addrs(sbi, cpc, false);
3787                         }
3788
3789                         if (to_journal) {
3790                                 offset = f2fs_lookup_journal_in_cursum(journal,
3791                                                         SIT_JOURNAL, segno, 1);
3792                                 f2fs_bug_on(sbi, offset < 0);
3793                                 segno_in_journal(journal, offset) =
3794                                                         cpu_to_le32(segno);
3795                                 seg_info_to_raw_sit(se,
3796                                         &sit_in_journal(journal, offset));
3797                                 check_block_count(sbi, segno,
3798                                         &sit_in_journal(journal, offset));
3799                         } else {
3800                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3801                                 seg_info_to_raw_sit(se,
3802                                                 &raw_sit->entries[sit_offset]);
3803                                 check_block_count(sbi, segno,
3804                                                 &raw_sit->entries[sit_offset]);
3805                         }
3806
3807                         __clear_bit(segno, bitmap);
3808                         sit_i->dirty_sentries--;
3809                         ses->entry_cnt--;
3810                 }
3811
3812                 if (to_journal)
3813                         up_write(&curseg->journal_rwsem);
3814                 else
3815                         f2fs_put_page(page, 1);
3816
3817                 f2fs_bug_on(sbi, ses->entry_cnt);
3818                 release_sit_entry_set(ses);
3819         }
3820
3821         f2fs_bug_on(sbi, !list_empty(head));
3822         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3823 out:
3824         if (cpc->reason & CP_DISCARD) {
3825                 __u64 trim_start = cpc->trim_start;
3826
3827                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3828                         add_discard_addrs(sbi, cpc, false);
3829
3830                 cpc->trim_start = trim_start;
3831         }
3832         up_write(&sit_i->sentry_lock);
3833
3834         set_prefree_as_free_segments(sbi);
3835 }
3836
3837 static int build_sit_info(struct f2fs_sb_info *sbi)
3838 {
3839         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3840         struct sit_info *sit_i;
3841         unsigned int sit_segs, start;
3842         char *src_bitmap;
3843         unsigned int bitmap_size;
3844
3845         /* allocate memory for SIT information */
3846         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3847         if (!sit_i)
3848                 return -ENOMEM;
3849
3850         SM_I(sbi)->sit_info = sit_i;
3851
3852         sit_i->sentries =
3853                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3854                                               MAIN_SEGS(sbi)),
3855                               GFP_KERNEL);
3856         if (!sit_i->sentries)
3857                 return -ENOMEM;
3858
3859         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3860         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3861                                                                 GFP_KERNEL);
3862         if (!sit_i->dirty_sentries_bitmap)
3863                 return -ENOMEM;
3864
3865         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3866                 sit_i->sentries[start].cur_valid_map
3867                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3868                 sit_i->sentries[start].ckpt_valid_map
3869                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3870                 if (!sit_i->sentries[start].cur_valid_map ||
3871                                 !sit_i->sentries[start].ckpt_valid_map)
3872                         return -ENOMEM;
3873
3874 #ifdef CONFIG_F2FS_CHECK_FS
3875                 sit_i->sentries[start].cur_valid_map_mir
3876                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3877                 if (!sit_i->sentries[start].cur_valid_map_mir)
3878                         return -ENOMEM;
3879 #endif
3880
3881                 sit_i->sentries[start].discard_map
3882                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3883                                                         GFP_KERNEL);
3884                 if (!sit_i->sentries[start].discard_map)
3885                         return -ENOMEM;
3886         }
3887
3888         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3889         if (!sit_i->tmp_map)
3890                 return -ENOMEM;
3891
3892         if (__is_large_section(sbi)) {
3893                 sit_i->sec_entries =
3894                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3895                                                       MAIN_SECS(sbi)),
3896                                       GFP_KERNEL);
3897                 if (!sit_i->sec_entries)
3898                         return -ENOMEM;
3899         }
3900
3901         /* get information related with SIT */
3902         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3903
3904         /* setup SIT bitmap from ckeckpoint pack */
3905         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3906         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3907
3908         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3909         if (!sit_i->sit_bitmap)
3910                 return -ENOMEM;
3911
3912 #ifdef CONFIG_F2FS_CHECK_FS
3913         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3914         if (!sit_i->sit_bitmap_mir)
3915                 return -ENOMEM;
3916 #endif
3917
3918         /* init SIT information */
3919         sit_i->s_ops = &default_salloc_ops;
3920
3921         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3922         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3923         sit_i->written_valid_blocks = 0;
3924         sit_i->bitmap_size = bitmap_size;
3925         sit_i->dirty_sentries = 0;
3926         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3927         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3928         sit_i->mounted_time = ktime_get_real_seconds();
3929         init_rwsem(&sit_i->sentry_lock);
3930         return 0;
3931 }
3932
3933 static int build_free_segmap(struct f2fs_sb_info *sbi)
3934 {
3935         struct free_segmap_info *free_i;
3936         unsigned int bitmap_size, sec_bitmap_size;
3937
3938         /* allocate memory for free segmap information */
3939         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3940         if (!free_i)
3941                 return -ENOMEM;
3942
3943         SM_I(sbi)->free_info = free_i;
3944
3945         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3946         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3947         if (!free_i->free_segmap)
3948                 return -ENOMEM;
3949
3950         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3951         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3952         if (!free_i->free_secmap)
3953                 return -ENOMEM;
3954
3955         /* set all segments as dirty temporarily */
3956         memset(free_i->free_segmap, 0xff, bitmap_size);
3957         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3958
3959         /* init free segmap information */
3960         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3961         free_i->free_segments = 0;
3962         free_i->free_sections = 0;
3963         spin_lock_init(&free_i->segmap_lock);
3964         return 0;
3965 }
3966
3967 static int build_curseg(struct f2fs_sb_info *sbi)
3968 {
3969         struct curseg_info *array;
3970         int i;
3971
3972         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3973                              GFP_KERNEL);
3974         if (!array)
3975                 return -ENOMEM;
3976
3977         SM_I(sbi)->curseg_array = array;
3978
3979         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3980                 mutex_init(&array[i].curseg_mutex);
3981                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3982                 if (!array[i].sum_blk)
3983                         return -ENOMEM;
3984                 init_rwsem(&array[i].journal_rwsem);
3985                 array[i].journal = f2fs_kzalloc(sbi,
3986                                 sizeof(struct f2fs_journal), GFP_KERNEL);
3987                 if (!array[i].journal)
3988                         return -ENOMEM;
3989                 array[i].segno = NULL_SEGNO;
3990                 array[i].next_blkoff = 0;
3991         }
3992         return restore_curseg_summaries(sbi);
3993 }
3994
3995 static int build_sit_entries(struct f2fs_sb_info *sbi)
3996 {
3997         struct sit_info *sit_i = SIT_I(sbi);
3998         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3999         struct f2fs_journal *journal = curseg->journal;
4000         struct seg_entry *se;
4001         struct f2fs_sit_entry sit;
4002         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4003         unsigned int i, start, end;
4004         unsigned int readed, start_blk = 0;
4005         int err = 0;
4006         block_t total_node_blocks = 0;
4007
4008         do {
4009                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4010                                                         META_SIT, true);
4011
4012                 start = start_blk * sit_i->sents_per_block;
4013                 end = (start_blk + readed) * sit_i->sents_per_block;
4014
4015                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4016                         struct f2fs_sit_block *sit_blk;
4017                         struct page *page;
4018
4019                         se = &sit_i->sentries[start];
4020                         page = get_current_sit_page(sbi, start);
4021                         if (IS_ERR(page))
4022                                 return PTR_ERR(page);
4023                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4024                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4025                         f2fs_put_page(page, 1);
4026
4027                         err = check_block_count(sbi, start, &sit);
4028                         if (err)
4029                                 return err;
4030                         seg_info_from_raw_sit(se, &sit);
4031                         if (IS_NODESEG(se->type))
4032                                 total_node_blocks += se->valid_blocks;
4033
4034                         /* build discard map only one time */
4035                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4036                                 memset(se->discard_map, 0xff,
4037                                         SIT_VBLOCK_MAP_SIZE);
4038                         } else {
4039                                 memcpy(se->discard_map,
4040                                         se->cur_valid_map,
4041                                         SIT_VBLOCK_MAP_SIZE);
4042                                 sbi->discard_blks +=
4043                                         sbi->blocks_per_seg -
4044                                         se->valid_blocks;
4045                         }
4046
4047                         if (__is_large_section(sbi))
4048                                 get_sec_entry(sbi, start)->valid_blocks +=
4049                                                         se->valid_blocks;
4050                 }
4051                 start_blk += readed;
4052         } while (start_blk < sit_blk_cnt);
4053
4054         down_read(&curseg->journal_rwsem);
4055         for (i = 0; i < sits_in_cursum(journal); i++) {
4056                 unsigned int old_valid_blocks;
4057
4058                 start = le32_to_cpu(segno_in_journal(journal, i));
4059                 if (start >= MAIN_SEGS(sbi)) {
4060                         f2fs_msg(sbi->sb, KERN_ERR,
4061                                         "Wrong journal entry on segno %u",
4062                                         start);
4063                         set_sbi_flag(sbi, SBI_NEED_FSCK);
4064                         err = -EINVAL;
4065                         break;
4066                 }
4067
4068                 se = &sit_i->sentries[start];
4069                 sit = sit_in_journal(journal, i);
4070
4071                 old_valid_blocks = se->valid_blocks;
4072                 if (IS_NODESEG(se->type))
4073                         total_node_blocks -= old_valid_blocks;
4074
4075                 err = check_block_count(sbi, start, &sit);
4076                 if (err)
4077                         break;
4078                 seg_info_from_raw_sit(se, &sit);
4079                 if (IS_NODESEG(se->type))
4080                         total_node_blocks += se->valid_blocks;
4081
4082                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4083                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4084                 } else {
4085                         memcpy(se->discard_map, se->cur_valid_map,
4086                                                 SIT_VBLOCK_MAP_SIZE);
4087                         sbi->discard_blks += old_valid_blocks;
4088                         sbi->discard_blks -= se->valid_blocks;
4089                 }
4090
4091                 if (__is_large_section(sbi)) {
4092                         get_sec_entry(sbi, start)->valid_blocks +=
4093                                                         se->valid_blocks;
4094                         get_sec_entry(sbi, start)->valid_blocks -=
4095                                                         old_valid_blocks;
4096                 }
4097         }
4098         up_read(&curseg->journal_rwsem);
4099
4100         if (!err && total_node_blocks != valid_node_count(sbi)) {
4101                 f2fs_msg(sbi->sb, KERN_ERR,
4102                         "SIT is corrupted node# %u vs %u",
4103                         total_node_blocks, valid_node_count(sbi));
4104                 set_sbi_flag(sbi, SBI_NEED_FSCK);
4105                 err = -EINVAL;
4106         }
4107
4108         return err;
4109 }
4110
4111 static void init_free_segmap(struct f2fs_sb_info *sbi)
4112 {
4113         unsigned int start;
4114         int type;
4115
4116         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4117                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4118                 if (!sentry->valid_blocks)
4119                         __set_free(sbi, start);
4120                 else
4121                         SIT_I(sbi)->written_valid_blocks +=
4122                                                 sentry->valid_blocks;
4123         }
4124
4125         /* set use the current segments */
4126         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4127                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4128                 __set_test_and_inuse(sbi, curseg_t->segno);
4129         }
4130 }
4131
4132 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4133 {
4134         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4135         struct free_segmap_info *free_i = FREE_I(sbi);
4136         unsigned int segno = 0, offset = 0;
4137         unsigned short valid_blocks;
4138
4139         while (1) {
4140                 /* find dirty segment based on free segmap */
4141                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4142                 if (segno >= MAIN_SEGS(sbi))
4143                         break;
4144                 offset = segno + 1;
4145                 valid_blocks = get_valid_blocks(sbi, segno, false);
4146                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4147                         continue;
4148                 if (valid_blocks > sbi->blocks_per_seg) {
4149                         f2fs_bug_on(sbi, 1);
4150                         continue;
4151                 }
4152                 mutex_lock(&dirty_i->seglist_lock);
4153                 __locate_dirty_segment(sbi, segno, DIRTY);
4154                 mutex_unlock(&dirty_i->seglist_lock);
4155         }
4156 }
4157
4158 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4159 {
4160         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4161         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4162
4163         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4164         if (!dirty_i->victim_secmap)
4165                 return -ENOMEM;
4166         return 0;
4167 }
4168
4169 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4170 {
4171         struct dirty_seglist_info *dirty_i;
4172         unsigned int bitmap_size, i;
4173
4174         /* allocate memory for dirty segments list information */
4175         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4176                                                                 GFP_KERNEL);
4177         if (!dirty_i)
4178                 return -ENOMEM;
4179
4180         SM_I(sbi)->dirty_info = dirty_i;
4181         mutex_init(&dirty_i->seglist_lock);
4182
4183         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4184
4185         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4186                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4187                                                                 GFP_KERNEL);
4188                 if (!dirty_i->dirty_segmap[i])
4189                         return -ENOMEM;
4190         }
4191
4192         init_dirty_segmap(sbi);
4193         return init_victim_secmap(sbi);
4194 }
4195
4196 /*
4197  * Update min, max modified time for cost-benefit GC algorithm
4198  */
4199 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4200 {
4201         struct sit_info *sit_i = SIT_I(sbi);
4202         unsigned int segno;
4203
4204         down_write(&sit_i->sentry_lock);
4205
4206         sit_i->min_mtime = ULLONG_MAX;
4207
4208         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4209                 unsigned int i;
4210                 unsigned long long mtime = 0;
4211
4212                 for (i = 0; i < sbi->segs_per_sec; i++)
4213                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4214
4215                 mtime = div_u64(mtime, sbi->segs_per_sec);
4216
4217                 if (sit_i->min_mtime > mtime)
4218                         sit_i->min_mtime = mtime;
4219         }
4220         sit_i->max_mtime = get_mtime(sbi, false);
4221         up_write(&sit_i->sentry_lock);
4222 }
4223
4224 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4225 {
4226         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4227         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4228         struct f2fs_sm_info *sm_info;
4229         int err;
4230
4231         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4232         if (!sm_info)
4233                 return -ENOMEM;
4234
4235         /* init sm info */
4236         sbi->sm_info = sm_info;
4237         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4238         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4239         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4240         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4241         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4242         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4243         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4244         sm_info->rec_prefree_segments = sm_info->main_segments *
4245                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4246         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4247                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4248
4249         if (!test_opt(sbi, LFS))
4250                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4251         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4252         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4253         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4254         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4255         sm_info->min_ssr_sections = reserved_sections(sbi);
4256
4257         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4258
4259         init_rwsem(&sm_info->curseg_lock);
4260
4261         if (!f2fs_readonly(sbi->sb)) {
4262                 err = f2fs_create_flush_cmd_control(sbi);
4263                 if (err)
4264                         return err;
4265         }
4266
4267         err = create_discard_cmd_control(sbi);
4268         if (err)
4269                 return err;
4270
4271         err = build_sit_info(sbi);
4272         if (err)
4273                 return err;
4274         err = build_free_segmap(sbi);
4275         if (err)
4276                 return err;
4277         err = build_curseg(sbi);
4278         if (err)
4279                 return err;
4280
4281         /* reinit free segmap based on SIT */
4282         err = build_sit_entries(sbi);
4283         if (err)
4284                 return err;
4285
4286         init_free_segmap(sbi);
4287         err = build_dirty_segmap(sbi);
4288         if (err)
4289                 return err;
4290
4291         init_min_max_mtime(sbi);
4292         return 0;
4293 }
4294
4295 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4296                 enum dirty_type dirty_type)
4297 {
4298         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4299
4300         mutex_lock(&dirty_i->seglist_lock);
4301         kvfree(dirty_i->dirty_segmap[dirty_type]);
4302         dirty_i->nr_dirty[dirty_type] = 0;
4303         mutex_unlock(&dirty_i->seglist_lock);
4304 }
4305
4306 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4307 {
4308         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4309         kvfree(dirty_i->victim_secmap);
4310 }
4311
4312 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4313 {
4314         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4315         int i;
4316
4317         if (!dirty_i)
4318                 return;
4319
4320         /* discard pre-free/dirty segments list */
4321         for (i = 0; i < NR_DIRTY_TYPE; i++)
4322                 discard_dirty_segmap(sbi, i);
4323
4324         destroy_victim_secmap(sbi);
4325         SM_I(sbi)->dirty_info = NULL;
4326         kvfree(dirty_i);
4327 }
4328
4329 static void destroy_curseg(struct f2fs_sb_info *sbi)
4330 {
4331         struct curseg_info *array = SM_I(sbi)->curseg_array;
4332         int i;
4333
4334         if (!array)
4335                 return;
4336         SM_I(sbi)->curseg_array = NULL;
4337         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4338                 kvfree(array[i].sum_blk);
4339                 kvfree(array[i].journal);
4340         }
4341         kvfree(array);
4342 }
4343
4344 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4345 {
4346         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4347         if (!free_i)
4348                 return;
4349         SM_I(sbi)->free_info = NULL;
4350         kvfree(free_i->free_segmap);
4351         kvfree(free_i->free_secmap);
4352         kvfree(free_i);
4353 }
4354
4355 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4356 {
4357         struct sit_info *sit_i = SIT_I(sbi);
4358         unsigned int start;
4359
4360         if (!sit_i)
4361                 return;
4362
4363         if (sit_i->sentries) {
4364                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4365                         kvfree(sit_i->sentries[start].cur_valid_map);
4366 #ifdef CONFIG_F2FS_CHECK_FS
4367                         kvfree(sit_i->sentries[start].cur_valid_map_mir);
4368 #endif
4369                         kvfree(sit_i->sentries[start].ckpt_valid_map);
4370                         kvfree(sit_i->sentries[start].discard_map);
4371                 }
4372         }
4373         kvfree(sit_i->tmp_map);
4374
4375         kvfree(sit_i->sentries);
4376         kvfree(sit_i->sec_entries);
4377         kvfree(sit_i->dirty_sentries_bitmap);
4378
4379         SM_I(sbi)->sit_info = NULL;
4380         kvfree(sit_i->sit_bitmap);
4381 #ifdef CONFIG_F2FS_CHECK_FS
4382         kvfree(sit_i->sit_bitmap_mir);
4383 #endif
4384         kvfree(sit_i);
4385 }
4386
4387 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4388 {
4389         struct f2fs_sm_info *sm_info = SM_I(sbi);
4390
4391         if (!sm_info)
4392                 return;
4393         f2fs_destroy_flush_cmd_control(sbi, true);
4394         destroy_discard_cmd_control(sbi);
4395         destroy_dirty_segmap(sbi);
4396         destroy_curseg(sbi);
4397         destroy_free_segmap(sbi);
4398         destroy_sit_info(sbi);
4399         sbi->sm_info = NULL;
4400         kvfree(sm_info);
4401 }
4402
4403 int __init f2fs_create_segment_manager_caches(void)
4404 {
4405         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4406                         sizeof(struct discard_entry));
4407         if (!discard_entry_slab)
4408                 goto fail;
4409
4410         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4411                         sizeof(struct discard_cmd));
4412         if (!discard_cmd_slab)
4413                 goto destroy_discard_entry;
4414
4415         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4416                         sizeof(struct sit_entry_set));
4417         if (!sit_entry_set_slab)
4418                 goto destroy_discard_cmd;
4419
4420         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4421                         sizeof(struct inmem_pages));
4422         if (!inmem_entry_slab)
4423                 goto destroy_sit_entry_set;
4424         return 0;
4425
4426 destroy_sit_entry_set:
4427         kmem_cache_destroy(sit_entry_set_slab);
4428 destroy_discard_cmd:
4429         kmem_cache_destroy(discard_cmd_slab);
4430 destroy_discard_entry:
4431         kmem_cache_destroy(discard_entry_slab);
4432 fail:
4433         return -ENOMEM;
4434 }
4435
4436 void f2fs_destroy_segment_manager_caches(void)
4437 {
4438         kmem_cache_destroy(sit_entry_set_slab);
4439         kmem_cache_destroy(discard_cmd_slab);
4440         kmem_cache_destroy(discard_entry_slab);
4441         kmem_cache_destroy(inmem_entry_slab);
4442 }