919798a61c929b995ab1a77d7d9ab3efbd27e66c
[linux-2.6-block.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38         unsigned long tmp = 0;
39         int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42         shift = 56;
43 #endif
44         while (shift >= 0) {
45                 tmp |= (unsigned long)str[idx++] << shift;
46                 shift -= BITS_PER_BYTE;
47         }
48         return tmp;
49 }
50
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57         int num = 0;
58
59 #if BITS_PER_LONG == 64
60         if ((word & 0xffffffff00000000UL) == 0)
61                 num += 32;
62         else
63                 word >>= 32;
64 #endif
65         if ((word & 0xffff0000) == 0)
66                 num += 16;
67         else
68                 word >>= 16;
69
70         if ((word & 0xff00) == 0)
71                 num += 8;
72         else
73                 word >>= 8;
74
75         if ((word & 0xf0) == 0)
76                 num += 4;
77         else
78                 word >>= 4;
79
80         if ((word & 0xc) == 0)
81                 num += 2;
82         else
83                 word >>= 2;
84
85         if ((word & 0x2) == 0)
86                 num += 1;
87         return num;
88 }
89
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100                         unsigned long size, unsigned long offset)
101 {
102         const unsigned long *p = addr + BIT_WORD(offset);
103         unsigned long result = size;
104         unsigned long tmp;
105
106         if (offset >= size)
107                 return size;
108
109         size -= (offset & ~(BITS_PER_LONG - 1));
110         offset %= BITS_PER_LONG;
111
112         while (1) {
113                 if (*p == 0)
114                         goto pass;
115
116                 tmp = __reverse_ulong((unsigned char *)p);
117
118                 tmp &= ~0UL >> offset;
119                 if (size < BITS_PER_LONG)
120                         tmp &= (~0UL << (BITS_PER_LONG - size));
121                 if (tmp)
122                         goto found;
123 pass:
124                 if (size <= BITS_PER_LONG)
125                         break;
126                 size -= BITS_PER_LONG;
127                 offset = 0;
128                 p++;
129         }
130         return result;
131 found:
132         return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136                         unsigned long size, unsigned long offset)
137 {
138         const unsigned long *p = addr + BIT_WORD(offset);
139         unsigned long result = size;
140         unsigned long tmp;
141
142         if (offset >= size)
143                 return size;
144
145         size -= (offset & ~(BITS_PER_LONG - 1));
146         offset %= BITS_PER_LONG;
147
148         while (1) {
149                 if (*p == ~0UL)
150                         goto pass;
151
152                 tmp = __reverse_ulong((unsigned char *)p);
153
154                 if (offset)
155                         tmp |= ~0UL << (BITS_PER_LONG - offset);
156                 if (size < BITS_PER_LONG)
157                         tmp |= ~0UL >> size;
158                 if (tmp != ~0UL)
159                         goto found;
160 pass:
161                 if (size <= BITS_PER_LONG)
162                         break;
163                 size -= BITS_PER_LONG;
164                 offset = 0;
165                 p++;
166         }
167         return result;
168 found:
169         return result - size + __reverse_ffz(tmp);
170 }
171
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178         if (test_opt(sbi, LFS))
179                 return false;
180         if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181                 return true;
182
183         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191         struct inmem_pages *new;
192
193         f2fs_trace_pid(page);
194
195         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196         SetPagePrivate(page);
197
198         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200         /* add atomic page indices to the list */
201         new->page = page;
202         INIT_LIST_HEAD(&new->list);
203
204         /* increase reference count with clean state */
205         mutex_lock(&fi->inmem_lock);
206         get_page(page);
207         list_add_tail(&new->list, &fi->inmem_pages);
208         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209         if (list_empty(&fi->inmem_ilist))
210                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213         mutex_unlock(&fi->inmem_lock);
214
215         trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219                                 struct list_head *head, bool drop, bool recover)
220 {
221         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222         struct inmem_pages *cur, *tmp;
223         int err = 0;
224
225         list_for_each_entry_safe(cur, tmp, head, list) {
226                 struct page *page = cur->page;
227
228                 if (drop)
229                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231                 lock_page(page);
232
233                 if (recover) {
234                         struct dnode_of_data dn;
235                         struct node_info ni;
236
237                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239                         set_new_dnode(&dn, inode, NULL, NULL, 0);
240                         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241                         if (err) {
242                                 if (err == -ENOMEM) {
243                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
244                                         cond_resched();
245                                         goto retry;
246                                 }
247                                 err = -EAGAIN;
248                                 goto next;
249                         }
250                         get_node_info(sbi, dn.nid, &ni);
251                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252                                         cur->old_addr, ni.version, true, true);
253                         f2fs_put_dnode(&dn);
254                 }
255 next:
256                 /* we don't need to invalidate this in the sccessful status */
257                 if (drop || recover)
258                         ClearPageUptodate(page);
259                 set_page_private(page, 0);
260                 ClearPagePrivate(page);
261                 f2fs_put_page(page, 1);
262
263                 list_del(&cur->list);
264                 kmem_cache_free(inmem_entry_slab, cur);
265                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
266         }
267         return err;
268 }
269
270 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
271 {
272         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
273         struct inode *inode;
274         struct f2fs_inode_info *fi;
275 next:
276         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
277         if (list_empty(head)) {
278                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
279                 return;
280         }
281         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
282         inode = igrab(&fi->vfs_inode);
283         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
284
285         if (inode) {
286                 drop_inmem_pages(inode);
287                 iput(inode);
288         }
289         congestion_wait(BLK_RW_ASYNC, HZ/50);
290         cond_resched();
291         goto next;
292 }
293
294 void drop_inmem_pages(struct inode *inode)
295 {
296         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
297         struct f2fs_inode_info *fi = F2FS_I(inode);
298
299         mutex_lock(&fi->inmem_lock);
300         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
301         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
302         if (!list_empty(&fi->inmem_ilist))
303                 list_del_init(&fi->inmem_ilist);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305         mutex_unlock(&fi->inmem_lock);
306
307         clear_inode_flag(inode, FI_ATOMIC_FILE);
308         clear_inode_flag(inode, FI_HOT_DATA);
309         stat_dec_atomic_write(inode);
310 }
311
312 void drop_inmem_page(struct inode *inode, struct page *page)
313 {
314         struct f2fs_inode_info *fi = F2FS_I(inode);
315         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
316         struct list_head *head = &fi->inmem_pages;
317         struct inmem_pages *cur = NULL;
318
319         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
320
321         mutex_lock(&fi->inmem_lock);
322         list_for_each_entry(cur, head, list) {
323                 if (cur->page == page)
324                         break;
325         }
326
327         f2fs_bug_on(sbi, !cur || cur->page != page);
328         list_del(&cur->list);
329         mutex_unlock(&fi->inmem_lock);
330
331         dec_page_count(sbi, F2FS_INMEM_PAGES);
332         kmem_cache_free(inmem_entry_slab, cur);
333
334         ClearPageUptodate(page);
335         set_page_private(page, 0);
336         ClearPagePrivate(page);
337         f2fs_put_page(page, 0);
338
339         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
340 }
341
342 static int __commit_inmem_pages(struct inode *inode,
343                                         struct list_head *revoke_list)
344 {
345         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
346         struct f2fs_inode_info *fi = F2FS_I(inode);
347         struct inmem_pages *cur, *tmp;
348         struct f2fs_io_info fio = {
349                 .sbi = sbi,
350                 .ino = inode->i_ino,
351                 .type = DATA,
352                 .op = REQ_OP_WRITE,
353                 .op_flags = REQ_SYNC | REQ_PRIO,
354                 .io_type = FS_DATA_IO,
355         };
356         pgoff_t last_idx = ULONG_MAX;
357         int err = 0;
358
359         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
360                 struct page *page = cur->page;
361
362                 lock_page(page);
363                 if (page->mapping == inode->i_mapping) {
364                         trace_f2fs_commit_inmem_page(page, INMEM);
365
366                         set_page_dirty(page);
367                         f2fs_wait_on_page_writeback(page, DATA, true);
368                         if (clear_page_dirty_for_io(page)) {
369                                 inode_dec_dirty_pages(inode);
370                                 remove_dirty_inode(inode);
371                         }
372 retry:
373                         fio.page = page;
374                         fio.old_blkaddr = NULL_ADDR;
375                         fio.encrypted_page = NULL;
376                         fio.need_lock = LOCK_DONE;
377                         err = do_write_data_page(&fio);
378                         if (err) {
379                                 if (err == -ENOMEM) {
380                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
381                                         cond_resched();
382                                         goto retry;
383                                 }
384                                 unlock_page(page);
385                                 break;
386                         }
387                         /* record old blkaddr for revoking */
388                         cur->old_addr = fio.old_blkaddr;
389                         last_idx = page->index;
390                 }
391                 unlock_page(page);
392                 list_move_tail(&cur->list, revoke_list);
393         }
394
395         if (last_idx != ULONG_MAX)
396                 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
397
398         if (!err)
399                 __revoke_inmem_pages(inode, revoke_list, false, false);
400
401         return err;
402 }
403
404 int commit_inmem_pages(struct inode *inode)
405 {
406         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
407         struct f2fs_inode_info *fi = F2FS_I(inode);
408         struct list_head revoke_list;
409         int err;
410
411         INIT_LIST_HEAD(&revoke_list);
412         f2fs_balance_fs(sbi, true);
413         f2fs_lock_op(sbi);
414
415         set_inode_flag(inode, FI_ATOMIC_COMMIT);
416
417         mutex_lock(&fi->inmem_lock);
418         err = __commit_inmem_pages(inode, &revoke_list);
419         if (err) {
420                 int ret;
421                 /*
422                  * try to revoke all committed pages, but still we could fail
423                  * due to no memory or other reason, if that happened, EAGAIN
424                  * will be returned, which means in such case, transaction is
425                  * already not integrity, caller should use journal to do the
426                  * recovery or rewrite & commit last transaction. For other
427                  * error number, revoking was done by filesystem itself.
428                  */
429                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
430                 if (ret)
431                         err = ret;
432
433                 /* drop all uncommitted pages */
434                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
435         }
436         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
437         if (!list_empty(&fi->inmem_ilist))
438                 list_del_init(&fi->inmem_ilist);
439         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
440         mutex_unlock(&fi->inmem_lock);
441
442         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
443
444         f2fs_unlock_op(sbi);
445         return err;
446 }
447
448 /*
449  * This function balances dirty node and dentry pages.
450  * In addition, it controls garbage collection.
451  */
452 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
453 {
454 #ifdef CONFIG_F2FS_FAULT_INJECTION
455         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
456                 f2fs_show_injection_info(FAULT_CHECKPOINT);
457                 f2fs_stop_checkpoint(sbi, false);
458         }
459 #endif
460
461         /* balance_fs_bg is able to be pending */
462         if (need && excess_cached_nats(sbi))
463                 f2fs_balance_fs_bg(sbi);
464
465         /*
466          * We should do GC or end up with checkpoint, if there are so many dirty
467          * dir/node pages without enough free segments.
468          */
469         if (has_not_enough_free_secs(sbi, 0, 0)) {
470                 mutex_lock(&sbi->gc_mutex);
471                 f2fs_gc(sbi, false, false, NULL_SEGNO);
472         }
473 }
474
475 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
476 {
477         /* try to shrink extent cache when there is no enough memory */
478         if (!available_free_memory(sbi, EXTENT_CACHE))
479                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
480
481         /* check the # of cached NAT entries */
482         if (!available_free_memory(sbi, NAT_ENTRIES))
483                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
484
485         if (!available_free_memory(sbi, FREE_NIDS))
486                 try_to_free_nids(sbi, MAX_FREE_NIDS);
487         else
488                 build_free_nids(sbi, false, false);
489
490         if (!is_idle(sbi) && !excess_dirty_nats(sbi))
491                 return;
492
493         /* checkpoint is the only way to shrink partial cached entries */
494         if (!available_free_memory(sbi, NAT_ENTRIES) ||
495                         !available_free_memory(sbi, INO_ENTRIES) ||
496                         excess_prefree_segs(sbi) ||
497                         excess_dirty_nats(sbi) ||
498                         f2fs_time_over(sbi, CP_TIME)) {
499                 if (test_opt(sbi, DATA_FLUSH)) {
500                         struct blk_plug plug;
501
502                         blk_start_plug(&plug);
503                         sync_dirty_inodes(sbi, FILE_INODE);
504                         blk_finish_plug(&plug);
505                 }
506                 f2fs_sync_fs(sbi->sb, true);
507                 stat_inc_bg_cp_count(sbi->stat_info);
508         }
509 }
510
511 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
512                                 struct block_device *bdev)
513 {
514         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
515         int ret;
516
517         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
518         bio_set_dev(bio, bdev);
519         ret = submit_bio_wait(bio);
520         bio_put(bio);
521
522         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
523                                 test_opt(sbi, FLUSH_MERGE), ret);
524         return ret;
525 }
526
527 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529         int ret = 0;
530         int i;
531
532         if (!sbi->s_ndevs)
533                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
534
535         for (i = 0; i < sbi->s_ndevs; i++) {
536                 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
537                         continue;
538                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
539                 if (ret)
540                         break;
541         }
542         return ret;
543 }
544
545 static int issue_flush_thread(void *data)
546 {
547         struct f2fs_sb_info *sbi = data;
548         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
549         wait_queue_head_t *q = &fcc->flush_wait_queue;
550 repeat:
551         if (kthread_should_stop())
552                 return 0;
553
554         sb_start_intwrite(sbi->sb);
555
556         if (!llist_empty(&fcc->issue_list)) {
557                 struct flush_cmd *cmd, *next;
558                 int ret;
559
560                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
561                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
562
563                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
564
565                 ret = submit_flush_wait(sbi, cmd->ino);
566                 atomic_inc(&fcc->issued_flush);
567
568                 llist_for_each_entry_safe(cmd, next,
569                                           fcc->dispatch_list, llnode) {
570                         cmd->ret = ret;
571                         complete(&cmd->wait);
572                 }
573                 fcc->dispatch_list = NULL;
574         }
575
576         sb_end_intwrite(sbi->sb);
577
578         wait_event_interruptible(*q,
579                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
580         goto repeat;
581 }
582
583 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
584 {
585         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
586         struct flush_cmd cmd;
587         int ret;
588
589         if (test_opt(sbi, NOBARRIER))
590                 return 0;
591
592         if (!test_opt(sbi, FLUSH_MERGE)) {
593                 ret = submit_flush_wait(sbi, ino);
594                 atomic_inc(&fcc->issued_flush);
595                 return ret;
596         }
597
598         if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
599                 ret = submit_flush_wait(sbi, ino);
600                 atomic_dec(&fcc->issing_flush);
601
602                 atomic_inc(&fcc->issued_flush);
603                 return ret;
604         }
605
606         cmd.ino = ino;
607         init_completion(&cmd.wait);
608
609         llist_add(&cmd.llnode, &fcc->issue_list);
610
611         /* update issue_list before we wake up issue_flush thread */
612         smp_mb();
613
614         if (waitqueue_active(&fcc->flush_wait_queue))
615                 wake_up(&fcc->flush_wait_queue);
616
617         if (fcc->f2fs_issue_flush) {
618                 wait_for_completion(&cmd.wait);
619                 atomic_dec(&fcc->issing_flush);
620         } else {
621                 struct llist_node *list;
622
623                 list = llist_del_all(&fcc->issue_list);
624                 if (!list) {
625                         wait_for_completion(&cmd.wait);
626                         atomic_dec(&fcc->issing_flush);
627                 } else {
628                         struct flush_cmd *tmp, *next;
629
630                         ret = submit_flush_wait(sbi, ino);
631
632                         llist_for_each_entry_safe(tmp, next, list, llnode) {
633                                 if (tmp == &cmd) {
634                                         cmd.ret = ret;
635                                         atomic_dec(&fcc->issing_flush);
636                                         continue;
637                                 }
638                                 tmp->ret = ret;
639                                 complete(&tmp->wait);
640                         }
641                 }
642         }
643
644         return cmd.ret;
645 }
646
647 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
648 {
649         dev_t dev = sbi->sb->s_bdev->bd_dev;
650         struct flush_cmd_control *fcc;
651         int err = 0;
652
653         if (SM_I(sbi)->fcc_info) {
654                 fcc = SM_I(sbi)->fcc_info;
655                 if (fcc->f2fs_issue_flush)
656                         return err;
657                 goto init_thread;
658         }
659
660         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
661         if (!fcc)
662                 return -ENOMEM;
663         atomic_set(&fcc->issued_flush, 0);
664         atomic_set(&fcc->issing_flush, 0);
665         init_waitqueue_head(&fcc->flush_wait_queue);
666         init_llist_head(&fcc->issue_list);
667         SM_I(sbi)->fcc_info = fcc;
668         if (!test_opt(sbi, FLUSH_MERGE))
669                 return err;
670
671 init_thread:
672         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
673                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
674         if (IS_ERR(fcc->f2fs_issue_flush)) {
675                 err = PTR_ERR(fcc->f2fs_issue_flush);
676                 kfree(fcc);
677                 SM_I(sbi)->fcc_info = NULL;
678                 return err;
679         }
680
681         return err;
682 }
683
684 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
685 {
686         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
687
688         if (fcc && fcc->f2fs_issue_flush) {
689                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
690
691                 fcc->f2fs_issue_flush = NULL;
692                 kthread_stop(flush_thread);
693         }
694         if (free) {
695                 kfree(fcc);
696                 SM_I(sbi)->fcc_info = NULL;
697         }
698 }
699
700 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
701 {
702         int ret = 0, i;
703
704         if (!sbi->s_ndevs)
705                 return 0;
706
707         for (i = 1; i < sbi->s_ndevs; i++) {
708                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
709                         continue;
710                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
711                 if (ret)
712                         break;
713
714                 spin_lock(&sbi->dev_lock);
715                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
716                 spin_unlock(&sbi->dev_lock);
717         }
718
719         return ret;
720 }
721
722 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
723                 enum dirty_type dirty_type)
724 {
725         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
726
727         /* need not be added */
728         if (IS_CURSEG(sbi, segno))
729                 return;
730
731         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
732                 dirty_i->nr_dirty[dirty_type]++;
733
734         if (dirty_type == DIRTY) {
735                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
736                 enum dirty_type t = sentry->type;
737
738                 if (unlikely(t >= DIRTY)) {
739                         f2fs_bug_on(sbi, 1);
740                         return;
741                 }
742                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
743                         dirty_i->nr_dirty[t]++;
744         }
745 }
746
747 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
748                 enum dirty_type dirty_type)
749 {
750         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
751
752         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753                 dirty_i->nr_dirty[dirty_type]--;
754
755         if (dirty_type == DIRTY) {
756                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757                 enum dirty_type t = sentry->type;
758
759                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
760                         dirty_i->nr_dirty[t]--;
761
762                 if (get_valid_blocks(sbi, segno, true) == 0)
763                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764                                                 dirty_i->victim_secmap);
765         }
766 }
767
768 /*
769  * Should not occur error such as -ENOMEM.
770  * Adding dirty entry into seglist is not critical operation.
771  * If a given segment is one of current working segments, it won't be added.
772  */
773 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
774 {
775         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
776         unsigned short valid_blocks;
777
778         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
779                 return;
780
781         mutex_lock(&dirty_i->seglist_lock);
782
783         valid_blocks = get_valid_blocks(sbi, segno, false);
784
785         if (valid_blocks == 0) {
786                 __locate_dirty_segment(sbi, segno, PRE);
787                 __remove_dirty_segment(sbi, segno, DIRTY);
788         } else if (valid_blocks < sbi->blocks_per_seg) {
789                 __locate_dirty_segment(sbi, segno, DIRTY);
790         } else {
791                 /* Recovery routine with SSR needs this */
792                 __remove_dirty_segment(sbi, segno, DIRTY);
793         }
794
795         mutex_unlock(&dirty_i->seglist_lock);
796 }
797
798 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
799                 struct block_device *bdev, block_t lstart,
800                 block_t start, block_t len)
801 {
802         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
803         struct list_head *pend_list;
804         struct discard_cmd *dc;
805
806         f2fs_bug_on(sbi, !len);
807
808         pend_list = &dcc->pend_list[plist_idx(len)];
809
810         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
811         INIT_LIST_HEAD(&dc->list);
812         dc->bdev = bdev;
813         dc->lstart = lstart;
814         dc->start = start;
815         dc->len = len;
816         dc->ref = 0;
817         dc->state = D_PREP;
818         dc->error = 0;
819         init_completion(&dc->wait);
820         list_add_tail(&dc->list, pend_list);
821         atomic_inc(&dcc->discard_cmd_cnt);
822         dcc->undiscard_blks += len;
823
824         return dc;
825 }
826
827 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
828                                 struct block_device *bdev, block_t lstart,
829                                 block_t start, block_t len,
830                                 struct rb_node *parent, struct rb_node **p)
831 {
832         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
833         struct discard_cmd *dc;
834
835         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
836
837         rb_link_node(&dc->rb_node, parent, p);
838         rb_insert_color(&dc->rb_node, &dcc->root);
839
840         return dc;
841 }
842
843 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
844                                                         struct discard_cmd *dc)
845 {
846         if (dc->state == D_DONE)
847                 atomic_dec(&dcc->issing_discard);
848
849         list_del(&dc->list);
850         rb_erase(&dc->rb_node, &dcc->root);
851         dcc->undiscard_blks -= dc->len;
852
853         kmem_cache_free(discard_cmd_slab, dc);
854
855         atomic_dec(&dcc->discard_cmd_cnt);
856 }
857
858 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
859                                                         struct discard_cmd *dc)
860 {
861         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
862
863         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
864
865         f2fs_bug_on(sbi, dc->ref);
866
867         if (dc->error == -EOPNOTSUPP)
868                 dc->error = 0;
869
870         if (dc->error)
871                 f2fs_msg(sbi->sb, KERN_INFO,
872                         "Issue discard(%u, %u, %u) failed, ret: %d",
873                         dc->lstart, dc->start, dc->len, dc->error);
874         __detach_discard_cmd(dcc, dc);
875 }
876
877 static void f2fs_submit_discard_endio(struct bio *bio)
878 {
879         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
880
881         dc->error = blk_status_to_errno(bio->bi_status);
882         dc->state = D_DONE;
883         complete_all(&dc->wait);
884         bio_put(bio);
885 }
886
887 void __check_sit_bitmap(struct f2fs_sb_info *sbi,
888                                 block_t start, block_t end)
889 {
890 #ifdef CONFIG_F2FS_CHECK_FS
891         struct seg_entry *sentry;
892         unsigned int segno;
893         block_t blk = start;
894         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
895         unsigned long *map;
896
897         while (blk < end) {
898                 segno = GET_SEGNO(sbi, blk);
899                 sentry = get_seg_entry(sbi, segno);
900                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
901
902                 if (end < START_BLOCK(sbi, segno + 1))
903                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
904                 else
905                         size = max_blocks;
906                 map = (unsigned long *)(sentry->cur_valid_map);
907                 offset = __find_rev_next_bit(map, size, offset);
908                 f2fs_bug_on(sbi, offset != size);
909                 blk = START_BLOCK(sbi, segno + 1);
910         }
911 #endif
912 }
913
914 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
915 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
916                                                 struct discard_policy *dpolicy,
917                                                 struct discard_cmd *dc)
918 {
919         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
920         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
921                                         &(dcc->fstrim_list) : &(dcc->wait_list);
922         struct bio *bio = NULL;
923         int flag = dpolicy->sync ? REQ_SYNC : 0;
924
925         if (dc->state != D_PREP)
926                 return;
927
928         trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
929
930         dc->error = __blkdev_issue_discard(dc->bdev,
931                                 SECTOR_FROM_BLOCK(dc->start),
932                                 SECTOR_FROM_BLOCK(dc->len),
933                                 GFP_NOFS, 0, &bio);
934         if (!dc->error) {
935                 /* should keep before submission to avoid D_DONE right away */
936                 dc->state = D_SUBMIT;
937                 atomic_inc(&dcc->issued_discard);
938                 atomic_inc(&dcc->issing_discard);
939                 if (bio) {
940                         bio->bi_private = dc;
941                         bio->bi_end_io = f2fs_submit_discard_endio;
942                         bio->bi_opf |= flag;
943                         submit_bio(bio);
944                         list_move_tail(&dc->list, wait_list);
945                         __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
946
947                         f2fs_update_iostat(sbi, FS_DISCARD, 1);
948                 }
949         } else {
950                 __remove_discard_cmd(sbi, dc);
951         }
952 }
953
954 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
955                                 struct block_device *bdev, block_t lstart,
956                                 block_t start, block_t len,
957                                 struct rb_node **insert_p,
958                                 struct rb_node *insert_parent)
959 {
960         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
961         struct rb_node **p;
962         struct rb_node *parent = NULL;
963         struct discard_cmd *dc = NULL;
964
965         if (insert_p && insert_parent) {
966                 parent = insert_parent;
967                 p = insert_p;
968                 goto do_insert;
969         }
970
971         p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
972 do_insert:
973         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
974         if (!dc)
975                 return NULL;
976
977         return dc;
978 }
979
980 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
981                                                 struct discard_cmd *dc)
982 {
983         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
984 }
985
986 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
987                                 struct discard_cmd *dc, block_t blkaddr)
988 {
989         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
990         struct discard_info di = dc->di;
991         bool modified = false;
992
993         if (dc->state == D_DONE || dc->len == 1) {
994                 __remove_discard_cmd(sbi, dc);
995                 return;
996         }
997
998         dcc->undiscard_blks -= di.len;
999
1000         if (blkaddr > di.lstart) {
1001                 dc->len = blkaddr - dc->lstart;
1002                 dcc->undiscard_blks += dc->len;
1003                 __relocate_discard_cmd(dcc, dc);
1004                 modified = true;
1005         }
1006
1007         if (blkaddr < di.lstart + di.len - 1) {
1008                 if (modified) {
1009                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1010                                         di.start + blkaddr + 1 - di.lstart,
1011                                         di.lstart + di.len - 1 - blkaddr,
1012                                         NULL, NULL);
1013                 } else {
1014                         dc->lstart++;
1015                         dc->len--;
1016                         dc->start++;
1017                         dcc->undiscard_blks += dc->len;
1018                         __relocate_discard_cmd(dcc, dc);
1019                 }
1020         }
1021 }
1022
1023 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1024                                 struct block_device *bdev, block_t lstart,
1025                                 block_t start, block_t len)
1026 {
1027         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1028         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1029         struct discard_cmd *dc;
1030         struct discard_info di = {0};
1031         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1032         block_t end = lstart + len;
1033
1034         mutex_lock(&dcc->cmd_lock);
1035
1036         dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1037                                         NULL, lstart,
1038                                         (struct rb_entry **)&prev_dc,
1039                                         (struct rb_entry **)&next_dc,
1040                                         &insert_p, &insert_parent, true);
1041         if (dc)
1042                 prev_dc = dc;
1043
1044         if (!prev_dc) {
1045                 di.lstart = lstart;
1046                 di.len = next_dc ? next_dc->lstart - lstart : len;
1047                 di.len = min(di.len, len);
1048                 di.start = start;
1049         }
1050
1051         while (1) {
1052                 struct rb_node *node;
1053                 bool merged = false;
1054                 struct discard_cmd *tdc = NULL;
1055
1056                 if (prev_dc) {
1057                         di.lstart = prev_dc->lstart + prev_dc->len;
1058                         if (di.lstart < lstart)
1059                                 di.lstart = lstart;
1060                         if (di.lstart >= end)
1061                                 break;
1062
1063                         if (!next_dc || next_dc->lstart > end)
1064                                 di.len = end - di.lstart;
1065                         else
1066                                 di.len = next_dc->lstart - di.lstart;
1067                         di.start = start + di.lstart - lstart;
1068                 }
1069
1070                 if (!di.len)
1071                         goto next;
1072
1073                 if (prev_dc && prev_dc->state == D_PREP &&
1074                         prev_dc->bdev == bdev &&
1075                         __is_discard_back_mergeable(&di, &prev_dc->di)) {
1076                         prev_dc->di.len += di.len;
1077                         dcc->undiscard_blks += di.len;
1078                         __relocate_discard_cmd(dcc, prev_dc);
1079                         di = prev_dc->di;
1080                         tdc = prev_dc;
1081                         merged = true;
1082                 }
1083
1084                 if (next_dc && next_dc->state == D_PREP &&
1085                         next_dc->bdev == bdev &&
1086                         __is_discard_front_mergeable(&di, &next_dc->di)) {
1087                         next_dc->di.lstart = di.lstart;
1088                         next_dc->di.len += di.len;
1089                         next_dc->di.start = di.start;
1090                         dcc->undiscard_blks += di.len;
1091                         __relocate_discard_cmd(dcc, next_dc);
1092                         if (tdc)
1093                                 __remove_discard_cmd(sbi, tdc);
1094                         merged = true;
1095                 }
1096
1097                 if (!merged) {
1098                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1099                                                         di.len, NULL, NULL);
1100                 }
1101  next:
1102                 prev_dc = next_dc;
1103                 if (!prev_dc)
1104                         break;
1105
1106                 node = rb_next(&prev_dc->rb_node);
1107                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1108         }
1109
1110         mutex_unlock(&dcc->cmd_lock);
1111 }
1112
1113 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1114                 struct block_device *bdev, block_t blkstart, block_t blklen)
1115 {
1116         block_t lblkstart = blkstart;
1117
1118         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1119
1120         if (sbi->s_ndevs) {
1121                 int devi = f2fs_target_device_index(sbi, blkstart);
1122
1123                 blkstart -= FDEV(devi).start_blk;
1124         }
1125         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1126         return 0;
1127 }
1128
1129 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1130                                         struct discard_policy *dpolicy,
1131                                         unsigned int start, unsigned int end)
1132 {
1133         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1134         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1135         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1136         struct discard_cmd *dc;
1137         struct blk_plug plug;
1138         int issued;
1139
1140 next:
1141         issued = 0;
1142
1143         mutex_lock(&dcc->cmd_lock);
1144         f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1145
1146         dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1147                                         NULL, start,
1148                                         (struct rb_entry **)&prev_dc,
1149                                         (struct rb_entry **)&next_dc,
1150                                         &insert_p, &insert_parent, true);
1151         if (!dc)
1152                 dc = next_dc;
1153
1154         blk_start_plug(&plug);
1155
1156         while (dc && dc->lstart <= end) {
1157                 struct rb_node *node;
1158
1159                 if (dc->len < dpolicy->granularity)
1160                         goto skip;
1161
1162                 if (dc->state != D_PREP) {
1163                         list_move_tail(&dc->list, &dcc->fstrim_list);
1164                         goto skip;
1165                 }
1166
1167                 __submit_discard_cmd(sbi, dpolicy, dc);
1168
1169                 if (++issued >= dpolicy->max_requests) {
1170                         start = dc->lstart + dc->len;
1171
1172                         blk_finish_plug(&plug);
1173                         mutex_unlock(&dcc->cmd_lock);
1174
1175                         schedule();
1176
1177                         goto next;
1178                 }
1179 skip:
1180                 node = rb_next(&dc->rb_node);
1181                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1182
1183                 if (fatal_signal_pending(current))
1184                         break;
1185         }
1186
1187         blk_finish_plug(&plug);
1188         mutex_unlock(&dcc->cmd_lock);
1189 }
1190
1191 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1192                                         struct discard_policy *dpolicy)
1193 {
1194         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195         struct list_head *pend_list;
1196         struct discard_cmd *dc, *tmp;
1197         struct blk_plug plug;
1198         int i, iter = 0, issued = 0;
1199         bool io_interrupted = false;
1200
1201         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1202                 if (i + 1 < dpolicy->granularity)
1203                         break;
1204                 pend_list = &dcc->pend_list[i];
1205
1206                 mutex_lock(&dcc->cmd_lock);
1207                 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1208                 blk_start_plug(&plug);
1209                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1210                         f2fs_bug_on(sbi, dc->state != D_PREP);
1211
1212                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1213                                                                 !is_idle(sbi)) {
1214                                 io_interrupted = true;
1215                                 goto skip;
1216                         }
1217
1218                         __submit_discard_cmd(sbi, dpolicy, dc);
1219                         issued++;
1220 skip:
1221                         if (++iter >= dpolicy->max_requests)
1222                                 break;
1223                 }
1224                 blk_finish_plug(&plug);
1225                 mutex_unlock(&dcc->cmd_lock);
1226
1227                 if (iter >= dpolicy->max_requests)
1228                         break;
1229         }
1230
1231         if (!issued && io_interrupted)
1232                 issued = -1;
1233
1234         return issued;
1235 }
1236
1237 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1238 {
1239         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1240         struct list_head *pend_list;
1241         struct discard_cmd *dc, *tmp;
1242         int i;
1243         bool dropped = false;
1244
1245         mutex_lock(&dcc->cmd_lock);
1246         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1247                 pend_list = &dcc->pend_list[i];
1248                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1249                         f2fs_bug_on(sbi, dc->state != D_PREP);
1250                         __remove_discard_cmd(sbi, dc);
1251                         dropped = true;
1252                 }
1253         }
1254         mutex_unlock(&dcc->cmd_lock);
1255
1256         return dropped;
1257 }
1258
1259 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1260                                                         struct discard_cmd *dc)
1261 {
1262         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1263         unsigned int len = 0;
1264
1265         wait_for_completion_io(&dc->wait);
1266         mutex_lock(&dcc->cmd_lock);
1267         f2fs_bug_on(sbi, dc->state != D_DONE);
1268         dc->ref--;
1269         if (!dc->ref) {
1270                 if (!dc->error)
1271                         len = dc->len;
1272                 __remove_discard_cmd(sbi, dc);
1273         }
1274         mutex_unlock(&dcc->cmd_lock);
1275
1276         return len;
1277 }
1278
1279 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1280                                                 struct discard_policy *dpolicy,
1281                                                 block_t start, block_t end)
1282 {
1283         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1285                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1286         struct discard_cmd *dc, *tmp;
1287         bool need_wait;
1288         unsigned int trimmed = 0;
1289
1290 next:
1291         need_wait = false;
1292
1293         mutex_lock(&dcc->cmd_lock);
1294         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1295                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1296                         continue;
1297                 if (dc->len < dpolicy->granularity)
1298                         continue;
1299                 if (dc->state == D_DONE && !dc->ref) {
1300                         wait_for_completion_io(&dc->wait);
1301                         if (!dc->error)
1302                                 trimmed += dc->len;
1303                         __remove_discard_cmd(sbi, dc);
1304                 } else {
1305                         dc->ref++;
1306                         need_wait = true;
1307                         break;
1308                 }
1309         }
1310         mutex_unlock(&dcc->cmd_lock);
1311
1312         if (need_wait) {
1313                 trimmed += __wait_one_discard_bio(sbi, dc);
1314                 goto next;
1315         }
1316
1317         return trimmed;
1318 }
1319
1320 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1321                                                 struct discard_policy *dpolicy)
1322 {
1323         __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1324 }
1325
1326 /* This should be covered by global mutex, &sit_i->sentry_lock */
1327 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1328 {
1329         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1330         struct discard_cmd *dc;
1331         bool need_wait = false;
1332
1333         mutex_lock(&dcc->cmd_lock);
1334         dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1335         if (dc) {
1336                 if (dc->state == D_PREP) {
1337                         __punch_discard_cmd(sbi, dc, blkaddr);
1338                 } else {
1339                         dc->ref++;
1340                         need_wait = true;
1341                 }
1342         }
1343         mutex_unlock(&dcc->cmd_lock);
1344
1345         if (need_wait)
1346                 __wait_one_discard_bio(sbi, dc);
1347 }
1348
1349 void stop_discard_thread(struct f2fs_sb_info *sbi)
1350 {
1351         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1352
1353         if (dcc && dcc->f2fs_issue_discard) {
1354                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1355
1356                 dcc->f2fs_issue_discard = NULL;
1357                 kthread_stop(discard_thread);
1358         }
1359 }
1360
1361 /* This comes from f2fs_put_super */
1362 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1363 {
1364         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1365         struct discard_policy dpolicy;
1366         bool dropped;
1367
1368         init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1369         __issue_discard_cmd(sbi, &dpolicy);
1370         dropped = __drop_discard_cmd(sbi);
1371         __wait_all_discard_cmd(sbi, &dpolicy);
1372
1373         return dropped;
1374 }
1375
1376 static int issue_discard_thread(void *data)
1377 {
1378         struct f2fs_sb_info *sbi = data;
1379         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1380         wait_queue_head_t *q = &dcc->discard_wait_queue;
1381         struct discard_policy dpolicy;
1382         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1383         int issued;
1384
1385         set_freezable();
1386
1387         do {
1388                 init_discard_policy(&dpolicy, DPOLICY_BG,
1389                                         dcc->discard_granularity);
1390
1391                 wait_event_interruptible_timeout(*q,
1392                                 kthread_should_stop() || freezing(current) ||
1393                                 dcc->discard_wake,
1394                                 msecs_to_jiffies(wait_ms));
1395                 if (try_to_freeze())
1396                         continue;
1397                 if (kthread_should_stop())
1398                         return 0;
1399
1400                 if (dcc->discard_wake) {
1401                         dcc->discard_wake = 0;
1402                         if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1403                                 init_discard_policy(&dpolicy,
1404                                                         DPOLICY_FORCE, 1);
1405                 }
1406
1407                 sb_start_intwrite(sbi->sb);
1408
1409                 issued = __issue_discard_cmd(sbi, &dpolicy);
1410                 if (issued) {
1411                         __wait_all_discard_cmd(sbi, &dpolicy);
1412                         wait_ms = dpolicy.min_interval;
1413                 } else {
1414                         wait_ms = dpolicy.max_interval;
1415                 }
1416
1417                 sb_end_intwrite(sbi->sb);
1418
1419         } while (!kthread_should_stop());
1420         return 0;
1421 }
1422
1423 #ifdef CONFIG_BLK_DEV_ZONED
1424 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1425                 struct block_device *bdev, block_t blkstart, block_t blklen)
1426 {
1427         sector_t sector, nr_sects;
1428         block_t lblkstart = blkstart;
1429         int devi = 0;
1430
1431         if (sbi->s_ndevs) {
1432                 devi = f2fs_target_device_index(sbi, blkstart);
1433                 blkstart -= FDEV(devi).start_blk;
1434         }
1435
1436         /*
1437          * We need to know the type of the zone: for conventional zones,
1438          * use regular discard if the drive supports it. For sequential
1439          * zones, reset the zone write pointer.
1440          */
1441         switch (get_blkz_type(sbi, bdev, blkstart)) {
1442
1443         case BLK_ZONE_TYPE_CONVENTIONAL:
1444                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1445                         return 0;
1446                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1447         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1448         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1449                 sector = SECTOR_FROM_BLOCK(blkstart);
1450                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1451
1452                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1453                                 nr_sects != bdev_zone_sectors(bdev)) {
1454                         f2fs_msg(sbi->sb, KERN_INFO,
1455                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1456                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1457                                 blkstart, blklen);
1458                         return -EIO;
1459                 }
1460                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1461                 return blkdev_reset_zones(bdev, sector,
1462                                           nr_sects, GFP_NOFS);
1463         default:
1464                 /* Unknown zone type: broken device ? */
1465                 return -EIO;
1466         }
1467 }
1468 #endif
1469
1470 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1471                 struct block_device *bdev, block_t blkstart, block_t blklen)
1472 {
1473 #ifdef CONFIG_BLK_DEV_ZONED
1474         if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1475                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1476                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1477 #endif
1478         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1479 }
1480
1481 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1482                                 block_t blkstart, block_t blklen)
1483 {
1484         sector_t start = blkstart, len = 0;
1485         struct block_device *bdev;
1486         struct seg_entry *se;
1487         unsigned int offset;
1488         block_t i;
1489         int err = 0;
1490
1491         bdev = f2fs_target_device(sbi, blkstart, NULL);
1492
1493         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1494                 if (i != start) {
1495                         struct block_device *bdev2 =
1496                                 f2fs_target_device(sbi, i, NULL);
1497
1498                         if (bdev2 != bdev) {
1499                                 err = __issue_discard_async(sbi, bdev,
1500                                                 start, len);
1501                                 if (err)
1502                                         return err;
1503                                 bdev = bdev2;
1504                                 start = i;
1505                                 len = 0;
1506                         }
1507                 }
1508
1509                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1510                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1511
1512                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1513                         sbi->discard_blks--;
1514         }
1515
1516         if (len)
1517                 err = __issue_discard_async(sbi, bdev, start, len);
1518         return err;
1519 }
1520
1521 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1522                                                         bool check_only)
1523 {
1524         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1525         int max_blocks = sbi->blocks_per_seg;
1526         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1527         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1528         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1529         unsigned long *discard_map = (unsigned long *)se->discard_map;
1530         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1531         unsigned int start = 0, end = -1;
1532         bool force = (cpc->reason & CP_DISCARD);
1533         struct discard_entry *de = NULL;
1534         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1535         int i;
1536
1537         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1538                 return false;
1539
1540         if (!force) {
1541                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1542                         SM_I(sbi)->dcc_info->nr_discards >=
1543                                 SM_I(sbi)->dcc_info->max_discards)
1544                         return false;
1545         }
1546
1547         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1548         for (i = 0; i < entries; i++)
1549                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1550                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1551
1552         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1553                                 SM_I(sbi)->dcc_info->max_discards) {
1554                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1555                 if (start >= max_blocks)
1556                         break;
1557
1558                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1559                 if (force && start && end != max_blocks
1560                                         && (end - start) < cpc->trim_minlen)
1561                         continue;
1562
1563                 if (check_only)
1564                         return true;
1565
1566                 if (!de) {
1567                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1568                                                                 GFP_F2FS_ZERO);
1569                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1570                         list_add_tail(&de->list, head);
1571                 }
1572
1573                 for (i = start; i < end; i++)
1574                         __set_bit_le(i, (void *)de->discard_map);
1575
1576                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1577         }
1578         return false;
1579 }
1580
1581 void release_discard_addrs(struct f2fs_sb_info *sbi)
1582 {
1583         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1584         struct discard_entry *entry, *this;
1585
1586         /* drop caches */
1587         list_for_each_entry_safe(entry, this, head, list) {
1588                 list_del(&entry->list);
1589                 kmem_cache_free(discard_entry_slab, entry);
1590         }
1591 }
1592
1593 /*
1594  * Should call clear_prefree_segments after checkpoint is done.
1595  */
1596 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1597 {
1598         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1599         unsigned int segno;
1600
1601         mutex_lock(&dirty_i->seglist_lock);
1602         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1603                 __set_test_and_free(sbi, segno);
1604         mutex_unlock(&dirty_i->seglist_lock);
1605 }
1606
1607 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1608 {
1609         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1610         struct list_head *head = &dcc->entry_list;
1611         struct discard_entry *entry, *this;
1612         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1613         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1614         unsigned int start = 0, end = -1;
1615         unsigned int secno, start_segno;
1616         bool force = (cpc->reason & CP_DISCARD);
1617
1618         mutex_lock(&dirty_i->seglist_lock);
1619
1620         while (1) {
1621                 int i;
1622                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1623                 if (start >= MAIN_SEGS(sbi))
1624                         break;
1625                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1626                                                                 start + 1);
1627
1628                 for (i = start; i < end; i++)
1629                         clear_bit(i, prefree_map);
1630
1631                 dirty_i->nr_dirty[PRE] -= end - start;
1632
1633                 if (!test_opt(sbi, DISCARD))
1634                         continue;
1635
1636                 if (force && start >= cpc->trim_start &&
1637                                         (end - 1) <= cpc->trim_end)
1638                                 continue;
1639
1640                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1641                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1642                                 (end - start) << sbi->log_blocks_per_seg);
1643                         continue;
1644                 }
1645 next:
1646                 secno = GET_SEC_FROM_SEG(sbi, start);
1647                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1648                 if (!IS_CURSEC(sbi, secno) &&
1649                         !get_valid_blocks(sbi, start, true))
1650                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1651                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1652
1653                 start = start_segno + sbi->segs_per_sec;
1654                 if (start < end)
1655                         goto next;
1656                 else
1657                         end = start - 1;
1658         }
1659         mutex_unlock(&dirty_i->seglist_lock);
1660
1661         /* send small discards */
1662         list_for_each_entry_safe(entry, this, head, list) {
1663                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1664                 bool is_valid = test_bit_le(0, entry->discard_map);
1665
1666 find_next:
1667                 if (is_valid) {
1668                         next_pos = find_next_zero_bit_le(entry->discard_map,
1669                                         sbi->blocks_per_seg, cur_pos);
1670                         len = next_pos - cur_pos;
1671
1672                         if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1673                             (force && len < cpc->trim_minlen))
1674                                 goto skip;
1675
1676                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1677                                                                         len);
1678                         total_len += len;
1679                 } else {
1680                         next_pos = find_next_bit_le(entry->discard_map,
1681                                         sbi->blocks_per_seg, cur_pos);
1682                 }
1683 skip:
1684                 cur_pos = next_pos;
1685                 is_valid = !is_valid;
1686
1687                 if (cur_pos < sbi->blocks_per_seg)
1688                         goto find_next;
1689
1690                 list_del(&entry->list);
1691                 dcc->nr_discards -= total_len;
1692                 kmem_cache_free(discard_entry_slab, entry);
1693         }
1694
1695         wake_up_discard_thread(sbi, false);
1696 }
1697
1698 void init_discard_policy(struct discard_policy *dpolicy,
1699                                 int discard_type, unsigned int granularity)
1700 {
1701         /* common policy */
1702         dpolicy->type = discard_type;
1703         dpolicy->sync = true;
1704         dpolicy->granularity = granularity;
1705
1706         if (discard_type == DPOLICY_BG) {
1707                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1708                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1709                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1710                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1711                 dpolicy->io_aware = true;
1712         } else if (discard_type == DPOLICY_FORCE) {
1713                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1714                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1715                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1716                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1717                 dpolicy->io_aware = true;
1718         } else if (discard_type == DPOLICY_FSTRIM) {
1719                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1720                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1721                 dpolicy->io_aware = false;
1722         } else if (discard_type == DPOLICY_UMOUNT) {
1723                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1724                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1725                 dpolicy->io_aware = false;
1726         }
1727 }
1728
1729 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1730 {
1731         dev_t dev = sbi->sb->s_bdev->bd_dev;
1732         struct discard_cmd_control *dcc;
1733         int err = 0, i;
1734
1735         if (SM_I(sbi)->dcc_info) {
1736                 dcc = SM_I(sbi)->dcc_info;
1737                 goto init_thread;
1738         }
1739
1740         dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1741         if (!dcc)
1742                 return -ENOMEM;
1743
1744         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1745         INIT_LIST_HEAD(&dcc->entry_list);
1746         for (i = 0; i < MAX_PLIST_NUM; i++)
1747                 INIT_LIST_HEAD(&dcc->pend_list[i]);
1748         INIT_LIST_HEAD(&dcc->wait_list);
1749         INIT_LIST_HEAD(&dcc->fstrim_list);
1750         mutex_init(&dcc->cmd_lock);
1751         atomic_set(&dcc->issued_discard, 0);
1752         atomic_set(&dcc->issing_discard, 0);
1753         atomic_set(&dcc->discard_cmd_cnt, 0);
1754         dcc->nr_discards = 0;
1755         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1756         dcc->undiscard_blks = 0;
1757         dcc->root = RB_ROOT;
1758
1759         init_waitqueue_head(&dcc->discard_wait_queue);
1760         SM_I(sbi)->dcc_info = dcc;
1761 init_thread:
1762         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1763                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1764         if (IS_ERR(dcc->f2fs_issue_discard)) {
1765                 err = PTR_ERR(dcc->f2fs_issue_discard);
1766                 kfree(dcc);
1767                 SM_I(sbi)->dcc_info = NULL;
1768                 return err;
1769         }
1770
1771         return err;
1772 }
1773
1774 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1775 {
1776         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1777
1778         if (!dcc)
1779                 return;
1780
1781         stop_discard_thread(sbi);
1782
1783         kfree(dcc);
1784         SM_I(sbi)->dcc_info = NULL;
1785 }
1786
1787 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1788 {
1789         struct sit_info *sit_i = SIT_I(sbi);
1790
1791         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1792                 sit_i->dirty_sentries++;
1793                 return false;
1794         }
1795
1796         return true;
1797 }
1798
1799 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1800                                         unsigned int segno, int modified)
1801 {
1802         struct seg_entry *se = get_seg_entry(sbi, segno);
1803         se->type = type;
1804         if (modified)
1805                 __mark_sit_entry_dirty(sbi, segno);
1806 }
1807
1808 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1809 {
1810         struct seg_entry *se;
1811         unsigned int segno, offset;
1812         long int new_vblocks;
1813         bool exist;
1814 #ifdef CONFIG_F2FS_CHECK_FS
1815         bool mir_exist;
1816 #endif
1817
1818         segno = GET_SEGNO(sbi, blkaddr);
1819
1820         se = get_seg_entry(sbi, segno);
1821         new_vblocks = se->valid_blocks + del;
1822         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1823
1824         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1825                                 (new_vblocks > sbi->blocks_per_seg)));
1826
1827         se->valid_blocks = new_vblocks;
1828         se->mtime = get_mtime(sbi);
1829         SIT_I(sbi)->max_mtime = se->mtime;
1830
1831         /* Update valid block bitmap */
1832         if (del > 0) {
1833                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1834 #ifdef CONFIG_F2FS_CHECK_FS
1835                 mir_exist = f2fs_test_and_set_bit(offset,
1836                                                 se->cur_valid_map_mir);
1837                 if (unlikely(exist != mir_exist)) {
1838                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1839                                 "when setting bitmap, blk:%u, old bit:%d",
1840                                 blkaddr, exist);
1841                         f2fs_bug_on(sbi, 1);
1842                 }
1843 #endif
1844                 if (unlikely(exist)) {
1845                         f2fs_msg(sbi->sb, KERN_ERR,
1846                                 "Bitmap was wrongly set, blk:%u", blkaddr);
1847                         f2fs_bug_on(sbi, 1);
1848                         se->valid_blocks--;
1849                         del = 0;
1850                 }
1851
1852                 if (f2fs_discard_en(sbi) &&
1853                         !f2fs_test_and_set_bit(offset, se->discard_map))
1854                         sbi->discard_blks--;
1855
1856                 /* don't overwrite by SSR to keep node chain */
1857                 if (se->type == CURSEG_WARM_NODE) {
1858                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1859                                 se->ckpt_valid_blocks++;
1860                 }
1861         } else {
1862                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1863 #ifdef CONFIG_F2FS_CHECK_FS
1864                 mir_exist = f2fs_test_and_clear_bit(offset,
1865                                                 se->cur_valid_map_mir);
1866                 if (unlikely(exist != mir_exist)) {
1867                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1868                                 "when clearing bitmap, blk:%u, old bit:%d",
1869                                 blkaddr, exist);
1870                         f2fs_bug_on(sbi, 1);
1871                 }
1872 #endif
1873                 if (unlikely(!exist)) {
1874                         f2fs_msg(sbi->sb, KERN_ERR,
1875                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1876                         f2fs_bug_on(sbi, 1);
1877                         se->valid_blocks++;
1878                         del = 0;
1879                 }
1880
1881                 if (f2fs_discard_en(sbi) &&
1882                         f2fs_test_and_clear_bit(offset, se->discard_map))
1883                         sbi->discard_blks++;
1884         }
1885         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1886                 se->ckpt_valid_blocks += del;
1887
1888         __mark_sit_entry_dirty(sbi, segno);
1889
1890         /* update total number of valid blocks to be written in ckpt area */
1891         SIT_I(sbi)->written_valid_blocks += del;
1892
1893         if (sbi->segs_per_sec > 1)
1894                 get_sec_entry(sbi, segno)->valid_blocks += del;
1895 }
1896
1897 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1898 {
1899         unsigned int segno = GET_SEGNO(sbi, addr);
1900         struct sit_info *sit_i = SIT_I(sbi);
1901
1902         f2fs_bug_on(sbi, addr == NULL_ADDR);
1903         if (addr == NEW_ADDR)
1904                 return;
1905
1906         /* add it into sit main buffer */
1907         mutex_lock(&sit_i->sentry_lock);
1908
1909         update_sit_entry(sbi, addr, -1);
1910
1911         /* add it into dirty seglist */
1912         locate_dirty_segment(sbi, segno);
1913
1914         mutex_unlock(&sit_i->sentry_lock);
1915 }
1916
1917 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1918 {
1919         struct sit_info *sit_i = SIT_I(sbi);
1920         unsigned int segno, offset;
1921         struct seg_entry *se;
1922         bool is_cp = false;
1923
1924         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1925                 return true;
1926
1927         mutex_lock(&sit_i->sentry_lock);
1928
1929         segno = GET_SEGNO(sbi, blkaddr);
1930         se = get_seg_entry(sbi, segno);
1931         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1932
1933         if (f2fs_test_bit(offset, se->ckpt_valid_map))
1934                 is_cp = true;
1935
1936         mutex_unlock(&sit_i->sentry_lock);
1937
1938         return is_cp;
1939 }
1940
1941 /*
1942  * This function should be resided under the curseg_mutex lock
1943  */
1944 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1945                                         struct f2fs_summary *sum)
1946 {
1947         struct curseg_info *curseg = CURSEG_I(sbi, type);
1948         void *addr = curseg->sum_blk;
1949         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1950         memcpy(addr, sum, sizeof(struct f2fs_summary));
1951 }
1952
1953 /*
1954  * Calculate the number of current summary pages for writing
1955  */
1956 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1957 {
1958         int valid_sum_count = 0;
1959         int i, sum_in_page;
1960
1961         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1962                 if (sbi->ckpt->alloc_type[i] == SSR)
1963                         valid_sum_count += sbi->blocks_per_seg;
1964                 else {
1965                         if (for_ra)
1966                                 valid_sum_count += le16_to_cpu(
1967                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1968                         else
1969                                 valid_sum_count += curseg_blkoff(sbi, i);
1970                 }
1971         }
1972
1973         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1974                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1975         if (valid_sum_count <= sum_in_page)
1976                 return 1;
1977         else if ((valid_sum_count - sum_in_page) <=
1978                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1979                 return 2;
1980         return 3;
1981 }
1982
1983 /*
1984  * Caller should put this summary page
1985  */
1986 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1987 {
1988         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1989 }
1990
1991 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1992 {
1993         struct page *page = grab_meta_page(sbi, blk_addr);
1994         void *dst = page_address(page);
1995
1996         if (src)
1997                 memcpy(dst, src, PAGE_SIZE);
1998         else
1999                 memset(dst, 0, PAGE_SIZE);
2000         set_page_dirty(page);
2001         f2fs_put_page(page, 1);
2002 }
2003
2004 static void write_sum_page(struct f2fs_sb_info *sbi,
2005                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2006 {
2007         update_meta_page(sbi, (void *)sum_blk, blk_addr);
2008 }
2009
2010 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2011                                                 int type, block_t blk_addr)
2012 {
2013         struct curseg_info *curseg = CURSEG_I(sbi, type);
2014         struct page *page = grab_meta_page(sbi, blk_addr);
2015         struct f2fs_summary_block *src = curseg->sum_blk;
2016         struct f2fs_summary_block *dst;
2017
2018         dst = (struct f2fs_summary_block *)page_address(page);
2019
2020         mutex_lock(&curseg->curseg_mutex);
2021
2022         down_read(&curseg->journal_rwsem);
2023         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2024         up_read(&curseg->journal_rwsem);
2025
2026         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2027         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2028
2029         mutex_unlock(&curseg->curseg_mutex);
2030
2031         set_page_dirty(page);
2032         f2fs_put_page(page, 1);
2033 }
2034
2035 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2036 {
2037         struct curseg_info *curseg = CURSEG_I(sbi, type);
2038         unsigned int segno = curseg->segno + 1;
2039         struct free_segmap_info *free_i = FREE_I(sbi);
2040
2041         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2042                 return !test_bit(segno, free_i->free_segmap);
2043         return 0;
2044 }
2045
2046 /*
2047  * Find a new segment from the free segments bitmap to right order
2048  * This function should be returned with success, otherwise BUG
2049  */
2050 static void get_new_segment(struct f2fs_sb_info *sbi,
2051                         unsigned int *newseg, bool new_sec, int dir)
2052 {
2053         struct free_segmap_info *free_i = FREE_I(sbi);
2054         unsigned int segno, secno, zoneno;
2055         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2056         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2057         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2058         unsigned int left_start = hint;
2059         bool init = true;
2060         int go_left = 0;
2061         int i;
2062
2063         spin_lock(&free_i->segmap_lock);
2064
2065         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2066                 segno = find_next_zero_bit(free_i->free_segmap,
2067                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2068                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2069                         goto got_it;
2070         }
2071 find_other_zone:
2072         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2073         if (secno >= MAIN_SECS(sbi)) {
2074                 if (dir == ALLOC_RIGHT) {
2075                         secno = find_next_zero_bit(free_i->free_secmap,
2076                                                         MAIN_SECS(sbi), 0);
2077                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2078                 } else {
2079                         go_left = 1;
2080                         left_start = hint - 1;
2081                 }
2082         }
2083         if (go_left == 0)
2084                 goto skip_left;
2085
2086         while (test_bit(left_start, free_i->free_secmap)) {
2087                 if (left_start > 0) {
2088                         left_start--;
2089                         continue;
2090                 }
2091                 left_start = find_next_zero_bit(free_i->free_secmap,
2092                                                         MAIN_SECS(sbi), 0);
2093                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2094                 break;
2095         }
2096         secno = left_start;
2097 skip_left:
2098         segno = GET_SEG_FROM_SEC(sbi, secno);
2099         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2100
2101         /* give up on finding another zone */
2102         if (!init)
2103                 goto got_it;
2104         if (sbi->secs_per_zone == 1)
2105                 goto got_it;
2106         if (zoneno == old_zoneno)
2107                 goto got_it;
2108         if (dir == ALLOC_LEFT) {
2109                 if (!go_left && zoneno + 1 >= total_zones)
2110                         goto got_it;
2111                 if (go_left && zoneno == 0)
2112                         goto got_it;
2113         }
2114         for (i = 0; i < NR_CURSEG_TYPE; i++)
2115                 if (CURSEG_I(sbi, i)->zone == zoneno)
2116                         break;
2117
2118         if (i < NR_CURSEG_TYPE) {
2119                 /* zone is in user, try another */
2120                 if (go_left)
2121                         hint = zoneno * sbi->secs_per_zone - 1;
2122                 else if (zoneno + 1 >= total_zones)
2123                         hint = 0;
2124                 else
2125                         hint = (zoneno + 1) * sbi->secs_per_zone;
2126                 init = false;
2127                 goto find_other_zone;
2128         }
2129 got_it:
2130         /* set it as dirty segment in free segmap */
2131         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2132         __set_inuse(sbi, segno);
2133         *newseg = segno;
2134         spin_unlock(&free_i->segmap_lock);
2135 }
2136
2137 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2138 {
2139         struct curseg_info *curseg = CURSEG_I(sbi, type);
2140         struct summary_footer *sum_footer;
2141
2142         curseg->segno = curseg->next_segno;
2143         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2144         curseg->next_blkoff = 0;
2145         curseg->next_segno = NULL_SEGNO;
2146
2147         sum_footer = &(curseg->sum_blk->footer);
2148         memset(sum_footer, 0, sizeof(struct summary_footer));
2149         if (IS_DATASEG(type))
2150                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2151         if (IS_NODESEG(type))
2152                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2153         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2154 }
2155
2156 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2157 {
2158         /* if segs_per_sec is large than 1, we need to keep original policy. */
2159         if (sbi->segs_per_sec != 1)
2160                 return CURSEG_I(sbi, type)->segno;
2161
2162         if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
2163                 return 0;
2164
2165         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2166                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2167         return CURSEG_I(sbi, type)->segno;
2168 }
2169
2170 /*
2171  * Allocate a current working segment.
2172  * This function always allocates a free segment in LFS manner.
2173  */
2174 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2175 {
2176         struct curseg_info *curseg = CURSEG_I(sbi, type);
2177         unsigned int segno = curseg->segno;
2178         int dir = ALLOC_LEFT;
2179
2180         write_sum_page(sbi, curseg->sum_blk,
2181                                 GET_SUM_BLOCK(sbi, segno));
2182         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2183                 dir = ALLOC_RIGHT;
2184
2185         if (test_opt(sbi, NOHEAP))
2186                 dir = ALLOC_RIGHT;
2187
2188         segno = __get_next_segno(sbi, type);
2189         get_new_segment(sbi, &segno, new_sec, dir);
2190         curseg->next_segno = segno;
2191         reset_curseg(sbi, type, 1);
2192         curseg->alloc_type = LFS;
2193 }
2194
2195 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2196                         struct curseg_info *seg, block_t start)
2197 {
2198         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2199         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2200         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2201         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2202         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2203         int i, pos;
2204
2205         for (i = 0; i < entries; i++)
2206                 target_map[i] = ckpt_map[i] | cur_map[i];
2207
2208         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2209
2210         seg->next_blkoff = pos;
2211 }
2212
2213 /*
2214  * If a segment is written by LFS manner, next block offset is just obtained
2215  * by increasing the current block offset. However, if a segment is written by
2216  * SSR manner, next block offset obtained by calling __next_free_blkoff
2217  */
2218 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2219                                 struct curseg_info *seg)
2220 {
2221         if (seg->alloc_type == SSR)
2222                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2223         else
2224                 seg->next_blkoff++;
2225 }
2226
2227 /*
2228  * This function always allocates a used segment(from dirty seglist) by SSR
2229  * manner, so it should recover the existing segment information of valid blocks
2230  */
2231 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2232 {
2233         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2234         struct curseg_info *curseg = CURSEG_I(sbi, type);
2235         unsigned int new_segno = curseg->next_segno;
2236         struct f2fs_summary_block *sum_node;
2237         struct page *sum_page;
2238
2239         write_sum_page(sbi, curseg->sum_blk,
2240                                 GET_SUM_BLOCK(sbi, curseg->segno));
2241         __set_test_and_inuse(sbi, new_segno);
2242
2243         mutex_lock(&dirty_i->seglist_lock);
2244         __remove_dirty_segment(sbi, new_segno, PRE);
2245         __remove_dirty_segment(sbi, new_segno, DIRTY);
2246         mutex_unlock(&dirty_i->seglist_lock);
2247
2248         reset_curseg(sbi, type, 1);
2249         curseg->alloc_type = SSR;
2250         __next_free_blkoff(sbi, curseg, 0);
2251
2252         sum_page = get_sum_page(sbi, new_segno);
2253         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2254         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2255         f2fs_put_page(sum_page, 1);
2256 }
2257
2258 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2259 {
2260         struct curseg_info *curseg = CURSEG_I(sbi, type);
2261         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2262         unsigned segno = NULL_SEGNO;
2263         int i, cnt;
2264         bool reversed = false;
2265
2266         /* need_SSR() already forces to do this */
2267         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2268                 curseg->next_segno = segno;
2269                 return 1;
2270         }
2271
2272         /* For node segments, let's do SSR more intensively */
2273         if (IS_NODESEG(type)) {
2274                 if (type >= CURSEG_WARM_NODE) {
2275                         reversed = true;
2276                         i = CURSEG_COLD_NODE;
2277                 } else {
2278                         i = CURSEG_HOT_NODE;
2279                 }
2280                 cnt = NR_CURSEG_NODE_TYPE;
2281         } else {
2282                 if (type >= CURSEG_WARM_DATA) {
2283                         reversed = true;
2284                         i = CURSEG_COLD_DATA;
2285                 } else {
2286                         i = CURSEG_HOT_DATA;
2287                 }
2288                 cnt = NR_CURSEG_DATA_TYPE;
2289         }
2290
2291         for (; cnt-- > 0; reversed ? i-- : i++) {
2292                 if (i == type)
2293                         continue;
2294                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2295                         curseg->next_segno = segno;
2296                         return 1;
2297                 }
2298         }
2299         return 0;
2300 }
2301
2302 /*
2303  * flush out current segment and replace it with new segment
2304  * This function should be returned with success, otherwise BUG
2305  */
2306 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2307                                                 int type, bool force)
2308 {
2309         struct curseg_info *curseg = CURSEG_I(sbi, type);
2310
2311         if (force)
2312                 new_curseg(sbi, type, true);
2313         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2314                                         type == CURSEG_WARM_NODE)
2315                 new_curseg(sbi, type, false);
2316         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2317                 new_curseg(sbi, type, false);
2318         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2319                 change_curseg(sbi, type);
2320         else
2321                 new_curseg(sbi, type, false);
2322
2323         stat_inc_seg_type(sbi, curseg);
2324 }
2325
2326 void allocate_new_segments(struct f2fs_sb_info *sbi)
2327 {
2328         struct curseg_info *curseg;
2329         unsigned int old_segno;
2330         int i;
2331
2332         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2333                 curseg = CURSEG_I(sbi, i);
2334                 old_segno = curseg->segno;
2335                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2336                 locate_dirty_segment(sbi, old_segno);
2337         }
2338 }
2339
2340 static const struct segment_allocation default_salloc_ops = {
2341         .allocate_segment = allocate_segment_by_default,
2342 };
2343
2344 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2345 {
2346         __u64 trim_start = cpc->trim_start;
2347         bool has_candidate = false;
2348
2349         mutex_lock(&SIT_I(sbi)->sentry_lock);
2350         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2351                 if (add_discard_addrs(sbi, cpc, true)) {
2352                         has_candidate = true;
2353                         break;
2354                 }
2355         }
2356         mutex_unlock(&SIT_I(sbi)->sentry_lock);
2357
2358         cpc->trim_start = trim_start;
2359         return has_candidate;
2360 }
2361
2362 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2363 {
2364         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2365         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2366         unsigned int start_segno, end_segno, cur_segno;
2367         block_t start_block, end_block;
2368         struct cp_control cpc;
2369         struct discard_policy dpolicy;
2370         unsigned long long trimmed = 0;
2371         int err = 0;
2372
2373         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2374                 return -EINVAL;
2375
2376         if (end <= MAIN_BLKADDR(sbi))
2377                 goto out;
2378
2379         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2380                 f2fs_msg(sbi->sb, KERN_WARNING,
2381                         "Found FS corruption, run fsck to fix.");
2382                 goto out;
2383         }
2384
2385         /* start/end segment number in main_area */
2386         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2387         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2388                                                 GET_SEGNO(sbi, end);
2389
2390         cpc.reason = CP_DISCARD;
2391         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2392
2393         /* do checkpoint to issue discard commands safely */
2394         for (cur_segno = start_segno; cur_segno <= end_segno;
2395                                         cur_segno = cpc.trim_end + 1) {
2396                 cpc.trim_start = cur_segno;
2397
2398                 if (sbi->discard_blks == 0)
2399                         break;
2400                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2401                         cpc.trim_end = end_segno;
2402                 else
2403                         cpc.trim_end = min_t(unsigned int,
2404                                 rounddown(cur_segno +
2405                                 BATCHED_TRIM_SEGMENTS(sbi),
2406                                 sbi->segs_per_sec) - 1, end_segno);
2407
2408                 mutex_lock(&sbi->gc_mutex);
2409                 err = write_checkpoint(sbi, &cpc);
2410                 mutex_unlock(&sbi->gc_mutex);
2411                 if (err)
2412                         break;
2413
2414                 schedule();
2415         }
2416
2417         start_block = START_BLOCK(sbi, start_segno);
2418         end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2419
2420         init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2421         __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2422         trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2423                                         start_block, end_block);
2424 out:
2425         range->len = F2FS_BLK_TO_BYTES(trimmed);
2426         return err;
2427 }
2428
2429 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2430 {
2431         struct curseg_info *curseg = CURSEG_I(sbi, type);
2432         if (curseg->next_blkoff < sbi->blocks_per_seg)
2433                 return true;
2434         return false;
2435 }
2436
2437 static int __get_segment_type_2(struct f2fs_io_info *fio)
2438 {
2439         if (fio->type == DATA)
2440                 return CURSEG_HOT_DATA;
2441         else
2442                 return CURSEG_HOT_NODE;
2443 }
2444
2445 static int __get_segment_type_4(struct f2fs_io_info *fio)
2446 {
2447         if (fio->type == DATA) {
2448                 struct inode *inode = fio->page->mapping->host;
2449
2450                 if (S_ISDIR(inode->i_mode))
2451                         return CURSEG_HOT_DATA;
2452                 else
2453                         return CURSEG_COLD_DATA;
2454         } else {
2455                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2456                         return CURSEG_WARM_NODE;
2457                 else
2458                         return CURSEG_COLD_NODE;
2459         }
2460 }
2461
2462 static int __get_segment_type_6(struct f2fs_io_info *fio)
2463 {
2464         if (fio->type == DATA) {
2465                 struct inode *inode = fio->page->mapping->host;
2466
2467                 if (is_cold_data(fio->page) || file_is_cold(inode))
2468                         return CURSEG_COLD_DATA;
2469                 if (is_inode_flag_set(inode, FI_HOT_DATA))
2470                         return CURSEG_HOT_DATA;
2471                 return CURSEG_WARM_DATA;
2472         } else {
2473                 if (IS_DNODE(fio->page))
2474                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2475                                                 CURSEG_HOT_NODE;
2476                 return CURSEG_COLD_NODE;
2477         }
2478 }
2479
2480 static int __get_segment_type(struct f2fs_io_info *fio)
2481 {
2482         int type = 0;
2483
2484         switch (fio->sbi->active_logs) {
2485         case 2:
2486                 type = __get_segment_type_2(fio);
2487                 break;
2488         case 4:
2489                 type = __get_segment_type_4(fio);
2490                 break;
2491         case 6:
2492                 type = __get_segment_type_6(fio);
2493                 break;
2494         default:
2495                 f2fs_bug_on(fio->sbi, true);
2496         }
2497
2498         if (IS_HOT(type))
2499                 fio->temp = HOT;
2500         else if (IS_WARM(type))
2501                 fio->temp = WARM;
2502         else
2503                 fio->temp = COLD;
2504         return type;
2505 }
2506
2507 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2508                 block_t old_blkaddr, block_t *new_blkaddr,
2509                 struct f2fs_summary *sum, int type,
2510                 struct f2fs_io_info *fio, bool add_list)
2511 {
2512         struct sit_info *sit_i = SIT_I(sbi);
2513         struct curseg_info *curseg = CURSEG_I(sbi, type);
2514
2515         mutex_lock(&curseg->curseg_mutex);
2516         mutex_lock(&sit_i->sentry_lock);
2517
2518         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2519
2520         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2521
2522         /*
2523          * __add_sum_entry should be resided under the curseg_mutex
2524          * because, this function updates a summary entry in the
2525          * current summary block.
2526          */
2527         __add_sum_entry(sbi, type, sum);
2528
2529         __refresh_next_blkoff(sbi, curseg);
2530
2531         stat_inc_block_count(sbi, curseg);
2532
2533         /*
2534          * SIT information should be updated before segment allocation,
2535          * since SSR needs latest valid block information.
2536          */
2537         update_sit_entry(sbi, *new_blkaddr, 1);
2538         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2539                 update_sit_entry(sbi, old_blkaddr, -1);
2540
2541         if (!__has_curseg_space(sbi, type))
2542                 sit_i->s_ops->allocate_segment(sbi, type, false);
2543
2544         /*
2545          * segment dirty status should be updated after segment allocation,
2546          * so we just need to update status only one time after previous
2547          * segment being closed.
2548          */
2549         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2550         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2551
2552         mutex_unlock(&sit_i->sentry_lock);
2553
2554         if (page && IS_NODESEG(type)) {
2555                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2556
2557                 f2fs_inode_chksum_set(sbi, page);
2558         }
2559
2560         if (add_list) {
2561                 struct f2fs_bio_info *io;
2562
2563                 INIT_LIST_HEAD(&fio->list);
2564                 fio->in_list = true;
2565                 io = sbi->write_io[fio->type] + fio->temp;
2566                 spin_lock(&io->io_lock);
2567                 list_add_tail(&fio->list, &io->io_list);
2568                 spin_unlock(&io->io_lock);
2569         }
2570
2571         mutex_unlock(&curseg->curseg_mutex);
2572 }
2573
2574 static void update_device_state(struct f2fs_io_info *fio)
2575 {
2576         struct f2fs_sb_info *sbi = fio->sbi;
2577         unsigned int devidx;
2578
2579         if (!sbi->s_ndevs)
2580                 return;
2581
2582         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2583
2584         /* update device state for fsync */
2585         set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2586
2587         /* update device state for checkpoint */
2588         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2589                 spin_lock(&sbi->dev_lock);
2590                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2591                 spin_unlock(&sbi->dev_lock);
2592         }
2593 }
2594
2595 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2596 {
2597         int type = __get_segment_type(fio);
2598         int err;
2599
2600 reallocate:
2601         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2602                         &fio->new_blkaddr, sum, type, fio, true);
2603
2604         /* writeout dirty page into bdev */
2605         err = f2fs_submit_page_write(fio);
2606         if (err == -EAGAIN) {
2607                 fio->old_blkaddr = fio->new_blkaddr;
2608                 goto reallocate;
2609         } else if (!err) {
2610                 update_device_state(fio);
2611         }
2612 }
2613
2614 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2615                                         enum iostat_type io_type)
2616 {
2617         struct f2fs_io_info fio = {
2618                 .sbi = sbi,
2619                 .type = META,
2620                 .op = REQ_OP_WRITE,
2621                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2622                 .old_blkaddr = page->index,
2623                 .new_blkaddr = page->index,
2624                 .page = page,
2625                 .encrypted_page = NULL,
2626                 .in_list = false,
2627         };
2628
2629         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2630                 fio.op_flags &= ~REQ_META;
2631
2632         set_page_writeback(page);
2633         f2fs_submit_page_write(&fio);
2634
2635         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2636 }
2637
2638 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2639 {
2640         struct f2fs_summary sum;
2641
2642         set_summary(&sum, nid, 0, 0);
2643         do_write_page(&sum, fio);
2644
2645         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2646 }
2647
2648 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2649 {
2650         struct f2fs_sb_info *sbi = fio->sbi;
2651         struct f2fs_summary sum;
2652         struct node_info ni;
2653
2654         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2655         get_node_info(sbi, dn->nid, &ni);
2656         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2657         do_write_page(&sum, fio);
2658         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2659
2660         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2661 }
2662
2663 int rewrite_data_page(struct f2fs_io_info *fio)
2664 {
2665         int err;
2666
2667         fio->new_blkaddr = fio->old_blkaddr;
2668         stat_inc_inplace_blocks(fio->sbi);
2669
2670         err = f2fs_submit_page_bio(fio);
2671         if (!err)
2672                 update_device_state(fio);
2673
2674         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2675
2676         return err;
2677 }
2678
2679 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2680                                 block_t old_blkaddr, block_t new_blkaddr,
2681                                 bool recover_curseg, bool recover_newaddr)
2682 {
2683         struct sit_info *sit_i = SIT_I(sbi);
2684         struct curseg_info *curseg;
2685         unsigned int segno, old_cursegno;
2686         struct seg_entry *se;
2687         int type;
2688         unsigned short old_blkoff;
2689
2690         segno = GET_SEGNO(sbi, new_blkaddr);
2691         se = get_seg_entry(sbi, segno);
2692         type = se->type;
2693
2694         if (!recover_curseg) {
2695                 /* for recovery flow */
2696                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2697                         if (old_blkaddr == NULL_ADDR)
2698                                 type = CURSEG_COLD_DATA;
2699                         else
2700                                 type = CURSEG_WARM_DATA;
2701                 }
2702         } else {
2703                 if (!IS_CURSEG(sbi, segno))
2704                         type = CURSEG_WARM_DATA;
2705         }
2706
2707         curseg = CURSEG_I(sbi, type);
2708
2709         mutex_lock(&curseg->curseg_mutex);
2710         mutex_lock(&sit_i->sentry_lock);
2711
2712         old_cursegno = curseg->segno;
2713         old_blkoff = curseg->next_blkoff;
2714
2715         /* change the current segment */
2716         if (segno != curseg->segno) {
2717                 curseg->next_segno = segno;
2718                 change_curseg(sbi, type);
2719         }
2720
2721         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2722         __add_sum_entry(sbi, type, sum);
2723
2724         if (!recover_curseg || recover_newaddr)
2725                 update_sit_entry(sbi, new_blkaddr, 1);
2726         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2727                 update_sit_entry(sbi, old_blkaddr, -1);
2728
2729         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2730         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2731
2732         locate_dirty_segment(sbi, old_cursegno);
2733
2734         if (recover_curseg) {
2735                 if (old_cursegno != curseg->segno) {
2736                         curseg->next_segno = old_cursegno;
2737                         change_curseg(sbi, type);
2738                 }
2739                 curseg->next_blkoff = old_blkoff;
2740         }
2741
2742         mutex_unlock(&sit_i->sentry_lock);
2743         mutex_unlock(&curseg->curseg_mutex);
2744 }
2745
2746 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2747                                 block_t old_addr, block_t new_addr,
2748                                 unsigned char version, bool recover_curseg,
2749                                 bool recover_newaddr)
2750 {
2751         struct f2fs_summary sum;
2752
2753         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2754
2755         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2756                                         recover_curseg, recover_newaddr);
2757
2758         f2fs_update_data_blkaddr(dn, new_addr);
2759 }
2760
2761 void f2fs_wait_on_page_writeback(struct page *page,
2762                                 enum page_type type, bool ordered)
2763 {
2764         if (PageWriteback(page)) {
2765                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2766
2767                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2768                                                 0, page->index, type);
2769                 if (ordered)
2770                         wait_on_page_writeback(page);
2771                 else
2772                         wait_for_stable_page(page);
2773         }
2774 }
2775
2776 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2777 {
2778         struct page *cpage;
2779
2780         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2781                 return;
2782
2783         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2784         if (cpage) {
2785                 f2fs_wait_on_page_writeback(cpage, DATA, true);
2786                 f2fs_put_page(cpage, 1);
2787         }
2788 }
2789
2790 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2791 {
2792         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2793         struct curseg_info *seg_i;
2794         unsigned char *kaddr;
2795         struct page *page;
2796         block_t start;
2797         int i, j, offset;
2798
2799         start = start_sum_block(sbi);
2800
2801         page = get_meta_page(sbi, start++);
2802         kaddr = (unsigned char *)page_address(page);
2803
2804         /* Step 1: restore nat cache */
2805         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2806         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2807
2808         /* Step 2: restore sit cache */
2809         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2810         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2811         offset = 2 * SUM_JOURNAL_SIZE;
2812
2813         /* Step 3: restore summary entries */
2814         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2815                 unsigned short blk_off;
2816                 unsigned int segno;
2817
2818                 seg_i = CURSEG_I(sbi, i);
2819                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2820                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2821                 seg_i->next_segno = segno;
2822                 reset_curseg(sbi, i, 0);
2823                 seg_i->alloc_type = ckpt->alloc_type[i];
2824                 seg_i->next_blkoff = blk_off;
2825
2826                 if (seg_i->alloc_type == SSR)
2827                         blk_off = sbi->blocks_per_seg;
2828
2829                 for (j = 0; j < blk_off; j++) {
2830                         struct f2fs_summary *s;
2831                         s = (struct f2fs_summary *)(kaddr + offset);
2832                         seg_i->sum_blk->entries[j] = *s;
2833                         offset += SUMMARY_SIZE;
2834                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2835                                                 SUM_FOOTER_SIZE)
2836                                 continue;
2837
2838                         f2fs_put_page(page, 1);
2839                         page = NULL;
2840
2841                         page = get_meta_page(sbi, start++);
2842                         kaddr = (unsigned char *)page_address(page);
2843                         offset = 0;
2844                 }
2845         }
2846         f2fs_put_page(page, 1);
2847         return 0;
2848 }
2849
2850 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2851 {
2852         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2853         struct f2fs_summary_block *sum;
2854         struct curseg_info *curseg;
2855         struct page *new;
2856         unsigned short blk_off;
2857         unsigned int segno = 0;
2858         block_t blk_addr = 0;
2859
2860         /* get segment number and block addr */
2861         if (IS_DATASEG(type)) {
2862                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2863                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2864                                                         CURSEG_HOT_DATA]);
2865                 if (__exist_node_summaries(sbi))
2866                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2867                 else
2868                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2869         } else {
2870                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2871                                                         CURSEG_HOT_NODE]);
2872                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2873                                                         CURSEG_HOT_NODE]);
2874                 if (__exist_node_summaries(sbi))
2875                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2876                                                         type - CURSEG_HOT_NODE);
2877                 else
2878                         blk_addr = GET_SUM_BLOCK(sbi, segno);
2879         }
2880
2881         new = get_meta_page(sbi, blk_addr);
2882         sum = (struct f2fs_summary_block *)page_address(new);
2883
2884         if (IS_NODESEG(type)) {
2885                 if (__exist_node_summaries(sbi)) {
2886                         struct f2fs_summary *ns = &sum->entries[0];
2887                         int i;
2888                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2889                                 ns->version = 0;
2890                                 ns->ofs_in_node = 0;
2891                         }
2892                 } else {
2893                         int err;
2894
2895                         err = restore_node_summary(sbi, segno, sum);
2896                         if (err) {
2897                                 f2fs_put_page(new, 1);
2898                                 return err;
2899                         }
2900                 }
2901         }
2902
2903         /* set uncompleted segment to curseg */
2904         curseg = CURSEG_I(sbi, type);
2905         mutex_lock(&curseg->curseg_mutex);
2906
2907         /* update journal info */
2908         down_write(&curseg->journal_rwsem);
2909         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2910         up_write(&curseg->journal_rwsem);
2911
2912         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2913         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2914         curseg->next_segno = segno;
2915         reset_curseg(sbi, type, 0);
2916         curseg->alloc_type = ckpt->alloc_type[type];
2917         curseg->next_blkoff = blk_off;
2918         mutex_unlock(&curseg->curseg_mutex);
2919         f2fs_put_page(new, 1);
2920         return 0;
2921 }
2922
2923 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2924 {
2925         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2926         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2927         int type = CURSEG_HOT_DATA;
2928         int err;
2929
2930         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2931                 int npages = npages_for_summary_flush(sbi, true);
2932
2933                 if (npages >= 2)
2934                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
2935                                                         META_CP, true);
2936
2937                 /* restore for compacted data summary */
2938                 if (read_compacted_summaries(sbi))
2939                         return -EINVAL;
2940                 type = CURSEG_HOT_NODE;
2941         }
2942
2943         if (__exist_node_summaries(sbi))
2944                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2945                                         NR_CURSEG_TYPE - type, META_CP, true);
2946
2947         for (; type <= CURSEG_COLD_NODE; type++) {
2948                 err = read_normal_summaries(sbi, type);
2949                 if (err)
2950                         return err;
2951         }
2952
2953         /* sanity check for summary blocks */
2954         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2955                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2956                 return -EINVAL;
2957
2958         return 0;
2959 }
2960
2961 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2962 {
2963         struct page *page;
2964         unsigned char *kaddr;
2965         struct f2fs_summary *summary;
2966         struct curseg_info *seg_i;
2967         int written_size = 0;
2968         int i, j;
2969
2970         page = grab_meta_page(sbi, blkaddr++);
2971         kaddr = (unsigned char *)page_address(page);
2972
2973         /* Step 1: write nat cache */
2974         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2975         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2976         written_size += SUM_JOURNAL_SIZE;
2977
2978         /* Step 2: write sit cache */
2979         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2980         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2981         written_size += SUM_JOURNAL_SIZE;
2982
2983         /* Step 3: write summary entries */
2984         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2985                 unsigned short blkoff;
2986                 seg_i = CURSEG_I(sbi, i);
2987                 if (sbi->ckpt->alloc_type[i] == SSR)
2988                         blkoff = sbi->blocks_per_seg;
2989                 else
2990                         blkoff = curseg_blkoff(sbi, i);
2991
2992                 for (j = 0; j < blkoff; j++) {
2993                         if (!page) {
2994                                 page = grab_meta_page(sbi, blkaddr++);
2995                                 kaddr = (unsigned char *)page_address(page);
2996                                 written_size = 0;
2997                         }
2998                         summary = (struct f2fs_summary *)(kaddr + written_size);
2999                         *summary = seg_i->sum_blk->entries[j];
3000                         written_size += SUMMARY_SIZE;
3001
3002                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3003                                                         SUM_FOOTER_SIZE)
3004                                 continue;
3005
3006                         set_page_dirty(page);
3007                         f2fs_put_page(page, 1);
3008                         page = NULL;
3009                 }
3010         }
3011         if (page) {
3012                 set_page_dirty(page);
3013                 f2fs_put_page(page, 1);
3014         }
3015 }
3016
3017 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3018                                         block_t blkaddr, int type)
3019 {
3020         int i, end;
3021         if (IS_DATASEG(type))
3022                 end = type + NR_CURSEG_DATA_TYPE;
3023         else
3024                 end = type + NR_CURSEG_NODE_TYPE;
3025
3026         for (i = type; i < end; i++)
3027                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3028 }
3029
3030 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3031 {
3032         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3033                 write_compacted_summaries(sbi, start_blk);
3034         else
3035                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3036 }
3037
3038 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3039 {
3040         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3041 }
3042
3043 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3044                                         unsigned int val, int alloc)
3045 {
3046         int i;
3047
3048         if (type == NAT_JOURNAL) {
3049                 for (i = 0; i < nats_in_cursum(journal); i++) {
3050                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3051                                 return i;
3052                 }
3053                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3054                         return update_nats_in_cursum(journal, 1);
3055         } else if (type == SIT_JOURNAL) {
3056                 for (i = 0; i < sits_in_cursum(journal); i++)
3057                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3058                                 return i;
3059                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3060                         return update_sits_in_cursum(journal, 1);
3061         }
3062         return -1;
3063 }
3064
3065 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3066                                         unsigned int segno)
3067 {
3068         return get_meta_page(sbi, current_sit_addr(sbi, segno));
3069 }
3070
3071 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3072                                         unsigned int start)
3073 {
3074         struct sit_info *sit_i = SIT_I(sbi);
3075         struct page *src_page, *dst_page;
3076         pgoff_t src_off, dst_off;
3077         void *src_addr, *dst_addr;
3078
3079         src_off = current_sit_addr(sbi, start);
3080         dst_off = next_sit_addr(sbi, src_off);
3081
3082         /* get current sit block page without lock */
3083         src_page = get_meta_page(sbi, src_off);
3084         dst_page = grab_meta_page(sbi, dst_off);
3085         f2fs_bug_on(sbi, PageDirty(src_page));
3086
3087         src_addr = page_address(src_page);
3088         dst_addr = page_address(dst_page);
3089         memcpy(dst_addr, src_addr, PAGE_SIZE);
3090
3091         set_page_dirty(dst_page);
3092         f2fs_put_page(src_page, 1);
3093
3094         set_to_next_sit(sit_i, start);
3095
3096         return dst_page;
3097 }
3098
3099 static struct sit_entry_set *grab_sit_entry_set(void)
3100 {
3101         struct sit_entry_set *ses =
3102                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3103
3104         ses->entry_cnt = 0;
3105         INIT_LIST_HEAD(&ses->set_list);
3106         return ses;
3107 }
3108
3109 static void release_sit_entry_set(struct sit_entry_set *ses)
3110 {
3111         list_del(&ses->set_list);
3112         kmem_cache_free(sit_entry_set_slab, ses);
3113 }
3114
3115 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3116                                                 struct list_head *head)
3117 {
3118         struct sit_entry_set *next = ses;
3119
3120         if (list_is_last(&ses->set_list, head))
3121                 return;
3122
3123         list_for_each_entry_continue(next, head, set_list)
3124                 if (ses->entry_cnt <= next->entry_cnt)
3125                         break;
3126
3127         list_move_tail(&ses->set_list, &next->set_list);
3128 }
3129
3130 static void add_sit_entry(unsigned int segno, struct list_head *head)
3131 {
3132         struct sit_entry_set *ses;
3133         unsigned int start_segno = START_SEGNO(segno);
3134
3135         list_for_each_entry(ses, head, set_list) {
3136                 if (ses->start_segno == start_segno) {
3137                         ses->entry_cnt++;
3138                         adjust_sit_entry_set(ses, head);
3139                         return;
3140                 }
3141         }
3142
3143         ses = grab_sit_entry_set();
3144
3145         ses->start_segno = start_segno;
3146         ses->entry_cnt++;
3147         list_add(&ses->set_list, head);
3148 }
3149
3150 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3151 {
3152         struct f2fs_sm_info *sm_info = SM_I(sbi);
3153         struct list_head *set_list = &sm_info->sit_entry_set;
3154         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3155         unsigned int segno;
3156
3157         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3158                 add_sit_entry(segno, set_list);
3159 }
3160
3161 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3162 {
3163         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3164         struct f2fs_journal *journal = curseg->journal;
3165         int i;
3166
3167         down_write(&curseg->journal_rwsem);
3168         for (i = 0; i < sits_in_cursum(journal); i++) {
3169                 unsigned int segno;
3170                 bool dirtied;
3171
3172                 segno = le32_to_cpu(segno_in_journal(journal, i));
3173                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3174
3175                 if (!dirtied)
3176                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3177         }
3178         update_sits_in_cursum(journal, -i);
3179         up_write(&curseg->journal_rwsem);
3180 }
3181
3182 /*
3183  * CP calls this function, which flushes SIT entries including sit_journal,
3184  * and moves prefree segs to free segs.
3185  */
3186 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3187 {
3188         struct sit_info *sit_i = SIT_I(sbi);
3189         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3190         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3191         struct f2fs_journal *journal = curseg->journal;
3192         struct sit_entry_set *ses, *tmp;
3193         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3194         bool to_journal = true;
3195         struct seg_entry *se;
3196
3197         mutex_lock(&sit_i->sentry_lock);
3198
3199         if (!sit_i->dirty_sentries)
3200                 goto out;
3201
3202         /*
3203          * add and account sit entries of dirty bitmap in sit entry
3204          * set temporarily
3205          */
3206         add_sits_in_set(sbi);
3207
3208         /*
3209          * if there are no enough space in journal to store dirty sit
3210          * entries, remove all entries from journal and add and account
3211          * them in sit entry set.
3212          */
3213         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3214                 remove_sits_in_journal(sbi);
3215
3216         /*
3217          * there are two steps to flush sit entries:
3218          * #1, flush sit entries to journal in current cold data summary block.
3219          * #2, flush sit entries to sit page.
3220          */
3221         list_for_each_entry_safe(ses, tmp, head, set_list) {
3222                 struct page *page = NULL;
3223                 struct f2fs_sit_block *raw_sit = NULL;
3224                 unsigned int start_segno = ses->start_segno;
3225                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3226                                                 (unsigned long)MAIN_SEGS(sbi));
3227                 unsigned int segno = start_segno;
3228
3229                 if (to_journal &&
3230                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3231                         to_journal = false;
3232
3233                 if (to_journal) {
3234                         down_write(&curseg->journal_rwsem);
3235                 } else {
3236                         page = get_next_sit_page(sbi, start_segno);
3237                         raw_sit = page_address(page);
3238                 }
3239
3240                 /* flush dirty sit entries in region of current sit set */
3241                 for_each_set_bit_from(segno, bitmap, end) {
3242                         int offset, sit_offset;
3243
3244                         se = get_seg_entry(sbi, segno);
3245
3246                         /* add discard candidates */
3247                         if (!(cpc->reason & CP_DISCARD)) {
3248                                 cpc->trim_start = segno;
3249                                 add_discard_addrs(sbi, cpc, false);
3250                         }
3251
3252                         if (to_journal) {
3253                                 offset = lookup_journal_in_cursum(journal,
3254                                                         SIT_JOURNAL, segno, 1);
3255                                 f2fs_bug_on(sbi, offset < 0);
3256                                 segno_in_journal(journal, offset) =
3257                                                         cpu_to_le32(segno);
3258                                 seg_info_to_raw_sit(se,
3259                                         &sit_in_journal(journal, offset));
3260                         } else {
3261                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3262                                 seg_info_to_raw_sit(se,
3263                                                 &raw_sit->entries[sit_offset]);
3264                         }
3265
3266                         __clear_bit(segno, bitmap);
3267                         sit_i->dirty_sentries--;
3268                         ses->entry_cnt--;
3269                 }
3270
3271                 if (to_journal)
3272                         up_write(&curseg->journal_rwsem);
3273                 else
3274                         f2fs_put_page(page, 1);
3275
3276                 f2fs_bug_on(sbi, ses->entry_cnt);
3277                 release_sit_entry_set(ses);
3278         }
3279
3280         f2fs_bug_on(sbi, !list_empty(head));
3281         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3282 out:
3283         if (cpc->reason & CP_DISCARD) {
3284                 __u64 trim_start = cpc->trim_start;
3285
3286                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3287                         add_discard_addrs(sbi, cpc, false);
3288
3289                 cpc->trim_start = trim_start;
3290         }
3291         mutex_unlock(&sit_i->sentry_lock);
3292
3293         set_prefree_as_free_segments(sbi);
3294 }
3295
3296 static int build_sit_info(struct f2fs_sb_info *sbi)
3297 {
3298         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3299         struct sit_info *sit_i;
3300         unsigned int sit_segs, start;
3301         char *src_bitmap;
3302         unsigned int bitmap_size;
3303
3304         /* allocate memory for SIT information */
3305         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
3306         if (!sit_i)
3307                 return -ENOMEM;
3308
3309         SM_I(sbi)->sit_info = sit_i;
3310
3311         sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
3312                                         sizeof(struct seg_entry), GFP_KERNEL);
3313         if (!sit_i->sentries)
3314                 return -ENOMEM;
3315
3316         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3317         sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
3318         if (!sit_i->dirty_sentries_bitmap)
3319                 return -ENOMEM;
3320
3321         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3322                 sit_i->sentries[start].cur_valid_map
3323                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3324                 sit_i->sentries[start].ckpt_valid_map
3325                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3326                 if (!sit_i->sentries[start].cur_valid_map ||
3327                                 !sit_i->sentries[start].ckpt_valid_map)
3328                         return -ENOMEM;
3329
3330 #ifdef CONFIG_F2FS_CHECK_FS
3331                 sit_i->sentries[start].cur_valid_map_mir
3332                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3333                 if (!sit_i->sentries[start].cur_valid_map_mir)
3334                         return -ENOMEM;
3335 #endif
3336
3337                 if (f2fs_discard_en(sbi)) {
3338                         sit_i->sentries[start].discard_map
3339                                 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3340                         if (!sit_i->sentries[start].discard_map)
3341                                 return -ENOMEM;
3342                 }
3343         }
3344
3345         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3346         if (!sit_i->tmp_map)
3347                 return -ENOMEM;
3348
3349         if (sbi->segs_per_sec > 1) {
3350                 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
3351                                         sizeof(struct sec_entry), GFP_KERNEL);
3352                 if (!sit_i->sec_entries)
3353                         return -ENOMEM;
3354         }
3355
3356         /* get information related with SIT */
3357         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3358
3359         /* setup SIT bitmap from ckeckpoint pack */
3360         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3361         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3362
3363         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3364         if (!sit_i->sit_bitmap)
3365                 return -ENOMEM;
3366
3367 #ifdef CONFIG_F2FS_CHECK_FS
3368         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3369         if (!sit_i->sit_bitmap_mir)
3370                 return -ENOMEM;
3371 #endif
3372
3373         /* init SIT information */
3374         sit_i->s_ops = &default_salloc_ops;
3375
3376         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3377         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3378         sit_i->written_valid_blocks = 0;
3379         sit_i->bitmap_size = bitmap_size;
3380         sit_i->dirty_sentries = 0;
3381         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3382         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3383         sit_i->mounted_time = ktime_get_real_seconds();
3384         mutex_init(&sit_i->sentry_lock);
3385         return 0;
3386 }
3387
3388 static int build_free_segmap(struct f2fs_sb_info *sbi)
3389 {
3390         struct free_segmap_info *free_i;
3391         unsigned int bitmap_size, sec_bitmap_size;
3392
3393         /* allocate memory for free segmap information */
3394         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
3395         if (!free_i)
3396                 return -ENOMEM;
3397
3398         SM_I(sbi)->free_info = free_i;
3399
3400         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3401         free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
3402         if (!free_i->free_segmap)
3403                 return -ENOMEM;
3404
3405         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3406         free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
3407         if (!free_i->free_secmap)
3408                 return -ENOMEM;
3409
3410         /* set all segments as dirty temporarily */
3411         memset(free_i->free_segmap, 0xff, bitmap_size);
3412         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3413
3414         /* init free segmap information */
3415         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3416         free_i->free_segments = 0;
3417         free_i->free_sections = 0;
3418         spin_lock_init(&free_i->segmap_lock);
3419         return 0;
3420 }
3421
3422 static int build_curseg(struct f2fs_sb_info *sbi)
3423 {
3424         struct curseg_info *array;
3425         int i;
3426
3427         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
3428         if (!array)
3429                 return -ENOMEM;
3430
3431         SM_I(sbi)->curseg_array = array;
3432
3433         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3434                 mutex_init(&array[i].curseg_mutex);
3435                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
3436                 if (!array[i].sum_blk)
3437                         return -ENOMEM;
3438                 init_rwsem(&array[i].journal_rwsem);
3439                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
3440                                                         GFP_KERNEL);
3441                 if (!array[i].journal)
3442                         return -ENOMEM;
3443                 array[i].segno = NULL_SEGNO;
3444                 array[i].next_blkoff = 0;
3445         }
3446         return restore_curseg_summaries(sbi);
3447 }
3448
3449 static void build_sit_entries(struct f2fs_sb_info *sbi)
3450 {
3451         struct sit_info *sit_i = SIT_I(sbi);
3452         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3453         struct f2fs_journal *journal = curseg->journal;
3454         struct seg_entry *se;
3455         struct f2fs_sit_entry sit;
3456         int sit_blk_cnt = SIT_BLK_CNT(sbi);
3457         unsigned int i, start, end;
3458         unsigned int readed, start_blk = 0;
3459
3460         do {
3461                 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3462                                                         META_SIT, true);
3463
3464                 start = start_blk * sit_i->sents_per_block;
3465                 end = (start_blk + readed) * sit_i->sents_per_block;
3466
3467                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3468                         struct f2fs_sit_block *sit_blk;
3469                         struct page *page;
3470
3471                         se = &sit_i->sentries[start];
3472                         page = get_current_sit_page(sbi, start);
3473                         sit_blk = (struct f2fs_sit_block *)page_address(page);
3474                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3475                         f2fs_put_page(page, 1);
3476
3477                         check_block_count(sbi, start, &sit);
3478                         seg_info_from_raw_sit(se, &sit);
3479
3480                         /* build discard map only one time */
3481                         if (f2fs_discard_en(sbi)) {
3482                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3483                                         memset(se->discard_map, 0xff,
3484                                                 SIT_VBLOCK_MAP_SIZE);
3485                                 } else {
3486                                         memcpy(se->discard_map,
3487                                                 se->cur_valid_map,
3488                                                 SIT_VBLOCK_MAP_SIZE);
3489                                         sbi->discard_blks +=
3490                                                 sbi->blocks_per_seg -
3491                                                 se->valid_blocks;
3492                                 }
3493                         }
3494
3495                         if (sbi->segs_per_sec > 1)
3496                                 get_sec_entry(sbi, start)->valid_blocks +=
3497                                                         se->valid_blocks;
3498                 }
3499                 start_blk += readed;
3500         } while (start_blk < sit_blk_cnt);
3501
3502         down_read(&curseg->journal_rwsem);
3503         for (i = 0; i < sits_in_cursum(journal); i++) {
3504                 unsigned int old_valid_blocks;
3505
3506                 start = le32_to_cpu(segno_in_journal(journal, i));
3507                 se = &sit_i->sentries[start];
3508                 sit = sit_in_journal(journal, i);
3509
3510                 old_valid_blocks = se->valid_blocks;
3511
3512                 check_block_count(sbi, start, &sit);
3513                 seg_info_from_raw_sit(se, &sit);
3514
3515                 if (f2fs_discard_en(sbi)) {
3516                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3517                                 memset(se->discard_map, 0xff,
3518                                                         SIT_VBLOCK_MAP_SIZE);
3519                         } else {
3520                                 memcpy(se->discard_map, se->cur_valid_map,
3521                                                         SIT_VBLOCK_MAP_SIZE);
3522                                 sbi->discard_blks += old_valid_blocks -
3523                                                         se->valid_blocks;
3524                         }
3525                 }
3526
3527                 if (sbi->segs_per_sec > 1)
3528                         get_sec_entry(sbi, start)->valid_blocks +=
3529                                 se->valid_blocks - old_valid_blocks;
3530         }
3531         up_read(&curseg->journal_rwsem);
3532 }
3533
3534 static void init_free_segmap(struct f2fs_sb_info *sbi)
3535 {
3536         unsigned int start;
3537         int type;
3538
3539         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3540                 struct seg_entry *sentry = get_seg_entry(sbi, start);
3541                 if (!sentry->valid_blocks)
3542                         __set_free(sbi, start);
3543                 else
3544                         SIT_I(sbi)->written_valid_blocks +=
3545                                                 sentry->valid_blocks;
3546         }
3547
3548         /* set use the current segments */
3549         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3550                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3551                 __set_test_and_inuse(sbi, curseg_t->segno);
3552         }
3553 }
3554
3555 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3556 {
3557         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3558         struct free_segmap_info *free_i = FREE_I(sbi);
3559         unsigned int segno = 0, offset = 0;
3560         unsigned short valid_blocks;
3561
3562         while (1) {
3563                 /* find dirty segment based on free segmap */
3564                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3565                 if (segno >= MAIN_SEGS(sbi))
3566                         break;
3567                 offset = segno + 1;
3568                 valid_blocks = get_valid_blocks(sbi, segno, false);
3569                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3570                         continue;
3571                 if (valid_blocks > sbi->blocks_per_seg) {
3572                         f2fs_bug_on(sbi, 1);
3573                         continue;
3574                 }
3575                 mutex_lock(&dirty_i->seglist_lock);
3576                 __locate_dirty_segment(sbi, segno, DIRTY);
3577                 mutex_unlock(&dirty_i->seglist_lock);
3578         }
3579 }
3580
3581 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3582 {
3583         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3584         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3585
3586         dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3587         if (!dirty_i->victim_secmap)
3588                 return -ENOMEM;
3589         return 0;
3590 }
3591
3592 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3593 {
3594         struct dirty_seglist_info *dirty_i;
3595         unsigned int bitmap_size, i;
3596
3597         /* allocate memory for dirty segments list information */
3598         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3599         if (!dirty_i)
3600                 return -ENOMEM;
3601
3602         SM_I(sbi)->dirty_info = dirty_i;
3603         mutex_init(&dirty_i->seglist_lock);
3604
3605         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3606
3607         for (i = 0; i < NR_DIRTY_TYPE; i++) {
3608                 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3609                 if (!dirty_i->dirty_segmap[i])
3610                         return -ENOMEM;
3611         }
3612
3613         init_dirty_segmap(sbi);
3614         return init_victim_secmap(sbi);
3615 }
3616
3617 /*
3618  * Update min, max modified time for cost-benefit GC algorithm
3619  */
3620 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3621 {
3622         struct sit_info *sit_i = SIT_I(sbi);
3623         unsigned int segno;
3624
3625         mutex_lock(&sit_i->sentry_lock);
3626
3627         sit_i->min_mtime = LLONG_MAX;
3628
3629         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3630                 unsigned int i;
3631                 unsigned long long mtime = 0;
3632
3633                 for (i = 0; i < sbi->segs_per_sec; i++)
3634                         mtime += get_seg_entry(sbi, segno + i)->mtime;
3635
3636                 mtime = div_u64(mtime, sbi->segs_per_sec);
3637
3638                 if (sit_i->min_mtime > mtime)
3639                         sit_i->min_mtime = mtime;
3640         }
3641         sit_i->max_mtime = get_mtime(sbi);
3642         mutex_unlock(&sit_i->sentry_lock);
3643 }
3644
3645 int build_segment_manager(struct f2fs_sb_info *sbi)
3646 {
3647         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3648         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3649         struct f2fs_sm_info *sm_info;
3650         int err;
3651
3652         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3653         if (!sm_info)
3654                 return -ENOMEM;
3655
3656         /* init sm info */
3657         sbi->sm_info = sm_info;
3658         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3659         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3660         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3661         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3662         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3663         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3664         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3665         sm_info->rec_prefree_segments = sm_info->main_segments *
3666                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3667         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3668                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3669
3670         if (!test_opt(sbi, LFS))
3671                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3672         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3673         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3674         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3675         sm_info->min_ssr_sections = reserved_sections(sbi);
3676
3677         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3678
3679         INIT_LIST_HEAD(&sm_info->sit_entry_set);
3680
3681         if (!f2fs_readonly(sbi->sb)) {
3682                 err = create_flush_cmd_control(sbi);
3683                 if (err)
3684                         return err;
3685         }
3686
3687         err = create_discard_cmd_control(sbi);
3688         if (err)
3689                 return err;
3690
3691         err = build_sit_info(sbi);
3692         if (err)
3693                 return err;
3694         err = build_free_segmap(sbi);
3695         if (err)
3696                 return err;
3697         err = build_curseg(sbi);
3698         if (err)
3699                 return err;
3700
3701         /* reinit free segmap based on SIT */
3702         build_sit_entries(sbi);
3703
3704         init_free_segmap(sbi);
3705         err = build_dirty_segmap(sbi);
3706         if (err)
3707                 return err;
3708
3709         init_min_max_mtime(sbi);
3710         return 0;
3711 }
3712
3713 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3714                 enum dirty_type dirty_type)
3715 {
3716         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3717
3718         mutex_lock(&dirty_i->seglist_lock);
3719         kvfree(dirty_i->dirty_segmap[dirty_type]);
3720         dirty_i->nr_dirty[dirty_type] = 0;
3721         mutex_unlock(&dirty_i->seglist_lock);
3722 }
3723
3724 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3725 {
3726         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3727         kvfree(dirty_i->victim_secmap);
3728 }
3729
3730 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3731 {
3732         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3733         int i;
3734
3735         if (!dirty_i)
3736                 return;
3737
3738         /* discard pre-free/dirty segments list */
3739         for (i = 0; i < NR_DIRTY_TYPE; i++)
3740                 discard_dirty_segmap(sbi, i);
3741
3742         destroy_victim_secmap(sbi);
3743         SM_I(sbi)->dirty_info = NULL;
3744         kfree(dirty_i);
3745 }
3746
3747 static void destroy_curseg(struct f2fs_sb_info *sbi)
3748 {
3749         struct curseg_info *array = SM_I(sbi)->curseg_array;
3750         int i;
3751
3752         if (!array)
3753                 return;
3754         SM_I(sbi)->curseg_array = NULL;
3755         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3756                 kfree(array[i].sum_blk);
3757                 kfree(array[i].journal);
3758         }
3759         kfree(array);
3760 }
3761
3762 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3763 {
3764         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3765         if (!free_i)
3766                 return;
3767         SM_I(sbi)->free_info = NULL;
3768         kvfree(free_i->free_segmap);
3769         kvfree(free_i->free_secmap);
3770         kfree(free_i);
3771 }
3772
3773 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3774 {
3775         struct sit_info *sit_i = SIT_I(sbi);
3776         unsigned int start;
3777
3778         if (!sit_i)
3779                 return;
3780
3781         if (sit_i->sentries) {
3782                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3783                         kfree(sit_i->sentries[start].cur_valid_map);
3784 #ifdef CONFIG_F2FS_CHECK_FS
3785                         kfree(sit_i->sentries[start].cur_valid_map_mir);
3786 #endif
3787                         kfree(sit_i->sentries[start].ckpt_valid_map);
3788                         kfree(sit_i->sentries[start].discard_map);
3789                 }
3790         }
3791         kfree(sit_i->tmp_map);
3792
3793         kvfree(sit_i->sentries);
3794         kvfree(sit_i->sec_entries);
3795         kvfree(sit_i->dirty_sentries_bitmap);
3796
3797         SM_I(sbi)->sit_info = NULL;
3798         kfree(sit_i->sit_bitmap);
3799 #ifdef CONFIG_F2FS_CHECK_FS
3800         kfree(sit_i->sit_bitmap_mir);
3801 #endif
3802         kfree(sit_i);
3803 }
3804
3805 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3806 {
3807         struct f2fs_sm_info *sm_info = SM_I(sbi);
3808
3809         if (!sm_info)
3810                 return;
3811         destroy_flush_cmd_control(sbi, true);
3812         destroy_discard_cmd_control(sbi);
3813         destroy_dirty_segmap(sbi);
3814         destroy_curseg(sbi);
3815         destroy_free_segmap(sbi);
3816         destroy_sit_info(sbi);
3817         sbi->sm_info = NULL;
3818         kfree(sm_info);
3819 }
3820
3821 int __init create_segment_manager_caches(void)
3822 {
3823         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3824                         sizeof(struct discard_entry));
3825         if (!discard_entry_slab)
3826                 goto fail;
3827
3828         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3829                         sizeof(struct discard_cmd));
3830         if (!discard_cmd_slab)
3831                 goto destroy_discard_entry;
3832
3833         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3834                         sizeof(struct sit_entry_set));
3835         if (!sit_entry_set_slab)
3836                 goto destroy_discard_cmd;
3837
3838         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3839                         sizeof(struct inmem_pages));
3840         if (!inmem_entry_slab)
3841                 goto destroy_sit_entry_set;
3842         return 0;
3843
3844 destroy_sit_entry_set:
3845         kmem_cache_destroy(sit_entry_set_slab);
3846 destroy_discard_cmd:
3847         kmem_cache_destroy(discard_cmd_slab);
3848 destroy_discard_entry:
3849         kmem_cache_destroy(discard_entry_slab);
3850 fail:
3851         return -ENOMEM;
3852 }
3853
3854 void destroy_segment_manager_caches(void)
3855 {
3856         kmem_cache_destroy(sit_entry_set_slab);
3857         kmem_cache_destroy(discard_cmd_slab);
3858         kmem_cache_destroy(discard_entry_slab);
3859         kmem_cache_destroy(inmem_entry_slab);
3860 }