f2fs: avoid BG_GC in f2fs_balance_fs
[linux-2.6-block.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/timer.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "trace.h"
25 #include <trace/events/f2fs.h>
26
27 #define __reverse_ffz(x) __reverse_ffs(~(x))
28
29 static struct kmem_cache *discard_entry_slab;
30 static struct kmem_cache *bio_entry_slab;
31 static struct kmem_cache *sit_entry_set_slab;
32 static struct kmem_cache *inmem_entry_slab;
33
34 static unsigned long __reverse_ulong(unsigned char *str)
35 {
36         unsigned long tmp = 0;
37         int shift = 24, idx = 0;
38
39 #if BITS_PER_LONG == 64
40         shift = 56;
41 #endif
42         while (shift >= 0) {
43                 tmp |= (unsigned long)str[idx++] << shift;
44                 shift -= BITS_PER_BYTE;
45         }
46         return tmp;
47 }
48
49 /*
50  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
51  * MSB and LSB are reversed in a byte by f2fs_set_bit.
52  */
53 static inline unsigned long __reverse_ffs(unsigned long word)
54 {
55         int num = 0;
56
57 #if BITS_PER_LONG == 64
58         if ((word & 0xffffffff00000000UL) == 0)
59                 num += 32;
60         else
61                 word >>= 32;
62 #endif
63         if ((word & 0xffff0000) == 0)
64                 num += 16;
65         else
66                 word >>= 16;
67
68         if ((word & 0xff00) == 0)
69                 num += 8;
70         else
71                 word >>= 8;
72
73         if ((word & 0xf0) == 0)
74                 num += 4;
75         else
76                 word >>= 4;
77
78         if ((word & 0xc) == 0)
79                 num += 2;
80         else
81                 word >>= 2;
82
83         if ((word & 0x2) == 0)
84                 num += 1;
85         return num;
86 }
87
88 /*
89  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
90  * f2fs_set_bit makes MSB and LSB reversed in a byte.
91  * @size must be integral times of unsigned long.
92  * Example:
93  *                             MSB <--> LSB
94  *   f2fs_set_bit(0, bitmap) => 1000 0000
95  *   f2fs_set_bit(7, bitmap) => 0000 0001
96  */
97 static unsigned long __find_rev_next_bit(const unsigned long *addr,
98                         unsigned long size, unsigned long offset)
99 {
100         const unsigned long *p = addr + BIT_WORD(offset);
101         unsigned long result = size;
102         unsigned long tmp;
103
104         if (offset >= size)
105                 return size;
106
107         size -= (offset & ~(BITS_PER_LONG - 1));
108         offset %= BITS_PER_LONG;
109
110         while (1) {
111                 if (*p == 0)
112                         goto pass;
113
114                 tmp = __reverse_ulong((unsigned char *)p);
115
116                 tmp &= ~0UL >> offset;
117                 if (size < BITS_PER_LONG)
118                         tmp &= (~0UL << (BITS_PER_LONG - size));
119                 if (tmp)
120                         goto found;
121 pass:
122                 if (size <= BITS_PER_LONG)
123                         break;
124                 size -= BITS_PER_LONG;
125                 offset = 0;
126                 p++;
127         }
128         return result;
129 found:
130         return result - size + __reverse_ffs(tmp);
131 }
132
133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
134                         unsigned long size, unsigned long offset)
135 {
136         const unsigned long *p = addr + BIT_WORD(offset);
137         unsigned long result = size;
138         unsigned long tmp;
139
140         if (offset >= size)
141                 return size;
142
143         size -= (offset & ~(BITS_PER_LONG - 1));
144         offset %= BITS_PER_LONG;
145
146         while (1) {
147                 if (*p == ~0UL)
148                         goto pass;
149
150                 tmp = __reverse_ulong((unsigned char *)p);
151
152                 if (offset)
153                         tmp |= ~0UL << (BITS_PER_LONG - offset);
154                 if (size < BITS_PER_LONG)
155                         tmp |= ~0UL >> size;
156                 if (tmp != ~0UL)
157                         goto found;
158 pass:
159                 if (size <= BITS_PER_LONG)
160                         break;
161                 size -= BITS_PER_LONG;
162                 offset = 0;
163                 p++;
164         }
165         return result;
166 found:
167         return result - size + __reverse_ffz(tmp);
168 }
169
170 void register_inmem_page(struct inode *inode, struct page *page)
171 {
172         struct f2fs_inode_info *fi = F2FS_I(inode);
173         struct inmem_pages *new;
174
175         f2fs_trace_pid(page);
176
177         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
178         SetPagePrivate(page);
179
180         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
181
182         /* add atomic page indices to the list */
183         new->page = page;
184         INIT_LIST_HEAD(&new->list);
185
186         /* increase reference count with clean state */
187         mutex_lock(&fi->inmem_lock);
188         get_page(page);
189         list_add_tail(&new->list, &fi->inmem_pages);
190         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
191         mutex_unlock(&fi->inmem_lock);
192
193         trace_f2fs_register_inmem_page(page, INMEM);
194 }
195
196 static int __revoke_inmem_pages(struct inode *inode,
197                                 struct list_head *head, bool drop, bool recover)
198 {
199         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
200         struct inmem_pages *cur, *tmp;
201         int err = 0;
202
203         list_for_each_entry_safe(cur, tmp, head, list) {
204                 struct page *page = cur->page;
205
206                 if (drop)
207                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
208
209                 lock_page(page);
210
211                 if (recover) {
212                         struct dnode_of_data dn;
213                         struct node_info ni;
214
215                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
216
217                         set_new_dnode(&dn, inode, NULL, NULL, 0);
218                         if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
219                                 err = -EAGAIN;
220                                 goto next;
221                         }
222                         get_node_info(sbi, dn.nid, &ni);
223                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
224                                         cur->old_addr, ni.version, true, true);
225                         f2fs_put_dnode(&dn);
226                 }
227 next:
228                 /* we don't need to invalidate this in the sccessful status */
229                 if (drop || recover)
230                         ClearPageUptodate(page);
231                 set_page_private(page, 0);
232                 ClearPagePrivate(page);
233                 f2fs_put_page(page, 1);
234
235                 list_del(&cur->list);
236                 kmem_cache_free(inmem_entry_slab, cur);
237                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
238         }
239         return err;
240 }
241
242 void drop_inmem_pages(struct inode *inode)
243 {
244         struct f2fs_inode_info *fi = F2FS_I(inode);
245
246         clear_inode_flag(inode, FI_ATOMIC_FILE);
247
248         mutex_lock(&fi->inmem_lock);
249         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
250         mutex_unlock(&fi->inmem_lock);
251 }
252
253 static int __commit_inmem_pages(struct inode *inode,
254                                         struct list_head *revoke_list)
255 {
256         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257         struct f2fs_inode_info *fi = F2FS_I(inode);
258         struct inmem_pages *cur, *tmp;
259         struct f2fs_io_info fio = {
260                 .sbi = sbi,
261                 .type = DATA,
262                 .op = REQ_OP_WRITE,
263                 .op_flags = WRITE_SYNC | REQ_PRIO,
264                 .encrypted_page = NULL,
265         };
266         bool submit_bio = false;
267         int err = 0;
268
269         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
270                 struct page *page = cur->page;
271
272                 lock_page(page);
273                 if (page->mapping == inode->i_mapping) {
274                         trace_f2fs_commit_inmem_page(page, INMEM);
275
276                         set_page_dirty(page);
277                         f2fs_wait_on_page_writeback(page, DATA, true);
278                         if (clear_page_dirty_for_io(page)) {
279                                 inode_dec_dirty_pages(inode);
280                                 remove_dirty_inode(inode);
281                         }
282
283                         fio.page = page;
284                         err = do_write_data_page(&fio);
285                         if (err) {
286                                 unlock_page(page);
287                                 break;
288                         }
289
290                         /* record old blkaddr for revoking */
291                         cur->old_addr = fio.old_blkaddr;
292
293                         clear_cold_data(page);
294                         submit_bio = true;
295                 }
296                 unlock_page(page);
297                 list_move_tail(&cur->list, revoke_list);
298         }
299
300         if (submit_bio)
301                 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
302
303         if (!err)
304                 __revoke_inmem_pages(inode, revoke_list, false, false);
305
306         return err;
307 }
308
309 int commit_inmem_pages(struct inode *inode)
310 {
311         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
312         struct f2fs_inode_info *fi = F2FS_I(inode);
313         struct list_head revoke_list;
314         int err;
315
316         INIT_LIST_HEAD(&revoke_list);
317         f2fs_balance_fs(sbi, true);
318         f2fs_lock_op(sbi);
319
320         mutex_lock(&fi->inmem_lock);
321         err = __commit_inmem_pages(inode, &revoke_list);
322         if (err) {
323                 int ret;
324                 /*
325                  * try to revoke all committed pages, but still we could fail
326                  * due to no memory or other reason, if that happened, EAGAIN
327                  * will be returned, which means in such case, transaction is
328                  * already not integrity, caller should use journal to do the
329                  * recovery or rewrite & commit last transaction. For other
330                  * error number, revoking was done by filesystem itself.
331                  */
332                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
333                 if (ret)
334                         err = ret;
335
336                 /* drop all uncommitted pages */
337                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
338         }
339         mutex_unlock(&fi->inmem_lock);
340
341         f2fs_unlock_op(sbi);
342         return err;
343 }
344
345 /*
346  * This function balances dirty node and dentry pages.
347  * In addition, it controls garbage collection.
348  */
349 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
350 {
351 #ifdef CONFIG_F2FS_FAULT_INJECTION
352         if (time_to_inject(sbi, FAULT_CHECKPOINT))
353                 f2fs_stop_checkpoint(sbi, false);
354 #endif
355
356         if (!need)
357                 return;
358
359         /* balance_fs_bg is able to be pending */
360         if (excess_cached_nats(sbi))
361                 f2fs_balance_fs_bg(sbi);
362
363         /*
364          * We should do GC or end up with checkpoint, if there are so many dirty
365          * dir/node pages without enough free segments.
366          */
367         if (has_not_enough_free_secs(sbi, 0, 0)) {
368                 mutex_lock(&sbi->gc_mutex);
369                 f2fs_gc(sbi, false, false);
370         }
371 }
372
373 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
374 {
375         /* try to shrink extent cache when there is no enough memory */
376         if (!available_free_memory(sbi, EXTENT_CACHE))
377                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
378
379         /* check the # of cached NAT entries */
380         if (!available_free_memory(sbi, NAT_ENTRIES))
381                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
382
383         if (!available_free_memory(sbi, FREE_NIDS))
384                 try_to_free_nids(sbi, MAX_FREE_NIDS);
385         else
386                 build_free_nids(sbi, false);
387
388         /* checkpoint is the only way to shrink partial cached entries */
389         if (!available_free_memory(sbi, NAT_ENTRIES) ||
390                         !available_free_memory(sbi, INO_ENTRIES) ||
391                         excess_prefree_segs(sbi) ||
392                         excess_dirty_nats(sbi) ||
393                         (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
394                 if (test_opt(sbi, DATA_FLUSH)) {
395                         struct blk_plug plug;
396
397                         blk_start_plug(&plug);
398                         sync_dirty_inodes(sbi, FILE_INODE);
399                         blk_finish_plug(&plug);
400                 }
401                 f2fs_sync_fs(sbi->sb, true);
402                 stat_inc_bg_cp_count(sbi->stat_info);
403         }
404 }
405
406 static int __submit_flush_wait(struct block_device *bdev)
407 {
408         struct bio *bio = f2fs_bio_alloc(0);
409         int ret;
410
411         bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
412         bio->bi_bdev = bdev;
413         ret = submit_bio_wait(bio);
414         bio_put(bio);
415         return ret;
416 }
417
418 static int submit_flush_wait(struct f2fs_sb_info *sbi)
419 {
420         int ret = __submit_flush_wait(sbi->sb->s_bdev);
421         int i;
422
423         if (sbi->s_ndevs && !ret) {
424                 for (i = 1; i < sbi->s_ndevs; i++) {
425                         ret = __submit_flush_wait(FDEV(i).bdev);
426                         if (ret)
427                                 break;
428                 }
429         }
430         return ret;
431 }
432
433 static int issue_flush_thread(void *data)
434 {
435         struct f2fs_sb_info *sbi = data;
436         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
437         wait_queue_head_t *q = &fcc->flush_wait_queue;
438 repeat:
439         if (kthread_should_stop())
440                 return 0;
441
442         if (!llist_empty(&fcc->issue_list)) {
443                 struct flush_cmd *cmd, *next;
444                 int ret;
445
446                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
447                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
448
449                 ret = submit_flush_wait(sbi);
450                 llist_for_each_entry_safe(cmd, next,
451                                           fcc->dispatch_list, llnode) {
452                         cmd->ret = ret;
453                         complete(&cmd->wait);
454                 }
455                 fcc->dispatch_list = NULL;
456         }
457
458         wait_event_interruptible(*q,
459                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
460         goto repeat;
461 }
462
463 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
464 {
465         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
466         struct flush_cmd cmd;
467
468         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
469                                         test_opt(sbi, FLUSH_MERGE));
470
471         if (test_opt(sbi, NOBARRIER))
472                 return 0;
473
474         if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
475                 int ret;
476
477                 atomic_inc(&fcc->submit_flush);
478                 ret = submit_flush_wait(sbi);
479                 atomic_dec(&fcc->submit_flush);
480                 return ret;
481         }
482
483         init_completion(&cmd.wait);
484
485         atomic_inc(&fcc->submit_flush);
486         llist_add(&cmd.llnode, &fcc->issue_list);
487
488         if (!fcc->dispatch_list)
489                 wake_up(&fcc->flush_wait_queue);
490
491         wait_for_completion(&cmd.wait);
492         atomic_dec(&fcc->submit_flush);
493
494         return cmd.ret;
495 }
496
497 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
498 {
499         dev_t dev = sbi->sb->s_bdev->bd_dev;
500         struct flush_cmd_control *fcc;
501         int err = 0;
502
503         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
504         if (!fcc)
505                 return -ENOMEM;
506         atomic_set(&fcc->submit_flush, 0);
507         init_waitqueue_head(&fcc->flush_wait_queue);
508         init_llist_head(&fcc->issue_list);
509         SM_I(sbi)->cmd_control_info = fcc;
510         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
511                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
512         if (IS_ERR(fcc->f2fs_issue_flush)) {
513                 err = PTR_ERR(fcc->f2fs_issue_flush);
514                 kfree(fcc);
515                 SM_I(sbi)->cmd_control_info = NULL;
516                 return err;
517         }
518
519         return err;
520 }
521
522 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
523 {
524         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
525
526         if (fcc && fcc->f2fs_issue_flush)
527                 kthread_stop(fcc->f2fs_issue_flush);
528         kfree(fcc);
529         SM_I(sbi)->cmd_control_info = NULL;
530 }
531
532 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
533                 enum dirty_type dirty_type)
534 {
535         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
536
537         /* need not be added */
538         if (IS_CURSEG(sbi, segno))
539                 return;
540
541         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
542                 dirty_i->nr_dirty[dirty_type]++;
543
544         if (dirty_type == DIRTY) {
545                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
546                 enum dirty_type t = sentry->type;
547
548                 if (unlikely(t >= DIRTY)) {
549                         f2fs_bug_on(sbi, 1);
550                         return;
551                 }
552                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
553                         dirty_i->nr_dirty[t]++;
554         }
555 }
556
557 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
558                 enum dirty_type dirty_type)
559 {
560         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
561
562         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
563                 dirty_i->nr_dirty[dirty_type]--;
564
565         if (dirty_type == DIRTY) {
566                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
567                 enum dirty_type t = sentry->type;
568
569                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
570                         dirty_i->nr_dirty[t]--;
571
572                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
573                         clear_bit(GET_SECNO(sbi, segno),
574                                                 dirty_i->victim_secmap);
575         }
576 }
577
578 /*
579  * Should not occur error such as -ENOMEM.
580  * Adding dirty entry into seglist is not critical operation.
581  * If a given segment is one of current working segments, it won't be added.
582  */
583 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
584 {
585         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
586         unsigned short valid_blocks;
587
588         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
589                 return;
590
591         mutex_lock(&dirty_i->seglist_lock);
592
593         valid_blocks = get_valid_blocks(sbi, segno, 0);
594
595         if (valid_blocks == 0) {
596                 __locate_dirty_segment(sbi, segno, PRE);
597                 __remove_dirty_segment(sbi, segno, DIRTY);
598         } else if (valid_blocks < sbi->blocks_per_seg) {
599                 __locate_dirty_segment(sbi, segno, DIRTY);
600         } else {
601                 /* Recovery routine with SSR needs this */
602                 __remove_dirty_segment(sbi, segno, DIRTY);
603         }
604
605         mutex_unlock(&dirty_i->seglist_lock);
606 }
607
608 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
609                                                         struct bio *bio)
610 {
611         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
612         struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
613
614         INIT_LIST_HEAD(&be->list);
615         be->bio = bio;
616         init_completion(&be->event);
617         list_add_tail(&be->list, wait_list);
618
619         return be;
620 }
621
622 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
623 {
624         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
625         struct bio_entry *be, *tmp;
626
627         list_for_each_entry_safe(be, tmp, wait_list, list) {
628                 struct bio *bio = be->bio;
629                 int err;
630
631                 wait_for_completion_io(&be->event);
632                 err = be->error;
633                 if (err == -EOPNOTSUPP)
634                         err = 0;
635
636                 if (err)
637                         f2fs_msg(sbi->sb, KERN_INFO,
638                                 "Issue discard failed, ret: %d", err);
639
640                 bio_put(bio);
641                 list_del(&be->list);
642                 kmem_cache_free(bio_entry_slab, be);
643         }
644 }
645
646 static void f2fs_submit_bio_wait_endio(struct bio *bio)
647 {
648         struct bio_entry *be = (struct bio_entry *)bio->bi_private;
649
650         be->error = bio->bi_error;
651         complete(&be->event);
652 }
653
654 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
655 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
656                 struct block_device *bdev, block_t blkstart, block_t blklen)
657 {
658         struct bio *bio = NULL;
659         int err;
660
661         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
662
663         if (sbi->s_ndevs) {
664                 int devi = f2fs_target_device_index(sbi, blkstart);
665
666                 blkstart -= FDEV(devi).start_blk;
667         }
668         err = __blkdev_issue_discard(bdev,
669                                 SECTOR_FROM_BLOCK(blkstart),
670                                 SECTOR_FROM_BLOCK(blklen),
671                                 GFP_NOFS, 0, &bio);
672         if (!err && bio) {
673                 struct bio_entry *be = __add_bio_entry(sbi, bio);
674
675                 bio->bi_private = be;
676                 bio->bi_end_io = f2fs_submit_bio_wait_endio;
677                 bio->bi_opf |= REQ_SYNC;
678                 submit_bio(bio);
679         }
680
681         return err;
682 }
683
684 #ifdef CONFIG_BLK_DEV_ZONED
685 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
686                 struct block_device *bdev, block_t blkstart, block_t blklen)
687 {
688         sector_t nr_sects = SECTOR_FROM_BLOCK(blklen);
689         sector_t sector;
690         int devi = 0;
691
692         if (sbi->s_ndevs) {
693                 devi = f2fs_target_device_index(sbi, blkstart);
694                 blkstart -= FDEV(devi).start_blk;
695         }
696         sector = SECTOR_FROM_BLOCK(blkstart);
697
698         if (sector % bdev_zone_size(bdev) || nr_sects != bdev_zone_size(bdev)) {
699                 f2fs_msg(sbi->sb, KERN_INFO,
700                         "(%d) %s: Unaligned discard attempted (block %x + %x)",
701                         devi, sbi->s_ndevs ? FDEV(devi).path: "",
702                         blkstart, blklen);
703                 return -EIO;
704         }
705
706         /*
707          * We need to know the type of the zone: for conventional zones,
708          * use regular discard if the drive supports it. For sequential
709          * zones, reset the zone write pointer.
710          */
711         switch (get_blkz_type(sbi, bdev, blkstart)) {
712
713         case BLK_ZONE_TYPE_CONVENTIONAL:
714                 if (!blk_queue_discard(bdev_get_queue(bdev)))
715                         return 0;
716                 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
717         case BLK_ZONE_TYPE_SEQWRITE_REQ:
718         case BLK_ZONE_TYPE_SEQWRITE_PREF:
719                 trace_f2fs_issue_reset_zone(sbi->sb, blkstart);
720                 return blkdev_reset_zones(bdev, sector,
721                                           nr_sects, GFP_NOFS);
722         default:
723                 /* Unknown zone type: broken device ? */
724                 return -EIO;
725         }
726 }
727 #endif
728
729 static int __issue_discard_async(struct f2fs_sb_info *sbi,
730                 struct block_device *bdev, block_t blkstart, block_t blklen)
731 {
732 #ifdef CONFIG_BLK_DEV_ZONED
733         if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
734                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
735                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
736 #endif
737         return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
738 }
739
740 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
741                                 block_t blkstart, block_t blklen)
742 {
743         sector_t start = blkstart, len = 0;
744         struct block_device *bdev;
745         struct seg_entry *se;
746         unsigned int offset;
747         block_t i;
748         int err = 0;
749
750         bdev = f2fs_target_device(sbi, blkstart, NULL);
751
752         for (i = blkstart; i < blkstart + blklen; i++, len++) {
753                 if (i != start) {
754                         struct block_device *bdev2 =
755                                 f2fs_target_device(sbi, i, NULL);
756
757                         if (bdev2 != bdev) {
758                                 err = __issue_discard_async(sbi, bdev,
759                                                 start, len);
760                                 if (err)
761                                         return err;
762                                 bdev = bdev2;
763                                 start = i;
764                                 len = 0;
765                         }
766                 }
767
768                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
769                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
770
771                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
772                         sbi->discard_blks--;
773         }
774
775         if (len)
776                 err = __issue_discard_async(sbi, bdev, start, len);
777         return err;
778 }
779
780 static void __add_discard_entry(struct f2fs_sb_info *sbi,
781                 struct cp_control *cpc, struct seg_entry *se,
782                 unsigned int start, unsigned int end)
783 {
784         struct list_head *head = &SM_I(sbi)->discard_list;
785         struct discard_entry *new, *last;
786
787         if (!list_empty(head)) {
788                 last = list_last_entry(head, struct discard_entry, list);
789                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
790                                                 last->blkaddr + last->len) {
791                         last->len += end - start;
792                         goto done;
793                 }
794         }
795
796         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
797         INIT_LIST_HEAD(&new->list);
798         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
799         new->len = end - start;
800         list_add_tail(&new->list, head);
801 done:
802         SM_I(sbi)->nr_discards += end - start;
803 }
804
805 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
806 {
807         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
808         int max_blocks = sbi->blocks_per_seg;
809         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
810         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
811         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
812         unsigned long *discard_map = (unsigned long *)se->discard_map;
813         unsigned long *dmap = SIT_I(sbi)->tmp_map;
814         unsigned int start = 0, end = -1;
815         bool force = (cpc->reason == CP_DISCARD);
816         int i;
817
818         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
819                 return;
820
821         if (!force) {
822                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
823                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
824                         return;
825         }
826
827         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
828         for (i = 0; i < entries; i++)
829                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
830                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
831
832         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
833                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
834                 if (start >= max_blocks)
835                         break;
836
837                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
838                 if (force && start && end != max_blocks
839                                         && (end - start) < cpc->trim_minlen)
840                         continue;
841
842                 __add_discard_entry(sbi, cpc, se, start, end);
843         }
844 }
845
846 void release_discard_addrs(struct f2fs_sb_info *sbi)
847 {
848         struct list_head *head = &(SM_I(sbi)->discard_list);
849         struct discard_entry *entry, *this;
850
851         /* drop caches */
852         list_for_each_entry_safe(entry, this, head, list) {
853                 list_del(&entry->list);
854                 kmem_cache_free(discard_entry_slab, entry);
855         }
856 }
857
858 /*
859  * Should call clear_prefree_segments after checkpoint is done.
860  */
861 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
862 {
863         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
864         unsigned int segno;
865
866         mutex_lock(&dirty_i->seglist_lock);
867         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
868                 __set_test_and_free(sbi, segno);
869         mutex_unlock(&dirty_i->seglist_lock);
870 }
871
872 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
873 {
874         struct list_head *head = &(SM_I(sbi)->discard_list);
875         struct discard_entry *entry, *this;
876         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877         struct blk_plug plug;
878         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
879         unsigned int start = 0, end = -1;
880         unsigned int secno, start_segno;
881         bool force = (cpc->reason == CP_DISCARD);
882
883         blk_start_plug(&plug);
884
885         mutex_lock(&dirty_i->seglist_lock);
886
887         while (1) {
888                 int i;
889                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
890                 if (start >= MAIN_SEGS(sbi))
891                         break;
892                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
893                                                                 start + 1);
894
895                 for (i = start; i < end; i++)
896                         clear_bit(i, prefree_map);
897
898                 dirty_i->nr_dirty[PRE] -= end - start;
899
900                 if (force || !test_opt(sbi, DISCARD))
901                         continue;
902
903                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
904                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
905                                 (end - start) << sbi->log_blocks_per_seg);
906                         continue;
907                 }
908 next:
909                 secno = GET_SECNO(sbi, start);
910                 start_segno = secno * sbi->segs_per_sec;
911                 if (!IS_CURSEC(sbi, secno) &&
912                         !get_valid_blocks(sbi, start, sbi->segs_per_sec))
913                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
914                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
915
916                 start = start_segno + sbi->segs_per_sec;
917                 if (start < end)
918                         goto next;
919         }
920         mutex_unlock(&dirty_i->seglist_lock);
921
922         /* send small discards */
923         list_for_each_entry_safe(entry, this, head, list) {
924                 if (force && entry->len < cpc->trim_minlen)
925                         goto skip;
926                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
927                 cpc->trimmed += entry->len;
928 skip:
929                 list_del(&entry->list);
930                 SM_I(sbi)->nr_discards -= entry->len;
931                 kmem_cache_free(discard_entry_slab, entry);
932         }
933
934         blk_finish_plug(&plug);
935 }
936
937 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
938 {
939         struct sit_info *sit_i = SIT_I(sbi);
940
941         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
942                 sit_i->dirty_sentries++;
943                 return false;
944         }
945
946         return true;
947 }
948
949 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
950                                         unsigned int segno, int modified)
951 {
952         struct seg_entry *se = get_seg_entry(sbi, segno);
953         se->type = type;
954         if (modified)
955                 __mark_sit_entry_dirty(sbi, segno);
956 }
957
958 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
959 {
960         struct seg_entry *se;
961         unsigned int segno, offset;
962         long int new_vblocks;
963
964         segno = GET_SEGNO(sbi, blkaddr);
965
966         se = get_seg_entry(sbi, segno);
967         new_vblocks = se->valid_blocks + del;
968         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
969
970         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
971                                 (new_vblocks > sbi->blocks_per_seg)));
972
973         se->valid_blocks = new_vblocks;
974         se->mtime = get_mtime(sbi);
975         SIT_I(sbi)->max_mtime = se->mtime;
976
977         /* Update valid block bitmap */
978         if (del > 0) {
979                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
980                         f2fs_bug_on(sbi, 1);
981                 if (f2fs_discard_en(sbi) &&
982                         !f2fs_test_and_set_bit(offset, se->discard_map))
983                         sbi->discard_blks--;
984         } else {
985                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
986                         f2fs_bug_on(sbi, 1);
987                 if (f2fs_discard_en(sbi) &&
988                         f2fs_test_and_clear_bit(offset, se->discard_map))
989                         sbi->discard_blks++;
990         }
991         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
992                 se->ckpt_valid_blocks += del;
993
994         __mark_sit_entry_dirty(sbi, segno);
995
996         /* update total number of valid blocks to be written in ckpt area */
997         SIT_I(sbi)->written_valid_blocks += del;
998
999         if (sbi->segs_per_sec > 1)
1000                 get_sec_entry(sbi, segno)->valid_blocks += del;
1001 }
1002
1003 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1004 {
1005         update_sit_entry(sbi, new, 1);
1006         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1007                 update_sit_entry(sbi, old, -1);
1008
1009         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1010         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1011 }
1012
1013 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1014 {
1015         unsigned int segno = GET_SEGNO(sbi, addr);
1016         struct sit_info *sit_i = SIT_I(sbi);
1017
1018         f2fs_bug_on(sbi, addr == NULL_ADDR);
1019         if (addr == NEW_ADDR)
1020                 return;
1021
1022         /* add it into sit main buffer */
1023         mutex_lock(&sit_i->sentry_lock);
1024
1025         update_sit_entry(sbi, addr, -1);
1026
1027         /* add it into dirty seglist */
1028         locate_dirty_segment(sbi, segno);
1029
1030         mutex_unlock(&sit_i->sentry_lock);
1031 }
1032
1033 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1034 {
1035         struct sit_info *sit_i = SIT_I(sbi);
1036         unsigned int segno, offset;
1037         struct seg_entry *se;
1038         bool is_cp = false;
1039
1040         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1041                 return true;
1042
1043         mutex_lock(&sit_i->sentry_lock);
1044
1045         segno = GET_SEGNO(sbi, blkaddr);
1046         se = get_seg_entry(sbi, segno);
1047         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1048
1049         if (f2fs_test_bit(offset, se->ckpt_valid_map))
1050                 is_cp = true;
1051
1052         mutex_unlock(&sit_i->sentry_lock);
1053
1054         return is_cp;
1055 }
1056
1057 /*
1058  * This function should be resided under the curseg_mutex lock
1059  */
1060 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1061                                         struct f2fs_summary *sum)
1062 {
1063         struct curseg_info *curseg = CURSEG_I(sbi, type);
1064         void *addr = curseg->sum_blk;
1065         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1066         memcpy(addr, sum, sizeof(struct f2fs_summary));
1067 }
1068
1069 /*
1070  * Calculate the number of current summary pages for writing
1071  */
1072 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1073 {
1074         int valid_sum_count = 0;
1075         int i, sum_in_page;
1076
1077         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1078                 if (sbi->ckpt->alloc_type[i] == SSR)
1079                         valid_sum_count += sbi->blocks_per_seg;
1080                 else {
1081                         if (for_ra)
1082                                 valid_sum_count += le16_to_cpu(
1083                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1084                         else
1085                                 valid_sum_count += curseg_blkoff(sbi, i);
1086                 }
1087         }
1088
1089         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1090                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1091         if (valid_sum_count <= sum_in_page)
1092                 return 1;
1093         else if ((valid_sum_count - sum_in_page) <=
1094                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1095                 return 2;
1096         return 3;
1097 }
1098
1099 /*
1100  * Caller should put this summary page
1101  */
1102 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1103 {
1104         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1105 }
1106
1107 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1108 {
1109         struct page *page = grab_meta_page(sbi, blk_addr);
1110         void *dst = page_address(page);
1111
1112         if (src)
1113                 memcpy(dst, src, PAGE_SIZE);
1114         else
1115                 memset(dst, 0, PAGE_SIZE);
1116         set_page_dirty(page);
1117         f2fs_put_page(page, 1);
1118 }
1119
1120 static void write_sum_page(struct f2fs_sb_info *sbi,
1121                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
1122 {
1123         update_meta_page(sbi, (void *)sum_blk, blk_addr);
1124 }
1125
1126 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1127                                                 int type, block_t blk_addr)
1128 {
1129         struct curseg_info *curseg = CURSEG_I(sbi, type);
1130         struct page *page = grab_meta_page(sbi, blk_addr);
1131         struct f2fs_summary_block *src = curseg->sum_blk;
1132         struct f2fs_summary_block *dst;
1133
1134         dst = (struct f2fs_summary_block *)page_address(page);
1135
1136         mutex_lock(&curseg->curseg_mutex);
1137
1138         down_read(&curseg->journal_rwsem);
1139         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1140         up_read(&curseg->journal_rwsem);
1141
1142         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1143         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1144
1145         mutex_unlock(&curseg->curseg_mutex);
1146
1147         set_page_dirty(page);
1148         f2fs_put_page(page, 1);
1149 }
1150
1151 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1152 {
1153         struct curseg_info *curseg = CURSEG_I(sbi, type);
1154         unsigned int segno = curseg->segno + 1;
1155         struct free_segmap_info *free_i = FREE_I(sbi);
1156
1157         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1158                 return !test_bit(segno, free_i->free_segmap);
1159         return 0;
1160 }
1161
1162 /*
1163  * Find a new segment from the free segments bitmap to right order
1164  * This function should be returned with success, otherwise BUG
1165  */
1166 static void get_new_segment(struct f2fs_sb_info *sbi,
1167                         unsigned int *newseg, bool new_sec, int dir)
1168 {
1169         struct free_segmap_info *free_i = FREE_I(sbi);
1170         unsigned int segno, secno, zoneno;
1171         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1172         unsigned int hint = *newseg / sbi->segs_per_sec;
1173         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1174         unsigned int left_start = hint;
1175         bool init = true;
1176         int go_left = 0;
1177         int i;
1178
1179         spin_lock(&free_i->segmap_lock);
1180
1181         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1182                 segno = find_next_zero_bit(free_i->free_segmap,
1183                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1184                 if (segno < (hint + 1) * sbi->segs_per_sec)
1185                         goto got_it;
1186         }
1187 find_other_zone:
1188         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1189         if (secno >= MAIN_SECS(sbi)) {
1190                 if (dir == ALLOC_RIGHT) {
1191                         secno = find_next_zero_bit(free_i->free_secmap,
1192                                                         MAIN_SECS(sbi), 0);
1193                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1194                 } else {
1195                         go_left = 1;
1196                         left_start = hint - 1;
1197                 }
1198         }
1199         if (go_left == 0)
1200                 goto skip_left;
1201
1202         while (test_bit(left_start, free_i->free_secmap)) {
1203                 if (left_start > 0) {
1204                         left_start--;
1205                         continue;
1206                 }
1207                 left_start = find_next_zero_bit(free_i->free_secmap,
1208                                                         MAIN_SECS(sbi), 0);
1209                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1210                 break;
1211         }
1212         secno = left_start;
1213 skip_left:
1214         hint = secno;
1215         segno = secno * sbi->segs_per_sec;
1216         zoneno = secno / sbi->secs_per_zone;
1217
1218         /* give up on finding another zone */
1219         if (!init)
1220                 goto got_it;
1221         if (sbi->secs_per_zone == 1)
1222                 goto got_it;
1223         if (zoneno == old_zoneno)
1224                 goto got_it;
1225         if (dir == ALLOC_LEFT) {
1226                 if (!go_left && zoneno + 1 >= total_zones)
1227                         goto got_it;
1228                 if (go_left && zoneno == 0)
1229                         goto got_it;
1230         }
1231         for (i = 0; i < NR_CURSEG_TYPE; i++)
1232                 if (CURSEG_I(sbi, i)->zone == zoneno)
1233                         break;
1234
1235         if (i < NR_CURSEG_TYPE) {
1236                 /* zone is in user, try another */
1237                 if (go_left)
1238                         hint = zoneno * sbi->secs_per_zone - 1;
1239                 else if (zoneno + 1 >= total_zones)
1240                         hint = 0;
1241                 else
1242                         hint = (zoneno + 1) * sbi->secs_per_zone;
1243                 init = false;
1244                 goto find_other_zone;
1245         }
1246 got_it:
1247         /* set it as dirty segment in free segmap */
1248         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1249         __set_inuse(sbi, segno);
1250         *newseg = segno;
1251         spin_unlock(&free_i->segmap_lock);
1252 }
1253
1254 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1255 {
1256         struct curseg_info *curseg = CURSEG_I(sbi, type);
1257         struct summary_footer *sum_footer;
1258
1259         curseg->segno = curseg->next_segno;
1260         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1261         curseg->next_blkoff = 0;
1262         curseg->next_segno = NULL_SEGNO;
1263
1264         sum_footer = &(curseg->sum_blk->footer);
1265         memset(sum_footer, 0, sizeof(struct summary_footer));
1266         if (IS_DATASEG(type))
1267                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1268         if (IS_NODESEG(type))
1269                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1270         __set_sit_entry_type(sbi, type, curseg->segno, modified);
1271 }
1272
1273 /*
1274  * Allocate a current working segment.
1275  * This function always allocates a free segment in LFS manner.
1276  */
1277 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1278 {
1279         struct curseg_info *curseg = CURSEG_I(sbi, type);
1280         unsigned int segno = curseg->segno;
1281         int dir = ALLOC_LEFT;
1282
1283         write_sum_page(sbi, curseg->sum_blk,
1284                                 GET_SUM_BLOCK(sbi, segno));
1285         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1286                 dir = ALLOC_RIGHT;
1287
1288         if (test_opt(sbi, NOHEAP))
1289                 dir = ALLOC_RIGHT;
1290
1291         get_new_segment(sbi, &segno, new_sec, dir);
1292         curseg->next_segno = segno;
1293         reset_curseg(sbi, type, 1);
1294         curseg->alloc_type = LFS;
1295 }
1296
1297 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1298                         struct curseg_info *seg, block_t start)
1299 {
1300         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1301         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1302         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1303         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1304         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1305         int i, pos;
1306
1307         for (i = 0; i < entries; i++)
1308                 target_map[i] = ckpt_map[i] | cur_map[i];
1309
1310         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1311
1312         seg->next_blkoff = pos;
1313 }
1314
1315 /*
1316  * If a segment is written by LFS manner, next block offset is just obtained
1317  * by increasing the current block offset. However, if a segment is written by
1318  * SSR manner, next block offset obtained by calling __next_free_blkoff
1319  */
1320 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1321                                 struct curseg_info *seg)
1322 {
1323         if (seg->alloc_type == SSR)
1324                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1325         else
1326                 seg->next_blkoff++;
1327 }
1328
1329 /*
1330  * This function always allocates a used segment(from dirty seglist) by SSR
1331  * manner, so it should recover the existing segment information of valid blocks
1332  */
1333 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1334 {
1335         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1336         struct curseg_info *curseg = CURSEG_I(sbi, type);
1337         unsigned int new_segno = curseg->next_segno;
1338         struct f2fs_summary_block *sum_node;
1339         struct page *sum_page;
1340
1341         write_sum_page(sbi, curseg->sum_blk,
1342                                 GET_SUM_BLOCK(sbi, curseg->segno));
1343         __set_test_and_inuse(sbi, new_segno);
1344
1345         mutex_lock(&dirty_i->seglist_lock);
1346         __remove_dirty_segment(sbi, new_segno, PRE);
1347         __remove_dirty_segment(sbi, new_segno, DIRTY);
1348         mutex_unlock(&dirty_i->seglist_lock);
1349
1350         reset_curseg(sbi, type, 1);
1351         curseg->alloc_type = SSR;
1352         __next_free_blkoff(sbi, curseg, 0);
1353
1354         if (reuse) {
1355                 sum_page = get_sum_page(sbi, new_segno);
1356                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1357                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1358                 f2fs_put_page(sum_page, 1);
1359         }
1360 }
1361
1362 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1363 {
1364         struct curseg_info *curseg = CURSEG_I(sbi, type);
1365         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1366
1367         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1368                 return v_ops->get_victim(sbi,
1369                                 &(curseg)->next_segno, BG_GC, type, SSR);
1370
1371         /* For data segments, let's do SSR more intensively */
1372         for (; type >= CURSEG_HOT_DATA; type--)
1373                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1374                                                 BG_GC, type, SSR))
1375                         return 1;
1376         return 0;
1377 }
1378
1379 /*
1380  * flush out current segment and replace it with new segment
1381  * This function should be returned with success, otherwise BUG
1382  */
1383 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1384                                                 int type, bool force)
1385 {
1386         struct curseg_info *curseg = CURSEG_I(sbi, type);
1387
1388         if (force)
1389                 new_curseg(sbi, type, true);
1390         else if (type == CURSEG_WARM_NODE)
1391                 new_curseg(sbi, type, false);
1392         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1393                 new_curseg(sbi, type, false);
1394         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1395                 change_curseg(sbi, type, true);
1396         else
1397                 new_curseg(sbi, type, false);
1398
1399         stat_inc_seg_type(sbi, curseg);
1400 }
1401
1402 void allocate_new_segments(struct f2fs_sb_info *sbi)
1403 {
1404         struct curseg_info *curseg;
1405         unsigned int old_segno;
1406         int i;
1407
1408         if (test_opt(sbi, LFS))
1409                 return;
1410
1411         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1412                 curseg = CURSEG_I(sbi, i);
1413                 old_segno = curseg->segno;
1414                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1415                 locate_dirty_segment(sbi, old_segno);
1416         }
1417 }
1418
1419 static const struct segment_allocation default_salloc_ops = {
1420         .allocate_segment = allocate_segment_by_default,
1421 };
1422
1423 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1424 {
1425         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1426         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1427         unsigned int start_segno, end_segno;
1428         struct cp_control cpc;
1429         int err = 0;
1430
1431         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1432                 return -EINVAL;
1433
1434         cpc.trimmed = 0;
1435         if (end <= MAIN_BLKADDR(sbi))
1436                 goto out;
1437
1438         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1439                 f2fs_msg(sbi->sb, KERN_WARNING,
1440                         "Found FS corruption, run fsck to fix.");
1441                 goto out;
1442         }
1443
1444         /* start/end segment number in main_area */
1445         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1446         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1447                                                 GET_SEGNO(sbi, end);
1448         cpc.reason = CP_DISCARD;
1449         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1450
1451         /* do checkpoint to issue discard commands safely */
1452         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1453                 cpc.trim_start = start_segno;
1454
1455                 if (sbi->discard_blks == 0)
1456                         break;
1457                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1458                         cpc.trim_end = end_segno;
1459                 else
1460                         cpc.trim_end = min_t(unsigned int,
1461                                 rounddown(start_segno +
1462                                 BATCHED_TRIM_SEGMENTS(sbi),
1463                                 sbi->segs_per_sec) - 1, end_segno);
1464
1465                 mutex_lock(&sbi->gc_mutex);
1466                 err = write_checkpoint(sbi, &cpc);
1467                 mutex_unlock(&sbi->gc_mutex);
1468                 if (err)
1469                         break;
1470
1471                 schedule();
1472         }
1473 out:
1474         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1475         return err;
1476 }
1477
1478 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1479 {
1480         struct curseg_info *curseg = CURSEG_I(sbi, type);
1481         if (curseg->next_blkoff < sbi->blocks_per_seg)
1482                 return true;
1483         return false;
1484 }
1485
1486 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1487 {
1488         if (p_type == DATA)
1489                 return CURSEG_HOT_DATA;
1490         else
1491                 return CURSEG_HOT_NODE;
1492 }
1493
1494 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1495 {
1496         if (p_type == DATA) {
1497                 struct inode *inode = page->mapping->host;
1498
1499                 if (S_ISDIR(inode->i_mode))
1500                         return CURSEG_HOT_DATA;
1501                 else
1502                         return CURSEG_COLD_DATA;
1503         } else {
1504                 if (IS_DNODE(page) && is_cold_node(page))
1505                         return CURSEG_WARM_NODE;
1506                 else
1507                         return CURSEG_COLD_NODE;
1508         }
1509 }
1510
1511 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1512 {
1513         if (p_type == DATA) {
1514                 struct inode *inode = page->mapping->host;
1515
1516                 if (S_ISDIR(inode->i_mode))
1517                         return CURSEG_HOT_DATA;
1518                 else if (is_cold_data(page) || file_is_cold(inode))
1519                         return CURSEG_COLD_DATA;
1520                 else
1521                         return CURSEG_WARM_DATA;
1522         } else {
1523                 if (IS_DNODE(page))
1524                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1525                                                 CURSEG_HOT_NODE;
1526                 else
1527                         return CURSEG_COLD_NODE;
1528         }
1529 }
1530
1531 static int __get_segment_type(struct page *page, enum page_type p_type)
1532 {
1533         switch (F2FS_P_SB(page)->active_logs) {
1534         case 2:
1535                 return __get_segment_type_2(page, p_type);
1536         case 4:
1537                 return __get_segment_type_4(page, p_type);
1538         }
1539         /* NR_CURSEG_TYPE(6) logs by default */
1540         f2fs_bug_on(F2FS_P_SB(page),
1541                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1542         return __get_segment_type_6(page, p_type);
1543 }
1544
1545 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1546                 block_t old_blkaddr, block_t *new_blkaddr,
1547                 struct f2fs_summary *sum, int type)
1548 {
1549         struct sit_info *sit_i = SIT_I(sbi);
1550         struct curseg_info *curseg = CURSEG_I(sbi, type);
1551
1552         mutex_lock(&curseg->curseg_mutex);
1553         mutex_lock(&sit_i->sentry_lock);
1554
1555         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1556
1557         /*
1558          * __add_sum_entry should be resided under the curseg_mutex
1559          * because, this function updates a summary entry in the
1560          * current summary block.
1561          */
1562         __add_sum_entry(sbi, type, sum);
1563
1564         __refresh_next_blkoff(sbi, curseg);
1565
1566         stat_inc_block_count(sbi, curseg);
1567
1568         if (!__has_curseg_space(sbi, type))
1569                 sit_i->s_ops->allocate_segment(sbi, type, false);
1570         /*
1571          * SIT information should be updated before segment allocation,
1572          * since SSR needs latest valid block information.
1573          */
1574         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1575
1576         mutex_unlock(&sit_i->sentry_lock);
1577
1578         if (page && IS_NODESEG(type))
1579                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1580
1581         mutex_unlock(&curseg->curseg_mutex);
1582 }
1583
1584 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1585 {
1586         int type = __get_segment_type(fio->page, fio->type);
1587
1588         if (fio->type == NODE || fio->type == DATA)
1589                 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1590
1591         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1592                                         &fio->new_blkaddr, sum, type);
1593
1594         /* writeout dirty page into bdev */
1595         f2fs_submit_page_mbio(fio);
1596
1597         if (fio->type == NODE || fio->type == DATA)
1598                 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1599 }
1600
1601 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1602 {
1603         struct f2fs_io_info fio = {
1604                 .sbi = sbi,
1605                 .type = META,
1606                 .op = REQ_OP_WRITE,
1607                 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1608                 .old_blkaddr = page->index,
1609                 .new_blkaddr = page->index,
1610                 .page = page,
1611                 .encrypted_page = NULL,
1612         };
1613
1614         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1615                 fio.op_flags &= ~REQ_META;
1616
1617         set_page_writeback(page);
1618         f2fs_submit_page_mbio(&fio);
1619 }
1620
1621 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1622 {
1623         struct f2fs_summary sum;
1624
1625         set_summary(&sum, nid, 0, 0);
1626         do_write_page(&sum, fio);
1627 }
1628
1629 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1630 {
1631         struct f2fs_sb_info *sbi = fio->sbi;
1632         struct f2fs_summary sum;
1633         struct node_info ni;
1634
1635         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1636         get_node_info(sbi, dn->nid, &ni);
1637         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1638         do_write_page(&sum, fio);
1639         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1640 }
1641
1642 void rewrite_data_page(struct f2fs_io_info *fio)
1643 {
1644         fio->new_blkaddr = fio->old_blkaddr;
1645         stat_inc_inplace_blocks(fio->sbi);
1646         f2fs_submit_page_mbio(fio);
1647 }
1648
1649 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1650                                 block_t old_blkaddr, block_t new_blkaddr,
1651                                 bool recover_curseg, bool recover_newaddr)
1652 {
1653         struct sit_info *sit_i = SIT_I(sbi);
1654         struct curseg_info *curseg;
1655         unsigned int segno, old_cursegno;
1656         struct seg_entry *se;
1657         int type;
1658         unsigned short old_blkoff;
1659
1660         segno = GET_SEGNO(sbi, new_blkaddr);
1661         se = get_seg_entry(sbi, segno);
1662         type = se->type;
1663
1664         if (!recover_curseg) {
1665                 /* for recovery flow */
1666                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1667                         if (old_blkaddr == NULL_ADDR)
1668                                 type = CURSEG_COLD_DATA;
1669                         else
1670                                 type = CURSEG_WARM_DATA;
1671                 }
1672         } else {
1673                 if (!IS_CURSEG(sbi, segno))
1674                         type = CURSEG_WARM_DATA;
1675         }
1676
1677         curseg = CURSEG_I(sbi, type);
1678
1679         mutex_lock(&curseg->curseg_mutex);
1680         mutex_lock(&sit_i->sentry_lock);
1681
1682         old_cursegno = curseg->segno;
1683         old_blkoff = curseg->next_blkoff;
1684
1685         /* change the current segment */
1686         if (segno != curseg->segno) {
1687                 curseg->next_segno = segno;
1688                 change_curseg(sbi, type, true);
1689         }
1690
1691         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1692         __add_sum_entry(sbi, type, sum);
1693
1694         if (!recover_curseg || recover_newaddr)
1695                 update_sit_entry(sbi, new_blkaddr, 1);
1696         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1697                 update_sit_entry(sbi, old_blkaddr, -1);
1698
1699         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1700         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1701
1702         locate_dirty_segment(sbi, old_cursegno);
1703
1704         if (recover_curseg) {
1705                 if (old_cursegno != curseg->segno) {
1706                         curseg->next_segno = old_cursegno;
1707                         change_curseg(sbi, type, true);
1708                 }
1709                 curseg->next_blkoff = old_blkoff;
1710         }
1711
1712         mutex_unlock(&sit_i->sentry_lock);
1713         mutex_unlock(&curseg->curseg_mutex);
1714 }
1715
1716 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1717                                 block_t old_addr, block_t new_addr,
1718                                 unsigned char version, bool recover_curseg,
1719                                 bool recover_newaddr)
1720 {
1721         struct f2fs_summary sum;
1722
1723         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1724
1725         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1726                                         recover_curseg, recover_newaddr);
1727
1728         f2fs_update_data_blkaddr(dn, new_addr);
1729 }
1730
1731 void f2fs_wait_on_page_writeback(struct page *page,
1732                                 enum page_type type, bool ordered)
1733 {
1734         if (PageWriteback(page)) {
1735                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1736
1737                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1738                 if (ordered)
1739                         wait_on_page_writeback(page);
1740                 else
1741                         wait_for_stable_page(page);
1742         }
1743 }
1744
1745 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1746                                                         block_t blkaddr)
1747 {
1748         struct page *cpage;
1749
1750         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1751                 return;
1752
1753         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1754         if (cpage) {
1755                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1756                 f2fs_put_page(cpage, 1);
1757         }
1758 }
1759
1760 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1761 {
1762         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1763         struct curseg_info *seg_i;
1764         unsigned char *kaddr;
1765         struct page *page;
1766         block_t start;
1767         int i, j, offset;
1768
1769         start = start_sum_block(sbi);
1770
1771         page = get_meta_page(sbi, start++);
1772         kaddr = (unsigned char *)page_address(page);
1773
1774         /* Step 1: restore nat cache */
1775         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1776         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1777
1778         /* Step 2: restore sit cache */
1779         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1780         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1781         offset = 2 * SUM_JOURNAL_SIZE;
1782
1783         /* Step 3: restore summary entries */
1784         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1785                 unsigned short blk_off;
1786                 unsigned int segno;
1787
1788                 seg_i = CURSEG_I(sbi, i);
1789                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1790                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1791                 seg_i->next_segno = segno;
1792                 reset_curseg(sbi, i, 0);
1793                 seg_i->alloc_type = ckpt->alloc_type[i];
1794                 seg_i->next_blkoff = blk_off;
1795
1796                 if (seg_i->alloc_type == SSR)
1797                         blk_off = sbi->blocks_per_seg;
1798
1799                 for (j = 0; j < blk_off; j++) {
1800                         struct f2fs_summary *s;
1801                         s = (struct f2fs_summary *)(kaddr + offset);
1802                         seg_i->sum_blk->entries[j] = *s;
1803                         offset += SUMMARY_SIZE;
1804                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1805                                                 SUM_FOOTER_SIZE)
1806                                 continue;
1807
1808                         f2fs_put_page(page, 1);
1809                         page = NULL;
1810
1811                         page = get_meta_page(sbi, start++);
1812                         kaddr = (unsigned char *)page_address(page);
1813                         offset = 0;
1814                 }
1815         }
1816         f2fs_put_page(page, 1);
1817         return 0;
1818 }
1819
1820 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1821 {
1822         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1823         struct f2fs_summary_block *sum;
1824         struct curseg_info *curseg;
1825         struct page *new;
1826         unsigned short blk_off;
1827         unsigned int segno = 0;
1828         block_t blk_addr = 0;
1829
1830         /* get segment number and block addr */
1831         if (IS_DATASEG(type)) {
1832                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1833                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1834                                                         CURSEG_HOT_DATA]);
1835                 if (__exist_node_summaries(sbi))
1836                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1837                 else
1838                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1839         } else {
1840                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1841                                                         CURSEG_HOT_NODE]);
1842                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1843                                                         CURSEG_HOT_NODE]);
1844                 if (__exist_node_summaries(sbi))
1845                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1846                                                         type - CURSEG_HOT_NODE);
1847                 else
1848                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1849         }
1850
1851         new = get_meta_page(sbi, blk_addr);
1852         sum = (struct f2fs_summary_block *)page_address(new);
1853
1854         if (IS_NODESEG(type)) {
1855                 if (__exist_node_summaries(sbi)) {
1856                         struct f2fs_summary *ns = &sum->entries[0];
1857                         int i;
1858                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1859                                 ns->version = 0;
1860                                 ns->ofs_in_node = 0;
1861                         }
1862                 } else {
1863                         int err;
1864
1865                         err = restore_node_summary(sbi, segno, sum);
1866                         if (err) {
1867                                 f2fs_put_page(new, 1);
1868                                 return err;
1869                         }
1870                 }
1871         }
1872
1873         /* set uncompleted segment to curseg */
1874         curseg = CURSEG_I(sbi, type);
1875         mutex_lock(&curseg->curseg_mutex);
1876
1877         /* update journal info */
1878         down_write(&curseg->journal_rwsem);
1879         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1880         up_write(&curseg->journal_rwsem);
1881
1882         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1883         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1884         curseg->next_segno = segno;
1885         reset_curseg(sbi, type, 0);
1886         curseg->alloc_type = ckpt->alloc_type[type];
1887         curseg->next_blkoff = blk_off;
1888         mutex_unlock(&curseg->curseg_mutex);
1889         f2fs_put_page(new, 1);
1890         return 0;
1891 }
1892
1893 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1894 {
1895         int type = CURSEG_HOT_DATA;
1896         int err;
1897
1898         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1899                 int npages = npages_for_summary_flush(sbi, true);
1900
1901                 if (npages >= 2)
1902                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1903                                                         META_CP, true);
1904
1905                 /* restore for compacted data summary */
1906                 if (read_compacted_summaries(sbi))
1907                         return -EINVAL;
1908                 type = CURSEG_HOT_NODE;
1909         }
1910
1911         if (__exist_node_summaries(sbi))
1912                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1913                                         NR_CURSEG_TYPE - type, META_CP, true);
1914
1915         for (; type <= CURSEG_COLD_NODE; type++) {
1916                 err = read_normal_summaries(sbi, type);
1917                 if (err)
1918                         return err;
1919         }
1920
1921         return 0;
1922 }
1923
1924 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1925 {
1926         struct page *page;
1927         unsigned char *kaddr;
1928         struct f2fs_summary *summary;
1929         struct curseg_info *seg_i;
1930         int written_size = 0;
1931         int i, j;
1932
1933         page = grab_meta_page(sbi, blkaddr++);
1934         kaddr = (unsigned char *)page_address(page);
1935
1936         /* Step 1: write nat cache */
1937         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1938         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1939         written_size += SUM_JOURNAL_SIZE;
1940
1941         /* Step 2: write sit cache */
1942         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1943         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1944         written_size += SUM_JOURNAL_SIZE;
1945
1946         /* Step 3: write summary entries */
1947         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1948                 unsigned short blkoff;
1949                 seg_i = CURSEG_I(sbi, i);
1950                 if (sbi->ckpt->alloc_type[i] == SSR)
1951                         blkoff = sbi->blocks_per_seg;
1952                 else
1953                         blkoff = curseg_blkoff(sbi, i);
1954
1955                 for (j = 0; j < blkoff; j++) {
1956                         if (!page) {
1957                                 page = grab_meta_page(sbi, blkaddr++);
1958                                 kaddr = (unsigned char *)page_address(page);
1959                                 written_size = 0;
1960                         }
1961                         summary = (struct f2fs_summary *)(kaddr + written_size);
1962                         *summary = seg_i->sum_blk->entries[j];
1963                         written_size += SUMMARY_SIZE;
1964
1965                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1966                                                         SUM_FOOTER_SIZE)
1967                                 continue;
1968
1969                         set_page_dirty(page);
1970                         f2fs_put_page(page, 1);
1971                         page = NULL;
1972                 }
1973         }
1974         if (page) {
1975                 set_page_dirty(page);
1976                 f2fs_put_page(page, 1);
1977         }
1978 }
1979
1980 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1981                                         block_t blkaddr, int type)
1982 {
1983         int i, end;
1984         if (IS_DATASEG(type))
1985                 end = type + NR_CURSEG_DATA_TYPE;
1986         else
1987                 end = type + NR_CURSEG_NODE_TYPE;
1988
1989         for (i = type; i < end; i++)
1990                 write_current_sum_page(sbi, i, blkaddr + (i - type));
1991 }
1992
1993 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1994 {
1995         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1996                 write_compacted_summaries(sbi, start_blk);
1997         else
1998                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1999 }
2000
2001 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2002 {
2003         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2004 }
2005
2006 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2007                                         unsigned int val, int alloc)
2008 {
2009         int i;
2010
2011         if (type == NAT_JOURNAL) {
2012                 for (i = 0; i < nats_in_cursum(journal); i++) {
2013                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2014                                 return i;
2015                 }
2016                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2017                         return update_nats_in_cursum(journal, 1);
2018         } else if (type == SIT_JOURNAL) {
2019                 for (i = 0; i < sits_in_cursum(journal); i++)
2020                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2021                                 return i;
2022                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2023                         return update_sits_in_cursum(journal, 1);
2024         }
2025         return -1;
2026 }
2027
2028 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2029                                         unsigned int segno)
2030 {
2031         return get_meta_page(sbi, current_sit_addr(sbi, segno));
2032 }
2033
2034 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2035                                         unsigned int start)
2036 {
2037         struct sit_info *sit_i = SIT_I(sbi);
2038         struct page *src_page, *dst_page;
2039         pgoff_t src_off, dst_off;
2040         void *src_addr, *dst_addr;
2041
2042         src_off = current_sit_addr(sbi, start);
2043         dst_off = next_sit_addr(sbi, src_off);
2044
2045         /* get current sit block page without lock */
2046         src_page = get_meta_page(sbi, src_off);
2047         dst_page = grab_meta_page(sbi, dst_off);
2048         f2fs_bug_on(sbi, PageDirty(src_page));
2049
2050         src_addr = page_address(src_page);
2051         dst_addr = page_address(dst_page);
2052         memcpy(dst_addr, src_addr, PAGE_SIZE);
2053
2054         set_page_dirty(dst_page);
2055         f2fs_put_page(src_page, 1);
2056
2057         set_to_next_sit(sit_i, start);
2058
2059         return dst_page;
2060 }
2061
2062 static struct sit_entry_set *grab_sit_entry_set(void)
2063 {
2064         struct sit_entry_set *ses =
2065                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2066
2067         ses->entry_cnt = 0;
2068         INIT_LIST_HEAD(&ses->set_list);
2069         return ses;
2070 }
2071
2072 static void release_sit_entry_set(struct sit_entry_set *ses)
2073 {
2074         list_del(&ses->set_list);
2075         kmem_cache_free(sit_entry_set_slab, ses);
2076 }
2077
2078 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2079                                                 struct list_head *head)
2080 {
2081         struct sit_entry_set *next = ses;
2082
2083         if (list_is_last(&ses->set_list, head))
2084                 return;
2085
2086         list_for_each_entry_continue(next, head, set_list)
2087                 if (ses->entry_cnt <= next->entry_cnt)
2088                         break;
2089
2090         list_move_tail(&ses->set_list, &next->set_list);
2091 }
2092
2093 static void add_sit_entry(unsigned int segno, struct list_head *head)
2094 {
2095         struct sit_entry_set *ses;
2096         unsigned int start_segno = START_SEGNO(segno);
2097
2098         list_for_each_entry(ses, head, set_list) {
2099                 if (ses->start_segno == start_segno) {
2100                         ses->entry_cnt++;
2101                         adjust_sit_entry_set(ses, head);
2102                         return;
2103                 }
2104         }
2105
2106         ses = grab_sit_entry_set();
2107
2108         ses->start_segno = start_segno;
2109         ses->entry_cnt++;
2110         list_add(&ses->set_list, head);
2111 }
2112
2113 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2114 {
2115         struct f2fs_sm_info *sm_info = SM_I(sbi);
2116         struct list_head *set_list = &sm_info->sit_entry_set;
2117         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2118         unsigned int segno;
2119
2120         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2121                 add_sit_entry(segno, set_list);
2122 }
2123
2124 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2125 {
2126         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2127         struct f2fs_journal *journal = curseg->journal;
2128         int i;
2129
2130         down_write(&curseg->journal_rwsem);
2131         for (i = 0; i < sits_in_cursum(journal); i++) {
2132                 unsigned int segno;
2133                 bool dirtied;
2134
2135                 segno = le32_to_cpu(segno_in_journal(journal, i));
2136                 dirtied = __mark_sit_entry_dirty(sbi, segno);
2137
2138                 if (!dirtied)
2139                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2140         }
2141         update_sits_in_cursum(journal, -i);
2142         up_write(&curseg->journal_rwsem);
2143 }
2144
2145 /*
2146  * CP calls this function, which flushes SIT entries including sit_journal,
2147  * and moves prefree segs to free segs.
2148  */
2149 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2150 {
2151         struct sit_info *sit_i = SIT_I(sbi);
2152         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2153         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2154         struct f2fs_journal *journal = curseg->journal;
2155         struct sit_entry_set *ses, *tmp;
2156         struct list_head *head = &SM_I(sbi)->sit_entry_set;
2157         bool to_journal = true;
2158         struct seg_entry *se;
2159
2160         mutex_lock(&sit_i->sentry_lock);
2161
2162         if (!sit_i->dirty_sentries)
2163                 goto out;
2164
2165         /*
2166          * add and account sit entries of dirty bitmap in sit entry
2167          * set temporarily
2168          */
2169         add_sits_in_set(sbi);
2170
2171         /*
2172          * if there are no enough space in journal to store dirty sit
2173          * entries, remove all entries from journal and add and account
2174          * them in sit entry set.
2175          */
2176         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2177                 remove_sits_in_journal(sbi);
2178
2179         /*
2180          * there are two steps to flush sit entries:
2181          * #1, flush sit entries to journal in current cold data summary block.
2182          * #2, flush sit entries to sit page.
2183          */
2184         list_for_each_entry_safe(ses, tmp, head, set_list) {
2185                 struct page *page = NULL;
2186                 struct f2fs_sit_block *raw_sit = NULL;
2187                 unsigned int start_segno = ses->start_segno;
2188                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2189                                                 (unsigned long)MAIN_SEGS(sbi));
2190                 unsigned int segno = start_segno;
2191
2192                 if (to_journal &&
2193                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2194                         to_journal = false;
2195
2196                 if (to_journal) {
2197                         down_write(&curseg->journal_rwsem);
2198                 } else {
2199                         page = get_next_sit_page(sbi, start_segno);
2200                         raw_sit = page_address(page);
2201                 }
2202
2203                 /* flush dirty sit entries in region of current sit set */
2204                 for_each_set_bit_from(segno, bitmap, end) {
2205                         int offset, sit_offset;
2206
2207                         se = get_seg_entry(sbi, segno);
2208
2209                         /* add discard candidates */
2210                         if (cpc->reason != CP_DISCARD) {
2211                                 cpc->trim_start = segno;
2212                                 add_discard_addrs(sbi, cpc);
2213                         }
2214
2215                         if (to_journal) {
2216                                 offset = lookup_journal_in_cursum(journal,
2217                                                         SIT_JOURNAL, segno, 1);
2218                                 f2fs_bug_on(sbi, offset < 0);
2219                                 segno_in_journal(journal, offset) =
2220                                                         cpu_to_le32(segno);
2221                                 seg_info_to_raw_sit(se,
2222                                         &sit_in_journal(journal, offset));
2223                         } else {
2224                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2225                                 seg_info_to_raw_sit(se,
2226                                                 &raw_sit->entries[sit_offset]);
2227                         }
2228
2229                         __clear_bit(segno, bitmap);
2230                         sit_i->dirty_sentries--;
2231                         ses->entry_cnt--;
2232                 }
2233
2234                 if (to_journal)
2235                         up_write(&curseg->journal_rwsem);
2236                 else
2237                         f2fs_put_page(page, 1);
2238
2239                 f2fs_bug_on(sbi, ses->entry_cnt);
2240                 release_sit_entry_set(ses);
2241         }
2242
2243         f2fs_bug_on(sbi, !list_empty(head));
2244         f2fs_bug_on(sbi, sit_i->dirty_sentries);
2245 out:
2246         if (cpc->reason == CP_DISCARD) {
2247                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2248                         add_discard_addrs(sbi, cpc);
2249         }
2250         mutex_unlock(&sit_i->sentry_lock);
2251
2252         set_prefree_as_free_segments(sbi);
2253 }
2254
2255 static int build_sit_info(struct f2fs_sb_info *sbi)
2256 {
2257         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2258         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2259         struct sit_info *sit_i;
2260         unsigned int sit_segs, start;
2261         char *src_bitmap, *dst_bitmap;
2262         unsigned int bitmap_size;
2263
2264         /* allocate memory for SIT information */
2265         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2266         if (!sit_i)
2267                 return -ENOMEM;
2268
2269         SM_I(sbi)->sit_info = sit_i;
2270
2271         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2272                                         sizeof(struct seg_entry), GFP_KERNEL);
2273         if (!sit_i->sentries)
2274                 return -ENOMEM;
2275
2276         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2277         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2278         if (!sit_i->dirty_sentries_bitmap)
2279                 return -ENOMEM;
2280
2281         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2282                 sit_i->sentries[start].cur_valid_map
2283                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2284                 sit_i->sentries[start].ckpt_valid_map
2285                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2286                 if (!sit_i->sentries[start].cur_valid_map ||
2287                                 !sit_i->sentries[start].ckpt_valid_map)
2288                         return -ENOMEM;
2289
2290                 if (f2fs_discard_en(sbi)) {
2291                         sit_i->sentries[start].discard_map
2292                                 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2293                         if (!sit_i->sentries[start].discard_map)
2294                                 return -ENOMEM;
2295                 }
2296         }
2297
2298         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2299         if (!sit_i->tmp_map)
2300                 return -ENOMEM;
2301
2302         if (sbi->segs_per_sec > 1) {
2303                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2304                                         sizeof(struct sec_entry), GFP_KERNEL);
2305                 if (!sit_i->sec_entries)
2306                         return -ENOMEM;
2307         }
2308
2309         /* get information related with SIT */
2310         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2311
2312         /* setup SIT bitmap from ckeckpoint pack */
2313         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2314         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2315
2316         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2317         if (!dst_bitmap)
2318                 return -ENOMEM;
2319
2320         /* init SIT information */
2321         sit_i->s_ops = &default_salloc_ops;
2322
2323         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2324         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2325         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2326         sit_i->sit_bitmap = dst_bitmap;
2327         sit_i->bitmap_size = bitmap_size;
2328         sit_i->dirty_sentries = 0;
2329         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2330         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2331         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2332         mutex_init(&sit_i->sentry_lock);
2333         return 0;
2334 }
2335
2336 static int build_free_segmap(struct f2fs_sb_info *sbi)
2337 {
2338         struct free_segmap_info *free_i;
2339         unsigned int bitmap_size, sec_bitmap_size;
2340
2341         /* allocate memory for free segmap information */
2342         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2343         if (!free_i)
2344                 return -ENOMEM;
2345
2346         SM_I(sbi)->free_info = free_i;
2347
2348         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2349         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2350         if (!free_i->free_segmap)
2351                 return -ENOMEM;
2352
2353         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2354         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2355         if (!free_i->free_secmap)
2356                 return -ENOMEM;
2357
2358         /* set all segments as dirty temporarily */
2359         memset(free_i->free_segmap, 0xff, bitmap_size);
2360         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2361
2362         /* init free segmap information */
2363         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2364         free_i->free_segments = 0;
2365         free_i->free_sections = 0;
2366         spin_lock_init(&free_i->segmap_lock);
2367         return 0;
2368 }
2369
2370 static int build_curseg(struct f2fs_sb_info *sbi)
2371 {
2372         struct curseg_info *array;
2373         int i;
2374
2375         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2376         if (!array)
2377                 return -ENOMEM;
2378
2379         SM_I(sbi)->curseg_array = array;
2380
2381         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2382                 mutex_init(&array[i].curseg_mutex);
2383                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2384                 if (!array[i].sum_blk)
2385                         return -ENOMEM;
2386                 init_rwsem(&array[i].journal_rwsem);
2387                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2388                                                         GFP_KERNEL);
2389                 if (!array[i].journal)
2390                         return -ENOMEM;
2391                 array[i].segno = NULL_SEGNO;
2392                 array[i].next_blkoff = 0;
2393         }
2394         return restore_curseg_summaries(sbi);
2395 }
2396
2397 static void build_sit_entries(struct f2fs_sb_info *sbi)
2398 {
2399         struct sit_info *sit_i = SIT_I(sbi);
2400         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2401         struct f2fs_journal *journal = curseg->journal;
2402         struct seg_entry *se;
2403         struct f2fs_sit_entry sit;
2404         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2405         unsigned int i, start, end;
2406         unsigned int readed, start_blk = 0;
2407
2408         do {
2409                 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2410                                                         META_SIT, true);
2411
2412                 start = start_blk * sit_i->sents_per_block;
2413                 end = (start_blk + readed) * sit_i->sents_per_block;
2414
2415                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2416                         struct f2fs_sit_block *sit_blk;
2417                         struct page *page;
2418
2419                         se = &sit_i->sentries[start];
2420                         page = get_current_sit_page(sbi, start);
2421                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2422                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2423                         f2fs_put_page(page, 1);
2424
2425                         check_block_count(sbi, start, &sit);
2426                         seg_info_from_raw_sit(se, &sit);
2427
2428                         /* build discard map only one time */
2429                         if (f2fs_discard_en(sbi)) {
2430                                 memcpy(se->discard_map, se->cur_valid_map,
2431                                                         SIT_VBLOCK_MAP_SIZE);
2432                                 sbi->discard_blks += sbi->blocks_per_seg -
2433                                                         se->valid_blocks;
2434                         }
2435
2436                         if (sbi->segs_per_sec > 1)
2437                                 get_sec_entry(sbi, start)->valid_blocks +=
2438                                                         se->valid_blocks;
2439                 }
2440                 start_blk += readed;
2441         } while (start_blk < sit_blk_cnt);
2442
2443         down_read(&curseg->journal_rwsem);
2444         for (i = 0; i < sits_in_cursum(journal); i++) {
2445                 unsigned int old_valid_blocks;
2446
2447                 start = le32_to_cpu(segno_in_journal(journal, i));
2448                 se = &sit_i->sentries[start];
2449                 sit = sit_in_journal(journal, i);
2450
2451                 old_valid_blocks = se->valid_blocks;
2452
2453                 check_block_count(sbi, start, &sit);
2454                 seg_info_from_raw_sit(se, &sit);
2455
2456                 if (f2fs_discard_en(sbi)) {
2457                         memcpy(se->discard_map, se->cur_valid_map,
2458                                                 SIT_VBLOCK_MAP_SIZE);
2459                         sbi->discard_blks += old_valid_blocks -
2460                                                 se->valid_blocks;
2461                 }
2462
2463                 if (sbi->segs_per_sec > 1)
2464                         get_sec_entry(sbi, start)->valid_blocks +=
2465                                 se->valid_blocks - old_valid_blocks;
2466         }
2467         up_read(&curseg->journal_rwsem);
2468 }
2469
2470 static void init_free_segmap(struct f2fs_sb_info *sbi)
2471 {
2472         unsigned int start;
2473         int type;
2474
2475         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2476                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2477                 if (!sentry->valid_blocks)
2478                         __set_free(sbi, start);
2479         }
2480
2481         /* set use the current segments */
2482         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2483                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2484                 __set_test_and_inuse(sbi, curseg_t->segno);
2485         }
2486 }
2487
2488 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2489 {
2490         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2491         struct free_segmap_info *free_i = FREE_I(sbi);
2492         unsigned int segno = 0, offset = 0;
2493         unsigned short valid_blocks;
2494
2495         while (1) {
2496                 /* find dirty segment based on free segmap */
2497                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2498                 if (segno >= MAIN_SEGS(sbi))
2499                         break;
2500                 offset = segno + 1;
2501                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2502                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2503                         continue;
2504                 if (valid_blocks > sbi->blocks_per_seg) {
2505                         f2fs_bug_on(sbi, 1);
2506                         continue;
2507                 }
2508                 mutex_lock(&dirty_i->seglist_lock);
2509                 __locate_dirty_segment(sbi, segno, DIRTY);
2510                 mutex_unlock(&dirty_i->seglist_lock);
2511         }
2512 }
2513
2514 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2515 {
2516         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2517         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2518
2519         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2520         if (!dirty_i->victim_secmap)
2521                 return -ENOMEM;
2522         return 0;
2523 }
2524
2525 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2526 {
2527         struct dirty_seglist_info *dirty_i;
2528         unsigned int bitmap_size, i;
2529
2530         /* allocate memory for dirty segments list information */
2531         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2532         if (!dirty_i)
2533                 return -ENOMEM;
2534
2535         SM_I(sbi)->dirty_info = dirty_i;
2536         mutex_init(&dirty_i->seglist_lock);
2537
2538         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2539
2540         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2541                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2542                 if (!dirty_i->dirty_segmap[i])
2543                         return -ENOMEM;
2544         }
2545
2546         init_dirty_segmap(sbi);
2547         return init_victim_secmap(sbi);
2548 }
2549
2550 /*
2551  * Update min, max modified time for cost-benefit GC algorithm
2552  */
2553 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2554 {
2555         struct sit_info *sit_i = SIT_I(sbi);
2556         unsigned int segno;
2557
2558         mutex_lock(&sit_i->sentry_lock);
2559
2560         sit_i->min_mtime = LLONG_MAX;
2561
2562         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2563                 unsigned int i;
2564                 unsigned long long mtime = 0;
2565
2566                 for (i = 0; i < sbi->segs_per_sec; i++)
2567                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2568
2569                 mtime = div_u64(mtime, sbi->segs_per_sec);
2570
2571                 if (sit_i->min_mtime > mtime)
2572                         sit_i->min_mtime = mtime;
2573         }
2574         sit_i->max_mtime = get_mtime(sbi);
2575         mutex_unlock(&sit_i->sentry_lock);
2576 }
2577
2578 int build_segment_manager(struct f2fs_sb_info *sbi)
2579 {
2580         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2581         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2582         struct f2fs_sm_info *sm_info;
2583         int err;
2584
2585         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2586         if (!sm_info)
2587                 return -ENOMEM;
2588
2589         /* init sm info */
2590         sbi->sm_info = sm_info;
2591         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2592         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2593         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2594         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2595         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2596         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2597         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2598         sm_info->rec_prefree_segments = sm_info->main_segments *
2599                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2600         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2601                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2602
2603         if (!test_opt(sbi, LFS))
2604                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2605         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2606         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2607
2608         INIT_LIST_HEAD(&sm_info->discard_list);
2609         INIT_LIST_HEAD(&sm_info->wait_list);
2610         sm_info->nr_discards = 0;
2611         sm_info->max_discards = 0;
2612
2613         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2614
2615         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2616
2617         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2618                 err = create_flush_cmd_control(sbi);
2619                 if (err)
2620                         return err;
2621         }
2622
2623         err = build_sit_info(sbi);
2624         if (err)
2625                 return err;
2626         err = build_free_segmap(sbi);
2627         if (err)
2628                 return err;
2629         err = build_curseg(sbi);
2630         if (err)
2631                 return err;
2632
2633         /* reinit free segmap based on SIT */
2634         build_sit_entries(sbi);
2635
2636         init_free_segmap(sbi);
2637         err = build_dirty_segmap(sbi);
2638         if (err)
2639                 return err;
2640
2641         init_min_max_mtime(sbi);
2642         return 0;
2643 }
2644
2645 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2646                 enum dirty_type dirty_type)
2647 {
2648         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2649
2650         mutex_lock(&dirty_i->seglist_lock);
2651         kvfree(dirty_i->dirty_segmap[dirty_type]);
2652         dirty_i->nr_dirty[dirty_type] = 0;
2653         mutex_unlock(&dirty_i->seglist_lock);
2654 }
2655
2656 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2657 {
2658         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2659         kvfree(dirty_i->victim_secmap);
2660 }
2661
2662 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2663 {
2664         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2665         int i;
2666
2667         if (!dirty_i)
2668                 return;
2669
2670         /* discard pre-free/dirty segments list */
2671         for (i = 0; i < NR_DIRTY_TYPE; i++)
2672                 discard_dirty_segmap(sbi, i);
2673
2674         destroy_victim_secmap(sbi);
2675         SM_I(sbi)->dirty_info = NULL;
2676         kfree(dirty_i);
2677 }
2678
2679 static void destroy_curseg(struct f2fs_sb_info *sbi)
2680 {
2681         struct curseg_info *array = SM_I(sbi)->curseg_array;
2682         int i;
2683
2684         if (!array)
2685                 return;
2686         SM_I(sbi)->curseg_array = NULL;
2687         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2688                 kfree(array[i].sum_blk);
2689                 kfree(array[i].journal);
2690         }
2691         kfree(array);
2692 }
2693
2694 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2695 {
2696         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2697         if (!free_i)
2698                 return;
2699         SM_I(sbi)->free_info = NULL;
2700         kvfree(free_i->free_segmap);
2701         kvfree(free_i->free_secmap);
2702         kfree(free_i);
2703 }
2704
2705 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2706 {
2707         struct sit_info *sit_i = SIT_I(sbi);
2708         unsigned int start;
2709
2710         if (!sit_i)
2711                 return;
2712
2713         if (sit_i->sentries) {
2714                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2715                         kfree(sit_i->sentries[start].cur_valid_map);
2716                         kfree(sit_i->sentries[start].ckpt_valid_map);
2717                         kfree(sit_i->sentries[start].discard_map);
2718                 }
2719         }
2720         kfree(sit_i->tmp_map);
2721
2722         kvfree(sit_i->sentries);
2723         kvfree(sit_i->sec_entries);
2724         kvfree(sit_i->dirty_sentries_bitmap);
2725
2726         SM_I(sbi)->sit_info = NULL;
2727         kfree(sit_i->sit_bitmap);
2728         kfree(sit_i);
2729 }
2730
2731 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2732 {
2733         struct f2fs_sm_info *sm_info = SM_I(sbi);
2734
2735         if (!sm_info)
2736                 return;
2737         destroy_flush_cmd_control(sbi);
2738         destroy_dirty_segmap(sbi);
2739         destroy_curseg(sbi);
2740         destroy_free_segmap(sbi);
2741         destroy_sit_info(sbi);
2742         sbi->sm_info = NULL;
2743         kfree(sm_info);
2744 }
2745
2746 int __init create_segment_manager_caches(void)
2747 {
2748         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2749                         sizeof(struct discard_entry));
2750         if (!discard_entry_slab)
2751                 goto fail;
2752
2753         bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2754                         sizeof(struct bio_entry));
2755         if (!bio_entry_slab)
2756                 goto destroy_discard_entry;
2757
2758         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2759                         sizeof(struct sit_entry_set));
2760         if (!sit_entry_set_slab)
2761                 goto destroy_bio_entry;
2762
2763         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2764                         sizeof(struct inmem_pages));
2765         if (!inmem_entry_slab)
2766                 goto destroy_sit_entry_set;
2767         return 0;
2768
2769 destroy_sit_entry_set:
2770         kmem_cache_destroy(sit_entry_set_slab);
2771 destroy_bio_entry:
2772         kmem_cache_destroy(bio_entry_slab);
2773 destroy_discard_entry:
2774         kmem_cache_destroy(discard_entry_slab);
2775 fail:
2776         return -ENOMEM;
2777 }
2778
2779 void destroy_segment_manager_caches(void)
2780 {
2781         kmem_cache_destroy(sit_entry_set_slab);
2782         kmem_cache_destroy(bio_entry_slab);
2783         kmem_cache_destroy(discard_entry_slab);
2784         kmem_cache_destroy(inmem_entry_slab);
2785 }