Merge tag 'pm-6.12-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-block.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40                 return -EFSCORRUPTED;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49         struct sysinfo val;
50         unsigned long avail_ram;
51         unsigned long mem_size = 0;
52         bool res = false;
53
54         if (!nm_i)
55                 return true;
56
57         si_meminfo(&val);
58
59         /* only uses low memory */
60         avail_ram = val.totalram - val.totalhigh;
61
62         /*
63          * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64          */
65         if (type == FREE_NIDS) {
66                 mem_size = (nm_i->nid_cnt[FREE_NID] *
67                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69         } else if (type == NAT_ENTRIES) {
70                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73                 if (excess_cached_nats(sbi))
74                         res = false;
75         } else if (type == DIRTY_DENTS) {
76                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return false;
78                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80         } else if (type == INO_ENTRIES) {
81                 int i;
82
83                 for (i = 0; i < MAX_INO_ENTRY; i++)
84                         mem_size += sbi->im[i].ino_num *
85                                                 sizeof(struct ino_entry);
86                 mem_size >>= PAGE_SHIFT;
87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88         } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89                 enum extent_type etype = type == READ_EXTENT_CACHE ?
90                                                 EX_READ : EX_BLOCK_AGE;
91                 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93                 mem_size = (atomic_read(&eti->total_ext_tree) *
94                                 sizeof(struct extent_tree) +
95                                 atomic_read(&eti->total_ext_node) *
96                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
97                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98         } else if (type == DISCARD_CACHE) {
99                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102         } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104                 unsigned long free_ram = val.freeram;
105
106                 /*
107                  * free memory is lower than watermark or cached page count
108                  * exceed threshold, deny caching compress page.
109                  */
110                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111                         (COMPRESS_MAPPING(sbi)->nrpages <
112                          free_ram * sbi->compress_percent / 100);
113 #else
114                 res = false;
115 #endif
116         } else {
117                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118                         return true;
119         }
120         return res;
121 }
122
123 static void clear_node_page_dirty(struct page *page)
124 {
125         if (PageDirty(page)) {
126                 f2fs_clear_page_cache_dirty_tag(page_folio(page));
127                 clear_page_dirty_for_io(page);
128                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129         }
130         ClearPageUptodate(page);
131 }
132
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct page *src_page;
141         struct page *dst_page;
142         pgoff_t dst_off;
143         void *src_addr;
144         void *dst_addr;
145         struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149         /* get current nat block page with lock */
150         src_page = get_current_nat_page(sbi, nid);
151         if (IS_ERR(src_page))
152                 return src_page;
153         dst_page = f2fs_grab_meta_page(sbi, dst_off);
154         f2fs_bug_on(sbi, PageDirty(src_page));
155
156         src_addr = page_address(src_page);
157         dst_addr = page_address(dst_page);
158         memcpy(dst_addr, src_addr, PAGE_SIZE);
159         set_page_dirty(dst_page);
160         f2fs_put_page(src_page, 1);
161
162         set_to_next_nat(nm_i, nid);
163
164         return dst_page;
165 }
166
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168                                                 nid_t nid, bool no_fail)
169 {
170         struct nat_entry *new;
171
172         new = f2fs_kmem_cache_alloc(nat_entry_slab,
173                                         GFP_F2FS_ZERO, no_fail, sbi);
174         if (new) {
175                 nat_set_nid(new, nid);
176                 nat_reset_flag(new);
177         }
178         return new;
179 }
180
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183         kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190         if (no_fail)
191                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193                 return NULL;
194
195         if (raw_ne)
196                 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198         spin_lock(&nm_i->nat_list_lock);
199         list_add_tail(&ne->list, &nm_i->nat_entries);
200         spin_unlock(&nm_i->nat_list_lock);
201
202         nm_i->nat_cnt[TOTAL_NAT]++;
203         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204         return ne;
205 }
206
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209         struct nat_entry *ne;
210
211         ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213         /* for recent accessed nat entry, move it to tail of lru list */
214         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215                 spin_lock(&nm_i->nat_list_lock);
216                 if (!list_empty(&ne->list))
217                         list_move_tail(&ne->list, &nm_i->nat_entries);
218                 spin_unlock(&nm_i->nat_list_lock);
219         }
220
221         return ne;
222 }
223
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225                 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233         nm_i->nat_cnt[TOTAL_NAT]--;
234         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235         __free_nat_entry(e);
236 }
237
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239                                                         struct nat_entry *ne)
240 {
241         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242         struct nat_entry_set *head;
243
244         head = radix_tree_lookup(&nm_i->nat_set_root, set);
245         if (!head) {
246                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247                                                 GFP_NOFS, true, NULL);
248
249                 INIT_LIST_HEAD(&head->entry_list);
250                 INIT_LIST_HEAD(&head->set_list);
251                 head->set = set;
252                 head->entry_cnt = 0;
253                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254         }
255         return head;
256 }
257
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259                                                 struct nat_entry *ne)
260 {
261         struct nat_entry_set *head;
262         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264         if (!new_ne)
265                 head = __grab_nat_entry_set(nm_i, ne);
266
267         /*
268          * update entry_cnt in below condition:
269          * 1. update NEW_ADDR to valid block address;
270          * 2. update old block address to new one;
271          */
272         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273                                 !get_nat_flag(ne, IS_DIRTY)))
274                 head->entry_cnt++;
275
276         set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278         if (get_nat_flag(ne, IS_DIRTY))
279                 goto refresh_list;
280
281         nm_i->nat_cnt[DIRTY_NAT]++;
282         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283         set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285         spin_lock(&nm_i->nat_list_lock);
286         if (new_ne)
287                 list_del_init(&ne->list);
288         else
289                 list_move_tail(&ne->list, &head->entry_list);
290         spin_unlock(&nm_i->nat_list_lock);
291 }
292
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294                 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296         spin_lock(&nm_i->nat_list_lock);
297         list_move_tail(&ne->list, &nm_i->nat_entries);
298         spin_unlock(&nm_i->nat_list_lock);
299
300         set_nat_flag(ne, IS_DIRTY, false);
301         set->entry_cnt--;
302         nm_i->nat_cnt[DIRTY_NAT]--;
303         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310                                                         start, nr);
311 }
312
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315         return NODE_MAPPING(sbi) == page->mapping &&
316                         IS_DNODE(page) && is_cold_node(page);
317 }
318
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321         spin_lock_init(&sbi->fsync_node_lock);
322         INIT_LIST_HEAD(&sbi->fsync_node_list);
323         sbi->fsync_seg_id = 0;
324         sbi->fsync_node_num = 0;
325 }
326
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328                                                         struct page *page)
329 {
330         struct fsync_node_entry *fn;
331         unsigned long flags;
332         unsigned int seq_id;
333
334         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335                                         GFP_NOFS, true, NULL);
336
337         get_page(page);
338         fn->page = page;
339         INIT_LIST_HEAD(&fn->list);
340
341         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342         list_add_tail(&fn->list, &sbi->fsync_node_list);
343         fn->seq_id = sbi->fsync_seg_id++;
344         seq_id = fn->seq_id;
345         sbi->fsync_node_num++;
346         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348         return seq_id;
349 }
350
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353         struct fsync_node_entry *fn;
354         unsigned long flags;
355
356         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358                 if (fn->page == page) {
359                         list_del(&fn->list);
360                         sbi->fsync_node_num--;
361                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362                         kmem_cache_free(fsync_node_entry_slab, fn);
363                         put_page(page);
364                         return;
365                 }
366         }
367         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368         f2fs_bug_on(sbi, 1);
369 }
370
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373         unsigned long flags;
374
375         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376         sbi->fsync_seg_id = 0;
377         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool need = false;
385
386         f2fs_down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e) {
389                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
391                         need = true;
392         }
393         f2fs_up_read(&nm_i->nat_tree_lock);
394         return need;
395 }
396
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399         struct f2fs_nm_info *nm_i = NM_I(sbi);
400         struct nat_entry *e;
401         bool is_cp = true;
402
403         f2fs_down_read(&nm_i->nat_tree_lock);
404         e = __lookup_nat_cache(nm_i, nid);
405         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406                 is_cp = false;
407         f2fs_up_read(&nm_i->nat_tree_lock);
408         return is_cp;
409 }
410
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413         struct f2fs_nm_info *nm_i = NM_I(sbi);
414         struct nat_entry *e;
415         bool need_update = true;
416
417         f2fs_down_read(&nm_i->nat_tree_lock);
418         e = __lookup_nat_cache(nm_i, ino);
419         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420                         (get_nat_flag(e, IS_CHECKPOINTED) ||
421                          get_nat_flag(e, HAS_FSYNCED_INODE)))
422                 need_update = false;
423         f2fs_up_read(&nm_i->nat_tree_lock);
424         return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429                                                 struct f2fs_nat_entry *ne)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *new, *e;
433
434         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436                 return;
437
438         new = __alloc_nat_entry(sbi, nid, false);
439         if (!new)
440                 return;
441
442         f2fs_down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, nid);
444         if (!e)
445                 e = __init_nat_entry(nm_i, new, ne, false);
446         else
447                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448                                 nat_get_blkaddr(e) !=
449                                         le32_to_cpu(ne->block_addr) ||
450                                 nat_get_version(e) != ne->version);
451         f2fs_up_write(&nm_i->nat_tree_lock);
452         if (e != new)
453                 __free_nat_entry(new);
454 }
455
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457                         block_t new_blkaddr, bool fsync_done)
458 {
459         struct f2fs_nm_info *nm_i = NM_I(sbi);
460         struct nat_entry *e;
461         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463         f2fs_down_write(&nm_i->nat_tree_lock);
464         e = __lookup_nat_cache(nm_i, ni->nid);
465         if (!e) {
466                 e = __init_nat_entry(nm_i, new, NULL, true);
467                 copy_node_info(&e->ni, ni);
468                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469         } else if (new_blkaddr == NEW_ADDR) {
470                 /*
471                  * when nid is reallocated,
472                  * previous nat entry can be remained in nat cache.
473                  * So, reinitialize it with new information.
474                  */
475                 copy_node_info(&e->ni, ni);
476                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477         }
478         /* let's free early to reduce memory consumption */
479         if (e != new)
480                 __free_nat_entry(new);
481
482         /* sanity check */
483         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485                         new_blkaddr == NULL_ADDR);
486         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487                         new_blkaddr == NEW_ADDR);
488         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489                         new_blkaddr == NEW_ADDR);
490
491         /* increment version no as node is removed */
492         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493                 unsigned char version = nat_get_version(e);
494
495                 nat_set_version(e, inc_node_version(version));
496         }
497
498         /* change address */
499         nat_set_blkaddr(e, new_blkaddr);
500         if (!__is_valid_data_blkaddr(new_blkaddr))
501                 set_nat_flag(e, IS_CHECKPOINTED, false);
502         __set_nat_cache_dirty(nm_i, e);
503
504         /* update fsync_mark if its inode nat entry is still alive */
505         if (ni->nid != ni->ino)
506                 e = __lookup_nat_cache(nm_i, ni->ino);
507         if (e) {
508                 if (fsync_done && ni->nid == ni->ino)
509                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
510                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511         }
512         f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517         struct f2fs_nm_info *nm_i = NM_I(sbi);
518         int nr = nr_shrink;
519
520         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521                 return 0;
522
523         spin_lock(&nm_i->nat_list_lock);
524         while (nr_shrink) {
525                 struct nat_entry *ne;
526
527                 if (list_empty(&nm_i->nat_entries))
528                         break;
529
530                 ne = list_first_entry(&nm_i->nat_entries,
531                                         struct nat_entry, list);
532                 list_del(&ne->list);
533                 spin_unlock(&nm_i->nat_list_lock);
534
535                 __del_from_nat_cache(nm_i, ne);
536                 nr_shrink--;
537
538                 spin_lock(&nm_i->nat_list_lock);
539         }
540         spin_unlock(&nm_i->nat_list_lock);
541
542         f2fs_up_write(&nm_i->nat_tree_lock);
543         return nr - nr_shrink;
544 }
545
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547                                 struct node_info *ni, bool checkpoint_context)
548 {
549         struct f2fs_nm_info *nm_i = NM_I(sbi);
550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551         struct f2fs_journal *journal = curseg->journal;
552         nid_t start_nid = START_NID(nid);
553         struct f2fs_nat_block *nat_blk;
554         struct page *page = NULL;
555         struct f2fs_nat_entry ne;
556         struct nat_entry *e;
557         pgoff_t index;
558         block_t blkaddr;
559         int i;
560
561         ni->nid = nid;
562 retry:
563         /* Check nat cache */
564         f2fs_down_read(&nm_i->nat_tree_lock);
565         e = __lookup_nat_cache(nm_i, nid);
566         if (e) {
567                 ni->ino = nat_get_ino(e);
568                 ni->blk_addr = nat_get_blkaddr(e);
569                 ni->version = nat_get_version(e);
570                 f2fs_up_read(&nm_i->nat_tree_lock);
571                 return 0;
572         }
573
574         /*
575          * Check current segment summary by trying to grab journal_rwsem first.
576          * This sem is on the critical path on the checkpoint requiring the above
577          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578          * while not bothering checkpoint.
579          */
580         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581                 down_read(&curseg->journal_rwsem);
582         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583                                 !down_read_trylock(&curseg->journal_rwsem)) {
584                 f2fs_up_read(&nm_i->nat_tree_lock);
585                 goto retry;
586         }
587
588         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589         if (i >= 0) {
590                 ne = nat_in_journal(journal, i);
591                 node_info_from_raw_nat(ni, &ne);
592         }
593         up_read(&curseg->journal_rwsem);
594         if (i >= 0) {
595                 f2fs_up_read(&nm_i->nat_tree_lock);
596                 goto cache;
597         }
598
599         /* Fill node_info from nat page */
600         index = current_nat_addr(sbi, nid);
601         f2fs_up_read(&nm_i->nat_tree_lock);
602
603         page = f2fs_get_meta_page(sbi, index);
604         if (IS_ERR(page))
605                 return PTR_ERR(page);
606
607         nat_blk = (struct f2fs_nat_block *)page_address(page);
608         ne = nat_blk->entries[nid - start_nid];
609         node_info_from_raw_nat(ni, &ne);
610         f2fs_put_page(page, 1);
611 cache:
612         blkaddr = le32_to_cpu(ne.block_addr);
613         if (__is_valid_data_blkaddr(blkaddr) &&
614                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615                 return -EFAULT;
616
617         /* cache nat entry */
618         cache_nat_entry(sbi, nid, &ne);
619         return 0;
620 }
621
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628         struct blk_plug plug;
629         int i, end;
630         nid_t nid;
631
632         blk_start_plug(&plug);
633
634         /* Then, try readahead for siblings of the desired node */
635         end = start + n;
636         end = min(end, (int)NIDS_PER_BLOCK);
637         for (i = start; i < end; i++) {
638                 nid = get_nid(parent, i, false);
639                 f2fs_ra_node_page(sbi, nid);
640         }
641
642         blk_finish_plug(&plug);
643 }
644
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647         const long direct_index = ADDRS_PER_INODE(dn->inode);
648         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651         int cur_level = dn->cur_level;
652         int max_level = dn->max_level;
653         pgoff_t base = 0;
654
655         if (!dn->max_level)
656                 return pgofs + 1;
657
658         while (max_level-- > cur_level)
659                 skipped_unit *= NIDS_PER_BLOCK;
660
661         switch (dn->max_level) {
662         case 3:
663                 base += 2 * indirect_blks;
664                 fallthrough;
665         case 2:
666                 base += 2 * direct_blks;
667                 fallthrough;
668         case 1:
669                 base += direct_index;
670                 break;
671         default:
672                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673         }
674
675         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683                                 int offset[4], unsigned int noffset[4])
684 {
685         const long direct_index = ADDRS_PER_INODE(inode);
686         const long direct_blks = ADDRS_PER_BLOCK(inode);
687         const long dptrs_per_blk = NIDS_PER_BLOCK;
688         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690         int n = 0;
691         int level = 0;
692
693         noffset[0] = 0;
694
695         if (block < direct_index) {
696                 offset[n] = block;
697                 goto got;
698         }
699         block -= direct_index;
700         if (block < direct_blks) {
701                 offset[n++] = NODE_DIR1_BLOCK;
702                 noffset[n] = 1;
703                 offset[n] = block;
704                 level = 1;
705                 goto got;
706         }
707         block -= direct_blks;
708         if (block < direct_blks) {
709                 offset[n++] = NODE_DIR2_BLOCK;
710                 noffset[n] = 2;
711                 offset[n] = block;
712                 level = 1;
713                 goto got;
714         }
715         block -= direct_blks;
716         if (block < indirect_blks) {
717                 offset[n++] = NODE_IND1_BLOCK;
718                 noffset[n] = 3;
719                 offset[n++] = block / direct_blks;
720                 noffset[n] = 4 + offset[n - 1];
721                 offset[n] = block % direct_blks;
722                 level = 2;
723                 goto got;
724         }
725         block -= indirect_blks;
726         if (block < indirect_blks) {
727                 offset[n++] = NODE_IND2_BLOCK;
728                 noffset[n] = 4 + dptrs_per_blk;
729                 offset[n++] = block / direct_blks;
730                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731                 offset[n] = block % direct_blks;
732                 level = 2;
733                 goto got;
734         }
735         block -= indirect_blks;
736         if (block < dindirect_blks) {
737                 offset[n++] = NODE_DIND_BLOCK;
738                 noffset[n] = 5 + (dptrs_per_blk * 2);
739                 offset[n++] = block / indirect_blks;
740                 noffset[n] = 6 + (dptrs_per_blk * 2) +
741                               offset[n - 1] * (dptrs_per_blk + 1);
742                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743                 noffset[n] = 7 + (dptrs_per_blk * 2) +
744                               offset[n - 2] * (dptrs_per_blk + 1) +
745                               offset[n - 1];
746                 offset[n] = block % direct_blks;
747                 level = 3;
748                 goto got;
749         } else {
750                 return -E2BIG;
751         }
752 got:
753         return level;
754 }
755
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764         struct page *npage[4];
765         struct page *parent = NULL;
766         int offset[4];
767         unsigned int noffset[4];
768         nid_t nids[4];
769         int level, i = 0;
770         int err = 0;
771
772         level = get_node_path(dn->inode, index, offset, noffset);
773         if (level < 0)
774                 return level;
775
776         nids[0] = dn->inode->i_ino;
777         npage[0] = dn->inode_page;
778
779         if (!npage[0]) {
780                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781                 if (IS_ERR(npage[0]))
782                         return PTR_ERR(npage[0]);
783         }
784
785         /* if inline_data is set, should not report any block indices */
786         if (f2fs_has_inline_data(dn->inode) && index) {
787                 err = -ENOENT;
788                 f2fs_put_page(npage[0], 1);
789                 goto release_out;
790         }
791
792         parent = npage[0];
793         if (level != 0)
794                 nids[1] = get_nid(parent, offset[0], true);
795         dn->inode_page = npage[0];
796         dn->inode_page_locked = true;
797
798         /* get indirect or direct nodes */
799         for (i = 1; i <= level; i++) {
800                 bool done = false;
801
802                 if (!nids[i] && mode == ALLOC_NODE) {
803                         /* alloc new node */
804                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805                                 err = -ENOSPC;
806                                 goto release_pages;
807                         }
808
809                         dn->nid = nids[i];
810                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
811                         if (IS_ERR(npage[i])) {
812                                 f2fs_alloc_nid_failed(sbi, nids[i]);
813                                 err = PTR_ERR(npage[i]);
814                                 goto release_pages;
815                         }
816
817                         set_nid(parent, offset[i - 1], nids[i], i == 1);
818                         f2fs_alloc_nid_done(sbi, nids[i]);
819                         done = true;
820                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822                         if (IS_ERR(npage[i])) {
823                                 err = PTR_ERR(npage[i]);
824                                 goto release_pages;
825                         }
826                         done = true;
827                 }
828                 if (i == 1) {
829                         dn->inode_page_locked = false;
830                         unlock_page(parent);
831                 } else {
832                         f2fs_put_page(parent, 1);
833                 }
834
835                 if (!done) {
836                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
837                         if (IS_ERR(npage[i])) {
838                                 err = PTR_ERR(npage[i]);
839                                 f2fs_put_page(npage[0], 0);
840                                 goto release_out;
841                         }
842                 }
843                 if (i < level) {
844                         parent = npage[i];
845                         nids[i + 1] = get_nid(parent, offset[i], false);
846                 }
847         }
848         dn->nid = nids[level];
849         dn->ofs_in_node = offset[level];
850         dn->node_page = npage[level];
851         dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854                                         f2fs_sb_has_readonly(sbi)) {
855                 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856                 unsigned int ofs_in_node = dn->ofs_in_node;
857                 pgoff_t fofs = index;
858                 unsigned int c_len;
859                 block_t blkaddr;
860
861                 /* should align fofs and ofs_in_node to cluster_size */
862                 if (fofs % cluster_size) {
863                         fofs = round_down(fofs, cluster_size);
864                         ofs_in_node = round_down(ofs_in_node, cluster_size);
865                 }
866
867                 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868                 if (!c_len)
869                         goto out;
870
871                 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872                 if (blkaddr == COMPRESS_ADDR)
873                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
874                                                 ofs_in_node + 1);
875
876                 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877                                         fofs, blkaddr, cluster_size, c_len);
878         }
879 out:
880         return 0;
881
882 release_pages:
883         f2fs_put_page(parent, 1);
884         if (i > 1)
885                 f2fs_put_page(npage[0], 0);
886 release_out:
887         dn->inode_page = NULL;
888         dn->node_page = NULL;
889         if (err == -ENOENT) {
890                 dn->cur_level = i;
891                 dn->max_level = level;
892                 dn->ofs_in_node = offset[level];
893         }
894         return err;
895 }
896
897 static int truncate_node(struct dnode_of_data *dn)
898 {
899         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900         struct node_info ni;
901         int err;
902         pgoff_t index;
903
904         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905         if (err)
906                 return err;
907
908         /* Deallocate node address */
909         f2fs_invalidate_blocks(sbi, ni.blk_addr);
910         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911         set_node_addr(sbi, &ni, NULL_ADDR, false);
912
913         if (dn->nid == dn->inode->i_ino) {
914                 f2fs_remove_orphan_inode(sbi, dn->nid);
915                 dec_valid_inode_count(sbi);
916                 f2fs_inode_synced(dn->inode);
917         }
918
919         clear_node_page_dirty(dn->node_page);
920         set_sbi_flag(sbi, SBI_IS_DIRTY);
921
922         index = page_folio(dn->node_page)->index;
923         f2fs_put_page(dn->node_page, 1);
924
925         invalidate_mapping_pages(NODE_MAPPING(sbi),
926                         index, index);
927
928         dn->node_page = NULL;
929         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
930
931         return 0;
932 }
933
934 static int truncate_dnode(struct dnode_of_data *dn)
935 {
936         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937         struct page *page;
938         int err;
939
940         if (dn->nid == 0)
941                 return 1;
942
943         /* get direct node */
944         page = f2fs_get_node_page(sbi, dn->nid);
945         if (PTR_ERR(page) == -ENOENT)
946                 return 1;
947         else if (IS_ERR(page))
948                 return PTR_ERR(page);
949
950         if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951                 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952                                 dn->inode->i_ino, dn->nid, ino_of_node(page));
953                 set_sbi_flag(sbi, SBI_NEED_FSCK);
954                 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955                 f2fs_put_page(page, 1);
956                 return -EFSCORRUPTED;
957         }
958
959         /* Make dnode_of_data for parameter */
960         dn->node_page = page;
961         dn->ofs_in_node = 0;
962         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963         err = truncate_node(dn);
964         if (err) {
965                 f2fs_put_page(page, 1);
966                 return err;
967         }
968
969         return 1;
970 }
971
972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
973                                                 int ofs, int depth)
974 {
975         struct dnode_of_data rdn = *dn;
976         struct page *page;
977         struct f2fs_node *rn;
978         nid_t child_nid;
979         unsigned int child_nofs;
980         int freed = 0;
981         int i, ret;
982
983         if (dn->nid == 0)
984                 return NIDS_PER_BLOCK + 1;
985
986         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
987
988         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
989         if (IS_ERR(page)) {
990                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991                 return PTR_ERR(page);
992         }
993
994         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
995
996         rn = F2FS_NODE(page);
997         if (depth < 3) {
998                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999                         child_nid = le32_to_cpu(rn->in.nid[i]);
1000                         if (child_nid == 0)
1001                                 continue;
1002                         rdn.nid = child_nid;
1003                         ret = truncate_dnode(&rdn);
1004                         if (ret < 0)
1005                                 goto out_err;
1006                         if (set_nid(page, i, 0, false))
1007                                 dn->node_changed = true;
1008                 }
1009         } else {
1010                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012                         child_nid = le32_to_cpu(rn->in.nid[i]);
1013                         if (child_nid == 0) {
1014                                 child_nofs += NIDS_PER_BLOCK + 1;
1015                                 continue;
1016                         }
1017                         rdn.nid = child_nid;
1018                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019                         if (ret == (NIDS_PER_BLOCK + 1)) {
1020                                 if (set_nid(page, i, 0, false))
1021                                         dn->node_changed = true;
1022                                 child_nofs += ret;
1023                         } else if (ret < 0 && ret != -ENOENT) {
1024                                 goto out_err;
1025                         }
1026                 }
1027                 freed = child_nofs;
1028         }
1029
1030         if (!ofs) {
1031                 /* remove current indirect node */
1032                 dn->node_page = page;
1033                 ret = truncate_node(dn);
1034                 if (ret)
1035                         goto out_err;
1036                 freed++;
1037         } else {
1038                 f2fs_put_page(page, 1);
1039         }
1040         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041         return freed;
1042
1043 out_err:
1044         f2fs_put_page(page, 1);
1045         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046         return ret;
1047 }
1048
1049 static int truncate_partial_nodes(struct dnode_of_data *dn,
1050                         struct f2fs_inode *ri, int *offset, int depth)
1051 {
1052         struct page *pages[2];
1053         nid_t nid[3];
1054         nid_t child_nid;
1055         int err = 0;
1056         int i;
1057         int idx = depth - 2;
1058
1059         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060         if (!nid[0])
1061                 return 0;
1062
1063         /* get indirect nodes in the path */
1064         for (i = 0; i < idx + 1; i++) {
1065                 /* reference count'll be increased */
1066                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067                 if (IS_ERR(pages[i])) {
1068                         err = PTR_ERR(pages[i]);
1069                         idx = i - 1;
1070                         goto fail;
1071                 }
1072                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073         }
1074
1075         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077         /* free direct nodes linked to a partial indirect node */
1078         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079                 child_nid = get_nid(pages[idx], i, false);
1080                 if (!child_nid)
1081                         continue;
1082                 dn->nid = child_nid;
1083                 err = truncate_dnode(dn);
1084                 if (err < 0)
1085                         goto fail;
1086                 if (set_nid(pages[idx], i, 0, false))
1087                         dn->node_changed = true;
1088         }
1089
1090         if (offset[idx + 1] == 0) {
1091                 dn->node_page = pages[idx];
1092                 dn->nid = nid[idx];
1093                 err = truncate_node(dn);
1094                 if (err)
1095                         goto fail;
1096         } else {
1097                 f2fs_put_page(pages[idx], 1);
1098         }
1099         offset[idx]++;
1100         offset[idx + 1] = 0;
1101         idx--;
1102 fail:
1103         for (i = idx; i >= 0; i--)
1104                 f2fs_put_page(pages[i], 1);
1105
1106         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108         return err;
1109 }
1110
1111 /*
1112  * All the block addresses of data and nodes should be nullified.
1113  */
1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115 {
1116         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117         int err = 0, cont = 1;
1118         int level, offset[4], noffset[4];
1119         unsigned int nofs = 0;
1120         struct f2fs_inode *ri;
1121         struct dnode_of_data dn;
1122         struct page *page;
1123
1124         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126         level = get_node_path(inode, from, offset, noffset);
1127         if (level < 0) {
1128                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129                 return level;
1130         }
1131
1132         page = f2fs_get_node_page(sbi, inode->i_ino);
1133         if (IS_ERR(page)) {
1134                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135                 return PTR_ERR(page);
1136         }
1137
1138         set_new_dnode(&dn, inode, page, NULL, 0);
1139         unlock_page(page);
1140
1141         ri = F2FS_INODE(page);
1142         switch (level) {
1143         case 0:
1144         case 1:
1145                 nofs = noffset[1];
1146                 break;
1147         case 2:
1148                 nofs = noffset[1];
1149                 if (!offset[level - 1])
1150                         goto skip_partial;
1151                 err = truncate_partial_nodes(&dn, ri, offset, level);
1152                 if (err < 0 && err != -ENOENT)
1153                         goto fail;
1154                 nofs += 1 + NIDS_PER_BLOCK;
1155                 break;
1156         case 3:
1157                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158                 if (!offset[level - 1])
1159                         goto skip_partial;
1160                 err = truncate_partial_nodes(&dn, ri, offset, level);
1161                 if (err < 0 && err != -ENOENT)
1162                         goto fail;
1163                 break;
1164         default:
1165                 BUG();
1166         }
1167
1168 skip_partial:
1169         while (cont) {
1170                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171                 switch (offset[0]) {
1172                 case NODE_DIR1_BLOCK:
1173                 case NODE_DIR2_BLOCK:
1174                         err = truncate_dnode(&dn);
1175                         break;
1176
1177                 case NODE_IND1_BLOCK:
1178                 case NODE_IND2_BLOCK:
1179                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1180                         break;
1181
1182                 case NODE_DIND_BLOCK:
1183                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1184                         cont = 0;
1185                         break;
1186
1187                 default:
1188                         BUG();
1189                 }
1190                 if (err == -ENOENT) {
1191                         set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1192                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1193                         f2fs_err_ratelimited(sbi,
1194                                 "truncate node fail, ino:%lu, nid:%u, "
1195                                 "offset[0]:%d, offset[1]:%d, nofs:%d",
1196                                 inode->i_ino, dn.nid, offset[0],
1197                                 offset[1], nofs);
1198                         err = 0;
1199                 }
1200                 if (err < 0)
1201                         goto fail;
1202                 if (offset[1] == 0 &&
1203                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1204                         lock_page(page);
1205                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1206                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1207                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1208                         set_page_dirty(page);
1209                         unlock_page(page);
1210                 }
1211                 offset[1] = 0;
1212                 offset[0]++;
1213                 nofs += err;
1214         }
1215 fail:
1216         f2fs_put_page(page, 0);
1217         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1218         return err > 0 ? 0 : err;
1219 }
1220
1221 /* caller must lock inode page */
1222 int f2fs_truncate_xattr_node(struct inode *inode)
1223 {
1224         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1226         struct dnode_of_data dn;
1227         struct page *npage;
1228         int err;
1229
1230         if (!nid)
1231                 return 0;
1232
1233         npage = f2fs_get_node_page(sbi, nid);
1234         if (IS_ERR(npage))
1235                 return PTR_ERR(npage);
1236
1237         set_new_dnode(&dn, inode, NULL, npage, nid);
1238         err = truncate_node(&dn);
1239         if (err) {
1240                 f2fs_put_page(npage, 1);
1241                 return err;
1242         }
1243
1244         f2fs_i_xnid_write(inode, 0);
1245
1246         return 0;
1247 }
1248
1249 /*
1250  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1251  * f2fs_unlock_op().
1252  */
1253 int f2fs_remove_inode_page(struct inode *inode)
1254 {
1255         struct dnode_of_data dn;
1256         int err;
1257
1258         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1259         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1260         if (err)
1261                 return err;
1262
1263         err = f2fs_truncate_xattr_node(inode);
1264         if (err) {
1265                 f2fs_put_dnode(&dn);
1266                 return err;
1267         }
1268
1269         /* remove potential inline_data blocks */
1270         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271                                 S_ISLNK(inode->i_mode))
1272                 f2fs_truncate_data_blocks_range(&dn, 1);
1273
1274         /* 0 is possible, after f2fs_new_inode() has failed */
1275         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1276                 f2fs_put_dnode(&dn);
1277                 return -EIO;
1278         }
1279
1280         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1281                 f2fs_warn(F2FS_I_SB(inode),
1282                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1283                         inode->i_ino, (unsigned long long)inode->i_blocks);
1284                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1285         }
1286
1287         /* will put inode & node pages */
1288         err = truncate_node(&dn);
1289         if (err) {
1290                 f2fs_put_dnode(&dn);
1291                 return err;
1292         }
1293         return 0;
1294 }
1295
1296 struct page *f2fs_new_inode_page(struct inode *inode)
1297 {
1298         struct dnode_of_data dn;
1299
1300         /* allocate inode page for new inode */
1301         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1302
1303         /* caller should f2fs_put_page(page, 1); */
1304         return f2fs_new_node_page(&dn, 0);
1305 }
1306
1307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1308 {
1309         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1310         struct node_info new_ni;
1311         struct page *page;
1312         int err;
1313
1314         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1315                 return ERR_PTR(-EPERM);
1316
1317         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1318         if (!page)
1319                 return ERR_PTR(-ENOMEM);
1320
1321         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1322                 goto fail;
1323
1324 #ifdef CONFIG_F2FS_CHECK_FS
1325         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1326         if (err) {
1327                 dec_valid_node_count(sbi, dn->inode, !ofs);
1328                 goto fail;
1329         }
1330         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1331                 err = -EFSCORRUPTED;
1332                 dec_valid_node_count(sbi, dn->inode, !ofs);
1333                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1334                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1335                 goto fail;
1336         }
1337 #endif
1338         new_ni.nid = dn->nid;
1339         new_ni.ino = dn->inode->i_ino;
1340         new_ni.blk_addr = NULL_ADDR;
1341         new_ni.flag = 0;
1342         new_ni.version = 0;
1343         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1344
1345         f2fs_wait_on_page_writeback(page, NODE, true, true);
1346         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1347         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1348         if (!PageUptodate(page))
1349                 SetPageUptodate(page);
1350         if (set_page_dirty(page))
1351                 dn->node_changed = true;
1352
1353         if (f2fs_has_xattr_block(ofs))
1354                 f2fs_i_xnid_write(dn->inode, dn->nid);
1355
1356         if (ofs == 0)
1357                 inc_valid_inode_count(sbi);
1358         return page;
1359 fail:
1360         clear_node_page_dirty(page);
1361         f2fs_put_page(page, 1);
1362         return ERR_PTR(err);
1363 }
1364
1365 /*
1366  * Caller should do after getting the following values.
1367  * 0: f2fs_put_page(page, 0)
1368  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1369  */
1370 static int read_node_page(struct page *page, blk_opf_t op_flags)
1371 {
1372         struct folio *folio = page_folio(page);
1373         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1374         struct node_info ni;
1375         struct f2fs_io_info fio = {
1376                 .sbi = sbi,
1377                 .type = NODE,
1378                 .op = REQ_OP_READ,
1379                 .op_flags = op_flags,
1380                 .page = page,
1381                 .encrypted_page = NULL,
1382         };
1383         int err;
1384
1385         if (folio_test_uptodate(folio)) {
1386                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1387                         folio_clear_uptodate(folio);
1388                         return -EFSBADCRC;
1389                 }
1390                 return LOCKED_PAGE;
1391         }
1392
1393         err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1394         if (err)
1395                 return err;
1396
1397         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1398         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1399                 folio_clear_uptodate(folio);
1400                 return -ENOENT;
1401         }
1402
1403         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1404
1405         err = f2fs_submit_page_bio(&fio);
1406
1407         if (!err)
1408                 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1409
1410         return err;
1411 }
1412
1413 /*
1414  * Readahead a node page
1415  */
1416 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1417 {
1418         struct page *apage;
1419         int err;
1420
1421         if (!nid)
1422                 return;
1423         if (f2fs_check_nid_range(sbi, nid))
1424                 return;
1425
1426         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1427         if (apage)
1428                 return;
1429
1430         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1431         if (!apage)
1432                 return;
1433
1434         err = read_node_page(apage, REQ_RAHEAD);
1435         f2fs_put_page(apage, err ? 1 : 0);
1436 }
1437
1438 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1439                                         struct page *parent, int start)
1440 {
1441         struct page *page;
1442         int err;
1443
1444         if (!nid)
1445                 return ERR_PTR(-ENOENT);
1446         if (f2fs_check_nid_range(sbi, nid))
1447                 return ERR_PTR(-EINVAL);
1448 repeat:
1449         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1450         if (!page)
1451                 return ERR_PTR(-ENOMEM);
1452
1453         err = read_node_page(page, 0);
1454         if (err < 0) {
1455                 goto out_put_err;
1456         } else if (err == LOCKED_PAGE) {
1457                 err = 0;
1458                 goto page_hit;
1459         }
1460
1461         if (parent)
1462                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1463
1464         lock_page(page);
1465
1466         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1467                 f2fs_put_page(page, 1);
1468                 goto repeat;
1469         }
1470
1471         if (unlikely(!PageUptodate(page))) {
1472                 err = -EIO;
1473                 goto out_err;
1474         }
1475
1476         if (!f2fs_inode_chksum_verify(sbi, page)) {
1477                 err = -EFSBADCRC;
1478                 goto out_err;
1479         }
1480 page_hit:
1481         if (likely(nid == nid_of_node(page)))
1482                 return page;
1483
1484         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1485                           nid, nid_of_node(page), ino_of_node(page),
1486                           ofs_of_node(page), cpver_of_node(page),
1487                           next_blkaddr_of_node(page));
1488         set_sbi_flag(sbi, SBI_NEED_FSCK);
1489         f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1490         err = -EFSCORRUPTED;
1491 out_err:
1492         ClearPageUptodate(page);
1493 out_put_err:
1494         /* ENOENT comes from read_node_page which is not an error. */
1495         if (err != -ENOENT)
1496                 f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1497         f2fs_put_page(page, 1);
1498         return ERR_PTR(err);
1499 }
1500
1501 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1502 {
1503         return __get_node_page(sbi, nid, NULL, 0);
1504 }
1505
1506 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1507 {
1508         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1509         nid_t nid = get_nid(parent, start, false);
1510
1511         return __get_node_page(sbi, nid, parent, start);
1512 }
1513
1514 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1515 {
1516         struct inode *inode;
1517         struct page *page;
1518         int ret;
1519
1520         /* should flush inline_data before evict_inode */
1521         inode = ilookup(sbi->sb, ino);
1522         if (!inode)
1523                 return;
1524
1525         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1526                                         FGP_LOCK|FGP_NOWAIT, 0);
1527         if (!page)
1528                 goto iput_out;
1529
1530         if (!PageUptodate(page))
1531                 goto page_out;
1532
1533         if (!PageDirty(page))
1534                 goto page_out;
1535
1536         if (!clear_page_dirty_for_io(page))
1537                 goto page_out;
1538
1539         ret = f2fs_write_inline_data(inode, page_folio(page));
1540         inode_dec_dirty_pages(inode);
1541         f2fs_remove_dirty_inode(inode);
1542         if (ret)
1543                 set_page_dirty(page);
1544 page_out:
1545         f2fs_put_page(page, 1);
1546 iput_out:
1547         iput(inode);
1548 }
1549
1550 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1551 {
1552         pgoff_t index;
1553         struct folio_batch fbatch;
1554         struct page *last_page = NULL;
1555         int nr_folios;
1556
1557         folio_batch_init(&fbatch);
1558         index = 0;
1559
1560         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1561                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1562                                         &fbatch))) {
1563                 int i;
1564
1565                 for (i = 0; i < nr_folios; i++) {
1566                         struct page *page = &fbatch.folios[i]->page;
1567
1568                         if (unlikely(f2fs_cp_error(sbi))) {
1569                                 f2fs_put_page(last_page, 0);
1570                                 folio_batch_release(&fbatch);
1571                                 return ERR_PTR(-EIO);
1572                         }
1573
1574                         if (!IS_DNODE(page) || !is_cold_node(page))
1575                                 continue;
1576                         if (ino_of_node(page) != ino)
1577                                 continue;
1578
1579                         lock_page(page);
1580
1581                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1582 continue_unlock:
1583                                 unlock_page(page);
1584                                 continue;
1585                         }
1586                         if (ino_of_node(page) != ino)
1587                                 goto continue_unlock;
1588
1589                         if (!PageDirty(page)) {
1590                                 /* someone wrote it for us */
1591                                 goto continue_unlock;
1592                         }
1593
1594                         if (last_page)
1595                                 f2fs_put_page(last_page, 0);
1596
1597                         get_page(page);
1598                         last_page = page;
1599                         unlock_page(page);
1600                 }
1601                 folio_batch_release(&fbatch);
1602                 cond_resched();
1603         }
1604         return last_page;
1605 }
1606
1607 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1608                                 struct writeback_control *wbc, bool do_balance,
1609                                 enum iostat_type io_type, unsigned int *seq_id)
1610 {
1611         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1612         struct folio *folio = page_folio(page);
1613         nid_t nid;
1614         struct node_info ni;
1615         struct f2fs_io_info fio = {
1616                 .sbi = sbi,
1617                 .ino = ino_of_node(page),
1618                 .type = NODE,
1619                 .op = REQ_OP_WRITE,
1620                 .op_flags = wbc_to_write_flags(wbc),
1621                 .page = page,
1622                 .encrypted_page = NULL,
1623                 .submitted = 0,
1624                 .io_type = io_type,
1625                 .io_wbc = wbc,
1626         };
1627         unsigned int seq;
1628
1629         trace_f2fs_writepage(folio, NODE);
1630
1631         if (unlikely(f2fs_cp_error(sbi))) {
1632                 /* keep node pages in remount-ro mode */
1633                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1634                         goto redirty_out;
1635                 folio_clear_uptodate(folio);
1636                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1637                 folio_unlock(folio);
1638                 return 0;
1639         }
1640
1641         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1642                 goto redirty_out;
1643
1644         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1645                         wbc->sync_mode == WB_SYNC_NONE &&
1646                         IS_DNODE(page) && is_cold_node(page))
1647                 goto redirty_out;
1648
1649         /* get old block addr of this node page */
1650         nid = nid_of_node(page);
1651         f2fs_bug_on(sbi, folio->index != nid);
1652
1653         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1654                 goto redirty_out;
1655
1656         if (wbc->for_reclaim) {
1657                 if (!f2fs_down_read_trylock(&sbi->node_write))
1658                         goto redirty_out;
1659         } else {
1660                 f2fs_down_read(&sbi->node_write);
1661         }
1662
1663         /* This page is already truncated */
1664         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1665                 folio_clear_uptodate(folio);
1666                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1667                 f2fs_up_read(&sbi->node_write);
1668                 folio_unlock(folio);
1669                 return 0;
1670         }
1671
1672         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1673                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1674                                         DATA_GENERIC_ENHANCE)) {
1675                 f2fs_up_read(&sbi->node_write);
1676                 goto redirty_out;
1677         }
1678
1679         if (atomic && !test_opt(sbi, NOBARRIER))
1680                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1681
1682         /* should add to global list before clearing PAGECACHE status */
1683         if (f2fs_in_warm_node_list(sbi, page)) {
1684                 seq = f2fs_add_fsync_node_entry(sbi, page);
1685                 if (seq_id)
1686                         *seq_id = seq;
1687         }
1688
1689         folio_start_writeback(folio);
1690
1691         fio.old_blkaddr = ni.blk_addr;
1692         f2fs_do_write_node_page(nid, &fio);
1693         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1694         dec_page_count(sbi, F2FS_DIRTY_NODES);
1695         f2fs_up_read(&sbi->node_write);
1696
1697         if (wbc->for_reclaim) {
1698                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1699                 submitted = NULL;
1700         }
1701
1702         folio_unlock(folio);
1703
1704         if (unlikely(f2fs_cp_error(sbi))) {
1705                 f2fs_submit_merged_write(sbi, NODE);
1706                 submitted = NULL;
1707         }
1708         if (submitted)
1709                 *submitted = fio.submitted;
1710
1711         if (do_balance)
1712                 f2fs_balance_fs(sbi, false);
1713         return 0;
1714
1715 redirty_out:
1716         folio_redirty_for_writepage(wbc, folio);
1717         return AOP_WRITEPAGE_ACTIVATE;
1718 }
1719
1720 int f2fs_move_node_page(struct page *node_page, int gc_type)
1721 {
1722         int err = 0;
1723
1724         if (gc_type == FG_GC) {
1725                 struct writeback_control wbc = {
1726                         .sync_mode = WB_SYNC_ALL,
1727                         .nr_to_write = 1,
1728                         .for_reclaim = 0,
1729                 };
1730
1731                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1732
1733                 set_page_dirty(node_page);
1734
1735                 if (!clear_page_dirty_for_io(node_page)) {
1736                         err = -EAGAIN;
1737                         goto out_page;
1738                 }
1739
1740                 if (__write_node_page(node_page, false, NULL,
1741                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1742                         err = -EAGAIN;
1743                         unlock_page(node_page);
1744                 }
1745                 goto release_page;
1746         } else {
1747                 /* set page dirty and write it */
1748                 if (!folio_test_writeback(page_folio(node_page)))
1749                         set_page_dirty(node_page);
1750         }
1751 out_page:
1752         unlock_page(node_page);
1753 release_page:
1754         f2fs_put_page(node_page, 0);
1755         return err;
1756 }
1757
1758 static int f2fs_write_node_page(struct page *page,
1759                                 struct writeback_control *wbc)
1760 {
1761         return __write_node_page(page, false, NULL, wbc, false,
1762                                                 FS_NODE_IO, NULL);
1763 }
1764
1765 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1766                         struct writeback_control *wbc, bool atomic,
1767                         unsigned int *seq_id)
1768 {
1769         pgoff_t index;
1770         struct folio_batch fbatch;
1771         int ret = 0;
1772         struct page *last_page = NULL;
1773         bool marked = false;
1774         nid_t ino = inode->i_ino;
1775         int nr_folios;
1776         int nwritten = 0;
1777
1778         if (atomic) {
1779                 last_page = last_fsync_dnode(sbi, ino);
1780                 if (IS_ERR_OR_NULL(last_page))
1781                         return PTR_ERR_OR_ZERO(last_page);
1782         }
1783 retry:
1784         folio_batch_init(&fbatch);
1785         index = 0;
1786
1787         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1788                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1789                                         &fbatch))) {
1790                 int i;
1791
1792                 for (i = 0; i < nr_folios; i++) {
1793                         struct page *page = &fbatch.folios[i]->page;
1794                         bool submitted = false;
1795
1796                         if (unlikely(f2fs_cp_error(sbi))) {
1797                                 f2fs_put_page(last_page, 0);
1798                                 folio_batch_release(&fbatch);
1799                                 ret = -EIO;
1800                                 goto out;
1801                         }
1802
1803                         if (!IS_DNODE(page) || !is_cold_node(page))
1804                                 continue;
1805                         if (ino_of_node(page) != ino)
1806                                 continue;
1807
1808                         lock_page(page);
1809
1810                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1811 continue_unlock:
1812                                 unlock_page(page);
1813                                 continue;
1814                         }
1815                         if (ino_of_node(page) != ino)
1816                                 goto continue_unlock;
1817
1818                         if (!PageDirty(page) && page != last_page) {
1819                                 /* someone wrote it for us */
1820                                 goto continue_unlock;
1821                         }
1822
1823                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1824
1825                         set_fsync_mark(page, 0);
1826                         set_dentry_mark(page, 0);
1827
1828                         if (!atomic || page == last_page) {
1829                                 set_fsync_mark(page, 1);
1830                                 percpu_counter_inc(&sbi->rf_node_block_count);
1831                                 if (IS_INODE(page)) {
1832                                         if (is_inode_flag_set(inode,
1833                                                                 FI_DIRTY_INODE))
1834                                                 f2fs_update_inode(inode, page);
1835                                         set_dentry_mark(page,
1836                                                 f2fs_need_dentry_mark(sbi, ino));
1837                                 }
1838                                 /* may be written by other thread */
1839                                 if (!PageDirty(page))
1840                                         set_page_dirty(page);
1841                         }
1842
1843                         if (!clear_page_dirty_for_io(page))
1844                                 goto continue_unlock;
1845
1846                         ret = __write_node_page(page, atomic &&
1847                                                 page == last_page,
1848                                                 &submitted, wbc, true,
1849                                                 FS_NODE_IO, seq_id);
1850                         if (ret) {
1851                                 unlock_page(page);
1852                                 f2fs_put_page(last_page, 0);
1853                                 break;
1854                         } else if (submitted) {
1855                                 nwritten++;
1856                         }
1857
1858                         if (page == last_page) {
1859                                 f2fs_put_page(page, 0);
1860                                 marked = true;
1861                                 break;
1862                         }
1863                 }
1864                 folio_batch_release(&fbatch);
1865                 cond_resched();
1866
1867                 if (ret || marked)
1868                         break;
1869         }
1870         if (!ret && atomic && !marked) {
1871                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1872                            ino, page_folio(last_page)->index);
1873                 lock_page(last_page);
1874                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1875                 set_page_dirty(last_page);
1876                 unlock_page(last_page);
1877                 goto retry;
1878         }
1879 out:
1880         if (nwritten)
1881                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1882         return ret ? -EIO : 0;
1883 }
1884
1885 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1886 {
1887         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1888         bool clean;
1889
1890         if (inode->i_ino != ino)
1891                 return 0;
1892
1893         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1894                 return 0;
1895
1896         spin_lock(&sbi->inode_lock[DIRTY_META]);
1897         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1898         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1899
1900         if (clean)
1901                 return 0;
1902
1903         inode = igrab(inode);
1904         if (!inode)
1905                 return 0;
1906         return 1;
1907 }
1908
1909 static bool flush_dirty_inode(struct page *page)
1910 {
1911         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1912         struct inode *inode;
1913         nid_t ino = ino_of_node(page);
1914
1915         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1916         if (!inode)
1917                 return false;
1918
1919         f2fs_update_inode(inode, page);
1920         unlock_page(page);
1921
1922         iput(inode);
1923         return true;
1924 }
1925
1926 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1927 {
1928         pgoff_t index = 0;
1929         struct folio_batch fbatch;
1930         int nr_folios;
1931
1932         folio_batch_init(&fbatch);
1933
1934         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1935                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1936                                         &fbatch))) {
1937                 int i;
1938
1939                 for (i = 0; i < nr_folios; i++) {
1940                         struct page *page = &fbatch.folios[i]->page;
1941
1942                         if (!IS_INODE(page))
1943                                 continue;
1944
1945                         lock_page(page);
1946
1947                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1948 continue_unlock:
1949                                 unlock_page(page);
1950                                 continue;
1951                         }
1952
1953                         if (!PageDirty(page)) {
1954                                 /* someone wrote it for us */
1955                                 goto continue_unlock;
1956                         }
1957
1958                         /* flush inline_data, if it's async context. */
1959                         if (page_private_inline(page)) {
1960                                 clear_page_private_inline(page);
1961                                 unlock_page(page);
1962                                 flush_inline_data(sbi, ino_of_node(page));
1963                                 continue;
1964                         }
1965                         unlock_page(page);
1966                 }
1967                 folio_batch_release(&fbatch);
1968                 cond_resched();
1969         }
1970 }
1971
1972 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1973                                 struct writeback_control *wbc,
1974                                 bool do_balance, enum iostat_type io_type)
1975 {
1976         pgoff_t index;
1977         struct folio_batch fbatch;
1978         int step = 0;
1979         int nwritten = 0;
1980         int ret = 0;
1981         int nr_folios, done = 0;
1982
1983         folio_batch_init(&fbatch);
1984
1985 next_step:
1986         index = 0;
1987
1988         while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1989                                 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1990                                 &fbatch))) {
1991                 int i;
1992
1993                 for (i = 0; i < nr_folios; i++) {
1994                         struct page *page = &fbatch.folios[i]->page;
1995                         bool submitted = false;
1996
1997                         /* give a priority to WB_SYNC threads */
1998                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1999                                         wbc->sync_mode == WB_SYNC_NONE) {
2000                                 done = 1;
2001                                 break;
2002                         }
2003
2004                         /*
2005                          * flushing sequence with step:
2006                          * 0. indirect nodes
2007                          * 1. dentry dnodes
2008                          * 2. file dnodes
2009                          */
2010                         if (step == 0 && IS_DNODE(page))
2011                                 continue;
2012                         if (step == 1 && (!IS_DNODE(page) ||
2013                                                 is_cold_node(page)))
2014                                 continue;
2015                         if (step == 2 && (!IS_DNODE(page) ||
2016                                                 !is_cold_node(page)))
2017                                 continue;
2018 lock_node:
2019                         if (wbc->sync_mode == WB_SYNC_ALL)
2020                                 lock_page(page);
2021                         else if (!trylock_page(page))
2022                                 continue;
2023
2024                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2025 continue_unlock:
2026                                 unlock_page(page);
2027                                 continue;
2028                         }
2029
2030                         if (!PageDirty(page)) {
2031                                 /* someone wrote it for us */
2032                                 goto continue_unlock;
2033                         }
2034
2035                         /* flush inline_data/inode, if it's async context. */
2036                         if (!do_balance)
2037                                 goto write_node;
2038
2039                         /* flush inline_data */
2040                         if (page_private_inline(page)) {
2041                                 clear_page_private_inline(page);
2042                                 unlock_page(page);
2043                                 flush_inline_data(sbi, ino_of_node(page));
2044                                 goto lock_node;
2045                         }
2046
2047                         /* flush dirty inode */
2048                         if (IS_INODE(page) && flush_dirty_inode(page))
2049                                 goto lock_node;
2050 write_node:
2051                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2052
2053                         if (!clear_page_dirty_for_io(page))
2054                                 goto continue_unlock;
2055
2056                         set_fsync_mark(page, 0);
2057                         set_dentry_mark(page, 0);
2058
2059                         ret = __write_node_page(page, false, &submitted,
2060                                                 wbc, do_balance, io_type, NULL);
2061                         if (ret)
2062                                 unlock_page(page);
2063                         else if (submitted)
2064                                 nwritten++;
2065
2066                         if (--wbc->nr_to_write == 0)
2067                                 break;
2068                 }
2069                 folio_batch_release(&fbatch);
2070                 cond_resched();
2071
2072                 if (wbc->nr_to_write == 0) {
2073                         step = 2;
2074                         break;
2075                 }
2076         }
2077
2078         if (step < 2) {
2079                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2080                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2081                         goto out;
2082                 step++;
2083                 goto next_step;
2084         }
2085 out:
2086         if (nwritten)
2087                 f2fs_submit_merged_write(sbi, NODE);
2088
2089         if (unlikely(f2fs_cp_error(sbi)))
2090                 return -EIO;
2091         return ret;
2092 }
2093
2094 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2095                                                 unsigned int seq_id)
2096 {
2097         struct fsync_node_entry *fn;
2098         struct page *page;
2099         struct list_head *head = &sbi->fsync_node_list;
2100         unsigned long flags;
2101         unsigned int cur_seq_id = 0;
2102
2103         while (seq_id && cur_seq_id < seq_id) {
2104                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2105                 if (list_empty(head)) {
2106                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2107                         break;
2108                 }
2109                 fn = list_first_entry(head, struct fsync_node_entry, list);
2110                 if (fn->seq_id > seq_id) {
2111                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2112                         break;
2113                 }
2114                 cur_seq_id = fn->seq_id;
2115                 page = fn->page;
2116                 get_page(page);
2117                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2118
2119                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2120
2121                 put_page(page);
2122         }
2123
2124         return filemap_check_errors(NODE_MAPPING(sbi));
2125 }
2126
2127 static int f2fs_write_node_pages(struct address_space *mapping,
2128                             struct writeback_control *wbc)
2129 {
2130         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2131         struct blk_plug plug;
2132         long diff;
2133
2134         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2135                 goto skip_write;
2136
2137         /* balancing f2fs's metadata in background */
2138         f2fs_balance_fs_bg(sbi, true);
2139
2140         /* collect a number of dirty node pages and write together */
2141         if (wbc->sync_mode != WB_SYNC_ALL &&
2142                         get_pages(sbi, F2FS_DIRTY_NODES) <
2143                                         nr_pages_to_skip(sbi, NODE))
2144                 goto skip_write;
2145
2146         if (wbc->sync_mode == WB_SYNC_ALL)
2147                 atomic_inc(&sbi->wb_sync_req[NODE]);
2148         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2149                 /* to avoid potential deadlock */
2150                 if (current->plug)
2151                         blk_finish_plug(current->plug);
2152                 goto skip_write;
2153         }
2154
2155         trace_f2fs_writepages(mapping->host, wbc, NODE);
2156
2157         diff = nr_pages_to_write(sbi, NODE, wbc);
2158         blk_start_plug(&plug);
2159         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2160         blk_finish_plug(&plug);
2161         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2162
2163         if (wbc->sync_mode == WB_SYNC_ALL)
2164                 atomic_dec(&sbi->wb_sync_req[NODE]);
2165         return 0;
2166
2167 skip_write:
2168         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2169         trace_f2fs_writepages(mapping->host, wbc, NODE);
2170         return 0;
2171 }
2172
2173 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2174                 struct folio *folio)
2175 {
2176         trace_f2fs_set_page_dirty(folio, NODE);
2177
2178         if (!folio_test_uptodate(folio))
2179                 folio_mark_uptodate(folio);
2180 #ifdef CONFIG_F2FS_CHECK_FS
2181         if (IS_INODE(&folio->page))
2182                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2183 #endif
2184         if (filemap_dirty_folio(mapping, folio)) {
2185                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2186                 set_page_private_reference(&folio->page);
2187                 return true;
2188         }
2189         return false;
2190 }
2191
2192 /*
2193  * Structure of the f2fs node operations
2194  */
2195 const struct address_space_operations f2fs_node_aops = {
2196         .writepage      = f2fs_write_node_page,
2197         .writepages     = f2fs_write_node_pages,
2198         .dirty_folio    = f2fs_dirty_node_folio,
2199         .invalidate_folio = f2fs_invalidate_folio,
2200         .release_folio  = f2fs_release_folio,
2201         .migrate_folio  = filemap_migrate_folio,
2202 };
2203
2204 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2205                                                 nid_t n)
2206 {
2207         return radix_tree_lookup(&nm_i->free_nid_root, n);
2208 }
2209
2210 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2211                                 struct free_nid *i)
2212 {
2213         struct f2fs_nm_info *nm_i = NM_I(sbi);
2214         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2215
2216         if (err)
2217                 return err;
2218
2219         nm_i->nid_cnt[FREE_NID]++;
2220         list_add_tail(&i->list, &nm_i->free_nid_list);
2221         return 0;
2222 }
2223
2224 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2225                         struct free_nid *i, enum nid_state state)
2226 {
2227         struct f2fs_nm_info *nm_i = NM_I(sbi);
2228
2229         f2fs_bug_on(sbi, state != i->state);
2230         nm_i->nid_cnt[state]--;
2231         if (state == FREE_NID)
2232                 list_del(&i->list);
2233         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2234 }
2235
2236 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2237                         enum nid_state org_state, enum nid_state dst_state)
2238 {
2239         struct f2fs_nm_info *nm_i = NM_I(sbi);
2240
2241         f2fs_bug_on(sbi, org_state != i->state);
2242         i->state = dst_state;
2243         nm_i->nid_cnt[org_state]--;
2244         nm_i->nid_cnt[dst_state]++;
2245
2246         switch (dst_state) {
2247         case PREALLOC_NID:
2248                 list_del(&i->list);
2249                 break;
2250         case FREE_NID:
2251                 list_add_tail(&i->list, &nm_i->free_nid_list);
2252                 break;
2253         default:
2254                 BUG_ON(1);
2255         }
2256 }
2257
2258 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2259 {
2260         struct f2fs_nm_info *nm_i = NM_I(sbi);
2261         unsigned int i;
2262         bool ret = true;
2263
2264         f2fs_down_read(&nm_i->nat_tree_lock);
2265         for (i = 0; i < nm_i->nat_blocks; i++) {
2266                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2267                         ret = false;
2268                         break;
2269                 }
2270         }
2271         f2fs_up_read(&nm_i->nat_tree_lock);
2272
2273         return ret;
2274 }
2275
2276 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2277                                                         bool set, bool build)
2278 {
2279         struct f2fs_nm_info *nm_i = NM_I(sbi);
2280         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2281         unsigned int nid_ofs = nid - START_NID(nid);
2282
2283         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2284                 return;
2285
2286         if (set) {
2287                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2288                         return;
2289                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2290                 nm_i->free_nid_count[nat_ofs]++;
2291         } else {
2292                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2293                         return;
2294                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2295                 if (!build)
2296                         nm_i->free_nid_count[nat_ofs]--;
2297         }
2298 }
2299
2300 /* return if the nid is recognized as free */
2301 static bool add_free_nid(struct f2fs_sb_info *sbi,
2302                                 nid_t nid, bool build, bool update)
2303 {
2304         struct f2fs_nm_info *nm_i = NM_I(sbi);
2305         struct free_nid *i, *e;
2306         struct nat_entry *ne;
2307         int err = -EINVAL;
2308         bool ret = false;
2309
2310         /* 0 nid should not be used */
2311         if (unlikely(nid == 0))
2312                 return false;
2313
2314         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2315                 return false;
2316
2317         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2318         i->nid = nid;
2319         i->state = FREE_NID;
2320
2321         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2322
2323         spin_lock(&nm_i->nid_list_lock);
2324
2325         if (build) {
2326                 /*
2327                  *   Thread A             Thread B
2328                  *  - f2fs_create
2329                  *   - f2fs_new_inode
2330                  *    - f2fs_alloc_nid
2331                  *     - __insert_nid_to_list(PREALLOC_NID)
2332                  *                     - f2fs_balance_fs_bg
2333                  *                      - f2fs_build_free_nids
2334                  *                       - __f2fs_build_free_nids
2335                  *                        - scan_nat_page
2336                  *                         - add_free_nid
2337                  *                          - __lookup_nat_cache
2338                  *  - f2fs_add_link
2339                  *   - f2fs_init_inode_metadata
2340                  *    - f2fs_new_inode_page
2341                  *     - f2fs_new_node_page
2342                  *      - set_node_addr
2343                  *  - f2fs_alloc_nid_done
2344                  *   - __remove_nid_from_list(PREALLOC_NID)
2345                  *                         - __insert_nid_to_list(FREE_NID)
2346                  */
2347                 ne = __lookup_nat_cache(nm_i, nid);
2348                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2349                                 nat_get_blkaddr(ne) != NULL_ADDR))
2350                         goto err_out;
2351
2352                 e = __lookup_free_nid_list(nm_i, nid);
2353                 if (e) {
2354                         if (e->state == FREE_NID)
2355                                 ret = true;
2356                         goto err_out;
2357                 }
2358         }
2359         ret = true;
2360         err = __insert_free_nid(sbi, i);
2361 err_out:
2362         if (update) {
2363                 update_free_nid_bitmap(sbi, nid, ret, build);
2364                 if (!build)
2365                         nm_i->available_nids++;
2366         }
2367         spin_unlock(&nm_i->nid_list_lock);
2368         radix_tree_preload_end();
2369
2370         if (err)
2371                 kmem_cache_free(free_nid_slab, i);
2372         return ret;
2373 }
2374
2375 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2376 {
2377         struct f2fs_nm_info *nm_i = NM_I(sbi);
2378         struct free_nid *i;
2379         bool need_free = false;
2380
2381         spin_lock(&nm_i->nid_list_lock);
2382         i = __lookup_free_nid_list(nm_i, nid);
2383         if (i && i->state == FREE_NID) {
2384                 __remove_free_nid(sbi, i, FREE_NID);
2385                 need_free = true;
2386         }
2387         spin_unlock(&nm_i->nid_list_lock);
2388
2389         if (need_free)
2390                 kmem_cache_free(free_nid_slab, i);
2391 }
2392
2393 static int scan_nat_page(struct f2fs_sb_info *sbi,
2394                         struct page *nat_page, nid_t start_nid)
2395 {
2396         struct f2fs_nm_info *nm_i = NM_I(sbi);
2397         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2398         block_t blk_addr;
2399         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2400         int i;
2401
2402         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2403
2404         i = start_nid % NAT_ENTRY_PER_BLOCK;
2405
2406         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2407                 if (unlikely(start_nid >= nm_i->max_nid))
2408                         break;
2409
2410                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2411
2412                 if (blk_addr == NEW_ADDR)
2413                         return -EFSCORRUPTED;
2414
2415                 if (blk_addr == NULL_ADDR) {
2416                         add_free_nid(sbi, start_nid, true, true);
2417                 } else {
2418                         spin_lock(&NM_I(sbi)->nid_list_lock);
2419                         update_free_nid_bitmap(sbi, start_nid, false, true);
2420                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2421                 }
2422         }
2423
2424         return 0;
2425 }
2426
2427 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2428 {
2429         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2430         struct f2fs_journal *journal = curseg->journal;
2431         int i;
2432
2433         down_read(&curseg->journal_rwsem);
2434         for (i = 0; i < nats_in_cursum(journal); i++) {
2435                 block_t addr;
2436                 nid_t nid;
2437
2438                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2439                 nid = le32_to_cpu(nid_in_journal(journal, i));
2440                 if (addr == NULL_ADDR)
2441                         add_free_nid(sbi, nid, true, false);
2442                 else
2443                         remove_free_nid(sbi, nid);
2444         }
2445         up_read(&curseg->journal_rwsem);
2446 }
2447
2448 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2449 {
2450         struct f2fs_nm_info *nm_i = NM_I(sbi);
2451         unsigned int i, idx;
2452         nid_t nid;
2453
2454         f2fs_down_read(&nm_i->nat_tree_lock);
2455
2456         for (i = 0; i < nm_i->nat_blocks; i++) {
2457                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2458                         continue;
2459                 if (!nm_i->free_nid_count[i])
2460                         continue;
2461                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2462                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2463                                                 NAT_ENTRY_PER_BLOCK, idx);
2464                         if (idx >= NAT_ENTRY_PER_BLOCK)
2465                                 break;
2466
2467                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2468                         add_free_nid(sbi, nid, true, false);
2469
2470                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2471                                 goto out;
2472                 }
2473         }
2474 out:
2475         scan_curseg_cache(sbi);
2476
2477         f2fs_up_read(&nm_i->nat_tree_lock);
2478 }
2479
2480 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2481                                                 bool sync, bool mount)
2482 {
2483         struct f2fs_nm_info *nm_i = NM_I(sbi);
2484         int i = 0, ret;
2485         nid_t nid = nm_i->next_scan_nid;
2486
2487         if (unlikely(nid >= nm_i->max_nid))
2488                 nid = 0;
2489
2490         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2491                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2492
2493         /* Enough entries */
2494         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2495                 return 0;
2496
2497         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2498                 return 0;
2499
2500         if (!mount) {
2501                 /* try to find free nids in free_nid_bitmap */
2502                 scan_free_nid_bits(sbi);
2503
2504                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2505                         return 0;
2506         }
2507
2508         /* readahead nat pages to be scanned */
2509         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2510                                                         META_NAT, true);
2511
2512         f2fs_down_read(&nm_i->nat_tree_lock);
2513
2514         while (1) {
2515                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2516                                                 nm_i->nat_block_bitmap)) {
2517                         struct page *page = get_current_nat_page(sbi, nid);
2518
2519                         if (IS_ERR(page)) {
2520                                 ret = PTR_ERR(page);
2521                         } else {
2522                                 ret = scan_nat_page(sbi, page, nid);
2523                                 f2fs_put_page(page, 1);
2524                         }
2525
2526                         if (ret) {
2527                                 f2fs_up_read(&nm_i->nat_tree_lock);
2528
2529                                 if (ret == -EFSCORRUPTED) {
2530                                         f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2531                                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2532                                         f2fs_handle_error(sbi,
2533                                                 ERROR_INCONSISTENT_NAT);
2534                                 }
2535
2536                                 return ret;
2537                         }
2538                 }
2539
2540                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2541                 if (unlikely(nid >= nm_i->max_nid))
2542                         nid = 0;
2543
2544                 if (++i >= FREE_NID_PAGES)
2545                         break;
2546         }
2547
2548         /* go to the next free nat pages to find free nids abundantly */
2549         nm_i->next_scan_nid = nid;
2550
2551         /* find free nids from current sum_pages */
2552         scan_curseg_cache(sbi);
2553
2554         f2fs_up_read(&nm_i->nat_tree_lock);
2555
2556         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2557                                         nm_i->ra_nid_pages, META_NAT, false);
2558
2559         return 0;
2560 }
2561
2562 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2563 {
2564         int ret;
2565
2566         mutex_lock(&NM_I(sbi)->build_lock);
2567         ret = __f2fs_build_free_nids(sbi, sync, mount);
2568         mutex_unlock(&NM_I(sbi)->build_lock);
2569
2570         return ret;
2571 }
2572
2573 /*
2574  * If this function returns success, caller can obtain a new nid
2575  * from second parameter of this function.
2576  * The returned nid could be used ino as well as nid when inode is created.
2577  */
2578 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2579 {
2580         struct f2fs_nm_info *nm_i = NM_I(sbi);
2581         struct free_nid *i = NULL;
2582 retry:
2583         if (time_to_inject(sbi, FAULT_ALLOC_NID))
2584                 return false;
2585
2586         spin_lock(&nm_i->nid_list_lock);
2587
2588         if (unlikely(nm_i->available_nids == 0)) {
2589                 spin_unlock(&nm_i->nid_list_lock);
2590                 return false;
2591         }
2592
2593         /* We should not use stale free nids created by f2fs_build_free_nids */
2594         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2595                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2596                 i = list_first_entry(&nm_i->free_nid_list,
2597                                         struct free_nid, list);
2598                 *nid = i->nid;
2599
2600                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2601                 nm_i->available_nids--;
2602
2603                 update_free_nid_bitmap(sbi, *nid, false, false);
2604
2605                 spin_unlock(&nm_i->nid_list_lock);
2606                 return true;
2607         }
2608         spin_unlock(&nm_i->nid_list_lock);
2609
2610         /* Let's scan nat pages and its caches to get free nids */
2611         if (!f2fs_build_free_nids(sbi, true, false))
2612                 goto retry;
2613         return false;
2614 }
2615
2616 /*
2617  * f2fs_alloc_nid() should be called prior to this function.
2618  */
2619 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2620 {
2621         struct f2fs_nm_info *nm_i = NM_I(sbi);
2622         struct free_nid *i;
2623
2624         spin_lock(&nm_i->nid_list_lock);
2625         i = __lookup_free_nid_list(nm_i, nid);
2626         f2fs_bug_on(sbi, !i);
2627         __remove_free_nid(sbi, i, PREALLOC_NID);
2628         spin_unlock(&nm_i->nid_list_lock);
2629
2630         kmem_cache_free(free_nid_slab, i);
2631 }
2632
2633 /*
2634  * f2fs_alloc_nid() should be called prior to this function.
2635  */
2636 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2637 {
2638         struct f2fs_nm_info *nm_i = NM_I(sbi);
2639         struct free_nid *i;
2640         bool need_free = false;
2641
2642         if (!nid)
2643                 return;
2644
2645         spin_lock(&nm_i->nid_list_lock);
2646         i = __lookup_free_nid_list(nm_i, nid);
2647         f2fs_bug_on(sbi, !i);
2648
2649         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2650                 __remove_free_nid(sbi, i, PREALLOC_NID);
2651                 need_free = true;
2652         } else {
2653                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2654         }
2655
2656         nm_i->available_nids++;
2657
2658         update_free_nid_bitmap(sbi, nid, true, false);
2659
2660         spin_unlock(&nm_i->nid_list_lock);
2661
2662         if (need_free)
2663                 kmem_cache_free(free_nid_slab, i);
2664 }
2665
2666 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2667 {
2668         struct f2fs_nm_info *nm_i = NM_I(sbi);
2669         int nr = nr_shrink;
2670
2671         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2672                 return 0;
2673
2674         if (!mutex_trylock(&nm_i->build_lock))
2675                 return 0;
2676
2677         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2678                 struct free_nid *i, *next;
2679                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2680
2681                 spin_lock(&nm_i->nid_list_lock);
2682                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2683                         if (!nr_shrink || !batch ||
2684                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2685                                 break;
2686                         __remove_free_nid(sbi, i, FREE_NID);
2687                         kmem_cache_free(free_nid_slab, i);
2688                         nr_shrink--;
2689                         batch--;
2690                 }
2691                 spin_unlock(&nm_i->nid_list_lock);
2692         }
2693
2694         mutex_unlock(&nm_i->build_lock);
2695
2696         return nr - nr_shrink;
2697 }
2698
2699 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2700 {
2701         void *src_addr, *dst_addr;
2702         size_t inline_size;
2703         struct page *ipage;
2704         struct f2fs_inode *ri;
2705
2706         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2707         if (IS_ERR(ipage))
2708                 return PTR_ERR(ipage);
2709
2710         ri = F2FS_INODE(page);
2711         if (ri->i_inline & F2FS_INLINE_XATTR) {
2712                 if (!f2fs_has_inline_xattr(inode)) {
2713                         set_inode_flag(inode, FI_INLINE_XATTR);
2714                         stat_inc_inline_xattr(inode);
2715                 }
2716         } else {
2717                 if (f2fs_has_inline_xattr(inode)) {
2718                         stat_dec_inline_xattr(inode);
2719                         clear_inode_flag(inode, FI_INLINE_XATTR);
2720                 }
2721                 goto update_inode;
2722         }
2723
2724         dst_addr = inline_xattr_addr(inode, ipage);
2725         src_addr = inline_xattr_addr(inode, page);
2726         inline_size = inline_xattr_size(inode);
2727
2728         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2729         memcpy(dst_addr, src_addr, inline_size);
2730 update_inode:
2731         f2fs_update_inode(inode, ipage);
2732         f2fs_put_page(ipage, 1);
2733         return 0;
2734 }
2735
2736 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2737 {
2738         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2740         nid_t new_xnid;
2741         struct dnode_of_data dn;
2742         struct node_info ni;
2743         struct page *xpage;
2744         int err;
2745
2746         if (!prev_xnid)
2747                 goto recover_xnid;
2748
2749         /* 1: invalidate the previous xattr nid */
2750         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2751         if (err)
2752                 return err;
2753
2754         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2755         dec_valid_node_count(sbi, inode, false);
2756         set_node_addr(sbi, &ni, NULL_ADDR, false);
2757
2758 recover_xnid:
2759         /* 2: update xattr nid in inode */
2760         if (!f2fs_alloc_nid(sbi, &new_xnid))
2761                 return -ENOSPC;
2762
2763         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2764         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2765         if (IS_ERR(xpage)) {
2766                 f2fs_alloc_nid_failed(sbi, new_xnid);
2767                 return PTR_ERR(xpage);
2768         }
2769
2770         f2fs_alloc_nid_done(sbi, new_xnid);
2771         f2fs_update_inode_page(inode);
2772
2773         /* 3: update and set xattr node page dirty */
2774         if (page) {
2775                 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2776                                 VALID_XATTR_BLOCK_SIZE);
2777                 set_page_dirty(xpage);
2778         }
2779         f2fs_put_page(xpage, 1);
2780
2781         return 0;
2782 }
2783
2784 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2785 {
2786         struct f2fs_inode *src, *dst;
2787         nid_t ino = ino_of_node(page);
2788         struct node_info old_ni, new_ni;
2789         struct page *ipage;
2790         int err;
2791
2792         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2793         if (err)
2794                 return err;
2795
2796         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2797                 return -EINVAL;
2798 retry:
2799         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2800         if (!ipage) {
2801                 memalloc_retry_wait(GFP_NOFS);
2802                 goto retry;
2803         }
2804
2805         /* Should not use this inode from free nid list */
2806         remove_free_nid(sbi, ino);
2807
2808         if (!PageUptodate(ipage))
2809                 SetPageUptodate(ipage);
2810         fill_node_footer(ipage, ino, ino, 0, true);
2811         set_cold_node(ipage, false);
2812
2813         src = F2FS_INODE(page);
2814         dst = F2FS_INODE(ipage);
2815
2816         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2817         dst->i_size = 0;
2818         dst->i_blocks = cpu_to_le64(1);
2819         dst->i_links = cpu_to_le32(1);
2820         dst->i_xattr_nid = 0;
2821         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2822         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2823                 dst->i_extra_isize = src->i_extra_isize;
2824
2825                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2826                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2827                                                         i_inline_xattr_size))
2828                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2829
2830                 if (f2fs_sb_has_project_quota(sbi) &&
2831                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2832                                                                 i_projid))
2833                         dst->i_projid = src->i_projid;
2834
2835                 if (f2fs_sb_has_inode_crtime(sbi) &&
2836                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2837                                                         i_crtime_nsec)) {
2838                         dst->i_crtime = src->i_crtime;
2839                         dst->i_crtime_nsec = src->i_crtime_nsec;
2840                 }
2841         }
2842
2843         new_ni = old_ni;
2844         new_ni.ino = ino;
2845
2846         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2847                 WARN_ON(1);
2848         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2849         inc_valid_inode_count(sbi);
2850         set_page_dirty(ipage);
2851         f2fs_put_page(ipage, 1);
2852         return 0;
2853 }
2854
2855 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2856                         unsigned int segno, struct f2fs_summary_block *sum)
2857 {
2858         struct f2fs_node *rn;
2859         struct f2fs_summary *sum_entry;
2860         block_t addr;
2861         int i, idx, last_offset, nrpages;
2862
2863         /* scan the node segment */
2864         last_offset = BLKS_PER_SEG(sbi);
2865         addr = START_BLOCK(sbi, segno);
2866         sum_entry = &sum->entries[0];
2867
2868         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2869                 nrpages = bio_max_segs(last_offset - i);
2870
2871                 /* readahead node pages */
2872                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2873
2874                 for (idx = addr; idx < addr + nrpages; idx++) {
2875                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2876
2877                         if (IS_ERR(page))
2878                                 return PTR_ERR(page);
2879
2880                         rn = F2FS_NODE(page);
2881                         sum_entry->nid = rn->footer.nid;
2882                         sum_entry->version = 0;
2883                         sum_entry->ofs_in_node = 0;
2884                         sum_entry++;
2885                         f2fs_put_page(page, 1);
2886                 }
2887
2888                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2889                                                         addr + nrpages);
2890         }
2891         return 0;
2892 }
2893
2894 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2895 {
2896         struct f2fs_nm_info *nm_i = NM_I(sbi);
2897         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2898         struct f2fs_journal *journal = curseg->journal;
2899         int i;
2900
2901         down_write(&curseg->journal_rwsem);
2902         for (i = 0; i < nats_in_cursum(journal); i++) {
2903                 struct nat_entry *ne;
2904                 struct f2fs_nat_entry raw_ne;
2905                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2906
2907                 if (f2fs_check_nid_range(sbi, nid))
2908                         continue;
2909
2910                 raw_ne = nat_in_journal(journal, i);
2911
2912                 ne = __lookup_nat_cache(nm_i, nid);
2913                 if (!ne) {
2914                         ne = __alloc_nat_entry(sbi, nid, true);
2915                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2916                 }
2917
2918                 /*
2919                  * if a free nat in journal has not been used after last
2920                  * checkpoint, we should remove it from available nids,
2921                  * since later we will add it again.
2922                  */
2923                 if (!get_nat_flag(ne, IS_DIRTY) &&
2924                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2925                         spin_lock(&nm_i->nid_list_lock);
2926                         nm_i->available_nids--;
2927                         spin_unlock(&nm_i->nid_list_lock);
2928                 }
2929
2930                 __set_nat_cache_dirty(nm_i, ne);
2931         }
2932         update_nats_in_cursum(journal, -i);
2933         up_write(&curseg->journal_rwsem);
2934 }
2935
2936 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2937                                                 struct list_head *head, int max)
2938 {
2939         struct nat_entry_set *cur;
2940
2941         if (nes->entry_cnt >= max)
2942                 goto add_out;
2943
2944         list_for_each_entry(cur, head, set_list) {
2945                 if (cur->entry_cnt >= nes->entry_cnt) {
2946                         list_add(&nes->set_list, cur->set_list.prev);
2947                         return;
2948                 }
2949         }
2950 add_out:
2951         list_add_tail(&nes->set_list, head);
2952 }
2953
2954 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2955                                                         unsigned int valid)
2956 {
2957         if (valid == 0) {
2958                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2959                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2960                 return;
2961         }
2962
2963         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2964         if (valid == NAT_ENTRY_PER_BLOCK)
2965                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2966         else
2967                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2968 }
2969
2970 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2971                                                 struct page *page)
2972 {
2973         struct f2fs_nm_info *nm_i = NM_I(sbi);
2974         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2975         struct f2fs_nat_block *nat_blk = page_address(page);
2976         int valid = 0;
2977         int i = 0;
2978
2979         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2980                 return;
2981
2982         if (nat_index == 0) {
2983                 valid = 1;
2984                 i = 1;
2985         }
2986         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2987                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2988                         valid++;
2989         }
2990
2991         __update_nat_bits(nm_i, nat_index, valid);
2992 }
2993
2994 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2995 {
2996         struct f2fs_nm_info *nm_i = NM_I(sbi);
2997         unsigned int nat_ofs;
2998
2999         f2fs_down_read(&nm_i->nat_tree_lock);
3000
3001         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3002                 unsigned int valid = 0, nid_ofs = 0;
3003
3004                 /* handle nid zero due to it should never be used */
3005                 if (unlikely(nat_ofs == 0)) {
3006                         valid = 1;
3007                         nid_ofs = 1;
3008                 }
3009
3010                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3011                         if (!test_bit_le(nid_ofs,
3012                                         nm_i->free_nid_bitmap[nat_ofs]))
3013                                 valid++;
3014                 }
3015
3016                 __update_nat_bits(nm_i, nat_ofs, valid);
3017         }
3018
3019         f2fs_up_read(&nm_i->nat_tree_lock);
3020 }
3021
3022 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3023                 struct nat_entry_set *set, struct cp_control *cpc)
3024 {
3025         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3026         struct f2fs_journal *journal = curseg->journal;
3027         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3028         bool to_journal = true;
3029         struct f2fs_nat_block *nat_blk;
3030         struct nat_entry *ne, *cur;
3031         struct page *page = NULL;
3032
3033         /*
3034          * there are two steps to flush nat entries:
3035          * #1, flush nat entries to journal in current hot data summary block.
3036          * #2, flush nat entries to nat page.
3037          */
3038         if ((cpc->reason & CP_UMOUNT) ||
3039                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3040                 to_journal = false;
3041
3042         if (to_journal) {
3043                 down_write(&curseg->journal_rwsem);
3044         } else {
3045                 page = get_next_nat_page(sbi, start_nid);
3046                 if (IS_ERR(page))
3047                         return PTR_ERR(page);
3048
3049                 nat_blk = page_address(page);
3050                 f2fs_bug_on(sbi, !nat_blk);
3051         }
3052
3053         /* flush dirty nats in nat entry set */
3054         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3055                 struct f2fs_nat_entry *raw_ne;
3056                 nid_t nid = nat_get_nid(ne);
3057                 int offset;
3058
3059                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3060
3061                 if (to_journal) {
3062                         offset = f2fs_lookup_journal_in_cursum(journal,
3063                                                         NAT_JOURNAL, nid, 1);
3064                         f2fs_bug_on(sbi, offset < 0);
3065                         raw_ne = &nat_in_journal(journal, offset);
3066                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3067                 } else {
3068                         raw_ne = &nat_blk->entries[nid - start_nid];
3069                 }
3070                 raw_nat_from_node_info(raw_ne, &ne->ni);
3071                 nat_reset_flag(ne);
3072                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3073                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3074                         add_free_nid(sbi, nid, false, true);
3075                 } else {
3076                         spin_lock(&NM_I(sbi)->nid_list_lock);
3077                         update_free_nid_bitmap(sbi, nid, false, false);
3078                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3079                 }
3080         }
3081
3082         if (to_journal) {
3083                 up_write(&curseg->journal_rwsem);
3084         } else {
3085                 update_nat_bits(sbi, start_nid, page);
3086                 f2fs_put_page(page, 1);
3087         }
3088
3089         /* Allow dirty nats by node block allocation in write_begin */
3090         if (!set->entry_cnt) {
3091                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3092                 kmem_cache_free(nat_entry_set_slab, set);
3093         }
3094         return 0;
3095 }
3096
3097 /*
3098  * This function is called during the checkpointing process.
3099  */
3100 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3101 {
3102         struct f2fs_nm_info *nm_i = NM_I(sbi);
3103         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3104         struct f2fs_journal *journal = curseg->journal;
3105         struct nat_entry_set *setvec[NAT_VEC_SIZE];
3106         struct nat_entry_set *set, *tmp;
3107         unsigned int found;
3108         nid_t set_idx = 0;
3109         LIST_HEAD(sets);
3110         int err = 0;
3111
3112         /*
3113          * during unmount, let's flush nat_bits before checking
3114          * nat_cnt[DIRTY_NAT].
3115          */
3116         if (cpc->reason & CP_UMOUNT) {
3117                 f2fs_down_write(&nm_i->nat_tree_lock);
3118                 remove_nats_in_journal(sbi);
3119                 f2fs_up_write(&nm_i->nat_tree_lock);
3120         }
3121
3122         if (!nm_i->nat_cnt[DIRTY_NAT])
3123                 return 0;
3124
3125         f2fs_down_write(&nm_i->nat_tree_lock);
3126
3127         /*
3128          * if there are no enough space in journal to store dirty nat
3129          * entries, remove all entries from journal and merge them
3130          * into nat entry set.
3131          */
3132         if (cpc->reason & CP_UMOUNT ||
3133                 !__has_cursum_space(journal,
3134                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3135                 remove_nats_in_journal(sbi);
3136
3137         while ((found = __gang_lookup_nat_set(nm_i,
3138                                         set_idx, NAT_VEC_SIZE, setvec))) {
3139                 unsigned idx;
3140
3141                 set_idx = setvec[found - 1]->set + 1;
3142                 for (idx = 0; idx < found; idx++)
3143                         __adjust_nat_entry_set(setvec[idx], &sets,
3144                                                 MAX_NAT_JENTRIES(journal));
3145         }
3146
3147         /* flush dirty nats in nat entry set */
3148         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3149                 err = __flush_nat_entry_set(sbi, set, cpc);
3150                 if (err)
3151                         break;
3152         }
3153
3154         f2fs_up_write(&nm_i->nat_tree_lock);
3155         /* Allow dirty nats by node block allocation in write_begin */
3156
3157         return err;
3158 }
3159
3160 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3161 {
3162         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3163         struct f2fs_nm_info *nm_i = NM_I(sbi);
3164         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3165         unsigned int i;
3166         __u64 cp_ver = cur_cp_version(ckpt);
3167         block_t nat_bits_addr;
3168
3169         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3170         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3171                         F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3172         if (!nm_i->nat_bits)
3173                 return -ENOMEM;
3174
3175         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3176         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3177
3178         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3179                 return 0;
3180
3181         nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3182                                                 nm_i->nat_bits_blocks;
3183         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3184                 struct page *page;
3185
3186                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3187                 if (IS_ERR(page))
3188                         return PTR_ERR(page);
3189
3190                 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3191                                         page_address(page), F2FS_BLKSIZE);
3192                 f2fs_put_page(page, 1);
3193         }
3194
3195         cp_ver |= (cur_cp_crc(ckpt) << 32);
3196         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3197                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3198                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3199                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3200                 return 0;
3201         }
3202
3203         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3204         return 0;
3205 }
3206
3207 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3208 {
3209         struct f2fs_nm_info *nm_i = NM_I(sbi);
3210         unsigned int i = 0;
3211         nid_t nid, last_nid;
3212
3213         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3214                 return;
3215
3216         for (i = 0; i < nm_i->nat_blocks; i++) {
3217                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3218                 if (i >= nm_i->nat_blocks)
3219                         break;
3220
3221                 __set_bit_le(i, nm_i->nat_block_bitmap);
3222
3223                 nid = i * NAT_ENTRY_PER_BLOCK;
3224                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3225
3226                 spin_lock(&NM_I(sbi)->nid_list_lock);
3227                 for (; nid < last_nid; nid++)
3228                         update_free_nid_bitmap(sbi, nid, true, true);
3229                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3230         }
3231
3232         for (i = 0; i < nm_i->nat_blocks; i++) {
3233                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3234                 if (i >= nm_i->nat_blocks)
3235                         break;
3236
3237                 __set_bit_le(i, nm_i->nat_block_bitmap);
3238         }
3239 }
3240
3241 static int init_node_manager(struct f2fs_sb_info *sbi)
3242 {
3243         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3244         struct f2fs_nm_info *nm_i = NM_I(sbi);
3245         unsigned char *version_bitmap;
3246         unsigned int nat_segs;
3247         int err;
3248
3249         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3250
3251         /* segment_count_nat includes pair segment so divide to 2. */
3252         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3253         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3254         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3255
3256         /* not used nids: 0, node, meta, (and root counted as valid node) */
3257         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3258                                                 F2FS_RESERVED_NODE_NUM;
3259         nm_i->nid_cnt[FREE_NID] = 0;
3260         nm_i->nid_cnt[PREALLOC_NID] = 0;
3261         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3262         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3263         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3264         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3265
3266         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3267         INIT_LIST_HEAD(&nm_i->free_nid_list);
3268         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3269         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3270         INIT_LIST_HEAD(&nm_i->nat_entries);
3271         spin_lock_init(&nm_i->nat_list_lock);
3272
3273         mutex_init(&nm_i->build_lock);
3274         spin_lock_init(&nm_i->nid_list_lock);
3275         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3276
3277         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3278         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3279         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3280         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3281                                         GFP_KERNEL);
3282         if (!nm_i->nat_bitmap)
3283                 return -ENOMEM;
3284
3285         err = __get_nat_bitmaps(sbi);
3286         if (err)
3287                 return err;
3288
3289 #ifdef CONFIG_F2FS_CHECK_FS
3290         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3291                                         GFP_KERNEL);
3292         if (!nm_i->nat_bitmap_mir)
3293                 return -ENOMEM;
3294 #endif
3295
3296         return 0;
3297 }
3298
3299 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3300 {
3301         struct f2fs_nm_info *nm_i = NM_I(sbi);
3302         int i;
3303
3304         nm_i->free_nid_bitmap =
3305                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3306                                               nm_i->nat_blocks),
3307                               GFP_KERNEL);
3308         if (!nm_i->free_nid_bitmap)
3309                 return -ENOMEM;
3310
3311         for (i = 0; i < nm_i->nat_blocks; i++) {
3312                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3313                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3314                 if (!nm_i->free_nid_bitmap[i])
3315                         return -ENOMEM;
3316         }
3317
3318         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3319                                                                 GFP_KERNEL);
3320         if (!nm_i->nat_block_bitmap)
3321                 return -ENOMEM;
3322
3323         nm_i->free_nid_count =
3324                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3325                                               nm_i->nat_blocks),
3326                               GFP_KERNEL);
3327         if (!nm_i->free_nid_count)
3328                 return -ENOMEM;
3329         return 0;
3330 }
3331
3332 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3333 {
3334         int err;
3335
3336         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3337                                                         GFP_KERNEL);
3338         if (!sbi->nm_info)
3339                 return -ENOMEM;
3340
3341         err = init_node_manager(sbi);
3342         if (err)
3343                 return err;
3344
3345         err = init_free_nid_cache(sbi);
3346         if (err)
3347                 return err;
3348
3349         /* load free nid status from nat_bits table */
3350         load_free_nid_bitmap(sbi);
3351
3352         return f2fs_build_free_nids(sbi, true, true);
3353 }
3354
3355 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3356 {
3357         struct f2fs_nm_info *nm_i = NM_I(sbi);
3358         struct free_nid *i, *next_i;
3359         void *vec[NAT_VEC_SIZE];
3360         struct nat_entry **natvec = (struct nat_entry **)vec;
3361         struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3362         nid_t nid = 0;
3363         unsigned int found;
3364
3365         if (!nm_i)
3366                 return;
3367
3368         /* destroy free nid list */
3369         spin_lock(&nm_i->nid_list_lock);
3370         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3371                 __remove_free_nid(sbi, i, FREE_NID);
3372                 spin_unlock(&nm_i->nid_list_lock);
3373                 kmem_cache_free(free_nid_slab, i);
3374                 spin_lock(&nm_i->nid_list_lock);
3375         }
3376         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3377         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3378         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3379         spin_unlock(&nm_i->nid_list_lock);
3380
3381         /* destroy nat cache */
3382         f2fs_down_write(&nm_i->nat_tree_lock);
3383         while ((found = __gang_lookup_nat_cache(nm_i,
3384                                         nid, NAT_VEC_SIZE, natvec))) {
3385                 unsigned idx;
3386
3387                 nid = nat_get_nid(natvec[found - 1]) + 1;
3388                 for (idx = 0; idx < found; idx++) {
3389                         spin_lock(&nm_i->nat_list_lock);
3390                         list_del(&natvec[idx]->list);
3391                         spin_unlock(&nm_i->nat_list_lock);
3392
3393                         __del_from_nat_cache(nm_i, natvec[idx]);
3394                 }
3395         }
3396         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3397
3398         /* destroy nat set cache */
3399         nid = 0;
3400         memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3401         while ((found = __gang_lookup_nat_set(nm_i,
3402                                         nid, NAT_VEC_SIZE, setvec))) {
3403                 unsigned idx;
3404
3405                 nid = setvec[found - 1]->set + 1;
3406                 for (idx = 0; idx < found; idx++) {
3407                         /* entry_cnt is not zero, when cp_error was occurred */
3408                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3409                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3410                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3411                 }
3412         }
3413         f2fs_up_write(&nm_i->nat_tree_lock);
3414
3415         kvfree(nm_i->nat_block_bitmap);
3416         if (nm_i->free_nid_bitmap) {
3417                 int i;
3418
3419                 for (i = 0; i < nm_i->nat_blocks; i++)
3420                         kvfree(nm_i->free_nid_bitmap[i]);
3421                 kvfree(nm_i->free_nid_bitmap);
3422         }
3423         kvfree(nm_i->free_nid_count);
3424
3425         kvfree(nm_i->nat_bitmap);
3426         kvfree(nm_i->nat_bits);
3427 #ifdef CONFIG_F2FS_CHECK_FS
3428         kvfree(nm_i->nat_bitmap_mir);
3429 #endif
3430         sbi->nm_info = NULL;
3431         kfree(nm_i);
3432 }
3433
3434 int __init f2fs_create_node_manager_caches(void)
3435 {
3436         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3437                         sizeof(struct nat_entry));
3438         if (!nat_entry_slab)
3439                 goto fail;
3440
3441         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3442                         sizeof(struct free_nid));
3443         if (!free_nid_slab)
3444                 goto destroy_nat_entry;
3445
3446         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3447                         sizeof(struct nat_entry_set));
3448         if (!nat_entry_set_slab)
3449                 goto destroy_free_nid;
3450
3451         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3452                         sizeof(struct fsync_node_entry));
3453         if (!fsync_node_entry_slab)
3454                 goto destroy_nat_entry_set;
3455         return 0;
3456
3457 destroy_nat_entry_set:
3458         kmem_cache_destroy(nat_entry_set_slab);
3459 destroy_free_nid:
3460         kmem_cache_destroy(free_nid_slab);
3461 destroy_nat_entry:
3462         kmem_cache_destroy(nat_entry_slab);
3463 fail:
3464         return -ENOMEM;
3465 }
3466
3467 void f2fs_destroy_node_manager_caches(void)
3468 {
3469         kmem_cache_destroy(fsync_node_entry_slab);
3470         kmem_cache_destroy(nat_entry_set_slab);
3471         kmem_cache_destroy(free_nid_slab);
3472         kmem_cache_destroy(nat_entry_slab);
3473 }