Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[linux-2.6-block.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_msg(sbi->sb, KERN_WARNING,
38                                 "%s: out-of-range nid=%x, run fsck to fix.",
39                                 __func__, nid);
40                 return -EINVAL;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct sysinfo val;
49         unsigned long avail_ram;
50         unsigned long mem_size = 0;
51         bool res = false;
52
53         si_meminfo(&val);
54
55         /* only uses low memory */
56         avail_ram = val.totalram - val.totalhigh;
57
58         /*
59          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60          */
61         if (type == FREE_NIDS) {
62                 mem_size = (nm_i->nid_cnt[FREE_NID] *
63                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
64                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65         } else if (type == NAT_ENTRIES) {
66                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67                                                         PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69                 if (excess_cached_nats(sbi))
70                         res = false;
71         } else if (type == DIRTY_DENTS) {
72                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73                         return false;
74                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76         } else if (type == INO_ENTRIES) {
77                 int i;
78
79                 for (i = 0; i < MAX_INO_ENTRY; i++)
80                         mem_size += sbi->im[i].ino_num *
81                                                 sizeof(struct ino_entry);
82                 mem_size >>= PAGE_SHIFT;
83                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84         } else if (type == EXTENT_CACHE) {
85                 mem_size = (atomic_read(&sbi->total_ext_tree) *
86                                 sizeof(struct extent_tree) +
87                                 atomic_read(&sbi->total_ext_node) *
88                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
89                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90         } else if (type == INMEM_PAGES) {
91                 /* it allows 20% / total_ram for inmemory pages */
92                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93                 res = mem_size < (val.totalram / 5);
94         } else {
95                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96                         return true;
97         }
98         return res;
99 }
100
101 static void clear_node_page_dirty(struct page *page)
102 {
103         if (PageDirty(page)) {
104                 f2fs_clear_page_cache_dirty_tag(page);
105                 clear_page_dirty_for_io(page);
106                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107         }
108         ClearPageUptodate(page);
109 }
110
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118         struct page *src_page;
119         struct page *dst_page;
120         pgoff_t dst_off;
121         void *src_addr;
122         void *dst_addr;
123         struct f2fs_nm_info *nm_i = NM_I(sbi);
124
125         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126
127         /* get current nat block page with lock */
128         src_page = get_current_nat_page(sbi, nid);
129         if (IS_ERR(src_page))
130                 return src_page;
131         dst_page = f2fs_grab_meta_page(sbi, dst_off);
132         f2fs_bug_on(sbi, PageDirty(src_page));
133
134         src_addr = page_address(src_page);
135         dst_addr = page_address(dst_page);
136         memcpy(dst_addr, src_addr, PAGE_SIZE);
137         set_page_dirty(dst_page);
138         f2fs_put_page(src_page, 1);
139
140         set_to_next_nat(nm_i, nid);
141
142         return dst_page;
143 }
144
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147         struct nat_entry *new;
148
149         if (no_fail)
150                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151         else
152                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153         if (new) {
154                 nat_set_nid(new, nid);
155                 nat_reset_flag(new);
156         }
157         return new;
158 }
159
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162         kmem_cache_free(nat_entry_slab, e);
163 }
164
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169         if (no_fail)
170                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172                 return NULL;
173
174         if (raw_ne)
175                 node_info_from_raw_nat(&ne->ni, raw_ne);
176
177         spin_lock(&nm_i->nat_list_lock);
178         list_add_tail(&ne->list, &nm_i->nat_entries);
179         spin_unlock(&nm_i->nat_list_lock);
180
181         nm_i->nat_cnt++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt--;
212         __free_nat_entry(e);
213 }
214
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216                                                         struct nat_entry *ne)
217 {
218         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219         struct nat_entry_set *head;
220
221         head = radix_tree_lookup(&nm_i->nat_set_root, set);
222         if (!head) {
223                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225                 INIT_LIST_HEAD(&head->entry_list);
226                 INIT_LIST_HEAD(&head->set_list);
227                 head->set = set;
228                 head->entry_cnt = 0;
229                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230         }
231         return head;
232 }
233
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235                                                 struct nat_entry *ne)
236 {
237         struct nat_entry_set *head;
238         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240         if (!new_ne)
241                 head = __grab_nat_entry_set(nm_i, ne);
242
243         /*
244          * update entry_cnt in below condition:
245          * 1. update NEW_ADDR to valid block address;
246          * 2. update old block address to new one;
247          */
248         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249                                 !get_nat_flag(ne, IS_DIRTY)))
250                 head->entry_cnt++;
251
252         set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254         if (get_nat_flag(ne, IS_DIRTY))
255                 goto refresh_list;
256
257         nm_i->dirty_nat_cnt++;
258         set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260         spin_lock(&nm_i->nat_list_lock);
261         if (new_ne)
262                 list_del_init(&ne->list);
263         else
264                 list_move_tail(&ne->list, &head->entry_list);
265         spin_unlock(&nm_i->nat_list_lock);
266 }
267
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269                 struct nat_entry_set *set, struct nat_entry *ne)
270 {
271         spin_lock(&nm_i->nat_list_lock);
272         list_move_tail(&ne->list, &nm_i->nat_entries);
273         spin_unlock(&nm_i->nat_list_lock);
274
275         set_nat_flag(ne, IS_DIRTY, false);
276         set->entry_cnt--;
277         nm_i->dirty_nat_cnt--;
278 }
279
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284                                                         start, nr);
285 }
286
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289         return NODE_MAPPING(sbi) == page->mapping &&
290                         IS_DNODE(page) && is_cold_node(page);
291 }
292
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295         spin_lock_init(&sbi->fsync_node_lock);
296         INIT_LIST_HEAD(&sbi->fsync_node_list);
297         sbi->fsync_seg_id = 0;
298         sbi->fsync_node_num = 0;
299 }
300
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302                                                         struct page *page)
303 {
304         struct fsync_node_entry *fn;
305         unsigned long flags;
306         unsigned int seq_id;
307
308         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309
310         get_page(page);
311         fn->page = page;
312         INIT_LIST_HEAD(&fn->list);
313
314         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315         list_add_tail(&fn->list, &sbi->fsync_node_list);
316         fn->seq_id = sbi->fsync_seg_id++;
317         seq_id = fn->seq_id;
318         sbi->fsync_node_num++;
319         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320
321         return seq_id;
322 }
323
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326         struct fsync_node_entry *fn;
327         unsigned long flags;
328
329         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331                 if (fn->page == page) {
332                         list_del(&fn->list);
333                         sbi->fsync_node_num--;
334                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335                         kmem_cache_free(fsync_node_entry_slab, fn);
336                         put_page(page);
337                         return;
338                 }
339         }
340         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341         f2fs_bug_on(sbi, 1);
342 }
343
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346         unsigned long flags;
347
348         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349         sbi->fsync_seg_id = 0;
350         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355         struct f2fs_nm_info *nm_i = NM_I(sbi);
356         struct nat_entry *e;
357         bool need = false;
358
359         down_read(&nm_i->nat_tree_lock);
360         e = __lookup_nat_cache(nm_i, nid);
361         if (e) {
362                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
364                         need = true;
365         }
366         up_read(&nm_i->nat_tree_lock);
367         return need;
368 }
369
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372         struct f2fs_nm_info *nm_i = NM_I(sbi);
373         struct nat_entry *e;
374         bool is_cp = true;
375
376         down_read(&nm_i->nat_tree_lock);
377         e = __lookup_nat_cache(nm_i, nid);
378         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379                 is_cp = false;
380         up_read(&nm_i->nat_tree_lock);
381         return is_cp;
382 }
383
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386         struct f2fs_nm_info *nm_i = NM_I(sbi);
387         struct nat_entry *e;
388         bool need_update = true;
389
390         down_read(&nm_i->nat_tree_lock);
391         e = __lookup_nat_cache(nm_i, ino);
392         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393                         (get_nat_flag(e, IS_CHECKPOINTED) ||
394                          get_nat_flag(e, HAS_FSYNCED_INODE)))
395                 need_update = false;
396         up_read(&nm_i->nat_tree_lock);
397         return need_update;
398 }
399
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402                                                 struct f2fs_nat_entry *ne)
403 {
404         struct f2fs_nm_info *nm_i = NM_I(sbi);
405         struct nat_entry *new, *e;
406
407         new = __alloc_nat_entry(nid, false);
408         if (!new)
409                 return;
410
411         down_write(&nm_i->nat_tree_lock);
412         e = __lookup_nat_cache(nm_i, nid);
413         if (!e)
414                 e = __init_nat_entry(nm_i, new, ne, false);
415         else
416                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417                                 nat_get_blkaddr(e) !=
418                                         le32_to_cpu(ne->block_addr) ||
419                                 nat_get_version(e) != ne->version);
420         up_write(&nm_i->nat_tree_lock);
421         if (e != new)
422                 __free_nat_entry(new);
423 }
424
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426                         block_t new_blkaddr, bool fsync_done)
427 {
428         struct f2fs_nm_info *nm_i = NM_I(sbi);
429         struct nat_entry *e;
430         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431
432         down_write(&nm_i->nat_tree_lock);
433         e = __lookup_nat_cache(nm_i, ni->nid);
434         if (!e) {
435                 e = __init_nat_entry(nm_i, new, NULL, true);
436                 copy_node_info(&e->ni, ni);
437                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438         } else if (new_blkaddr == NEW_ADDR) {
439                 /*
440                  * when nid is reallocated,
441                  * previous nat entry can be remained in nat cache.
442                  * So, reinitialize it with new information.
443                  */
444                 copy_node_info(&e->ni, ni);
445                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446         }
447         /* let's free early to reduce memory consumption */
448         if (e != new)
449                 __free_nat_entry(new);
450
451         /* sanity check */
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454                         new_blkaddr == NULL_ADDR);
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456                         new_blkaddr == NEW_ADDR);
457         f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
458                         new_blkaddr == NEW_ADDR);
459
460         /* increment version no as node is removed */
461         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462                 unsigned char version = nat_get_version(e);
463                 nat_set_version(e, inc_node_version(version));
464         }
465
466         /* change address */
467         nat_set_blkaddr(e, new_blkaddr);
468         if (!is_valid_data_blkaddr(sbi, new_blkaddr))
469                 set_nat_flag(e, IS_CHECKPOINTED, false);
470         __set_nat_cache_dirty(nm_i, e);
471
472         /* update fsync_mark if its inode nat entry is still alive */
473         if (ni->nid != ni->ino)
474                 e = __lookup_nat_cache(nm_i, ni->ino);
475         if (e) {
476                 if (fsync_done && ni->nid == ni->ino)
477                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
478                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479         }
480         up_write(&nm_i->nat_tree_lock);
481 }
482
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485         struct f2fs_nm_info *nm_i = NM_I(sbi);
486         int nr = nr_shrink;
487
488         if (!down_write_trylock(&nm_i->nat_tree_lock))
489                 return 0;
490
491         spin_lock(&nm_i->nat_list_lock);
492         while (nr_shrink) {
493                 struct nat_entry *ne;
494
495                 if (list_empty(&nm_i->nat_entries))
496                         break;
497
498                 ne = list_first_entry(&nm_i->nat_entries,
499                                         struct nat_entry, list);
500                 list_del(&ne->list);
501                 spin_unlock(&nm_i->nat_list_lock);
502
503                 __del_from_nat_cache(nm_i, ne);
504                 nr_shrink--;
505
506                 spin_lock(&nm_i->nat_list_lock);
507         }
508         spin_unlock(&nm_i->nat_list_lock);
509
510         up_write(&nm_i->nat_tree_lock);
511         return nr - nr_shrink;
512 }
513
514 /*
515  * This function always returns success
516  */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518                                                 struct node_info *ni)
519 {
520         struct f2fs_nm_info *nm_i = NM_I(sbi);
521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522         struct f2fs_journal *journal = curseg->journal;
523         nid_t start_nid = START_NID(nid);
524         struct f2fs_nat_block *nat_blk;
525         struct page *page = NULL;
526         struct f2fs_nat_entry ne;
527         struct nat_entry *e;
528         pgoff_t index;
529         int i;
530
531         ni->nid = nid;
532
533         /* Check nat cache */
534         down_read(&nm_i->nat_tree_lock);
535         e = __lookup_nat_cache(nm_i, nid);
536         if (e) {
537                 ni->ino = nat_get_ino(e);
538                 ni->blk_addr = nat_get_blkaddr(e);
539                 ni->version = nat_get_version(e);
540                 up_read(&nm_i->nat_tree_lock);
541                 return 0;
542         }
543
544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546         /* Check current segment summary */
547         down_read(&curseg->journal_rwsem);
548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549         if (i >= 0) {
550                 ne = nat_in_journal(journal, i);
551                 node_info_from_raw_nat(ni, &ne);
552         }
553         up_read(&curseg->journal_rwsem);
554         if (i >= 0) {
555                 up_read(&nm_i->nat_tree_lock);
556                 goto cache;
557         }
558
559         /* Fill node_info from nat page */
560         index = current_nat_addr(sbi, nid);
561         up_read(&nm_i->nat_tree_lock);
562
563         page = f2fs_get_meta_page(sbi, index);
564         if (IS_ERR(page))
565                 return PTR_ERR(page);
566
567         nat_blk = (struct f2fs_nat_block *)page_address(page);
568         ne = nat_blk->entries[nid - start_nid];
569         node_info_from_raw_nat(ni, &ne);
570         f2fs_put_page(page, 1);
571 cache:
572         /* cache nat entry */
573         cache_nat_entry(sbi, nid, &ne);
574         return 0;
575 }
576
577 /*
578  * readahead MAX_RA_NODE number of node pages.
579  */
580 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
581 {
582         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
583         struct blk_plug plug;
584         int i, end;
585         nid_t nid;
586
587         blk_start_plug(&plug);
588
589         /* Then, try readahead for siblings of the desired node */
590         end = start + n;
591         end = min(end, NIDS_PER_BLOCK);
592         for (i = start; i < end; i++) {
593                 nid = get_nid(parent, i, false);
594                 f2fs_ra_node_page(sbi, nid);
595         }
596
597         blk_finish_plug(&plug);
598 }
599
600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
601 {
602         const long direct_index = ADDRS_PER_INODE(dn->inode);
603         const long direct_blks = ADDRS_PER_BLOCK;
604         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
605         unsigned int skipped_unit = ADDRS_PER_BLOCK;
606         int cur_level = dn->cur_level;
607         int max_level = dn->max_level;
608         pgoff_t base = 0;
609
610         if (!dn->max_level)
611                 return pgofs + 1;
612
613         while (max_level-- > cur_level)
614                 skipped_unit *= NIDS_PER_BLOCK;
615
616         switch (dn->max_level) {
617         case 3:
618                 base += 2 * indirect_blks;
619                 /* fall through */
620         case 2:
621                 base += 2 * direct_blks;
622                 /* fall through */
623         case 1:
624                 base += direct_index;
625                 break;
626         default:
627                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
628         }
629
630         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
631 }
632
633 /*
634  * The maximum depth is four.
635  * Offset[0] will have raw inode offset.
636  */
637 static int get_node_path(struct inode *inode, long block,
638                                 int offset[4], unsigned int noffset[4])
639 {
640         const long direct_index = ADDRS_PER_INODE(inode);
641         const long direct_blks = ADDRS_PER_BLOCK;
642         const long dptrs_per_blk = NIDS_PER_BLOCK;
643         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
644         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
645         int n = 0;
646         int level = 0;
647
648         noffset[0] = 0;
649
650         if (block < direct_index) {
651                 offset[n] = block;
652                 goto got;
653         }
654         block -= direct_index;
655         if (block < direct_blks) {
656                 offset[n++] = NODE_DIR1_BLOCK;
657                 noffset[n] = 1;
658                 offset[n] = block;
659                 level = 1;
660                 goto got;
661         }
662         block -= direct_blks;
663         if (block < direct_blks) {
664                 offset[n++] = NODE_DIR2_BLOCK;
665                 noffset[n] = 2;
666                 offset[n] = block;
667                 level = 1;
668                 goto got;
669         }
670         block -= direct_blks;
671         if (block < indirect_blks) {
672                 offset[n++] = NODE_IND1_BLOCK;
673                 noffset[n] = 3;
674                 offset[n++] = block / direct_blks;
675                 noffset[n] = 4 + offset[n - 1];
676                 offset[n] = block % direct_blks;
677                 level = 2;
678                 goto got;
679         }
680         block -= indirect_blks;
681         if (block < indirect_blks) {
682                 offset[n++] = NODE_IND2_BLOCK;
683                 noffset[n] = 4 + dptrs_per_blk;
684                 offset[n++] = block / direct_blks;
685                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
686                 offset[n] = block % direct_blks;
687                 level = 2;
688                 goto got;
689         }
690         block -= indirect_blks;
691         if (block < dindirect_blks) {
692                 offset[n++] = NODE_DIND_BLOCK;
693                 noffset[n] = 5 + (dptrs_per_blk * 2);
694                 offset[n++] = block / indirect_blks;
695                 noffset[n] = 6 + (dptrs_per_blk * 2) +
696                               offset[n - 1] * (dptrs_per_blk + 1);
697                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
698                 noffset[n] = 7 + (dptrs_per_blk * 2) +
699                               offset[n - 2] * (dptrs_per_blk + 1) +
700                               offset[n - 1];
701                 offset[n] = block % direct_blks;
702                 level = 3;
703                 goto got;
704         } else {
705                 return -E2BIG;
706         }
707 got:
708         return level;
709 }
710
711 /*
712  * Caller should call f2fs_put_dnode(dn).
713  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
714  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
715  * In the case of RDONLY_NODE, we don't need to care about mutex.
716  */
717 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
718 {
719         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
720         struct page *npage[4];
721         struct page *parent = NULL;
722         int offset[4];
723         unsigned int noffset[4];
724         nid_t nids[4];
725         int level, i = 0;
726         int err = 0;
727
728         level = get_node_path(dn->inode, index, offset, noffset);
729         if (level < 0)
730                 return level;
731
732         nids[0] = dn->inode->i_ino;
733         npage[0] = dn->inode_page;
734
735         if (!npage[0]) {
736                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
737                 if (IS_ERR(npage[0]))
738                         return PTR_ERR(npage[0]);
739         }
740
741         /* if inline_data is set, should not report any block indices */
742         if (f2fs_has_inline_data(dn->inode) && index) {
743                 err = -ENOENT;
744                 f2fs_put_page(npage[0], 1);
745                 goto release_out;
746         }
747
748         parent = npage[0];
749         if (level != 0)
750                 nids[1] = get_nid(parent, offset[0], true);
751         dn->inode_page = npage[0];
752         dn->inode_page_locked = true;
753
754         /* get indirect or direct nodes */
755         for (i = 1; i <= level; i++) {
756                 bool done = false;
757
758                 if (!nids[i] && mode == ALLOC_NODE) {
759                         /* alloc new node */
760                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
761                                 err = -ENOSPC;
762                                 goto release_pages;
763                         }
764
765                         dn->nid = nids[i];
766                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
767                         if (IS_ERR(npage[i])) {
768                                 f2fs_alloc_nid_failed(sbi, nids[i]);
769                                 err = PTR_ERR(npage[i]);
770                                 goto release_pages;
771                         }
772
773                         set_nid(parent, offset[i - 1], nids[i], i == 1);
774                         f2fs_alloc_nid_done(sbi, nids[i]);
775                         done = true;
776                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
777                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
778                         if (IS_ERR(npage[i])) {
779                                 err = PTR_ERR(npage[i]);
780                                 goto release_pages;
781                         }
782                         done = true;
783                 }
784                 if (i == 1) {
785                         dn->inode_page_locked = false;
786                         unlock_page(parent);
787                 } else {
788                         f2fs_put_page(parent, 1);
789                 }
790
791                 if (!done) {
792                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
793                         if (IS_ERR(npage[i])) {
794                                 err = PTR_ERR(npage[i]);
795                                 f2fs_put_page(npage[0], 0);
796                                 goto release_out;
797                         }
798                 }
799                 if (i < level) {
800                         parent = npage[i];
801                         nids[i + 1] = get_nid(parent, offset[i], false);
802                 }
803         }
804         dn->nid = nids[level];
805         dn->ofs_in_node = offset[level];
806         dn->node_page = npage[level];
807         dn->data_blkaddr = datablock_addr(dn->inode,
808                                 dn->node_page, dn->ofs_in_node);
809         return 0;
810
811 release_pages:
812         f2fs_put_page(parent, 1);
813         if (i > 1)
814                 f2fs_put_page(npage[0], 0);
815 release_out:
816         dn->inode_page = NULL;
817         dn->node_page = NULL;
818         if (err == -ENOENT) {
819                 dn->cur_level = i;
820                 dn->max_level = level;
821                 dn->ofs_in_node = offset[level];
822         }
823         return err;
824 }
825
826 static int truncate_node(struct dnode_of_data *dn)
827 {
828         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829         struct node_info ni;
830         int err;
831         pgoff_t index;
832
833         err = f2fs_get_node_info(sbi, dn->nid, &ni);
834         if (err)
835                 return err;
836
837         /* Deallocate node address */
838         f2fs_invalidate_blocks(sbi, ni.blk_addr);
839         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840         set_node_addr(sbi, &ni, NULL_ADDR, false);
841
842         if (dn->nid == dn->inode->i_ino) {
843                 f2fs_remove_orphan_inode(sbi, dn->nid);
844                 dec_valid_inode_count(sbi);
845                 f2fs_inode_synced(dn->inode);
846         }
847
848         clear_node_page_dirty(dn->node_page);
849         set_sbi_flag(sbi, SBI_IS_DIRTY);
850
851         index = dn->node_page->index;
852         f2fs_put_page(dn->node_page, 1);
853
854         invalidate_mapping_pages(NODE_MAPPING(sbi),
855                         index, index);
856
857         dn->node_page = NULL;
858         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859
860         return 0;
861 }
862
863 static int truncate_dnode(struct dnode_of_data *dn)
864 {
865         struct page *page;
866         int err;
867
868         if (dn->nid == 0)
869                 return 1;
870
871         /* get direct node */
872         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
874                 return 1;
875         else if (IS_ERR(page))
876                 return PTR_ERR(page);
877
878         /* Make dnode_of_data for parameter */
879         dn->node_page = page;
880         dn->ofs_in_node = 0;
881         f2fs_truncate_data_blocks(dn);
882         err = truncate_node(dn);
883         if (err)
884                 return err;
885
886         return 1;
887 }
888
889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890                                                 int ofs, int depth)
891 {
892         struct dnode_of_data rdn = *dn;
893         struct page *page;
894         struct f2fs_node *rn;
895         nid_t child_nid;
896         unsigned int child_nofs;
897         int freed = 0;
898         int i, ret;
899
900         if (dn->nid == 0)
901                 return NIDS_PER_BLOCK + 1;
902
903         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904
905         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906         if (IS_ERR(page)) {
907                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908                 return PTR_ERR(page);
909         }
910
911         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912
913         rn = F2FS_NODE(page);
914         if (depth < 3) {
915                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916                         child_nid = le32_to_cpu(rn->in.nid[i]);
917                         if (child_nid == 0)
918                                 continue;
919                         rdn.nid = child_nid;
920                         ret = truncate_dnode(&rdn);
921                         if (ret < 0)
922                                 goto out_err;
923                         if (set_nid(page, i, 0, false))
924                                 dn->node_changed = true;
925                 }
926         } else {
927                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929                         child_nid = le32_to_cpu(rn->in.nid[i]);
930                         if (child_nid == 0) {
931                                 child_nofs += NIDS_PER_BLOCK + 1;
932                                 continue;
933                         }
934                         rdn.nid = child_nid;
935                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936                         if (ret == (NIDS_PER_BLOCK + 1)) {
937                                 if (set_nid(page, i, 0, false))
938                                         dn->node_changed = true;
939                                 child_nofs += ret;
940                         } else if (ret < 0 && ret != -ENOENT) {
941                                 goto out_err;
942                         }
943                 }
944                 freed = child_nofs;
945         }
946
947         if (!ofs) {
948                 /* remove current indirect node */
949                 dn->node_page = page;
950                 ret = truncate_node(dn);
951                 if (ret)
952                         goto out_err;
953                 freed++;
954         } else {
955                 f2fs_put_page(page, 1);
956         }
957         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958         return freed;
959
960 out_err:
961         f2fs_put_page(page, 1);
962         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963         return ret;
964 }
965
966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967                         struct f2fs_inode *ri, int *offset, int depth)
968 {
969         struct page *pages[2];
970         nid_t nid[3];
971         nid_t child_nid;
972         int err = 0;
973         int i;
974         int idx = depth - 2;
975
976         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977         if (!nid[0])
978                 return 0;
979
980         /* get indirect nodes in the path */
981         for (i = 0; i < idx + 1; i++) {
982                 /* reference count'll be increased */
983                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984                 if (IS_ERR(pages[i])) {
985                         err = PTR_ERR(pages[i]);
986                         idx = i - 1;
987                         goto fail;
988                 }
989                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990         }
991
992         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993
994         /* free direct nodes linked to a partial indirect node */
995         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996                 child_nid = get_nid(pages[idx], i, false);
997                 if (!child_nid)
998                         continue;
999                 dn->nid = child_nid;
1000                 err = truncate_dnode(dn);
1001                 if (err < 0)
1002                         goto fail;
1003                 if (set_nid(pages[idx], i, 0, false))
1004                         dn->node_changed = true;
1005         }
1006
1007         if (offset[idx + 1] == 0) {
1008                 dn->node_page = pages[idx];
1009                 dn->nid = nid[idx];
1010                 err = truncate_node(dn);
1011                 if (err)
1012                         goto fail;
1013         } else {
1014                 f2fs_put_page(pages[idx], 1);
1015         }
1016         offset[idx]++;
1017         offset[idx + 1] = 0;
1018         idx--;
1019 fail:
1020         for (i = idx; i >= 0; i--)
1021                 f2fs_put_page(pages[i], 1);
1022
1023         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025         return err;
1026 }
1027
1028 /*
1029  * All the block addresses of data and nodes should be nullified.
1030  */
1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034         int err = 0, cont = 1;
1035         int level, offset[4], noffset[4];
1036         unsigned int nofs = 0;
1037         struct f2fs_inode *ri;
1038         struct dnode_of_data dn;
1039         struct page *page;
1040
1041         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043         level = get_node_path(inode, from, offset, noffset);
1044         if (level < 0)
1045                 return level;
1046
1047         page = f2fs_get_node_page(sbi, inode->i_ino);
1048         if (IS_ERR(page)) {
1049                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1050                 return PTR_ERR(page);
1051         }
1052
1053         set_new_dnode(&dn, inode, page, NULL, 0);
1054         unlock_page(page);
1055
1056         ri = F2FS_INODE(page);
1057         switch (level) {
1058         case 0:
1059         case 1:
1060                 nofs = noffset[1];
1061                 break;
1062         case 2:
1063                 nofs = noffset[1];
1064                 if (!offset[level - 1])
1065                         goto skip_partial;
1066                 err = truncate_partial_nodes(&dn, ri, offset, level);
1067                 if (err < 0 && err != -ENOENT)
1068                         goto fail;
1069                 nofs += 1 + NIDS_PER_BLOCK;
1070                 break;
1071         case 3:
1072                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1073                 if (!offset[level - 1])
1074                         goto skip_partial;
1075                 err = truncate_partial_nodes(&dn, ri, offset, level);
1076                 if (err < 0 && err != -ENOENT)
1077                         goto fail;
1078                 break;
1079         default:
1080                 BUG();
1081         }
1082
1083 skip_partial:
1084         while (cont) {
1085                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1086                 switch (offset[0]) {
1087                 case NODE_DIR1_BLOCK:
1088                 case NODE_DIR2_BLOCK:
1089                         err = truncate_dnode(&dn);
1090                         break;
1091
1092                 case NODE_IND1_BLOCK:
1093                 case NODE_IND2_BLOCK:
1094                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1095                         break;
1096
1097                 case NODE_DIND_BLOCK:
1098                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1099                         cont = 0;
1100                         break;
1101
1102                 default:
1103                         BUG();
1104                 }
1105                 if (err < 0 && err != -ENOENT)
1106                         goto fail;
1107                 if (offset[1] == 0 &&
1108                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1109                         lock_page(page);
1110                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1111                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1112                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1113                         set_page_dirty(page);
1114                         unlock_page(page);
1115                 }
1116                 offset[1] = 0;
1117                 offset[0]++;
1118                 nofs += err;
1119         }
1120 fail:
1121         f2fs_put_page(page, 0);
1122         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1123         return err > 0 ? 0 : err;
1124 }
1125
1126 /* caller must lock inode page */
1127 int f2fs_truncate_xattr_node(struct inode *inode)
1128 {
1129         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1130         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1131         struct dnode_of_data dn;
1132         struct page *npage;
1133         int err;
1134
1135         if (!nid)
1136                 return 0;
1137
1138         npage = f2fs_get_node_page(sbi, nid);
1139         if (IS_ERR(npage))
1140                 return PTR_ERR(npage);
1141
1142         set_new_dnode(&dn, inode, NULL, npage, nid);
1143         err = truncate_node(&dn);
1144         if (err) {
1145                 f2fs_put_page(npage, 1);
1146                 return err;
1147         }
1148
1149         f2fs_i_xnid_write(inode, 0);
1150
1151         return 0;
1152 }
1153
1154 /*
1155  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1156  * f2fs_unlock_op().
1157  */
1158 int f2fs_remove_inode_page(struct inode *inode)
1159 {
1160         struct dnode_of_data dn;
1161         int err;
1162
1163         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1164         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1165         if (err)
1166                 return err;
1167
1168         err = f2fs_truncate_xattr_node(inode);
1169         if (err) {
1170                 f2fs_put_dnode(&dn);
1171                 return err;
1172         }
1173
1174         /* remove potential inline_data blocks */
1175         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176                                 S_ISLNK(inode->i_mode))
1177                 f2fs_truncate_data_blocks_range(&dn, 1);
1178
1179         /* 0 is possible, after f2fs_new_inode() has failed */
1180         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1181                 f2fs_put_dnode(&dn);
1182                 return -EIO;
1183         }
1184         f2fs_bug_on(F2FS_I_SB(inode),
1185                         inode->i_blocks != 0 && inode->i_blocks != 8);
1186
1187         /* will put inode & node pages */
1188         err = truncate_node(&dn);
1189         if (err) {
1190                 f2fs_put_dnode(&dn);
1191                 return err;
1192         }
1193         return 0;
1194 }
1195
1196 struct page *f2fs_new_inode_page(struct inode *inode)
1197 {
1198         struct dnode_of_data dn;
1199
1200         /* allocate inode page for new inode */
1201         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1202
1203         /* caller should f2fs_put_page(page, 1); */
1204         return f2fs_new_node_page(&dn, 0);
1205 }
1206
1207 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1208 {
1209         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1210         struct node_info new_ni;
1211         struct page *page;
1212         int err;
1213
1214         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1215                 return ERR_PTR(-EPERM);
1216
1217         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1218         if (!page)
1219                 return ERR_PTR(-ENOMEM);
1220
1221         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1222                 goto fail;
1223
1224 #ifdef CONFIG_F2FS_CHECK_FS
1225         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1226         if (err) {
1227                 dec_valid_node_count(sbi, dn->inode, !ofs);
1228                 goto fail;
1229         }
1230         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1231 #endif
1232         new_ni.nid = dn->nid;
1233         new_ni.ino = dn->inode->i_ino;
1234         new_ni.blk_addr = NULL_ADDR;
1235         new_ni.flag = 0;
1236         new_ni.version = 0;
1237         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1238
1239         f2fs_wait_on_page_writeback(page, NODE, true, true);
1240         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1241         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1242         if (!PageUptodate(page))
1243                 SetPageUptodate(page);
1244         if (set_page_dirty(page))
1245                 dn->node_changed = true;
1246
1247         if (f2fs_has_xattr_block(ofs))
1248                 f2fs_i_xnid_write(dn->inode, dn->nid);
1249
1250         if (ofs == 0)
1251                 inc_valid_inode_count(sbi);
1252         return page;
1253
1254 fail:
1255         clear_node_page_dirty(page);
1256         f2fs_put_page(page, 1);
1257         return ERR_PTR(err);
1258 }
1259
1260 /*
1261  * Caller should do after getting the following values.
1262  * 0: f2fs_put_page(page, 0)
1263  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1264  */
1265 static int read_node_page(struct page *page, int op_flags)
1266 {
1267         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1268         struct node_info ni;
1269         struct f2fs_io_info fio = {
1270                 .sbi = sbi,
1271                 .type = NODE,
1272                 .op = REQ_OP_READ,
1273                 .op_flags = op_flags,
1274                 .page = page,
1275                 .encrypted_page = NULL,
1276         };
1277         int err;
1278
1279         if (PageUptodate(page)) {
1280 #ifdef CONFIG_F2FS_CHECK_FS
1281                 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1282 #endif
1283                 return LOCKED_PAGE;
1284         }
1285
1286         err = f2fs_get_node_info(sbi, page->index, &ni);
1287         if (err)
1288                 return err;
1289
1290         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1291                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1292                 ClearPageUptodate(page);
1293                 return -ENOENT;
1294         }
1295
1296         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1297         return f2fs_submit_page_bio(&fio);
1298 }
1299
1300 /*
1301  * Readahead a node page
1302  */
1303 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1304 {
1305         struct page *apage;
1306         int err;
1307
1308         if (!nid)
1309                 return;
1310         if (f2fs_check_nid_range(sbi, nid))
1311                 return;
1312
1313         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1314         if (apage)
1315                 return;
1316
1317         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1318         if (!apage)
1319                 return;
1320
1321         err = read_node_page(apage, REQ_RAHEAD);
1322         f2fs_put_page(apage, err ? 1 : 0);
1323 }
1324
1325 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1326                                         struct page *parent, int start)
1327 {
1328         struct page *page;
1329         int err;
1330
1331         if (!nid)
1332                 return ERR_PTR(-ENOENT);
1333         if (f2fs_check_nid_range(sbi, nid))
1334                 return ERR_PTR(-EINVAL);
1335 repeat:
1336         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1337         if (!page)
1338                 return ERR_PTR(-ENOMEM);
1339
1340         err = read_node_page(page, 0);
1341         if (err < 0) {
1342                 f2fs_put_page(page, 1);
1343                 return ERR_PTR(err);
1344         } else if (err == LOCKED_PAGE) {
1345                 err = 0;
1346                 goto page_hit;
1347         }
1348
1349         if (parent)
1350                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1351
1352         lock_page(page);
1353
1354         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355                 f2fs_put_page(page, 1);
1356                 goto repeat;
1357         }
1358
1359         if (unlikely(!PageUptodate(page))) {
1360                 err = -EIO;
1361                 goto out_err;
1362         }
1363
1364         if (!f2fs_inode_chksum_verify(sbi, page)) {
1365                 err = -EBADMSG;
1366                 goto out_err;
1367         }
1368 page_hit:
1369         if(unlikely(nid != nid_of_node(page))) {
1370                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1371                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1372                         nid, nid_of_node(page), ino_of_node(page),
1373                         ofs_of_node(page), cpver_of_node(page),
1374                         next_blkaddr_of_node(page));
1375                 err = -EINVAL;
1376 out_err:
1377                 ClearPageUptodate(page);
1378                 f2fs_put_page(page, 1);
1379                 return ERR_PTR(err);
1380         }
1381         return page;
1382 }
1383
1384 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1385 {
1386         return __get_node_page(sbi, nid, NULL, 0);
1387 }
1388
1389 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1390 {
1391         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1392         nid_t nid = get_nid(parent, start, false);
1393
1394         return __get_node_page(sbi, nid, parent, start);
1395 }
1396
1397 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1398 {
1399         struct inode *inode;
1400         struct page *page;
1401         int ret;
1402
1403         /* should flush inline_data before evict_inode */
1404         inode = ilookup(sbi->sb, ino);
1405         if (!inode)
1406                 return;
1407
1408         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1409                                         FGP_LOCK|FGP_NOWAIT, 0);
1410         if (!page)
1411                 goto iput_out;
1412
1413         if (!PageUptodate(page))
1414                 goto page_out;
1415
1416         if (!PageDirty(page))
1417                 goto page_out;
1418
1419         if (!clear_page_dirty_for_io(page))
1420                 goto page_out;
1421
1422         ret = f2fs_write_inline_data(inode, page);
1423         inode_dec_dirty_pages(inode);
1424         f2fs_remove_dirty_inode(inode);
1425         if (ret)
1426                 set_page_dirty(page);
1427 page_out:
1428         f2fs_put_page(page, 1);
1429 iput_out:
1430         iput(inode);
1431 }
1432
1433 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1434 {
1435         pgoff_t index;
1436         struct pagevec pvec;
1437         struct page *last_page = NULL;
1438         int nr_pages;
1439
1440         pagevec_init(&pvec);
1441         index = 0;
1442
1443         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1444                                 PAGECACHE_TAG_DIRTY))) {
1445                 int i;
1446
1447                 for (i = 0; i < nr_pages; i++) {
1448                         struct page *page = pvec.pages[i];
1449
1450                         if (unlikely(f2fs_cp_error(sbi))) {
1451                                 f2fs_put_page(last_page, 0);
1452                                 pagevec_release(&pvec);
1453                                 return ERR_PTR(-EIO);
1454                         }
1455
1456                         if (!IS_DNODE(page) || !is_cold_node(page))
1457                                 continue;
1458                         if (ino_of_node(page) != ino)
1459                                 continue;
1460
1461                         lock_page(page);
1462
1463                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1464 continue_unlock:
1465                                 unlock_page(page);
1466                                 continue;
1467                         }
1468                         if (ino_of_node(page) != ino)
1469                                 goto continue_unlock;
1470
1471                         if (!PageDirty(page)) {
1472                                 /* someone wrote it for us */
1473                                 goto continue_unlock;
1474                         }
1475
1476                         if (last_page)
1477                                 f2fs_put_page(last_page, 0);
1478
1479                         get_page(page);
1480                         last_page = page;
1481                         unlock_page(page);
1482                 }
1483                 pagevec_release(&pvec);
1484                 cond_resched();
1485         }
1486         return last_page;
1487 }
1488
1489 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1490                                 struct writeback_control *wbc, bool do_balance,
1491                                 enum iostat_type io_type, unsigned int *seq_id)
1492 {
1493         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1494         nid_t nid;
1495         struct node_info ni;
1496         struct f2fs_io_info fio = {
1497                 .sbi = sbi,
1498                 .ino = ino_of_node(page),
1499                 .type = NODE,
1500                 .op = REQ_OP_WRITE,
1501                 .op_flags = wbc_to_write_flags(wbc),
1502                 .page = page,
1503                 .encrypted_page = NULL,
1504                 .submitted = false,
1505                 .io_type = io_type,
1506                 .io_wbc = wbc,
1507         };
1508         unsigned int seq;
1509
1510         trace_f2fs_writepage(page, NODE);
1511
1512         if (unlikely(f2fs_cp_error(sbi)))
1513                 goto redirty_out;
1514
1515         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1516                 goto redirty_out;
1517
1518         if (wbc->sync_mode == WB_SYNC_NONE &&
1519                         IS_DNODE(page) && is_cold_node(page))
1520                 goto redirty_out;
1521
1522         /* get old block addr of this node page */
1523         nid = nid_of_node(page);
1524         f2fs_bug_on(sbi, page->index != nid);
1525
1526         if (f2fs_get_node_info(sbi, nid, &ni))
1527                 goto redirty_out;
1528
1529         if (wbc->for_reclaim) {
1530                 if (!down_read_trylock(&sbi->node_write))
1531                         goto redirty_out;
1532         } else {
1533                 down_read(&sbi->node_write);
1534         }
1535
1536         /* This page is already truncated */
1537         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1538                 ClearPageUptodate(page);
1539                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1540                 up_read(&sbi->node_write);
1541                 unlock_page(page);
1542                 return 0;
1543         }
1544
1545         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1546                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1547                 up_read(&sbi->node_write);
1548                 goto redirty_out;
1549         }
1550
1551         if (atomic && !test_opt(sbi, NOBARRIER))
1552                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1553
1554         set_page_writeback(page);
1555         ClearPageError(page);
1556
1557         if (f2fs_in_warm_node_list(sbi, page)) {
1558                 seq = f2fs_add_fsync_node_entry(sbi, page);
1559                 if (seq_id)
1560                         *seq_id = seq;
1561         }
1562
1563         fio.old_blkaddr = ni.blk_addr;
1564         f2fs_do_write_node_page(nid, &fio);
1565         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1566         dec_page_count(sbi, F2FS_DIRTY_NODES);
1567         up_read(&sbi->node_write);
1568
1569         if (wbc->for_reclaim) {
1570                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1571                 submitted = NULL;
1572         }
1573
1574         unlock_page(page);
1575
1576         if (unlikely(f2fs_cp_error(sbi))) {
1577                 f2fs_submit_merged_write(sbi, NODE);
1578                 submitted = NULL;
1579         }
1580         if (submitted)
1581                 *submitted = fio.submitted;
1582
1583         if (do_balance)
1584                 f2fs_balance_fs(sbi, false);
1585         return 0;
1586
1587 redirty_out:
1588         redirty_page_for_writepage(wbc, page);
1589         return AOP_WRITEPAGE_ACTIVATE;
1590 }
1591
1592 int f2fs_move_node_page(struct page *node_page, int gc_type)
1593 {
1594         int err = 0;
1595
1596         if (gc_type == FG_GC) {
1597                 struct writeback_control wbc = {
1598                         .sync_mode = WB_SYNC_ALL,
1599                         .nr_to_write = 1,
1600                         .for_reclaim = 0,
1601                 };
1602
1603                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1604
1605                 set_page_dirty(node_page);
1606
1607                 if (!clear_page_dirty_for_io(node_page)) {
1608                         err = -EAGAIN;
1609                         goto out_page;
1610                 }
1611
1612                 if (__write_node_page(node_page, false, NULL,
1613                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1614                         err = -EAGAIN;
1615                         unlock_page(node_page);
1616                 }
1617                 goto release_page;
1618         } else {
1619                 /* set page dirty and write it */
1620                 if (!PageWriteback(node_page))
1621                         set_page_dirty(node_page);
1622         }
1623 out_page:
1624         unlock_page(node_page);
1625 release_page:
1626         f2fs_put_page(node_page, 0);
1627         return err;
1628 }
1629
1630 static int f2fs_write_node_page(struct page *page,
1631                                 struct writeback_control *wbc)
1632 {
1633         return __write_node_page(page, false, NULL, wbc, false,
1634                                                 FS_NODE_IO, NULL);
1635 }
1636
1637 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1638                         struct writeback_control *wbc, bool atomic,
1639                         unsigned int *seq_id)
1640 {
1641         pgoff_t index;
1642         struct pagevec pvec;
1643         int ret = 0;
1644         struct page *last_page = NULL;
1645         bool marked = false;
1646         nid_t ino = inode->i_ino;
1647         int nr_pages;
1648         int nwritten = 0;
1649
1650         if (atomic) {
1651                 last_page = last_fsync_dnode(sbi, ino);
1652                 if (IS_ERR_OR_NULL(last_page))
1653                         return PTR_ERR_OR_ZERO(last_page);
1654         }
1655 retry:
1656         pagevec_init(&pvec);
1657         index = 0;
1658
1659         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1660                                 PAGECACHE_TAG_DIRTY))) {
1661                 int i;
1662
1663                 for (i = 0; i < nr_pages; i++) {
1664                         struct page *page = pvec.pages[i];
1665                         bool submitted = false;
1666
1667                         if (unlikely(f2fs_cp_error(sbi))) {
1668                                 f2fs_put_page(last_page, 0);
1669                                 pagevec_release(&pvec);
1670                                 ret = -EIO;
1671                                 goto out;
1672                         }
1673
1674                         if (!IS_DNODE(page) || !is_cold_node(page))
1675                                 continue;
1676                         if (ino_of_node(page) != ino)
1677                                 continue;
1678
1679                         lock_page(page);
1680
1681                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1682 continue_unlock:
1683                                 unlock_page(page);
1684                                 continue;
1685                         }
1686                         if (ino_of_node(page) != ino)
1687                                 goto continue_unlock;
1688
1689                         if (!PageDirty(page) && page != last_page) {
1690                                 /* someone wrote it for us */
1691                                 goto continue_unlock;
1692                         }
1693
1694                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1695
1696                         set_fsync_mark(page, 0);
1697                         set_dentry_mark(page, 0);
1698
1699                         if (!atomic || page == last_page) {
1700                                 set_fsync_mark(page, 1);
1701                                 if (IS_INODE(page)) {
1702                                         if (is_inode_flag_set(inode,
1703                                                                 FI_DIRTY_INODE))
1704                                                 f2fs_update_inode(inode, page);
1705                                         set_dentry_mark(page,
1706                                                 f2fs_need_dentry_mark(sbi, ino));
1707                                 }
1708                                 /*  may be written by other thread */
1709                                 if (!PageDirty(page))
1710                                         set_page_dirty(page);
1711                         }
1712
1713                         if (!clear_page_dirty_for_io(page))
1714                                 goto continue_unlock;
1715
1716                         ret = __write_node_page(page, atomic &&
1717                                                 page == last_page,
1718                                                 &submitted, wbc, true,
1719                                                 FS_NODE_IO, seq_id);
1720                         if (ret) {
1721                                 unlock_page(page);
1722                                 f2fs_put_page(last_page, 0);
1723                                 break;
1724                         } else if (submitted) {
1725                                 nwritten++;
1726                         }
1727
1728                         if (page == last_page) {
1729                                 f2fs_put_page(page, 0);
1730                                 marked = true;
1731                                 break;
1732                         }
1733                 }
1734                 pagevec_release(&pvec);
1735                 cond_resched();
1736
1737                 if (ret || marked)
1738                         break;
1739         }
1740         if (!ret && atomic && !marked) {
1741                 f2fs_msg(sbi->sb, KERN_DEBUG,
1742                         "Retry to write fsync mark: ino=%u, idx=%lx",
1743                                         ino, last_page->index);
1744                 lock_page(last_page);
1745                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1746                 set_page_dirty(last_page);
1747                 unlock_page(last_page);
1748                 goto retry;
1749         }
1750 out:
1751         if (nwritten)
1752                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1753         return ret ? -EIO: 0;
1754 }
1755
1756 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1757                                 struct writeback_control *wbc,
1758                                 bool do_balance, enum iostat_type io_type)
1759 {
1760         pgoff_t index;
1761         struct pagevec pvec;
1762         int step = 0;
1763         int nwritten = 0;
1764         int ret = 0;
1765         int nr_pages, done = 0;
1766
1767         pagevec_init(&pvec);
1768
1769 next_step:
1770         index = 0;
1771
1772         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1773                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1774                 int i;
1775
1776                 for (i = 0; i < nr_pages; i++) {
1777                         struct page *page = pvec.pages[i];
1778                         bool submitted = false;
1779
1780                         /* give a priority to WB_SYNC threads */
1781                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1782                                         wbc->sync_mode == WB_SYNC_NONE) {
1783                                 done = 1;
1784                                 break;
1785                         }
1786
1787                         /*
1788                          * flushing sequence with step:
1789                          * 0. indirect nodes
1790                          * 1. dentry dnodes
1791                          * 2. file dnodes
1792                          */
1793                         if (step == 0 && IS_DNODE(page))
1794                                 continue;
1795                         if (step == 1 && (!IS_DNODE(page) ||
1796                                                 is_cold_node(page)))
1797                                 continue;
1798                         if (step == 2 && (!IS_DNODE(page) ||
1799                                                 !is_cold_node(page)))
1800                                 continue;
1801 lock_node:
1802                         if (wbc->sync_mode == WB_SYNC_ALL)
1803                                 lock_page(page);
1804                         else if (!trylock_page(page))
1805                                 continue;
1806
1807                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1808 continue_unlock:
1809                                 unlock_page(page);
1810                                 continue;
1811                         }
1812
1813                         if (!PageDirty(page)) {
1814                                 /* someone wrote it for us */
1815                                 goto continue_unlock;
1816                         }
1817
1818                         /* flush inline_data */
1819                         if (is_inline_node(page)) {
1820                                 clear_inline_node(page);
1821                                 unlock_page(page);
1822                                 flush_inline_data(sbi, ino_of_node(page));
1823                                 goto lock_node;
1824                         }
1825
1826                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1827
1828                         if (!clear_page_dirty_for_io(page))
1829                                 goto continue_unlock;
1830
1831                         set_fsync_mark(page, 0);
1832                         set_dentry_mark(page, 0);
1833
1834                         ret = __write_node_page(page, false, &submitted,
1835                                                 wbc, do_balance, io_type, NULL);
1836                         if (ret)
1837                                 unlock_page(page);
1838                         else if (submitted)
1839                                 nwritten++;
1840
1841                         if (--wbc->nr_to_write == 0)
1842                                 break;
1843                 }
1844                 pagevec_release(&pvec);
1845                 cond_resched();
1846
1847                 if (wbc->nr_to_write == 0) {
1848                         step = 2;
1849                         break;
1850                 }
1851         }
1852
1853         if (step < 2) {
1854                 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1855                         goto out;
1856                 step++;
1857                 goto next_step;
1858         }
1859 out:
1860         if (nwritten)
1861                 f2fs_submit_merged_write(sbi, NODE);
1862
1863         if (unlikely(f2fs_cp_error(sbi)))
1864                 return -EIO;
1865         return ret;
1866 }
1867
1868 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1869                                                 unsigned int seq_id)
1870 {
1871         struct fsync_node_entry *fn;
1872         struct page *page;
1873         struct list_head *head = &sbi->fsync_node_list;
1874         unsigned long flags;
1875         unsigned int cur_seq_id = 0;
1876         int ret2, ret = 0;
1877
1878         while (seq_id && cur_seq_id < seq_id) {
1879                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1880                 if (list_empty(head)) {
1881                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1882                         break;
1883                 }
1884                 fn = list_first_entry(head, struct fsync_node_entry, list);
1885                 if (fn->seq_id > seq_id) {
1886                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1887                         break;
1888                 }
1889                 cur_seq_id = fn->seq_id;
1890                 page = fn->page;
1891                 get_page(page);
1892                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1893
1894                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1895                 if (TestClearPageError(page))
1896                         ret = -EIO;
1897
1898                 put_page(page);
1899
1900                 if (ret)
1901                         break;
1902         }
1903
1904         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1905         if (!ret)
1906                 ret = ret2;
1907
1908         return ret;
1909 }
1910
1911 static int f2fs_write_node_pages(struct address_space *mapping,
1912                             struct writeback_control *wbc)
1913 {
1914         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1915         struct blk_plug plug;
1916         long diff;
1917
1918         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1919                 goto skip_write;
1920
1921         /* balancing f2fs's metadata in background */
1922         f2fs_balance_fs_bg(sbi);
1923
1924         /* collect a number of dirty node pages and write together */
1925         if (wbc->sync_mode != WB_SYNC_ALL &&
1926                         get_pages(sbi, F2FS_DIRTY_NODES) <
1927                                         nr_pages_to_skip(sbi, NODE))
1928                 goto skip_write;
1929
1930         if (wbc->sync_mode == WB_SYNC_ALL)
1931                 atomic_inc(&sbi->wb_sync_req[NODE]);
1932         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1933                 goto skip_write;
1934
1935         trace_f2fs_writepages(mapping->host, wbc, NODE);
1936
1937         diff = nr_pages_to_write(sbi, NODE, wbc);
1938         blk_start_plug(&plug);
1939         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1940         blk_finish_plug(&plug);
1941         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1942
1943         if (wbc->sync_mode == WB_SYNC_ALL)
1944                 atomic_dec(&sbi->wb_sync_req[NODE]);
1945         return 0;
1946
1947 skip_write:
1948         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1949         trace_f2fs_writepages(mapping->host, wbc, NODE);
1950         return 0;
1951 }
1952
1953 static int f2fs_set_node_page_dirty(struct page *page)
1954 {
1955         trace_f2fs_set_page_dirty(page, NODE);
1956
1957         if (!PageUptodate(page))
1958                 SetPageUptodate(page);
1959 #ifdef CONFIG_F2FS_CHECK_FS
1960         if (IS_INODE(page))
1961                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1962 #endif
1963         if (!PageDirty(page)) {
1964                 __set_page_dirty_nobuffers(page);
1965                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1966                 f2fs_set_page_private(page, 0);
1967                 f2fs_trace_pid(page);
1968                 return 1;
1969         }
1970         return 0;
1971 }
1972
1973 /*
1974  * Structure of the f2fs node operations
1975  */
1976 const struct address_space_operations f2fs_node_aops = {
1977         .writepage      = f2fs_write_node_page,
1978         .writepages     = f2fs_write_node_pages,
1979         .set_page_dirty = f2fs_set_node_page_dirty,
1980         .invalidatepage = f2fs_invalidate_page,
1981         .releasepage    = f2fs_release_page,
1982 #ifdef CONFIG_MIGRATION
1983         .migratepage    = f2fs_migrate_page,
1984 #endif
1985 };
1986
1987 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1988                                                 nid_t n)
1989 {
1990         return radix_tree_lookup(&nm_i->free_nid_root, n);
1991 }
1992
1993 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1994                         struct free_nid *i, enum nid_state state)
1995 {
1996         struct f2fs_nm_info *nm_i = NM_I(sbi);
1997
1998         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1999         if (err)
2000                 return err;
2001
2002         f2fs_bug_on(sbi, state != i->state);
2003         nm_i->nid_cnt[state]++;
2004         if (state == FREE_NID)
2005                 list_add_tail(&i->list, &nm_i->free_nid_list);
2006         return 0;
2007 }
2008
2009 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2010                         struct free_nid *i, enum nid_state state)
2011 {
2012         struct f2fs_nm_info *nm_i = NM_I(sbi);
2013
2014         f2fs_bug_on(sbi, state != i->state);
2015         nm_i->nid_cnt[state]--;
2016         if (state == FREE_NID)
2017                 list_del(&i->list);
2018         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2019 }
2020
2021 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2022                         enum nid_state org_state, enum nid_state dst_state)
2023 {
2024         struct f2fs_nm_info *nm_i = NM_I(sbi);
2025
2026         f2fs_bug_on(sbi, org_state != i->state);
2027         i->state = dst_state;
2028         nm_i->nid_cnt[org_state]--;
2029         nm_i->nid_cnt[dst_state]++;
2030
2031         switch (dst_state) {
2032         case PREALLOC_NID:
2033                 list_del(&i->list);
2034                 break;
2035         case FREE_NID:
2036                 list_add_tail(&i->list, &nm_i->free_nid_list);
2037                 break;
2038         default:
2039                 BUG_ON(1);
2040         }
2041 }
2042
2043 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2044                                                         bool set, bool build)
2045 {
2046         struct f2fs_nm_info *nm_i = NM_I(sbi);
2047         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2048         unsigned int nid_ofs = nid - START_NID(nid);
2049
2050         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2051                 return;
2052
2053         if (set) {
2054                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2055                         return;
2056                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2057                 nm_i->free_nid_count[nat_ofs]++;
2058         } else {
2059                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2060                         return;
2061                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2062                 if (!build)
2063                         nm_i->free_nid_count[nat_ofs]--;
2064         }
2065 }
2066
2067 /* return if the nid is recognized as free */
2068 static bool add_free_nid(struct f2fs_sb_info *sbi,
2069                                 nid_t nid, bool build, bool update)
2070 {
2071         struct f2fs_nm_info *nm_i = NM_I(sbi);
2072         struct free_nid *i, *e;
2073         struct nat_entry *ne;
2074         int err = -EINVAL;
2075         bool ret = false;
2076
2077         /* 0 nid should not be used */
2078         if (unlikely(nid == 0))
2079                 return false;
2080
2081         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2082         i->nid = nid;
2083         i->state = FREE_NID;
2084
2085         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2086
2087         spin_lock(&nm_i->nid_list_lock);
2088
2089         if (build) {
2090                 /*
2091                  *   Thread A             Thread B
2092                  *  - f2fs_create
2093                  *   - f2fs_new_inode
2094                  *    - f2fs_alloc_nid
2095                  *     - __insert_nid_to_list(PREALLOC_NID)
2096                  *                     - f2fs_balance_fs_bg
2097                  *                      - f2fs_build_free_nids
2098                  *                       - __f2fs_build_free_nids
2099                  *                        - scan_nat_page
2100                  *                         - add_free_nid
2101                  *                          - __lookup_nat_cache
2102                  *  - f2fs_add_link
2103                  *   - f2fs_init_inode_metadata
2104                  *    - f2fs_new_inode_page
2105                  *     - f2fs_new_node_page
2106                  *      - set_node_addr
2107                  *  - f2fs_alloc_nid_done
2108                  *   - __remove_nid_from_list(PREALLOC_NID)
2109                  *                         - __insert_nid_to_list(FREE_NID)
2110                  */
2111                 ne = __lookup_nat_cache(nm_i, nid);
2112                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2113                                 nat_get_blkaddr(ne) != NULL_ADDR))
2114                         goto err_out;
2115
2116                 e = __lookup_free_nid_list(nm_i, nid);
2117                 if (e) {
2118                         if (e->state == FREE_NID)
2119                                 ret = true;
2120                         goto err_out;
2121                 }
2122         }
2123         ret = true;
2124         err = __insert_free_nid(sbi, i, FREE_NID);
2125 err_out:
2126         if (update) {
2127                 update_free_nid_bitmap(sbi, nid, ret, build);
2128                 if (!build)
2129                         nm_i->available_nids++;
2130         }
2131         spin_unlock(&nm_i->nid_list_lock);
2132         radix_tree_preload_end();
2133
2134         if (err)
2135                 kmem_cache_free(free_nid_slab, i);
2136         return ret;
2137 }
2138
2139 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2140 {
2141         struct f2fs_nm_info *nm_i = NM_I(sbi);
2142         struct free_nid *i;
2143         bool need_free = false;
2144
2145         spin_lock(&nm_i->nid_list_lock);
2146         i = __lookup_free_nid_list(nm_i, nid);
2147         if (i && i->state == FREE_NID) {
2148                 __remove_free_nid(sbi, i, FREE_NID);
2149                 need_free = true;
2150         }
2151         spin_unlock(&nm_i->nid_list_lock);
2152
2153         if (need_free)
2154                 kmem_cache_free(free_nid_slab, i);
2155 }
2156
2157 static int scan_nat_page(struct f2fs_sb_info *sbi,
2158                         struct page *nat_page, nid_t start_nid)
2159 {
2160         struct f2fs_nm_info *nm_i = NM_I(sbi);
2161         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2162         block_t blk_addr;
2163         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2164         int i;
2165
2166         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2167
2168         i = start_nid % NAT_ENTRY_PER_BLOCK;
2169
2170         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2171                 if (unlikely(start_nid >= nm_i->max_nid))
2172                         break;
2173
2174                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2175
2176                 if (blk_addr == NEW_ADDR)
2177                         return -EINVAL;
2178
2179                 if (blk_addr == NULL_ADDR) {
2180                         add_free_nid(sbi, start_nid, true, true);
2181                 } else {
2182                         spin_lock(&NM_I(sbi)->nid_list_lock);
2183                         update_free_nid_bitmap(sbi, start_nid, false, true);
2184                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2185                 }
2186         }
2187
2188         return 0;
2189 }
2190
2191 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2192 {
2193         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2194         struct f2fs_journal *journal = curseg->journal;
2195         int i;
2196
2197         down_read(&curseg->journal_rwsem);
2198         for (i = 0; i < nats_in_cursum(journal); i++) {
2199                 block_t addr;
2200                 nid_t nid;
2201
2202                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2203                 nid = le32_to_cpu(nid_in_journal(journal, i));
2204                 if (addr == NULL_ADDR)
2205                         add_free_nid(sbi, nid, true, false);
2206                 else
2207                         remove_free_nid(sbi, nid);
2208         }
2209         up_read(&curseg->journal_rwsem);
2210 }
2211
2212 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2213 {
2214         struct f2fs_nm_info *nm_i = NM_I(sbi);
2215         unsigned int i, idx;
2216         nid_t nid;
2217
2218         down_read(&nm_i->nat_tree_lock);
2219
2220         for (i = 0; i < nm_i->nat_blocks; i++) {
2221                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2222                         continue;
2223                 if (!nm_i->free_nid_count[i])
2224                         continue;
2225                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2226                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2227                                                 NAT_ENTRY_PER_BLOCK, idx);
2228                         if (idx >= NAT_ENTRY_PER_BLOCK)
2229                                 break;
2230
2231                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2232                         add_free_nid(sbi, nid, true, false);
2233
2234                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2235                                 goto out;
2236                 }
2237         }
2238 out:
2239         scan_curseg_cache(sbi);
2240
2241         up_read(&nm_i->nat_tree_lock);
2242 }
2243
2244 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2245                                                 bool sync, bool mount)
2246 {
2247         struct f2fs_nm_info *nm_i = NM_I(sbi);
2248         int i = 0, ret;
2249         nid_t nid = nm_i->next_scan_nid;
2250
2251         if (unlikely(nid >= nm_i->max_nid))
2252                 nid = 0;
2253
2254         /* Enough entries */
2255         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2256                 return 0;
2257
2258         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2259                 return 0;
2260
2261         if (!mount) {
2262                 /* try to find free nids in free_nid_bitmap */
2263                 scan_free_nid_bits(sbi);
2264
2265                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2266                         return 0;
2267         }
2268
2269         /* readahead nat pages to be scanned */
2270         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2271                                                         META_NAT, true);
2272
2273         down_read(&nm_i->nat_tree_lock);
2274
2275         while (1) {
2276                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2277                                                 nm_i->nat_block_bitmap)) {
2278                         struct page *page = get_current_nat_page(sbi, nid);
2279
2280                         if (IS_ERR(page)) {
2281                                 ret = PTR_ERR(page);
2282                         } else {
2283                                 ret = scan_nat_page(sbi, page, nid);
2284                                 f2fs_put_page(page, 1);
2285                         }
2286
2287                         if (ret) {
2288                                 up_read(&nm_i->nat_tree_lock);
2289                                 f2fs_bug_on(sbi, !mount);
2290                                 f2fs_msg(sbi->sb, KERN_ERR,
2291                                         "NAT is corrupt, run fsck to fix it");
2292                                 return ret;
2293                         }
2294                 }
2295
2296                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2297                 if (unlikely(nid >= nm_i->max_nid))
2298                         nid = 0;
2299
2300                 if (++i >= FREE_NID_PAGES)
2301                         break;
2302         }
2303
2304         /* go to the next free nat pages to find free nids abundantly */
2305         nm_i->next_scan_nid = nid;
2306
2307         /* find free nids from current sum_pages */
2308         scan_curseg_cache(sbi);
2309
2310         up_read(&nm_i->nat_tree_lock);
2311
2312         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2313                                         nm_i->ra_nid_pages, META_NAT, false);
2314
2315         return 0;
2316 }
2317
2318 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2319 {
2320         int ret;
2321
2322         mutex_lock(&NM_I(sbi)->build_lock);
2323         ret = __f2fs_build_free_nids(sbi, sync, mount);
2324         mutex_unlock(&NM_I(sbi)->build_lock);
2325
2326         return ret;
2327 }
2328
2329 /*
2330  * If this function returns success, caller can obtain a new nid
2331  * from second parameter of this function.
2332  * The returned nid could be used ino as well as nid when inode is created.
2333  */
2334 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2335 {
2336         struct f2fs_nm_info *nm_i = NM_I(sbi);
2337         struct free_nid *i = NULL;
2338 retry:
2339         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2340                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2341                 return false;
2342         }
2343
2344         spin_lock(&nm_i->nid_list_lock);
2345
2346         if (unlikely(nm_i->available_nids == 0)) {
2347                 spin_unlock(&nm_i->nid_list_lock);
2348                 return false;
2349         }
2350
2351         /* We should not use stale free nids created by f2fs_build_free_nids */
2352         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2353                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2354                 i = list_first_entry(&nm_i->free_nid_list,
2355                                         struct free_nid, list);
2356                 *nid = i->nid;
2357
2358                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2359                 nm_i->available_nids--;
2360
2361                 update_free_nid_bitmap(sbi, *nid, false, false);
2362
2363                 spin_unlock(&nm_i->nid_list_lock);
2364                 return true;
2365         }
2366         spin_unlock(&nm_i->nid_list_lock);
2367
2368         /* Let's scan nat pages and its caches to get free nids */
2369         if (!f2fs_build_free_nids(sbi, true, false))
2370                 goto retry;
2371         return false;
2372 }
2373
2374 /*
2375  * f2fs_alloc_nid() should be called prior to this function.
2376  */
2377 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2378 {
2379         struct f2fs_nm_info *nm_i = NM_I(sbi);
2380         struct free_nid *i;
2381
2382         spin_lock(&nm_i->nid_list_lock);
2383         i = __lookup_free_nid_list(nm_i, nid);
2384         f2fs_bug_on(sbi, !i);
2385         __remove_free_nid(sbi, i, PREALLOC_NID);
2386         spin_unlock(&nm_i->nid_list_lock);
2387
2388         kmem_cache_free(free_nid_slab, i);
2389 }
2390
2391 /*
2392  * f2fs_alloc_nid() should be called prior to this function.
2393  */
2394 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2395 {
2396         struct f2fs_nm_info *nm_i = NM_I(sbi);
2397         struct free_nid *i;
2398         bool need_free = false;
2399
2400         if (!nid)
2401                 return;
2402
2403         spin_lock(&nm_i->nid_list_lock);
2404         i = __lookup_free_nid_list(nm_i, nid);
2405         f2fs_bug_on(sbi, !i);
2406
2407         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2408                 __remove_free_nid(sbi, i, PREALLOC_NID);
2409                 need_free = true;
2410         } else {
2411                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2412         }
2413
2414         nm_i->available_nids++;
2415
2416         update_free_nid_bitmap(sbi, nid, true, false);
2417
2418         spin_unlock(&nm_i->nid_list_lock);
2419
2420         if (need_free)
2421                 kmem_cache_free(free_nid_slab, i);
2422 }
2423
2424 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2425 {
2426         struct f2fs_nm_info *nm_i = NM_I(sbi);
2427         struct free_nid *i, *next;
2428         int nr = nr_shrink;
2429
2430         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2431                 return 0;
2432
2433         if (!mutex_trylock(&nm_i->build_lock))
2434                 return 0;
2435
2436         spin_lock(&nm_i->nid_list_lock);
2437         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2438                 if (nr_shrink <= 0 ||
2439                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2440                         break;
2441
2442                 __remove_free_nid(sbi, i, FREE_NID);
2443                 kmem_cache_free(free_nid_slab, i);
2444                 nr_shrink--;
2445         }
2446         spin_unlock(&nm_i->nid_list_lock);
2447         mutex_unlock(&nm_i->build_lock);
2448
2449         return nr - nr_shrink;
2450 }
2451
2452 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2453 {
2454         void *src_addr, *dst_addr;
2455         size_t inline_size;
2456         struct page *ipage;
2457         struct f2fs_inode *ri;
2458
2459         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2460         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2461
2462         ri = F2FS_INODE(page);
2463         if (ri->i_inline & F2FS_INLINE_XATTR) {
2464                 set_inode_flag(inode, FI_INLINE_XATTR);
2465         } else {
2466                 clear_inode_flag(inode, FI_INLINE_XATTR);
2467                 goto update_inode;
2468         }
2469
2470         dst_addr = inline_xattr_addr(inode, ipage);
2471         src_addr = inline_xattr_addr(inode, page);
2472         inline_size = inline_xattr_size(inode);
2473
2474         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2475         memcpy(dst_addr, src_addr, inline_size);
2476 update_inode:
2477         f2fs_update_inode(inode, ipage);
2478         f2fs_put_page(ipage, 1);
2479 }
2480
2481 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2482 {
2483         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2484         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2485         nid_t new_xnid;
2486         struct dnode_of_data dn;
2487         struct node_info ni;
2488         struct page *xpage;
2489         int err;
2490
2491         if (!prev_xnid)
2492                 goto recover_xnid;
2493
2494         /* 1: invalidate the previous xattr nid */
2495         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2496         if (err)
2497                 return err;
2498
2499         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2500         dec_valid_node_count(sbi, inode, false);
2501         set_node_addr(sbi, &ni, NULL_ADDR, false);
2502
2503 recover_xnid:
2504         /* 2: update xattr nid in inode */
2505         if (!f2fs_alloc_nid(sbi, &new_xnid))
2506                 return -ENOSPC;
2507
2508         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2509         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2510         if (IS_ERR(xpage)) {
2511                 f2fs_alloc_nid_failed(sbi, new_xnid);
2512                 return PTR_ERR(xpage);
2513         }
2514
2515         f2fs_alloc_nid_done(sbi, new_xnid);
2516         f2fs_update_inode_page(inode);
2517
2518         /* 3: update and set xattr node page dirty */
2519         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2520
2521         set_page_dirty(xpage);
2522         f2fs_put_page(xpage, 1);
2523
2524         return 0;
2525 }
2526
2527 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2528 {
2529         struct f2fs_inode *src, *dst;
2530         nid_t ino = ino_of_node(page);
2531         struct node_info old_ni, new_ni;
2532         struct page *ipage;
2533         int err;
2534
2535         err = f2fs_get_node_info(sbi, ino, &old_ni);
2536         if (err)
2537                 return err;
2538
2539         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2540                 return -EINVAL;
2541 retry:
2542         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2543         if (!ipage) {
2544                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2545                 goto retry;
2546         }
2547
2548         /* Should not use this inode from free nid list */
2549         remove_free_nid(sbi, ino);
2550
2551         if (!PageUptodate(ipage))
2552                 SetPageUptodate(ipage);
2553         fill_node_footer(ipage, ino, ino, 0, true);
2554         set_cold_node(ipage, false);
2555
2556         src = F2FS_INODE(page);
2557         dst = F2FS_INODE(ipage);
2558
2559         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2560         dst->i_size = 0;
2561         dst->i_blocks = cpu_to_le64(1);
2562         dst->i_links = cpu_to_le32(1);
2563         dst->i_xattr_nid = 0;
2564         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2565         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2566                 dst->i_extra_isize = src->i_extra_isize;
2567
2568                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2569                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2570                                                         i_inline_xattr_size))
2571                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2572
2573                 if (f2fs_sb_has_project_quota(sbi) &&
2574                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2575                                                                 i_projid))
2576                         dst->i_projid = src->i_projid;
2577
2578                 if (f2fs_sb_has_inode_crtime(sbi) &&
2579                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2580                                                         i_crtime_nsec)) {
2581                         dst->i_crtime = src->i_crtime;
2582                         dst->i_crtime_nsec = src->i_crtime_nsec;
2583                 }
2584         }
2585
2586         new_ni = old_ni;
2587         new_ni.ino = ino;
2588
2589         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2590                 WARN_ON(1);
2591         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2592         inc_valid_inode_count(sbi);
2593         set_page_dirty(ipage);
2594         f2fs_put_page(ipage, 1);
2595         return 0;
2596 }
2597
2598 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2599                         unsigned int segno, struct f2fs_summary_block *sum)
2600 {
2601         struct f2fs_node *rn;
2602         struct f2fs_summary *sum_entry;
2603         block_t addr;
2604         int i, idx, last_offset, nrpages;
2605
2606         /* scan the node segment */
2607         last_offset = sbi->blocks_per_seg;
2608         addr = START_BLOCK(sbi, segno);
2609         sum_entry = &sum->entries[0];
2610
2611         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2612                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2613
2614                 /* readahead node pages */
2615                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2616
2617                 for (idx = addr; idx < addr + nrpages; idx++) {
2618                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2619
2620                         if (IS_ERR(page))
2621                                 return PTR_ERR(page);
2622
2623                         rn = F2FS_NODE(page);
2624                         sum_entry->nid = rn->footer.nid;
2625                         sum_entry->version = 0;
2626                         sum_entry->ofs_in_node = 0;
2627                         sum_entry++;
2628                         f2fs_put_page(page, 1);
2629                 }
2630
2631                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2632                                                         addr + nrpages);
2633         }
2634         return 0;
2635 }
2636
2637 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2638 {
2639         struct f2fs_nm_info *nm_i = NM_I(sbi);
2640         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2641         struct f2fs_journal *journal = curseg->journal;
2642         int i;
2643
2644         down_write(&curseg->journal_rwsem);
2645         for (i = 0; i < nats_in_cursum(journal); i++) {
2646                 struct nat_entry *ne;
2647                 struct f2fs_nat_entry raw_ne;
2648                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2649
2650                 raw_ne = nat_in_journal(journal, i);
2651
2652                 ne = __lookup_nat_cache(nm_i, nid);
2653                 if (!ne) {
2654                         ne = __alloc_nat_entry(nid, true);
2655                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2656                 }
2657
2658                 /*
2659                  * if a free nat in journal has not been used after last
2660                  * checkpoint, we should remove it from available nids,
2661                  * since later we will add it again.
2662                  */
2663                 if (!get_nat_flag(ne, IS_DIRTY) &&
2664                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2665                         spin_lock(&nm_i->nid_list_lock);
2666                         nm_i->available_nids--;
2667                         spin_unlock(&nm_i->nid_list_lock);
2668                 }
2669
2670                 __set_nat_cache_dirty(nm_i, ne);
2671         }
2672         update_nats_in_cursum(journal, -i);
2673         up_write(&curseg->journal_rwsem);
2674 }
2675
2676 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2677                                                 struct list_head *head, int max)
2678 {
2679         struct nat_entry_set *cur;
2680
2681         if (nes->entry_cnt >= max)
2682                 goto add_out;
2683
2684         list_for_each_entry(cur, head, set_list) {
2685                 if (cur->entry_cnt >= nes->entry_cnt) {
2686                         list_add(&nes->set_list, cur->set_list.prev);
2687                         return;
2688                 }
2689         }
2690 add_out:
2691         list_add_tail(&nes->set_list, head);
2692 }
2693
2694 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2695                                                 struct page *page)
2696 {
2697         struct f2fs_nm_info *nm_i = NM_I(sbi);
2698         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2699         struct f2fs_nat_block *nat_blk = page_address(page);
2700         int valid = 0;
2701         int i = 0;
2702
2703         if (!enabled_nat_bits(sbi, NULL))
2704                 return;
2705
2706         if (nat_index == 0) {
2707                 valid = 1;
2708                 i = 1;
2709         }
2710         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2711                 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2712                         valid++;
2713         }
2714         if (valid == 0) {
2715                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2716                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2717                 return;
2718         }
2719
2720         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2721         if (valid == NAT_ENTRY_PER_BLOCK)
2722                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2723         else
2724                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2725 }
2726
2727 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2728                 struct nat_entry_set *set, struct cp_control *cpc)
2729 {
2730         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2731         struct f2fs_journal *journal = curseg->journal;
2732         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2733         bool to_journal = true;
2734         struct f2fs_nat_block *nat_blk;
2735         struct nat_entry *ne, *cur;
2736         struct page *page = NULL;
2737
2738         /*
2739          * there are two steps to flush nat entries:
2740          * #1, flush nat entries to journal in current hot data summary block.
2741          * #2, flush nat entries to nat page.
2742          */
2743         if (enabled_nat_bits(sbi, cpc) ||
2744                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2745                 to_journal = false;
2746
2747         if (to_journal) {
2748                 down_write(&curseg->journal_rwsem);
2749         } else {
2750                 page = get_next_nat_page(sbi, start_nid);
2751                 if (IS_ERR(page))
2752                         return PTR_ERR(page);
2753
2754                 nat_blk = page_address(page);
2755                 f2fs_bug_on(sbi, !nat_blk);
2756         }
2757
2758         /* flush dirty nats in nat entry set */
2759         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2760                 struct f2fs_nat_entry *raw_ne;
2761                 nid_t nid = nat_get_nid(ne);
2762                 int offset;
2763
2764                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2765
2766                 if (to_journal) {
2767                         offset = f2fs_lookup_journal_in_cursum(journal,
2768                                                         NAT_JOURNAL, nid, 1);
2769                         f2fs_bug_on(sbi, offset < 0);
2770                         raw_ne = &nat_in_journal(journal, offset);
2771                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2772                 } else {
2773                         raw_ne = &nat_blk->entries[nid - start_nid];
2774                 }
2775                 raw_nat_from_node_info(raw_ne, &ne->ni);
2776                 nat_reset_flag(ne);
2777                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2778                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2779                         add_free_nid(sbi, nid, false, true);
2780                 } else {
2781                         spin_lock(&NM_I(sbi)->nid_list_lock);
2782                         update_free_nid_bitmap(sbi, nid, false, false);
2783                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2784                 }
2785         }
2786
2787         if (to_journal) {
2788                 up_write(&curseg->journal_rwsem);
2789         } else {
2790                 __update_nat_bits(sbi, start_nid, page);
2791                 f2fs_put_page(page, 1);
2792         }
2793
2794         /* Allow dirty nats by node block allocation in write_begin */
2795         if (!set->entry_cnt) {
2796                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2797                 kmem_cache_free(nat_entry_set_slab, set);
2798         }
2799         return 0;
2800 }
2801
2802 /*
2803  * This function is called during the checkpointing process.
2804  */
2805 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2806 {
2807         struct f2fs_nm_info *nm_i = NM_I(sbi);
2808         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2809         struct f2fs_journal *journal = curseg->journal;
2810         struct nat_entry_set *setvec[SETVEC_SIZE];
2811         struct nat_entry_set *set, *tmp;
2812         unsigned int found;
2813         nid_t set_idx = 0;
2814         LIST_HEAD(sets);
2815         int err = 0;
2816
2817         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2818         if (enabled_nat_bits(sbi, cpc)) {
2819                 down_write(&nm_i->nat_tree_lock);
2820                 remove_nats_in_journal(sbi);
2821                 up_write(&nm_i->nat_tree_lock);
2822         }
2823
2824         if (!nm_i->dirty_nat_cnt)
2825                 return 0;
2826
2827         down_write(&nm_i->nat_tree_lock);
2828
2829         /*
2830          * if there are no enough space in journal to store dirty nat
2831          * entries, remove all entries from journal and merge them
2832          * into nat entry set.
2833          */
2834         if (enabled_nat_bits(sbi, cpc) ||
2835                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2836                 remove_nats_in_journal(sbi);
2837
2838         while ((found = __gang_lookup_nat_set(nm_i,
2839                                         set_idx, SETVEC_SIZE, setvec))) {
2840                 unsigned idx;
2841                 set_idx = setvec[found - 1]->set + 1;
2842                 for (idx = 0; idx < found; idx++)
2843                         __adjust_nat_entry_set(setvec[idx], &sets,
2844                                                 MAX_NAT_JENTRIES(journal));
2845         }
2846
2847         /* flush dirty nats in nat entry set */
2848         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2849                 err = __flush_nat_entry_set(sbi, set, cpc);
2850                 if (err)
2851                         break;
2852         }
2853
2854         up_write(&nm_i->nat_tree_lock);
2855         /* Allow dirty nats by node block allocation in write_begin */
2856
2857         return err;
2858 }
2859
2860 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2861 {
2862         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2863         struct f2fs_nm_info *nm_i = NM_I(sbi);
2864         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2865         unsigned int i;
2866         __u64 cp_ver = cur_cp_version(ckpt);
2867         block_t nat_bits_addr;
2868
2869         if (!enabled_nat_bits(sbi, NULL))
2870                 return 0;
2871
2872         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2873         nm_i->nat_bits = f2fs_kzalloc(sbi,
2874                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2875         if (!nm_i->nat_bits)
2876                 return -ENOMEM;
2877
2878         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2879                                                 nm_i->nat_bits_blocks;
2880         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2881                 struct page *page;
2882
2883                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2884                 if (IS_ERR(page))
2885                         return PTR_ERR(page);
2886
2887                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2888                                         page_address(page), F2FS_BLKSIZE);
2889                 f2fs_put_page(page, 1);
2890         }
2891
2892         cp_ver |= (cur_cp_crc(ckpt) << 32);
2893         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2894                 disable_nat_bits(sbi, true);
2895                 return 0;
2896         }
2897
2898         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2899         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2900
2901         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2902         return 0;
2903 }
2904
2905 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2906 {
2907         struct f2fs_nm_info *nm_i = NM_I(sbi);
2908         unsigned int i = 0;
2909         nid_t nid, last_nid;
2910
2911         if (!enabled_nat_bits(sbi, NULL))
2912                 return;
2913
2914         for (i = 0; i < nm_i->nat_blocks; i++) {
2915                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2916                 if (i >= nm_i->nat_blocks)
2917                         break;
2918
2919                 __set_bit_le(i, nm_i->nat_block_bitmap);
2920
2921                 nid = i * NAT_ENTRY_PER_BLOCK;
2922                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2923
2924                 spin_lock(&NM_I(sbi)->nid_list_lock);
2925                 for (; nid < last_nid; nid++)
2926                         update_free_nid_bitmap(sbi, nid, true, true);
2927                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2928         }
2929
2930         for (i = 0; i < nm_i->nat_blocks; i++) {
2931                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2932                 if (i >= nm_i->nat_blocks)
2933                         break;
2934
2935                 __set_bit_le(i, nm_i->nat_block_bitmap);
2936         }
2937 }
2938
2939 static int init_node_manager(struct f2fs_sb_info *sbi)
2940 {
2941         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2942         struct f2fs_nm_info *nm_i = NM_I(sbi);
2943         unsigned char *version_bitmap;
2944         unsigned int nat_segs;
2945         int err;
2946
2947         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2948
2949         /* segment_count_nat includes pair segment so divide to 2. */
2950         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2951         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2952         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2953
2954         /* not used nids: 0, node, meta, (and root counted as valid node) */
2955         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2956                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2957         nm_i->nid_cnt[FREE_NID] = 0;
2958         nm_i->nid_cnt[PREALLOC_NID] = 0;
2959         nm_i->nat_cnt = 0;
2960         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2961         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2962         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2963
2964         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2965         INIT_LIST_HEAD(&nm_i->free_nid_list);
2966         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2967         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2968         INIT_LIST_HEAD(&nm_i->nat_entries);
2969         spin_lock_init(&nm_i->nat_list_lock);
2970
2971         mutex_init(&nm_i->build_lock);
2972         spin_lock_init(&nm_i->nid_list_lock);
2973         init_rwsem(&nm_i->nat_tree_lock);
2974
2975         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2976         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2977         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2978         if (!version_bitmap)
2979                 return -EFAULT;
2980
2981         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2982                                         GFP_KERNEL);
2983         if (!nm_i->nat_bitmap)
2984                 return -ENOMEM;
2985
2986         err = __get_nat_bitmaps(sbi);
2987         if (err)
2988                 return err;
2989
2990 #ifdef CONFIG_F2FS_CHECK_FS
2991         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2992                                         GFP_KERNEL);
2993         if (!nm_i->nat_bitmap_mir)
2994                 return -ENOMEM;
2995 #endif
2996
2997         return 0;
2998 }
2999
3000 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3001 {
3002         struct f2fs_nm_info *nm_i = NM_I(sbi);
3003         int i;
3004
3005         nm_i->free_nid_bitmap =
3006                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3007                                              nm_i->nat_blocks),
3008                              GFP_KERNEL);
3009         if (!nm_i->free_nid_bitmap)
3010                 return -ENOMEM;
3011
3012         for (i = 0; i < nm_i->nat_blocks; i++) {
3013                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3014                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3015                 if (!nm_i->free_nid_bitmap[i])
3016                         return -ENOMEM;
3017         }
3018
3019         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3020                                                                 GFP_KERNEL);
3021         if (!nm_i->nat_block_bitmap)
3022                 return -ENOMEM;
3023
3024         nm_i->free_nid_count =
3025                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3026                                               nm_i->nat_blocks),
3027                               GFP_KERNEL);
3028         if (!nm_i->free_nid_count)
3029                 return -ENOMEM;
3030         return 0;
3031 }
3032
3033 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3034 {
3035         int err;
3036
3037         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3038                                                         GFP_KERNEL);
3039         if (!sbi->nm_info)
3040                 return -ENOMEM;
3041
3042         err = init_node_manager(sbi);
3043         if (err)
3044                 return err;
3045
3046         err = init_free_nid_cache(sbi);
3047         if (err)
3048                 return err;
3049
3050         /* load free nid status from nat_bits table */
3051         load_free_nid_bitmap(sbi);
3052
3053         return f2fs_build_free_nids(sbi, true, true);
3054 }
3055
3056 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3057 {
3058         struct f2fs_nm_info *nm_i = NM_I(sbi);
3059         struct free_nid *i, *next_i;
3060         struct nat_entry *natvec[NATVEC_SIZE];
3061         struct nat_entry_set *setvec[SETVEC_SIZE];
3062         nid_t nid = 0;
3063         unsigned int found;
3064
3065         if (!nm_i)
3066                 return;
3067
3068         /* destroy free nid list */
3069         spin_lock(&nm_i->nid_list_lock);
3070         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3071                 __remove_free_nid(sbi, i, FREE_NID);
3072                 spin_unlock(&nm_i->nid_list_lock);
3073                 kmem_cache_free(free_nid_slab, i);
3074                 spin_lock(&nm_i->nid_list_lock);
3075         }
3076         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3077         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3078         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3079         spin_unlock(&nm_i->nid_list_lock);
3080
3081         /* destroy nat cache */
3082         down_write(&nm_i->nat_tree_lock);
3083         while ((found = __gang_lookup_nat_cache(nm_i,
3084                                         nid, NATVEC_SIZE, natvec))) {
3085                 unsigned idx;
3086
3087                 nid = nat_get_nid(natvec[found - 1]) + 1;
3088                 for (idx = 0; idx < found; idx++) {
3089                         spin_lock(&nm_i->nat_list_lock);
3090                         list_del(&natvec[idx]->list);
3091                         spin_unlock(&nm_i->nat_list_lock);
3092
3093                         __del_from_nat_cache(nm_i, natvec[idx]);
3094                 }
3095         }
3096         f2fs_bug_on(sbi, nm_i->nat_cnt);
3097
3098         /* destroy nat set cache */
3099         nid = 0;
3100         while ((found = __gang_lookup_nat_set(nm_i,
3101                                         nid, SETVEC_SIZE, setvec))) {
3102                 unsigned idx;
3103
3104                 nid = setvec[found - 1]->set + 1;
3105                 for (idx = 0; idx < found; idx++) {
3106                         /* entry_cnt is not zero, when cp_error was occurred */
3107                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3108                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3109                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3110                 }
3111         }
3112         up_write(&nm_i->nat_tree_lock);
3113
3114         kvfree(nm_i->nat_block_bitmap);
3115         if (nm_i->free_nid_bitmap) {
3116                 int i;
3117
3118                 for (i = 0; i < nm_i->nat_blocks; i++)
3119                         kvfree(nm_i->free_nid_bitmap[i]);
3120                 kvfree(nm_i->free_nid_bitmap);
3121         }
3122         kvfree(nm_i->free_nid_count);
3123
3124         kvfree(nm_i->nat_bitmap);
3125         kvfree(nm_i->nat_bits);
3126 #ifdef CONFIG_F2FS_CHECK_FS
3127         kvfree(nm_i->nat_bitmap_mir);
3128 #endif
3129         sbi->nm_info = NULL;
3130         kvfree(nm_i);
3131 }
3132
3133 int __init f2fs_create_node_manager_caches(void)
3134 {
3135         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3136                         sizeof(struct nat_entry));
3137         if (!nat_entry_slab)
3138                 goto fail;
3139
3140         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3141                         sizeof(struct free_nid));
3142         if (!free_nid_slab)
3143                 goto destroy_nat_entry;
3144
3145         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3146                         sizeof(struct nat_entry_set));
3147         if (!nat_entry_set_slab)
3148                 goto destroy_free_nid;
3149
3150         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3151                         sizeof(struct fsync_node_entry));
3152         if (!fsync_node_entry_slab)
3153                 goto destroy_nat_entry_set;
3154         return 0;
3155
3156 destroy_nat_entry_set:
3157         kmem_cache_destroy(nat_entry_set_slab);
3158 destroy_free_nid:
3159         kmem_cache_destroy(free_nid_slab);
3160 destroy_nat_entry:
3161         kmem_cache_destroy(nat_entry_slab);
3162 fail:
3163         return -ENOMEM;
3164 }
3165
3166 void f2fs_destroy_node_manager_caches(void)
3167 {
3168         kmem_cache_destroy(fsync_node_entry_slab);
3169         kmem_cache_destroy(nat_entry_set_slab);
3170         kmem_cache_destroy(free_nid_slab);
3171         kmem_cache_destroy(nat_entry_slab);
3172 }