Merge tag 's390-6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-block.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_fault_t ret;
43
44         ret = filemap_fault(vmf);
45         if (!ret)
46                 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47                                                         F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct page *page = vmf->page;
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = true;
61         int err = 0;
62
63         if (unlikely(IS_IMMUTABLE(inode)))
64                 return VM_FAULT_SIGBUS;
65
66         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67                 return VM_FAULT_SIGBUS;
68
69         if (unlikely(f2fs_cp_error(sbi))) {
70                 err = -EIO;
71                 goto err;
72         }
73
74         if (!f2fs_is_checkpoint_ready(sbi)) {
75                 err = -ENOSPC;
76                 goto err;
77         }
78
79         err = f2fs_convert_inline_inode(inode);
80         if (err)
81                 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84         if (f2fs_compressed_file(inode)) {
85                 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87                 if (ret < 0) {
88                         err = ret;
89                         goto err;
90                 } else if (ret) {
91                         need_alloc = false;
92                 }
93         }
94 #endif
95         /* should do out of any locked page */
96         if (need_alloc)
97                 f2fs_balance_fs(sbi, true);
98
99         sb_start_pagefault(inode->i_sb);
100
101         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103         file_update_time(vmf->vma->vm_file);
104         filemap_invalidate_lock_shared(inode->i_mapping);
105         lock_page(page);
106         if (unlikely(page->mapping != inode->i_mapping ||
107                         page_offset(page) > i_size_read(inode) ||
108                         !PageUptodate(page))) {
109                 unlock_page(page);
110                 err = -EFAULT;
111                 goto out_sem;
112         }
113
114         if (need_alloc) {
115                 /* block allocation */
116                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117                 set_new_dnode(&dn, inode, NULL, NULL, 0);
118                 err = f2fs_get_block(&dn, page->index);
119                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120         }
121
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123         if (!need_alloc) {
124                 set_new_dnode(&dn, inode, NULL, NULL, 0);
125                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126                 f2fs_put_dnode(&dn);
127         }
128 #endif
129         if (err) {
130                 unlock_page(page);
131                 goto out_sem;
132         }
133
134         f2fs_wait_on_page_writeback(page, DATA, false, true);
135
136         /* wait for GCed page writeback via META_MAPPING */
137         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138
139         /*
140          * check to see if the page is mapped already (no holes)
141          */
142         if (PageMappedToDisk(page))
143                 goto out_sem;
144
145         /* page is wholly or partially inside EOF */
146         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147                                                 i_size_read(inode)) {
148                 loff_t offset;
149
150                 offset = i_size_read(inode) & ~PAGE_MASK;
151                 zero_user_segment(page, offset, PAGE_SIZE);
152         }
153         set_page_dirty(page);
154         if (!PageUptodate(page))
155                 SetPageUptodate(page);
156
157         f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
158         f2fs_update_time(sbi, REQ_TIME);
159
160         trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162         filemap_invalidate_unlock_shared(inode->i_mapping);
163
164         sb_end_pagefault(inode->i_sb);
165 err:
166         return block_page_mkwrite_return(err);
167 }
168
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170         .fault          = f2fs_filemap_fault,
171         .map_pages      = filemap_map_pages,
172         .page_mkwrite   = f2fs_vm_page_mkwrite,
173 };
174
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177         struct dentry *dentry;
178
179         /*
180          * Make sure to get the non-deleted alias.  The alias associated with
181          * the open file descriptor being fsync()'ed may be deleted already.
182          */
183         dentry = d_find_alias(inode);
184         if (!dentry)
185                 return 0;
186
187         *pino = parent_ino(dentry);
188         dput(dentry);
189         return 1;
190 }
191
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195         enum cp_reason_type cp_reason = CP_NO_NEEDED;
196
197         if (!S_ISREG(inode->i_mode))
198                 cp_reason = CP_NON_REGULAR;
199         else if (f2fs_compressed_file(inode))
200                 cp_reason = CP_COMPRESSED;
201         else if (inode->i_nlink != 1)
202                 cp_reason = CP_HARDLINK;
203         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204                 cp_reason = CP_SB_NEED_CP;
205         else if (file_wrong_pino(inode))
206                 cp_reason = CP_WRONG_PINO;
207         else if (!f2fs_space_for_roll_forward(sbi))
208                 cp_reason = CP_NO_SPC_ROLL;
209         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210                 cp_reason = CP_NODE_NEED_CP;
211         else if (test_opt(sbi, FASTBOOT))
212                 cp_reason = CP_FASTBOOT_MODE;
213         else if (F2FS_OPTION(sbi).active_logs == 2)
214                 cp_reason = CP_SPEC_LOG_NUM;
215         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218                                                         TRANS_DIR_INO))
219                 cp_reason = CP_RECOVER_DIR;
220
221         return cp_reason;
222 }
223
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227         bool ret = false;
228         /* But we need to avoid that there are some inode updates */
229         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230                 ret = true;
231         f2fs_put_page(i, 0);
232         return ret;
233 }
234
235 static void try_to_fix_pino(struct inode *inode)
236 {
237         struct f2fs_inode_info *fi = F2FS_I(inode);
238         nid_t pino;
239
240         f2fs_down_write(&fi->i_sem);
241         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242                         get_parent_ino(inode, &pino)) {
243                 f2fs_i_pino_write(inode, pino);
244                 file_got_pino(inode);
245         }
246         f2fs_up_write(&fi->i_sem);
247 }
248
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250                                                 int datasync, bool atomic)
251 {
252         struct inode *inode = file->f_mapping->host;
253         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254         nid_t ino = inode->i_ino;
255         int ret = 0;
256         enum cp_reason_type cp_reason = 0;
257         struct writeback_control wbc = {
258                 .sync_mode = WB_SYNC_ALL,
259                 .nr_to_write = LONG_MAX,
260                 .for_reclaim = 0,
261         };
262         unsigned int seq_id = 0;
263
264         if (unlikely(f2fs_readonly(inode->i_sb)))
265                 return 0;
266
267         trace_f2fs_sync_file_enter(inode);
268
269         if (S_ISDIR(inode->i_mode))
270                 goto go_write;
271
272         /* if fdatasync is triggered, let's do in-place-update */
273         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274                 set_inode_flag(inode, FI_NEED_IPU);
275         ret = file_write_and_wait_range(file, start, end);
276         clear_inode_flag(inode, FI_NEED_IPU);
277
278         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280                 return ret;
281         }
282
283         /* if the inode is dirty, let's recover all the time */
284         if (!f2fs_skip_inode_update(inode, datasync)) {
285                 f2fs_write_inode(inode, NULL);
286                 goto go_write;
287         }
288
289         /*
290          * if there is no written data, don't waste time to write recovery info.
291          */
292         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294
295                 /* it may call write_inode just prior to fsync */
296                 if (need_inode_page_update(sbi, ino))
297                         goto go_write;
298
299                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301                         goto flush_out;
302                 goto out;
303         } else {
304                 /*
305                  * for OPU case, during fsync(), node can be persisted before
306                  * data when lower device doesn't support write barrier, result
307                  * in data corruption after SPO.
308                  * So for strict fsync mode, force to use atomic write sematics
309                  * to keep write order in between data/node and last node to
310                  * avoid potential data corruption.
311                  */
312                 if (F2FS_OPTION(sbi).fsync_mode ==
313                                 FSYNC_MODE_STRICT && !atomic)
314                         atomic = true;
315         }
316 go_write:
317         /*
318          * Both of fdatasync() and fsync() are able to be recovered from
319          * sudden-power-off.
320          */
321         f2fs_down_read(&F2FS_I(inode)->i_sem);
322         cp_reason = need_do_checkpoint(inode);
323         f2fs_up_read(&F2FS_I(inode)->i_sem);
324
325         if (cp_reason) {
326                 /* all the dirty node pages should be flushed for POR */
327                 ret = f2fs_sync_fs(inode->i_sb, 1);
328
329                 /*
330                  * We've secured consistency through sync_fs. Following pino
331                  * will be used only for fsynced inodes after checkpoint.
332                  */
333                 try_to_fix_pino(inode);
334                 clear_inode_flag(inode, FI_APPEND_WRITE);
335                 clear_inode_flag(inode, FI_UPDATE_WRITE);
336                 goto out;
337         }
338 sync_nodes:
339         atomic_inc(&sbi->wb_sync_req[NODE]);
340         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341         atomic_dec(&sbi->wb_sync_req[NODE]);
342         if (ret)
343                 goto out;
344
345         /* if cp_error was enabled, we should avoid infinite loop */
346         if (unlikely(f2fs_cp_error(sbi))) {
347                 ret = -EIO;
348                 goto out;
349         }
350
351         if (f2fs_need_inode_block_update(sbi, ino)) {
352                 f2fs_mark_inode_dirty_sync(inode, true);
353                 f2fs_write_inode(inode, NULL);
354                 goto sync_nodes;
355         }
356
357         /*
358          * If it's atomic_write, it's just fine to keep write ordering. So
359          * here we don't need to wait for node write completion, since we use
360          * node chain which serializes node blocks. If one of node writes are
361          * reordered, we can see simply broken chain, resulting in stopping
362          * roll-forward recovery. It means we'll recover all or none node blocks
363          * given fsync mark.
364          */
365         if (!atomic) {
366                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367                 if (ret)
368                         goto out;
369         }
370
371         /* once recovery info is written, don't need to tack this */
372         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373         clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
376             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
377                 ret = f2fs_issue_flush(sbi, inode->i_ino);
378         if (!ret) {
379                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
380                 clear_inode_flag(inode, FI_UPDATE_WRITE);
381                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
382         }
383         f2fs_update_time(sbi, REQ_TIME);
384 out:
385         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
386         return ret;
387 }
388
389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
390 {
391         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
392                 return -EIO;
393         return f2fs_do_sync_file(file, start, end, datasync, false);
394 }
395
396 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
397                                 pgoff_t index, int whence)
398 {
399         switch (whence) {
400         case SEEK_DATA:
401                 if (__is_valid_data_blkaddr(blkaddr))
402                         return true;
403                 if (blkaddr == NEW_ADDR &&
404                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
405                         return true;
406                 break;
407         case SEEK_HOLE:
408                 if (blkaddr == NULL_ADDR)
409                         return true;
410                 break;
411         }
412         return false;
413 }
414
415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
416 {
417         struct inode *inode = file->f_mapping->host;
418         loff_t maxbytes = inode->i_sb->s_maxbytes;
419         struct dnode_of_data dn;
420         pgoff_t pgofs, end_offset;
421         loff_t data_ofs = offset;
422         loff_t isize;
423         int err = 0;
424
425         inode_lock(inode);
426
427         isize = i_size_read(inode);
428         if (offset >= isize)
429                 goto fail;
430
431         /* handle inline data case */
432         if (f2fs_has_inline_data(inode)) {
433                 if (whence == SEEK_HOLE) {
434                         data_ofs = isize;
435                         goto found;
436                 } else if (whence == SEEK_DATA) {
437                         data_ofs = offset;
438                         goto found;
439                 }
440         }
441
442         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
443
444         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
445                 set_new_dnode(&dn, inode, NULL, NULL, 0);
446                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
447                 if (err && err != -ENOENT) {
448                         goto fail;
449                 } else if (err == -ENOENT) {
450                         /* direct node does not exists */
451                         if (whence == SEEK_DATA) {
452                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
453                                 continue;
454                         } else {
455                                 goto found;
456                         }
457                 }
458
459                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
460
461                 /* find data/hole in dnode block */
462                 for (; dn.ofs_in_node < end_offset;
463                                 dn.ofs_in_node++, pgofs++,
464                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
465                         block_t blkaddr;
466
467                         blkaddr = f2fs_data_blkaddr(&dn);
468
469                         if (__is_valid_data_blkaddr(blkaddr) &&
470                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
471                                         blkaddr, DATA_GENERIC_ENHANCE)) {
472                                 f2fs_put_dnode(&dn);
473                                 goto fail;
474                         }
475
476                         if (__found_offset(file->f_mapping, blkaddr,
477                                                         pgofs, whence)) {
478                                 f2fs_put_dnode(&dn);
479                                 goto found;
480                         }
481                 }
482                 f2fs_put_dnode(&dn);
483         }
484
485         if (whence == SEEK_DATA)
486                 goto fail;
487 found:
488         if (whence == SEEK_HOLE && data_ofs > isize)
489                 data_ofs = isize;
490         inode_unlock(inode);
491         return vfs_setpos(file, data_ofs, maxbytes);
492 fail:
493         inode_unlock(inode);
494         return -ENXIO;
495 }
496
497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
498 {
499         struct inode *inode = file->f_mapping->host;
500         loff_t maxbytes = inode->i_sb->s_maxbytes;
501
502         if (f2fs_compressed_file(inode))
503                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
504
505         switch (whence) {
506         case SEEK_SET:
507         case SEEK_CUR:
508         case SEEK_END:
509                 return generic_file_llseek_size(file, offset, whence,
510                                                 maxbytes, i_size_read(inode));
511         case SEEK_DATA:
512         case SEEK_HOLE:
513                 if (offset < 0)
514                         return -ENXIO;
515                 return f2fs_seek_block(file, offset, whence);
516         }
517
518         return -EINVAL;
519 }
520
521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
522 {
523         struct inode *inode = file_inode(file);
524
525         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
526                 return -EIO;
527
528         if (!f2fs_is_compress_backend_ready(inode))
529                 return -EOPNOTSUPP;
530
531         file_accessed(file);
532         vma->vm_ops = &f2fs_file_vm_ops;
533         set_inode_flag(inode, FI_MMAP_FILE);
534         return 0;
535 }
536
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539         int err = fscrypt_file_open(inode, filp);
540
541         if (err)
542                 return err;
543
544         if (!f2fs_is_compress_backend_ready(inode))
545                 return -EOPNOTSUPP;
546
547         err = fsverity_file_open(inode, filp);
548         if (err)
549                 return err;
550
551         filp->f_mode |= FMODE_NOWAIT;
552
553         return dquot_file_open(inode, filp);
554 }
555
556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
557 {
558         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
559         struct f2fs_node *raw_node;
560         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
561         __le32 *addr;
562         int base = 0;
563         bool compressed_cluster = false;
564         int cluster_index = 0, valid_blocks = 0;
565         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
566         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
567
568         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
569                 base = get_extra_isize(dn->inode);
570
571         raw_node = F2FS_NODE(dn->node_page);
572         addr = blkaddr_in_node(raw_node) + base + ofs;
573
574         /* Assumption: truncateion starts with cluster */
575         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
576                 block_t blkaddr = le32_to_cpu(*addr);
577
578                 if (f2fs_compressed_file(dn->inode) &&
579                                         !(cluster_index & (cluster_size - 1))) {
580                         if (compressed_cluster)
581                                 f2fs_i_compr_blocks_update(dn->inode,
582                                                         valid_blocks, false);
583                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
584                         valid_blocks = 0;
585                 }
586
587                 if (blkaddr == NULL_ADDR)
588                         continue;
589
590                 dn->data_blkaddr = NULL_ADDR;
591                 f2fs_set_data_blkaddr(dn);
592
593                 if (__is_valid_data_blkaddr(blkaddr)) {
594                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
595                                         DATA_GENERIC_ENHANCE))
596                                 continue;
597                         if (compressed_cluster)
598                                 valid_blocks++;
599                 }
600
601                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
602                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
603
604                 f2fs_invalidate_blocks(sbi, blkaddr);
605
606                 if (!released || blkaddr != COMPRESS_ADDR)
607                         nr_free++;
608         }
609
610         if (compressed_cluster)
611                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
612
613         if (nr_free) {
614                 pgoff_t fofs;
615                 /*
616                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
617                  * we will invalidate all blkaddr in the whole range.
618                  */
619                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
620                                                         dn->inode) + ofs;
621                 f2fs_update_extent_cache_range(dn, fofs, 0, len);
622                 dec_valid_block_count(sbi, dn->inode, nr_free);
623         }
624         dn->ofs_in_node = ofs;
625
626         f2fs_update_time(sbi, REQ_TIME);
627         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
628                                          dn->ofs_in_node, nr_free);
629 }
630
631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
632 {
633         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
634 }
635
636 static int truncate_partial_data_page(struct inode *inode, u64 from,
637                                                                 bool cache_only)
638 {
639         loff_t offset = from & (PAGE_SIZE - 1);
640         pgoff_t index = from >> PAGE_SHIFT;
641         struct address_space *mapping = inode->i_mapping;
642         struct page *page;
643
644         if (!offset && !cache_only)
645                 return 0;
646
647         if (cache_only) {
648                 page = find_lock_page(mapping, index);
649                 if (page && PageUptodate(page))
650                         goto truncate_out;
651                 f2fs_put_page(page, 1);
652                 return 0;
653         }
654
655         page = f2fs_get_lock_data_page(inode, index, true);
656         if (IS_ERR(page))
657                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
658 truncate_out:
659         f2fs_wait_on_page_writeback(page, DATA, true, true);
660         zero_user(page, offset, PAGE_SIZE - offset);
661
662         /* An encrypted inode should have a key and truncate the last page. */
663         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
664         if (!cache_only)
665                 set_page_dirty(page);
666         f2fs_put_page(page, 1);
667         return 0;
668 }
669
670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
671 {
672         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673         struct dnode_of_data dn;
674         pgoff_t free_from;
675         int count = 0, err = 0;
676         struct page *ipage;
677         bool truncate_page = false;
678
679         trace_f2fs_truncate_blocks_enter(inode, from);
680
681         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
682
683         if (free_from >= max_file_blocks(inode))
684                 goto free_partial;
685
686         if (lock)
687                 f2fs_lock_op(sbi);
688
689         ipage = f2fs_get_node_page(sbi, inode->i_ino);
690         if (IS_ERR(ipage)) {
691                 err = PTR_ERR(ipage);
692                 goto out;
693         }
694
695         if (f2fs_has_inline_data(inode)) {
696                 f2fs_truncate_inline_inode(inode, ipage, from);
697                 f2fs_put_page(ipage, 1);
698                 truncate_page = true;
699                 goto out;
700         }
701
702         set_new_dnode(&dn, inode, ipage, NULL, 0);
703         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
704         if (err) {
705                 if (err == -ENOENT)
706                         goto free_next;
707                 goto out;
708         }
709
710         count = ADDRS_PER_PAGE(dn.node_page, inode);
711
712         count -= dn.ofs_in_node;
713         f2fs_bug_on(sbi, count < 0);
714
715         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
716                 f2fs_truncate_data_blocks_range(&dn, count);
717                 free_from += count;
718         }
719
720         f2fs_put_dnode(&dn);
721 free_next:
722         err = f2fs_truncate_inode_blocks(inode, free_from);
723 out:
724         if (lock)
725                 f2fs_unlock_op(sbi);
726 free_partial:
727         /* lastly zero out the first data page */
728         if (!err)
729                 err = truncate_partial_data_page(inode, from, truncate_page);
730
731         trace_f2fs_truncate_blocks_exit(inode, err);
732         return err;
733 }
734
735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
736 {
737         u64 free_from = from;
738         int err;
739
740 #ifdef CONFIG_F2FS_FS_COMPRESSION
741         /*
742          * for compressed file, only support cluster size
743          * aligned truncation.
744          */
745         if (f2fs_compressed_file(inode))
746                 free_from = round_up(from,
747                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
748 #endif
749
750         err = f2fs_do_truncate_blocks(inode, free_from, lock);
751         if (err)
752                 return err;
753
754 #ifdef CONFIG_F2FS_FS_COMPRESSION
755         /*
756          * For compressed file, after release compress blocks, don't allow write
757          * direct, but we should allow write direct after truncate to zero.
758          */
759         if (f2fs_compressed_file(inode) && !free_from
760                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
761                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
762
763         if (from != free_from) {
764                 err = f2fs_truncate_partial_cluster(inode, from, lock);
765                 if (err)
766                         return err;
767         }
768 #endif
769
770         return 0;
771 }
772
773 int f2fs_truncate(struct inode *inode)
774 {
775         int err;
776
777         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
778                 return -EIO;
779
780         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
781                                 S_ISLNK(inode->i_mode)))
782                 return 0;
783
784         trace_f2fs_truncate(inode);
785
786         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
787                 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
788                 return -EIO;
789         }
790
791         err = f2fs_dquot_initialize(inode);
792         if (err)
793                 return err;
794
795         /* we should check inline_data size */
796         if (!f2fs_may_inline_data(inode)) {
797                 err = f2fs_convert_inline_inode(inode);
798                 if (err)
799                         return err;
800         }
801
802         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
803         if (err)
804                 return err;
805
806         inode->i_mtime = inode->i_ctime = current_time(inode);
807         f2fs_mark_inode_dirty_sync(inode, false);
808         return 0;
809 }
810
811 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
812 {
813         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814
815         if (!fscrypt_dio_supported(inode))
816                 return true;
817         if (fsverity_active(inode))
818                 return true;
819         if (f2fs_compressed_file(inode))
820                 return true;
821
822         /* disallow direct IO if any of devices has unaligned blksize */
823         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
824                 return true;
825
826         if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827                 return true;
828         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829                 return true;
830
831         return false;
832 }
833
834 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
835                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837         struct inode *inode = d_inode(path->dentry);
838         struct f2fs_inode_info *fi = F2FS_I(inode);
839         struct f2fs_inode *ri = NULL;
840         unsigned int flags;
841
842         if (f2fs_has_extra_attr(inode) &&
843                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845                 stat->result_mask |= STATX_BTIME;
846                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
847                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848         }
849
850         /*
851          * Return the DIO alignment restrictions if requested.  We only return
852          * this information when requested, since on encrypted files it might
853          * take a fair bit of work to get if the file wasn't opened recently.
854          *
855          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
856          * cannot represent that, so in that case we report no DIO support.
857          */
858         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859                 unsigned int bsize = i_blocksize(inode);
860
861                 stat->result_mask |= STATX_DIOALIGN;
862                 if (!f2fs_force_buffered_io(inode, WRITE)) {
863                         stat->dio_mem_align = bsize;
864                         stat->dio_offset_align = bsize;
865                 }
866         }
867
868         flags = fi->i_flags;
869         if (flags & F2FS_COMPR_FL)
870                 stat->attributes |= STATX_ATTR_COMPRESSED;
871         if (flags & F2FS_APPEND_FL)
872                 stat->attributes |= STATX_ATTR_APPEND;
873         if (IS_ENCRYPTED(inode))
874                 stat->attributes |= STATX_ATTR_ENCRYPTED;
875         if (flags & F2FS_IMMUTABLE_FL)
876                 stat->attributes |= STATX_ATTR_IMMUTABLE;
877         if (flags & F2FS_NODUMP_FL)
878                 stat->attributes |= STATX_ATTR_NODUMP;
879         if (IS_VERITY(inode))
880                 stat->attributes |= STATX_ATTR_VERITY;
881
882         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883                                   STATX_ATTR_APPEND |
884                                   STATX_ATTR_ENCRYPTED |
885                                   STATX_ATTR_IMMUTABLE |
886                                   STATX_ATTR_NODUMP |
887                                   STATX_ATTR_VERITY);
888
889         generic_fillattr(mnt_userns, inode, stat);
890
891         /* we need to show initial sectors used for inline_data/dentries */
892         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893                                         f2fs_has_inline_dentry(inode))
894                 stat->blocks += (stat->size + 511) >> 9;
895
896         return 0;
897 }
898
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
900 static void __setattr_copy(struct user_namespace *mnt_userns,
901                            struct inode *inode, const struct iattr *attr)
902 {
903         unsigned int ia_valid = attr->ia_valid;
904
905         i_uid_update(mnt_userns, attr, inode);
906         i_gid_update(mnt_userns, attr, inode);
907         if (ia_valid & ATTR_ATIME)
908                 inode->i_atime = attr->ia_atime;
909         if (ia_valid & ATTR_MTIME)
910                 inode->i_mtime = attr->ia_mtime;
911         if (ia_valid & ATTR_CTIME)
912                 inode->i_ctime = attr->ia_ctime;
913         if (ia_valid & ATTR_MODE) {
914                 umode_t mode = attr->ia_mode;
915                 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
916
917                 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
918                         mode &= ~S_ISGID;
919                 set_acl_inode(inode, mode);
920         }
921 }
922 #else
923 #define __setattr_copy setattr_copy
924 #endif
925
926 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
927                  struct iattr *attr)
928 {
929         struct inode *inode = d_inode(dentry);
930         int err;
931
932         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
933                 return -EIO;
934
935         if (unlikely(IS_IMMUTABLE(inode)))
936                 return -EPERM;
937
938         if (unlikely(IS_APPEND(inode) &&
939                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
940                                   ATTR_GID | ATTR_TIMES_SET))))
941                 return -EPERM;
942
943         if ((attr->ia_valid & ATTR_SIZE) &&
944                 !f2fs_is_compress_backend_ready(inode))
945                 return -EOPNOTSUPP;
946
947         err = setattr_prepare(mnt_userns, dentry, attr);
948         if (err)
949                 return err;
950
951         err = fscrypt_prepare_setattr(dentry, attr);
952         if (err)
953                 return err;
954
955         err = fsverity_prepare_setattr(dentry, attr);
956         if (err)
957                 return err;
958
959         if (is_quota_modification(mnt_userns, inode, attr)) {
960                 err = f2fs_dquot_initialize(inode);
961                 if (err)
962                         return err;
963         }
964         if (i_uid_needs_update(mnt_userns, attr, inode) ||
965             i_gid_needs_update(mnt_userns, attr, inode)) {
966                 f2fs_lock_op(F2FS_I_SB(inode));
967                 err = dquot_transfer(mnt_userns, inode, attr);
968                 if (err) {
969                         set_sbi_flag(F2FS_I_SB(inode),
970                                         SBI_QUOTA_NEED_REPAIR);
971                         f2fs_unlock_op(F2FS_I_SB(inode));
972                         return err;
973                 }
974                 /*
975                  * update uid/gid under lock_op(), so that dquot and inode can
976                  * be updated atomically.
977                  */
978                 i_uid_update(mnt_userns, attr, inode);
979                 i_gid_update(mnt_userns, attr, inode);
980                 f2fs_mark_inode_dirty_sync(inode, true);
981                 f2fs_unlock_op(F2FS_I_SB(inode));
982         }
983
984         if (attr->ia_valid & ATTR_SIZE) {
985                 loff_t old_size = i_size_read(inode);
986
987                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
988                         /*
989                          * should convert inline inode before i_size_write to
990                          * keep smaller than inline_data size with inline flag.
991                          */
992                         err = f2fs_convert_inline_inode(inode);
993                         if (err)
994                                 return err;
995                 }
996
997                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
998                 filemap_invalidate_lock(inode->i_mapping);
999
1000                 truncate_setsize(inode, attr->ia_size);
1001
1002                 if (attr->ia_size <= old_size)
1003                         err = f2fs_truncate(inode);
1004                 /*
1005                  * do not trim all blocks after i_size if target size is
1006                  * larger than i_size.
1007                  */
1008                 filemap_invalidate_unlock(inode->i_mapping);
1009                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1010                 if (err)
1011                         return err;
1012
1013                 spin_lock(&F2FS_I(inode)->i_size_lock);
1014                 inode->i_mtime = inode->i_ctime = current_time(inode);
1015                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1016                 spin_unlock(&F2FS_I(inode)->i_size_lock);
1017         }
1018
1019         __setattr_copy(mnt_userns, inode, attr);
1020
1021         if (attr->ia_valid & ATTR_MODE) {
1022                 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode));
1023
1024                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1025                         if (!err)
1026                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1027                         clear_inode_flag(inode, FI_ACL_MODE);
1028                 }
1029         }
1030
1031         /* file size may changed here */
1032         f2fs_mark_inode_dirty_sync(inode, true);
1033
1034         /* inode change will produce dirty node pages flushed by checkpoint */
1035         f2fs_balance_fs(F2FS_I_SB(inode), true);
1036
1037         return err;
1038 }
1039
1040 const struct inode_operations f2fs_file_inode_operations = {
1041         .getattr        = f2fs_getattr,
1042         .setattr        = f2fs_setattr,
1043         .get_acl        = f2fs_get_acl,
1044         .set_acl        = f2fs_set_acl,
1045         .listxattr      = f2fs_listxattr,
1046         .fiemap         = f2fs_fiemap,
1047         .fileattr_get   = f2fs_fileattr_get,
1048         .fileattr_set   = f2fs_fileattr_set,
1049 };
1050
1051 static int fill_zero(struct inode *inode, pgoff_t index,
1052                                         loff_t start, loff_t len)
1053 {
1054         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1055         struct page *page;
1056
1057         if (!len)
1058                 return 0;
1059
1060         f2fs_balance_fs(sbi, true);
1061
1062         f2fs_lock_op(sbi);
1063         page = f2fs_get_new_data_page(inode, NULL, index, false);
1064         f2fs_unlock_op(sbi);
1065
1066         if (IS_ERR(page))
1067                 return PTR_ERR(page);
1068
1069         f2fs_wait_on_page_writeback(page, DATA, true, true);
1070         zero_user(page, start, len);
1071         set_page_dirty(page);
1072         f2fs_put_page(page, 1);
1073         return 0;
1074 }
1075
1076 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1077 {
1078         int err;
1079
1080         while (pg_start < pg_end) {
1081                 struct dnode_of_data dn;
1082                 pgoff_t end_offset, count;
1083
1084                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1085                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1086                 if (err) {
1087                         if (err == -ENOENT) {
1088                                 pg_start = f2fs_get_next_page_offset(&dn,
1089                                                                 pg_start);
1090                                 continue;
1091                         }
1092                         return err;
1093                 }
1094
1095                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1096                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1097
1098                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1099
1100                 f2fs_truncate_data_blocks_range(&dn, count);
1101                 f2fs_put_dnode(&dn);
1102
1103                 pg_start += count;
1104         }
1105         return 0;
1106 }
1107
1108 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1109 {
1110         pgoff_t pg_start, pg_end;
1111         loff_t off_start, off_end;
1112         int ret;
1113
1114         ret = f2fs_convert_inline_inode(inode);
1115         if (ret)
1116                 return ret;
1117
1118         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1119         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1120
1121         off_start = offset & (PAGE_SIZE - 1);
1122         off_end = (offset + len) & (PAGE_SIZE - 1);
1123
1124         if (pg_start == pg_end) {
1125                 ret = fill_zero(inode, pg_start, off_start,
1126                                                 off_end - off_start);
1127                 if (ret)
1128                         return ret;
1129         } else {
1130                 if (off_start) {
1131                         ret = fill_zero(inode, pg_start++, off_start,
1132                                                 PAGE_SIZE - off_start);
1133                         if (ret)
1134                                 return ret;
1135                 }
1136                 if (off_end) {
1137                         ret = fill_zero(inode, pg_end, 0, off_end);
1138                         if (ret)
1139                                 return ret;
1140                 }
1141
1142                 if (pg_start < pg_end) {
1143                         loff_t blk_start, blk_end;
1144                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1145
1146                         f2fs_balance_fs(sbi, true);
1147
1148                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1149                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1150
1151                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1152                         filemap_invalidate_lock(inode->i_mapping);
1153
1154                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1155
1156                         f2fs_lock_op(sbi);
1157                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1158                         f2fs_unlock_op(sbi);
1159
1160                         filemap_invalidate_unlock(inode->i_mapping);
1161                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1162                 }
1163         }
1164
1165         return ret;
1166 }
1167
1168 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1169                                 int *do_replace, pgoff_t off, pgoff_t len)
1170 {
1171         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1172         struct dnode_of_data dn;
1173         int ret, done, i;
1174
1175 next_dnode:
1176         set_new_dnode(&dn, inode, NULL, NULL, 0);
1177         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1178         if (ret && ret != -ENOENT) {
1179                 return ret;
1180         } else if (ret == -ENOENT) {
1181                 if (dn.max_level == 0)
1182                         return -ENOENT;
1183                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1184                                                 dn.ofs_in_node, len);
1185                 blkaddr += done;
1186                 do_replace += done;
1187                 goto next;
1188         }
1189
1190         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1191                                                         dn.ofs_in_node, len);
1192         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1193                 *blkaddr = f2fs_data_blkaddr(&dn);
1194
1195                 if (__is_valid_data_blkaddr(*blkaddr) &&
1196                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1197                                         DATA_GENERIC_ENHANCE)) {
1198                         f2fs_put_dnode(&dn);
1199                         return -EFSCORRUPTED;
1200                 }
1201
1202                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1203
1204                         if (f2fs_lfs_mode(sbi)) {
1205                                 f2fs_put_dnode(&dn);
1206                                 return -EOPNOTSUPP;
1207                         }
1208
1209                         /* do not invalidate this block address */
1210                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1211                         *do_replace = 1;
1212                 }
1213         }
1214         f2fs_put_dnode(&dn);
1215 next:
1216         len -= done;
1217         off += done;
1218         if (len)
1219                 goto next_dnode;
1220         return 0;
1221 }
1222
1223 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1224                                 int *do_replace, pgoff_t off, int len)
1225 {
1226         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1227         struct dnode_of_data dn;
1228         int ret, i;
1229
1230         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1231                 if (*do_replace == 0)
1232                         continue;
1233
1234                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1235                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1236                 if (ret) {
1237                         dec_valid_block_count(sbi, inode, 1);
1238                         f2fs_invalidate_blocks(sbi, *blkaddr);
1239                 } else {
1240                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1241                 }
1242                 f2fs_put_dnode(&dn);
1243         }
1244         return 0;
1245 }
1246
1247 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1248                         block_t *blkaddr, int *do_replace,
1249                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1250 {
1251         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1252         pgoff_t i = 0;
1253         int ret;
1254
1255         while (i < len) {
1256                 if (blkaddr[i] == NULL_ADDR && !full) {
1257                         i++;
1258                         continue;
1259                 }
1260
1261                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1262                         struct dnode_of_data dn;
1263                         struct node_info ni;
1264                         size_t new_size;
1265                         pgoff_t ilen;
1266
1267                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1268                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1269                         if (ret)
1270                                 return ret;
1271
1272                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1273                         if (ret) {
1274                                 f2fs_put_dnode(&dn);
1275                                 return ret;
1276                         }
1277
1278                         ilen = min((pgoff_t)
1279                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1280                                                 dn.ofs_in_node, len - i);
1281                         do {
1282                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1283                                 f2fs_truncate_data_blocks_range(&dn, 1);
1284
1285                                 if (do_replace[i]) {
1286                                         f2fs_i_blocks_write(src_inode,
1287                                                         1, false, false);
1288                                         f2fs_i_blocks_write(dst_inode,
1289                                                         1, true, false);
1290                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1291                                         blkaddr[i], ni.version, true, false);
1292
1293                                         do_replace[i] = 0;
1294                                 }
1295                                 dn.ofs_in_node++;
1296                                 i++;
1297                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1298                                 if (dst_inode->i_size < new_size)
1299                                         f2fs_i_size_write(dst_inode, new_size);
1300                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1301
1302                         f2fs_put_dnode(&dn);
1303                 } else {
1304                         struct page *psrc, *pdst;
1305
1306                         psrc = f2fs_get_lock_data_page(src_inode,
1307                                                         src + i, true);
1308                         if (IS_ERR(psrc))
1309                                 return PTR_ERR(psrc);
1310                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1311                                                                 true);
1312                         if (IS_ERR(pdst)) {
1313                                 f2fs_put_page(psrc, 1);
1314                                 return PTR_ERR(pdst);
1315                         }
1316                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1317                         set_page_dirty(pdst);
1318                         f2fs_put_page(pdst, 1);
1319                         f2fs_put_page(psrc, 1);
1320
1321                         ret = f2fs_truncate_hole(src_inode,
1322                                                 src + i, src + i + 1);
1323                         if (ret)
1324                                 return ret;
1325                         i++;
1326                 }
1327         }
1328         return 0;
1329 }
1330
1331 static int __exchange_data_block(struct inode *src_inode,
1332                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1333                         pgoff_t len, bool full)
1334 {
1335         block_t *src_blkaddr;
1336         int *do_replace;
1337         pgoff_t olen;
1338         int ret;
1339
1340         while (len) {
1341                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1342
1343                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1344                                         array_size(olen, sizeof(block_t)),
1345                                         GFP_NOFS);
1346                 if (!src_blkaddr)
1347                         return -ENOMEM;
1348
1349                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1350                                         array_size(olen, sizeof(int)),
1351                                         GFP_NOFS);
1352                 if (!do_replace) {
1353                         kvfree(src_blkaddr);
1354                         return -ENOMEM;
1355                 }
1356
1357                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1358                                         do_replace, src, olen);
1359                 if (ret)
1360                         goto roll_back;
1361
1362                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1363                                         do_replace, src, dst, olen, full);
1364                 if (ret)
1365                         goto roll_back;
1366
1367                 src += olen;
1368                 dst += olen;
1369                 len -= olen;
1370
1371                 kvfree(src_blkaddr);
1372                 kvfree(do_replace);
1373         }
1374         return 0;
1375
1376 roll_back:
1377         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1378         kvfree(src_blkaddr);
1379         kvfree(do_replace);
1380         return ret;
1381 }
1382
1383 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1384 {
1385         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1386         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1387         pgoff_t start = offset >> PAGE_SHIFT;
1388         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1389         int ret;
1390
1391         f2fs_balance_fs(sbi, true);
1392
1393         /* avoid gc operation during block exchange */
1394         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1395         filemap_invalidate_lock(inode->i_mapping);
1396
1397         f2fs_lock_op(sbi);
1398         f2fs_drop_extent_tree(inode);
1399         truncate_pagecache(inode, offset);
1400         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1401         f2fs_unlock_op(sbi);
1402
1403         filemap_invalidate_unlock(inode->i_mapping);
1404         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1405         return ret;
1406 }
1407
1408 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1409 {
1410         loff_t new_size;
1411         int ret;
1412
1413         if (offset + len >= i_size_read(inode))
1414                 return -EINVAL;
1415
1416         /* collapse range should be aligned to block size of f2fs. */
1417         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1418                 return -EINVAL;
1419
1420         ret = f2fs_convert_inline_inode(inode);
1421         if (ret)
1422                 return ret;
1423
1424         /* write out all dirty pages from offset */
1425         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1426         if (ret)
1427                 return ret;
1428
1429         ret = f2fs_do_collapse(inode, offset, len);
1430         if (ret)
1431                 return ret;
1432
1433         /* write out all moved pages, if possible */
1434         filemap_invalidate_lock(inode->i_mapping);
1435         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1436         truncate_pagecache(inode, offset);
1437
1438         new_size = i_size_read(inode) - len;
1439         ret = f2fs_truncate_blocks(inode, new_size, true);
1440         filemap_invalidate_unlock(inode->i_mapping);
1441         if (!ret)
1442                 f2fs_i_size_write(inode, new_size);
1443         return ret;
1444 }
1445
1446 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1447                                                                 pgoff_t end)
1448 {
1449         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1450         pgoff_t index = start;
1451         unsigned int ofs_in_node = dn->ofs_in_node;
1452         blkcnt_t count = 0;
1453         int ret;
1454
1455         for (; index < end; index++, dn->ofs_in_node++) {
1456                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1457                         count++;
1458         }
1459
1460         dn->ofs_in_node = ofs_in_node;
1461         ret = f2fs_reserve_new_blocks(dn, count);
1462         if (ret)
1463                 return ret;
1464
1465         dn->ofs_in_node = ofs_in_node;
1466         for (index = start; index < end; index++, dn->ofs_in_node++) {
1467                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1468                 /*
1469                  * f2fs_reserve_new_blocks will not guarantee entire block
1470                  * allocation.
1471                  */
1472                 if (dn->data_blkaddr == NULL_ADDR) {
1473                         ret = -ENOSPC;
1474                         break;
1475                 }
1476
1477                 if (dn->data_blkaddr == NEW_ADDR)
1478                         continue;
1479
1480                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1481                                         DATA_GENERIC_ENHANCE)) {
1482                         ret = -EFSCORRUPTED;
1483                         break;
1484                 }
1485
1486                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1487                 dn->data_blkaddr = NEW_ADDR;
1488                 f2fs_set_data_blkaddr(dn);
1489         }
1490
1491         f2fs_update_extent_cache_range(dn, start, 0, index - start);
1492
1493         return ret;
1494 }
1495
1496 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1497                                                                 int mode)
1498 {
1499         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1500         struct address_space *mapping = inode->i_mapping;
1501         pgoff_t index, pg_start, pg_end;
1502         loff_t new_size = i_size_read(inode);
1503         loff_t off_start, off_end;
1504         int ret = 0;
1505
1506         ret = inode_newsize_ok(inode, (len + offset));
1507         if (ret)
1508                 return ret;
1509
1510         ret = f2fs_convert_inline_inode(inode);
1511         if (ret)
1512                 return ret;
1513
1514         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1515         if (ret)
1516                 return ret;
1517
1518         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1519         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1520
1521         off_start = offset & (PAGE_SIZE - 1);
1522         off_end = (offset + len) & (PAGE_SIZE - 1);
1523
1524         if (pg_start == pg_end) {
1525                 ret = fill_zero(inode, pg_start, off_start,
1526                                                 off_end - off_start);
1527                 if (ret)
1528                         return ret;
1529
1530                 new_size = max_t(loff_t, new_size, offset + len);
1531         } else {
1532                 if (off_start) {
1533                         ret = fill_zero(inode, pg_start++, off_start,
1534                                                 PAGE_SIZE - off_start);
1535                         if (ret)
1536                                 return ret;
1537
1538                         new_size = max_t(loff_t, new_size,
1539                                         (loff_t)pg_start << PAGE_SHIFT);
1540                 }
1541
1542                 for (index = pg_start; index < pg_end;) {
1543                         struct dnode_of_data dn;
1544                         unsigned int end_offset;
1545                         pgoff_t end;
1546
1547                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1548                         filemap_invalidate_lock(mapping);
1549
1550                         truncate_pagecache_range(inode,
1551                                 (loff_t)index << PAGE_SHIFT,
1552                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1553
1554                         f2fs_lock_op(sbi);
1555
1556                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1557                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1558                         if (ret) {
1559                                 f2fs_unlock_op(sbi);
1560                                 filemap_invalidate_unlock(mapping);
1561                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1562                                 goto out;
1563                         }
1564
1565                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1566                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1567
1568                         ret = f2fs_do_zero_range(&dn, index, end);
1569                         f2fs_put_dnode(&dn);
1570
1571                         f2fs_unlock_op(sbi);
1572                         filemap_invalidate_unlock(mapping);
1573                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1574
1575                         f2fs_balance_fs(sbi, dn.node_changed);
1576
1577                         if (ret)
1578                                 goto out;
1579
1580                         index = end;
1581                         new_size = max_t(loff_t, new_size,
1582                                         (loff_t)index << PAGE_SHIFT);
1583                 }
1584
1585                 if (off_end) {
1586                         ret = fill_zero(inode, pg_end, 0, off_end);
1587                         if (ret)
1588                                 goto out;
1589
1590                         new_size = max_t(loff_t, new_size, offset + len);
1591                 }
1592         }
1593
1594 out:
1595         if (new_size > i_size_read(inode)) {
1596                 if (mode & FALLOC_FL_KEEP_SIZE)
1597                         file_set_keep_isize(inode);
1598                 else
1599                         f2fs_i_size_write(inode, new_size);
1600         }
1601         return ret;
1602 }
1603
1604 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1605 {
1606         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1607         struct address_space *mapping = inode->i_mapping;
1608         pgoff_t nr, pg_start, pg_end, delta, idx;
1609         loff_t new_size;
1610         int ret = 0;
1611
1612         new_size = i_size_read(inode) + len;
1613         ret = inode_newsize_ok(inode, new_size);
1614         if (ret)
1615                 return ret;
1616
1617         if (offset >= i_size_read(inode))
1618                 return -EINVAL;
1619
1620         /* insert range should be aligned to block size of f2fs. */
1621         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1622                 return -EINVAL;
1623
1624         ret = f2fs_convert_inline_inode(inode);
1625         if (ret)
1626                 return ret;
1627
1628         f2fs_balance_fs(sbi, true);
1629
1630         filemap_invalidate_lock(mapping);
1631         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1632         filemap_invalidate_unlock(mapping);
1633         if (ret)
1634                 return ret;
1635
1636         /* write out all dirty pages from offset */
1637         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1638         if (ret)
1639                 return ret;
1640
1641         pg_start = offset >> PAGE_SHIFT;
1642         pg_end = (offset + len) >> PAGE_SHIFT;
1643         delta = pg_end - pg_start;
1644         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1645
1646         /* avoid gc operation during block exchange */
1647         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1648         filemap_invalidate_lock(mapping);
1649         truncate_pagecache(inode, offset);
1650
1651         while (!ret && idx > pg_start) {
1652                 nr = idx - pg_start;
1653                 if (nr > delta)
1654                         nr = delta;
1655                 idx -= nr;
1656
1657                 f2fs_lock_op(sbi);
1658                 f2fs_drop_extent_tree(inode);
1659
1660                 ret = __exchange_data_block(inode, inode, idx,
1661                                         idx + delta, nr, false);
1662                 f2fs_unlock_op(sbi);
1663         }
1664         filemap_invalidate_unlock(mapping);
1665         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1666
1667         /* write out all moved pages, if possible */
1668         filemap_invalidate_lock(mapping);
1669         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1670         truncate_pagecache(inode, offset);
1671         filemap_invalidate_unlock(mapping);
1672
1673         if (!ret)
1674                 f2fs_i_size_write(inode, new_size);
1675         return ret;
1676 }
1677
1678 static int expand_inode_data(struct inode *inode, loff_t offset,
1679                                         loff_t len, int mode)
1680 {
1681         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1682         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1683                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1684                         .m_may_create = true };
1685         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1686                         .init_gc_type = FG_GC,
1687                         .should_migrate_blocks = false,
1688                         .err_gc_skipped = true,
1689                         .nr_free_secs = 0 };
1690         pgoff_t pg_start, pg_end;
1691         loff_t new_size = i_size_read(inode);
1692         loff_t off_end;
1693         block_t expanded = 0;
1694         int err;
1695
1696         err = inode_newsize_ok(inode, (len + offset));
1697         if (err)
1698                 return err;
1699
1700         err = f2fs_convert_inline_inode(inode);
1701         if (err)
1702                 return err;
1703
1704         f2fs_balance_fs(sbi, true);
1705
1706         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1707         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1708         off_end = (offset + len) & (PAGE_SIZE - 1);
1709
1710         map.m_lblk = pg_start;
1711         map.m_len = pg_end - pg_start;
1712         if (off_end)
1713                 map.m_len++;
1714
1715         if (!map.m_len)
1716                 return 0;
1717
1718         if (f2fs_is_pinned_file(inode)) {
1719                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1720                 block_t sec_len = roundup(map.m_len, sec_blks);
1721
1722                 map.m_len = sec_blks;
1723 next_alloc:
1724                 if (has_not_enough_free_secs(sbi, 0,
1725                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1726                         f2fs_down_write(&sbi->gc_lock);
1727                         err = f2fs_gc(sbi, &gc_control);
1728                         if (err && err != -ENODATA)
1729                                 goto out_err;
1730                 }
1731
1732                 f2fs_down_write(&sbi->pin_sem);
1733
1734                 f2fs_lock_op(sbi);
1735                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1736                 f2fs_unlock_op(sbi);
1737
1738                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1739                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1740                 file_dont_truncate(inode);
1741
1742                 f2fs_up_write(&sbi->pin_sem);
1743
1744                 expanded += map.m_len;
1745                 sec_len -= map.m_len;
1746                 map.m_lblk += map.m_len;
1747                 if (!err && sec_len)
1748                         goto next_alloc;
1749
1750                 map.m_len = expanded;
1751         } else {
1752                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1753                 expanded = map.m_len;
1754         }
1755 out_err:
1756         if (err) {
1757                 pgoff_t last_off;
1758
1759                 if (!expanded)
1760                         return err;
1761
1762                 last_off = pg_start + expanded - 1;
1763
1764                 /* update new size to the failed position */
1765                 new_size = (last_off == pg_end) ? offset + len :
1766                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1767         } else {
1768                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1769         }
1770
1771         if (new_size > i_size_read(inode)) {
1772                 if (mode & FALLOC_FL_KEEP_SIZE)
1773                         file_set_keep_isize(inode);
1774                 else
1775                         f2fs_i_size_write(inode, new_size);
1776         }
1777
1778         return err;
1779 }
1780
1781 static long f2fs_fallocate(struct file *file, int mode,
1782                                 loff_t offset, loff_t len)
1783 {
1784         struct inode *inode = file_inode(file);
1785         long ret = 0;
1786
1787         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1788                 return -EIO;
1789         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1790                 return -ENOSPC;
1791         if (!f2fs_is_compress_backend_ready(inode))
1792                 return -EOPNOTSUPP;
1793
1794         /* f2fs only support ->fallocate for regular file */
1795         if (!S_ISREG(inode->i_mode))
1796                 return -EINVAL;
1797
1798         if (IS_ENCRYPTED(inode) &&
1799                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1800                 return -EOPNOTSUPP;
1801
1802         /*
1803          * Pinned file should not support partial trucation since the block
1804          * can be used by applications.
1805          */
1806         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1807                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1808                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1809                 return -EOPNOTSUPP;
1810
1811         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1812                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1813                         FALLOC_FL_INSERT_RANGE))
1814                 return -EOPNOTSUPP;
1815
1816         inode_lock(inode);
1817
1818         ret = file_modified(file);
1819         if (ret)
1820                 goto out;
1821
1822         if (mode & FALLOC_FL_PUNCH_HOLE) {
1823                 if (offset >= inode->i_size)
1824                         goto out;
1825
1826                 ret = punch_hole(inode, offset, len);
1827         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1828                 ret = f2fs_collapse_range(inode, offset, len);
1829         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1830                 ret = f2fs_zero_range(inode, offset, len, mode);
1831         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1832                 ret = f2fs_insert_range(inode, offset, len);
1833         } else {
1834                 ret = expand_inode_data(inode, offset, len, mode);
1835         }
1836
1837         if (!ret) {
1838                 inode->i_mtime = inode->i_ctime = current_time(inode);
1839                 f2fs_mark_inode_dirty_sync(inode, false);
1840                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1841         }
1842
1843 out:
1844         inode_unlock(inode);
1845
1846         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1847         return ret;
1848 }
1849
1850 static int f2fs_release_file(struct inode *inode, struct file *filp)
1851 {
1852         /*
1853          * f2fs_relase_file is called at every close calls. So we should
1854          * not drop any inmemory pages by close called by other process.
1855          */
1856         if (!(filp->f_mode & FMODE_WRITE) ||
1857                         atomic_read(&inode->i_writecount) != 1)
1858                 return 0;
1859
1860         f2fs_abort_atomic_write(inode, true);
1861         return 0;
1862 }
1863
1864 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1865 {
1866         struct inode *inode = file_inode(file);
1867
1868         /*
1869          * If the process doing a transaction is crashed, we should do
1870          * roll-back. Otherwise, other reader/write can see corrupted database
1871          * until all the writers close its file. Since this should be done
1872          * before dropping file lock, it needs to do in ->flush.
1873          */
1874         if (F2FS_I(inode)->atomic_write_task == current)
1875                 f2fs_abort_atomic_write(inode, true);
1876         return 0;
1877 }
1878
1879 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1880 {
1881         struct f2fs_inode_info *fi = F2FS_I(inode);
1882         u32 masked_flags = fi->i_flags & mask;
1883
1884         /* mask can be shrunk by flags_valid selector */
1885         iflags &= mask;
1886
1887         /* Is it quota file? Do not allow user to mess with it */
1888         if (IS_NOQUOTA(inode))
1889                 return -EPERM;
1890
1891         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1892                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1893                         return -EOPNOTSUPP;
1894                 if (!f2fs_empty_dir(inode))
1895                         return -ENOTEMPTY;
1896         }
1897
1898         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1899                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1900                         return -EOPNOTSUPP;
1901                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1902                         return -EINVAL;
1903         }
1904
1905         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1906                 if (masked_flags & F2FS_COMPR_FL) {
1907                         if (!f2fs_disable_compressed_file(inode))
1908                                 return -EINVAL;
1909                 } else {
1910                         if (!f2fs_may_compress(inode))
1911                                 return -EINVAL;
1912                         if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1913                                 return -EINVAL;
1914                         if (set_compress_context(inode))
1915                                 return -EOPNOTSUPP;
1916                 }
1917         }
1918
1919         fi->i_flags = iflags | (fi->i_flags & ~mask);
1920         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1921                                         (fi->i_flags & F2FS_NOCOMP_FL));
1922
1923         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1924                 set_inode_flag(inode, FI_PROJ_INHERIT);
1925         else
1926                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1927
1928         inode->i_ctime = current_time(inode);
1929         f2fs_set_inode_flags(inode);
1930         f2fs_mark_inode_dirty_sync(inode, true);
1931         return 0;
1932 }
1933
1934 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1935
1936 /*
1937  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1938  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1939  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1940  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1941  *
1942  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1943  * FS_IOC_FSSETXATTR is done by the VFS.
1944  */
1945
1946 static const struct {
1947         u32 iflag;
1948         u32 fsflag;
1949 } f2fs_fsflags_map[] = {
1950         { F2FS_COMPR_FL,        FS_COMPR_FL },
1951         { F2FS_SYNC_FL,         FS_SYNC_FL },
1952         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1953         { F2FS_APPEND_FL,       FS_APPEND_FL },
1954         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1955         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1956         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1957         { F2FS_INDEX_FL,        FS_INDEX_FL },
1958         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1959         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1960         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1961 };
1962
1963 #define F2FS_GETTABLE_FS_FL (           \
1964                 FS_COMPR_FL |           \
1965                 FS_SYNC_FL |            \
1966                 FS_IMMUTABLE_FL |       \
1967                 FS_APPEND_FL |          \
1968                 FS_NODUMP_FL |          \
1969                 FS_NOATIME_FL |         \
1970                 FS_NOCOMP_FL |          \
1971                 FS_INDEX_FL |           \
1972                 FS_DIRSYNC_FL |         \
1973                 FS_PROJINHERIT_FL |     \
1974                 FS_ENCRYPT_FL |         \
1975                 FS_INLINE_DATA_FL |     \
1976                 FS_NOCOW_FL |           \
1977                 FS_VERITY_FL |          \
1978                 FS_CASEFOLD_FL)
1979
1980 #define F2FS_SETTABLE_FS_FL (           \
1981                 FS_COMPR_FL |           \
1982                 FS_SYNC_FL |            \
1983                 FS_IMMUTABLE_FL |       \
1984                 FS_APPEND_FL |          \
1985                 FS_NODUMP_FL |          \
1986                 FS_NOATIME_FL |         \
1987                 FS_NOCOMP_FL |          \
1988                 FS_DIRSYNC_FL |         \
1989                 FS_PROJINHERIT_FL |     \
1990                 FS_CASEFOLD_FL)
1991
1992 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1993 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1994 {
1995         u32 fsflags = 0;
1996         int i;
1997
1998         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1999                 if (iflags & f2fs_fsflags_map[i].iflag)
2000                         fsflags |= f2fs_fsflags_map[i].fsflag;
2001
2002         return fsflags;
2003 }
2004
2005 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2006 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2007 {
2008         u32 iflags = 0;
2009         int i;
2010
2011         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2012                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2013                         iflags |= f2fs_fsflags_map[i].iflag;
2014
2015         return iflags;
2016 }
2017
2018 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2019 {
2020         struct inode *inode = file_inode(filp);
2021
2022         return put_user(inode->i_generation, (int __user *)arg);
2023 }
2024
2025 static int f2fs_ioc_start_atomic_write(struct file *filp)
2026 {
2027         struct inode *inode = file_inode(filp);
2028         struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2029         struct f2fs_inode_info *fi = F2FS_I(inode);
2030         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2031         struct inode *pinode;
2032         int ret;
2033
2034         if (!inode_owner_or_capable(mnt_userns, inode))
2035                 return -EACCES;
2036
2037         if (!S_ISREG(inode->i_mode))
2038                 return -EINVAL;
2039
2040         if (filp->f_flags & O_DIRECT)
2041                 return -EINVAL;
2042
2043         ret = mnt_want_write_file(filp);
2044         if (ret)
2045                 return ret;
2046
2047         inode_lock(inode);
2048
2049         if (!f2fs_disable_compressed_file(inode)) {
2050                 ret = -EINVAL;
2051                 goto out;
2052         }
2053
2054         if (f2fs_is_atomic_file(inode))
2055                 goto out;
2056
2057         ret = f2fs_convert_inline_inode(inode);
2058         if (ret)
2059                 goto out;
2060
2061         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2062
2063         /*
2064          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2065          * f2fs_is_atomic_file.
2066          */
2067         if (get_dirty_pages(inode))
2068                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2069                           inode->i_ino, get_dirty_pages(inode));
2070         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2071         if (ret) {
2072                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2073                 goto out;
2074         }
2075
2076         /* Create a COW inode for atomic write */
2077         pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2078         if (IS_ERR(pinode)) {
2079                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2080                 ret = PTR_ERR(pinode);
2081                 goto out;
2082         }
2083
2084         ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2085         iput(pinode);
2086         if (ret) {
2087                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2088                 goto out;
2089         }
2090         f2fs_i_size_write(fi->cow_inode, i_size_read(inode));
2091
2092         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2093         sbi->atomic_files++;
2094         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2095
2096         set_inode_flag(inode, FI_ATOMIC_FILE);
2097         set_inode_flag(fi->cow_inode, FI_COW_FILE);
2098         clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2099         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2100
2101         f2fs_update_time(sbi, REQ_TIME);
2102         fi->atomic_write_task = current;
2103         stat_update_max_atomic_write(inode);
2104         fi->atomic_write_cnt = 0;
2105 out:
2106         inode_unlock(inode);
2107         mnt_drop_write_file(filp);
2108         return ret;
2109 }
2110
2111 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2112 {
2113         struct inode *inode = file_inode(filp);
2114         struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2115         int ret;
2116
2117         if (!inode_owner_or_capable(mnt_userns, inode))
2118                 return -EACCES;
2119
2120         ret = mnt_want_write_file(filp);
2121         if (ret)
2122                 return ret;
2123
2124         f2fs_balance_fs(F2FS_I_SB(inode), true);
2125
2126         inode_lock(inode);
2127
2128         if (f2fs_is_atomic_file(inode)) {
2129                 ret = f2fs_commit_atomic_write(inode);
2130                 if (ret)
2131                         goto unlock_out;
2132
2133                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2134                 if (!ret)
2135                         f2fs_abort_atomic_write(inode, false);
2136         } else {
2137                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2138         }
2139 unlock_out:
2140         inode_unlock(inode);
2141         mnt_drop_write_file(filp);
2142         return ret;
2143 }
2144
2145 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2146 {
2147         struct inode *inode = file_inode(filp);
2148         struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2149         int ret;
2150
2151         if (!inode_owner_or_capable(mnt_userns, inode))
2152                 return -EACCES;
2153
2154         ret = mnt_want_write_file(filp);
2155         if (ret)
2156                 return ret;
2157
2158         inode_lock(inode);
2159
2160         f2fs_abort_atomic_write(inode, true);
2161
2162         inode_unlock(inode);
2163
2164         mnt_drop_write_file(filp);
2165         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2166         return ret;
2167 }
2168
2169 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2170 {
2171         struct inode *inode = file_inode(filp);
2172         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2173         struct super_block *sb = sbi->sb;
2174         __u32 in;
2175         int ret = 0;
2176
2177         if (!capable(CAP_SYS_ADMIN))
2178                 return -EPERM;
2179
2180         if (get_user(in, (__u32 __user *)arg))
2181                 return -EFAULT;
2182
2183         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2184                 ret = mnt_want_write_file(filp);
2185                 if (ret) {
2186                         if (ret == -EROFS) {
2187                                 ret = 0;
2188                                 f2fs_stop_checkpoint(sbi, false);
2189                                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2190                                 trace_f2fs_shutdown(sbi, in, ret);
2191                         }
2192                         return ret;
2193                 }
2194         }
2195
2196         switch (in) {
2197         case F2FS_GOING_DOWN_FULLSYNC:
2198                 ret = freeze_bdev(sb->s_bdev);
2199                 if (ret)
2200                         goto out;
2201                 f2fs_stop_checkpoint(sbi, false);
2202                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2203                 thaw_bdev(sb->s_bdev);
2204                 break;
2205         case F2FS_GOING_DOWN_METASYNC:
2206                 /* do checkpoint only */
2207                 ret = f2fs_sync_fs(sb, 1);
2208                 if (ret)
2209                         goto out;
2210                 f2fs_stop_checkpoint(sbi, false);
2211                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2212                 break;
2213         case F2FS_GOING_DOWN_NOSYNC:
2214                 f2fs_stop_checkpoint(sbi, false);
2215                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2216                 break;
2217         case F2FS_GOING_DOWN_METAFLUSH:
2218                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2219                 f2fs_stop_checkpoint(sbi, false);
2220                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2221                 break;
2222         case F2FS_GOING_DOWN_NEED_FSCK:
2223                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2224                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2225                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2226                 /* do checkpoint only */
2227                 ret = f2fs_sync_fs(sb, 1);
2228                 goto out;
2229         default:
2230                 ret = -EINVAL;
2231                 goto out;
2232         }
2233
2234         f2fs_stop_gc_thread(sbi);
2235         f2fs_stop_discard_thread(sbi);
2236
2237         f2fs_drop_discard_cmd(sbi);
2238         clear_opt(sbi, DISCARD);
2239
2240         f2fs_update_time(sbi, REQ_TIME);
2241 out:
2242         if (in != F2FS_GOING_DOWN_FULLSYNC)
2243                 mnt_drop_write_file(filp);
2244
2245         trace_f2fs_shutdown(sbi, in, ret);
2246
2247         return ret;
2248 }
2249
2250 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2251 {
2252         struct inode *inode = file_inode(filp);
2253         struct super_block *sb = inode->i_sb;
2254         struct fstrim_range range;
2255         int ret;
2256
2257         if (!capable(CAP_SYS_ADMIN))
2258                 return -EPERM;
2259
2260         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2261                 return -EOPNOTSUPP;
2262
2263         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2264                                 sizeof(range)))
2265                 return -EFAULT;
2266
2267         ret = mnt_want_write_file(filp);
2268         if (ret)
2269                 return ret;
2270
2271         range.minlen = max((unsigned int)range.minlen,
2272                            bdev_discard_granularity(sb->s_bdev));
2273         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2274         mnt_drop_write_file(filp);
2275         if (ret < 0)
2276                 return ret;
2277
2278         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2279                                 sizeof(range)))
2280                 return -EFAULT;
2281         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2282         return 0;
2283 }
2284
2285 static bool uuid_is_nonzero(__u8 u[16])
2286 {
2287         int i;
2288
2289         for (i = 0; i < 16; i++)
2290                 if (u[i])
2291                         return true;
2292         return false;
2293 }
2294
2295 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2296 {
2297         struct inode *inode = file_inode(filp);
2298
2299         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2300                 return -EOPNOTSUPP;
2301
2302         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2303
2304         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2305 }
2306
2307 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2308 {
2309         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2310                 return -EOPNOTSUPP;
2311         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2312 }
2313
2314 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2315 {
2316         struct inode *inode = file_inode(filp);
2317         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2318         int err;
2319
2320         if (!f2fs_sb_has_encrypt(sbi))
2321                 return -EOPNOTSUPP;
2322
2323         err = mnt_want_write_file(filp);
2324         if (err)
2325                 return err;
2326
2327         f2fs_down_write(&sbi->sb_lock);
2328
2329         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2330                 goto got_it;
2331
2332         /* update superblock with uuid */
2333         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2334
2335         err = f2fs_commit_super(sbi, false);
2336         if (err) {
2337                 /* undo new data */
2338                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2339                 goto out_err;
2340         }
2341 got_it:
2342         if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2343                                                                         16))
2344                 err = -EFAULT;
2345 out_err:
2346         f2fs_up_write(&sbi->sb_lock);
2347         mnt_drop_write_file(filp);
2348         return err;
2349 }
2350
2351 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2352                                              unsigned long arg)
2353 {
2354         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2355                 return -EOPNOTSUPP;
2356
2357         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2358 }
2359
2360 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2361 {
2362         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2363                 return -EOPNOTSUPP;
2364
2365         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2366 }
2367
2368 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2369 {
2370         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2371                 return -EOPNOTSUPP;
2372
2373         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2374 }
2375
2376 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2377                                                     unsigned long arg)
2378 {
2379         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2380                 return -EOPNOTSUPP;
2381
2382         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2383 }
2384
2385 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2386                                               unsigned long arg)
2387 {
2388         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2389                 return -EOPNOTSUPP;
2390
2391         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2392 }
2393
2394 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2395 {
2396         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2397                 return -EOPNOTSUPP;
2398
2399         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2400 }
2401
2402 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2403 {
2404         struct inode *inode = file_inode(filp);
2405         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2406         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2407                         .no_bg_gc = false,
2408                         .should_migrate_blocks = false,
2409                         .nr_free_secs = 0 };
2410         __u32 sync;
2411         int ret;
2412
2413         if (!capable(CAP_SYS_ADMIN))
2414                 return -EPERM;
2415
2416         if (get_user(sync, (__u32 __user *)arg))
2417                 return -EFAULT;
2418
2419         if (f2fs_readonly(sbi->sb))
2420                 return -EROFS;
2421
2422         ret = mnt_want_write_file(filp);
2423         if (ret)
2424                 return ret;
2425
2426         if (!sync) {
2427                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2428                         ret = -EBUSY;
2429                         goto out;
2430                 }
2431         } else {
2432                 f2fs_down_write(&sbi->gc_lock);
2433         }
2434
2435         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2436         gc_control.err_gc_skipped = sync;
2437         ret = f2fs_gc(sbi, &gc_control);
2438 out:
2439         mnt_drop_write_file(filp);
2440         return ret;
2441 }
2442
2443 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2444 {
2445         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2446         struct f2fs_gc_control gc_control = {
2447                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2448                         .no_bg_gc = false,
2449                         .should_migrate_blocks = false,
2450                         .err_gc_skipped = range->sync,
2451                         .nr_free_secs = 0 };
2452         u64 end;
2453         int ret;
2454
2455         if (!capable(CAP_SYS_ADMIN))
2456                 return -EPERM;
2457         if (f2fs_readonly(sbi->sb))
2458                 return -EROFS;
2459
2460         end = range->start + range->len;
2461         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2462                                         end >= MAX_BLKADDR(sbi))
2463                 return -EINVAL;
2464
2465         ret = mnt_want_write_file(filp);
2466         if (ret)
2467                 return ret;
2468
2469 do_more:
2470         if (!range->sync) {
2471                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2472                         ret = -EBUSY;
2473                         goto out;
2474                 }
2475         } else {
2476                 f2fs_down_write(&sbi->gc_lock);
2477         }
2478
2479         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2480         ret = f2fs_gc(sbi, &gc_control);
2481         if (ret) {
2482                 if (ret == -EBUSY)
2483                         ret = -EAGAIN;
2484                 goto out;
2485         }
2486         range->start += CAP_BLKS_PER_SEC(sbi);
2487         if (range->start <= end)
2488                 goto do_more;
2489 out:
2490         mnt_drop_write_file(filp);
2491         return ret;
2492 }
2493
2494 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2495 {
2496         struct f2fs_gc_range range;
2497
2498         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2499                                                         sizeof(range)))
2500                 return -EFAULT;
2501         return __f2fs_ioc_gc_range(filp, &range);
2502 }
2503
2504 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2505 {
2506         struct inode *inode = file_inode(filp);
2507         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2508         int ret;
2509
2510         if (!capable(CAP_SYS_ADMIN))
2511                 return -EPERM;
2512
2513         if (f2fs_readonly(sbi->sb))
2514                 return -EROFS;
2515
2516         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2517                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2518                 return -EINVAL;
2519         }
2520
2521         ret = mnt_want_write_file(filp);
2522         if (ret)
2523                 return ret;
2524
2525         ret = f2fs_sync_fs(sbi->sb, 1);
2526
2527         mnt_drop_write_file(filp);
2528         return ret;
2529 }
2530
2531 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2532                                         struct file *filp,
2533                                         struct f2fs_defragment *range)
2534 {
2535         struct inode *inode = file_inode(filp);
2536         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2537                                         .m_seg_type = NO_CHECK_TYPE,
2538                                         .m_may_create = false };
2539         struct extent_info ei = {0, 0, 0};
2540         pgoff_t pg_start, pg_end, next_pgofs;
2541         unsigned int blk_per_seg = sbi->blocks_per_seg;
2542         unsigned int total = 0, sec_num;
2543         block_t blk_end = 0;
2544         bool fragmented = false;
2545         int err;
2546
2547         pg_start = range->start >> PAGE_SHIFT;
2548         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2549
2550         f2fs_balance_fs(sbi, true);
2551
2552         inode_lock(inode);
2553
2554         /* if in-place-update policy is enabled, don't waste time here */
2555         set_inode_flag(inode, FI_OPU_WRITE);
2556         if (f2fs_should_update_inplace(inode, NULL)) {
2557                 err = -EINVAL;
2558                 goto out;
2559         }
2560
2561         /* writeback all dirty pages in the range */
2562         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2563                                                 range->start + range->len - 1);
2564         if (err)
2565                 goto out;
2566
2567         /*
2568          * lookup mapping info in extent cache, skip defragmenting if physical
2569          * block addresses are continuous.
2570          */
2571         if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2572                 if (ei.fofs + ei.len >= pg_end)
2573                         goto out;
2574         }
2575
2576         map.m_lblk = pg_start;
2577         map.m_next_pgofs = &next_pgofs;
2578
2579         /*
2580          * lookup mapping info in dnode page cache, skip defragmenting if all
2581          * physical block addresses are continuous even if there are hole(s)
2582          * in logical blocks.
2583          */
2584         while (map.m_lblk < pg_end) {
2585                 map.m_len = pg_end - map.m_lblk;
2586                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2587                 if (err)
2588                         goto out;
2589
2590                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2591                         map.m_lblk = next_pgofs;
2592                         continue;
2593                 }
2594
2595                 if (blk_end && blk_end != map.m_pblk)
2596                         fragmented = true;
2597
2598                 /* record total count of block that we're going to move */
2599                 total += map.m_len;
2600
2601                 blk_end = map.m_pblk + map.m_len;
2602
2603                 map.m_lblk += map.m_len;
2604         }
2605
2606         if (!fragmented) {
2607                 total = 0;
2608                 goto out;
2609         }
2610
2611         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2612
2613         /*
2614          * make sure there are enough free section for LFS allocation, this can
2615          * avoid defragment running in SSR mode when free section are allocated
2616          * intensively
2617          */
2618         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2619                 err = -EAGAIN;
2620                 goto out;
2621         }
2622
2623         map.m_lblk = pg_start;
2624         map.m_len = pg_end - pg_start;
2625         total = 0;
2626
2627         while (map.m_lblk < pg_end) {
2628                 pgoff_t idx;
2629                 int cnt = 0;
2630
2631 do_map:
2632                 map.m_len = pg_end - map.m_lblk;
2633                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2634                 if (err)
2635                         goto clear_out;
2636
2637                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2638                         map.m_lblk = next_pgofs;
2639                         goto check;
2640                 }
2641
2642                 set_inode_flag(inode, FI_SKIP_WRITES);
2643
2644                 idx = map.m_lblk;
2645                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2646                         struct page *page;
2647
2648                         page = f2fs_get_lock_data_page(inode, idx, true);
2649                         if (IS_ERR(page)) {
2650                                 err = PTR_ERR(page);
2651                                 goto clear_out;
2652                         }
2653
2654                         set_page_dirty(page);
2655                         set_page_private_gcing(page);
2656                         f2fs_put_page(page, 1);
2657
2658                         idx++;
2659                         cnt++;
2660                         total++;
2661                 }
2662
2663                 map.m_lblk = idx;
2664 check:
2665                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2666                         goto do_map;
2667
2668                 clear_inode_flag(inode, FI_SKIP_WRITES);
2669
2670                 err = filemap_fdatawrite(inode->i_mapping);
2671                 if (err)
2672                         goto out;
2673         }
2674 clear_out:
2675         clear_inode_flag(inode, FI_SKIP_WRITES);
2676 out:
2677         clear_inode_flag(inode, FI_OPU_WRITE);
2678         inode_unlock(inode);
2679         if (!err)
2680                 range->len = (u64)total << PAGE_SHIFT;
2681         return err;
2682 }
2683
2684 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2685 {
2686         struct inode *inode = file_inode(filp);
2687         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2688         struct f2fs_defragment range;
2689         int err;
2690
2691         if (!capable(CAP_SYS_ADMIN))
2692                 return -EPERM;
2693
2694         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2695                 return -EINVAL;
2696
2697         if (f2fs_readonly(sbi->sb))
2698                 return -EROFS;
2699
2700         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2701                                                         sizeof(range)))
2702                 return -EFAULT;
2703
2704         /* verify alignment of offset & size */
2705         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2706                 return -EINVAL;
2707
2708         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2709                                         max_file_blocks(inode)))
2710                 return -EINVAL;
2711
2712         err = mnt_want_write_file(filp);
2713         if (err)
2714                 return err;
2715
2716         err = f2fs_defragment_range(sbi, filp, &range);
2717         mnt_drop_write_file(filp);
2718
2719         f2fs_update_time(sbi, REQ_TIME);
2720         if (err < 0)
2721                 return err;
2722
2723         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2724                                                         sizeof(range)))
2725                 return -EFAULT;
2726
2727         return 0;
2728 }
2729
2730 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2731                         struct file *file_out, loff_t pos_out, size_t len)
2732 {
2733         struct inode *src = file_inode(file_in);
2734         struct inode *dst = file_inode(file_out);
2735         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2736         size_t olen = len, dst_max_i_size = 0;
2737         size_t dst_osize;
2738         int ret;
2739
2740         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2741                                 src->i_sb != dst->i_sb)
2742                 return -EXDEV;
2743
2744         if (unlikely(f2fs_readonly(src->i_sb)))
2745                 return -EROFS;
2746
2747         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2748                 return -EINVAL;
2749
2750         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2751                 return -EOPNOTSUPP;
2752
2753         if (pos_out < 0 || pos_in < 0)
2754                 return -EINVAL;
2755
2756         if (src == dst) {
2757                 if (pos_in == pos_out)
2758                         return 0;
2759                 if (pos_out > pos_in && pos_out < pos_in + len)
2760                         return -EINVAL;
2761         }
2762
2763         inode_lock(src);
2764         if (src != dst) {
2765                 ret = -EBUSY;
2766                 if (!inode_trylock(dst))
2767                         goto out;
2768         }
2769
2770         ret = -EINVAL;
2771         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2772                 goto out_unlock;
2773         if (len == 0)
2774                 olen = len = src->i_size - pos_in;
2775         if (pos_in + len == src->i_size)
2776                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2777         if (len == 0) {
2778                 ret = 0;
2779                 goto out_unlock;
2780         }
2781
2782         dst_osize = dst->i_size;
2783         if (pos_out + olen > dst->i_size)
2784                 dst_max_i_size = pos_out + olen;
2785
2786         /* verify the end result is block aligned */
2787         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2788                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2789                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2790                 goto out_unlock;
2791
2792         ret = f2fs_convert_inline_inode(src);
2793         if (ret)
2794                 goto out_unlock;
2795
2796         ret = f2fs_convert_inline_inode(dst);
2797         if (ret)
2798                 goto out_unlock;
2799
2800         /* write out all dirty pages from offset */
2801         ret = filemap_write_and_wait_range(src->i_mapping,
2802                                         pos_in, pos_in + len);
2803         if (ret)
2804                 goto out_unlock;
2805
2806         ret = filemap_write_and_wait_range(dst->i_mapping,
2807                                         pos_out, pos_out + len);
2808         if (ret)
2809                 goto out_unlock;
2810
2811         f2fs_balance_fs(sbi, true);
2812
2813         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2814         if (src != dst) {
2815                 ret = -EBUSY;
2816                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2817                         goto out_src;
2818         }
2819
2820         f2fs_lock_op(sbi);
2821         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2822                                 pos_out >> F2FS_BLKSIZE_BITS,
2823                                 len >> F2FS_BLKSIZE_BITS, false);
2824
2825         if (!ret) {
2826                 if (dst_max_i_size)
2827                         f2fs_i_size_write(dst, dst_max_i_size);
2828                 else if (dst_osize != dst->i_size)
2829                         f2fs_i_size_write(dst, dst_osize);
2830         }
2831         f2fs_unlock_op(sbi);
2832
2833         if (src != dst)
2834                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2835 out_src:
2836         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2837 out_unlock:
2838         if (src != dst)
2839                 inode_unlock(dst);
2840 out:
2841         inode_unlock(src);
2842         return ret;
2843 }
2844
2845 static int __f2fs_ioc_move_range(struct file *filp,
2846                                 struct f2fs_move_range *range)
2847 {
2848         struct fd dst;
2849         int err;
2850
2851         if (!(filp->f_mode & FMODE_READ) ||
2852                         !(filp->f_mode & FMODE_WRITE))
2853                 return -EBADF;
2854
2855         dst = fdget(range->dst_fd);
2856         if (!dst.file)
2857                 return -EBADF;
2858
2859         if (!(dst.file->f_mode & FMODE_WRITE)) {
2860                 err = -EBADF;
2861                 goto err_out;
2862         }
2863
2864         err = mnt_want_write_file(filp);
2865         if (err)
2866                 goto err_out;
2867
2868         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2869                                         range->pos_out, range->len);
2870
2871         mnt_drop_write_file(filp);
2872 err_out:
2873         fdput(dst);
2874         return err;
2875 }
2876
2877 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2878 {
2879         struct f2fs_move_range range;
2880
2881         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2882                                                         sizeof(range)))
2883                 return -EFAULT;
2884         return __f2fs_ioc_move_range(filp, &range);
2885 }
2886
2887 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2888 {
2889         struct inode *inode = file_inode(filp);
2890         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2891         struct sit_info *sm = SIT_I(sbi);
2892         unsigned int start_segno = 0, end_segno = 0;
2893         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2894         struct f2fs_flush_device range;
2895         struct f2fs_gc_control gc_control = {
2896                         .init_gc_type = FG_GC,
2897                         .should_migrate_blocks = true,
2898                         .err_gc_skipped = true,
2899                         .nr_free_secs = 0 };
2900         int ret;
2901
2902         if (!capable(CAP_SYS_ADMIN))
2903                 return -EPERM;
2904
2905         if (f2fs_readonly(sbi->sb))
2906                 return -EROFS;
2907
2908         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2909                 return -EINVAL;
2910
2911         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2912                                                         sizeof(range)))
2913                 return -EFAULT;
2914
2915         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2916                         __is_large_section(sbi)) {
2917                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2918                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2919                 return -EINVAL;
2920         }
2921
2922         ret = mnt_want_write_file(filp);
2923         if (ret)
2924                 return ret;
2925
2926         if (range.dev_num != 0)
2927                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2928         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2929
2930         start_segno = sm->last_victim[FLUSH_DEVICE];
2931         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2932                 start_segno = dev_start_segno;
2933         end_segno = min(start_segno + range.segments, dev_end_segno);
2934
2935         while (start_segno < end_segno) {
2936                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2937                         ret = -EBUSY;
2938                         goto out;
2939                 }
2940                 sm->last_victim[GC_CB] = end_segno + 1;
2941                 sm->last_victim[GC_GREEDY] = end_segno + 1;
2942                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2943
2944                 gc_control.victim_segno = start_segno;
2945                 ret = f2fs_gc(sbi, &gc_control);
2946                 if (ret == -EAGAIN)
2947                         ret = 0;
2948                 else if (ret < 0)
2949                         break;
2950                 start_segno++;
2951         }
2952 out:
2953         mnt_drop_write_file(filp);
2954         return ret;
2955 }
2956
2957 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2958 {
2959         struct inode *inode = file_inode(filp);
2960         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2961
2962         /* Must validate to set it with SQLite behavior in Android. */
2963         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2964
2965         return put_user(sb_feature, (u32 __user *)arg);
2966 }
2967
2968 #ifdef CONFIG_QUOTA
2969 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2970 {
2971         struct dquot *transfer_to[MAXQUOTAS] = {};
2972         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2973         struct super_block *sb = sbi->sb;
2974         int err = 0;
2975
2976         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2977         if (!IS_ERR(transfer_to[PRJQUOTA])) {
2978                 err = __dquot_transfer(inode, transfer_to);
2979                 if (err)
2980                         set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2981                 dqput(transfer_to[PRJQUOTA]);
2982         }
2983         return err;
2984 }
2985
2986 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2987 {
2988         struct f2fs_inode_info *fi = F2FS_I(inode);
2989         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2990         struct f2fs_inode *ri = NULL;
2991         kprojid_t kprojid;
2992         int err;
2993
2994         if (!f2fs_sb_has_project_quota(sbi)) {
2995                 if (projid != F2FS_DEF_PROJID)
2996                         return -EOPNOTSUPP;
2997                 else
2998                         return 0;
2999         }
3000
3001         if (!f2fs_has_extra_attr(inode))
3002                 return -EOPNOTSUPP;
3003
3004         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3005
3006         if (projid_eq(kprojid, fi->i_projid))
3007                 return 0;
3008
3009         err = -EPERM;
3010         /* Is it quota file? Do not allow user to mess with it */
3011         if (IS_NOQUOTA(inode))
3012                 return err;
3013
3014         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3015                 return -EOVERFLOW;
3016
3017         err = f2fs_dquot_initialize(inode);
3018         if (err)
3019                 return err;
3020
3021         f2fs_lock_op(sbi);
3022         err = f2fs_transfer_project_quota(inode, kprojid);
3023         if (err)
3024                 goto out_unlock;
3025
3026         fi->i_projid = kprojid;
3027         inode->i_ctime = current_time(inode);
3028         f2fs_mark_inode_dirty_sync(inode, true);
3029 out_unlock:
3030         f2fs_unlock_op(sbi);
3031         return err;
3032 }
3033 #else
3034 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3035 {
3036         return 0;
3037 }
3038
3039 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3040 {
3041         if (projid != F2FS_DEF_PROJID)
3042                 return -EOPNOTSUPP;
3043         return 0;
3044 }
3045 #endif
3046
3047 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3048 {
3049         struct inode *inode = d_inode(dentry);
3050         struct f2fs_inode_info *fi = F2FS_I(inode);
3051         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3052
3053         if (IS_ENCRYPTED(inode))
3054                 fsflags |= FS_ENCRYPT_FL;
3055         if (IS_VERITY(inode))
3056                 fsflags |= FS_VERITY_FL;
3057         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3058                 fsflags |= FS_INLINE_DATA_FL;
3059         if (is_inode_flag_set(inode, FI_PIN_FILE))
3060                 fsflags |= FS_NOCOW_FL;
3061
3062         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3063
3064         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3065                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3066
3067         return 0;
3068 }
3069
3070 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3071                       struct dentry *dentry, struct fileattr *fa)
3072 {
3073         struct inode *inode = d_inode(dentry);
3074         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3075         u32 iflags;
3076         int err;
3077
3078         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3079                 return -EIO;
3080         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3081                 return -ENOSPC;
3082         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3083                 return -EOPNOTSUPP;
3084         fsflags &= F2FS_SETTABLE_FS_FL;
3085         if (!fa->flags_valid)
3086                 mask &= FS_COMMON_FL;
3087
3088         iflags = f2fs_fsflags_to_iflags(fsflags);
3089         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3090                 return -EOPNOTSUPP;
3091
3092         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3093         if (!err)
3094                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3095
3096         return err;
3097 }
3098
3099 int f2fs_pin_file_control(struct inode *inode, bool inc)
3100 {
3101         struct f2fs_inode_info *fi = F2FS_I(inode);
3102         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3103
3104         /* Use i_gc_failures for normal file as a risk signal. */
3105         if (inc)
3106                 f2fs_i_gc_failures_write(inode,
3107                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3108
3109         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3110                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3111                           __func__, inode->i_ino,
3112                           fi->i_gc_failures[GC_FAILURE_PIN]);
3113                 clear_inode_flag(inode, FI_PIN_FILE);
3114                 return -EAGAIN;
3115         }
3116         return 0;
3117 }
3118
3119 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3120 {
3121         struct inode *inode = file_inode(filp);
3122         __u32 pin;
3123         int ret = 0;
3124
3125         if (get_user(pin, (__u32 __user *)arg))
3126                 return -EFAULT;
3127
3128         if (!S_ISREG(inode->i_mode))
3129                 return -EINVAL;
3130
3131         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3132                 return -EROFS;
3133
3134         ret = mnt_want_write_file(filp);
3135         if (ret)
3136                 return ret;
3137
3138         inode_lock(inode);
3139
3140         if (!pin) {
3141                 clear_inode_flag(inode, FI_PIN_FILE);
3142                 f2fs_i_gc_failures_write(inode, 0);
3143                 goto done;
3144         }
3145
3146         if (f2fs_should_update_outplace(inode, NULL)) {
3147                 ret = -EINVAL;
3148                 goto out;
3149         }
3150
3151         if (f2fs_pin_file_control(inode, false)) {
3152                 ret = -EAGAIN;
3153                 goto out;
3154         }
3155
3156         ret = f2fs_convert_inline_inode(inode);
3157         if (ret)
3158                 goto out;
3159
3160         if (!f2fs_disable_compressed_file(inode)) {
3161                 ret = -EOPNOTSUPP;
3162                 goto out;
3163         }
3164
3165         set_inode_flag(inode, FI_PIN_FILE);
3166         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3167 done:
3168         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3169 out:
3170         inode_unlock(inode);
3171         mnt_drop_write_file(filp);
3172         return ret;
3173 }
3174
3175 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3176 {
3177         struct inode *inode = file_inode(filp);
3178         __u32 pin = 0;
3179
3180         if (is_inode_flag_set(inode, FI_PIN_FILE))
3181                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3182         return put_user(pin, (u32 __user *)arg);
3183 }
3184
3185 int f2fs_precache_extents(struct inode *inode)
3186 {
3187         struct f2fs_inode_info *fi = F2FS_I(inode);
3188         struct f2fs_map_blocks map;
3189         pgoff_t m_next_extent;
3190         loff_t end;
3191         int err;
3192
3193         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3194                 return -EOPNOTSUPP;
3195
3196         map.m_lblk = 0;
3197         map.m_next_pgofs = NULL;
3198         map.m_next_extent = &m_next_extent;
3199         map.m_seg_type = NO_CHECK_TYPE;
3200         map.m_may_create = false;
3201         end = max_file_blocks(inode);
3202
3203         while (map.m_lblk < end) {
3204                 map.m_len = end - map.m_lblk;
3205
3206                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3207                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3208                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3209                 if (err)
3210                         return err;
3211
3212                 map.m_lblk = m_next_extent;
3213         }
3214
3215         return 0;
3216 }
3217
3218 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3219 {
3220         return f2fs_precache_extents(file_inode(filp));
3221 }
3222
3223 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3224 {
3225         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3226         __u64 block_count;
3227
3228         if (!capable(CAP_SYS_ADMIN))
3229                 return -EPERM;
3230
3231         if (f2fs_readonly(sbi->sb))
3232                 return -EROFS;
3233
3234         if (copy_from_user(&block_count, (void __user *)arg,
3235                            sizeof(block_count)))
3236                 return -EFAULT;
3237
3238         return f2fs_resize_fs(sbi, block_count);
3239 }
3240
3241 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3242 {
3243         struct inode *inode = file_inode(filp);
3244
3245         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3246
3247         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3248                 f2fs_warn(F2FS_I_SB(inode),
3249                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3250                           inode->i_ino);
3251                 return -EOPNOTSUPP;
3252         }
3253
3254         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3255 }
3256
3257 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3258 {
3259         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3260                 return -EOPNOTSUPP;
3261
3262         return fsverity_ioctl_measure(filp, (void __user *)arg);
3263 }
3264
3265 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3266 {
3267         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3268                 return -EOPNOTSUPP;
3269
3270         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3271 }
3272
3273 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3274 {
3275         struct inode *inode = file_inode(filp);
3276         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3277         char *vbuf;
3278         int count;
3279         int err = 0;
3280
3281         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3282         if (!vbuf)
3283                 return -ENOMEM;
3284
3285         f2fs_down_read(&sbi->sb_lock);
3286         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3287                         ARRAY_SIZE(sbi->raw_super->volume_name),
3288                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3289         f2fs_up_read(&sbi->sb_lock);
3290
3291         if (copy_to_user((char __user *)arg, vbuf,
3292                                 min(FSLABEL_MAX, count)))
3293                 err = -EFAULT;
3294
3295         kfree(vbuf);
3296         return err;
3297 }
3298
3299 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3300 {
3301         struct inode *inode = file_inode(filp);
3302         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3303         char *vbuf;
3304         int err = 0;
3305
3306         if (!capable(CAP_SYS_ADMIN))
3307                 return -EPERM;
3308
3309         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3310         if (IS_ERR(vbuf))
3311                 return PTR_ERR(vbuf);
3312
3313         err = mnt_want_write_file(filp);
3314         if (err)
3315                 goto out;
3316
3317         f2fs_down_write(&sbi->sb_lock);
3318
3319         memset(sbi->raw_super->volume_name, 0,
3320                         sizeof(sbi->raw_super->volume_name));
3321         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3322                         sbi->raw_super->volume_name,
3323                         ARRAY_SIZE(sbi->raw_super->volume_name));
3324
3325         err = f2fs_commit_super(sbi, false);
3326
3327         f2fs_up_write(&sbi->sb_lock);
3328
3329         mnt_drop_write_file(filp);
3330 out:
3331         kfree(vbuf);
3332         return err;
3333 }
3334
3335 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3336 {
3337         struct inode *inode = file_inode(filp);
3338         __u64 blocks;
3339
3340         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3341                 return -EOPNOTSUPP;
3342
3343         if (!f2fs_compressed_file(inode))
3344                 return -EINVAL;
3345
3346         blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3347         return put_user(blocks, (u64 __user *)arg);
3348 }
3349
3350 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3351 {
3352         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3353         unsigned int released_blocks = 0;
3354         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3355         block_t blkaddr;
3356         int i;
3357
3358         for (i = 0; i < count; i++) {
3359                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3360                                                 dn->ofs_in_node + i);
3361
3362                 if (!__is_valid_data_blkaddr(blkaddr))
3363                         continue;
3364                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3365                                         DATA_GENERIC_ENHANCE)))
3366                         return -EFSCORRUPTED;
3367         }
3368
3369         while (count) {
3370                 int compr_blocks = 0;
3371
3372                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3373                         blkaddr = f2fs_data_blkaddr(dn);
3374
3375                         if (i == 0) {
3376                                 if (blkaddr == COMPRESS_ADDR)
3377                                         continue;
3378                                 dn->ofs_in_node += cluster_size;
3379                                 goto next;
3380                         }
3381
3382                         if (__is_valid_data_blkaddr(blkaddr))
3383                                 compr_blocks++;
3384
3385                         if (blkaddr != NEW_ADDR)
3386                                 continue;
3387
3388                         dn->data_blkaddr = NULL_ADDR;
3389                         f2fs_set_data_blkaddr(dn);
3390                 }
3391
3392                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3393                 dec_valid_block_count(sbi, dn->inode,
3394                                         cluster_size - compr_blocks);
3395
3396                 released_blocks += cluster_size - compr_blocks;
3397 next:
3398                 count -= cluster_size;
3399         }
3400
3401         return released_blocks;
3402 }
3403
3404 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3405 {
3406         struct inode *inode = file_inode(filp);
3407         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3408         pgoff_t page_idx = 0, last_idx;
3409         unsigned int released_blocks = 0;
3410         int ret;
3411         int writecount;
3412
3413         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3414                 return -EOPNOTSUPP;
3415
3416         if (!f2fs_compressed_file(inode))
3417                 return -EINVAL;
3418
3419         if (f2fs_readonly(sbi->sb))
3420                 return -EROFS;
3421
3422         ret = mnt_want_write_file(filp);
3423         if (ret)
3424                 return ret;
3425
3426         f2fs_balance_fs(F2FS_I_SB(inode), true);
3427
3428         inode_lock(inode);
3429
3430         writecount = atomic_read(&inode->i_writecount);
3431         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3432                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3433                 ret = -EBUSY;
3434                 goto out;
3435         }
3436
3437         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3438                 ret = -EINVAL;
3439                 goto out;
3440         }
3441
3442         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3443         if (ret)
3444                 goto out;
3445
3446         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3447         inode->i_ctime = current_time(inode);
3448         f2fs_mark_inode_dirty_sync(inode, true);
3449
3450         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3451                 goto out;
3452
3453         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3454         filemap_invalidate_lock(inode->i_mapping);
3455
3456         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3457
3458         while (page_idx < last_idx) {
3459                 struct dnode_of_data dn;
3460                 pgoff_t end_offset, count;
3461
3462                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3463                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3464                 if (ret) {
3465                         if (ret == -ENOENT) {
3466                                 page_idx = f2fs_get_next_page_offset(&dn,
3467                                                                 page_idx);
3468                                 ret = 0;
3469                                 continue;
3470                         }
3471                         break;
3472                 }
3473
3474                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3475                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3476                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3477
3478                 ret = release_compress_blocks(&dn, count);
3479
3480                 f2fs_put_dnode(&dn);
3481
3482                 if (ret < 0)
3483                         break;
3484
3485                 page_idx += count;
3486                 released_blocks += ret;
3487         }
3488
3489         filemap_invalidate_unlock(inode->i_mapping);
3490         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3491 out:
3492         inode_unlock(inode);
3493
3494         mnt_drop_write_file(filp);
3495
3496         if (ret >= 0) {
3497                 ret = put_user(released_blocks, (u64 __user *)arg);
3498         } else if (released_blocks &&
3499                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3500                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3501                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3502                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3503                         "run fsck to fix.",
3504                         __func__, inode->i_ino, inode->i_blocks,
3505                         released_blocks,
3506                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3507         }
3508
3509         return ret;
3510 }
3511
3512 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3513 {
3514         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3515         unsigned int reserved_blocks = 0;
3516         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3517         block_t blkaddr;
3518         int i;
3519
3520         for (i = 0; i < count; i++) {
3521                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3522                                                 dn->ofs_in_node + i);
3523
3524                 if (!__is_valid_data_blkaddr(blkaddr))
3525                         continue;
3526                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3527                                         DATA_GENERIC_ENHANCE)))
3528                         return -EFSCORRUPTED;
3529         }
3530
3531         while (count) {
3532                 int compr_blocks = 0;
3533                 blkcnt_t reserved;
3534                 int ret;
3535
3536                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3537                         blkaddr = f2fs_data_blkaddr(dn);
3538
3539                         if (i == 0) {
3540                                 if (blkaddr == COMPRESS_ADDR)
3541                                         continue;
3542                                 dn->ofs_in_node += cluster_size;
3543                                 goto next;
3544                         }
3545
3546                         if (__is_valid_data_blkaddr(blkaddr)) {
3547                                 compr_blocks++;
3548                                 continue;
3549                         }
3550
3551                         dn->data_blkaddr = NEW_ADDR;
3552                         f2fs_set_data_blkaddr(dn);
3553                 }
3554
3555                 reserved = cluster_size - compr_blocks;
3556                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3557                 if (ret)
3558                         return ret;
3559
3560                 if (reserved != cluster_size - compr_blocks)
3561                         return -ENOSPC;
3562
3563                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3564
3565                 reserved_blocks += reserved;
3566 next:
3567                 count -= cluster_size;
3568         }
3569
3570         return reserved_blocks;
3571 }
3572
3573 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3574 {
3575         struct inode *inode = file_inode(filp);
3576         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3577         pgoff_t page_idx = 0, last_idx;
3578         unsigned int reserved_blocks = 0;
3579         int ret;
3580
3581         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3582                 return -EOPNOTSUPP;
3583
3584         if (!f2fs_compressed_file(inode))
3585                 return -EINVAL;
3586
3587         if (f2fs_readonly(sbi->sb))
3588                 return -EROFS;
3589
3590         ret = mnt_want_write_file(filp);
3591         if (ret)
3592                 return ret;
3593
3594         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3595                 goto out;
3596
3597         f2fs_balance_fs(F2FS_I_SB(inode), true);
3598
3599         inode_lock(inode);
3600
3601         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3602                 ret = -EINVAL;
3603                 goto unlock_inode;
3604         }
3605
3606         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3607         filemap_invalidate_lock(inode->i_mapping);
3608
3609         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3610
3611         while (page_idx < last_idx) {
3612                 struct dnode_of_data dn;
3613                 pgoff_t end_offset, count;
3614
3615                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3616                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3617                 if (ret) {
3618                         if (ret == -ENOENT) {
3619                                 page_idx = f2fs_get_next_page_offset(&dn,
3620                                                                 page_idx);
3621                                 ret = 0;
3622                                 continue;
3623                         }
3624                         break;
3625                 }
3626
3627                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3628                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3629                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3630
3631                 ret = reserve_compress_blocks(&dn, count);
3632
3633                 f2fs_put_dnode(&dn);
3634
3635                 if (ret < 0)
3636                         break;
3637
3638                 page_idx += count;
3639                 reserved_blocks += ret;
3640         }
3641
3642         filemap_invalidate_unlock(inode->i_mapping);
3643         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3644
3645         if (ret >= 0) {
3646                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3647                 inode->i_ctime = current_time(inode);
3648                 f2fs_mark_inode_dirty_sync(inode, true);
3649         }
3650 unlock_inode:
3651         inode_unlock(inode);
3652 out:
3653         mnt_drop_write_file(filp);
3654
3655         if (ret >= 0) {
3656                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3657         } else if (reserved_blocks &&
3658                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3659                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3660                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3661                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3662                         "run fsck to fix.",
3663                         __func__, inode->i_ino, inode->i_blocks,
3664                         reserved_blocks,
3665                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3666         }
3667
3668         return ret;
3669 }
3670
3671 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3672                 pgoff_t off, block_t block, block_t len, u32 flags)
3673 {
3674         sector_t sector = SECTOR_FROM_BLOCK(block);
3675         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3676         int ret = 0;
3677
3678         if (flags & F2FS_TRIM_FILE_DISCARD) {
3679                 if (bdev_max_secure_erase_sectors(bdev))
3680                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3681                                         GFP_NOFS);
3682                 else
3683                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3684                                         GFP_NOFS);
3685         }
3686
3687         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3688                 if (IS_ENCRYPTED(inode))
3689                         ret = fscrypt_zeroout_range(inode, off, block, len);
3690                 else
3691                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3692                                         GFP_NOFS, 0);
3693         }
3694
3695         return ret;
3696 }
3697
3698 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3699 {
3700         struct inode *inode = file_inode(filp);
3701         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3702         struct address_space *mapping = inode->i_mapping;
3703         struct block_device *prev_bdev = NULL;
3704         struct f2fs_sectrim_range range;
3705         pgoff_t index, pg_end, prev_index = 0;
3706         block_t prev_block = 0, len = 0;
3707         loff_t end_addr;
3708         bool to_end = false;
3709         int ret = 0;
3710
3711         if (!(filp->f_mode & FMODE_WRITE))
3712                 return -EBADF;
3713
3714         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3715                                 sizeof(range)))
3716                 return -EFAULT;
3717
3718         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3719                         !S_ISREG(inode->i_mode))
3720                 return -EINVAL;
3721
3722         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3723                         !f2fs_hw_support_discard(sbi)) ||
3724                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3725                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3726                 return -EOPNOTSUPP;
3727
3728         file_start_write(filp);
3729         inode_lock(inode);
3730
3731         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3732                         range.start >= inode->i_size) {
3733                 ret = -EINVAL;
3734                 goto err;
3735         }
3736
3737         if (range.len == 0)
3738                 goto err;
3739
3740         if (inode->i_size - range.start > range.len) {
3741                 end_addr = range.start + range.len;
3742         } else {
3743                 end_addr = range.len == (u64)-1 ?
3744                         sbi->sb->s_maxbytes : inode->i_size;
3745                 to_end = true;
3746         }
3747
3748         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3749                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3750                 ret = -EINVAL;
3751                 goto err;
3752         }
3753
3754         index = F2FS_BYTES_TO_BLK(range.start);
3755         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3756
3757         ret = f2fs_convert_inline_inode(inode);
3758         if (ret)
3759                 goto err;
3760
3761         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3762         filemap_invalidate_lock(mapping);
3763
3764         ret = filemap_write_and_wait_range(mapping, range.start,
3765                         to_end ? LLONG_MAX : end_addr - 1);
3766         if (ret)
3767                 goto out;
3768
3769         truncate_inode_pages_range(mapping, range.start,
3770                         to_end ? -1 : end_addr - 1);
3771
3772         while (index < pg_end) {
3773                 struct dnode_of_data dn;
3774                 pgoff_t end_offset, count;
3775                 int i;
3776
3777                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3778                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3779                 if (ret) {
3780                         if (ret == -ENOENT) {
3781                                 index = f2fs_get_next_page_offset(&dn, index);
3782                                 continue;
3783                         }
3784                         goto out;
3785                 }
3786
3787                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3788                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3789                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3790                         struct block_device *cur_bdev;
3791                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3792
3793                         if (!__is_valid_data_blkaddr(blkaddr))
3794                                 continue;
3795
3796                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3797                                                 DATA_GENERIC_ENHANCE)) {
3798                                 ret = -EFSCORRUPTED;
3799                                 f2fs_put_dnode(&dn);
3800                                 goto out;
3801                         }
3802
3803                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3804                         if (f2fs_is_multi_device(sbi)) {
3805                                 int di = f2fs_target_device_index(sbi, blkaddr);
3806
3807                                 blkaddr -= FDEV(di).start_blk;
3808                         }
3809
3810                         if (len) {
3811                                 if (prev_bdev == cur_bdev &&
3812                                                 index == prev_index + len &&
3813                                                 blkaddr == prev_block + len) {
3814                                         len++;
3815                                 } else {
3816                                         ret = f2fs_secure_erase(prev_bdev,
3817                                                 inode, prev_index, prev_block,
3818                                                 len, range.flags);
3819                                         if (ret) {
3820                                                 f2fs_put_dnode(&dn);
3821                                                 goto out;
3822                                         }
3823
3824                                         len = 0;
3825                                 }
3826                         }
3827
3828                         if (!len) {
3829                                 prev_bdev = cur_bdev;
3830                                 prev_index = index;
3831                                 prev_block = blkaddr;
3832                                 len = 1;
3833                         }
3834                 }
3835
3836                 f2fs_put_dnode(&dn);
3837
3838                 if (fatal_signal_pending(current)) {
3839                         ret = -EINTR;
3840                         goto out;
3841                 }
3842                 cond_resched();
3843         }
3844
3845         if (len)
3846                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3847                                 prev_block, len, range.flags);
3848 out:
3849         filemap_invalidate_unlock(mapping);
3850         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3851 err:
3852         inode_unlock(inode);
3853         file_end_write(filp);
3854
3855         return ret;
3856 }
3857
3858 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3859 {
3860         struct inode *inode = file_inode(filp);
3861         struct f2fs_comp_option option;
3862
3863         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3864                 return -EOPNOTSUPP;
3865
3866         inode_lock_shared(inode);
3867
3868         if (!f2fs_compressed_file(inode)) {
3869                 inode_unlock_shared(inode);
3870                 return -ENODATA;
3871         }
3872
3873         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3874         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3875
3876         inode_unlock_shared(inode);
3877
3878         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3879                                 sizeof(option)))
3880                 return -EFAULT;
3881
3882         return 0;
3883 }
3884
3885 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3886 {
3887         struct inode *inode = file_inode(filp);
3888         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3889         struct f2fs_comp_option option;
3890         int ret = 0;
3891
3892         if (!f2fs_sb_has_compression(sbi))
3893                 return -EOPNOTSUPP;
3894
3895         if (!(filp->f_mode & FMODE_WRITE))
3896                 return -EBADF;
3897
3898         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3899                                 sizeof(option)))
3900                 return -EFAULT;
3901
3902         if (!f2fs_compressed_file(inode) ||
3903                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3904                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3905                         option.algorithm >= COMPRESS_MAX)
3906                 return -EINVAL;
3907
3908         file_start_write(filp);
3909         inode_lock(inode);
3910
3911         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3912                 ret = -EBUSY;
3913                 goto out;
3914         }
3915
3916         if (inode->i_size != 0) {
3917                 ret = -EFBIG;
3918                 goto out;
3919         }
3920
3921         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3922         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3923         F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3924         f2fs_mark_inode_dirty_sync(inode, true);
3925
3926         if (!f2fs_is_compress_backend_ready(inode))
3927                 f2fs_warn(sbi, "compression algorithm is successfully set, "
3928                         "but current kernel doesn't support this algorithm.");
3929 out:
3930         inode_unlock(inode);
3931         file_end_write(filp);
3932
3933         return ret;
3934 }
3935
3936 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3937 {
3938         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3939         struct address_space *mapping = inode->i_mapping;
3940         struct page *page;
3941         pgoff_t redirty_idx = page_idx;
3942         int i, page_len = 0, ret = 0;
3943
3944         page_cache_ra_unbounded(&ractl, len, 0);
3945
3946         for (i = 0; i < len; i++, page_idx++) {
3947                 page = read_cache_page(mapping, page_idx, NULL, NULL);
3948                 if (IS_ERR(page)) {
3949                         ret = PTR_ERR(page);
3950                         break;
3951                 }
3952                 page_len++;
3953         }
3954
3955         for (i = 0; i < page_len; i++, redirty_idx++) {
3956                 page = find_lock_page(mapping, redirty_idx);
3957
3958                 /* It will never fail, when page has pinned above */
3959                 f2fs_bug_on(F2FS_I_SB(inode), !page);
3960
3961                 set_page_dirty(page);
3962                 f2fs_put_page(page, 1);
3963                 f2fs_put_page(page, 0);
3964         }
3965
3966         return ret;
3967 }
3968
3969 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3970 {
3971         struct inode *inode = file_inode(filp);
3972         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3973         struct f2fs_inode_info *fi = F2FS_I(inode);
3974         pgoff_t page_idx = 0, last_idx;
3975         unsigned int blk_per_seg = sbi->blocks_per_seg;
3976         int cluster_size = fi->i_cluster_size;
3977         int count, ret;
3978
3979         if (!f2fs_sb_has_compression(sbi) ||
3980                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3981                 return -EOPNOTSUPP;
3982
3983         if (!(filp->f_mode & FMODE_WRITE))
3984                 return -EBADF;
3985
3986         if (!f2fs_compressed_file(inode))
3987                 return -EINVAL;
3988
3989         f2fs_balance_fs(F2FS_I_SB(inode), true);
3990
3991         file_start_write(filp);
3992         inode_lock(inode);
3993
3994         if (!f2fs_is_compress_backend_ready(inode)) {
3995                 ret = -EOPNOTSUPP;
3996                 goto out;
3997         }
3998
3999         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4000                 ret = -EINVAL;
4001                 goto out;
4002         }
4003
4004         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4005         if (ret)
4006                 goto out;
4007
4008         if (!atomic_read(&fi->i_compr_blocks))
4009                 goto out;
4010
4011         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4012
4013         count = last_idx - page_idx;
4014         while (count) {
4015                 int len = min(cluster_size, count);
4016
4017                 ret = redirty_blocks(inode, page_idx, len);
4018                 if (ret < 0)
4019                         break;
4020
4021                 if (get_dirty_pages(inode) >= blk_per_seg)
4022                         filemap_fdatawrite(inode->i_mapping);
4023
4024                 count -= len;
4025                 page_idx += len;
4026         }
4027
4028         if (!ret)
4029                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4030                                                         LLONG_MAX);
4031
4032         if (ret)
4033                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4034                           __func__, ret);
4035 out:
4036         inode_unlock(inode);
4037         file_end_write(filp);
4038
4039         return ret;
4040 }
4041
4042 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4043 {
4044         struct inode *inode = file_inode(filp);
4045         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4046         pgoff_t page_idx = 0, last_idx;
4047         unsigned int blk_per_seg = sbi->blocks_per_seg;
4048         int cluster_size = F2FS_I(inode)->i_cluster_size;
4049         int count, ret;
4050
4051         if (!f2fs_sb_has_compression(sbi) ||
4052                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4053                 return -EOPNOTSUPP;
4054
4055         if (!(filp->f_mode & FMODE_WRITE))
4056                 return -EBADF;
4057
4058         if (!f2fs_compressed_file(inode))
4059                 return -EINVAL;
4060
4061         f2fs_balance_fs(F2FS_I_SB(inode), true);
4062
4063         file_start_write(filp);
4064         inode_lock(inode);
4065
4066         if (!f2fs_is_compress_backend_ready(inode)) {
4067                 ret = -EOPNOTSUPP;
4068                 goto out;
4069         }
4070
4071         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4072                 ret = -EINVAL;
4073                 goto out;
4074         }
4075
4076         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4077         if (ret)
4078                 goto out;
4079
4080         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4081
4082         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4083
4084         count = last_idx - page_idx;
4085         while (count) {
4086                 int len = min(cluster_size, count);
4087
4088                 ret = redirty_blocks(inode, page_idx, len);
4089                 if (ret < 0)
4090                         break;
4091
4092                 if (get_dirty_pages(inode) >= blk_per_seg)
4093                         filemap_fdatawrite(inode->i_mapping);
4094
4095                 count -= len;
4096                 page_idx += len;
4097         }
4098
4099         if (!ret)
4100                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4101                                                         LLONG_MAX);
4102
4103         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4104
4105         if (ret)
4106                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4107                           __func__, ret);
4108 out:
4109         inode_unlock(inode);
4110         file_end_write(filp);
4111
4112         return ret;
4113 }
4114
4115 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4116 {
4117         switch (cmd) {
4118         case FS_IOC_GETVERSION:
4119                 return f2fs_ioc_getversion(filp, arg);
4120         case F2FS_IOC_START_ATOMIC_WRITE:
4121                 return f2fs_ioc_start_atomic_write(filp);
4122         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4123                 return f2fs_ioc_commit_atomic_write(filp);
4124         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4125                 return f2fs_ioc_abort_atomic_write(filp);
4126         case F2FS_IOC_START_VOLATILE_WRITE:
4127         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4128                 return -EOPNOTSUPP;
4129         case F2FS_IOC_SHUTDOWN:
4130                 return f2fs_ioc_shutdown(filp, arg);
4131         case FITRIM:
4132                 return f2fs_ioc_fitrim(filp, arg);
4133         case FS_IOC_SET_ENCRYPTION_POLICY:
4134                 return f2fs_ioc_set_encryption_policy(filp, arg);
4135         case FS_IOC_GET_ENCRYPTION_POLICY:
4136                 return f2fs_ioc_get_encryption_policy(filp, arg);
4137         case FS_IOC_GET_ENCRYPTION_PWSALT:
4138                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4139         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4140                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4141         case FS_IOC_ADD_ENCRYPTION_KEY:
4142                 return f2fs_ioc_add_encryption_key(filp, arg);
4143         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4144                 return f2fs_ioc_remove_encryption_key(filp, arg);
4145         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4146                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4147         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4148                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4149         case FS_IOC_GET_ENCRYPTION_NONCE:
4150                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4151         case F2FS_IOC_GARBAGE_COLLECT:
4152                 return f2fs_ioc_gc(filp, arg);
4153         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4154                 return f2fs_ioc_gc_range(filp, arg);
4155         case F2FS_IOC_WRITE_CHECKPOINT:
4156                 return f2fs_ioc_write_checkpoint(filp, arg);
4157         case F2FS_IOC_DEFRAGMENT:
4158                 return f2fs_ioc_defragment(filp, arg);
4159         case F2FS_IOC_MOVE_RANGE:
4160                 return f2fs_ioc_move_range(filp, arg);
4161         case F2FS_IOC_FLUSH_DEVICE:
4162                 return f2fs_ioc_flush_device(filp, arg);
4163         case F2FS_IOC_GET_FEATURES:
4164                 return f2fs_ioc_get_features(filp, arg);
4165         case F2FS_IOC_GET_PIN_FILE:
4166                 return f2fs_ioc_get_pin_file(filp, arg);
4167         case F2FS_IOC_SET_PIN_FILE:
4168                 return f2fs_ioc_set_pin_file(filp, arg);
4169         case F2FS_IOC_PRECACHE_EXTENTS:
4170                 return f2fs_ioc_precache_extents(filp, arg);
4171         case F2FS_IOC_RESIZE_FS:
4172                 return f2fs_ioc_resize_fs(filp, arg);
4173         case FS_IOC_ENABLE_VERITY:
4174                 return f2fs_ioc_enable_verity(filp, arg);
4175         case FS_IOC_MEASURE_VERITY:
4176                 return f2fs_ioc_measure_verity(filp, arg);
4177         case FS_IOC_READ_VERITY_METADATA:
4178                 return f2fs_ioc_read_verity_metadata(filp, arg);
4179         case FS_IOC_GETFSLABEL:
4180                 return f2fs_ioc_getfslabel(filp, arg);
4181         case FS_IOC_SETFSLABEL:
4182                 return f2fs_ioc_setfslabel(filp, arg);
4183         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4184                 return f2fs_get_compress_blocks(filp, arg);
4185         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4186                 return f2fs_release_compress_blocks(filp, arg);
4187         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4188                 return f2fs_reserve_compress_blocks(filp, arg);
4189         case F2FS_IOC_SEC_TRIM_FILE:
4190                 return f2fs_sec_trim_file(filp, arg);
4191         case F2FS_IOC_GET_COMPRESS_OPTION:
4192                 return f2fs_ioc_get_compress_option(filp, arg);
4193         case F2FS_IOC_SET_COMPRESS_OPTION:
4194                 return f2fs_ioc_set_compress_option(filp, arg);
4195         case F2FS_IOC_DECOMPRESS_FILE:
4196                 return f2fs_ioc_decompress_file(filp, arg);
4197         case F2FS_IOC_COMPRESS_FILE:
4198                 return f2fs_ioc_compress_file(filp, arg);
4199         default:
4200                 return -ENOTTY;
4201         }
4202 }
4203
4204 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4205 {
4206         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4207                 return -EIO;
4208         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4209                 return -ENOSPC;
4210
4211         return __f2fs_ioctl(filp, cmd, arg);
4212 }
4213
4214 /*
4215  * Return %true if the given read or write request should use direct I/O, or
4216  * %false if it should use buffered I/O.
4217  */
4218 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4219                                 struct iov_iter *iter)
4220 {
4221         unsigned int align;
4222
4223         if (!(iocb->ki_flags & IOCB_DIRECT))
4224                 return false;
4225
4226         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4227                 return false;
4228
4229         /*
4230          * Direct I/O not aligned to the disk's logical_block_size will be
4231          * attempted, but will fail with -EINVAL.
4232          *
4233          * f2fs additionally requires that direct I/O be aligned to the
4234          * filesystem block size, which is often a stricter requirement.
4235          * However, f2fs traditionally falls back to buffered I/O on requests
4236          * that are logical_block_size-aligned but not fs-block aligned.
4237          *
4238          * The below logic implements this behavior.
4239          */
4240         align = iocb->ki_pos | iov_iter_alignment(iter);
4241         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4242             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4243                 return false;
4244
4245         return true;
4246 }
4247
4248 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4249                                 unsigned int flags)
4250 {
4251         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4252
4253         dec_page_count(sbi, F2FS_DIO_READ);
4254         if (error)
4255                 return error;
4256         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size);
4257         return 0;
4258 }
4259
4260 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4261         .end_io = f2fs_dio_read_end_io,
4262 };
4263
4264 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4265 {
4266         struct file *file = iocb->ki_filp;
4267         struct inode *inode = file_inode(file);
4268         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4269         struct f2fs_inode_info *fi = F2FS_I(inode);
4270         const loff_t pos = iocb->ki_pos;
4271         const size_t count = iov_iter_count(to);
4272         struct iomap_dio *dio;
4273         ssize_t ret;
4274
4275         if (count == 0)
4276                 return 0; /* skip atime update */
4277
4278         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4279
4280         if (iocb->ki_flags & IOCB_NOWAIT) {
4281                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4282                         ret = -EAGAIN;
4283                         goto out;
4284                 }
4285         } else {
4286                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4287         }
4288
4289         /*
4290          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4291          * the higher-level function iomap_dio_rw() in order to ensure that the
4292          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4293          */
4294         inc_page_count(sbi, F2FS_DIO_READ);
4295         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4296                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4297         if (IS_ERR_OR_NULL(dio)) {
4298                 ret = PTR_ERR_OR_ZERO(dio);
4299                 if (ret != -EIOCBQUEUED)
4300                         dec_page_count(sbi, F2FS_DIO_READ);
4301         } else {
4302                 ret = iomap_dio_complete(dio);
4303         }
4304
4305         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4306
4307         file_accessed(file);
4308 out:
4309         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4310         return ret;
4311 }
4312
4313 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4314 {
4315         struct inode *inode = file_inode(iocb->ki_filp);
4316         const loff_t pos = iocb->ki_pos;
4317         ssize_t ret;
4318
4319         if (!f2fs_is_compress_backend_ready(inode))
4320                 return -EOPNOTSUPP;
4321
4322         if (trace_f2fs_dataread_start_enabled()) {
4323                 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL);
4324                 char *path;
4325
4326                 if (!p)
4327                         goto skip_read_trace;
4328
4329                 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX);
4330                 if (IS_ERR(path)) {
4331                         kfree(p);
4332                         goto skip_read_trace;
4333                 }
4334
4335                 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to),
4336                                         current->pid, path, current->comm);
4337                 kfree(p);
4338         }
4339 skip_read_trace:
4340         if (f2fs_should_use_dio(inode, iocb, to)) {
4341                 ret = f2fs_dio_read_iter(iocb, to);
4342         } else {
4343                 ret = filemap_read(iocb, to, 0);
4344                 if (ret > 0)
4345                         f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret);
4346         }
4347         if (trace_f2fs_dataread_end_enabled())
4348                 trace_f2fs_dataread_end(inode, pos, ret);
4349         return ret;
4350 }
4351
4352 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4353 {
4354         struct file *file = iocb->ki_filp;
4355         struct inode *inode = file_inode(file);
4356         ssize_t count;
4357         int err;
4358
4359         if (IS_IMMUTABLE(inode))
4360                 return -EPERM;
4361
4362         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4363                 return -EPERM;
4364
4365         count = generic_write_checks(iocb, from);
4366         if (count <= 0)
4367                 return count;
4368
4369         err = file_modified(file);
4370         if (err)
4371                 return err;
4372         return count;
4373 }
4374
4375 /*
4376  * Preallocate blocks for a write request, if it is possible and helpful to do
4377  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4378  * blocks were preallocated, or a negative errno value if something went
4379  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4380  * requested blocks (not just some of them) have been allocated.
4381  */
4382 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4383                                    bool dio)
4384 {
4385         struct inode *inode = file_inode(iocb->ki_filp);
4386         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4387         const loff_t pos = iocb->ki_pos;
4388         const size_t count = iov_iter_count(iter);
4389         struct f2fs_map_blocks map = {};
4390         int flag;
4391         int ret;
4392
4393         /* If it will be an out-of-place direct write, don't bother. */
4394         if (dio && f2fs_lfs_mode(sbi))
4395                 return 0;
4396         /*
4397          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4398          * buffered IO, if DIO meets any holes.
4399          */
4400         if (dio && i_size_read(inode) &&
4401                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4402                 return 0;
4403
4404         /* No-wait I/O can't allocate blocks. */
4405         if (iocb->ki_flags & IOCB_NOWAIT)
4406                 return 0;
4407
4408         /* If it will be a short write, don't bother. */
4409         if (fault_in_iov_iter_readable(iter, count))
4410                 return 0;
4411
4412         if (f2fs_has_inline_data(inode)) {
4413                 /* If the data will fit inline, don't bother. */
4414                 if (pos + count <= MAX_INLINE_DATA(inode))
4415                         return 0;
4416                 ret = f2fs_convert_inline_inode(inode);
4417                 if (ret)
4418                         return ret;
4419         }
4420
4421         /* Do not preallocate blocks that will be written partially in 4KB. */
4422         map.m_lblk = F2FS_BLK_ALIGN(pos);
4423         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4424         if (map.m_len > map.m_lblk)
4425                 map.m_len -= map.m_lblk;
4426         else
4427                 map.m_len = 0;
4428         map.m_may_create = true;
4429         if (dio) {
4430                 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4431                 flag = F2FS_GET_BLOCK_PRE_DIO;
4432         } else {
4433                 map.m_seg_type = NO_CHECK_TYPE;
4434                 flag = F2FS_GET_BLOCK_PRE_AIO;
4435         }
4436
4437         ret = f2fs_map_blocks(inode, &map, 1, flag);
4438         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4439         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4440                 return ret;
4441         if (ret == 0)
4442                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4443         return map.m_len;
4444 }
4445
4446 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4447                                         struct iov_iter *from)
4448 {
4449         struct file *file = iocb->ki_filp;
4450         struct inode *inode = file_inode(file);
4451         ssize_t ret;
4452
4453         if (iocb->ki_flags & IOCB_NOWAIT)
4454                 return -EOPNOTSUPP;
4455
4456         current->backing_dev_info = inode_to_bdi(inode);
4457         ret = generic_perform_write(iocb, from);
4458         current->backing_dev_info = NULL;
4459
4460         if (ret > 0) {
4461                 iocb->ki_pos += ret;
4462                 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret);
4463         }
4464         return ret;
4465 }
4466
4467 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4468                                  unsigned int flags)
4469 {
4470         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4471
4472         dec_page_count(sbi, F2FS_DIO_WRITE);
4473         if (error)
4474                 return error;
4475         f2fs_update_iostat(sbi, APP_DIRECT_IO, size);
4476         return 0;
4477 }
4478
4479 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4480         .end_io = f2fs_dio_write_end_io,
4481 };
4482
4483 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4484                                    bool *may_need_sync)
4485 {
4486         struct file *file = iocb->ki_filp;
4487         struct inode *inode = file_inode(file);
4488         struct f2fs_inode_info *fi = F2FS_I(inode);
4489         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4490         const bool do_opu = f2fs_lfs_mode(sbi);
4491         const loff_t pos = iocb->ki_pos;
4492         const ssize_t count = iov_iter_count(from);
4493         unsigned int dio_flags;
4494         struct iomap_dio *dio;
4495         ssize_t ret;
4496
4497         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4498
4499         if (iocb->ki_flags & IOCB_NOWAIT) {
4500                 /* f2fs_convert_inline_inode() and block allocation can block */
4501                 if (f2fs_has_inline_data(inode) ||
4502                     !f2fs_overwrite_io(inode, pos, count)) {
4503                         ret = -EAGAIN;
4504                         goto out;
4505                 }
4506
4507                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4508                         ret = -EAGAIN;
4509                         goto out;
4510                 }
4511                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4512                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4513                         ret = -EAGAIN;
4514                         goto out;
4515                 }
4516         } else {
4517                 ret = f2fs_convert_inline_inode(inode);
4518                 if (ret)
4519                         goto out;
4520
4521                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4522                 if (do_opu)
4523                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4524         }
4525
4526         /*
4527          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4528          * the higher-level function iomap_dio_rw() in order to ensure that the
4529          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4530          */
4531         inc_page_count(sbi, F2FS_DIO_WRITE);
4532         dio_flags = 0;
4533         if (pos + count > inode->i_size)
4534                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4535         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4536                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4537         if (IS_ERR_OR_NULL(dio)) {
4538                 ret = PTR_ERR_OR_ZERO(dio);
4539                 if (ret == -ENOTBLK)
4540                         ret = 0;
4541                 if (ret != -EIOCBQUEUED)
4542                         dec_page_count(sbi, F2FS_DIO_WRITE);
4543         } else {
4544                 ret = iomap_dio_complete(dio);
4545         }
4546
4547         if (do_opu)
4548                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4549         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4550
4551         if (ret < 0)
4552                 goto out;
4553         if (pos + ret > inode->i_size)
4554                 f2fs_i_size_write(inode, pos + ret);
4555         if (!do_opu)
4556                 set_inode_flag(inode, FI_UPDATE_WRITE);
4557
4558         if (iov_iter_count(from)) {
4559                 ssize_t ret2;
4560                 loff_t bufio_start_pos = iocb->ki_pos;
4561
4562                 /*
4563                  * The direct write was partial, so we need to fall back to a
4564                  * buffered write for the remainder.
4565                  */
4566
4567                 ret2 = f2fs_buffered_write_iter(iocb, from);
4568                 if (iov_iter_count(from))
4569                         f2fs_write_failed(inode, iocb->ki_pos);
4570                 if (ret2 < 0)
4571                         goto out;
4572
4573                 /*
4574                  * Ensure that the pagecache pages are written to disk and
4575                  * invalidated to preserve the expected O_DIRECT semantics.
4576                  */
4577                 if (ret2 > 0) {
4578                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4579
4580                         ret += ret2;
4581
4582                         ret2 = filemap_write_and_wait_range(file->f_mapping,
4583                                                             bufio_start_pos,
4584                                                             bufio_end_pos);
4585                         if (ret2 < 0)
4586                                 goto out;
4587                         invalidate_mapping_pages(file->f_mapping,
4588                                                  bufio_start_pos >> PAGE_SHIFT,
4589                                                  bufio_end_pos >> PAGE_SHIFT);
4590                 }
4591         } else {
4592                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4593                 *may_need_sync = false;
4594         }
4595 out:
4596         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4597         return ret;
4598 }
4599
4600 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4601 {
4602         struct inode *inode = file_inode(iocb->ki_filp);
4603         const loff_t orig_pos = iocb->ki_pos;
4604         const size_t orig_count = iov_iter_count(from);
4605         loff_t target_size;
4606         bool dio;
4607         bool may_need_sync = true;
4608         int preallocated;
4609         ssize_t ret;
4610
4611         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4612                 ret = -EIO;
4613                 goto out;
4614         }
4615
4616         if (!f2fs_is_compress_backend_ready(inode)) {
4617                 ret = -EOPNOTSUPP;
4618                 goto out;
4619         }
4620
4621         if (iocb->ki_flags & IOCB_NOWAIT) {
4622                 if (!inode_trylock(inode)) {
4623                         ret = -EAGAIN;
4624                         goto out;
4625                 }
4626         } else {
4627                 inode_lock(inode);
4628         }
4629
4630         ret = f2fs_write_checks(iocb, from);
4631         if (ret <= 0)
4632                 goto out_unlock;
4633
4634         /* Determine whether we will do a direct write or a buffered write. */
4635         dio = f2fs_should_use_dio(inode, iocb, from);
4636
4637         /* Possibly preallocate the blocks for the write. */
4638         target_size = iocb->ki_pos + iov_iter_count(from);
4639         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4640         if (preallocated < 0) {
4641                 ret = preallocated;
4642         } else {
4643                 if (trace_f2fs_datawrite_start_enabled()) {
4644                         char *p = f2fs_kmalloc(F2FS_I_SB(inode),
4645                                                 PATH_MAX, GFP_KERNEL);
4646                         char *path;
4647
4648                         if (!p)
4649                                 goto skip_write_trace;
4650                         path = dentry_path_raw(file_dentry(iocb->ki_filp),
4651                                                                 p, PATH_MAX);
4652                         if (IS_ERR(path)) {
4653                                 kfree(p);
4654                                 goto skip_write_trace;
4655                         }
4656                         trace_f2fs_datawrite_start(inode, orig_pos, orig_count,
4657                                         current->pid, path, current->comm);
4658                         kfree(p);
4659                 }
4660 skip_write_trace:
4661                 /* Do the actual write. */
4662                 ret = dio ?
4663                         f2fs_dio_write_iter(iocb, from, &may_need_sync):
4664                         f2fs_buffered_write_iter(iocb, from);
4665
4666                 if (trace_f2fs_datawrite_end_enabled())
4667                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4668         }
4669
4670         /* Don't leave any preallocated blocks around past i_size. */
4671         if (preallocated && i_size_read(inode) < target_size) {
4672                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4673                 filemap_invalidate_lock(inode->i_mapping);
4674                 if (!f2fs_truncate(inode))
4675                         file_dont_truncate(inode);
4676                 filemap_invalidate_unlock(inode->i_mapping);
4677                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4678         } else {
4679                 file_dont_truncate(inode);
4680         }
4681
4682         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4683 out_unlock:
4684         inode_unlock(inode);
4685 out:
4686         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4687         if (ret > 0 && may_need_sync)
4688                 ret = generic_write_sync(iocb, ret);
4689         return ret;
4690 }
4691
4692 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4693                 int advice)
4694 {
4695         struct address_space *mapping;
4696         struct backing_dev_info *bdi;
4697         struct inode *inode = file_inode(filp);
4698         int err;
4699
4700         if (advice == POSIX_FADV_SEQUENTIAL) {
4701                 if (S_ISFIFO(inode->i_mode))
4702                         return -ESPIPE;
4703
4704                 mapping = filp->f_mapping;
4705                 if (!mapping || len < 0)
4706                         return -EINVAL;
4707
4708                 bdi = inode_to_bdi(mapping->host);
4709                 filp->f_ra.ra_pages = bdi->ra_pages *
4710                         F2FS_I_SB(inode)->seq_file_ra_mul;
4711                 spin_lock(&filp->f_lock);
4712                 filp->f_mode &= ~FMODE_RANDOM;
4713                 spin_unlock(&filp->f_lock);
4714                 return 0;
4715         }
4716
4717         err = generic_fadvise(filp, offset, len, advice);
4718         if (!err && advice == POSIX_FADV_DONTNEED &&
4719                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4720                 f2fs_compressed_file(inode))
4721                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4722
4723         return err;
4724 }
4725
4726 #ifdef CONFIG_COMPAT
4727 struct compat_f2fs_gc_range {
4728         u32 sync;
4729         compat_u64 start;
4730         compat_u64 len;
4731 };
4732 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4733                                                 struct compat_f2fs_gc_range)
4734
4735 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4736 {
4737         struct compat_f2fs_gc_range __user *urange;
4738         struct f2fs_gc_range range;
4739         int err;
4740
4741         urange = compat_ptr(arg);
4742         err = get_user(range.sync, &urange->sync);
4743         err |= get_user(range.start, &urange->start);
4744         err |= get_user(range.len, &urange->len);
4745         if (err)
4746                 return -EFAULT;
4747
4748         return __f2fs_ioc_gc_range(file, &range);
4749 }
4750
4751 struct compat_f2fs_move_range {
4752         u32 dst_fd;
4753         compat_u64 pos_in;
4754         compat_u64 pos_out;
4755         compat_u64 len;
4756 };
4757 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4758                                         struct compat_f2fs_move_range)
4759
4760 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4761 {
4762         struct compat_f2fs_move_range __user *urange;
4763         struct f2fs_move_range range;
4764         int err;
4765
4766         urange = compat_ptr(arg);
4767         err = get_user(range.dst_fd, &urange->dst_fd);
4768         err |= get_user(range.pos_in, &urange->pos_in);
4769         err |= get_user(range.pos_out, &urange->pos_out);
4770         err |= get_user(range.len, &urange->len);
4771         if (err)
4772                 return -EFAULT;
4773
4774         return __f2fs_ioc_move_range(file, &range);
4775 }
4776
4777 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4778 {
4779         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4780                 return -EIO;
4781         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4782                 return -ENOSPC;
4783
4784         switch (cmd) {
4785         case FS_IOC32_GETVERSION:
4786                 cmd = FS_IOC_GETVERSION;
4787                 break;
4788         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4789                 return f2fs_compat_ioc_gc_range(file, arg);
4790         case F2FS_IOC32_MOVE_RANGE:
4791                 return f2fs_compat_ioc_move_range(file, arg);
4792         case F2FS_IOC_START_ATOMIC_WRITE:
4793         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4794         case F2FS_IOC_START_VOLATILE_WRITE:
4795         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4796         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4797         case F2FS_IOC_SHUTDOWN:
4798         case FITRIM:
4799         case FS_IOC_SET_ENCRYPTION_POLICY:
4800         case FS_IOC_GET_ENCRYPTION_PWSALT:
4801         case FS_IOC_GET_ENCRYPTION_POLICY:
4802         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4803         case FS_IOC_ADD_ENCRYPTION_KEY:
4804         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4805         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4806         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4807         case FS_IOC_GET_ENCRYPTION_NONCE:
4808         case F2FS_IOC_GARBAGE_COLLECT:
4809         case F2FS_IOC_WRITE_CHECKPOINT:
4810         case F2FS_IOC_DEFRAGMENT:
4811         case F2FS_IOC_FLUSH_DEVICE:
4812         case F2FS_IOC_GET_FEATURES:
4813         case F2FS_IOC_GET_PIN_FILE:
4814         case F2FS_IOC_SET_PIN_FILE:
4815         case F2FS_IOC_PRECACHE_EXTENTS:
4816         case F2FS_IOC_RESIZE_FS:
4817         case FS_IOC_ENABLE_VERITY:
4818         case FS_IOC_MEASURE_VERITY:
4819         case FS_IOC_READ_VERITY_METADATA:
4820         case FS_IOC_GETFSLABEL:
4821         case FS_IOC_SETFSLABEL:
4822         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4823         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4824         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4825         case F2FS_IOC_SEC_TRIM_FILE:
4826         case F2FS_IOC_GET_COMPRESS_OPTION:
4827         case F2FS_IOC_SET_COMPRESS_OPTION:
4828         case F2FS_IOC_DECOMPRESS_FILE:
4829         case F2FS_IOC_COMPRESS_FILE:
4830                 break;
4831         default:
4832                 return -ENOIOCTLCMD;
4833         }
4834         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4835 }
4836 #endif
4837
4838 const struct file_operations f2fs_file_operations = {
4839         .llseek         = f2fs_llseek,
4840         .read_iter      = f2fs_file_read_iter,
4841         .write_iter     = f2fs_file_write_iter,
4842         .open           = f2fs_file_open,
4843         .release        = f2fs_release_file,
4844         .mmap           = f2fs_file_mmap,
4845         .flush          = f2fs_file_flush,
4846         .fsync          = f2fs_sync_file,
4847         .fallocate      = f2fs_fallocate,
4848         .unlocked_ioctl = f2fs_ioctl,
4849 #ifdef CONFIG_COMPAT
4850         .compat_ioctl   = f2fs_compat_ioctl,
4851 #endif
4852         .splice_read    = generic_file_splice_read,
4853         .splice_write   = iter_file_splice_write,
4854         .fadvise        = f2fs_file_fadvise,
4855 };