Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-block.git] / fs / f2fs / extent_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs extent cache support
4  *
5  * Copyright (c) 2015 Motorola Mobility
6  * Copyright (c) 2015 Samsung Electronics
7  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8  *          Chao Yu <chao2.yu@samsung.com>
9  *
10  * block_age-based extent cache added by:
11  * Copyright (c) 2022 xiaomi Co., Ltd.
12  *             http://www.xiaomi.com/
13  */
14
15 #include <linux/fs.h>
16 #include <linux/f2fs_fs.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include <trace/events/f2fs.h>
21
22 static void __set_extent_info(struct extent_info *ei,
23                                 unsigned int fofs, unsigned int len,
24                                 block_t blk, bool keep_clen,
25                                 unsigned long age, unsigned long last_blocks,
26                                 enum extent_type type)
27 {
28         ei->fofs = fofs;
29         ei->len = len;
30
31         if (type == EX_READ) {
32                 ei->blk = blk;
33                 if (keep_clen)
34                         return;
35 #ifdef CONFIG_F2FS_FS_COMPRESSION
36                 ei->c_len = 0;
37 #endif
38         } else if (type == EX_BLOCK_AGE) {
39                 ei->age = age;
40                 ei->last_blocks = last_blocks;
41         }
42 }
43
44 static bool __may_read_extent_tree(struct inode *inode)
45 {
46         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
47
48         if (!test_opt(sbi, READ_EXTENT_CACHE))
49                 return false;
50         if (is_inode_flag_set(inode, FI_NO_EXTENT))
51                 return false;
52         if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
53                          !f2fs_sb_has_readonly(sbi))
54                 return false;
55         return S_ISREG(inode->i_mode);
56 }
57
58 static bool __may_age_extent_tree(struct inode *inode)
59 {
60         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
61
62         if (!test_opt(sbi, AGE_EXTENT_CACHE))
63                 return false;
64         /* don't cache block age info for cold file */
65         if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
66                 return false;
67         if (file_is_cold(inode))
68                 return false;
69
70         return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
71 }
72
73 static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
74 {
75         if (type == EX_READ)
76                 return __may_read_extent_tree(inode);
77         else if (type == EX_BLOCK_AGE)
78                 return __may_age_extent_tree(inode);
79         return false;
80 }
81
82 static bool __may_extent_tree(struct inode *inode, enum extent_type type)
83 {
84         /*
85          * for recovered files during mount do not create extents
86          * if shrinker is not registered.
87          */
88         if (list_empty(&F2FS_I_SB(inode)->s_list))
89                 return false;
90
91         return __init_may_extent_tree(inode, type);
92 }
93
94 static void __try_update_largest_extent(struct extent_tree *et,
95                                                 struct extent_node *en)
96 {
97         if (et->type != EX_READ)
98                 return;
99         if (en->ei.len <= et->largest.len)
100                 return;
101
102         et->largest = en->ei;
103         et->largest_updated = true;
104 }
105
106 static bool __is_extent_mergeable(struct extent_info *back,
107                 struct extent_info *front, enum extent_type type)
108 {
109         if (type == EX_READ) {
110 #ifdef CONFIG_F2FS_FS_COMPRESSION
111                 if (back->c_len && back->len != back->c_len)
112                         return false;
113                 if (front->c_len && front->len != front->c_len)
114                         return false;
115 #endif
116                 return (back->fofs + back->len == front->fofs &&
117                                 back->blk + back->len == front->blk);
118         } else if (type == EX_BLOCK_AGE) {
119                 return (back->fofs + back->len == front->fofs &&
120                         abs(back->age - front->age) <= SAME_AGE_REGION &&
121                         abs(back->last_blocks - front->last_blocks) <=
122                                                         SAME_AGE_REGION);
123         }
124         return false;
125 }
126
127 static bool __is_back_mergeable(struct extent_info *cur,
128                 struct extent_info *back, enum extent_type type)
129 {
130         return __is_extent_mergeable(back, cur, type);
131 }
132
133 static bool __is_front_mergeable(struct extent_info *cur,
134                 struct extent_info *front, enum extent_type type)
135 {
136         return __is_extent_mergeable(cur, front, type);
137 }
138
139 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
140                                                         unsigned int ofs)
141 {
142         if (cached_re) {
143                 if (cached_re->ofs <= ofs &&
144                                 cached_re->ofs + cached_re->len > ofs) {
145                         return cached_re;
146                 }
147         }
148         return NULL;
149 }
150
151 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
152                                                         unsigned int ofs)
153 {
154         struct rb_node *node = root->rb_root.rb_node;
155         struct rb_entry *re;
156
157         while (node) {
158                 re = rb_entry(node, struct rb_entry, rb_node);
159
160                 if (ofs < re->ofs)
161                         node = node->rb_left;
162                 else if (ofs >= re->ofs + re->len)
163                         node = node->rb_right;
164                 else
165                         return re;
166         }
167         return NULL;
168 }
169
170 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
171                                 struct rb_entry *cached_re, unsigned int ofs)
172 {
173         struct rb_entry *re;
174
175         re = __lookup_rb_tree_fast(cached_re, ofs);
176         if (!re)
177                 return __lookup_rb_tree_slow(root, ofs);
178
179         return re;
180 }
181
182 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
183                                         struct rb_root_cached *root,
184                                         struct rb_node **parent,
185                                         unsigned long long key, bool *leftmost)
186 {
187         struct rb_node **p = &root->rb_root.rb_node;
188         struct rb_entry *re;
189
190         while (*p) {
191                 *parent = *p;
192                 re = rb_entry(*parent, struct rb_entry, rb_node);
193
194                 if (key < re->key) {
195                         p = &(*p)->rb_left;
196                 } else {
197                         p = &(*p)->rb_right;
198                         *leftmost = false;
199                 }
200         }
201
202         return p;
203 }
204
205 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
206                                 struct rb_root_cached *root,
207                                 struct rb_node **parent,
208                                 unsigned int ofs, bool *leftmost)
209 {
210         struct rb_node **p = &root->rb_root.rb_node;
211         struct rb_entry *re;
212
213         while (*p) {
214                 *parent = *p;
215                 re = rb_entry(*parent, struct rb_entry, rb_node);
216
217                 if (ofs < re->ofs) {
218                         p = &(*p)->rb_left;
219                 } else if (ofs >= re->ofs + re->len) {
220                         p = &(*p)->rb_right;
221                         *leftmost = false;
222                 } else {
223                         f2fs_bug_on(sbi, 1);
224                 }
225         }
226
227         return p;
228 }
229
230 /*
231  * lookup rb entry in position of @ofs in rb-tree,
232  * if hit, return the entry, otherwise, return NULL
233  * @prev_ex: extent before ofs
234  * @next_ex: extent after ofs
235  * @insert_p: insert point for new extent at ofs
236  * in order to simpfy the insertion after.
237  * tree must stay unchanged between lookup and insertion.
238  */
239 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
240                                 struct rb_entry *cached_re,
241                                 unsigned int ofs,
242                                 struct rb_entry **prev_entry,
243                                 struct rb_entry **next_entry,
244                                 struct rb_node ***insert_p,
245                                 struct rb_node **insert_parent,
246                                 bool force, bool *leftmost)
247 {
248         struct rb_node **pnode = &root->rb_root.rb_node;
249         struct rb_node *parent = NULL, *tmp_node;
250         struct rb_entry *re = cached_re;
251
252         *insert_p = NULL;
253         *insert_parent = NULL;
254         *prev_entry = NULL;
255         *next_entry = NULL;
256
257         if (RB_EMPTY_ROOT(&root->rb_root))
258                 return NULL;
259
260         if (re) {
261                 if (re->ofs <= ofs && re->ofs + re->len > ofs)
262                         goto lookup_neighbors;
263         }
264
265         if (leftmost)
266                 *leftmost = true;
267
268         while (*pnode) {
269                 parent = *pnode;
270                 re = rb_entry(*pnode, struct rb_entry, rb_node);
271
272                 if (ofs < re->ofs) {
273                         pnode = &(*pnode)->rb_left;
274                 } else if (ofs >= re->ofs + re->len) {
275                         pnode = &(*pnode)->rb_right;
276                         if (leftmost)
277                                 *leftmost = false;
278                 } else {
279                         goto lookup_neighbors;
280                 }
281         }
282
283         *insert_p = pnode;
284         *insert_parent = parent;
285
286         re = rb_entry(parent, struct rb_entry, rb_node);
287         tmp_node = parent;
288         if (parent && ofs > re->ofs)
289                 tmp_node = rb_next(parent);
290         *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
291
292         tmp_node = parent;
293         if (parent && ofs < re->ofs)
294                 tmp_node = rb_prev(parent);
295         *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
296         return NULL;
297
298 lookup_neighbors:
299         if (ofs == re->ofs || force) {
300                 /* lookup prev node for merging backward later */
301                 tmp_node = rb_prev(&re->rb_node);
302                 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
303         }
304         if (ofs == re->ofs + re->len - 1 || force) {
305                 /* lookup next node for merging frontward later */
306                 tmp_node = rb_next(&re->rb_node);
307                 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
308         }
309         return re;
310 }
311
312 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
313                                 struct rb_root_cached *root, bool check_key)
314 {
315 #ifdef CONFIG_F2FS_CHECK_FS
316         struct rb_node *cur = rb_first_cached(root), *next;
317         struct rb_entry *cur_re, *next_re;
318
319         if (!cur)
320                 return true;
321
322         while (cur) {
323                 next = rb_next(cur);
324                 if (!next)
325                         return true;
326
327                 cur_re = rb_entry(cur, struct rb_entry, rb_node);
328                 next_re = rb_entry(next, struct rb_entry, rb_node);
329
330                 if (check_key) {
331                         if (cur_re->key > next_re->key) {
332                                 f2fs_info(sbi, "inconsistent rbtree, "
333                                         "cur(%llu) next(%llu)",
334                                         cur_re->key, next_re->key);
335                                 return false;
336                         }
337                         goto next;
338                 }
339
340                 if (cur_re->ofs + cur_re->len > next_re->ofs) {
341                         f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
342                                   cur_re->ofs, cur_re->len,
343                                   next_re->ofs, next_re->len);
344                         return false;
345                 }
346 next:
347                 cur = next;
348         }
349 #endif
350         return true;
351 }
352
353 static struct kmem_cache *extent_tree_slab;
354 static struct kmem_cache *extent_node_slab;
355
356 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
357                                 struct extent_tree *et, struct extent_info *ei,
358                                 struct rb_node *parent, struct rb_node **p,
359                                 bool leftmost)
360 {
361         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
362         struct extent_node *en;
363
364         en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
365         if (!en)
366                 return NULL;
367
368         en->ei = *ei;
369         INIT_LIST_HEAD(&en->list);
370         en->et = et;
371
372         rb_link_node(&en->rb_node, parent, p);
373         rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
374         atomic_inc(&et->node_cnt);
375         atomic_inc(&eti->total_ext_node);
376         return en;
377 }
378
379 static void __detach_extent_node(struct f2fs_sb_info *sbi,
380                                 struct extent_tree *et, struct extent_node *en)
381 {
382         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
383
384         rb_erase_cached(&en->rb_node, &et->root);
385         atomic_dec(&et->node_cnt);
386         atomic_dec(&eti->total_ext_node);
387
388         if (et->cached_en == en)
389                 et->cached_en = NULL;
390         kmem_cache_free(extent_node_slab, en);
391 }
392
393 /*
394  * Flow to release an extent_node:
395  * 1. list_del_init
396  * 2. __detach_extent_node
397  * 3. kmem_cache_free.
398  */
399 static void __release_extent_node(struct f2fs_sb_info *sbi,
400                         struct extent_tree *et, struct extent_node *en)
401 {
402         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
403
404         spin_lock(&eti->extent_lock);
405         f2fs_bug_on(sbi, list_empty(&en->list));
406         list_del_init(&en->list);
407         spin_unlock(&eti->extent_lock);
408
409         __detach_extent_node(sbi, et, en);
410 }
411
412 static struct extent_tree *__grab_extent_tree(struct inode *inode,
413                                                 enum extent_type type)
414 {
415         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
416         struct extent_tree_info *eti = &sbi->extent_tree[type];
417         struct extent_tree *et;
418         nid_t ino = inode->i_ino;
419
420         mutex_lock(&eti->extent_tree_lock);
421         et = radix_tree_lookup(&eti->extent_tree_root, ino);
422         if (!et) {
423                 et = f2fs_kmem_cache_alloc(extent_tree_slab,
424                                         GFP_NOFS, true, NULL);
425                 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
426                 memset(et, 0, sizeof(struct extent_tree));
427                 et->ino = ino;
428                 et->type = type;
429                 et->root = RB_ROOT_CACHED;
430                 et->cached_en = NULL;
431                 rwlock_init(&et->lock);
432                 INIT_LIST_HEAD(&et->list);
433                 atomic_set(&et->node_cnt, 0);
434                 atomic_inc(&eti->total_ext_tree);
435         } else {
436                 atomic_dec(&eti->total_zombie_tree);
437                 list_del_init(&et->list);
438         }
439         mutex_unlock(&eti->extent_tree_lock);
440
441         /* never died until evict_inode */
442         F2FS_I(inode)->extent_tree[type] = et;
443
444         return et;
445 }
446
447 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
448                                         struct extent_tree *et)
449 {
450         struct rb_node *node, *next;
451         struct extent_node *en;
452         unsigned int count = atomic_read(&et->node_cnt);
453
454         node = rb_first_cached(&et->root);
455         while (node) {
456                 next = rb_next(node);
457                 en = rb_entry(node, struct extent_node, rb_node);
458                 __release_extent_node(sbi, et, en);
459                 node = next;
460         }
461
462         return count - atomic_read(&et->node_cnt);
463 }
464
465 static void __drop_largest_extent(struct extent_tree *et,
466                                         pgoff_t fofs, unsigned int len)
467 {
468         if (fofs < et->largest.fofs + et->largest.len &&
469                         fofs + len > et->largest.fofs) {
470                 et->largest.len = 0;
471                 et->largest_updated = true;
472         }
473 }
474
475 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
476 {
477         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
478         struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
479         struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
480         struct extent_tree *et;
481         struct extent_node *en;
482         struct extent_info ei;
483
484         if (!__may_extent_tree(inode, EX_READ)) {
485                 /* drop largest read extent */
486                 if (i_ext && i_ext->len) {
487                         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
488                         i_ext->len = 0;
489                         set_page_dirty(ipage);
490                 }
491                 goto out;
492         }
493
494         et = __grab_extent_tree(inode, EX_READ);
495
496         if (!i_ext || !i_ext->len)
497                 goto out;
498
499         get_read_extent_info(&ei, i_ext);
500
501         write_lock(&et->lock);
502         if (atomic_read(&et->node_cnt))
503                 goto unlock_out;
504
505         en = __attach_extent_node(sbi, et, &ei, NULL,
506                                 &et->root.rb_root.rb_node, true);
507         if (en) {
508                 et->largest = en->ei;
509                 et->cached_en = en;
510
511                 spin_lock(&eti->extent_lock);
512                 list_add_tail(&en->list, &eti->extent_list);
513                 spin_unlock(&eti->extent_lock);
514         }
515 unlock_out:
516         write_unlock(&et->lock);
517 out:
518         if (!F2FS_I(inode)->extent_tree[EX_READ])
519                 set_inode_flag(inode, FI_NO_EXTENT);
520 }
521
522 void f2fs_init_age_extent_tree(struct inode *inode)
523 {
524         if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
525                 return;
526         __grab_extent_tree(inode, EX_BLOCK_AGE);
527 }
528
529 void f2fs_init_extent_tree(struct inode *inode)
530 {
531         /* initialize read cache */
532         if (__init_may_extent_tree(inode, EX_READ))
533                 __grab_extent_tree(inode, EX_READ);
534
535         /* initialize block age cache */
536         if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
537                 __grab_extent_tree(inode, EX_BLOCK_AGE);
538 }
539
540 static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
541                         struct extent_info *ei, enum extent_type type)
542 {
543         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
544         struct extent_tree_info *eti = &sbi->extent_tree[type];
545         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
546         struct extent_node *en;
547         bool ret = false;
548
549         if (!et)
550                 return false;
551
552         trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
553
554         read_lock(&et->lock);
555
556         if (type == EX_READ &&
557                         et->largest.fofs <= pgofs &&
558                         et->largest.fofs + et->largest.len > pgofs) {
559                 *ei = et->largest;
560                 ret = true;
561                 stat_inc_largest_node_hit(sbi);
562                 goto out;
563         }
564
565         en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
566                                 (struct rb_entry *)et->cached_en, pgofs);
567         if (!en)
568                 goto out;
569
570         if (en == et->cached_en)
571                 stat_inc_cached_node_hit(sbi, type);
572         else
573                 stat_inc_rbtree_node_hit(sbi, type);
574
575         *ei = en->ei;
576         spin_lock(&eti->extent_lock);
577         if (!list_empty(&en->list)) {
578                 list_move_tail(&en->list, &eti->extent_list);
579                 et->cached_en = en;
580         }
581         spin_unlock(&eti->extent_lock);
582         ret = true;
583 out:
584         stat_inc_total_hit(sbi, type);
585         read_unlock(&et->lock);
586
587         if (type == EX_READ)
588                 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
589         else if (type == EX_BLOCK_AGE)
590                 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
591         return ret;
592 }
593
594 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
595                                 struct extent_tree *et, struct extent_info *ei,
596                                 struct extent_node *prev_ex,
597                                 struct extent_node *next_ex)
598 {
599         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
600         struct extent_node *en = NULL;
601
602         if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
603                 prev_ex->ei.len += ei->len;
604                 ei = &prev_ex->ei;
605                 en = prev_ex;
606         }
607
608         if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
609                 next_ex->ei.fofs = ei->fofs;
610                 next_ex->ei.len += ei->len;
611                 if (et->type == EX_READ)
612                         next_ex->ei.blk = ei->blk;
613                 if (en)
614                         __release_extent_node(sbi, et, prev_ex);
615
616                 en = next_ex;
617         }
618
619         if (!en)
620                 return NULL;
621
622         __try_update_largest_extent(et, en);
623
624         spin_lock(&eti->extent_lock);
625         if (!list_empty(&en->list)) {
626                 list_move_tail(&en->list, &eti->extent_list);
627                 et->cached_en = en;
628         }
629         spin_unlock(&eti->extent_lock);
630         return en;
631 }
632
633 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
634                                 struct extent_tree *et, struct extent_info *ei,
635                                 struct rb_node **insert_p,
636                                 struct rb_node *insert_parent,
637                                 bool leftmost)
638 {
639         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
640         struct rb_node **p;
641         struct rb_node *parent = NULL;
642         struct extent_node *en = NULL;
643
644         if (insert_p && insert_parent) {
645                 parent = insert_parent;
646                 p = insert_p;
647                 goto do_insert;
648         }
649
650         leftmost = true;
651
652         p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
653                                                 ei->fofs, &leftmost);
654 do_insert:
655         en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
656         if (!en)
657                 return NULL;
658
659         __try_update_largest_extent(et, en);
660
661         /* update in global extent list */
662         spin_lock(&eti->extent_lock);
663         list_add_tail(&en->list, &eti->extent_list);
664         et->cached_en = en;
665         spin_unlock(&eti->extent_lock);
666         return en;
667 }
668
669 static void __update_extent_tree_range(struct inode *inode,
670                         struct extent_info *tei, enum extent_type type)
671 {
672         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
674         struct extent_node *en = NULL, *en1 = NULL;
675         struct extent_node *prev_en = NULL, *next_en = NULL;
676         struct extent_info ei, dei, prev;
677         struct rb_node **insert_p = NULL, *insert_parent = NULL;
678         unsigned int fofs = tei->fofs, len = tei->len;
679         unsigned int end = fofs + len;
680         bool updated = false;
681         bool leftmost = false;
682
683         if (!et)
684                 return;
685
686         if (type == EX_READ)
687                 trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
688                                                 tei->blk, 0);
689         else if (type == EX_BLOCK_AGE)
690                 trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
691                                                 tei->age, tei->last_blocks);
692
693         write_lock(&et->lock);
694
695         if (type == EX_READ) {
696                 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
697                         write_unlock(&et->lock);
698                         return;
699                 }
700
701                 prev = et->largest;
702                 dei.len = 0;
703
704                 /*
705                  * drop largest extent before lookup, in case it's already
706                  * been shrunk from extent tree
707                  */
708                 __drop_largest_extent(et, fofs, len);
709         }
710
711         /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
712         en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
713                                         (struct rb_entry *)et->cached_en, fofs,
714                                         (struct rb_entry **)&prev_en,
715                                         (struct rb_entry **)&next_en,
716                                         &insert_p, &insert_parent, false,
717                                         &leftmost);
718         if (!en)
719                 en = next_en;
720
721         /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
722         while (en && en->ei.fofs < end) {
723                 unsigned int org_end;
724                 int parts = 0;  /* # of parts current extent split into */
725
726                 next_en = en1 = NULL;
727
728                 dei = en->ei;
729                 org_end = dei.fofs + dei.len;
730                 f2fs_bug_on(sbi, fofs >= org_end);
731
732                 if (fofs > dei.fofs && (type != EX_READ ||
733                                 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
734                         en->ei.len = fofs - en->ei.fofs;
735                         prev_en = en;
736                         parts = 1;
737                 }
738
739                 if (end < org_end && (type != EX_READ ||
740                                 org_end - end >= F2FS_MIN_EXTENT_LEN)) {
741                         if (parts) {
742                                 __set_extent_info(&ei,
743                                         end, org_end - end,
744                                         end - dei.fofs + dei.blk, false,
745                                         dei.age, dei.last_blocks,
746                                         type);
747                                 en1 = __insert_extent_tree(sbi, et, &ei,
748                                                         NULL, NULL, true);
749                                 next_en = en1;
750                         } else {
751                                 __set_extent_info(&en->ei,
752                                         end, en->ei.len - (end - dei.fofs),
753                                         en->ei.blk + (end - dei.fofs), true,
754                                         dei.age, dei.last_blocks,
755                                         type);
756                                 next_en = en;
757                         }
758                         parts++;
759                 }
760
761                 if (!next_en) {
762                         struct rb_node *node = rb_next(&en->rb_node);
763
764                         next_en = rb_entry_safe(node, struct extent_node,
765                                                 rb_node);
766                 }
767
768                 if (parts)
769                         __try_update_largest_extent(et, en);
770                 else
771                         __release_extent_node(sbi, et, en);
772
773                 /*
774                  * if original extent is split into zero or two parts, extent
775                  * tree has been altered by deletion or insertion, therefore
776                  * invalidate pointers regard to tree.
777                  */
778                 if (parts != 1) {
779                         insert_p = NULL;
780                         insert_parent = NULL;
781                 }
782                 en = next_en;
783         }
784
785         if (type == EX_BLOCK_AGE)
786                 goto update_age_extent_cache;
787
788         /* 3. update extent in read extent cache */
789         BUG_ON(type != EX_READ);
790
791         if (tei->blk) {
792                 __set_extent_info(&ei, fofs, len, tei->blk, false,
793                                   0, 0, EX_READ);
794                 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
795                         __insert_extent_tree(sbi, et, &ei,
796                                         insert_p, insert_parent, leftmost);
797
798                 /* give up extent_cache, if split and small updates happen */
799                 if (dei.len >= 1 &&
800                                 prev.len < F2FS_MIN_EXTENT_LEN &&
801                                 et->largest.len < F2FS_MIN_EXTENT_LEN) {
802                         et->largest.len = 0;
803                         et->largest_updated = true;
804                         set_inode_flag(inode, FI_NO_EXTENT);
805                 }
806         }
807
808         if (is_inode_flag_set(inode, FI_NO_EXTENT))
809                 __free_extent_tree(sbi, et);
810
811         if (et->largest_updated) {
812                 et->largest_updated = false;
813                 updated = true;
814         }
815         goto out_read_extent_cache;
816 update_age_extent_cache:
817         if (!tei->last_blocks)
818                 goto out_read_extent_cache;
819
820         __set_extent_info(&ei, fofs, len, 0, false,
821                         tei->age, tei->last_blocks, EX_BLOCK_AGE);
822         if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
823                 __insert_extent_tree(sbi, et, &ei,
824                                         insert_p, insert_parent, leftmost);
825 out_read_extent_cache:
826         write_unlock(&et->lock);
827
828         if (updated)
829                 f2fs_mark_inode_dirty_sync(inode, true);
830 }
831
832 #ifdef CONFIG_F2FS_FS_COMPRESSION
833 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
834                                 pgoff_t fofs, block_t blkaddr, unsigned int llen,
835                                 unsigned int c_len)
836 {
837         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838         struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
839         struct extent_node *en = NULL;
840         struct extent_node *prev_en = NULL, *next_en = NULL;
841         struct extent_info ei;
842         struct rb_node **insert_p = NULL, *insert_parent = NULL;
843         bool leftmost = false;
844
845         trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
846                                                 blkaddr, c_len);
847
848         /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
849         if (is_inode_flag_set(inode, FI_NO_EXTENT))
850                 return;
851
852         write_lock(&et->lock);
853
854         en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
855                                 (struct rb_entry *)et->cached_en, fofs,
856                                 (struct rb_entry **)&prev_en,
857                                 (struct rb_entry **)&next_en,
858                                 &insert_p, &insert_parent, false,
859                                 &leftmost);
860         if (en)
861                 goto unlock_out;
862
863         __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
864         ei.c_len = c_len;
865
866         if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
867                 __insert_extent_tree(sbi, et, &ei,
868                                 insert_p, insert_parent, leftmost);
869 unlock_out:
870         write_unlock(&et->lock);
871 }
872 #endif
873
874 static unsigned long long __calculate_block_age(unsigned long long new,
875                                                 unsigned long long old)
876 {
877         unsigned long long diff;
878
879         diff = (new >= old) ? new - (new - old) : new + (old - new);
880
881         return div_u64(diff * LAST_AGE_WEIGHT, 100);
882 }
883
884 /* This returns a new age and allocated blocks in ei */
885 static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
886                                                 block_t blkaddr)
887 {
888         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
889         loff_t f_size = i_size_read(inode);
890         unsigned long long cur_blocks =
891                                 atomic64_read(&sbi->allocated_data_blocks);
892         struct extent_info tei = *ei;   /* only fofs and len are valid */
893
894         /*
895          * When I/O is not aligned to a PAGE_SIZE, update will happen to the last
896          * file block even in seq write. So don't record age for newly last file
897          * block here.
898          */
899         if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
900                         blkaddr == NEW_ADDR)
901                 return -EINVAL;
902
903         if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
904                 unsigned long long cur_age;
905
906                 if (cur_blocks >= tei.last_blocks)
907                         cur_age = cur_blocks - tei.last_blocks;
908                 else
909                         /* allocated_data_blocks overflow */
910                         cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
911
912                 if (tei.age)
913                         ei->age = __calculate_block_age(cur_age, tei.age);
914                 else
915                         ei->age = cur_age;
916                 ei->last_blocks = cur_blocks;
917                 WARN_ON(ei->age > cur_blocks);
918                 return 0;
919         }
920
921         f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
922
923         /* the data block was allocated for the first time */
924         if (blkaddr == NEW_ADDR)
925                 goto out;
926
927         if (__is_valid_data_blkaddr(blkaddr) &&
928             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
929                 f2fs_bug_on(sbi, 1);
930                 return -EINVAL;
931         }
932 out:
933         /*
934          * init block age with zero, this can happen when the block age extent
935          * was reclaimed due to memory constraint or system reboot
936          */
937         ei->age = 0;
938         ei->last_blocks = cur_blocks;
939         return 0;
940 }
941
942 static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
943 {
944         struct extent_info ei = {};
945
946         if (!__may_extent_tree(dn->inode, type))
947                 return;
948
949         ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
950                                                                 dn->ofs_in_node;
951         ei.len = 1;
952
953         if (type == EX_READ) {
954                 if (dn->data_blkaddr == NEW_ADDR)
955                         ei.blk = NULL_ADDR;
956                 else
957                         ei.blk = dn->data_blkaddr;
958         } else if (type == EX_BLOCK_AGE) {
959                 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
960                         return;
961         }
962         __update_extent_tree_range(dn->inode, &ei, type);
963 }
964
965 static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
966                                         enum extent_type type)
967 {
968         struct extent_tree_info *eti = &sbi->extent_tree[type];
969         struct extent_tree *et, *next;
970         struct extent_node *en;
971         unsigned int node_cnt = 0, tree_cnt = 0;
972         int remained;
973
974         if (!atomic_read(&eti->total_zombie_tree))
975                 goto free_node;
976
977         if (!mutex_trylock(&eti->extent_tree_lock))
978                 goto out;
979
980         /* 1. remove unreferenced extent tree */
981         list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
982                 if (atomic_read(&et->node_cnt)) {
983                         write_lock(&et->lock);
984                         node_cnt += __free_extent_tree(sbi, et);
985                         write_unlock(&et->lock);
986                 }
987                 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
988                 list_del_init(&et->list);
989                 radix_tree_delete(&eti->extent_tree_root, et->ino);
990                 kmem_cache_free(extent_tree_slab, et);
991                 atomic_dec(&eti->total_ext_tree);
992                 atomic_dec(&eti->total_zombie_tree);
993                 tree_cnt++;
994
995                 if (node_cnt + tree_cnt >= nr_shrink)
996                         goto unlock_out;
997                 cond_resched();
998         }
999         mutex_unlock(&eti->extent_tree_lock);
1000
1001 free_node:
1002         /* 2. remove LRU extent entries */
1003         if (!mutex_trylock(&eti->extent_tree_lock))
1004                 goto out;
1005
1006         remained = nr_shrink - (node_cnt + tree_cnt);
1007
1008         spin_lock(&eti->extent_lock);
1009         for (; remained > 0; remained--) {
1010                 if (list_empty(&eti->extent_list))
1011                         break;
1012                 en = list_first_entry(&eti->extent_list,
1013                                         struct extent_node, list);
1014                 et = en->et;
1015                 if (!write_trylock(&et->lock)) {
1016                         /* refresh this extent node's position in extent list */
1017                         list_move_tail(&en->list, &eti->extent_list);
1018                         continue;
1019                 }
1020
1021                 list_del_init(&en->list);
1022                 spin_unlock(&eti->extent_lock);
1023
1024                 __detach_extent_node(sbi, et, en);
1025
1026                 write_unlock(&et->lock);
1027                 node_cnt++;
1028                 spin_lock(&eti->extent_lock);
1029         }
1030         spin_unlock(&eti->extent_lock);
1031
1032 unlock_out:
1033         mutex_unlock(&eti->extent_tree_lock);
1034 out:
1035         trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
1036
1037         return node_cnt + tree_cnt;
1038 }
1039
1040 /* read extent cache operations */
1041 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
1042                                 struct extent_info *ei)
1043 {
1044         if (!__may_extent_tree(inode, EX_READ))
1045                 return false;
1046
1047         return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
1048 }
1049
1050 void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
1051 {
1052         return __update_extent_cache(dn, EX_READ);
1053 }
1054
1055 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
1056                                 pgoff_t fofs, block_t blkaddr, unsigned int len)
1057 {
1058         struct extent_info ei = {
1059                 .fofs = fofs,
1060                 .len = len,
1061                 .blk = blkaddr,
1062         };
1063
1064         if (!__may_extent_tree(dn->inode, EX_READ))
1065                 return;
1066
1067         __update_extent_tree_range(dn->inode, &ei, EX_READ);
1068 }
1069
1070 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1071 {
1072         if (!test_opt(sbi, READ_EXTENT_CACHE))
1073                 return 0;
1074
1075         return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
1076 }
1077
1078 /* block age extent cache operations */
1079 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
1080                                 struct extent_info *ei)
1081 {
1082         if (!__may_extent_tree(inode, EX_BLOCK_AGE))
1083                 return false;
1084
1085         return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
1086 }
1087
1088 void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
1089 {
1090         return __update_extent_cache(dn, EX_BLOCK_AGE);
1091 }
1092
1093 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
1094                                 pgoff_t fofs, unsigned int len)
1095 {
1096         struct extent_info ei = {
1097                 .fofs = fofs,
1098                 .len = len,
1099         };
1100
1101         if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
1102                 return;
1103
1104         __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
1105 }
1106
1107 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1108 {
1109         if (!test_opt(sbi, AGE_EXTENT_CACHE))
1110                 return 0;
1111
1112         return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
1113 }
1114
1115 static unsigned int __destroy_extent_node(struct inode *inode,
1116                                         enum extent_type type)
1117 {
1118         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1120         unsigned int node_cnt = 0;
1121
1122         if (!et || !atomic_read(&et->node_cnt))
1123                 return 0;
1124
1125         write_lock(&et->lock);
1126         node_cnt = __free_extent_tree(sbi, et);
1127         write_unlock(&et->lock);
1128
1129         return node_cnt;
1130 }
1131
1132 void f2fs_destroy_extent_node(struct inode *inode)
1133 {
1134         __destroy_extent_node(inode, EX_READ);
1135         __destroy_extent_node(inode, EX_BLOCK_AGE);
1136 }
1137
1138 static void __drop_extent_tree(struct inode *inode, enum extent_type type)
1139 {
1140         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1142         bool updated = false;
1143
1144         if (!__may_extent_tree(inode, type))
1145                 return;
1146
1147         write_lock(&et->lock);
1148         __free_extent_tree(sbi, et);
1149         if (type == EX_READ) {
1150                 set_inode_flag(inode, FI_NO_EXTENT);
1151                 if (et->largest.len) {
1152                         et->largest.len = 0;
1153                         updated = true;
1154                 }
1155         }
1156         write_unlock(&et->lock);
1157         if (updated)
1158                 f2fs_mark_inode_dirty_sync(inode, true);
1159 }
1160
1161 void f2fs_drop_extent_tree(struct inode *inode)
1162 {
1163         __drop_extent_tree(inode, EX_READ);
1164         __drop_extent_tree(inode, EX_BLOCK_AGE);
1165 }
1166
1167 static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
1168 {
1169         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1170         struct extent_tree_info *eti = &sbi->extent_tree[type];
1171         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1172         unsigned int node_cnt = 0;
1173
1174         if (!et)
1175                 return;
1176
1177         if (inode->i_nlink && !is_bad_inode(inode) &&
1178                                         atomic_read(&et->node_cnt)) {
1179                 mutex_lock(&eti->extent_tree_lock);
1180                 list_add_tail(&et->list, &eti->zombie_list);
1181                 atomic_inc(&eti->total_zombie_tree);
1182                 mutex_unlock(&eti->extent_tree_lock);
1183                 return;
1184         }
1185
1186         /* free all extent info belong to this extent tree */
1187         node_cnt = __destroy_extent_node(inode, type);
1188
1189         /* delete extent tree entry in radix tree */
1190         mutex_lock(&eti->extent_tree_lock);
1191         f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1192         radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
1193         kmem_cache_free(extent_tree_slab, et);
1194         atomic_dec(&eti->total_ext_tree);
1195         mutex_unlock(&eti->extent_tree_lock);
1196
1197         F2FS_I(inode)->extent_tree[type] = NULL;
1198
1199         trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
1200 }
1201
1202 void f2fs_destroy_extent_tree(struct inode *inode)
1203 {
1204         __destroy_extent_tree(inode, EX_READ);
1205         __destroy_extent_tree(inode, EX_BLOCK_AGE);
1206 }
1207
1208 static void __init_extent_tree_info(struct extent_tree_info *eti)
1209 {
1210         INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
1211         mutex_init(&eti->extent_tree_lock);
1212         INIT_LIST_HEAD(&eti->extent_list);
1213         spin_lock_init(&eti->extent_lock);
1214         atomic_set(&eti->total_ext_tree, 0);
1215         INIT_LIST_HEAD(&eti->zombie_list);
1216         atomic_set(&eti->total_zombie_tree, 0);
1217         atomic_set(&eti->total_ext_node, 0);
1218 }
1219
1220 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
1221 {
1222         __init_extent_tree_info(&sbi->extent_tree[EX_READ]);
1223         __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
1224
1225         /* initialize for block age extents */
1226         atomic64_set(&sbi->allocated_data_blocks, 0);
1227         sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
1228         sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
1229 }
1230
1231 int __init f2fs_create_extent_cache(void)
1232 {
1233         extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1234                         sizeof(struct extent_tree));
1235         if (!extent_tree_slab)
1236                 return -ENOMEM;
1237         extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1238                         sizeof(struct extent_node));
1239         if (!extent_node_slab) {
1240                 kmem_cache_destroy(extent_tree_slab);
1241                 return -ENOMEM;
1242         }
1243         return 0;
1244 }
1245
1246 void f2fs_destroy_extent_cache(void)
1247 {
1248         kmem_cache_destroy(extent_node_slab);
1249         kmem_cache_destroy(extent_tree_slab);
1250 }