Merge tag 'Smack-for-5.9' of git://github.com/cschaufler/smack-next
[linux-block.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54                                                 unsigned int nr_iovecs)
55 {
56         return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58
59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61         if (noio) {
62                 /* No failure on bio allocation */
63                 return __f2fs_bio_alloc(GFP_NOIO, npages);
64         }
65
66         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67                 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68                 return NULL;
69         }
70
71         return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73
74 static bool __is_cp_guaranteed(struct page *page)
75 {
76         struct address_space *mapping = page->mapping;
77         struct inode *inode;
78         struct f2fs_sb_info *sbi;
79
80         if (!mapping)
81                 return false;
82
83         if (f2fs_is_compressed_page(page))
84                 return false;
85
86         inode = mapping->host;
87         sbi = F2FS_I_SB(inode);
88
89         if (inode->i_ino == F2FS_META_INO(sbi) ||
90                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
91                         S_ISDIR(inode->i_mode) ||
92                         (S_ISREG(inode->i_mode) &&
93                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94                         is_cold_data(page))
95                 return true;
96         return false;
97 }
98
99 static enum count_type __read_io_type(struct page *page)
100 {
101         struct address_space *mapping = page_file_mapping(page);
102
103         if (mapping) {
104                 struct inode *inode = mapping->host;
105                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106
107                 if (inode->i_ino == F2FS_META_INO(sbi))
108                         return F2FS_RD_META;
109
110                 if (inode->i_ino == F2FS_NODE_INO(sbi))
111                         return F2FS_RD_NODE;
112         }
113         return F2FS_RD_DATA;
114 }
115
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118         STEP_DECRYPT,
119         STEP_DECOMPRESS_NOWQ,           /* handle normal cluster data inplace */
120         STEP_DECOMPRESS,                /* handle compressed cluster data in workqueue */
121         STEP_VERITY,
122 };
123
124 struct bio_post_read_ctx {
125         struct bio *bio;
126         struct f2fs_sb_info *sbi;
127         struct work_struct work;
128         unsigned int enabled_steps;
129 };
130
131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133         struct page *page;
134         struct bio_vec *bv;
135         struct bvec_iter_all iter_all;
136
137         bio_for_each_segment_all(bv, bio, iter_all) {
138                 page = bv->bv_page;
139
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141                 if (compr && f2fs_is_compressed_page(page)) {
142                         f2fs_decompress_pages(bio, page, verity);
143                         continue;
144                 }
145                 if (verity)
146                         continue;
147 #endif
148
149                 /* PG_error was set if any post_read step failed */
150                 if (bio->bi_status || PageError(page)) {
151                         ClearPageUptodate(page);
152                         /* will re-read again later */
153                         ClearPageError(page);
154                 } else {
155                         SetPageUptodate(page);
156                 }
157                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158                 unlock_page(page);
159         }
160 }
161
162 static void f2fs_release_read_bio(struct bio *bio);
163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165         if (!compr)
166                 __read_end_io(bio, false, verity);
167         f2fs_release_read_bio(bio);
168 }
169
170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172         __read_end_io(bio, true, verity);
173 }
174
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176
177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179         fscrypt_decrypt_bio(ctx->bio);
180 }
181
182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184         f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190         f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192
193 static void f2fs_verify_bio(struct bio *bio)
194 {
195         struct bio_vec *bv;
196         struct bvec_iter_all iter_all;
197
198         bio_for_each_segment_all(bv, bio, iter_all) {
199                 struct page *page = bv->bv_page;
200                 struct decompress_io_ctx *dic;
201
202                 dic = (struct decompress_io_ctx *)page_private(page);
203
204                 if (dic) {
205                         if (refcount_dec_not_one(&dic->ref))
206                                 continue;
207                         f2fs_verify_pages(dic->rpages,
208                                                 dic->cluster_size);
209                         f2fs_free_dic(dic);
210                         continue;
211                 }
212
213                 if (bio->bi_status || PageError(page))
214                         goto clear_uptodate;
215
216                 if (fsverity_verify_page(page)) {
217                         SetPageUptodate(page);
218                         goto unlock;
219                 }
220 clear_uptodate:
221                 ClearPageUptodate(page);
222                 ClearPageError(page);
223 unlock:
224                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225                 unlock_page(page);
226         }
227 }
228 #endif
229
230 static void f2fs_verity_work(struct work_struct *work)
231 {
232         struct bio_post_read_ctx *ctx =
233                 container_of(work, struct bio_post_read_ctx, work);
234         struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236         unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238
239         /*
240          * fsverity_verify_bio() may call readpages() again, and while verity
241          * will be disabled for this, decryption may still be needed, resulting
242          * in another bio_post_read_ctx being allocated.  So to prevent
243          * deadlocks we need to release the current ctx to the mempool first.
244          * This assumes that verity is the last post-read step.
245          */
246         mempool_free(ctx, bio_post_read_ctx_pool);
247         bio->bi_private = NULL;
248
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250         /* previous step is decompression */
251         if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252                 f2fs_verify_bio(bio);
253                 f2fs_release_read_bio(bio);
254                 return;
255         }
256 #endif
257
258         fsverity_verify_bio(bio);
259         __f2fs_read_end_io(bio, false, false);
260 }
261
262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264         struct bio_post_read_ctx *ctx =
265                 container_of(work, struct bio_post_read_ctx, work);
266
267         if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268                 f2fs_decrypt_work(ctx);
269
270         if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271                 f2fs_decompress_work(ctx);
272
273         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274                 INIT_WORK(&ctx->work, f2fs_verity_work);
275                 fsverity_enqueue_verify_work(&ctx->work);
276                 return;
277         }
278
279         __f2fs_read_end_io(ctx->bio,
280                 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282
283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284                                                 struct work_struct *work)
285 {
286         queue_work(sbi->post_read_wq, work);
287 }
288
289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291         /*
292          * We use different work queues for decryption and for verity because
293          * verity may require reading metadata pages that need decryption, and
294          * we shouldn't recurse to the same workqueue.
295          */
296
297         if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298                 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299                 INIT_WORK(&ctx->work, f2fs_post_read_work);
300                 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301                 return;
302         }
303
304         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305                 INIT_WORK(&ctx->work, f2fs_verity_work);
306                 fsverity_enqueue_verify_work(&ctx->work);
307                 return;
308         }
309
310         __f2fs_read_end_io(ctx->bio, false, false);
311 }
312
313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315         return bio->bi_private;
316 }
317
318 static void f2fs_read_end_io(struct bio *bio)
319 {
320         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321
322         if (time_to_inject(sbi, FAULT_READ_IO)) {
323                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
324                 bio->bi_status = BLK_STS_IOERR;
325         }
326
327         if (f2fs_bio_post_read_required(bio)) {
328                 struct bio_post_read_ctx *ctx = bio->bi_private;
329
330                 bio_post_read_processing(ctx);
331                 return;
332         }
333
334         __f2fs_read_end_io(bio, false, false);
335 }
336
337 static void f2fs_write_end_io(struct bio *bio)
338 {
339         struct f2fs_sb_info *sbi = bio->bi_private;
340         struct bio_vec *bvec;
341         struct bvec_iter_all iter_all;
342
343         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345                 bio->bi_status = BLK_STS_IOERR;
346         }
347
348         bio_for_each_segment_all(bvec, bio, iter_all) {
349                 struct page *page = bvec->bv_page;
350                 enum count_type type = WB_DATA_TYPE(page);
351
352                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
353                         set_page_private(page, (unsigned long)NULL);
354                         ClearPagePrivate(page);
355                         unlock_page(page);
356                         mempool_free(page, sbi->write_io_dummy);
357
358                         if (unlikely(bio->bi_status))
359                                 f2fs_stop_checkpoint(sbi, true);
360                         continue;
361                 }
362
363                 fscrypt_finalize_bounce_page(&page);
364
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366                 if (f2fs_is_compressed_page(page)) {
367                         f2fs_compress_write_end_io(bio, page);
368                         continue;
369                 }
370 #endif
371
372                 if (unlikely(bio->bi_status)) {
373                         mapping_set_error(page->mapping, -EIO);
374                         if (type == F2FS_WB_CP_DATA)
375                                 f2fs_stop_checkpoint(sbi, true);
376                 }
377
378                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379                                         page->index != nid_of_node(page));
380
381                 dec_page_count(sbi, type);
382                 if (f2fs_in_warm_node_list(sbi, page))
383                         f2fs_del_fsync_node_entry(sbi, page);
384                 clear_cold_data(page);
385                 end_page_writeback(page);
386         }
387         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388                                 wq_has_sleeper(&sbi->cp_wait))
389                 wake_up(&sbi->cp_wait);
390
391         bio_put(bio);
392 }
393
394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395                                 block_t blk_addr, struct bio *bio)
396 {
397         struct block_device *bdev = sbi->sb->s_bdev;
398         int i;
399
400         if (f2fs_is_multi_device(sbi)) {
401                 for (i = 0; i < sbi->s_ndevs; i++) {
402                         if (FDEV(i).start_blk <= blk_addr &&
403                             FDEV(i).end_blk >= blk_addr) {
404                                 blk_addr -= FDEV(i).start_blk;
405                                 bdev = FDEV(i).bdev;
406                                 break;
407                         }
408                 }
409         }
410         if (bio) {
411                 bio_set_dev(bio, bdev);
412                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413         }
414         return bdev;
415 }
416
417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419         int i;
420
421         if (!f2fs_is_multi_device(sbi))
422                 return 0;
423
424         for (i = 0; i < sbi->s_ndevs; i++)
425                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426                         return i;
427         return 0;
428 }
429
430 /*
431  * Return true, if pre_bio's bdev is same as its target device.
432  */
433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434                                 block_t blk_addr, struct bio *bio)
435 {
436         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439
440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442         struct f2fs_sb_info *sbi = fio->sbi;
443         struct bio *bio;
444
445         bio = f2fs_bio_alloc(sbi, npages, true);
446
447         f2fs_target_device(sbi, fio->new_blkaddr, bio);
448         if (is_read_io(fio->op)) {
449                 bio->bi_end_io = f2fs_read_end_io;
450                 bio->bi_private = NULL;
451         } else {
452                 bio->bi_end_io = f2fs_write_end_io;
453                 bio->bi_private = sbi;
454                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455                                                 fio->type, fio->temp);
456         }
457         if (fio->io_wbc)
458                 wbc_init_bio(fio->io_wbc, bio);
459
460         return bio;
461 }
462
463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464                                   pgoff_t first_idx,
465                                   const struct f2fs_io_info *fio,
466                                   gfp_t gfp_mask)
467 {
468         /*
469          * The f2fs garbage collector sets ->encrypted_page when it wants to
470          * read/write raw data without encryption.
471          */
472         if (!fio || !fio->encrypted_page)
473                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475
476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477                                      pgoff_t next_idx,
478                                      const struct f2fs_io_info *fio)
479 {
480         /*
481          * The f2fs garbage collector sets ->encrypted_page when it wants to
482          * read/write raw data without encryption.
483          */
484         if (fio && fio->encrypted_page)
485                 return !bio_has_crypt_ctx(bio);
486
487         return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489
490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491                                 struct bio *bio, enum page_type type)
492 {
493         if (!is_read_io(bio_op(bio))) {
494                 unsigned int start;
495
496                 if (type != DATA && type != NODE)
497                         goto submit_io;
498
499                 if (f2fs_lfs_mode(sbi) && current->plug)
500                         blk_finish_plug(current->plug);
501
502                 if (F2FS_IO_ALIGNED(sbi))
503                         goto submit_io;
504
505                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506                 start %= F2FS_IO_SIZE(sbi);
507
508                 if (start == 0)
509                         goto submit_io;
510
511                 /* fill dummy pages */
512                 for (; start < F2FS_IO_SIZE(sbi); start++) {
513                         struct page *page =
514                                 mempool_alloc(sbi->write_io_dummy,
515                                               GFP_NOIO | __GFP_NOFAIL);
516                         f2fs_bug_on(sbi, !page);
517
518                         zero_user_segment(page, 0, PAGE_SIZE);
519                         SetPagePrivate(page);
520                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
521                         lock_page(page);
522                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523                                 f2fs_bug_on(sbi, 1);
524                 }
525                 /*
526                  * In the NODE case, we lose next block address chain. So, we
527                  * need to do checkpoint in f2fs_sync_file.
528                  */
529                 if (type == NODE)
530                         set_sbi_flag(sbi, SBI_NEED_CP);
531         }
532 submit_io:
533         if (is_read_io(bio_op(bio)))
534                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535         else
536                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537         submit_bio(bio);
538 }
539
540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541                                 struct bio *bio, enum page_type type)
542 {
543         __submit_bio(sbi, bio, type);
544 }
545
546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548         struct f2fs_sb_info *sbi = fio->sbi;
549         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550         unsigned int io_flag, fua_flag, meta_flag;
551
552         if (fio->type == DATA)
553                 io_flag = sbi->data_io_flag;
554         else if (fio->type == NODE)
555                 io_flag = sbi->node_io_flag;
556         else
557                 return;
558
559         fua_flag = io_flag & temp_mask;
560         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561
562         /*
563          * data/node io flag bits per temp:
564          *      REQ_META     |      REQ_FUA      |
565          *    5 |    4 |   3 |    2 |    1 |   0 |
566          * Cold | Warm | Hot | Cold | Warm | Hot |
567          */
568         if ((1 << fio->temp) & meta_flag)
569                 fio->op_flags |= REQ_META;
570         if ((1 << fio->temp) & fua_flag)
571                 fio->op_flags |= REQ_FUA;
572 }
573
574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576         struct f2fs_io_info *fio = &io->fio;
577
578         if (!io->bio)
579                 return;
580
581         __attach_io_flag(fio);
582         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583
584         if (is_read_io(fio->op))
585                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586         else
587                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588
589         __submit_bio(io->sbi, io->bio, fio->type);
590         io->bio = NULL;
591 }
592
593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594                                                 struct page *page, nid_t ino)
595 {
596         struct bio_vec *bvec;
597         struct bvec_iter_all iter_all;
598
599         if (!bio)
600                 return false;
601
602         if (!inode && !page && !ino)
603                 return true;
604
605         bio_for_each_segment_all(bvec, bio, iter_all) {
606                 struct page *target = bvec->bv_page;
607
608                 if (fscrypt_is_bounce_page(target)) {
609                         target = fscrypt_pagecache_page(target);
610                         if (IS_ERR(target))
611                                 continue;
612                 }
613                 if (f2fs_is_compressed_page(target)) {
614                         target = f2fs_compress_control_page(target);
615                         if (IS_ERR(target))
616                                 continue;
617                 }
618
619                 if (inode && inode == target->mapping->host)
620                         return true;
621                 if (page && page == target)
622                         return true;
623                 if (ino && ino == ino_of_node(target))
624                         return true;
625         }
626
627         return false;
628 }
629
630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631                                 enum page_type type, enum temp_type temp)
632 {
633         enum page_type btype = PAGE_TYPE_OF_BIO(type);
634         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635
636         down_write(&io->io_rwsem);
637
638         /* change META to META_FLUSH in the checkpoint procedure */
639         if (type >= META_FLUSH) {
640                 io->fio.type = META_FLUSH;
641                 io->fio.op = REQ_OP_WRITE;
642                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643                 if (!test_opt(sbi, NOBARRIER))
644                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645         }
646         __submit_merged_bio(io);
647         up_write(&io->io_rwsem);
648 }
649
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651                                 struct inode *inode, struct page *page,
652                                 nid_t ino, enum page_type type, bool force)
653 {
654         enum temp_type temp;
655         bool ret = true;
656
657         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658                 if (!force)     {
659                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
660                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662                         down_read(&io->io_rwsem);
663                         ret = __has_merged_page(io->bio, inode, page, ino);
664                         up_read(&io->io_rwsem);
665                 }
666                 if (ret)
667                         __f2fs_submit_merged_write(sbi, type, temp);
668
669                 /* TODO: use HOT temp only for meta pages now. */
670                 if (type >= META)
671                         break;
672         }
673 }
674
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681                                 struct inode *inode, struct page *page,
682                                 nid_t ino, enum page_type type)
683 {
684         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689         f2fs_submit_merged_write(sbi, DATA);
690         f2fs_submit_merged_write(sbi, NODE);
691         f2fs_submit_merged_write(sbi, META);
692 }
693
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700         struct bio *bio;
701         struct page *page = fio->encrypted_page ?
702                         fio->encrypted_page : fio->page;
703
704         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
706                         META_GENERIC : DATA_GENERIC_ENHANCE)))
707                 return -EFSCORRUPTED;
708
709         trace_f2fs_submit_page_bio(page, fio);
710         f2fs_trace_ios(fio, 0);
711
712         /* Allocate a new bio */
713         bio = __bio_alloc(fio, 1);
714
715         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716                                fio->page->index, fio, GFP_NOIO);
717
718         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719                 bio_put(bio);
720                 return -EFAULT;
721         }
722
723         if (fio->io_wbc && !is_read_io(fio->op))
724                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
725
726         __attach_io_flag(fio);
727         bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729         inc_page_count(fio->sbi, is_read_io(fio->op) ?
730                         __read_io_type(page): WB_DATA_TYPE(fio->page));
731
732         __submit_bio(fio->sbi, bio, fio->type);
733         return 0;
734 }
735
736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737                                 block_t last_blkaddr, block_t cur_blkaddr)
738 {
739         if (last_blkaddr + 1 != cur_blkaddr)
740                 return false;
741         return __same_bdev(sbi, cur_blkaddr, bio);
742 }
743
744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745                                                 struct f2fs_io_info *fio)
746 {
747         if (io->fio.op != fio->op)
748                 return false;
749         return io->fio.op_flags == fio->op_flags;
750 }
751
752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753                                         struct f2fs_bio_info *io,
754                                         struct f2fs_io_info *fio,
755                                         block_t last_blkaddr,
756                                         block_t cur_blkaddr)
757 {
758         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759                 unsigned int filled_blocks =
760                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761                 unsigned int io_size = F2FS_IO_SIZE(sbi);
762                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763
764                 /* IOs in bio is aligned and left space of vectors is not enough */
765                 if (!(filled_blocks % io_size) && left_vecs < io_size)
766                         return false;
767         }
768         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769                 return false;
770         return io_type_is_mergeable(io, fio);
771 }
772
773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774                                 struct page *page, enum temp_type temp)
775 {
776         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777         struct bio_entry *be;
778
779         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780         be->bio = bio;
781         bio_get(bio);
782
783         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784                 f2fs_bug_on(sbi, 1);
785
786         down_write(&io->bio_list_lock);
787         list_add_tail(&be->list, &io->bio_list);
788         up_write(&io->bio_list_lock);
789 }
790
791 static void del_bio_entry(struct bio_entry *be)
792 {
793         list_del(&be->list);
794         kmem_cache_free(bio_entry_slab, be);
795 }
796
797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798                                                         struct page *page)
799 {
800         struct f2fs_sb_info *sbi = fio->sbi;
801         enum temp_type temp;
802         bool found = false;
803         int ret = -EAGAIN;
804
805         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807                 struct list_head *head = &io->bio_list;
808                 struct bio_entry *be;
809
810                 down_write(&io->bio_list_lock);
811                 list_for_each_entry(be, head, list) {
812                         if (be->bio != *bio)
813                                 continue;
814
815                         found = true;
816
817                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818                                                             *fio->last_block,
819                                                             fio->new_blkaddr));
820                         if (f2fs_crypt_mergeable_bio(*bio,
821                                         fio->page->mapping->host,
822                                         fio->page->index, fio) &&
823                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824                                         PAGE_SIZE) {
825                                 ret = 0;
826                                 break;
827                         }
828
829                         /* page can't be merged into bio; submit the bio */
830                         del_bio_entry(be);
831                         __submit_bio(sbi, *bio, DATA);
832                         break;
833                 }
834                 up_write(&io->bio_list_lock);
835         }
836
837         if (ret) {
838                 bio_put(*bio);
839                 *bio = NULL;
840         }
841
842         return ret;
843 }
844
845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846                                         struct bio **bio, struct page *page)
847 {
848         enum temp_type temp;
849         bool found = false;
850         struct bio *target = bio ? *bio : NULL;
851
852         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
853                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
854                 struct list_head *head = &io->bio_list;
855                 struct bio_entry *be;
856
857                 if (list_empty(head))
858                         continue;
859
860                 down_read(&io->bio_list_lock);
861                 list_for_each_entry(be, head, list) {
862                         if (target)
863                                 found = (target == be->bio);
864                         else
865                                 found = __has_merged_page(be->bio, NULL,
866                                                                 page, 0);
867                         if (found)
868                                 break;
869                 }
870                 up_read(&io->bio_list_lock);
871
872                 if (!found)
873                         continue;
874
875                 found = false;
876
877                 down_write(&io->bio_list_lock);
878                 list_for_each_entry(be, head, list) {
879                         if (target)
880                                 found = (target == be->bio);
881                         else
882                                 found = __has_merged_page(be->bio, NULL,
883                                                                 page, 0);
884                         if (found) {
885                                 target = be->bio;
886                                 del_bio_entry(be);
887                                 break;
888                         }
889                 }
890                 up_write(&io->bio_list_lock);
891         }
892
893         if (found)
894                 __submit_bio(sbi, target, DATA);
895         if (bio && *bio) {
896                 bio_put(*bio);
897                 *bio = NULL;
898         }
899 }
900
901 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
902 {
903         struct bio *bio = *fio->bio;
904         struct page *page = fio->encrypted_page ?
905                         fio->encrypted_page : fio->page;
906
907         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
908                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
909                 return -EFSCORRUPTED;
910
911         trace_f2fs_submit_page_bio(page, fio);
912         f2fs_trace_ios(fio, 0);
913
914         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
915                                                 fio->new_blkaddr))
916                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
917 alloc_new:
918         if (!bio) {
919                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
920                 __attach_io_flag(fio);
921                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
922                                        fio->page->index, fio, GFP_NOIO);
923                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
924
925                 add_bio_entry(fio->sbi, bio, page, fio->temp);
926         } else {
927                 if (add_ipu_page(fio, &bio, page))
928                         goto alloc_new;
929         }
930
931         if (fio->io_wbc)
932                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
933
934         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
935
936         *fio->last_block = fio->new_blkaddr;
937         *fio->bio = bio;
938
939         return 0;
940 }
941
942 void f2fs_submit_page_write(struct f2fs_io_info *fio)
943 {
944         struct f2fs_sb_info *sbi = fio->sbi;
945         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
946         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
947         struct page *bio_page;
948
949         f2fs_bug_on(sbi, is_read_io(fio->op));
950
951         down_write(&io->io_rwsem);
952 next:
953         if (fio->in_list) {
954                 spin_lock(&io->io_lock);
955                 if (list_empty(&io->io_list)) {
956                         spin_unlock(&io->io_lock);
957                         goto out;
958                 }
959                 fio = list_first_entry(&io->io_list,
960                                                 struct f2fs_io_info, list);
961                 list_del(&fio->list);
962                 spin_unlock(&io->io_lock);
963         }
964
965         verify_fio_blkaddr(fio);
966
967         if (fio->encrypted_page)
968                 bio_page = fio->encrypted_page;
969         else if (fio->compressed_page)
970                 bio_page = fio->compressed_page;
971         else
972                 bio_page = fio->page;
973
974         /* set submitted = true as a return value */
975         fio->submitted = true;
976
977         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
978
979         if (io->bio &&
980             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
981                               fio->new_blkaddr) ||
982              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
983                                        bio_page->index, fio)))
984                 __submit_merged_bio(io);
985 alloc_new:
986         if (io->bio == NULL) {
987                 if (F2FS_IO_ALIGNED(sbi) &&
988                                 (fio->type == DATA || fio->type == NODE) &&
989                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
990                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
991                         fio->retry = true;
992                         goto skip;
993                 }
994                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
995                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
996                                        bio_page->index, fio, GFP_NOIO);
997                 io->fio = *fio;
998         }
999
1000         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1001                 __submit_merged_bio(io);
1002                 goto alloc_new;
1003         }
1004
1005         if (fio->io_wbc)
1006                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1007
1008         io->last_block_in_bio = fio->new_blkaddr;
1009         f2fs_trace_ios(fio, 0);
1010
1011         trace_f2fs_submit_page_write(fio->page, fio);
1012 skip:
1013         if (fio->in_list)
1014                 goto next;
1015 out:
1016         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1017                                 !f2fs_is_checkpoint_ready(sbi))
1018                 __submit_merged_bio(io);
1019         up_write(&io->io_rwsem);
1020 }
1021
1022 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1023 {
1024         return fsverity_active(inode) &&
1025                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1026 }
1027
1028 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1029                                       unsigned nr_pages, unsigned op_flag,
1030                                       pgoff_t first_idx, bool for_write)
1031 {
1032         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1033         struct bio *bio;
1034         struct bio_post_read_ctx *ctx;
1035         unsigned int post_read_steps = 0;
1036
1037         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1038                                                                 for_write);
1039         if (!bio)
1040                 return ERR_PTR(-ENOMEM);
1041
1042         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1043
1044         f2fs_target_device(sbi, blkaddr, bio);
1045         bio->bi_end_io = f2fs_read_end_io;
1046         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1047
1048         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1049                 post_read_steps |= 1 << STEP_DECRYPT;
1050         if (f2fs_compressed_file(inode))
1051                 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1052         if (f2fs_need_verity(inode, first_idx))
1053                 post_read_steps |= 1 << STEP_VERITY;
1054
1055         if (post_read_steps) {
1056                 /* Due to the mempool, this never fails. */
1057                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1058                 ctx->bio = bio;
1059                 ctx->sbi = sbi;
1060                 ctx->enabled_steps = post_read_steps;
1061                 bio->bi_private = ctx;
1062         }
1063
1064         return bio;
1065 }
1066
1067 static void f2fs_release_read_bio(struct bio *bio)
1068 {
1069         if (bio->bi_private)
1070                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1071         bio_put(bio);
1072 }
1073
1074 /* This can handle encryption stuffs */
1075 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1076                                                 block_t blkaddr, bool for_write)
1077 {
1078         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1079         struct bio *bio;
1080
1081         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index, for_write);
1082         if (IS_ERR(bio))
1083                 return PTR_ERR(bio);
1084
1085         /* wait for GCed page writeback via META_MAPPING */
1086         f2fs_wait_on_block_writeback(inode, blkaddr);
1087
1088         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1089                 bio_put(bio);
1090                 return -EFAULT;
1091         }
1092         ClearPageError(page);
1093         inc_page_count(sbi, F2FS_RD_DATA);
1094         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1095         __submit_bio(sbi, bio, DATA);
1096         return 0;
1097 }
1098
1099 static void __set_data_blkaddr(struct dnode_of_data *dn)
1100 {
1101         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1102         __le32 *addr_array;
1103         int base = 0;
1104
1105         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1106                 base = get_extra_isize(dn->inode);
1107
1108         /* Get physical address of data block */
1109         addr_array = blkaddr_in_node(rn);
1110         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1111 }
1112
1113 /*
1114  * Lock ordering for the change of data block address:
1115  * ->data_page
1116  *  ->node_page
1117  *    update block addresses in the node page
1118  */
1119 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1120 {
1121         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1122         __set_data_blkaddr(dn);
1123         if (set_page_dirty(dn->node_page))
1124                 dn->node_changed = true;
1125 }
1126
1127 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1128 {
1129         dn->data_blkaddr = blkaddr;
1130         f2fs_set_data_blkaddr(dn);
1131         f2fs_update_extent_cache(dn);
1132 }
1133
1134 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1135 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1136 {
1137         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1138         int err;
1139
1140         if (!count)
1141                 return 0;
1142
1143         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1144                 return -EPERM;
1145         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1146                 return err;
1147
1148         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1149                                                 dn->ofs_in_node, count);
1150
1151         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1152
1153         for (; count > 0; dn->ofs_in_node++) {
1154                 block_t blkaddr = f2fs_data_blkaddr(dn);
1155                 if (blkaddr == NULL_ADDR) {
1156                         dn->data_blkaddr = NEW_ADDR;
1157                         __set_data_blkaddr(dn);
1158                         count--;
1159                 }
1160         }
1161
1162         if (set_page_dirty(dn->node_page))
1163                 dn->node_changed = true;
1164         return 0;
1165 }
1166
1167 /* Should keep dn->ofs_in_node unchanged */
1168 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1169 {
1170         unsigned int ofs_in_node = dn->ofs_in_node;
1171         int ret;
1172
1173         ret = f2fs_reserve_new_blocks(dn, 1);
1174         dn->ofs_in_node = ofs_in_node;
1175         return ret;
1176 }
1177
1178 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1179 {
1180         bool need_put = dn->inode_page ? false : true;
1181         int err;
1182
1183         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1184         if (err)
1185                 return err;
1186
1187         if (dn->data_blkaddr == NULL_ADDR)
1188                 err = f2fs_reserve_new_block(dn);
1189         if (err || need_put)
1190                 f2fs_put_dnode(dn);
1191         return err;
1192 }
1193
1194 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1195 {
1196         struct extent_info ei  = {0,0,0};
1197         struct inode *inode = dn->inode;
1198
1199         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1200                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1201                 return 0;
1202         }
1203
1204         return f2fs_reserve_block(dn, index);
1205 }
1206
1207 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1208                                                 int op_flags, bool for_write)
1209 {
1210         struct address_space *mapping = inode->i_mapping;
1211         struct dnode_of_data dn;
1212         struct page *page;
1213         struct extent_info ei = {0,0,0};
1214         int err;
1215
1216         page = f2fs_grab_cache_page(mapping, index, for_write);
1217         if (!page)
1218                 return ERR_PTR(-ENOMEM);
1219
1220         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1221                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1222                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1223                                                 DATA_GENERIC_ENHANCE_READ)) {
1224                         err = -EFSCORRUPTED;
1225                         goto put_err;
1226                 }
1227                 goto got_it;
1228         }
1229
1230         set_new_dnode(&dn, inode, NULL, NULL, 0);
1231         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1232         if (err)
1233                 goto put_err;
1234         f2fs_put_dnode(&dn);
1235
1236         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1237                 err = -ENOENT;
1238                 goto put_err;
1239         }
1240         if (dn.data_blkaddr != NEW_ADDR &&
1241                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1242                                                 dn.data_blkaddr,
1243                                                 DATA_GENERIC_ENHANCE)) {
1244                 err = -EFSCORRUPTED;
1245                 goto put_err;
1246         }
1247 got_it:
1248         if (PageUptodate(page)) {
1249                 unlock_page(page);
1250                 return page;
1251         }
1252
1253         /*
1254          * A new dentry page is allocated but not able to be written, since its
1255          * new inode page couldn't be allocated due to -ENOSPC.
1256          * In such the case, its blkaddr can be remained as NEW_ADDR.
1257          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1258          * f2fs_init_inode_metadata.
1259          */
1260         if (dn.data_blkaddr == NEW_ADDR) {
1261                 zero_user_segment(page, 0, PAGE_SIZE);
1262                 if (!PageUptodate(page))
1263                         SetPageUptodate(page);
1264                 unlock_page(page);
1265                 return page;
1266         }
1267
1268         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, for_write);
1269         if (err)
1270                 goto put_err;
1271         return page;
1272
1273 put_err:
1274         f2fs_put_page(page, 1);
1275         return ERR_PTR(err);
1276 }
1277
1278 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1279 {
1280         struct address_space *mapping = inode->i_mapping;
1281         struct page *page;
1282
1283         page = find_get_page(mapping, index);
1284         if (page && PageUptodate(page))
1285                 return page;
1286         f2fs_put_page(page, 0);
1287
1288         page = f2fs_get_read_data_page(inode, index, 0, false);
1289         if (IS_ERR(page))
1290                 return page;
1291
1292         if (PageUptodate(page))
1293                 return page;
1294
1295         wait_on_page_locked(page);
1296         if (unlikely(!PageUptodate(page))) {
1297                 f2fs_put_page(page, 0);
1298                 return ERR_PTR(-EIO);
1299         }
1300         return page;
1301 }
1302
1303 /*
1304  * If it tries to access a hole, return an error.
1305  * Because, the callers, functions in dir.c and GC, should be able to know
1306  * whether this page exists or not.
1307  */
1308 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1309                                                         bool for_write)
1310 {
1311         struct address_space *mapping = inode->i_mapping;
1312         struct page *page;
1313 repeat:
1314         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1315         if (IS_ERR(page))
1316                 return page;
1317
1318         /* wait for read completion */
1319         lock_page(page);
1320         if (unlikely(page->mapping != mapping)) {
1321                 f2fs_put_page(page, 1);
1322                 goto repeat;
1323         }
1324         if (unlikely(!PageUptodate(page))) {
1325                 f2fs_put_page(page, 1);
1326                 return ERR_PTR(-EIO);
1327         }
1328         return page;
1329 }
1330
1331 /*
1332  * Caller ensures that this data page is never allocated.
1333  * A new zero-filled data page is allocated in the page cache.
1334  *
1335  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1336  * f2fs_unlock_op().
1337  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1338  * ipage should be released by this function.
1339  */
1340 struct page *f2fs_get_new_data_page(struct inode *inode,
1341                 struct page *ipage, pgoff_t index, bool new_i_size)
1342 {
1343         struct address_space *mapping = inode->i_mapping;
1344         struct page *page;
1345         struct dnode_of_data dn;
1346         int err;
1347
1348         page = f2fs_grab_cache_page(mapping, index, true);
1349         if (!page) {
1350                 /*
1351                  * before exiting, we should make sure ipage will be released
1352                  * if any error occur.
1353                  */
1354                 f2fs_put_page(ipage, 1);
1355                 return ERR_PTR(-ENOMEM);
1356         }
1357
1358         set_new_dnode(&dn, inode, ipage, NULL, 0);
1359         err = f2fs_reserve_block(&dn, index);
1360         if (err) {
1361                 f2fs_put_page(page, 1);
1362                 return ERR_PTR(err);
1363         }
1364         if (!ipage)
1365                 f2fs_put_dnode(&dn);
1366
1367         if (PageUptodate(page))
1368                 goto got_it;
1369
1370         if (dn.data_blkaddr == NEW_ADDR) {
1371                 zero_user_segment(page, 0, PAGE_SIZE);
1372                 if (!PageUptodate(page))
1373                         SetPageUptodate(page);
1374         } else {
1375                 f2fs_put_page(page, 1);
1376
1377                 /* if ipage exists, blkaddr should be NEW_ADDR */
1378                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1379                 page = f2fs_get_lock_data_page(inode, index, true);
1380                 if (IS_ERR(page))
1381                         return page;
1382         }
1383 got_it:
1384         if (new_i_size && i_size_read(inode) <
1385                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1386                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1387         return page;
1388 }
1389
1390 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1391 {
1392         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1393         struct f2fs_summary sum;
1394         struct node_info ni;
1395         block_t old_blkaddr;
1396         blkcnt_t count = 1;
1397         int err;
1398
1399         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1400                 return -EPERM;
1401
1402         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1403         if (err)
1404                 return err;
1405
1406         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1407         if (dn->data_blkaddr != NULL_ADDR)
1408                 goto alloc;
1409
1410         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1411                 return err;
1412
1413 alloc:
1414         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1415         old_blkaddr = dn->data_blkaddr;
1416         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1417                                         &sum, seg_type, NULL, false);
1418         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1419                 invalidate_mapping_pages(META_MAPPING(sbi),
1420                                         old_blkaddr, old_blkaddr);
1421         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1422
1423         /*
1424          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1425          * data from unwritten block via dio_read.
1426          */
1427         return 0;
1428 }
1429
1430 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1431 {
1432         struct inode *inode = file_inode(iocb->ki_filp);
1433         struct f2fs_map_blocks map;
1434         int flag;
1435         int err = 0;
1436         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1437
1438         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1439         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1440         if (map.m_len > map.m_lblk)
1441                 map.m_len -= map.m_lblk;
1442         else
1443                 map.m_len = 0;
1444
1445         map.m_next_pgofs = NULL;
1446         map.m_next_extent = NULL;
1447         map.m_seg_type = NO_CHECK_TYPE;
1448         map.m_may_create = true;
1449
1450         if (direct_io) {
1451                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1452                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1453                                         F2FS_GET_BLOCK_PRE_AIO :
1454                                         F2FS_GET_BLOCK_PRE_DIO;
1455                 goto map_blocks;
1456         }
1457         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1458                 err = f2fs_convert_inline_inode(inode);
1459                 if (err)
1460                         return err;
1461         }
1462         if (f2fs_has_inline_data(inode))
1463                 return err;
1464
1465         flag = F2FS_GET_BLOCK_PRE_AIO;
1466
1467 map_blocks:
1468         err = f2fs_map_blocks(inode, &map, 1, flag);
1469         if (map.m_len > 0 && err == -ENOSPC) {
1470                 if (!direct_io)
1471                         set_inode_flag(inode, FI_NO_PREALLOC);
1472                 err = 0;
1473         }
1474         return err;
1475 }
1476
1477 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1478 {
1479         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1480                 if (lock)
1481                         down_read(&sbi->node_change);
1482                 else
1483                         up_read(&sbi->node_change);
1484         } else {
1485                 if (lock)
1486                         f2fs_lock_op(sbi);
1487                 else
1488                         f2fs_unlock_op(sbi);
1489         }
1490 }
1491
1492 /*
1493  * f2fs_map_blocks() tries to find or build mapping relationship which
1494  * maps continuous logical blocks to physical blocks, and return such
1495  * info via f2fs_map_blocks structure.
1496  */
1497 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1498                                                 int create, int flag)
1499 {
1500         unsigned int maxblocks = map->m_len;
1501         struct dnode_of_data dn;
1502         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1503         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1504         pgoff_t pgofs, end_offset, end;
1505         int err = 0, ofs = 1;
1506         unsigned int ofs_in_node, last_ofs_in_node;
1507         blkcnt_t prealloc;
1508         struct extent_info ei = {0,0,0};
1509         block_t blkaddr;
1510         unsigned int start_pgofs;
1511
1512         if (!maxblocks)
1513                 return 0;
1514
1515         map->m_len = 0;
1516         map->m_flags = 0;
1517
1518         /* it only supports block size == page size */
1519         pgofs = (pgoff_t)map->m_lblk;
1520         end = pgofs + maxblocks;
1521
1522         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1523                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1524                                                         map->m_may_create)
1525                         goto next_dnode;
1526
1527                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1528                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1529                 map->m_flags = F2FS_MAP_MAPPED;
1530                 if (map->m_next_extent)
1531                         *map->m_next_extent = pgofs + map->m_len;
1532
1533                 /* for hardware encryption, but to avoid potential issue in future */
1534                 if (flag == F2FS_GET_BLOCK_DIO)
1535                         f2fs_wait_on_block_writeback_range(inode,
1536                                                 map->m_pblk, map->m_len);
1537                 goto out;
1538         }
1539
1540 next_dnode:
1541         if (map->m_may_create)
1542                 __do_map_lock(sbi, flag, true);
1543
1544         /* When reading holes, we need its node page */
1545         set_new_dnode(&dn, inode, NULL, NULL, 0);
1546         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1547         if (err) {
1548                 if (flag == F2FS_GET_BLOCK_BMAP)
1549                         map->m_pblk = 0;
1550                 if (err == -ENOENT) {
1551                         err = 0;
1552                         if (map->m_next_pgofs)
1553                                 *map->m_next_pgofs =
1554                                         f2fs_get_next_page_offset(&dn, pgofs);
1555                         if (map->m_next_extent)
1556                                 *map->m_next_extent =
1557                                         f2fs_get_next_page_offset(&dn, pgofs);
1558                 }
1559                 goto unlock_out;
1560         }
1561
1562         start_pgofs = pgofs;
1563         prealloc = 0;
1564         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1565         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1566
1567 next_block:
1568         blkaddr = f2fs_data_blkaddr(&dn);
1569
1570         if (__is_valid_data_blkaddr(blkaddr) &&
1571                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1572                 err = -EFSCORRUPTED;
1573                 goto sync_out;
1574         }
1575
1576         if (__is_valid_data_blkaddr(blkaddr)) {
1577                 /* use out-place-update for driect IO under LFS mode */
1578                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1579                                                         map->m_may_create) {
1580                         err = __allocate_data_block(&dn, map->m_seg_type);
1581                         if (err)
1582                                 goto sync_out;
1583                         blkaddr = dn.data_blkaddr;
1584                         set_inode_flag(inode, FI_APPEND_WRITE);
1585                 }
1586         } else {
1587                 if (create) {
1588                         if (unlikely(f2fs_cp_error(sbi))) {
1589                                 err = -EIO;
1590                                 goto sync_out;
1591                         }
1592                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1593                                 if (blkaddr == NULL_ADDR) {
1594                                         prealloc++;
1595                                         last_ofs_in_node = dn.ofs_in_node;
1596                                 }
1597                         } else {
1598                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1599                                         flag != F2FS_GET_BLOCK_DIO);
1600                                 err = __allocate_data_block(&dn,
1601                                                         map->m_seg_type);
1602                                 if (!err)
1603                                         set_inode_flag(inode, FI_APPEND_WRITE);
1604                         }
1605                         if (err)
1606                                 goto sync_out;
1607                         map->m_flags |= F2FS_MAP_NEW;
1608                         blkaddr = dn.data_blkaddr;
1609                 } else {
1610                         if (flag == F2FS_GET_BLOCK_BMAP) {
1611                                 map->m_pblk = 0;
1612                                 goto sync_out;
1613                         }
1614                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1615                                 goto sync_out;
1616                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1617                                                 blkaddr == NULL_ADDR) {
1618                                 if (map->m_next_pgofs)
1619                                         *map->m_next_pgofs = pgofs + 1;
1620                                 goto sync_out;
1621                         }
1622                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1623                                 /* for defragment case */
1624                                 if (map->m_next_pgofs)
1625                                         *map->m_next_pgofs = pgofs + 1;
1626                                 goto sync_out;
1627                         }
1628                 }
1629         }
1630
1631         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1632                 goto skip;
1633
1634         if (map->m_len == 0) {
1635                 /* preallocated unwritten block should be mapped for fiemap. */
1636                 if (blkaddr == NEW_ADDR)
1637                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1638                 map->m_flags |= F2FS_MAP_MAPPED;
1639
1640                 map->m_pblk = blkaddr;
1641                 map->m_len = 1;
1642         } else if ((map->m_pblk != NEW_ADDR &&
1643                         blkaddr == (map->m_pblk + ofs)) ||
1644                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1645                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1646                 ofs++;
1647                 map->m_len++;
1648         } else {
1649                 goto sync_out;
1650         }
1651
1652 skip:
1653         dn.ofs_in_node++;
1654         pgofs++;
1655
1656         /* preallocate blocks in batch for one dnode page */
1657         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1658                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1659
1660                 dn.ofs_in_node = ofs_in_node;
1661                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1662                 if (err)
1663                         goto sync_out;
1664
1665                 map->m_len += dn.ofs_in_node - ofs_in_node;
1666                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1667                         err = -ENOSPC;
1668                         goto sync_out;
1669                 }
1670                 dn.ofs_in_node = end_offset;
1671         }
1672
1673         if (pgofs >= end)
1674                 goto sync_out;
1675         else if (dn.ofs_in_node < end_offset)
1676                 goto next_block;
1677
1678         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1679                 if (map->m_flags & F2FS_MAP_MAPPED) {
1680                         unsigned int ofs = start_pgofs - map->m_lblk;
1681
1682                         f2fs_update_extent_cache_range(&dn,
1683                                 start_pgofs, map->m_pblk + ofs,
1684                                 map->m_len - ofs);
1685                 }
1686         }
1687
1688         f2fs_put_dnode(&dn);
1689
1690         if (map->m_may_create) {
1691                 __do_map_lock(sbi, flag, false);
1692                 f2fs_balance_fs(sbi, dn.node_changed);
1693         }
1694         goto next_dnode;
1695
1696 sync_out:
1697
1698         /* for hardware encryption, but to avoid potential issue in future */
1699         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1700                 f2fs_wait_on_block_writeback_range(inode,
1701                                                 map->m_pblk, map->m_len);
1702
1703         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1704                 if (map->m_flags & F2FS_MAP_MAPPED) {
1705                         unsigned int ofs = start_pgofs - map->m_lblk;
1706
1707                         f2fs_update_extent_cache_range(&dn,
1708                                 start_pgofs, map->m_pblk + ofs,
1709                                 map->m_len - ofs);
1710                 }
1711                 if (map->m_next_extent)
1712                         *map->m_next_extent = pgofs + 1;
1713         }
1714         f2fs_put_dnode(&dn);
1715 unlock_out:
1716         if (map->m_may_create) {
1717                 __do_map_lock(sbi, flag, false);
1718                 f2fs_balance_fs(sbi, dn.node_changed);
1719         }
1720 out:
1721         trace_f2fs_map_blocks(inode, map, err);
1722         return err;
1723 }
1724
1725 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1726 {
1727         struct f2fs_map_blocks map;
1728         block_t last_lblk;
1729         int err;
1730
1731         if (pos + len > i_size_read(inode))
1732                 return false;
1733
1734         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1735         map.m_next_pgofs = NULL;
1736         map.m_next_extent = NULL;
1737         map.m_seg_type = NO_CHECK_TYPE;
1738         map.m_may_create = false;
1739         last_lblk = F2FS_BLK_ALIGN(pos + len);
1740
1741         while (map.m_lblk < last_lblk) {
1742                 map.m_len = last_lblk - map.m_lblk;
1743                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1744                 if (err || map.m_len == 0)
1745                         return false;
1746                 map.m_lblk += map.m_len;
1747         }
1748         return true;
1749 }
1750
1751 static int __get_data_block(struct inode *inode, sector_t iblock,
1752                         struct buffer_head *bh, int create, int flag,
1753                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1754 {
1755         struct f2fs_map_blocks map;
1756         int err;
1757
1758         map.m_lblk = iblock;
1759         map.m_len = bh->b_size >> inode->i_blkbits;
1760         map.m_next_pgofs = next_pgofs;
1761         map.m_next_extent = NULL;
1762         map.m_seg_type = seg_type;
1763         map.m_may_create = may_write;
1764
1765         err = f2fs_map_blocks(inode, &map, create, flag);
1766         if (!err) {
1767                 map_bh(bh, inode->i_sb, map.m_pblk);
1768                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1769                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1770         }
1771         return err;
1772 }
1773
1774 static int get_data_block(struct inode *inode, sector_t iblock,
1775                         struct buffer_head *bh_result, int create, int flag,
1776                         pgoff_t *next_pgofs)
1777 {
1778         return __get_data_block(inode, iblock, bh_result, create,
1779                                                         flag, next_pgofs,
1780                                                         NO_CHECK_TYPE, create);
1781 }
1782
1783 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1784                         struct buffer_head *bh_result, int create)
1785 {
1786         return __get_data_block(inode, iblock, bh_result, create,
1787                                 F2FS_GET_BLOCK_DIO, NULL,
1788                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1789                                 IS_SWAPFILE(inode) ? false : true);
1790 }
1791
1792 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1793                         struct buffer_head *bh_result, int create)
1794 {
1795         return __get_data_block(inode, iblock, bh_result, create,
1796                                 F2FS_GET_BLOCK_DIO, NULL,
1797                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1798                                 false);
1799 }
1800
1801 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1802                         struct buffer_head *bh_result, int create)
1803 {
1804         /* Block number less than F2FS MAX BLOCKS */
1805         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1806                 return -EFBIG;
1807
1808         return __get_data_block(inode, iblock, bh_result, create,
1809                                                 F2FS_GET_BLOCK_BMAP, NULL,
1810                                                 NO_CHECK_TYPE, create);
1811 }
1812
1813 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1814 {
1815         return (offset >> inode->i_blkbits);
1816 }
1817
1818 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1819 {
1820         return (blk << inode->i_blkbits);
1821 }
1822
1823 static int f2fs_xattr_fiemap(struct inode *inode,
1824                                 struct fiemap_extent_info *fieinfo)
1825 {
1826         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1827         struct page *page;
1828         struct node_info ni;
1829         __u64 phys = 0, len;
1830         __u32 flags;
1831         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1832         int err = 0;
1833
1834         if (f2fs_has_inline_xattr(inode)) {
1835                 int offset;
1836
1837                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1838                                                 inode->i_ino, false);
1839                 if (!page)
1840                         return -ENOMEM;
1841
1842                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1843                 if (err) {
1844                         f2fs_put_page(page, 1);
1845                         return err;
1846                 }
1847
1848                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1849                 offset = offsetof(struct f2fs_inode, i_addr) +
1850                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1851                                         get_inline_xattr_addrs(inode));
1852
1853                 phys += offset;
1854                 len = inline_xattr_size(inode);
1855
1856                 f2fs_put_page(page, 1);
1857
1858                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1859
1860                 if (!xnid)
1861                         flags |= FIEMAP_EXTENT_LAST;
1862
1863                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1864                 if (err || err == 1)
1865                         return err;
1866         }
1867
1868         if (xnid) {
1869                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1870                 if (!page)
1871                         return -ENOMEM;
1872
1873                 err = f2fs_get_node_info(sbi, xnid, &ni);
1874                 if (err) {
1875                         f2fs_put_page(page, 1);
1876                         return err;
1877                 }
1878
1879                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1880                 len = inode->i_sb->s_blocksize;
1881
1882                 f2fs_put_page(page, 1);
1883
1884                 flags = FIEMAP_EXTENT_LAST;
1885         }
1886
1887         if (phys)
1888                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1889
1890         return (err < 0 ? err : 0);
1891 }
1892
1893 static loff_t max_inode_blocks(struct inode *inode)
1894 {
1895         loff_t result = ADDRS_PER_INODE(inode);
1896         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1897
1898         /* two direct node blocks */
1899         result += (leaf_count * 2);
1900
1901         /* two indirect node blocks */
1902         leaf_count *= NIDS_PER_BLOCK;
1903         result += (leaf_count * 2);
1904
1905         /* one double indirect node block */
1906         leaf_count *= NIDS_PER_BLOCK;
1907         result += leaf_count;
1908
1909         return result;
1910 }
1911
1912 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1913                 u64 start, u64 len)
1914 {
1915         struct buffer_head map_bh;
1916         sector_t start_blk, last_blk;
1917         pgoff_t next_pgofs;
1918         u64 logical = 0, phys = 0, size = 0;
1919         u32 flags = 0;
1920         int ret = 0;
1921         bool compr_cluster = false;
1922         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1923
1924         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1925                 ret = f2fs_precache_extents(inode);
1926                 if (ret)
1927                         return ret;
1928         }
1929
1930         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1931         if (ret)
1932                 return ret;
1933
1934         inode_lock(inode);
1935
1936         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1937                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1938                 goto out;
1939         }
1940
1941         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1942                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1943                 if (ret != -EAGAIN)
1944                         goto out;
1945         }
1946
1947         if (logical_to_blk(inode, len) == 0)
1948                 len = blk_to_logical(inode, 1);
1949
1950         start_blk = logical_to_blk(inode, start);
1951         last_blk = logical_to_blk(inode, start + len - 1);
1952
1953 next:
1954         memset(&map_bh, 0, sizeof(struct buffer_head));
1955         map_bh.b_size = len;
1956
1957         if (compr_cluster)
1958                 map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1959
1960         ret = get_data_block(inode, start_blk, &map_bh, 0,
1961                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1962         if (ret)
1963                 goto out;
1964
1965         /* HOLE */
1966         if (!buffer_mapped(&map_bh)) {
1967                 start_blk = next_pgofs;
1968
1969                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1970                                                 max_inode_blocks(inode)))
1971                         goto prep_next;
1972
1973                 flags |= FIEMAP_EXTENT_LAST;
1974         }
1975
1976         if (size) {
1977                 if (IS_ENCRYPTED(inode))
1978                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1979
1980                 ret = fiemap_fill_next_extent(fieinfo, logical,
1981                                 phys, size, flags);
1982                 if (ret)
1983                         goto out;
1984                 size = 0;
1985         }
1986
1987         if (start_blk > last_blk)
1988                 goto out;
1989
1990         if (compr_cluster) {
1991                 compr_cluster = false;
1992
1993
1994                 logical = blk_to_logical(inode, start_blk - 1);
1995                 phys = blk_to_logical(inode, map_bh.b_blocknr);
1996                 size = blk_to_logical(inode, cluster_size);
1997
1998                 flags |= FIEMAP_EXTENT_ENCODED;
1999
2000                 start_blk += cluster_size - 1;
2001
2002                 if (start_blk > last_blk)
2003                         goto out;
2004
2005                 goto prep_next;
2006         }
2007
2008         if (map_bh.b_blocknr == COMPRESS_ADDR) {
2009                 compr_cluster = true;
2010                 start_blk++;
2011                 goto prep_next;
2012         }
2013
2014         logical = blk_to_logical(inode, start_blk);
2015         phys = blk_to_logical(inode, map_bh.b_blocknr);
2016         size = map_bh.b_size;
2017         flags = 0;
2018         if (buffer_unwritten(&map_bh))
2019                 flags = FIEMAP_EXTENT_UNWRITTEN;
2020
2021         start_blk += logical_to_blk(inode, size);
2022
2023 prep_next:
2024         cond_resched();
2025         if (fatal_signal_pending(current))
2026                 ret = -EINTR;
2027         else
2028                 goto next;
2029 out:
2030         if (ret == 1)
2031                 ret = 0;
2032
2033         inode_unlock(inode);
2034         return ret;
2035 }
2036
2037 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2038 {
2039         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2040             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2041                 return inode->i_sb->s_maxbytes;
2042
2043         return i_size_read(inode);
2044 }
2045
2046 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2047                                         unsigned nr_pages,
2048                                         struct f2fs_map_blocks *map,
2049                                         struct bio **bio_ret,
2050                                         sector_t *last_block_in_bio,
2051                                         bool is_readahead)
2052 {
2053         struct bio *bio = *bio_ret;
2054         const unsigned blkbits = inode->i_blkbits;
2055         const unsigned blocksize = 1 << blkbits;
2056         sector_t block_in_file;
2057         sector_t last_block;
2058         sector_t last_block_in_file;
2059         sector_t block_nr;
2060         int ret = 0;
2061
2062         block_in_file = (sector_t)page_index(page);
2063         last_block = block_in_file + nr_pages;
2064         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2065                                                         blkbits;
2066         if (last_block > last_block_in_file)
2067                 last_block = last_block_in_file;
2068
2069         /* just zeroing out page which is beyond EOF */
2070         if (block_in_file >= last_block)
2071                 goto zero_out;
2072         /*
2073          * Map blocks using the previous result first.
2074          */
2075         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2076                         block_in_file > map->m_lblk &&
2077                         block_in_file < (map->m_lblk + map->m_len))
2078                 goto got_it;
2079
2080         /*
2081          * Then do more f2fs_map_blocks() calls until we are
2082          * done with this page.
2083          */
2084         map->m_lblk = block_in_file;
2085         map->m_len = last_block - block_in_file;
2086
2087         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2088         if (ret)
2089                 goto out;
2090 got_it:
2091         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2092                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2093                 SetPageMappedToDisk(page);
2094
2095                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2096                                         !cleancache_get_page(page))) {
2097                         SetPageUptodate(page);
2098                         goto confused;
2099                 }
2100
2101                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2102                                                 DATA_GENERIC_ENHANCE_READ)) {
2103                         ret = -EFSCORRUPTED;
2104                         goto out;
2105                 }
2106         } else {
2107 zero_out:
2108                 zero_user_segment(page, 0, PAGE_SIZE);
2109                 if (f2fs_need_verity(inode, page->index) &&
2110                     !fsverity_verify_page(page)) {
2111                         ret = -EIO;
2112                         goto out;
2113                 }
2114                 if (!PageUptodate(page))
2115                         SetPageUptodate(page);
2116                 unlock_page(page);
2117                 goto out;
2118         }
2119
2120         /*
2121          * This page will go to BIO.  Do we need to send this
2122          * BIO off first?
2123          */
2124         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2125                                        *last_block_in_bio, block_nr) ||
2126                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2127 submit_and_realloc:
2128                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2129                 bio = NULL;
2130         }
2131         if (bio == NULL) {
2132                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2133                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2134                                 false);
2135                 if (IS_ERR(bio)) {
2136                         ret = PTR_ERR(bio);
2137                         bio = NULL;
2138                         goto out;
2139                 }
2140         }
2141
2142         /*
2143          * If the page is under writeback, we need to wait for
2144          * its completion to see the correct decrypted data.
2145          */
2146         f2fs_wait_on_block_writeback(inode, block_nr);
2147
2148         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2149                 goto submit_and_realloc;
2150
2151         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2152         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2153         ClearPageError(page);
2154         *last_block_in_bio = block_nr;
2155         goto out;
2156 confused:
2157         if (bio) {
2158                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2159                 bio = NULL;
2160         }
2161         unlock_page(page);
2162 out:
2163         *bio_ret = bio;
2164         return ret;
2165 }
2166
2167 #ifdef CONFIG_F2FS_FS_COMPRESSION
2168 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2169                                 unsigned nr_pages, sector_t *last_block_in_bio,
2170                                 bool is_readahead, bool for_write)
2171 {
2172         struct dnode_of_data dn;
2173         struct inode *inode = cc->inode;
2174         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2175         struct bio *bio = *bio_ret;
2176         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2177         sector_t last_block_in_file;
2178         const unsigned blkbits = inode->i_blkbits;
2179         const unsigned blocksize = 1 << blkbits;
2180         struct decompress_io_ctx *dic = NULL;
2181         int i;
2182         int ret = 0;
2183
2184         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2185
2186         last_block_in_file = (f2fs_readpage_limit(inode) +
2187                                         blocksize - 1) >> blkbits;
2188
2189         /* get rid of pages beyond EOF */
2190         for (i = 0; i < cc->cluster_size; i++) {
2191                 struct page *page = cc->rpages[i];
2192
2193                 if (!page)
2194                         continue;
2195                 if ((sector_t)page->index >= last_block_in_file) {
2196                         zero_user_segment(page, 0, PAGE_SIZE);
2197                         if (!PageUptodate(page))
2198                                 SetPageUptodate(page);
2199                 } else if (!PageUptodate(page)) {
2200                         continue;
2201                 }
2202                 unlock_page(page);
2203                 cc->rpages[i] = NULL;
2204                 cc->nr_rpages--;
2205         }
2206
2207         /* we are done since all pages are beyond EOF */
2208         if (f2fs_cluster_is_empty(cc))
2209                 goto out;
2210
2211         set_new_dnode(&dn, inode, NULL, NULL, 0);
2212         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2213         if (ret)
2214                 goto out;
2215
2216         /* cluster was overwritten as normal cluster */
2217         if (dn.data_blkaddr != COMPRESS_ADDR)
2218                 goto out;
2219
2220         for (i = 1; i < cc->cluster_size; i++) {
2221                 block_t blkaddr;
2222
2223                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2224                                                 dn.ofs_in_node + i);
2225
2226                 if (!__is_valid_data_blkaddr(blkaddr))
2227                         break;
2228
2229                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2230                         ret = -EFAULT;
2231                         goto out_put_dnode;
2232                 }
2233                 cc->nr_cpages++;
2234         }
2235
2236         /* nothing to decompress */
2237         if (cc->nr_cpages == 0) {
2238                 ret = 0;
2239                 goto out_put_dnode;
2240         }
2241
2242         dic = f2fs_alloc_dic(cc);
2243         if (IS_ERR(dic)) {
2244                 ret = PTR_ERR(dic);
2245                 goto out_put_dnode;
2246         }
2247
2248         for (i = 0; i < dic->nr_cpages; i++) {
2249                 struct page *page = dic->cpages[i];
2250                 block_t blkaddr;
2251                 struct bio_post_read_ctx *ctx;
2252
2253                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2254                                                 dn.ofs_in_node + i + 1);
2255
2256                 if (bio && (!page_is_mergeable(sbi, bio,
2257                                         *last_block_in_bio, blkaddr) ||
2258                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2259 submit_and_realloc:
2260                         __submit_bio(sbi, bio, DATA);
2261                         bio = NULL;
2262                 }
2263
2264                 if (!bio) {
2265                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2266                                         is_readahead ? REQ_RAHEAD : 0,
2267                                         page->index, for_write);
2268                         if (IS_ERR(bio)) {
2269                                 ret = PTR_ERR(bio);
2270                                 dic->failed = true;
2271                                 if (refcount_sub_and_test(dic->nr_cpages - i,
2272                                                         &dic->ref)) {
2273                                         f2fs_decompress_end_io(dic->rpages,
2274                                                         cc->cluster_size, true,
2275                                                         false);
2276                                         f2fs_free_dic(dic);
2277                                 }
2278                                 f2fs_put_dnode(&dn);
2279                                 *bio_ret = NULL;
2280                                 return ret;
2281                         }
2282                 }
2283
2284                 f2fs_wait_on_block_writeback(inode, blkaddr);
2285
2286                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2287                         goto submit_and_realloc;
2288
2289                 /* tag STEP_DECOMPRESS to handle IO in wq */
2290                 ctx = bio->bi_private;
2291                 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2292                         ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2293
2294                 inc_page_count(sbi, F2FS_RD_DATA);
2295                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2296                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2297                 ClearPageError(page);
2298                 *last_block_in_bio = blkaddr;
2299         }
2300
2301         f2fs_put_dnode(&dn);
2302
2303         *bio_ret = bio;
2304         return 0;
2305
2306 out_put_dnode:
2307         f2fs_put_dnode(&dn);
2308 out:
2309         f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2310         *bio_ret = bio;
2311         return ret;
2312 }
2313 #endif
2314
2315 /*
2316  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2317  * Major change was from block_size == page_size in f2fs by default.
2318  *
2319  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2320  * this function ever deviates from doing just read-ahead, it should either
2321  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2322  * from read-ahead.
2323  */
2324 static int f2fs_mpage_readpages(struct inode *inode,
2325                 struct readahead_control *rac, struct page *page)
2326 {
2327         struct bio *bio = NULL;
2328         sector_t last_block_in_bio = 0;
2329         struct f2fs_map_blocks map;
2330 #ifdef CONFIG_F2FS_FS_COMPRESSION
2331         struct compress_ctx cc = {
2332                 .inode = inode,
2333                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2334                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2335                 .cluster_idx = NULL_CLUSTER,
2336                 .rpages = NULL,
2337                 .cpages = NULL,
2338                 .nr_rpages = 0,
2339                 .nr_cpages = 0,
2340         };
2341 #endif
2342         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2343         unsigned max_nr_pages = nr_pages;
2344         int ret = 0;
2345
2346         map.m_pblk = 0;
2347         map.m_lblk = 0;
2348         map.m_len = 0;
2349         map.m_flags = 0;
2350         map.m_next_pgofs = NULL;
2351         map.m_next_extent = NULL;
2352         map.m_seg_type = NO_CHECK_TYPE;
2353         map.m_may_create = false;
2354
2355         for (; nr_pages; nr_pages--) {
2356                 if (rac) {
2357                         page = readahead_page(rac);
2358                         prefetchw(&page->flags);
2359                 }
2360
2361 #ifdef CONFIG_F2FS_FS_COMPRESSION
2362                 if (f2fs_compressed_file(inode)) {
2363                         /* there are remained comressed pages, submit them */
2364                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2365                                 ret = f2fs_read_multi_pages(&cc, &bio,
2366                                                         max_nr_pages,
2367                                                         &last_block_in_bio,
2368                                                         rac != NULL, false);
2369                                 f2fs_destroy_compress_ctx(&cc);
2370                                 if (ret)
2371                                         goto set_error_page;
2372                         }
2373                         ret = f2fs_is_compressed_cluster(inode, page->index);
2374                         if (ret < 0)
2375                                 goto set_error_page;
2376                         else if (!ret)
2377                                 goto read_single_page;
2378
2379                         ret = f2fs_init_compress_ctx(&cc);
2380                         if (ret)
2381                                 goto set_error_page;
2382
2383                         f2fs_compress_ctx_add_page(&cc, page);
2384
2385                         goto next_page;
2386                 }
2387 read_single_page:
2388 #endif
2389
2390                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2391                                         &bio, &last_block_in_bio, rac);
2392                 if (ret) {
2393 #ifdef CONFIG_F2FS_FS_COMPRESSION
2394 set_error_page:
2395 #endif
2396                         SetPageError(page);
2397                         zero_user_segment(page, 0, PAGE_SIZE);
2398                         unlock_page(page);
2399                 }
2400 #ifdef CONFIG_F2FS_FS_COMPRESSION
2401 next_page:
2402 #endif
2403                 if (rac)
2404                         put_page(page);
2405
2406 #ifdef CONFIG_F2FS_FS_COMPRESSION
2407                 if (f2fs_compressed_file(inode)) {
2408                         /* last page */
2409                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2410                                 ret = f2fs_read_multi_pages(&cc, &bio,
2411                                                         max_nr_pages,
2412                                                         &last_block_in_bio,
2413                                                         rac != NULL, false);
2414                                 f2fs_destroy_compress_ctx(&cc);
2415                         }
2416                 }
2417 #endif
2418         }
2419         if (bio)
2420                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2421         return ret;
2422 }
2423
2424 static int f2fs_read_data_page(struct file *file, struct page *page)
2425 {
2426         struct inode *inode = page_file_mapping(page)->host;
2427         int ret = -EAGAIN;
2428
2429         trace_f2fs_readpage(page, DATA);
2430
2431         if (!f2fs_is_compress_backend_ready(inode)) {
2432                 unlock_page(page);
2433                 return -EOPNOTSUPP;
2434         }
2435
2436         /* If the file has inline data, try to read it directly */
2437         if (f2fs_has_inline_data(inode))
2438                 ret = f2fs_read_inline_data(inode, page);
2439         if (ret == -EAGAIN)
2440                 ret = f2fs_mpage_readpages(inode, NULL, page);
2441         return ret;
2442 }
2443
2444 static void f2fs_readahead(struct readahead_control *rac)
2445 {
2446         struct inode *inode = rac->mapping->host;
2447
2448         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2449
2450         if (!f2fs_is_compress_backend_ready(inode))
2451                 return;
2452
2453         /* If the file has inline data, skip readpages */
2454         if (f2fs_has_inline_data(inode))
2455                 return;
2456
2457         f2fs_mpage_readpages(inode, rac, NULL);
2458 }
2459
2460 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2461 {
2462         struct inode *inode = fio->page->mapping->host;
2463         struct page *mpage, *page;
2464         gfp_t gfp_flags = GFP_NOFS;
2465
2466         if (!f2fs_encrypted_file(inode))
2467                 return 0;
2468
2469         page = fio->compressed_page ? fio->compressed_page : fio->page;
2470
2471         /* wait for GCed page writeback via META_MAPPING */
2472         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2473
2474         if (fscrypt_inode_uses_inline_crypto(inode))
2475                 return 0;
2476
2477 retry_encrypt:
2478         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2479                                         PAGE_SIZE, 0, gfp_flags);
2480         if (IS_ERR(fio->encrypted_page)) {
2481                 /* flush pending IOs and wait for a while in the ENOMEM case */
2482                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2483                         f2fs_flush_merged_writes(fio->sbi);
2484                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2485                         gfp_flags |= __GFP_NOFAIL;
2486                         goto retry_encrypt;
2487                 }
2488                 return PTR_ERR(fio->encrypted_page);
2489         }
2490
2491         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2492         if (mpage) {
2493                 if (PageUptodate(mpage))
2494                         memcpy(page_address(mpage),
2495                                 page_address(fio->encrypted_page), PAGE_SIZE);
2496                 f2fs_put_page(mpage, 1);
2497         }
2498         return 0;
2499 }
2500
2501 static inline bool check_inplace_update_policy(struct inode *inode,
2502                                 struct f2fs_io_info *fio)
2503 {
2504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2505         unsigned int policy = SM_I(sbi)->ipu_policy;
2506
2507         if (policy & (0x1 << F2FS_IPU_FORCE))
2508                 return true;
2509         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2510                 return true;
2511         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2512                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2513                 return true;
2514         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2515                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2516                 return true;
2517
2518         /*
2519          * IPU for rewrite async pages
2520          */
2521         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2522                         fio && fio->op == REQ_OP_WRITE &&
2523                         !(fio->op_flags & REQ_SYNC) &&
2524                         !IS_ENCRYPTED(inode))
2525                 return true;
2526
2527         /* this is only set during fdatasync */
2528         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2529                         is_inode_flag_set(inode, FI_NEED_IPU))
2530                 return true;
2531
2532         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2533                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2534                 return true;
2535
2536         return false;
2537 }
2538
2539 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2540 {
2541         if (f2fs_is_pinned_file(inode))
2542                 return true;
2543
2544         /* if this is cold file, we should overwrite to avoid fragmentation */
2545         if (file_is_cold(inode))
2546                 return true;
2547
2548         return check_inplace_update_policy(inode, fio);
2549 }
2550
2551 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2552 {
2553         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2554
2555         if (f2fs_lfs_mode(sbi))
2556                 return true;
2557         if (S_ISDIR(inode->i_mode))
2558                 return true;
2559         if (IS_NOQUOTA(inode))
2560                 return true;
2561         if (f2fs_is_atomic_file(inode))
2562                 return true;
2563         if (fio) {
2564                 if (is_cold_data(fio->page))
2565                         return true;
2566                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2567                         return true;
2568                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2569                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2570                         return true;
2571         }
2572         return false;
2573 }
2574
2575 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2576 {
2577         struct inode *inode = fio->page->mapping->host;
2578
2579         if (f2fs_should_update_outplace(inode, fio))
2580                 return false;
2581
2582         return f2fs_should_update_inplace(inode, fio);
2583 }
2584
2585 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2586 {
2587         struct page *page = fio->page;
2588         struct inode *inode = page->mapping->host;
2589         struct dnode_of_data dn;
2590         struct extent_info ei = {0,0,0};
2591         struct node_info ni;
2592         bool ipu_force = false;
2593         int err = 0;
2594
2595         set_new_dnode(&dn, inode, NULL, NULL, 0);
2596         if (need_inplace_update(fio) &&
2597                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2598                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2599
2600                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2601                                                 DATA_GENERIC_ENHANCE))
2602                         return -EFSCORRUPTED;
2603
2604                 ipu_force = true;
2605                 fio->need_lock = LOCK_DONE;
2606                 goto got_it;
2607         }
2608
2609         /* Deadlock due to between page->lock and f2fs_lock_op */
2610         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2611                 return -EAGAIN;
2612
2613         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2614         if (err)
2615                 goto out;
2616
2617         fio->old_blkaddr = dn.data_blkaddr;
2618
2619         /* This page is already truncated */
2620         if (fio->old_blkaddr == NULL_ADDR) {
2621                 ClearPageUptodate(page);
2622                 clear_cold_data(page);
2623                 goto out_writepage;
2624         }
2625 got_it:
2626         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2627                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2628                                                 DATA_GENERIC_ENHANCE)) {
2629                 err = -EFSCORRUPTED;
2630                 goto out_writepage;
2631         }
2632         /*
2633          * If current allocation needs SSR,
2634          * it had better in-place writes for updated data.
2635          */
2636         if (ipu_force ||
2637                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2638                                         need_inplace_update(fio))) {
2639                 err = f2fs_encrypt_one_page(fio);
2640                 if (err)
2641                         goto out_writepage;
2642
2643                 set_page_writeback(page);
2644                 ClearPageError(page);
2645                 f2fs_put_dnode(&dn);
2646                 if (fio->need_lock == LOCK_REQ)
2647                         f2fs_unlock_op(fio->sbi);
2648                 err = f2fs_inplace_write_data(fio);
2649                 if (err) {
2650                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2651                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2652                         if (PageWriteback(page))
2653                                 end_page_writeback(page);
2654                 } else {
2655                         set_inode_flag(inode, FI_UPDATE_WRITE);
2656                 }
2657                 trace_f2fs_do_write_data_page(fio->page, IPU);
2658                 return err;
2659         }
2660
2661         if (fio->need_lock == LOCK_RETRY) {
2662                 if (!f2fs_trylock_op(fio->sbi)) {
2663                         err = -EAGAIN;
2664                         goto out_writepage;
2665                 }
2666                 fio->need_lock = LOCK_REQ;
2667         }
2668
2669         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2670         if (err)
2671                 goto out_writepage;
2672
2673         fio->version = ni.version;
2674
2675         err = f2fs_encrypt_one_page(fio);
2676         if (err)
2677                 goto out_writepage;
2678
2679         set_page_writeback(page);
2680         ClearPageError(page);
2681
2682         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2683                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2684
2685         /* LFS mode write path */
2686         f2fs_outplace_write_data(&dn, fio);
2687         trace_f2fs_do_write_data_page(page, OPU);
2688         set_inode_flag(inode, FI_APPEND_WRITE);
2689         if (page->index == 0)
2690                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2691 out_writepage:
2692         f2fs_put_dnode(&dn);
2693 out:
2694         if (fio->need_lock == LOCK_REQ)
2695                 f2fs_unlock_op(fio->sbi);
2696         return err;
2697 }
2698
2699 int f2fs_write_single_data_page(struct page *page, int *submitted,
2700                                 struct bio **bio,
2701                                 sector_t *last_block,
2702                                 struct writeback_control *wbc,
2703                                 enum iostat_type io_type,
2704                                 int compr_blocks)
2705 {
2706         struct inode *inode = page->mapping->host;
2707         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2708         loff_t i_size = i_size_read(inode);
2709         const pgoff_t end_index = ((unsigned long long)i_size)
2710                                                         >> PAGE_SHIFT;
2711         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2712         unsigned offset = 0;
2713         bool need_balance_fs = false;
2714         int err = 0;
2715         struct f2fs_io_info fio = {
2716                 .sbi = sbi,
2717                 .ino = inode->i_ino,
2718                 .type = DATA,
2719                 .op = REQ_OP_WRITE,
2720                 .op_flags = wbc_to_write_flags(wbc),
2721                 .old_blkaddr = NULL_ADDR,
2722                 .page = page,
2723                 .encrypted_page = NULL,
2724                 .submitted = false,
2725                 .compr_blocks = compr_blocks,
2726                 .need_lock = LOCK_RETRY,
2727                 .io_type = io_type,
2728                 .io_wbc = wbc,
2729                 .bio = bio,
2730                 .last_block = last_block,
2731         };
2732
2733         trace_f2fs_writepage(page, DATA);
2734
2735         /* we should bypass data pages to proceed the kworkder jobs */
2736         if (unlikely(f2fs_cp_error(sbi))) {
2737                 mapping_set_error(page->mapping, -EIO);
2738                 /*
2739                  * don't drop any dirty dentry pages for keeping lastest
2740                  * directory structure.
2741                  */
2742                 if (S_ISDIR(inode->i_mode))
2743                         goto redirty_out;
2744                 goto out;
2745         }
2746
2747         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2748                 goto redirty_out;
2749
2750         if (page->index < end_index ||
2751                         f2fs_verity_in_progress(inode) ||
2752                         compr_blocks)
2753                 goto write;
2754
2755         /*
2756          * If the offset is out-of-range of file size,
2757          * this page does not have to be written to disk.
2758          */
2759         offset = i_size & (PAGE_SIZE - 1);
2760         if ((page->index >= end_index + 1) || !offset)
2761                 goto out;
2762
2763         zero_user_segment(page, offset, PAGE_SIZE);
2764 write:
2765         if (f2fs_is_drop_cache(inode))
2766                 goto out;
2767         /* we should not write 0'th page having journal header */
2768         if (f2fs_is_volatile_file(inode) && (!page->index ||
2769                         (!wbc->for_reclaim &&
2770                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2771                 goto redirty_out;
2772
2773         /* Dentry/quota blocks are controlled by checkpoint */
2774         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2775                 fio.need_lock = LOCK_DONE;
2776                 err = f2fs_do_write_data_page(&fio);
2777                 goto done;
2778         }
2779
2780         if (!wbc->for_reclaim)
2781                 need_balance_fs = true;
2782         else if (has_not_enough_free_secs(sbi, 0, 0))
2783                 goto redirty_out;
2784         else
2785                 set_inode_flag(inode, FI_HOT_DATA);
2786
2787         err = -EAGAIN;
2788         if (f2fs_has_inline_data(inode)) {
2789                 err = f2fs_write_inline_data(inode, page);
2790                 if (!err)
2791                         goto out;
2792         }
2793
2794         if (err == -EAGAIN) {
2795                 err = f2fs_do_write_data_page(&fio);
2796                 if (err == -EAGAIN) {
2797                         fio.need_lock = LOCK_REQ;
2798                         err = f2fs_do_write_data_page(&fio);
2799                 }
2800         }
2801
2802         if (err) {
2803                 file_set_keep_isize(inode);
2804         } else {
2805                 spin_lock(&F2FS_I(inode)->i_size_lock);
2806                 if (F2FS_I(inode)->last_disk_size < psize)
2807                         F2FS_I(inode)->last_disk_size = psize;
2808                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2809         }
2810
2811 done:
2812         if (err && err != -ENOENT)
2813                 goto redirty_out;
2814
2815 out:
2816         inode_dec_dirty_pages(inode);
2817         if (err) {
2818                 ClearPageUptodate(page);
2819                 clear_cold_data(page);
2820         }
2821
2822         if (wbc->for_reclaim) {
2823                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2824                 clear_inode_flag(inode, FI_HOT_DATA);
2825                 f2fs_remove_dirty_inode(inode);
2826                 submitted = NULL;
2827         }
2828         unlock_page(page);
2829         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2830                                         !F2FS_I(inode)->cp_task)
2831                 f2fs_balance_fs(sbi, need_balance_fs);
2832
2833         if (unlikely(f2fs_cp_error(sbi))) {
2834                 f2fs_submit_merged_write(sbi, DATA);
2835                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2836                 submitted = NULL;
2837         }
2838
2839         if (submitted)
2840                 *submitted = fio.submitted ? 1 : 0;
2841
2842         return 0;
2843
2844 redirty_out:
2845         redirty_page_for_writepage(wbc, page);
2846         /*
2847          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2848          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2849          * file_write_and_wait_range() will see EIO error, which is critical
2850          * to return value of fsync() followed by atomic_write failure to user.
2851          */
2852         if (!err || wbc->for_reclaim)
2853                 return AOP_WRITEPAGE_ACTIVATE;
2854         unlock_page(page);
2855         return err;
2856 }
2857
2858 static int f2fs_write_data_page(struct page *page,
2859                                         struct writeback_control *wbc)
2860 {
2861 #ifdef CONFIG_F2FS_FS_COMPRESSION
2862         struct inode *inode = page->mapping->host;
2863
2864         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2865                 goto out;
2866
2867         if (f2fs_compressed_file(inode)) {
2868                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2869                         redirty_page_for_writepage(wbc, page);
2870                         return AOP_WRITEPAGE_ACTIVATE;
2871                 }
2872         }
2873 out:
2874 #endif
2875
2876         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2877                                                 wbc, FS_DATA_IO, 0);
2878 }
2879
2880 /*
2881  * This function was copied from write_cche_pages from mm/page-writeback.c.
2882  * The major change is making write step of cold data page separately from
2883  * warm/hot data page.
2884  */
2885 static int f2fs_write_cache_pages(struct address_space *mapping,
2886                                         struct writeback_control *wbc,
2887                                         enum iostat_type io_type)
2888 {
2889         int ret = 0;
2890         int done = 0, retry = 0;
2891         struct pagevec pvec;
2892         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2893         struct bio *bio = NULL;
2894         sector_t last_block;
2895 #ifdef CONFIG_F2FS_FS_COMPRESSION
2896         struct inode *inode = mapping->host;
2897         struct compress_ctx cc = {
2898                 .inode = inode,
2899                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2900                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2901                 .cluster_idx = NULL_CLUSTER,
2902                 .rpages = NULL,
2903                 .nr_rpages = 0,
2904                 .cpages = NULL,
2905                 .rbuf = NULL,
2906                 .cbuf = NULL,
2907                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2908                 .private = NULL,
2909         };
2910 #endif
2911         int nr_pages;
2912         pgoff_t index;
2913         pgoff_t end;            /* Inclusive */
2914         pgoff_t done_index;
2915         int range_whole = 0;
2916         xa_mark_t tag;
2917         int nwritten = 0;
2918         int submitted = 0;
2919         int i;
2920
2921         pagevec_init(&pvec);
2922
2923         if (get_dirty_pages(mapping->host) <=
2924                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2925                 set_inode_flag(mapping->host, FI_HOT_DATA);
2926         else
2927                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2928
2929         if (wbc->range_cyclic) {
2930                 index = mapping->writeback_index; /* prev offset */
2931                 end = -1;
2932         } else {
2933                 index = wbc->range_start >> PAGE_SHIFT;
2934                 end = wbc->range_end >> PAGE_SHIFT;
2935                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2936                         range_whole = 1;
2937         }
2938         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2939                 tag = PAGECACHE_TAG_TOWRITE;
2940         else
2941                 tag = PAGECACHE_TAG_DIRTY;
2942 retry:
2943         retry = 0;
2944         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2945                 tag_pages_for_writeback(mapping, index, end);
2946         done_index = index;
2947         while (!done && !retry && (index <= end)) {
2948                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2949                                 tag);
2950                 if (nr_pages == 0)
2951                         break;
2952
2953                 for (i = 0; i < nr_pages; i++) {
2954                         struct page *page = pvec.pages[i];
2955                         bool need_readd;
2956 readd:
2957                         need_readd = false;
2958 #ifdef CONFIG_F2FS_FS_COMPRESSION
2959                         if (f2fs_compressed_file(inode)) {
2960                                 ret = f2fs_init_compress_ctx(&cc);
2961                                 if (ret) {
2962                                         done = 1;
2963                                         break;
2964                                 }
2965
2966                                 if (!f2fs_cluster_can_merge_page(&cc,
2967                                                                 page->index)) {
2968                                         ret = f2fs_write_multi_pages(&cc,
2969                                                 &submitted, wbc, io_type);
2970                                         if (!ret)
2971                                                 need_readd = true;
2972                                         goto result;
2973                                 }
2974
2975                                 if (unlikely(f2fs_cp_error(sbi)))
2976                                         goto lock_page;
2977
2978                                 if (f2fs_cluster_is_empty(&cc)) {
2979                                         void *fsdata = NULL;
2980                                         struct page *pagep;
2981                                         int ret2;
2982
2983                                         ret2 = f2fs_prepare_compress_overwrite(
2984                                                         inode, &pagep,
2985                                                         page->index, &fsdata);
2986                                         if (ret2 < 0) {
2987                                                 ret = ret2;
2988                                                 done = 1;
2989                                                 break;
2990                                         } else if (ret2 &&
2991                                                 !f2fs_compress_write_end(inode,
2992                                                                 fsdata, page->index,
2993                                                                 1)) {
2994                                                 retry = 1;
2995                                                 break;
2996                                         }
2997                                 } else {
2998                                         goto lock_page;
2999                                 }
3000                         }
3001 #endif
3002                         /* give a priority to WB_SYNC threads */
3003                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3004                                         wbc->sync_mode == WB_SYNC_NONE) {
3005                                 done = 1;
3006                                 break;
3007                         }
3008 #ifdef CONFIG_F2FS_FS_COMPRESSION
3009 lock_page:
3010 #endif
3011                         done_index = page->index;
3012 retry_write:
3013                         lock_page(page);
3014
3015                         if (unlikely(page->mapping != mapping)) {
3016 continue_unlock:
3017                                 unlock_page(page);
3018                                 continue;
3019                         }
3020
3021                         if (!PageDirty(page)) {
3022                                 /* someone wrote it for us */
3023                                 goto continue_unlock;
3024                         }
3025
3026                         if (PageWriteback(page)) {
3027                                 if (wbc->sync_mode != WB_SYNC_NONE)
3028                                         f2fs_wait_on_page_writeback(page,
3029                                                         DATA, true, true);
3030                                 else
3031                                         goto continue_unlock;
3032                         }
3033
3034                         if (!clear_page_dirty_for_io(page))
3035                                 goto continue_unlock;
3036
3037 #ifdef CONFIG_F2FS_FS_COMPRESSION
3038                         if (f2fs_compressed_file(inode)) {
3039                                 get_page(page);
3040                                 f2fs_compress_ctx_add_page(&cc, page);
3041                                 continue;
3042                         }
3043 #endif
3044                         ret = f2fs_write_single_data_page(page, &submitted,
3045                                         &bio, &last_block, wbc, io_type, 0);
3046                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3047                                 unlock_page(page);
3048 #ifdef CONFIG_F2FS_FS_COMPRESSION
3049 result:
3050 #endif
3051                         nwritten += submitted;
3052                         wbc->nr_to_write -= submitted;
3053
3054                         if (unlikely(ret)) {
3055                                 /*
3056                                  * keep nr_to_write, since vfs uses this to
3057                                  * get # of written pages.
3058                                  */
3059                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3060                                         ret = 0;
3061                                         goto next;
3062                                 } else if (ret == -EAGAIN) {
3063                                         ret = 0;
3064                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3065                                                 cond_resched();
3066                                                 congestion_wait(BLK_RW_ASYNC,
3067                                                         DEFAULT_IO_TIMEOUT);
3068                                                 goto retry_write;
3069                                         }
3070                                         goto next;
3071                                 }
3072                                 done_index = page->index + 1;
3073                                 done = 1;
3074                                 break;
3075                         }
3076
3077                         if (wbc->nr_to_write <= 0 &&
3078                                         wbc->sync_mode == WB_SYNC_NONE) {
3079                                 done = 1;
3080                                 break;
3081                         }
3082 next:
3083                         if (need_readd)
3084                                 goto readd;
3085                 }
3086                 pagevec_release(&pvec);
3087                 cond_resched();
3088         }
3089 #ifdef CONFIG_F2FS_FS_COMPRESSION
3090         /* flush remained pages in compress cluster */
3091         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3092                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3093                 nwritten += submitted;
3094                 wbc->nr_to_write -= submitted;
3095                 if (ret) {
3096                         done = 1;
3097                         retry = 0;
3098                 }
3099         }
3100 #endif
3101         if (retry) {
3102                 index = 0;
3103                 end = -1;
3104                 goto retry;
3105         }
3106         if (wbc->range_cyclic && !done)
3107                 done_index = 0;
3108         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3109                 mapping->writeback_index = done_index;
3110
3111         if (nwritten)
3112                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3113                                                                 NULL, 0, DATA);
3114         /* submit cached bio of IPU write */
3115         if (bio)
3116                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3117
3118         return ret;
3119 }
3120
3121 static inline bool __should_serialize_io(struct inode *inode,
3122                                         struct writeback_control *wbc)
3123 {
3124         /* to avoid deadlock in path of data flush */
3125         if (F2FS_I(inode)->cp_task)
3126                 return false;
3127
3128         if (!S_ISREG(inode->i_mode))
3129                 return false;
3130         if (IS_NOQUOTA(inode))
3131                 return false;
3132
3133         if (f2fs_compressed_file(inode))
3134                 return true;
3135         if (wbc->sync_mode != WB_SYNC_ALL)
3136                 return true;
3137         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3138                 return true;
3139         return false;
3140 }
3141
3142 static int __f2fs_write_data_pages(struct address_space *mapping,
3143                                                 struct writeback_control *wbc,
3144                                                 enum iostat_type io_type)
3145 {
3146         struct inode *inode = mapping->host;
3147         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3148         struct blk_plug plug;
3149         int ret;
3150         bool locked = false;
3151
3152         /* deal with chardevs and other special file */
3153         if (!mapping->a_ops->writepage)
3154                 return 0;
3155
3156         /* skip writing if there is no dirty page in this inode */
3157         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3158                 return 0;
3159
3160         /* during POR, we don't need to trigger writepage at all. */
3161         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3162                 goto skip_write;
3163
3164         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3165                         wbc->sync_mode == WB_SYNC_NONE &&
3166                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3167                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3168                 goto skip_write;
3169
3170         /* skip writing during file defragment */
3171         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3172                 goto skip_write;
3173
3174         trace_f2fs_writepages(mapping->host, wbc, DATA);
3175
3176         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3177         if (wbc->sync_mode == WB_SYNC_ALL)
3178                 atomic_inc(&sbi->wb_sync_req[DATA]);
3179         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3180                 goto skip_write;
3181
3182         if (__should_serialize_io(inode, wbc)) {
3183                 mutex_lock(&sbi->writepages);
3184                 locked = true;
3185         }
3186
3187         blk_start_plug(&plug);
3188         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3189         blk_finish_plug(&plug);
3190
3191         if (locked)
3192                 mutex_unlock(&sbi->writepages);
3193
3194         if (wbc->sync_mode == WB_SYNC_ALL)
3195                 atomic_dec(&sbi->wb_sync_req[DATA]);
3196         /*
3197          * if some pages were truncated, we cannot guarantee its mapping->host
3198          * to detect pending bios.
3199          */
3200
3201         f2fs_remove_dirty_inode(inode);
3202         return ret;
3203
3204 skip_write:
3205         wbc->pages_skipped += get_dirty_pages(inode);
3206         trace_f2fs_writepages(mapping->host, wbc, DATA);
3207         return 0;
3208 }
3209
3210 static int f2fs_write_data_pages(struct address_space *mapping,
3211                             struct writeback_control *wbc)
3212 {
3213         struct inode *inode = mapping->host;
3214
3215         return __f2fs_write_data_pages(mapping, wbc,
3216                         F2FS_I(inode)->cp_task == current ?
3217                         FS_CP_DATA_IO : FS_DATA_IO);
3218 }
3219
3220 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3221 {
3222         struct inode *inode = mapping->host;
3223         loff_t i_size = i_size_read(inode);
3224
3225         if (IS_NOQUOTA(inode))
3226                 return;
3227
3228         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3229         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3230                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3231                 down_write(&F2FS_I(inode)->i_mmap_sem);
3232
3233                 truncate_pagecache(inode, i_size);
3234                 f2fs_truncate_blocks(inode, i_size, true);
3235
3236                 up_write(&F2FS_I(inode)->i_mmap_sem);
3237                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3238         }
3239 }
3240
3241 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3242                         struct page *page, loff_t pos, unsigned len,
3243                         block_t *blk_addr, bool *node_changed)
3244 {
3245         struct inode *inode = page->mapping->host;
3246         pgoff_t index = page->index;
3247         struct dnode_of_data dn;
3248         struct page *ipage;
3249         bool locked = false;
3250         struct extent_info ei = {0,0,0};
3251         int err = 0;
3252         int flag;
3253
3254         /*
3255          * we already allocated all the blocks, so we don't need to get
3256          * the block addresses when there is no need to fill the page.
3257          */
3258         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3259             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3260             !f2fs_verity_in_progress(inode))
3261                 return 0;
3262
3263         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3264         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3265                 flag = F2FS_GET_BLOCK_DEFAULT;
3266         else
3267                 flag = F2FS_GET_BLOCK_PRE_AIO;
3268
3269         if (f2fs_has_inline_data(inode) ||
3270                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3271                 __do_map_lock(sbi, flag, true);
3272                 locked = true;
3273         }
3274
3275 restart:
3276         /* check inline_data */
3277         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3278         if (IS_ERR(ipage)) {
3279                 err = PTR_ERR(ipage);
3280                 goto unlock_out;
3281         }
3282
3283         set_new_dnode(&dn, inode, ipage, ipage, 0);
3284
3285         if (f2fs_has_inline_data(inode)) {
3286                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3287                         f2fs_do_read_inline_data(page, ipage);
3288                         set_inode_flag(inode, FI_DATA_EXIST);
3289                         if (inode->i_nlink)
3290                                 set_inline_node(ipage);
3291                 } else {
3292                         err = f2fs_convert_inline_page(&dn, page);
3293                         if (err)
3294                                 goto out;
3295                         if (dn.data_blkaddr == NULL_ADDR)
3296                                 err = f2fs_get_block(&dn, index);
3297                 }
3298         } else if (locked) {
3299                 err = f2fs_get_block(&dn, index);
3300         } else {
3301                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3302                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3303                 } else {
3304                         /* hole case */
3305                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3306                         if (err || dn.data_blkaddr == NULL_ADDR) {
3307                                 f2fs_put_dnode(&dn);
3308                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3309                                                                 true);
3310                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3311                                 locked = true;
3312                                 goto restart;
3313                         }
3314                 }
3315         }
3316
3317         /* convert_inline_page can make node_changed */
3318         *blk_addr = dn.data_blkaddr;
3319         *node_changed = dn.node_changed;
3320 out:
3321         f2fs_put_dnode(&dn);
3322 unlock_out:
3323         if (locked)
3324                 __do_map_lock(sbi, flag, false);
3325         return err;
3326 }
3327
3328 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3329                 loff_t pos, unsigned len, unsigned flags,
3330                 struct page **pagep, void **fsdata)
3331 {
3332         struct inode *inode = mapping->host;
3333         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3334         struct page *page = NULL;
3335         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3336         bool need_balance = false, drop_atomic = false;
3337         block_t blkaddr = NULL_ADDR;
3338         int err = 0;
3339
3340         trace_f2fs_write_begin(inode, pos, len, flags);
3341
3342         if (!f2fs_is_checkpoint_ready(sbi)) {
3343                 err = -ENOSPC;
3344                 goto fail;
3345         }
3346
3347         if ((f2fs_is_atomic_file(inode) &&
3348                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3349                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3350                 err = -ENOMEM;
3351                 drop_atomic = true;
3352                 goto fail;
3353         }
3354
3355         /*
3356          * We should check this at this moment to avoid deadlock on inode page
3357          * and #0 page. The locking rule for inline_data conversion should be:
3358          * lock_page(page #0) -> lock_page(inode_page)
3359          */
3360         if (index != 0) {
3361                 err = f2fs_convert_inline_inode(inode);
3362                 if (err)
3363                         goto fail;
3364         }
3365
3366 #ifdef CONFIG_F2FS_FS_COMPRESSION
3367         if (f2fs_compressed_file(inode)) {
3368                 int ret;
3369
3370                 *fsdata = NULL;
3371
3372                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3373                                                         index, fsdata);
3374                 if (ret < 0) {
3375                         err = ret;
3376                         goto fail;
3377                 } else if (ret) {
3378                         return 0;
3379                 }
3380         }
3381 #endif
3382
3383 repeat:
3384         /*
3385          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3386          * wait_for_stable_page. Will wait that below with our IO control.
3387          */
3388         page = f2fs_pagecache_get_page(mapping, index,
3389                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3390         if (!page) {
3391                 err = -ENOMEM;
3392                 goto fail;
3393         }
3394
3395         /* TODO: cluster can be compressed due to race with .writepage */
3396
3397         *pagep = page;
3398
3399         err = prepare_write_begin(sbi, page, pos, len,
3400                                         &blkaddr, &need_balance);
3401         if (err)
3402                 goto fail;
3403
3404         if (need_balance && !IS_NOQUOTA(inode) &&
3405                         has_not_enough_free_secs(sbi, 0, 0)) {
3406                 unlock_page(page);
3407                 f2fs_balance_fs(sbi, true);
3408                 lock_page(page);
3409                 if (page->mapping != mapping) {
3410                         /* The page got truncated from under us */
3411                         f2fs_put_page(page, 1);
3412                         goto repeat;
3413                 }
3414         }
3415
3416         f2fs_wait_on_page_writeback(page, DATA, false, true);
3417
3418         if (len == PAGE_SIZE || PageUptodate(page))
3419                 return 0;
3420
3421         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3422             !f2fs_verity_in_progress(inode)) {
3423                 zero_user_segment(page, len, PAGE_SIZE);
3424                 return 0;
3425         }
3426
3427         if (blkaddr == NEW_ADDR) {
3428                 zero_user_segment(page, 0, PAGE_SIZE);
3429                 SetPageUptodate(page);
3430         } else {
3431                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3432                                 DATA_GENERIC_ENHANCE_READ)) {
3433                         err = -EFSCORRUPTED;
3434                         goto fail;
3435                 }
3436                 err = f2fs_submit_page_read(inode, page, blkaddr, true);
3437                 if (err)
3438                         goto fail;
3439
3440                 lock_page(page);
3441                 if (unlikely(page->mapping != mapping)) {
3442                         f2fs_put_page(page, 1);
3443                         goto repeat;
3444                 }
3445                 if (unlikely(!PageUptodate(page))) {
3446                         err = -EIO;
3447                         goto fail;
3448                 }
3449         }
3450         return 0;
3451
3452 fail:
3453         f2fs_put_page(page, 1);
3454         f2fs_write_failed(mapping, pos + len);
3455         if (drop_atomic)
3456                 f2fs_drop_inmem_pages_all(sbi, false);
3457         return err;
3458 }
3459
3460 static int f2fs_write_end(struct file *file,
3461                         struct address_space *mapping,
3462                         loff_t pos, unsigned len, unsigned copied,
3463                         struct page *page, void *fsdata)
3464 {
3465         struct inode *inode = page->mapping->host;
3466
3467         trace_f2fs_write_end(inode, pos, len, copied);
3468
3469         /*
3470          * This should be come from len == PAGE_SIZE, and we expect copied
3471          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3472          * let generic_perform_write() try to copy data again through copied=0.
3473          */
3474         if (!PageUptodate(page)) {
3475                 if (unlikely(copied != len))
3476                         copied = 0;
3477                 else
3478                         SetPageUptodate(page);
3479         }
3480
3481 #ifdef CONFIG_F2FS_FS_COMPRESSION
3482         /* overwrite compressed file */
3483         if (f2fs_compressed_file(inode) && fsdata) {
3484                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3485                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3486                 return copied;
3487         }
3488 #endif
3489
3490         if (!copied)
3491                 goto unlock_out;
3492
3493         set_page_dirty(page);
3494
3495         if (pos + copied > i_size_read(inode) &&
3496             !f2fs_verity_in_progress(inode))
3497                 f2fs_i_size_write(inode, pos + copied);
3498 unlock_out:
3499         f2fs_put_page(page, 1);
3500         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3501         return copied;
3502 }
3503
3504 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3505                            loff_t offset)
3506 {
3507         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3508         unsigned blkbits = i_blkbits;
3509         unsigned blocksize_mask = (1 << blkbits) - 1;
3510         unsigned long align = offset | iov_iter_alignment(iter);
3511         struct block_device *bdev = inode->i_sb->s_bdev;
3512
3513         if (align & blocksize_mask) {
3514                 if (bdev)
3515                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3516                 blocksize_mask = (1 << blkbits) - 1;
3517                 if (align & blocksize_mask)
3518                         return -EINVAL;
3519                 return 1;
3520         }
3521         return 0;
3522 }
3523
3524 static void f2fs_dio_end_io(struct bio *bio)
3525 {
3526         struct f2fs_private_dio *dio = bio->bi_private;
3527
3528         dec_page_count(F2FS_I_SB(dio->inode),
3529                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3530
3531         bio->bi_private = dio->orig_private;
3532         bio->bi_end_io = dio->orig_end_io;
3533
3534         kvfree(dio);
3535
3536         bio_endio(bio);
3537 }
3538
3539 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3540                                                         loff_t file_offset)
3541 {
3542         struct f2fs_private_dio *dio;
3543         bool write = (bio_op(bio) == REQ_OP_WRITE);
3544
3545         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3546                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3547         if (!dio)
3548                 goto out;
3549
3550         dio->inode = inode;
3551         dio->orig_end_io = bio->bi_end_io;
3552         dio->orig_private = bio->bi_private;
3553         dio->write = write;
3554
3555         bio->bi_end_io = f2fs_dio_end_io;
3556         bio->bi_private = dio;
3557
3558         inc_page_count(F2FS_I_SB(inode),
3559                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3560
3561         submit_bio(bio);
3562         return;
3563 out:
3564         bio->bi_status = BLK_STS_IOERR;
3565         bio_endio(bio);
3566 }
3567
3568 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3569 {
3570         struct address_space *mapping = iocb->ki_filp->f_mapping;
3571         struct inode *inode = mapping->host;
3572         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3573         struct f2fs_inode_info *fi = F2FS_I(inode);
3574         size_t count = iov_iter_count(iter);
3575         loff_t offset = iocb->ki_pos;
3576         int rw = iov_iter_rw(iter);
3577         int err;
3578         enum rw_hint hint = iocb->ki_hint;
3579         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3580         bool do_opu;
3581
3582         err = check_direct_IO(inode, iter, offset);
3583         if (err)
3584                 return err < 0 ? err : 0;
3585
3586         if (f2fs_force_buffered_io(inode, iocb, iter))
3587                 return 0;
3588
3589         do_opu = allow_outplace_dio(inode, iocb, iter);
3590
3591         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3592
3593         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3594                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3595
3596         if (iocb->ki_flags & IOCB_NOWAIT) {
3597                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3598                         iocb->ki_hint = hint;
3599                         err = -EAGAIN;
3600                         goto out;
3601                 }
3602                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3603                         up_read(&fi->i_gc_rwsem[rw]);
3604                         iocb->ki_hint = hint;
3605                         err = -EAGAIN;
3606                         goto out;
3607                 }
3608         } else {
3609                 down_read(&fi->i_gc_rwsem[rw]);
3610                 if (do_opu)
3611                         down_read(&fi->i_gc_rwsem[READ]);
3612         }
3613
3614         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3615                         iter, rw == WRITE ? get_data_block_dio_write :
3616                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3617                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3618                         DIO_SKIP_HOLES);
3619
3620         if (do_opu)
3621                 up_read(&fi->i_gc_rwsem[READ]);
3622
3623         up_read(&fi->i_gc_rwsem[rw]);
3624
3625         if (rw == WRITE) {
3626                 if (whint_mode == WHINT_MODE_OFF)
3627                         iocb->ki_hint = hint;
3628                 if (err > 0) {
3629                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3630                                                                         err);
3631                         if (!do_opu)
3632                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3633                 } else if (err < 0) {
3634                         f2fs_write_failed(mapping, offset + count);
3635                 }
3636         } else {
3637                 if (err > 0)
3638                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3639         }
3640
3641 out:
3642         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3643
3644         return err;
3645 }
3646
3647 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3648                                                         unsigned int length)
3649 {
3650         struct inode *inode = page->mapping->host;
3651         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3652
3653         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3654                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3655                 return;
3656
3657         if (PageDirty(page)) {
3658                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3659                         dec_page_count(sbi, F2FS_DIRTY_META);
3660                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3661                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3662                 } else {
3663                         inode_dec_dirty_pages(inode);
3664                         f2fs_remove_dirty_inode(inode);
3665                 }
3666         }
3667
3668         clear_cold_data(page);
3669
3670         if (IS_ATOMIC_WRITTEN_PAGE(page))
3671                 return f2fs_drop_inmem_page(inode, page);
3672
3673         f2fs_clear_page_private(page);
3674 }
3675
3676 int f2fs_release_page(struct page *page, gfp_t wait)
3677 {
3678         /* If this is dirty page, keep PagePrivate */
3679         if (PageDirty(page))
3680                 return 0;
3681
3682         /* This is atomic written page, keep Private */
3683         if (IS_ATOMIC_WRITTEN_PAGE(page))
3684                 return 0;
3685
3686         clear_cold_data(page);
3687         f2fs_clear_page_private(page);
3688         return 1;
3689 }
3690
3691 static int f2fs_set_data_page_dirty(struct page *page)
3692 {
3693         struct inode *inode = page_file_mapping(page)->host;
3694
3695         trace_f2fs_set_page_dirty(page, DATA);
3696
3697         if (!PageUptodate(page))
3698                 SetPageUptodate(page);
3699         if (PageSwapCache(page))
3700                 return __set_page_dirty_nobuffers(page);
3701
3702         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3703                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3704                         f2fs_register_inmem_page(inode, page);
3705                         return 1;
3706                 }
3707                 /*
3708                  * Previously, this page has been registered, we just
3709                  * return here.
3710                  */
3711                 return 0;
3712         }
3713
3714         if (!PageDirty(page)) {
3715                 __set_page_dirty_nobuffers(page);
3716                 f2fs_update_dirty_page(inode, page);
3717                 return 1;
3718         }
3719         return 0;
3720 }
3721
3722
3723 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3724 {
3725 #ifdef CONFIG_F2FS_FS_COMPRESSION
3726         struct dnode_of_data dn;
3727         sector_t start_idx, blknr = 0;
3728         int ret;
3729
3730         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3731
3732         set_new_dnode(&dn, inode, NULL, NULL, 0);
3733         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3734         if (ret)
3735                 return 0;
3736
3737         if (dn.data_blkaddr != COMPRESS_ADDR) {
3738                 dn.ofs_in_node += block - start_idx;
3739                 blknr = f2fs_data_blkaddr(&dn);
3740                 if (!__is_valid_data_blkaddr(blknr))
3741                         blknr = 0;
3742         }
3743
3744         f2fs_put_dnode(&dn);
3745
3746         return blknr;
3747 #else
3748         return -EOPNOTSUPP;
3749 #endif
3750 }
3751
3752
3753 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3754 {
3755         struct inode *inode = mapping->host;
3756
3757         if (f2fs_has_inline_data(inode))
3758                 return 0;
3759
3760         /* make sure allocating whole blocks */
3761         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3762                 filemap_write_and_wait(mapping);
3763
3764         if (f2fs_compressed_file(inode))
3765                 return f2fs_bmap_compress(inode, block);
3766
3767         return generic_block_bmap(mapping, block, get_data_block_bmap);
3768 }
3769
3770 #ifdef CONFIG_MIGRATION
3771 #include <linux/migrate.h>
3772
3773 int f2fs_migrate_page(struct address_space *mapping,
3774                 struct page *newpage, struct page *page, enum migrate_mode mode)
3775 {
3776         int rc, extra_count;
3777         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3778         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3779
3780         BUG_ON(PageWriteback(page));
3781
3782         /* migrating an atomic written page is safe with the inmem_lock hold */
3783         if (atomic_written) {
3784                 if (mode != MIGRATE_SYNC)
3785                         return -EBUSY;
3786                 if (!mutex_trylock(&fi->inmem_lock))
3787                         return -EAGAIN;
3788         }
3789
3790         /* one extra reference was held for atomic_write page */
3791         extra_count = atomic_written ? 1 : 0;
3792         rc = migrate_page_move_mapping(mapping, newpage,
3793                                 page, extra_count);
3794         if (rc != MIGRATEPAGE_SUCCESS) {
3795                 if (atomic_written)
3796                         mutex_unlock(&fi->inmem_lock);
3797                 return rc;
3798         }
3799
3800         if (atomic_written) {
3801                 struct inmem_pages *cur;
3802                 list_for_each_entry(cur, &fi->inmem_pages, list)
3803                         if (cur->page == page) {
3804                                 cur->page = newpage;
3805                                 break;
3806                         }
3807                 mutex_unlock(&fi->inmem_lock);
3808                 put_page(page);
3809                 get_page(newpage);
3810         }
3811
3812         if (PagePrivate(page)) {
3813                 f2fs_set_page_private(newpage, page_private(page));
3814                 f2fs_clear_page_private(page);
3815         }
3816
3817         if (mode != MIGRATE_SYNC_NO_COPY)
3818                 migrate_page_copy(newpage, page);
3819         else
3820                 migrate_page_states(newpage, page);
3821
3822         return MIGRATEPAGE_SUCCESS;
3823 }
3824 #endif
3825
3826 #ifdef CONFIG_SWAP
3827 /* Copied from generic_swapfile_activate() to check any holes */
3828 static int check_swap_activate(struct swap_info_struct *sis,
3829                                 struct file *swap_file, sector_t *span)
3830 {
3831         struct address_space *mapping = swap_file->f_mapping;
3832         struct inode *inode = mapping->host;
3833         unsigned blocks_per_page;
3834         unsigned long page_no;
3835         unsigned blkbits;
3836         sector_t probe_block;
3837         sector_t last_block;
3838         sector_t lowest_block = -1;
3839         sector_t highest_block = 0;
3840         int nr_extents = 0;
3841         int ret;
3842
3843         blkbits = inode->i_blkbits;
3844         blocks_per_page = PAGE_SIZE >> blkbits;
3845
3846         /*
3847          * Map all the blocks into the extent list.  This code doesn't try
3848          * to be very smart.
3849          */
3850         probe_block = 0;
3851         page_no = 0;
3852         last_block = i_size_read(inode) >> blkbits;
3853         while ((probe_block + blocks_per_page) <= last_block &&
3854                         page_no < sis->max) {
3855                 unsigned block_in_page;
3856                 sector_t first_block;
3857                 sector_t block = 0;
3858                 int      err = 0;
3859
3860                 cond_resched();
3861
3862                 block = probe_block;
3863                 err = bmap(inode, &block);
3864                 if (err || !block)
3865                         goto bad_bmap;
3866                 first_block = block;
3867
3868                 /*
3869                  * It must be PAGE_SIZE aligned on-disk
3870                  */
3871                 if (first_block & (blocks_per_page - 1)) {
3872                         probe_block++;
3873                         goto reprobe;
3874                 }
3875
3876                 for (block_in_page = 1; block_in_page < blocks_per_page;
3877                                         block_in_page++) {
3878
3879                         block = probe_block + block_in_page;
3880                         err = bmap(inode, &block);
3881
3882                         if (err || !block)
3883                                 goto bad_bmap;
3884
3885                         if (block != first_block + block_in_page) {
3886                                 /* Discontiguity */
3887                                 probe_block++;
3888                                 goto reprobe;
3889                         }
3890                 }
3891
3892                 first_block >>= (PAGE_SHIFT - blkbits);
3893                 if (page_no) {  /* exclude the header page */
3894                         if (first_block < lowest_block)
3895                                 lowest_block = first_block;
3896                         if (first_block > highest_block)
3897                                 highest_block = first_block;
3898                 }
3899
3900                 /*
3901                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3902                  */
3903                 ret = add_swap_extent(sis, page_no, 1, first_block);
3904                 if (ret < 0)
3905                         goto out;
3906                 nr_extents += ret;
3907                 page_no++;
3908                 probe_block += blocks_per_page;
3909 reprobe:
3910                 continue;
3911         }
3912         ret = nr_extents;
3913         *span = 1 + highest_block - lowest_block;
3914         if (page_no == 0)
3915                 page_no = 1;    /* force Empty message */
3916         sis->max = page_no;
3917         sis->pages = page_no - 1;
3918         sis->highest_bit = page_no - 1;
3919 out:
3920         return ret;
3921 bad_bmap:
3922         pr_err("swapon: swapfile has holes\n");
3923         return -EINVAL;
3924 }
3925
3926 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3927                                 sector_t *span)
3928 {
3929         struct inode *inode = file_inode(file);
3930         int ret;
3931
3932         if (!S_ISREG(inode->i_mode))
3933                 return -EINVAL;
3934
3935         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3936                 return -EROFS;
3937
3938         ret = f2fs_convert_inline_inode(inode);
3939         if (ret)
3940                 return ret;
3941
3942         if (f2fs_disable_compressed_file(inode))
3943                 return -EINVAL;
3944
3945         ret = check_swap_activate(sis, file, span);
3946         if (ret < 0)
3947                 return ret;
3948
3949         set_inode_flag(inode, FI_PIN_FILE);
3950         f2fs_precache_extents(inode);
3951         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3952         return ret;
3953 }
3954
3955 static void f2fs_swap_deactivate(struct file *file)
3956 {
3957         struct inode *inode = file_inode(file);
3958
3959         clear_inode_flag(inode, FI_PIN_FILE);
3960 }
3961 #else
3962 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3963                                 sector_t *span)
3964 {
3965         return -EOPNOTSUPP;
3966 }
3967
3968 static void f2fs_swap_deactivate(struct file *file)
3969 {
3970 }
3971 #endif
3972
3973 const struct address_space_operations f2fs_dblock_aops = {
3974         .readpage       = f2fs_read_data_page,
3975         .readahead      = f2fs_readahead,
3976         .writepage      = f2fs_write_data_page,
3977         .writepages     = f2fs_write_data_pages,
3978         .write_begin    = f2fs_write_begin,
3979         .write_end      = f2fs_write_end,
3980         .set_page_dirty = f2fs_set_data_page_dirty,
3981         .invalidatepage = f2fs_invalidate_page,
3982         .releasepage    = f2fs_release_page,
3983         .direct_IO      = f2fs_direct_IO,
3984         .bmap           = f2fs_bmap,
3985         .swap_activate  = f2fs_swap_activate,
3986         .swap_deactivate = f2fs_swap_deactivate,
3987 #ifdef CONFIG_MIGRATION
3988         .migratepage    = f2fs_migrate_page,
3989 #endif
3990 };
3991
3992 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3993 {
3994         struct address_space *mapping = page_mapping(page);
3995         unsigned long flags;
3996
3997         xa_lock_irqsave(&mapping->i_pages, flags);
3998         __xa_clear_mark(&mapping->i_pages, page_index(page),
3999                                                 PAGECACHE_TAG_DIRTY);
4000         xa_unlock_irqrestore(&mapping->i_pages, flags);
4001 }
4002
4003 int __init f2fs_init_post_read_processing(void)
4004 {
4005         bio_post_read_ctx_cache =
4006                 kmem_cache_create("f2fs_bio_post_read_ctx",
4007                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4008         if (!bio_post_read_ctx_cache)
4009                 goto fail;
4010         bio_post_read_ctx_pool =
4011                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4012                                          bio_post_read_ctx_cache);
4013         if (!bio_post_read_ctx_pool)
4014                 goto fail_free_cache;
4015         return 0;
4016
4017 fail_free_cache:
4018         kmem_cache_destroy(bio_post_read_ctx_cache);
4019 fail:
4020         return -ENOMEM;
4021 }
4022
4023 void f2fs_destroy_post_read_processing(void)
4024 {
4025         mempool_destroy(bio_post_read_ctx_pool);
4026         kmem_cache_destroy(bio_post_read_ctx_cache);
4027 }
4028
4029 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4030 {
4031         if (!f2fs_sb_has_encrypt(sbi) &&
4032                 !f2fs_sb_has_verity(sbi) &&
4033                 !f2fs_sb_has_compression(sbi))
4034                 return 0;
4035
4036         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4037                                                  WQ_UNBOUND | WQ_HIGHPRI,
4038                                                  num_online_cpus());
4039         if (!sbi->post_read_wq)
4040                 return -ENOMEM;
4041         return 0;
4042 }
4043
4044 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4045 {
4046         if (sbi->post_read_wq)
4047                 destroy_workqueue(sbi->post_read_wq);
4048 }
4049
4050 int __init f2fs_init_bio_entry_cache(void)
4051 {
4052         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4053                         sizeof(struct bio_entry));
4054         if (!bio_entry_slab)
4055                 return -ENOMEM;
4056         return 0;
4057 }
4058
4059 void f2fs_destroy_bio_entry_cache(void)
4060 {
4061         kmem_cache_destroy(bio_entry_slab);
4062 }