f2fs: fix to clear PG_checked flag in set_page_dirty()
[linux-block.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23 #include <linux/sched/signal.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static mempool_t *bio_post_read_ctx_pool;
35
36 static bool __is_cp_guaranteed(struct page *page)
37 {
38         struct address_space *mapping = page->mapping;
39         struct inode *inode;
40         struct f2fs_sb_info *sbi;
41
42         if (!mapping)
43                 return false;
44
45         inode = mapping->host;
46         sbi = F2FS_I_SB(inode);
47
48         if (inode->i_ino == F2FS_META_INO(sbi) ||
49                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
50                         S_ISDIR(inode->i_mode) ||
51                         (S_ISREG(inode->i_mode) &&
52                         is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
53                         is_cold_data(page))
54                 return true;
55         return false;
56 }
57
58 /* postprocessing steps for read bios */
59 enum bio_post_read_step {
60         STEP_INITIAL = 0,
61         STEP_DECRYPT,
62 };
63
64 struct bio_post_read_ctx {
65         struct bio *bio;
66         struct work_struct work;
67         unsigned int cur_step;
68         unsigned int enabled_steps;
69 };
70
71 static void __read_end_io(struct bio *bio)
72 {
73         struct page *page;
74         struct bio_vec *bv;
75         int i;
76
77         bio_for_each_segment_all(bv, bio, i) {
78                 page = bv->bv_page;
79
80                 /* PG_error was set if any post_read step failed */
81                 if (bio->bi_status || PageError(page)) {
82                         ClearPageUptodate(page);
83                         SetPageError(page);
84                 } else {
85                         SetPageUptodate(page);
86                 }
87                 unlock_page(page);
88         }
89         if (bio->bi_private)
90                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
91         bio_put(bio);
92 }
93
94 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
95
96 static void decrypt_work(struct work_struct *work)
97 {
98         struct bio_post_read_ctx *ctx =
99                 container_of(work, struct bio_post_read_ctx, work);
100
101         fscrypt_decrypt_bio(ctx->bio);
102
103         bio_post_read_processing(ctx);
104 }
105
106 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
107 {
108         switch (++ctx->cur_step) {
109         case STEP_DECRYPT:
110                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
111                         INIT_WORK(&ctx->work, decrypt_work);
112                         fscrypt_enqueue_decrypt_work(&ctx->work);
113                         return;
114                 }
115                 ctx->cur_step++;
116                 /* fall-through */
117         default:
118                 __read_end_io(ctx->bio);
119         }
120 }
121
122 static bool f2fs_bio_post_read_required(struct bio *bio)
123 {
124         return bio->bi_private && !bio->bi_status;
125 }
126
127 static void f2fs_read_end_io(struct bio *bio)
128 {
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130         if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
131                 f2fs_show_injection_info(FAULT_IO);
132                 bio->bi_status = BLK_STS_IOERR;
133         }
134 #endif
135
136         if (f2fs_bio_post_read_required(bio)) {
137                 struct bio_post_read_ctx *ctx = bio->bi_private;
138
139                 ctx->cur_step = STEP_INITIAL;
140                 bio_post_read_processing(ctx);
141                 return;
142         }
143
144         __read_end_io(bio);
145 }
146
147 static void f2fs_write_end_io(struct bio *bio)
148 {
149         struct f2fs_sb_info *sbi = bio->bi_private;
150         struct bio_vec *bvec;
151         int i;
152
153         bio_for_each_segment_all(bvec, bio, i) {
154                 struct page *page = bvec->bv_page;
155                 enum count_type type = WB_DATA_TYPE(page);
156
157                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
158                         set_page_private(page, (unsigned long)NULL);
159                         ClearPagePrivate(page);
160                         unlock_page(page);
161                         mempool_free(page, sbi->write_io_dummy);
162
163                         if (unlikely(bio->bi_status))
164                                 f2fs_stop_checkpoint(sbi, true);
165                         continue;
166                 }
167
168                 fscrypt_pullback_bio_page(&page, true);
169
170                 if (unlikely(bio->bi_status)) {
171                         mapping_set_error(page->mapping, -EIO);
172                         if (type == F2FS_WB_CP_DATA)
173                                 f2fs_stop_checkpoint(sbi, true);
174                 }
175
176                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
177                                         page->index != nid_of_node(page));
178
179                 dec_page_count(sbi, type);
180                 clear_cold_data(page);
181                 end_page_writeback(page);
182         }
183         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
184                                 wq_has_sleeper(&sbi->cp_wait))
185                 wake_up(&sbi->cp_wait);
186
187         bio_put(bio);
188 }
189
190 /*
191  * Return true, if pre_bio's bdev is same as its target device.
192  */
193 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
194                                 block_t blk_addr, struct bio *bio)
195 {
196         struct block_device *bdev = sbi->sb->s_bdev;
197         int i;
198
199         for (i = 0; i < sbi->s_ndevs; i++) {
200                 if (FDEV(i).start_blk <= blk_addr &&
201                                         FDEV(i).end_blk >= blk_addr) {
202                         blk_addr -= FDEV(i).start_blk;
203                         bdev = FDEV(i).bdev;
204                         break;
205                 }
206         }
207         if (bio) {
208                 bio_set_dev(bio, bdev);
209                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
210         }
211         return bdev;
212 }
213
214 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
215 {
216         int i;
217
218         for (i = 0; i < sbi->s_ndevs; i++)
219                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
220                         return i;
221         return 0;
222 }
223
224 static bool __same_bdev(struct f2fs_sb_info *sbi,
225                                 block_t blk_addr, struct bio *bio)
226 {
227         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
228         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
229 }
230
231 /*
232  * Low-level block read/write IO operations.
233  */
234 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
235                                 struct writeback_control *wbc,
236                                 int npages, bool is_read,
237                                 enum page_type type, enum temp_type temp)
238 {
239         struct bio *bio;
240
241         bio = f2fs_bio_alloc(sbi, npages, true);
242
243         f2fs_target_device(sbi, blk_addr, bio);
244         if (is_read) {
245                 bio->bi_end_io = f2fs_read_end_io;
246                 bio->bi_private = NULL;
247         } else {
248                 bio->bi_end_io = f2fs_write_end_io;
249                 bio->bi_private = sbi;
250                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
251         }
252         if (wbc)
253                 wbc_init_bio(wbc, bio);
254
255         return bio;
256 }
257
258 static inline void __submit_bio(struct f2fs_sb_info *sbi,
259                                 struct bio *bio, enum page_type type)
260 {
261         if (!is_read_io(bio_op(bio))) {
262                 unsigned int start;
263
264                 if (type != DATA && type != NODE)
265                         goto submit_io;
266
267                 if (test_opt(sbi, LFS) && current->plug)
268                         blk_finish_plug(current->plug);
269
270                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
271                 start %= F2FS_IO_SIZE(sbi);
272
273                 if (start == 0)
274                         goto submit_io;
275
276                 /* fill dummy pages */
277                 for (; start < F2FS_IO_SIZE(sbi); start++) {
278                         struct page *page =
279                                 mempool_alloc(sbi->write_io_dummy,
280                                         GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
281                         f2fs_bug_on(sbi, !page);
282
283                         SetPagePrivate(page);
284                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
285                         lock_page(page);
286                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
287                                 f2fs_bug_on(sbi, 1);
288                 }
289                 /*
290                  * In the NODE case, we lose next block address chain. So, we
291                  * need to do checkpoint in f2fs_sync_file.
292                  */
293                 if (type == NODE)
294                         set_sbi_flag(sbi, SBI_NEED_CP);
295         }
296 submit_io:
297         if (is_read_io(bio_op(bio)))
298                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
299         else
300                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
301         submit_bio(bio);
302 }
303
304 static void __submit_merged_bio(struct f2fs_bio_info *io)
305 {
306         struct f2fs_io_info *fio = &io->fio;
307
308         if (!io->bio)
309                 return;
310
311         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
312
313         if (is_read_io(fio->op))
314                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
315         else
316                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
317
318         __submit_bio(io->sbi, io->bio, fio->type);
319         io->bio = NULL;
320 }
321
322 static bool __has_merged_page(struct f2fs_bio_info *io,
323                                 struct inode *inode, nid_t ino, pgoff_t idx)
324 {
325         struct bio_vec *bvec;
326         struct page *target;
327         int i;
328
329         if (!io->bio)
330                 return false;
331
332         if (!inode && !ino)
333                 return true;
334
335         bio_for_each_segment_all(bvec, io->bio, i) {
336
337                 if (bvec->bv_page->mapping)
338                         target = bvec->bv_page;
339                 else
340                         target = fscrypt_control_page(bvec->bv_page);
341
342                 if (idx != target->index)
343                         continue;
344
345                 if (inode && inode == target->mapping->host)
346                         return true;
347                 if (ino && ino == ino_of_node(target))
348                         return true;
349         }
350
351         return false;
352 }
353
354 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
355                                 nid_t ino, pgoff_t idx, enum page_type type)
356 {
357         enum page_type btype = PAGE_TYPE_OF_BIO(type);
358         enum temp_type temp;
359         struct f2fs_bio_info *io;
360         bool ret = false;
361
362         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
363                 io = sbi->write_io[btype] + temp;
364
365                 down_read(&io->io_rwsem);
366                 ret = __has_merged_page(io, inode, ino, idx);
367                 up_read(&io->io_rwsem);
368
369                 /* TODO: use HOT temp only for meta pages now. */
370                 if (ret || btype == META)
371                         break;
372         }
373         return ret;
374 }
375
376 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
377                                 enum page_type type, enum temp_type temp)
378 {
379         enum page_type btype = PAGE_TYPE_OF_BIO(type);
380         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
381
382         down_write(&io->io_rwsem);
383
384         /* change META to META_FLUSH in the checkpoint procedure */
385         if (type >= META_FLUSH) {
386                 io->fio.type = META_FLUSH;
387                 io->fio.op = REQ_OP_WRITE;
388                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
389                 if (!test_opt(sbi, NOBARRIER))
390                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
391         }
392         __submit_merged_bio(io);
393         up_write(&io->io_rwsem);
394 }
395
396 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
397                                 struct inode *inode, nid_t ino, pgoff_t idx,
398                                 enum page_type type, bool force)
399 {
400         enum temp_type temp;
401
402         if (!force && !has_merged_page(sbi, inode, ino, idx, type))
403                 return;
404
405         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
406
407                 __f2fs_submit_merged_write(sbi, type, temp);
408
409                 /* TODO: use HOT temp only for meta pages now. */
410                 if (type >= META)
411                         break;
412         }
413 }
414
415 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
416 {
417         __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
418 }
419
420 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
421                                 struct inode *inode, nid_t ino, pgoff_t idx,
422                                 enum page_type type)
423 {
424         __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
425 }
426
427 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
428 {
429         f2fs_submit_merged_write(sbi, DATA);
430         f2fs_submit_merged_write(sbi, NODE);
431         f2fs_submit_merged_write(sbi, META);
432 }
433
434 /*
435  * Fill the locked page with data located in the block address.
436  * A caller needs to unlock the page on failure.
437  */
438 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
439 {
440         struct bio *bio;
441         struct page *page = fio->encrypted_page ?
442                         fio->encrypted_page : fio->page;
443
444         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
445                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
446                 return -EFAULT;
447
448         trace_f2fs_submit_page_bio(page, fio);
449         f2fs_trace_ios(fio, 0);
450
451         /* Allocate a new bio */
452         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
453                                 1, is_read_io(fio->op), fio->type, fio->temp);
454
455         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
456                 bio_put(bio);
457                 return -EFAULT;
458         }
459         bio_set_op_attrs(bio, fio->op, fio->op_flags);
460
461         __submit_bio(fio->sbi, bio, fio->type);
462
463         if (!is_read_io(fio->op))
464                 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
465         return 0;
466 }
467
468 void f2fs_submit_page_write(struct f2fs_io_info *fio)
469 {
470         struct f2fs_sb_info *sbi = fio->sbi;
471         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
472         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
473         struct page *bio_page;
474
475         f2fs_bug_on(sbi, is_read_io(fio->op));
476
477         down_write(&io->io_rwsem);
478 next:
479         if (fio->in_list) {
480                 spin_lock(&io->io_lock);
481                 if (list_empty(&io->io_list)) {
482                         spin_unlock(&io->io_lock);
483                         goto out;
484                 }
485                 fio = list_first_entry(&io->io_list,
486                                                 struct f2fs_io_info, list);
487                 list_del(&fio->list);
488                 spin_unlock(&io->io_lock);
489         }
490
491         if (__is_valid_data_blkaddr(fio->old_blkaddr))
492                 verify_block_addr(fio, fio->old_blkaddr);
493         verify_block_addr(fio, fio->new_blkaddr);
494
495         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
496
497         /* set submitted = true as a return value */
498         fio->submitted = true;
499
500         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
501
502         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
503             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
504                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
505                 __submit_merged_bio(io);
506 alloc_new:
507         if (io->bio == NULL) {
508                 if ((fio->type == DATA || fio->type == NODE) &&
509                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
510                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
511                         fio->retry = true;
512                         goto skip;
513                 }
514                 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
515                                                 BIO_MAX_PAGES, false,
516                                                 fio->type, fio->temp);
517                 io->fio = *fio;
518         }
519
520         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
521                 __submit_merged_bio(io);
522                 goto alloc_new;
523         }
524
525         if (fio->io_wbc)
526                 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
527
528         io->last_block_in_bio = fio->new_blkaddr;
529         f2fs_trace_ios(fio, 0);
530
531         trace_f2fs_submit_page_write(fio->page, fio);
532 skip:
533         if (fio->in_list)
534                 goto next;
535 out:
536         up_write(&io->io_rwsem);
537 }
538
539 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
540                                         unsigned nr_pages, unsigned op_flag)
541 {
542         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
543         struct bio *bio;
544         struct bio_post_read_ctx *ctx;
545         unsigned int post_read_steps = 0;
546
547         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
548         if (!bio)
549                 return ERR_PTR(-ENOMEM);
550         f2fs_target_device(sbi, blkaddr, bio);
551         bio->bi_end_io = f2fs_read_end_io;
552         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
553
554         if (f2fs_encrypted_file(inode))
555                 post_read_steps |= 1 << STEP_DECRYPT;
556         if (post_read_steps) {
557                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
558                 if (!ctx) {
559                         bio_put(bio);
560                         return ERR_PTR(-ENOMEM);
561                 }
562                 ctx->bio = bio;
563                 ctx->enabled_steps = post_read_steps;
564                 bio->bi_private = ctx;
565
566                 /* wait the page to be moved by cleaning */
567                 f2fs_wait_on_block_writeback(sbi, blkaddr);
568         }
569
570         return bio;
571 }
572
573 /* This can handle encryption stuffs */
574 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
575                                                         block_t blkaddr)
576 {
577         struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
578
579         if (IS_ERR(bio))
580                 return PTR_ERR(bio);
581
582         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
583                 bio_put(bio);
584                 return -EFAULT;
585         }
586         __submit_bio(F2FS_I_SB(inode), bio, DATA);
587         return 0;
588 }
589
590 static void __set_data_blkaddr(struct dnode_of_data *dn)
591 {
592         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
593         __le32 *addr_array;
594         int base = 0;
595
596         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
597                 base = get_extra_isize(dn->inode);
598
599         /* Get physical address of data block */
600         addr_array = blkaddr_in_node(rn);
601         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
602 }
603
604 /*
605  * Lock ordering for the change of data block address:
606  * ->data_page
607  *  ->node_page
608  *    update block addresses in the node page
609  */
610 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
611 {
612         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
613         __set_data_blkaddr(dn);
614         if (set_page_dirty(dn->node_page))
615                 dn->node_changed = true;
616 }
617
618 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
619 {
620         dn->data_blkaddr = blkaddr;
621         f2fs_set_data_blkaddr(dn);
622         f2fs_update_extent_cache(dn);
623 }
624
625 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
626 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
627 {
628         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
629         int err;
630
631         if (!count)
632                 return 0;
633
634         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
635                 return -EPERM;
636         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
637                 return err;
638
639         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
640                                                 dn->ofs_in_node, count);
641
642         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
643
644         for (; count > 0; dn->ofs_in_node++) {
645                 block_t blkaddr = datablock_addr(dn->inode,
646                                         dn->node_page, dn->ofs_in_node);
647                 if (blkaddr == NULL_ADDR) {
648                         dn->data_blkaddr = NEW_ADDR;
649                         __set_data_blkaddr(dn);
650                         count--;
651                 }
652         }
653
654         if (set_page_dirty(dn->node_page))
655                 dn->node_changed = true;
656         return 0;
657 }
658
659 /* Should keep dn->ofs_in_node unchanged */
660 int f2fs_reserve_new_block(struct dnode_of_data *dn)
661 {
662         unsigned int ofs_in_node = dn->ofs_in_node;
663         int ret;
664
665         ret = f2fs_reserve_new_blocks(dn, 1);
666         dn->ofs_in_node = ofs_in_node;
667         return ret;
668 }
669
670 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
671 {
672         bool need_put = dn->inode_page ? false : true;
673         int err;
674
675         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
676         if (err)
677                 return err;
678
679         if (dn->data_blkaddr == NULL_ADDR)
680                 err = f2fs_reserve_new_block(dn);
681         if (err || need_put)
682                 f2fs_put_dnode(dn);
683         return err;
684 }
685
686 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
687 {
688         struct extent_info ei  = {0,0,0};
689         struct inode *inode = dn->inode;
690
691         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
692                 dn->data_blkaddr = ei.blk + index - ei.fofs;
693                 return 0;
694         }
695
696         return f2fs_reserve_block(dn, index);
697 }
698
699 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
700                                                 int op_flags, bool for_write)
701 {
702         struct address_space *mapping = inode->i_mapping;
703         struct dnode_of_data dn;
704         struct page *page;
705         struct extent_info ei = {0,0,0};
706         int err;
707
708         page = f2fs_grab_cache_page(mapping, index, for_write);
709         if (!page)
710                 return ERR_PTR(-ENOMEM);
711
712         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
713                 dn.data_blkaddr = ei.blk + index - ei.fofs;
714                 goto got_it;
715         }
716
717         set_new_dnode(&dn, inode, NULL, NULL, 0);
718         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
719         if (err)
720                 goto put_err;
721         f2fs_put_dnode(&dn);
722
723         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
724                 err = -ENOENT;
725                 goto put_err;
726         }
727 got_it:
728         if (PageUptodate(page)) {
729                 unlock_page(page);
730                 return page;
731         }
732
733         /*
734          * A new dentry page is allocated but not able to be written, since its
735          * new inode page couldn't be allocated due to -ENOSPC.
736          * In such the case, its blkaddr can be remained as NEW_ADDR.
737          * see, f2fs_add_link -> f2fs_get_new_data_page ->
738          * f2fs_init_inode_metadata.
739          */
740         if (dn.data_blkaddr == NEW_ADDR) {
741                 zero_user_segment(page, 0, PAGE_SIZE);
742                 if (!PageUptodate(page))
743                         SetPageUptodate(page);
744                 unlock_page(page);
745                 return page;
746         }
747
748         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
749         if (err)
750                 goto put_err;
751         return page;
752
753 put_err:
754         f2fs_put_page(page, 1);
755         return ERR_PTR(err);
756 }
757
758 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
759 {
760         struct address_space *mapping = inode->i_mapping;
761         struct page *page;
762
763         page = find_get_page(mapping, index);
764         if (page && PageUptodate(page))
765                 return page;
766         f2fs_put_page(page, 0);
767
768         page = f2fs_get_read_data_page(inode, index, 0, false);
769         if (IS_ERR(page))
770                 return page;
771
772         if (PageUptodate(page))
773                 return page;
774
775         wait_on_page_locked(page);
776         if (unlikely(!PageUptodate(page))) {
777                 f2fs_put_page(page, 0);
778                 return ERR_PTR(-EIO);
779         }
780         return page;
781 }
782
783 /*
784  * If it tries to access a hole, return an error.
785  * Because, the callers, functions in dir.c and GC, should be able to know
786  * whether this page exists or not.
787  */
788 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
789                                                         bool for_write)
790 {
791         struct address_space *mapping = inode->i_mapping;
792         struct page *page;
793 repeat:
794         page = f2fs_get_read_data_page(inode, index, 0, for_write);
795         if (IS_ERR(page))
796                 return page;
797
798         /* wait for read completion */
799         lock_page(page);
800         if (unlikely(page->mapping != mapping)) {
801                 f2fs_put_page(page, 1);
802                 goto repeat;
803         }
804         if (unlikely(!PageUptodate(page))) {
805                 f2fs_put_page(page, 1);
806                 return ERR_PTR(-EIO);
807         }
808         return page;
809 }
810
811 /*
812  * Caller ensures that this data page is never allocated.
813  * A new zero-filled data page is allocated in the page cache.
814  *
815  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
816  * f2fs_unlock_op().
817  * Note that, ipage is set only by make_empty_dir, and if any error occur,
818  * ipage should be released by this function.
819  */
820 struct page *f2fs_get_new_data_page(struct inode *inode,
821                 struct page *ipage, pgoff_t index, bool new_i_size)
822 {
823         struct address_space *mapping = inode->i_mapping;
824         struct page *page;
825         struct dnode_of_data dn;
826         int err;
827
828         page = f2fs_grab_cache_page(mapping, index, true);
829         if (!page) {
830                 /*
831                  * before exiting, we should make sure ipage will be released
832                  * if any error occur.
833                  */
834                 f2fs_put_page(ipage, 1);
835                 return ERR_PTR(-ENOMEM);
836         }
837
838         set_new_dnode(&dn, inode, ipage, NULL, 0);
839         err = f2fs_reserve_block(&dn, index);
840         if (err) {
841                 f2fs_put_page(page, 1);
842                 return ERR_PTR(err);
843         }
844         if (!ipage)
845                 f2fs_put_dnode(&dn);
846
847         if (PageUptodate(page))
848                 goto got_it;
849
850         if (dn.data_blkaddr == NEW_ADDR) {
851                 zero_user_segment(page, 0, PAGE_SIZE);
852                 if (!PageUptodate(page))
853                         SetPageUptodate(page);
854         } else {
855                 f2fs_put_page(page, 1);
856
857                 /* if ipage exists, blkaddr should be NEW_ADDR */
858                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
859                 page = f2fs_get_lock_data_page(inode, index, true);
860                 if (IS_ERR(page))
861                         return page;
862         }
863 got_it:
864         if (new_i_size && i_size_read(inode) <
865                                 ((loff_t)(index + 1) << PAGE_SHIFT))
866                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
867         return page;
868 }
869
870 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
871 {
872         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
873         struct f2fs_summary sum;
874         struct node_info ni;
875         pgoff_t fofs;
876         blkcnt_t count = 1;
877         int err;
878
879         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
880                 return -EPERM;
881
882         err = f2fs_get_node_info(sbi, dn->nid, &ni);
883         if (err)
884                 return err;
885
886         dn->data_blkaddr = datablock_addr(dn->inode,
887                                 dn->node_page, dn->ofs_in_node);
888         if (dn->data_blkaddr == NEW_ADDR)
889                 goto alloc;
890
891         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
892                 return err;
893
894 alloc:
895         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
896
897         f2fs_allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
898                                         &sum, seg_type, NULL, false);
899         f2fs_set_data_blkaddr(dn);
900
901         /* update i_size */
902         fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
903                                                         dn->ofs_in_node;
904         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
905                 f2fs_i_size_write(dn->inode,
906                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
907         return 0;
908 }
909
910 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
911 {
912         struct inode *inode = file_inode(iocb->ki_filp);
913         struct f2fs_map_blocks map;
914         int flag;
915         int err = 0;
916         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
917
918         /* convert inline data for Direct I/O*/
919         if (direct_io) {
920                 err = f2fs_convert_inline_inode(inode);
921                 if (err)
922                         return err;
923         }
924
925         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
926                 return 0;
927
928         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
929         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
930         if (map.m_len > map.m_lblk)
931                 map.m_len -= map.m_lblk;
932         else
933                 map.m_len = 0;
934
935         map.m_next_pgofs = NULL;
936         map.m_next_extent = NULL;
937         map.m_seg_type = NO_CHECK_TYPE;
938
939         if (direct_io) {
940                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
941                 flag = f2fs_force_buffered_io(inode, WRITE) ?
942                                         F2FS_GET_BLOCK_PRE_AIO :
943                                         F2FS_GET_BLOCK_PRE_DIO;
944                 goto map_blocks;
945         }
946         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
947                 err = f2fs_convert_inline_inode(inode);
948                 if (err)
949                         return err;
950         }
951         if (f2fs_has_inline_data(inode))
952                 return err;
953
954         flag = F2FS_GET_BLOCK_PRE_AIO;
955
956 map_blocks:
957         err = f2fs_map_blocks(inode, &map, 1, flag);
958         if (map.m_len > 0 && err == -ENOSPC) {
959                 if (!direct_io)
960                         set_inode_flag(inode, FI_NO_PREALLOC);
961                 err = 0;
962         }
963         return err;
964 }
965
966 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
967 {
968         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
969                 if (lock)
970                         down_read(&sbi->node_change);
971                 else
972                         up_read(&sbi->node_change);
973         } else {
974                 if (lock)
975                         f2fs_lock_op(sbi);
976                 else
977                         f2fs_unlock_op(sbi);
978         }
979 }
980
981 /*
982  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
983  * f2fs_map_blocks structure.
984  * If original data blocks are allocated, then give them to blockdev.
985  * Otherwise,
986  *     a. preallocate requested block addresses
987  *     b. do not use extent cache for better performance
988  *     c. give the block addresses to blockdev
989  */
990 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
991                                                 int create, int flag)
992 {
993         unsigned int maxblocks = map->m_len;
994         struct dnode_of_data dn;
995         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
996         int mode = create ? ALLOC_NODE : LOOKUP_NODE;
997         pgoff_t pgofs, end_offset, end;
998         int err = 0, ofs = 1;
999         unsigned int ofs_in_node, last_ofs_in_node;
1000         blkcnt_t prealloc;
1001         struct extent_info ei = {0,0,0};
1002         block_t blkaddr;
1003         unsigned int start_pgofs;
1004
1005         if (!maxblocks)
1006                 return 0;
1007
1008         map->m_len = 0;
1009         map->m_flags = 0;
1010
1011         /* it only supports block size == page size */
1012         pgofs = (pgoff_t)map->m_lblk;
1013         end = pgofs + maxblocks;
1014
1015         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1016                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1017                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1018                 map->m_flags = F2FS_MAP_MAPPED;
1019                 if (map->m_next_extent)
1020                         *map->m_next_extent = pgofs + map->m_len;
1021                 goto out;
1022         }
1023
1024 next_dnode:
1025         if (create)
1026                 __do_map_lock(sbi, flag, true);
1027
1028         /* When reading holes, we need its node page */
1029         set_new_dnode(&dn, inode, NULL, NULL, 0);
1030         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1031         if (err) {
1032                 if (flag == F2FS_GET_BLOCK_BMAP)
1033                         map->m_pblk = 0;
1034                 if (err == -ENOENT) {
1035                         err = 0;
1036                         if (map->m_next_pgofs)
1037                                 *map->m_next_pgofs =
1038                                         f2fs_get_next_page_offset(&dn, pgofs);
1039                         if (map->m_next_extent)
1040                                 *map->m_next_extent =
1041                                         f2fs_get_next_page_offset(&dn, pgofs);
1042                 }
1043                 goto unlock_out;
1044         }
1045
1046         start_pgofs = pgofs;
1047         prealloc = 0;
1048         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1049         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1050
1051 next_block:
1052         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1053
1054         if (__is_valid_data_blkaddr(blkaddr) &&
1055                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1056                 err = -EFAULT;
1057                 goto sync_out;
1058         }
1059
1060         if (!is_valid_data_blkaddr(sbi, blkaddr)) {
1061                 if (create) {
1062                         if (unlikely(f2fs_cp_error(sbi))) {
1063                                 err = -EIO;
1064                                 goto sync_out;
1065                         }
1066                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1067                                 if (blkaddr == NULL_ADDR) {
1068                                         prealloc++;
1069                                         last_ofs_in_node = dn.ofs_in_node;
1070                                 }
1071                         } else {
1072                                 err = __allocate_data_block(&dn,
1073                                                         map->m_seg_type);
1074                                 if (!err)
1075                                         set_inode_flag(inode, FI_APPEND_WRITE);
1076                         }
1077                         if (err)
1078                                 goto sync_out;
1079                         map->m_flags |= F2FS_MAP_NEW;
1080                         blkaddr = dn.data_blkaddr;
1081                 } else {
1082                         if (flag == F2FS_GET_BLOCK_BMAP) {
1083                                 map->m_pblk = 0;
1084                                 goto sync_out;
1085                         }
1086                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1087                                 goto sync_out;
1088                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1089                                                 blkaddr == NULL_ADDR) {
1090                                 if (map->m_next_pgofs)
1091                                         *map->m_next_pgofs = pgofs + 1;
1092                                 goto sync_out;
1093                         }
1094                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1095                                 /* for defragment case */
1096                                 if (map->m_next_pgofs)
1097                                         *map->m_next_pgofs = pgofs + 1;
1098                                 goto sync_out;
1099                         }
1100                 }
1101         }
1102
1103         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1104                 goto skip;
1105
1106         if (map->m_len == 0) {
1107                 /* preallocated unwritten block should be mapped for fiemap. */
1108                 if (blkaddr == NEW_ADDR)
1109                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1110                 map->m_flags |= F2FS_MAP_MAPPED;
1111
1112                 map->m_pblk = blkaddr;
1113                 map->m_len = 1;
1114         } else if ((map->m_pblk != NEW_ADDR &&
1115                         blkaddr == (map->m_pblk + ofs)) ||
1116                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1117                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1118                 ofs++;
1119                 map->m_len++;
1120         } else {
1121                 goto sync_out;
1122         }
1123
1124 skip:
1125         dn.ofs_in_node++;
1126         pgofs++;
1127
1128         /* preallocate blocks in batch for one dnode page */
1129         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1130                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1131
1132                 dn.ofs_in_node = ofs_in_node;
1133                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1134                 if (err)
1135                         goto sync_out;
1136
1137                 map->m_len += dn.ofs_in_node - ofs_in_node;
1138                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1139                         err = -ENOSPC;
1140                         goto sync_out;
1141                 }
1142                 dn.ofs_in_node = end_offset;
1143         }
1144
1145         if (pgofs >= end)
1146                 goto sync_out;
1147         else if (dn.ofs_in_node < end_offset)
1148                 goto next_block;
1149
1150         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1151                 if (map->m_flags & F2FS_MAP_MAPPED) {
1152                         unsigned int ofs = start_pgofs - map->m_lblk;
1153
1154                         f2fs_update_extent_cache_range(&dn,
1155                                 start_pgofs, map->m_pblk + ofs,
1156                                 map->m_len - ofs);
1157                 }
1158         }
1159
1160         f2fs_put_dnode(&dn);
1161
1162         if (create) {
1163                 __do_map_lock(sbi, flag, false);
1164                 f2fs_balance_fs(sbi, dn.node_changed);
1165         }
1166         goto next_dnode;
1167
1168 sync_out:
1169         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1170                 if (map->m_flags & F2FS_MAP_MAPPED) {
1171                         unsigned int ofs = start_pgofs - map->m_lblk;
1172
1173                         f2fs_update_extent_cache_range(&dn,
1174                                 start_pgofs, map->m_pblk + ofs,
1175                                 map->m_len - ofs);
1176                 }
1177                 if (map->m_next_extent)
1178                         *map->m_next_extent = pgofs + 1;
1179         }
1180         f2fs_put_dnode(&dn);
1181 unlock_out:
1182         if (create) {
1183                 __do_map_lock(sbi, flag, false);
1184                 f2fs_balance_fs(sbi, dn.node_changed);
1185         }
1186 out:
1187         trace_f2fs_map_blocks(inode, map, err);
1188         return err;
1189 }
1190
1191 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1192 {
1193         struct f2fs_map_blocks map;
1194         block_t last_lblk;
1195         int err;
1196
1197         if (pos + len > i_size_read(inode))
1198                 return false;
1199
1200         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1201         map.m_next_pgofs = NULL;
1202         map.m_next_extent = NULL;
1203         map.m_seg_type = NO_CHECK_TYPE;
1204         last_lblk = F2FS_BLK_ALIGN(pos + len);
1205
1206         while (map.m_lblk < last_lblk) {
1207                 map.m_len = last_lblk - map.m_lblk;
1208                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1209                 if (err || map.m_len == 0)
1210                         return false;
1211                 map.m_lblk += map.m_len;
1212         }
1213         return true;
1214 }
1215
1216 static int __get_data_block(struct inode *inode, sector_t iblock,
1217                         struct buffer_head *bh, int create, int flag,
1218                         pgoff_t *next_pgofs, int seg_type)
1219 {
1220         struct f2fs_map_blocks map;
1221         int err;
1222
1223         map.m_lblk = iblock;
1224         map.m_len = bh->b_size >> inode->i_blkbits;
1225         map.m_next_pgofs = next_pgofs;
1226         map.m_next_extent = NULL;
1227         map.m_seg_type = seg_type;
1228
1229         err = f2fs_map_blocks(inode, &map, create, flag);
1230         if (!err) {
1231                 map_bh(bh, inode->i_sb, map.m_pblk);
1232                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1233                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1234         }
1235         return err;
1236 }
1237
1238 static int get_data_block(struct inode *inode, sector_t iblock,
1239                         struct buffer_head *bh_result, int create, int flag,
1240                         pgoff_t *next_pgofs)
1241 {
1242         return __get_data_block(inode, iblock, bh_result, create,
1243                                                         flag, next_pgofs,
1244                                                         NO_CHECK_TYPE);
1245 }
1246
1247 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1248                         struct buffer_head *bh_result, int create)
1249 {
1250         return __get_data_block(inode, iblock, bh_result, create,
1251                                                 F2FS_GET_BLOCK_DEFAULT, NULL,
1252                                                 f2fs_rw_hint_to_seg_type(
1253                                                         inode->i_write_hint));
1254 }
1255
1256 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1257                         struct buffer_head *bh_result, int create)
1258 {
1259         /* Block number less than F2FS MAX BLOCKS */
1260         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1261                 return -EFBIG;
1262
1263         return __get_data_block(inode, iblock, bh_result, create,
1264                                                 F2FS_GET_BLOCK_BMAP, NULL,
1265                                                 NO_CHECK_TYPE);
1266 }
1267
1268 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1269 {
1270         return (offset >> inode->i_blkbits);
1271 }
1272
1273 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1274 {
1275         return (blk << inode->i_blkbits);
1276 }
1277
1278 static int f2fs_xattr_fiemap(struct inode *inode,
1279                                 struct fiemap_extent_info *fieinfo)
1280 {
1281         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1282         struct page *page;
1283         struct node_info ni;
1284         __u64 phys = 0, len;
1285         __u32 flags;
1286         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1287         int err = 0;
1288
1289         if (f2fs_has_inline_xattr(inode)) {
1290                 int offset;
1291
1292                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1293                                                 inode->i_ino, false);
1294                 if (!page)
1295                         return -ENOMEM;
1296
1297                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1298                 if (err) {
1299                         f2fs_put_page(page, 1);
1300                         return err;
1301                 }
1302
1303                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1304                 offset = offsetof(struct f2fs_inode, i_addr) +
1305                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1306                                         get_inline_xattr_addrs(inode));
1307
1308                 phys += offset;
1309                 len = inline_xattr_size(inode);
1310
1311                 f2fs_put_page(page, 1);
1312
1313                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1314
1315                 if (!xnid)
1316                         flags |= FIEMAP_EXTENT_LAST;
1317
1318                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1319                 if (err || err == 1)
1320                         return err;
1321         }
1322
1323         if (xnid) {
1324                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1325                 if (!page)
1326                         return -ENOMEM;
1327
1328                 err = f2fs_get_node_info(sbi, xnid, &ni);
1329                 if (err) {
1330                         f2fs_put_page(page, 1);
1331                         return err;
1332                 }
1333
1334                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1335                 len = inode->i_sb->s_blocksize;
1336
1337                 f2fs_put_page(page, 1);
1338
1339                 flags = FIEMAP_EXTENT_LAST;
1340         }
1341
1342         if (phys)
1343                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1344
1345         return (err < 0 ? err : 0);
1346 }
1347
1348 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1349                 u64 start, u64 len)
1350 {
1351         struct buffer_head map_bh;
1352         sector_t start_blk, last_blk;
1353         pgoff_t next_pgofs;
1354         u64 logical = 0, phys = 0, size = 0;
1355         u32 flags = 0;
1356         int ret = 0;
1357
1358         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1359                 ret = f2fs_precache_extents(inode);
1360                 if (ret)
1361                         return ret;
1362         }
1363
1364         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1365         if (ret)
1366                 return ret;
1367
1368         inode_lock(inode);
1369
1370         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1371                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1372                 goto out;
1373         }
1374
1375         if (f2fs_has_inline_data(inode)) {
1376                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1377                 if (ret != -EAGAIN)
1378                         goto out;
1379         }
1380
1381         if (logical_to_blk(inode, len) == 0)
1382                 len = blk_to_logical(inode, 1);
1383
1384         start_blk = logical_to_blk(inode, start);
1385         last_blk = logical_to_blk(inode, start + len - 1);
1386
1387 next:
1388         memset(&map_bh, 0, sizeof(struct buffer_head));
1389         map_bh.b_size = len;
1390
1391         ret = get_data_block(inode, start_blk, &map_bh, 0,
1392                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1393         if (ret)
1394                 goto out;
1395
1396         /* HOLE */
1397         if (!buffer_mapped(&map_bh)) {
1398                 start_blk = next_pgofs;
1399
1400                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1401                                         F2FS_I_SB(inode)->max_file_blocks))
1402                         goto prep_next;
1403
1404                 flags |= FIEMAP_EXTENT_LAST;
1405         }
1406
1407         if (size) {
1408                 if (f2fs_encrypted_inode(inode))
1409                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1410
1411                 ret = fiemap_fill_next_extent(fieinfo, logical,
1412                                 phys, size, flags);
1413         }
1414
1415         if (start_blk > last_blk || ret)
1416                 goto out;
1417
1418         logical = blk_to_logical(inode, start_blk);
1419         phys = blk_to_logical(inode, map_bh.b_blocknr);
1420         size = map_bh.b_size;
1421         flags = 0;
1422         if (buffer_unwritten(&map_bh))
1423                 flags = FIEMAP_EXTENT_UNWRITTEN;
1424
1425         start_blk += logical_to_blk(inode, size);
1426
1427 prep_next:
1428         cond_resched();
1429         if (fatal_signal_pending(current))
1430                 ret = -EINTR;
1431         else
1432                 goto next;
1433 out:
1434         if (ret == 1)
1435                 ret = 0;
1436
1437         inode_unlock(inode);
1438         return ret;
1439 }
1440
1441 /*
1442  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1443  * Major change was from block_size == page_size in f2fs by default.
1444  *
1445  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1446  * this function ever deviates from doing just read-ahead, it should either
1447  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1448  * from read-ahead.
1449  */
1450 static int f2fs_mpage_readpages(struct address_space *mapping,
1451                         struct list_head *pages, struct page *page,
1452                         unsigned nr_pages, bool is_readahead)
1453 {
1454         struct bio *bio = NULL;
1455         sector_t last_block_in_bio = 0;
1456         struct inode *inode = mapping->host;
1457         const unsigned blkbits = inode->i_blkbits;
1458         const unsigned blocksize = 1 << blkbits;
1459         sector_t block_in_file;
1460         sector_t last_block;
1461         sector_t last_block_in_file;
1462         sector_t block_nr;
1463         struct f2fs_map_blocks map;
1464
1465         map.m_pblk = 0;
1466         map.m_lblk = 0;
1467         map.m_len = 0;
1468         map.m_flags = 0;
1469         map.m_next_pgofs = NULL;
1470         map.m_next_extent = NULL;
1471         map.m_seg_type = NO_CHECK_TYPE;
1472
1473         for (; nr_pages; nr_pages--) {
1474                 if (pages) {
1475                         page = list_last_entry(pages, struct page, lru);
1476
1477                         prefetchw(&page->flags);
1478                         list_del(&page->lru);
1479                         if (add_to_page_cache_lru(page, mapping,
1480                                                   page->index,
1481                                                   readahead_gfp_mask(mapping)))
1482                                 goto next_page;
1483                 }
1484
1485                 block_in_file = (sector_t)page->index;
1486                 last_block = block_in_file + nr_pages;
1487                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1488                                                                 blkbits;
1489                 if (last_block > last_block_in_file)
1490                         last_block = last_block_in_file;
1491
1492                 /*
1493                  * Map blocks using the previous result first.
1494                  */
1495                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1496                                 block_in_file > map.m_lblk &&
1497                                 block_in_file < (map.m_lblk + map.m_len))
1498                         goto got_it;
1499
1500                 /*
1501                  * Then do more f2fs_map_blocks() calls until we are
1502                  * done with this page.
1503                  */
1504                 map.m_flags = 0;
1505
1506                 if (block_in_file < last_block) {
1507                         map.m_lblk = block_in_file;
1508                         map.m_len = last_block - block_in_file;
1509
1510                         if (f2fs_map_blocks(inode, &map, 0,
1511                                                 F2FS_GET_BLOCK_DEFAULT))
1512                                 goto set_error_page;
1513                 }
1514 got_it:
1515                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1516                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1517                         SetPageMappedToDisk(page);
1518
1519                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1520                                 SetPageUptodate(page);
1521                                 goto confused;
1522                         }
1523
1524                         if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1525                                                                 DATA_GENERIC))
1526                                 goto set_error_page;
1527                 } else {
1528                         zero_user_segment(page, 0, PAGE_SIZE);
1529                         if (!PageUptodate(page))
1530                                 SetPageUptodate(page);
1531                         unlock_page(page);
1532                         goto next_page;
1533                 }
1534
1535                 /*
1536                  * This page will go to BIO.  Do we need to send this
1537                  * BIO off first?
1538                  */
1539                 if (bio && (last_block_in_bio != block_nr - 1 ||
1540                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1541 submit_and_realloc:
1542                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1543                         bio = NULL;
1544                 }
1545                 if (bio == NULL) {
1546                         bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1547                                         is_readahead ? REQ_RAHEAD : 0);
1548                         if (IS_ERR(bio)) {
1549                                 bio = NULL;
1550                                 goto set_error_page;
1551                         }
1552                 }
1553
1554                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1555                         goto submit_and_realloc;
1556
1557                 last_block_in_bio = block_nr;
1558                 goto next_page;
1559 set_error_page:
1560                 SetPageError(page);
1561                 zero_user_segment(page, 0, PAGE_SIZE);
1562                 unlock_page(page);
1563                 goto next_page;
1564 confused:
1565                 if (bio) {
1566                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1567                         bio = NULL;
1568                 }
1569                 unlock_page(page);
1570 next_page:
1571                 if (pages)
1572                         put_page(page);
1573         }
1574         BUG_ON(pages && !list_empty(pages));
1575         if (bio)
1576                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1577         return 0;
1578 }
1579
1580 static int f2fs_read_data_page(struct file *file, struct page *page)
1581 {
1582         struct inode *inode = page->mapping->host;
1583         int ret = -EAGAIN;
1584
1585         trace_f2fs_readpage(page, DATA);
1586
1587         /* If the file has inline data, try to read it directly */
1588         if (f2fs_has_inline_data(inode))
1589                 ret = f2fs_read_inline_data(inode, page);
1590         if (ret == -EAGAIN)
1591                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1592         return ret;
1593 }
1594
1595 static int f2fs_read_data_pages(struct file *file,
1596                         struct address_space *mapping,
1597                         struct list_head *pages, unsigned nr_pages)
1598 {
1599         struct inode *inode = mapping->host;
1600         struct page *page = list_last_entry(pages, struct page, lru);
1601
1602         trace_f2fs_readpages(inode, page, nr_pages);
1603
1604         /* If the file has inline data, skip readpages */
1605         if (f2fs_has_inline_data(inode))
1606                 return 0;
1607
1608         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1609 }
1610
1611 static int encrypt_one_page(struct f2fs_io_info *fio)
1612 {
1613         struct inode *inode = fio->page->mapping->host;
1614         gfp_t gfp_flags = GFP_NOFS;
1615
1616         if (!f2fs_encrypted_file(inode))
1617                 return 0;
1618
1619         /* wait for GCed page writeback via META_MAPPING */
1620         f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1621
1622 retry_encrypt:
1623         fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1624                         PAGE_SIZE, 0, fio->page->index, gfp_flags);
1625         if (!IS_ERR(fio->encrypted_page))
1626                 return 0;
1627
1628         /* flush pending IOs and wait for a while in the ENOMEM case */
1629         if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1630                 f2fs_flush_merged_writes(fio->sbi);
1631                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1632                 gfp_flags |= __GFP_NOFAIL;
1633                 goto retry_encrypt;
1634         }
1635         return PTR_ERR(fio->encrypted_page);
1636 }
1637
1638 static inline bool check_inplace_update_policy(struct inode *inode,
1639                                 struct f2fs_io_info *fio)
1640 {
1641         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1642         unsigned int policy = SM_I(sbi)->ipu_policy;
1643
1644         if (policy & (0x1 << F2FS_IPU_FORCE))
1645                 return true;
1646         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1647                 return true;
1648         if (policy & (0x1 << F2FS_IPU_UTIL) &&
1649                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1650                 return true;
1651         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1652                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1653                 return true;
1654
1655         /*
1656          * IPU for rewrite async pages
1657          */
1658         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1659                         fio && fio->op == REQ_OP_WRITE &&
1660                         !(fio->op_flags & REQ_SYNC) &&
1661                         !f2fs_encrypted_inode(inode))
1662                 return true;
1663
1664         /* this is only set during fdatasync */
1665         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1666                         is_inode_flag_set(inode, FI_NEED_IPU))
1667                 return true;
1668
1669         return false;
1670 }
1671
1672 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1673 {
1674         if (f2fs_is_pinned_file(inode))
1675                 return true;
1676
1677         /* if this is cold file, we should overwrite to avoid fragmentation */
1678         if (file_is_cold(inode))
1679                 return true;
1680
1681         return check_inplace_update_policy(inode, fio);
1682 }
1683
1684 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1685 {
1686         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1687
1688         if (test_opt(sbi, LFS))
1689                 return true;
1690         if (S_ISDIR(inode->i_mode))
1691                 return true;
1692         if (f2fs_is_atomic_file(inode))
1693                 return true;
1694         if (fio) {
1695                 if (is_cold_data(fio->page))
1696                         return true;
1697                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1698                         return true;
1699         }
1700         return false;
1701 }
1702
1703 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1704 {
1705         struct inode *inode = fio->page->mapping->host;
1706
1707         if (f2fs_should_update_outplace(inode, fio))
1708                 return false;
1709
1710         return f2fs_should_update_inplace(inode, fio);
1711 }
1712
1713 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1714 {
1715         struct page *page = fio->page;
1716         struct inode *inode = page->mapping->host;
1717         struct dnode_of_data dn;
1718         struct extent_info ei = {0,0,0};
1719         struct node_info ni;
1720         bool ipu_force = false;
1721         int err = 0;
1722
1723         set_new_dnode(&dn, inode, NULL, NULL, 0);
1724         if (need_inplace_update(fio) &&
1725                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1726                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1727
1728                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1729                                                         DATA_GENERIC))
1730                         return -EFAULT;
1731
1732                 ipu_force = true;
1733                 fio->need_lock = LOCK_DONE;
1734                 goto got_it;
1735         }
1736
1737         /* Deadlock due to between page->lock and f2fs_lock_op */
1738         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1739                 return -EAGAIN;
1740
1741         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1742         if (err)
1743                 goto out;
1744
1745         fio->old_blkaddr = dn.data_blkaddr;
1746
1747         /* This page is already truncated */
1748         if (fio->old_blkaddr == NULL_ADDR) {
1749                 ClearPageUptodate(page);
1750                 goto out_writepage;
1751         }
1752 got_it:
1753         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1754                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1755                                                         DATA_GENERIC)) {
1756                 err = -EFAULT;
1757                 goto out_writepage;
1758         }
1759         /*
1760          * If current allocation needs SSR,
1761          * it had better in-place writes for updated data.
1762          */
1763         if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1764                                         need_inplace_update(fio))) {
1765                 err = encrypt_one_page(fio);
1766                 if (err)
1767                         goto out_writepage;
1768
1769                 set_page_writeback(page);
1770                 ClearPageError(page);
1771                 f2fs_put_dnode(&dn);
1772                 if (fio->need_lock == LOCK_REQ)
1773                         f2fs_unlock_op(fio->sbi);
1774                 err = f2fs_inplace_write_data(fio);
1775                 trace_f2fs_do_write_data_page(fio->page, IPU);
1776                 set_inode_flag(inode, FI_UPDATE_WRITE);
1777                 return err;
1778         }
1779
1780         if (fio->need_lock == LOCK_RETRY) {
1781                 if (!f2fs_trylock_op(fio->sbi)) {
1782                         err = -EAGAIN;
1783                         goto out_writepage;
1784                 }
1785                 fio->need_lock = LOCK_REQ;
1786         }
1787
1788         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1789         if (err)
1790                 goto out_writepage;
1791
1792         fio->version = ni.version;
1793
1794         err = encrypt_one_page(fio);
1795         if (err)
1796                 goto out_writepage;
1797
1798         set_page_writeback(page);
1799         ClearPageError(page);
1800
1801         /* LFS mode write path */
1802         f2fs_outplace_write_data(&dn, fio);
1803         trace_f2fs_do_write_data_page(page, OPU);
1804         set_inode_flag(inode, FI_APPEND_WRITE);
1805         if (page->index == 0)
1806                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1807 out_writepage:
1808         f2fs_put_dnode(&dn);
1809 out:
1810         if (fio->need_lock == LOCK_REQ)
1811                 f2fs_unlock_op(fio->sbi);
1812         return err;
1813 }
1814
1815 static int __write_data_page(struct page *page, bool *submitted,
1816                                 struct writeback_control *wbc,
1817                                 enum iostat_type io_type)
1818 {
1819         struct inode *inode = page->mapping->host;
1820         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1821         loff_t i_size = i_size_read(inode);
1822         const pgoff_t end_index = ((unsigned long long) i_size)
1823                                                         >> PAGE_SHIFT;
1824         loff_t psize = (page->index + 1) << PAGE_SHIFT;
1825         unsigned offset = 0;
1826         bool need_balance_fs = false;
1827         int err = 0;
1828         struct f2fs_io_info fio = {
1829                 .sbi = sbi,
1830                 .ino = inode->i_ino,
1831                 .type = DATA,
1832                 .op = REQ_OP_WRITE,
1833                 .op_flags = wbc_to_write_flags(wbc),
1834                 .old_blkaddr = NULL_ADDR,
1835                 .page = page,
1836                 .encrypted_page = NULL,
1837                 .submitted = false,
1838                 .need_lock = LOCK_RETRY,
1839                 .io_type = io_type,
1840                 .io_wbc = wbc,
1841         };
1842
1843         trace_f2fs_writepage(page, DATA);
1844
1845         /* we should bypass data pages to proceed the kworkder jobs */
1846         if (unlikely(f2fs_cp_error(sbi))) {
1847                 mapping_set_error(page->mapping, -EIO);
1848                 /*
1849                  * don't drop any dirty dentry pages for keeping lastest
1850                  * directory structure.
1851                  */
1852                 if (S_ISDIR(inode->i_mode))
1853                         goto redirty_out;
1854                 goto out;
1855         }
1856
1857         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1858                 goto redirty_out;
1859
1860         if (page->index < end_index)
1861                 goto write;
1862
1863         /*
1864          * If the offset is out-of-range of file size,
1865          * this page does not have to be written to disk.
1866          */
1867         offset = i_size & (PAGE_SIZE - 1);
1868         if ((page->index >= end_index + 1) || !offset)
1869                 goto out;
1870
1871         zero_user_segment(page, offset, PAGE_SIZE);
1872 write:
1873         if (f2fs_is_drop_cache(inode))
1874                 goto out;
1875         /* we should not write 0'th page having journal header */
1876         if (f2fs_is_volatile_file(inode) && (!page->index ||
1877                         (!wbc->for_reclaim &&
1878                         f2fs_available_free_memory(sbi, BASE_CHECK))))
1879                 goto redirty_out;
1880
1881         /* Dentry blocks are controlled by checkpoint */
1882         if (S_ISDIR(inode->i_mode)) {
1883                 fio.need_lock = LOCK_DONE;
1884                 err = f2fs_do_write_data_page(&fio);
1885                 goto done;
1886         }
1887
1888         if (!wbc->for_reclaim)
1889                 need_balance_fs = true;
1890         else if (has_not_enough_free_secs(sbi, 0, 0))
1891                 goto redirty_out;
1892         else
1893                 set_inode_flag(inode, FI_HOT_DATA);
1894
1895         err = -EAGAIN;
1896         if (f2fs_has_inline_data(inode)) {
1897                 err = f2fs_write_inline_data(inode, page);
1898                 if (!err)
1899                         goto out;
1900         }
1901
1902         if (err == -EAGAIN) {
1903                 err = f2fs_do_write_data_page(&fio);
1904                 if (err == -EAGAIN) {
1905                         fio.need_lock = LOCK_REQ;
1906                         err = f2fs_do_write_data_page(&fio);
1907                 }
1908         }
1909
1910         if (err) {
1911                 file_set_keep_isize(inode);
1912         } else {
1913                 down_write(&F2FS_I(inode)->i_sem);
1914                 if (F2FS_I(inode)->last_disk_size < psize)
1915                         F2FS_I(inode)->last_disk_size = psize;
1916                 up_write(&F2FS_I(inode)->i_sem);
1917         }
1918
1919 done:
1920         if (err && err != -ENOENT)
1921                 goto redirty_out;
1922
1923 out:
1924         inode_dec_dirty_pages(inode);
1925         if (err)
1926                 ClearPageUptodate(page);
1927
1928         if (wbc->for_reclaim) {
1929                 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1930                 clear_inode_flag(inode, FI_HOT_DATA);
1931                 f2fs_remove_dirty_inode(inode);
1932                 submitted = NULL;
1933         }
1934
1935         unlock_page(page);
1936         if (!S_ISDIR(inode->i_mode))
1937                 f2fs_balance_fs(sbi, need_balance_fs);
1938
1939         if (unlikely(f2fs_cp_error(sbi))) {
1940                 f2fs_submit_merged_write(sbi, DATA);
1941                 submitted = NULL;
1942         }
1943
1944         if (submitted)
1945                 *submitted = fio.submitted;
1946
1947         return 0;
1948
1949 redirty_out:
1950         redirty_page_for_writepage(wbc, page);
1951         /*
1952          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1953          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1954          * file_write_and_wait_range() will see EIO error, which is critical
1955          * to return value of fsync() followed by atomic_write failure to user.
1956          */
1957         if (!err || wbc->for_reclaim)
1958                 return AOP_WRITEPAGE_ACTIVATE;
1959         unlock_page(page);
1960         return err;
1961 }
1962
1963 static int f2fs_write_data_page(struct page *page,
1964                                         struct writeback_control *wbc)
1965 {
1966         return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1967 }
1968
1969 /*
1970  * This function was copied from write_cche_pages from mm/page-writeback.c.
1971  * The major change is making write step of cold data page separately from
1972  * warm/hot data page.
1973  */
1974 static int f2fs_write_cache_pages(struct address_space *mapping,
1975                                         struct writeback_control *wbc,
1976                                         enum iostat_type io_type)
1977 {
1978         int ret = 0;
1979         int done = 0;
1980         struct pagevec pvec;
1981         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1982         int nr_pages;
1983         pgoff_t uninitialized_var(writeback_index);
1984         pgoff_t index;
1985         pgoff_t end;            /* Inclusive */
1986         pgoff_t done_index;
1987         pgoff_t last_idx = ULONG_MAX;
1988         int cycled;
1989         int range_whole = 0;
1990         int tag;
1991
1992         pagevec_init(&pvec);
1993
1994         if (get_dirty_pages(mapping->host) <=
1995                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1996                 set_inode_flag(mapping->host, FI_HOT_DATA);
1997         else
1998                 clear_inode_flag(mapping->host, FI_HOT_DATA);
1999
2000         if (wbc->range_cyclic) {
2001                 writeback_index = mapping->writeback_index; /* prev offset */
2002                 index = writeback_index;
2003                 if (index == 0)
2004                         cycled = 1;
2005                 else
2006                         cycled = 0;
2007                 end = -1;
2008         } else {
2009                 index = wbc->range_start >> PAGE_SHIFT;
2010                 end = wbc->range_end >> PAGE_SHIFT;
2011                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2012                         range_whole = 1;
2013                 cycled = 1; /* ignore range_cyclic tests */
2014         }
2015         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2016                 tag = PAGECACHE_TAG_TOWRITE;
2017         else
2018                 tag = PAGECACHE_TAG_DIRTY;
2019 retry:
2020         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2021                 tag_pages_for_writeback(mapping, index, end);
2022         done_index = index;
2023         while (!done && (index <= end)) {
2024                 int i;
2025
2026                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2027                                 tag);
2028                 if (nr_pages == 0)
2029                         break;
2030
2031                 for (i = 0; i < nr_pages; i++) {
2032                         struct page *page = pvec.pages[i];
2033                         bool submitted = false;
2034
2035                         /* give a priority to WB_SYNC threads */
2036                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2037                                         wbc->sync_mode == WB_SYNC_NONE) {
2038                                 done = 1;
2039                                 break;
2040                         }
2041
2042                         done_index = page->index;
2043 retry_write:
2044                         lock_page(page);
2045
2046                         if (unlikely(page->mapping != mapping)) {
2047 continue_unlock:
2048                                 unlock_page(page);
2049                                 continue;
2050                         }
2051
2052                         if (!PageDirty(page)) {
2053                                 /* someone wrote it for us */
2054                                 goto continue_unlock;
2055                         }
2056
2057                         if (PageWriteback(page)) {
2058                                 if (wbc->sync_mode != WB_SYNC_NONE)
2059                                         f2fs_wait_on_page_writeback(page,
2060                                                                 DATA, true);
2061                                 else
2062                                         goto continue_unlock;
2063                         }
2064
2065                         BUG_ON(PageWriteback(page));
2066                         if (!clear_page_dirty_for_io(page))
2067                                 goto continue_unlock;
2068
2069                         ret = __write_data_page(page, &submitted, wbc, io_type);
2070                         if (unlikely(ret)) {
2071                                 /*
2072                                  * keep nr_to_write, since vfs uses this to
2073                                  * get # of written pages.
2074                                  */
2075                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2076                                         unlock_page(page);
2077                                         ret = 0;
2078                                         continue;
2079                                 } else if (ret == -EAGAIN) {
2080                                         ret = 0;
2081                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2082                                                 cond_resched();
2083                                                 congestion_wait(BLK_RW_ASYNC,
2084                                                                         HZ/50);
2085                                                 goto retry_write;
2086                                         }
2087                                         continue;
2088                                 }
2089                                 done_index = page->index + 1;
2090                                 done = 1;
2091                                 break;
2092                         } else if (submitted) {
2093                                 last_idx = page->index;
2094                         }
2095
2096                         if (--wbc->nr_to_write <= 0 &&
2097                                         wbc->sync_mode == WB_SYNC_NONE) {
2098                                 done = 1;
2099                                 break;
2100                         }
2101                 }
2102                 pagevec_release(&pvec);
2103                 cond_resched();
2104         }
2105
2106         if (!cycled && !done) {
2107                 cycled = 1;
2108                 index = 0;
2109                 end = writeback_index - 1;
2110                 goto retry;
2111         }
2112         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2113                 mapping->writeback_index = done_index;
2114
2115         if (last_idx != ULONG_MAX)
2116                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2117                                                 0, last_idx, DATA);
2118
2119         return ret;
2120 }
2121
2122 static int __f2fs_write_data_pages(struct address_space *mapping,
2123                                                 struct writeback_control *wbc,
2124                                                 enum iostat_type io_type)
2125 {
2126         struct inode *inode = mapping->host;
2127         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2128         struct blk_plug plug;
2129         int ret;
2130
2131         /* deal with chardevs and other special file */
2132         if (!mapping->a_ops->writepage)
2133                 return 0;
2134
2135         /* skip writing if there is no dirty page in this inode */
2136         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2137                 return 0;
2138
2139         /* during POR, we don't need to trigger writepage at all. */
2140         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2141                 goto skip_write;
2142
2143         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2144                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2145                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
2146                 goto skip_write;
2147
2148         /* skip writing during file defragment */
2149         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2150                 goto skip_write;
2151
2152         trace_f2fs_writepages(mapping->host, wbc, DATA);
2153
2154         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2155         if (wbc->sync_mode == WB_SYNC_ALL)
2156                 atomic_inc(&sbi->wb_sync_req[DATA]);
2157         else if (atomic_read(&sbi->wb_sync_req[DATA]))
2158                 goto skip_write;
2159
2160         blk_start_plug(&plug);
2161         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2162         blk_finish_plug(&plug);
2163
2164         if (wbc->sync_mode == WB_SYNC_ALL)
2165                 atomic_dec(&sbi->wb_sync_req[DATA]);
2166         /*
2167          * if some pages were truncated, we cannot guarantee its mapping->host
2168          * to detect pending bios.
2169          */
2170
2171         f2fs_remove_dirty_inode(inode);
2172         return ret;
2173
2174 skip_write:
2175         wbc->pages_skipped += get_dirty_pages(inode);
2176         trace_f2fs_writepages(mapping->host, wbc, DATA);
2177         return 0;
2178 }
2179
2180 static int f2fs_write_data_pages(struct address_space *mapping,
2181                             struct writeback_control *wbc)
2182 {
2183         struct inode *inode = mapping->host;
2184
2185         return __f2fs_write_data_pages(mapping, wbc,
2186                         F2FS_I(inode)->cp_task == current ?
2187                         FS_CP_DATA_IO : FS_DATA_IO);
2188 }
2189
2190 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2191 {
2192         struct inode *inode = mapping->host;
2193         loff_t i_size = i_size_read(inode);
2194
2195         if (to > i_size) {
2196                 down_write(&F2FS_I(inode)->i_mmap_sem);
2197                 truncate_pagecache(inode, i_size);
2198                 f2fs_truncate_blocks(inode, i_size, true);
2199                 up_write(&F2FS_I(inode)->i_mmap_sem);
2200         }
2201 }
2202
2203 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2204                         struct page *page, loff_t pos, unsigned len,
2205                         block_t *blk_addr, bool *node_changed)
2206 {
2207         struct inode *inode = page->mapping->host;
2208         pgoff_t index = page->index;
2209         struct dnode_of_data dn;
2210         struct page *ipage;
2211         bool locked = false;
2212         struct extent_info ei = {0,0,0};
2213         int err = 0;
2214
2215         /*
2216          * we already allocated all the blocks, so we don't need to get
2217          * the block addresses when there is no need to fill the page.
2218          */
2219         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2220                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
2221                 return 0;
2222
2223         if (f2fs_has_inline_data(inode) ||
2224                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2225                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2226                 locked = true;
2227         }
2228 restart:
2229         /* check inline_data */
2230         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2231         if (IS_ERR(ipage)) {
2232                 err = PTR_ERR(ipage);
2233                 goto unlock_out;
2234         }
2235
2236         set_new_dnode(&dn, inode, ipage, ipage, 0);
2237
2238         if (f2fs_has_inline_data(inode)) {
2239                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2240                         f2fs_do_read_inline_data(page, ipage);
2241                         set_inode_flag(inode, FI_DATA_EXIST);
2242                         if (inode->i_nlink)
2243                                 set_inline_node(ipage);
2244                 } else {
2245                         err = f2fs_convert_inline_page(&dn, page);
2246                         if (err)
2247                                 goto out;
2248                         if (dn.data_blkaddr == NULL_ADDR)
2249                                 err = f2fs_get_block(&dn, index);
2250                 }
2251         } else if (locked) {
2252                 err = f2fs_get_block(&dn, index);
2253         } else {
2254                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2255                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2256                 } else {
2257                         /* hole case */
2258                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2259                         if (err || dn.data_blkaddr == NULL_ADDR) {
2260                                 f2fs_put_dnode(&dn);
2261                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2262                                                                 true);
2263                                 locked = true;
2264                                 goto restart;
2265                         }
2266                 }
2267         }
2268
2269         /* convert_inline_page can make node_changed */
2270         *blk_addr = dn.data_blkaddr;
2271         *node_changed = dn.node_changed;
2272 out:
2273         f2fs_put_dnode(&dn);
2274 unlock_out:
2275         if (locked)
2276                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2277         return err;
2278 }
2279
2280 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2281                 loff_t pos, unsigned len, unsigned flags,
2282                 struct page **pagep, void **fsdata)
2283 {
2284         struct inode *inode = mapping->host;
2285         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2286         struct page *page = NULL;
2287         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2288         bool need_balance = false, drop_atomic = false;
2289         block_t blkaddr = NULL_ADDR;
2290         int err = 0;
2291
2292         trace_f2fs_write_begin(inode, pos, len, flags);
2293
2294         if ((f2fs_is_atomic_file(inode) &&
2295                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2296                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2297                 err = -ENOMEM;
2298                 drop_atomic = true;
2299                 goto fail;
2300         }
2301
2302         /*
2303          * We should check this at this moment to avoid deadlock on inode page
2304          * and #0 page. The locking rule for inline_data conversion should be:
2305          * lock_page(page #0) -> lock_page(inode_page)
2306          */
2307         if (index != 0) {
2308                 err = f2fs_convert_inline_inode(inode);
2309                 if (err)
2310                         goto fail;
2311         }
2312 repeat:
2313         /*
2314          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2315          * wait_for_stable_page. Will wait that below with our IO control.
2316          */
2317         page = f2fs_pagecache_get_page(mapping, index,
2318                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2319         if (!page) {
2320                 err = -ENOMEM;
2321                 goto fail;
2322         }
2323
2324         *pagep = page;
2325
2326         err = prepare_write_begin(sbi, page, pos, len,
2327                                         &blkaddr, &need_balance);
2328         if (err)
2329                 goto fail;
2330
2331         if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2332                 unlock_page(page);
2333                 f2fs_balance_fs(sbi, true);
2334                 lock_page(page);
2335                 if (page->mapping != mapping) {
2336                         /* The page got truncated from under us */
2337                         f2fs_put_page(page, 1);
2338                         goto repeat;
2339                 }
2340         }
2341
2342         f2fs_wait_on_page_writeback(page, DATA, false);
2343
2344         /* wait for GCed page writeback via META_MAPPING */
2345         if (f2fs_post_read_required(inode))
2346                 f2fs_wait_on_block_writeback(sbi, blkaddr);
2347
2348         if (len == PAGE_SIZE || PageUptodate(page))
2349                 return 0;
2350
2351         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2352                 zero_user_segment(page, len, PAGE_SIZE);
2353                 return 0;
2354         }
2355
2356         if (blkaddr == NEW_ADDR) {
2357                 zero_user_segment(page, 0, PAGE_SIZE);
2358                 SetPageUptodate(page);
2359         } else {
2360                 err = f2fs_submit_page_read(inode, page, blkaddr);
2361                 if (err)
2362                         goto fail;
2363
2364                 lock_page(page);
2365                 if (unlikely(page->mapping != mapping)) {
2366                         f2fs_put_page(page, 1);
2367                         goto repeat;
2368                 }
2369                 if (unlikely(!PageUptodate(page))) {
2370                         err = -EIO;
2371                         goto fail;
2372                 }
2373         }
2374         return 0;
2375
2376 fail:
2377         f2fs_put_page(page, 1);
2378         f2fs_write_failed(mapping, pos + len);
2379         if (drop_atomic)
2380                 f2fs_drop_inmem_pages_all(sbi, false);
2381         return err;
2382 }
2383
2384 static int f2fs_write_end(struct file *file,
2385                         struct address_space *mapping,
2386                         loff_t pos, unsigned len, unsigned copied,
2387                         struct page *page, void *fsdata)
2388 {
2389         struct inode *inode = page->mapping->host;
2390
2391         trace_f2fs_write_end(inode, pos, len, copied);
2392
2393         /*
2394          * This should be come from len == PAGE_SIZE, and we expect copied
2395          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2396          * let generic_perform_write() try to copy data again through copied=0.
2397          */
2398         if (!PageUptodate(page)) {
2399                 if (unlikely(copied != len))
2400                         copied = 0;
2401                 else
2402                         SetPageUptodate(page);
2403         }
2404         if (!copied)
2405                 goto unlock_out;
2406
2407         set_page_dirty(page);
2408
2409         if (pos + copied > i_size_read(inode))
2410                 f2fs_i_size_write(inode, pos + copied);
2411 unlock_out:
2412         f2fs_put_page(page, 1);
2413         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2414         return copied;
2415 }
2416
2417 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2418                            loff_t offset)
2419 {
2420         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2421         unsigned blkbits = i_blkbits;
2422         unsigned blocksize_mask = (1 << blkbits) - 1;
2423         unsigned long align = offset | iov_iter_alignment(iter);
2424         struct block_device *bdev = inode->i_sb->s_bdev;
2425
2426         if (align & blocksize_mask) {
2427                 if (bdev)
2428                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
2429                 blocksize_mask = (1 << blkbits) - 1;
2430                 if (align & blocksize_mask)
2431                         return -EINVAL;
2432                 return 1;
2433         }
2434         return 0;
2435 }
2436
2437 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2438 {
2439         struct address_space *mapping = iocb->ki_filp->f_mapping;
2440         struct inode *inode = mapping->host;
2441         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2442         size_t count = iov_iter_count(iter);
2443         loff_t offset = iocb->ki_pos;
2444         int rw = iov_iter_rw(iter);
2445         int err;
2446         enum rw_hint hint = iocb->ki_hint;
2447         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2448
2449         err = check_direct_IO(inode, iter, offset);
2450         if (err)
2451                 return err < 0 ? err : 0;
2452
2453         if (f2fs_force_buffered_io(inode, rw))
2454                 return 0;
2455
2456         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2457
2458         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2459                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2460
2461         if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2462                 if (iocb->ki_flags & IOCB_NOWAIT) {
2463                         iocb->ki_hint = hint;
2464                         err = -EAGAIN;
2465                         goto out;
2466                 }
2467                 down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2468         }
2469
2470         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2471         up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2472
2473         if (rw == WRITE) {
2474                 if (whint_mode == WHINT_MODE_OFF)
2475                         iocb->ki_hint = hint;
2476                 if (err > 0) {
2477                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2478                                                                         err);
2479                         set_inode_flag(inode, FI_UPDATE_WRITE);
2480                 } else if (err < 0) {
2481                         f2fs_write_failed(mapping, offset + count);
2482                 }
2483         }
2484
2485 out:
2486         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2487
2488         return err;
2489 }
2490
2491 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2492                                                         unsigned int length)
2493 {
2494         struct inode *inode = page->mapping->host;
2495         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2496
2497         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2498                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2499                 return;
2500
2501         if (PageDirty(page)) {
2502                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2503                         dec_page_count(sbi, F2FS_DIRTY_META);
2504                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2505                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2506                 } else {
2507                         inode_dec_dirty_pages(inode);
2508                         f2fs_remove_dirty_inode(inode);
2509                 }
2510         }
2511
2512         /* This is atomic written page, keep Private */
2513         if (IS_ATOMIC_WRITTEN_PAGE(page))
2514                 return f2fs_drop_inmem_page(inode, page);
2515
2516         set_page_private(page, 0);
2517         ClearPagePrivate(page);
2518 }
2519
2520 int f2fs_release_page(struct page *page, gfp_t wait)
2521 {
2522         /* If this is dirty page, keep PagePrivate */
2523         if (PageDirty(page))
2524                 return 0;
2525
2526         /* This is atomic written page, keep Private */
2527         if (IS_ATOMIC_WRITTEN_PAGE(page))
2528                 return 0;
2529
2530         set_page_private(page, 0);
2531         ClearPagePrivate(page);
2532         return 1;
2533 }
2534
2535 static int f2fs_set_data_page_dirty(struct page *page)
2536 {
2537         struct address_space *mapping = page->mapping;
2538         struct inode *inode = mapping->host;
2539
2540         trace_f2fs_set_page_dirty(page, DATA);
2541
2542         if (!PageUptodate(page))
2543                 SetPageUptodate(page);
2544
2545         /* don't remain PG_checked flag which was set during GC */
2546         if (is_cold_data(page))
2547                 clear_cold_data(page);
2548
2549         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2550                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2551                         f2fs_register_inmem_page(inode, page);
2552                         return 1;
2553                 }
2554                 /*
2555                  * Previously, this page has been registered, we just
2556                  * return here.
2557                  */
2558                 return 0;
2559         }
2560
2561         if (!PageDirty(page)) {
2562                 __set_page_dirty_nobuffers(page);
2563                 f2fs_update_dirty_page(inode, page);
2564                 return 1;
2565         }
2566         return 0;
2567 }
2568
2569 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2570 {
2571         struct inode *inode = mapping->host;
2572
2573         if (f2fs_has_inline_data(inode))
2574                 return 0;
2575
2576         /* make sure allocating whole blocks */
2577         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2578                 filemap_write_and_wait(mapping);
2579
2580         return generic_block_bmap(mapping, block, get_data_block_bmap);
2581 }
2582
2583 #ifdef CONFIG_MIGRATION
2584 #include <linux/migrate.h>
2585
2586 int f2fs_migrate_page(struct address_space *mapping,
2587                 struct page *newpage, struct page *page, enum migrate_mode mode)
2588 {
2589         int rc, extra_count;
2590         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2591         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2592
2593         BUG_ON(PageWriteback(page));
2594
2595         /* migrating an atomic written page is safe with the inmem_lock hold */
2596         if (atomic_written) {
2597                 if (mode != MIGRATE_SYNC)
2598                         return -EBUSY;
2599                 if (!mutex_trylock(&fi->inmem_lock))
2600                         return -EAGAIN;
2601         }
2602
2603         /*
2604          * A reference is expected if PagePrivate set when move mapping,
2605          * however F2FS breaks this for maintaining dirty page counts when
2606          * truncating pages. So here adjusting the 'extra_count' make it work.
2607          */
2608         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2609         rc = migrate_page_move_mapping(mapping, newpage,
2610                                 page, NULL, mode, extra_count);
2611         if (rc != MIGRATEPAGE_SUCCESS) {
2612                 if (atomic_written)
2613                         mutex_unlock(&fi->inmem_lock);
2614                 return rc;
2615         }
2616
2617         if (atomic_written) {
2618                 struct inmem_pages *cur;
2619                 list_for_each_entry(cur, &fi->inmem_pages, list)
2620                         if (cur->page == page) {
2621                                 cur->page = newpage;
2622                                 break;
2623                         }
2624                 mutex_unlock(&fi->inmem_lock);
2625                 put_page(page);
2626                 get_page(newpage);
2627         }
2628
2629         if (PagePrivate(page))
2630                 SetPagePrivate(newpage);
2631         set_page_private(newpage, page_private(page));
2632
2633         if (mode != MIGRATE_SYNC_NO_COPY)
2634                 migrate_page_copy(newpage, page);
2635         else
2636                 migrate_page_states(newpage, page);
2637
2638         return MIGRATEPAGE_SUCCESS;
2639 }
2640 #endif
2641
2642 const struct address_space_operations f2fs_dblock_aops = {
2643         .readpage       = f2fs_read_data_page,
2644         .readpages      = f2fs_read_data_pages,
2645         .writepage      = f2fs_write_data_page,
2646         .writepages     = f2fs_write_data_pages,
2647         .write_begin    = f2fs_write_begin,
2648         .write_end      = f2fs_write_end,
2649         .set_page_dirty = f2fs_set_data_page_dirty,
2650         .invalidatepage = f2fs_invalidate_page,
2651         .releasepage    = f2fs_release_page,
2652         .direct_IO      = f2fs_direct_IO,
2653         .bmap           = f2fs_bmap,
2654 #ifdef CONFIG_MIGRATION
2655         .migratepage    = f2fs_migrate_page,
2656 #endif
2657 };
2658
2659 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2660 {
2661         struct address_space *mapping = page_mapping(page);
2662         unsigned long flags;
2663
2664         xa_lock_irqsave(&mapping->i_pages, flags);
2665         radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2666                                                 PAGECACHE_TAG_DIRTY);
2667         xa_unlock_irqrestore(&mapping->i_pages, flags);
2668 }
2669
2670 int __init f2fs_init_post_read_processing(void)
2671 {
2672         bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2673         if (!bio_post_read_ctx_cache)
2674                 goto fail;
2675         bio_post_read_ctx_pool =
2676                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2677                                          bio_post_read_ctx_cache);
2678         if (!bio_post_read_ctx_pool)
2679                 goto fail_free_cache;
2680         return 0;
2681
2682 fail_free_cache:
2683         kmem_cache_destroy(bio_post_read_ctx_cache);
2684 fail:
2685         return -ENOMEM;
2686 }
2687
2688 void __exit f2fs_destroy_post_read_processing(void)
2689 {
2690         mempool_destroy(bio_post_read_ctx_pool);
2691         kmem_cache_destroy(bio_post_read_ctx_cache);
2692 }