f2fs: don't wait writeback for datas during checkpoint
[linux-2.6-block.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31
32 static bool __is_cp_guaranteed(struct page *page)
33 {
34         struct address_space *mapping = page->mapping;
35         struct inode *inode;
36         struct f2fs_sb_info *sbi;
37
38         if (!mapping)
39                 return false;
40
41         inode = mapping->host;
42         sbi = F2FS_I_SB(inode);
43
44         if (inode->i_ino == F2FS_META_INO(sbi) ||
45                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
46                         S_ISDIR(inode->i_mode) ||
47                         is_cold_data(page))
48                 return true;
49         return false;
50 }
51
52 static void f2fs_read_end_io(struct bio *bio)
53 {
54         struct bio_vec *bvec;
55         int i;
56
57 #ifdef CONFIG_F2FS_FAULT_INJECTION
58         if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
59                 bio->bi_error = -EIO;
60 #endif
61
62         if (f2fs_bio_encrypted(bio)) {
63                 if (bio->bi_error) {
64                         fscrypt_release_ctx(bio->bi_private);
65                 } else {
66                         fscrypt_decrypt_bio_pages(bio->bi_private, bio);
67                         return;
68                 }
69         }
70
71         bio_for_each_segment_all(bvec, bio, i) {
72                 struct page *page = bvec->bv_page;
73
74                 if (!bio->bi_error) {
75                         if (!PageUptodate(page))
76                                 SetPageUptodate(page);
77                 } else {
78                         ClearPageUptodate(page);
79                         SetPageError(page);
80                 }
81                 unlock_page(page);
82         }
83         bio_put(bio);
84 }
85
86 static void f2fs_write_end_io(struct bio *bio)
87 {
88         struct f2fs_sb_info *sbi = bio->bi_private;
89         struct bio_vec *bvec;
90         int i;
91
92         bio_for_each_segment_all(bvec, bio, i) {
93                 struct page *page = bvec->bv_page;
94                 enum count_type type = WB_DATA_TYPE(page);
95
96                 fscrypt_pullback_bio_page(&page, true);
97
98                 if (unlikely(bio->bi_error)) {
99                         mapping_set_error(page->mapping, -EIO);
100                         f2fs_stop_checkpoint(sbi, true);
101                 }
102                 dec_page_count(sbi, type);
103                 clear_cold_data(page);
104                 end_page_writeback(page);
105         }
106         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
107                                 wq_has_sleeper(&sbi->cp_wait))
108                 wake_up(&sbi->cp_wait);
109
110         bio_put(bio);
111 }
112
113 /*
114  * Return true, if pre_bio's bdev is same as its target device.
115  */
116 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
117                                 block_t blk_addr, struct bio *bio)
118 {
119         struct block_device *bdev = sbi->sb->s_bdev;
120         int i;
121
122         for (i = 0; i < sbi->s_ndevs; i++) {
123                 if (FDEV(i).start_blk <= blk_addr &&
124                                         FDEV(i).end_blk >= blk_addr) {
125                         blk_addr -= FDEV(i).start_blk;
126                         bdev = FDEV(i).bdev;
127                         break;
128                 }
129         }
130         if (bio) {
131                 bio->bi_bdev = bdev;
132                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
133         }
134         return bdev;
135 }
136
137 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
138 {
139         int i;
140
141         for (i = 0; i < sbi->s_ndevs; i++)
142                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
143                         return i;
144         return 0;
145 }
146
147 static bool __same_bdev(struct f2fs_sb_info *sbi,
148                                 block_t blk_addr, struct bio *bio)
149 {
150         return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
151 }
152
153 /*
154  * Low-level block read/write IO operations.
155  */
156 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
157                                 int npages, bool is_read)
158 {
159         struct bio *bio;
160
161         bio = f2fs_bio_alloc(npages);
162
163         f2fs_target_device(sbi, blk_addr, bio);
164         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
165         bio->bi_private = is_read ? NULL : sbi;
166
167         return bio;
168 }
169
170 static inline void __submit_bio(struct f2fs_sb_info *sbi,
171                                 struct bio *bio, enum page_type type)
172 {
173         if (!is_read_io(bio_op(bio))) {
174                 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
175                         current->plug && (type == DATA || type == NODE))
176                         blk_finish_plug(current->plug);
177         }
178         submit_bio(bio);
179 }
180
181 static void __submit_merged_bio(struct f2fs_bio_info *io)
182 {
183         struct f2fs_io_info *fio = &io->fio;
184
185         if (!io->bio)
186                 return;
187
188         if (is_read_io(fio->op))
189                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
190         else
191                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
192
193         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
194
195         __submit_bio(io->sbi, io->bio, fio->type);
196         io->bio = NULL;
197 }
198
199 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
200                                                 struct page *page, nid_t ino)
201 {
202         struct bio_vec *bvec;
203         struct page *target;
204         int i;
205
206         if (!io->bio)
207                 return false;
208
209         if (!inode && !page && !ino)
210                 return true;
211
212         bio_for_each_segment_all(bvec, io->bio, i) {
213
214                 if (bvec->bv_page->mapping)
215                         target = bvec->bv_page;
216                 else
217                         target = fscrypt_control_page(bvec->bv_page);
218
219                 if (inode && inode == target->mapping->host)
220                         return true;
221                 if (page && page == target)
222                         return true;
223                 if (ino && ino == ino_of_node(target))
224                         return true;
225         }
226
227         return false;
228 }
229
230 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
231                                                 struct page *page, nid_t ino,
232                                                 enum page_type type)
233 {
234         enum page_type btype = PAGE_TYPE_OF_BIO(type);
235         struct f2fs_bio_info *io = &sbi->write_io[btype];
236         bool ret;
237
238         down_read(&io->io_rwsem);
239         ret = __has_merged_page(io, inode, page, ino);
240         up_read(&io->io_rwsem);
241         return ret;
242 }
243
244 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
245                                 struct inode *inode, struct page *page,
246                                 nid_t ino, enum page_type type, int rw)
247 {
248         enum page_type btype = PAGE_TYPE_OF_BIO(type);
249         struct f2fs_bio_info *io;
250
251         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
252
253         down_write(&io->io_rwsem);
254
255         if (!__has_merged_page(io, inode, page, ino))
256                 goto out;
257
258         /* change META to META_FLUSH in the checkpoint procedure */
259         if (type >= META_FLUSH) {
260                 io->fio.type = META_FLUSH;
261                 io->fio.op = REQ_OP_WRITE;
262                 if (test_opt(sbi, NOBARRIER))
263                         io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
264                 else
265                         io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META |
266                                                                 REQ_PRIO;
267         }
268         __submit_merged_bio(io);
269 out:
270         up_write(&io->io_rwsem);
271 }
272
273 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
274                                                                         int rw)
275 {
276         __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
277 }
278
279 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
280                                 struct inode *inode, struct page *page,
281                                 nid_t ino, enum page_type type, int rw)
282 {
283         if (has_merged_page(sbi, inode, page, ino, type))
284                 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
285 }
286
287 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
288 {
289         f2fs_submit_merged_bio(sbi, DATA, WRITE);
290         f2fs_submit_merged_bio(sbi, NODE, WRITE);
291         f2fs_submit_merged_bio(sbi, META, WRITE);
292 }
293
294 /*
295  * Fill the locked page with data located in the block address.
296  * Return unlocked page.
297  */
298 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
299 {
300         struct bio *bio;
301         struct page *page = fio->encrypted_page ?
302                         fio->encrypted_page : fio->page;
303
304         trace_f2fs_submit_page_bio(page, fio);
305         f2fs_trace_ios(fio, 0);
306
307         /* Allocate a new bio */
308         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
309
310         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
311                 bio_put(bio);
312                 return -EFAULT;
313         }
314         bio_set_op_attrs(bio, fio->op, fio->op_flags);
315
316         __submit_bio(fio->sbi, bio, fio->type);
317         return 0;
318 }
319
320 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
321 {
322         struct f2fs_sb_info *sbi = fio->sbi;
323         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
324         struct f2fs_bio_info *io;
325         bool is_read = is_read_io(fio->op);
326         struct page *bio_page;
327
328         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
329
330         if (fio->old_blkaddr != NEW_ADDR)
331                 verify_block_addr(sbi, fio->old_blkaddr);
332         verify_block_addr(sbi, fio->new_blkaddr);
333
334         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
335
336         if (!is_read)
337                 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
338
339         down_write(&io->io_rwsem);
340
341         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
342             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
343                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
344                 __submit_merged_bio(io);
345 alloc_new:
346         if (io->bio == NULL) {
347                 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
348                                                 BIO_MAX_PAGES, is_read);
349                 io->fio = *fio;
350         }
351
352         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
353                                                         PAGE_SIZE) {
354                 __submit_merged_bio(io);
355                 goto alloc_new;
356         }
357
358         io->last_block_in_bio = fio->new_blkaddr;
359         f2fs_trace_ios(fio, 0);
360
361         up_write(&io->io_rwsem);
362         trace_f2fs_submit_page_mbio(fio->page, fio);
363 }
364
365 static void __set_data_blkaddr(struct dnode_of_data *dn)
366 {
367         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
368         __le32 *addr_array;
369
370         /* Get physical address of data block */
371         addr_array = blkaddr_in_node(rn);
372         addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
373 }
374
375 /*
376  * Lock ordering for the change of data block address:
377  * ->data_page
378  *  ->node_page
379  *    update block addresses in the node page
380  */
381 void set_data_blkaddr(struct dnode_of_data *dn)
382 {
383         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
384         __set_data_blkaddr(dn);
385         if (set_page_dirty(dn->node_page))
386                 dn->node_changed = true;
387 }
388
389 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
390 {
391         dn->data_blkaddr = blkaddr;
392         set_data_blkaddr(dn);
393         f2fs_update_extent_cache(dn);
394 }
395
396 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
397 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
398 {
399         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
400
401         if (!count)
402                 return 0;
403
404         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
405                 return -EPERM;
406         if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
407                 return -ENOSPC;
408
409         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
410                                                 dn->ofs_in_node, count);
411
412         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
413
414         for (; count > 0; dn->ofs_in_node++) {
415                 block_t blkaddr =
416                         datablock_addr(dn->node_page, dn->ofs_in_node);
417                 if (blkaddr == NULL_ADDR) {
418                         dn->data_blkaddr = NEW_ADDR;
419                         __set_data_blkaddr(dn);
420                         count--;
421                 }
422         }
423
424         if (set_page_dirty(dn->node_page))
425                 dn->node_changed = true;
426         return 0;
427 }
428
429 /* Should keep dn->ofs_in_node unchanged */
430 int reserve_new_block(struct dnode_of_data *dn)
431 {
432         unsigned int ofs_in_node = dn->ofs_in_node;
433         int ret;
434
435         ret = reserve_new_blocks(dn, 1);
436         dn->ofs_in_node = ofs_in_node;
437         return ret;
438 }
439
440 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
441 {
442         bool need_put = dn->inode_page ? false : true;
443         int err;
444
445         err = get_dnode_of_data(dn, index, ALLOC_NODE);
446         if (err)
447                 return err;
448
449         if (dn->data_blkaddr == NULL_ADDR)
450                 err = reserve_new_block(dn);
451         if (err || need_put)
452                 f2fs_put_dnode(dn);
453         return err;
454 }
455
456 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
457 {
458         struct extent_info ei;
459         struct inode *inode = dn->inode;
460
461         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
462                 dn->data_blkaddr = ei.blk + index - ei.fofs;
463                 return 0;
464         }
465
466         return f2fs_reserve_block(dn, index);
467 }
468
469 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
470                                                 int op_flags, bool for_write)
471 {
472         struct address_space *mapping = inode->i_mapping;
473         struct dnode_of_data dn;
474         struct page *page;
475         struct extent_info ei;
476         int err;
477         struct f2fs_io_info fio = {
478                 .sbi = F2FS_I_SB(inode),
479                 .type = DATA,
480                 .op = REQ_OP_READ,
481                 .op_flags = op_flags,
482                 .encrypted_page = NULL,
483         };
484
485         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
486                 return read_mapping_page(mapping, index, NULL);
487
488         page = f2fs_grab_cache_page(mapping, index, for_write);
489         if (!page)
490                 return ERR_PTR(-ENOMEM);
491
492         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
493                 dn.data_blkaddr = ei.blk + index - ei.fofs;
494                 goto got_it;
495         }
496
497         set_new_dnode(&dn, inode, NULL, NULL, 0);
498         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
499         if (err)
500                 goto put_err;
501         f2fs_put_dnode(&dn);
502
503         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
504                 err = -ENOENT;
505                 goto put_err;
506         }
507 got_it:
508         if (PageUptodate(page)) {
509                 unlock_page(page);
510                 return page;
511         }
512
513         /*
514          * A new dentry page is allocated but not able to be written, since its
515          * new inode page couldn't be allocated due to -ENOSPC.
516          * In such the case, its blkaddr can be remained as NEW_ADDR.
517          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
518          */
519         if (dn.data_blkaddr == NEW_ADDR) {
520                 zero_user_segment(page, 0, PAGE_SIZE);
521                 if (!PageUptodate(page))
522                         SetPageUptodate(page);
523                 unlock_page(page);
524                 return page;
525         }
526
527         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
528         fio.page = page;
529         err = f2fs_submit_page_bio(&fio);
530         if (err)
531                 goto put_err;
532         return page;
533
534 put_err:
535         f2fs_put_page(page, 1);
536         return ERR_PTR(err);
537 }
538
539 struct page *find_data_page(struct inode *inode, pgoff_t index)
540 {
541         struct address_space *mapping = inode->i_mapping;
542         struct page *page;
543
544         page = find_get_page(mapping, index);
545         if (page && PageUptodate(page))
546                 return page;
547         f2fs_put_page(page, 0);
548
549         page = get_read_data_page(inode, index, READ_SYNC, false);
550         if (IS_ERR(page))
551                 return page;
552
553         if (PageUptodate(page))
554                 return page;
555
556         wait_on_page_locked(page);
557         if (unlikely(!PageUptodate(page))) {
558                 f2fs_put_page(page, 0);
559                 return ERR_PTR(-EIO);
560         }
561         return page;
562 }
563
564 /*
565  * If it tries to access a hole, return an error.
566  * Because, the callers, functions in dir.c and GC, should be able to know
567  * whether this page exists or not.
568  */
569 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
570                                                         bool for_write)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct page *page;
574 repeat:
575         page = get_read_data_page(inode, index, READ_SYNC, for_write);
576         if (IS_ERR(page))
577                 return page;
578
579         /* wait for read completion */
580         lock_page(page);
581         if (unlikely(page->mapping != mapping)) {
582                 f2fs_put_page(page, 1);
583                 goto repeat;
584         }
585         if (unlikely(!PageUptodate(page))) {
586                 f2fs_put_page(page, 1);
587                 return ERR_PTR(-EIO);
588         }
589         return page;
590 }
591
592 /*
593  * Caller ensures that this data page is never allocated.
594  * A new zero-filled data page is allocated in the page cache.
595  *
596  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
597  * f2fs_unlock_op().
598  * Note that, ipage is set only by make_empty_dir, and if any error occur,
599  * ipage should be released by this function.
600  */
601 struct page *get_new_data_page(struct inode *inode,
602                 struct page *ipage, pgoff_t index, bool new_i_size)
603 {
604         struct address_space *mapping = inode->i_mapping;
605         struct page *page;
606         struct dnode_of_data dn;
607         int err;
608
609         page = f2fs_grab_cache_page(mapping, index, true);
610         if (!page) {
611                 /*
612                  * before exiting, we should make sure ipage will be released
613                  * if any error occur.
614                  */
615                 f2fs_put_page(ipage, 1);
616                 return ERR_PTR(-ENOMEM);
617         }
618
619         set_new_dnode(&dn, inode, ipage, NULL, 0);
620         err = f2fs_reserve_block(&dn, index);
621         if (err) {
622                 f2fs_put_page(page, 1);
623                 return ERR_PTR(err);
624         }
625         if (!ipage)
626                 f2fs_put_dnode(&dn);
627
628         if (PageUptodate(page))
629                 goto got_it;
630
631         if (dn.data_blkaddr == NEW_ADDR) {
632                 zero_user_segment(page, 0, PAGE_SIZE);
633                 if (!PageUptodate(page))
634                         SetPageUptodate(page);
635         } else {
636                 f2fs_put_page(page, 1);
637
638                 /* if ipage exists, blkaddr should be NEW_ADDR */
639                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
640                 page = get_lock_data_page(inode, index, true);
641                 if (IS_ERR(page))
642                         return page;
643         }
644 got_it:
645         if (new_i_size && i_size_read(inode) <
646                                 ((loff_t)(index + 1) << PAGE_SHIFT))
647                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
648         return page;
649 }
650
651 static int __allocate_data_block(struct dnode_of_data *dn)
652 {
653         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
654         struct f2fs_summary sum;
655         struct node_info ni;
656         pgoff_t fofs;
657         blkcnt_t count = 1;
658
659         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
660                 return -EPERM;
661
662         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
663         if (dn->data_blkaddr == NEW_ADDR)
664                 goto alloc;
665
666         if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
667                 return -ENOSPC;
668
669 alloc:
670         get_node_info(sbi, dn->nid, &ni);
671         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
672
673         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
674                                                 &sum, CURSEG_WARM_DATA);
675         set_data_blkaddr(dn);
676
677         /* update i_size */
678         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
679                                                         dn->ofs_in_node;
680         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
681                 f2fs_i_size_write(dn->inode,
682                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
683         return 0;
684 }
685
686 static inline bool __force_buffered_io(struct inode *inode, int rw)
687 {
688         return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
689                         (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
690                         F2FS_I_SB(inode)->s_ndevs);
691 }
692
693 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
694 {
695         struct inode *inode = file_inode(iocb->ki_filp);
696         struct f2fs_map_blocks map;
697         int err = 0;
698
699         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
700         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
701         if (map.m_len > map.m_lblk)
702                 map.m_len -= map.m_lblk;
703         else
704                 map.m_len = 0;
705
706         map.m_next_pgofs = NULL;
707
708         if (iocb->ki_flags & IOCB_DIRECT) {
709                 err = f2fs_convert_inline_inode(inode);
710                 if (err)
711                         return err;
712                 return f2fs_map_blocks(inode, &map, 1,
713                         __force_buffered_io(inode, WRITE) ?
714                                 F2FS_GET_BLOCK_PRE_AIO :
715                                 F2FS_GET_BLOCK_PRE_DIO);
716         }
717         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
718                 err = f2fs_convert_inline_inode(inode);
719                 if (err)
720                         return err;
721         }
722         if (!f2fs_has_inline_data(inode))
723                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
724         return err;
725 }
726
727 /*
728  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
729  * f2fs_map_blocks structure.
730  * If original data blocks are allocated, then give them to blockdev.
731  * Otherwise,
732  *     a. preallocate requested block addresses
733  *     b. do not use extent cache for better performance
734  *     c. give the block addresses to blockdev
735  */
736 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
737                                                 int create, int flag)
738 {
739         unsigned int maxblocks = map->m_len;
740         struct dnode_of_data dn;
741         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
742         int mode = create ? ALLOC_NODE : LOOKUP_NODE;
743         pgoff_t pgofs, end_offset, end;
744         int err = 0, ofs = 1;
745         unsigned int ofs_in_node, last_ofs_in_node;
746         blkcnt_t prealloc;
747         struct extent_info ei;
748         block_t blkaddr;
749
750         if (!maxblocks)
751                 return 0;
752
753         map->m_len = 0;
754         map->m_flags = 0;
755
756         /* it only supports block size == page size */
757         pgofs = (pgoff_t)map->m_lblk;
758         end = pgofs + maxblocks;
759
760         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
761                 map->m_pblk = ei.blk + pgofs - ei.fofs;
762                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
763                 map->m_flags = F2FS_MAP_MAPPED;
764                 goto out;
765         }
766
767 next_dnode:
768         if (create)
769                 f2fs_lock_op(sbi);
770
771         /* When reading holes, we need its node page */
772         set_new_dnode(&dn, inode, NULL, NULL, 0);
773         err = get_dnode_of_data(&dn, pgofs, mode);
774         if (err) {
775                 if (flag == F2FS_GET_BLOCK_BMAP)
776                         map->m_pblk = 0;
777                 if (err == -ENOENT) {
778                         err = 0;
779                         if (map->m_next_pgofs)
780                                 *map->m_next_pgofs =
781                                         get_next_page_offset(&dn, pgofs);
782                 }
783                 goto unlock_out;
784         }
785
786         prealloc = 0;
787         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
788         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
789
790 next_block:
791         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
792
793         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
794                 if (create) {
795                         if (unlikely(f2fs_cp_error(sbi))) {
796                                 err = -EIO;
797                                 goto sync_out;
798                         }
799                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
800                                 if (blkaddr == NULL_ADDR) {
801                                         prealloc++;
802                                         last_ofs_in_node = dn.ofs_in_node;
803                                 }
804                         } else {
805                                 err = __allocate_data_block(&dn);
806                                 if (!err)
807                                         set_inode_flag(inode, FI_APPEND_WRITE);
808                         }
809                         if (err)
810                                 goto sync_out;
811                         map->m_flags = F2FS_MAP_NEW;
812                         blkaddr = dn.data_blkaddr;
813                 } else {
814                         if (flag == F2FS_GET_BLOCK_BMAP) {
815                                 map->m_pblk = 0;
816                                 goto sync_out;
817                         }
818                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
819                                                 blkaddr == NULL_ADDR) {
820                                 if (map->m_next_pgofs)
821                                         *map->m_next_pgofs = pgofs + 1;
822                         }
823                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
824                                                 blkaddr != NEW_ADDR)
825                                 goto sync_out;
826                 }
827         }
828
829         if (flag == F2FS_GET_BLOCK_PRE_AIO)
830                 goto skip;
831
832         if (map->m_len == 0) {
833                 /* preallocated unwritten block should be mapped for fiemap. */
834                 if (blkaddr == NEW_ADDR)
835                         map->m_flags |= F2FS_MAP_UNWRITTEN;
836                 map->m_flags |= F2FS_MAP_MAPPED;
837
838                 map->m_pblk = blkaddr;
839                 map->m_len = 1;
840         } else if ((map->m_pblk != NEW_ADDR &&
841                         blkaddr == (map->m_pblk + ofs)) ||
842                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
843                         flag == F2FS_GET_BLOCK_PRE_DIO) {
844                 ofs++;
845                 map->m_len++;
846         } else {
847                 goto sync_out;
848         }
849
850 skip:
851         dn.ofs_in_node++;
852         pgofs++;
853
854         /* preallocate blocks in batch for one dnode page */
855         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
856                         (pgofs == end || dn.ofs_in_node == end_offset)) {
857
858                 dn.ofs_in_node = ofs_in_node;
859                 err = reserve_new_blocks(&dn, prealloc);
860                 if (err)
861                         goto sync_out;
862
863                 map->m_len += dn.ofs_in_node - ofs_in_node;
864                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
865                         err = -ENOSPC;
866                         goto sync_out;
867                 }
868                 dn.ofs_in_node = end_offset;
869         }
870
871         if (pgofs >= end)
872                 goto sync_out;
873         else if (dn.ofs_in_node < end_offset)
874                 goto next_block;
875
876         f2fs_put_dnode(&dn);
877
878         if (create) {
879                 f2fs_unlock_op(sbi);
880                 f2fs_balance_fs(sbi, dn.node_changed);
881         }
882         goto next_dnode;
883
884 sync_out:
885         f2fs_put_dnode(&dn);
886 unlock_out:
887         if (create) {
888                 f2fs_unlock_op(sbi);
889                 f2fs_balance_fs(sbi, dn.node_changed);
890         }
891 out:
892         trace_f2fs_map_blocks(inode, map, err);
893         return err;
894 }
895
896 static int __get_data_block(struct inode *inode, sector_t iblock,
897                         struct buffer_head *bh, int create, int flag,
898                         pgoff_t *next_pgofs)
899 {
900         struct f2fs_map_blocks map;
901         int err;
902
903         map.m_lblk = iblock;
904         map.m_len = bh->b_size >> inode->i_blkbits;
905         map.m_next_pgofs = next_pgofs;
906
907         err = f2fs_map_blocks(inode, &map, create, flag);
908         if (!err) {
909                 map_bh(bh, inode->i_sb, map.m_pblk);
910                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
911                 bh->b_size = map.m_len << inode->i_blkbits;
912         }
913         return err;
914 }
915
916 static int get_data_block(struct inode *inode, sector_t iblock,
917                         struct buffer_head *bh_result, int create, int flag,
918                         pgoff_t *next_pgofs)
919 {
920         return __get_data_block(inode, iblock, bh_result, create,
921                                                         flag, next_pgofs);
922 }
923
924 static int get_data_block_dio(struct inode *inode, sector_t iblock,
925                         struct buffer_head *bh_result, int create)
926 {
927         return __get_data_block(inode, iblock, bh_result, create,
928                                                 F2FS_GET_BLOCK_DIO, NULL);
929 }
930
931 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
932                         struct buffer_head *bh_result, int create)
933 {
934         /* Block number less than F2FS MAX BLOCKS */
935         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
936                 return -EFBIG;
937
938         return __get_data_block(inode, iblock, bh_result, create,
939                                                 F2FS_GET_BLOCK_BMAP, NULL);
940 }
941
942 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
943 {
944         return (offset >> inode->i_blkbits);
945 }
946
947 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
948 {
949         return (blk << inode->i_blkbits);
950 }
951
952 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
953                 u64 start, u64 len)
954 {
955         struct buffer_head map_bh;
956         sector_t start_blk, last_blk;
957         pgoff_t next_pgofs;
958         u64 logical = 0, phys = 0, size = 0;
959         u32 flags = 0;
960         int ret = 0;
961
962         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
963         if (ret)
964                 return ret;
965
966         if (f2fs_has_inline_data(inode)) {
967                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
968                 if (ret != -EAGAIN)
969                         return ret;
970         }
971
972         inode_lock(inode);
973
974         if (logical_to_blk(inode, len) == 0)
975                 len = blk_to_logical(inode, 1);
976
977         start_blk = logical_to_blk(inode, start);
978         last_blk = logical_to_blk(inode, start + len - 1);
979
980 next:
981         memset(&map_bh, 0, sizeof(struct buffer_head));
982         map_bh.b_size = len;
983
984         ret = get_data_block(inode, start_blk, &map_bh, 0,
985                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
986         if (ret)
987                 goto out;
988
989         /* HOLE */
990         if (!buffer_mapped(&map_bh)) {
991                 start_blk = next_pgofs;
992
993                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
994                                         F2FS_I_SB(inode)->max_file_blocks))
995                         goto prep_next;
996
997                 flags |= FIEMAP_EXTENT_LAST;
998         }
999
1000         if (size) {
1001                 if (f2fs_encrypted_inode(inode))
1002                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1003
1004                 ret = fiemap_fill_next_extent(fieinfo, logical,
1005                                 phys, size, flags);
1006         }
1007
1008         if (start_blk > last_blk || ret)
1009                 goto out;
1010
1011         logical = blk_to_logical(inode, start_blk);
1012         phys = blk_to_logical(inode, map_bh.b_blocknr);
1013         size = map_bh.b_size;
1014         flags = 0;
1015         if (buffer_unwritten(&map_bh))
1016                 flags = FIEMAP_EXTENT_UNWRITTEN;
1017
1018         start_blk += logical_to_blk(inode, size);
1019
1020 prep_next:
1021         cond_resched();
1022         if (fatal_signal_pending(current))
1023                 ret = -EINTR;
1024         else
1025                 goto next;
1026 out:
1027         if (ret == 1)
1028                 ret = 0;
1029
1030         inode_unlock(inode);
1031         return ret;
1032 }
1033
1034 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1035                                  unsigned nr_pages)
1036 {
1037         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038         struct fscrypt_ctx *ctx = NULL;
1039         struct bio *bio;
1040
1041         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1042                 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1043                 if (IS_ERR(ctx))
1044                         return ERR_CAST(ctx);
1045
1046                 /* wait the page to be moved by cleaning */
1047                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1048         }
1049
1050         bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1051         if (!bio) {
1052                 if (ctx)
1053                         fscrypt_release_ctx(ctx);
1054                 return ERR_PTR(-ENOMEM);
1055         }
1056         f2fs_target_device(sbi, blkaddr, bio);
1057         bio->bi_end_io = f2fs_read_end_io;
1058         bio->bi_private = ctx;
1059
1060         return bio;
1061 }
1062
1063 /*
1064  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1065  * Major change was from block_size == page_size in f2fs by default.
1066  */
1067 static int f2fs_mpage_readpages(struct address_space *mapping,
1068                         struct list_head *pages, struct page *page,
1069                         unsigned nr_pages)
1070 {
1071         struct bio *bio = NULL;
1072         unsigned page_idx;
1073         sector_t last_block_in_bio = 0;
1074         struct inode *inode = mapping->host;
1075         const unsigned blkbits = inode->i_blkbits;
1076         const unsigned blocksize = 1 << blkbits;
1077         sector_t block_in_file;
1078         sector_t last_block;
1079         sector_t last_block_in_file;
1080         sector_t block_nr;
1081         struct f2fs_map_blocks map;
1082
1083         map.m_pblk = 0;
1084         map.m_lblk = 0;
1085         map.m_len = 0;
1086         map.m_flags = 0;
1087         map.m_next_pgofs = NULL;
1088
1089         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1090
1091                 prefetchw(&page->flags);
1092                 if (pages) {
1093                         page = list_entry(pages->prev, struct page, lru);
1094                         list_del(&page->lru);
1095                         if (add_to_page_cache_lru(page, mapping,
1096                                                   page->index,
1097                                                   readahead_gfp_mask(mapping)))
1098                                 goto next_page;
1099                 }
1100
1101                 block_in_file = (sector_t)page->index;
1102                 last_block = block_in_file + nr_pages;
1103                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1104                                                                 blkbits;
1105                 if (last_block > last_block_in_file)
1106                         last_block = last_block_in_file;
1107
1108                 /*
1109                  * Map blocks using the previous result first.
1110                  */
1111                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1112                                 block_in_file > map.m_lblk &&
1113                                 block_in_file < (map.m_lblk + map.m_len))
1114                         goto got_it;
1115
1116                 /*
1117                  * Then do more f2fs_map_blocks() calls until we are
1118                  * done with this page.
1119                  */
1120                 map.m_flags = 0;
1121
1122                 if (block_in_file < last_block) {
1123                         map.m_lblk = block_in_file;
1124                         map.m_len = last_block - block_in_file;
1125
1126                         if (f2fs_map_blocks(inode, &map, 0,
1127                                                 F2FS_GET_BLOCK_READ))
1128                                 goto set_error_page;
1129                 }
1130 got_it:
1131                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1132                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1133                         SetPageMappedToDisk(page);
1134
1135                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1136                                 SetPageUptodate(page);
1137                                 goto confused;
1138                         }
1139                 } else {
1140                         zero_user_segment(page, 0, PAGE_SIZE);
1141                         if (!PageUptodate(page))
1142                                 SetPageUptodate(page);
1143                         unlock_page(page);
1144                         goto next_page;
1145                 }
1146
1147                 /*
1148                  * This page will go to BIO.  Do we need to send this
1149                  * BIO off first?
1150                  */
1151                 if (bio && (last_block_in_bio != block_nr - 1 ||
1152                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1153 submit_and_realloc:
1154                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1155                         bio = NULL;
1156                 }
1157                 if (bio == NULL) {
1158                         bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1159                         if (IS_ERR(bio)) {
1160                                 bio = NULL;
1161                                 goto set_error_page;
1162                         }
1163                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
1164                 }
1165
1166                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1167                         goto submit_and_realloc;
1168
1169                 last_block_in_bio = block_nr;
1170                 goto next_page;
1171 set_error_page:
1172                 SetPageError(page);
1173                 zero_user_segment(page, 0, PAGE_SIZE);
1174                 unlock_page(page);
1175                 goto next_page;
1176 confused:
1177                 if (bio) {
1178                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1179                         bio = NULL;
1180                 }
1181                 unlock_page(page);
1182 next_page:
1183                 if (pages)
1184                         put_page(page);
1185         }
1186         BUG_ON(pages && !list_empty(pages));
1187         if (bio)
1188                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1189         return 0;
1190 }
1191
1192 static int f2fs_read_data_page(struct file *file, struct page *page)
1193 {
1194         struct inode *inode = page->mapping->host;
1195         int ret = -EAGAIN;
1196
1197         trace_f2fs_readpage(page, DATA);
1198
1199         /* If the file has inline data, try to read it directly */
1200         if (f2fs_has_inline_data(inode))
1201                 ret = f2fs_read_inline_data(inode, page);
1202         if (ret == -EAGAIN)
1203                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1204         return ret;
1205 }
1206
1207 static int f2fs_read_data_pages(struct file *file,
1208                         struct address_space *mapping,
1209                         struct list_head *pages, unsigned nr_pages)
1210 {
1211         struct inode *inode = file->f_mapping->host;
1212         struct page *page = list_entry(pages->prev, struct page, lru);
1213
1214         trace_f2fs_readpages(inode, page, nr_pages);
1215
1216         /* If the file has inline data, skip readpages */
1217         if (f2fs_has_inline_data(inode))
1218                 return 0;
1219
1220         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1221 }
1222
1223 int do_write_data_page(struct f2fs_io_info *fio)
1224 {
1225         struct page *page = fio->page;
1226         struct inode *inode = page->mapping->host;
1227         struct dnode_of_data dn;
1228         int err = 0;
1229
1230         set_new_dnode(&dn, inode, NULL, NULL, 0);
1231         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1232         if (err)
1233                 return err;
1234
1235         fio->old_blkaddr = dn.data_blkaddr;
1236
1237         /* This page is already truncated */
1238         if (fio->old_blkaddr == NULL_ADDR) {
1239                 ClearPageUptodate(page);
1240                 goto out_writepage;
1241         }
1242
1243         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1244                 gfp_t gfp_flags = GFP_NOFS;
1245
1246                 /* wait for GCed encrypted page writeback */
1247                 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1248                                                         fio->old_blkaddr);
1249 retry_encrypt:
1250                 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1251                                                                 gfp_flags);
1252                 if (IS_ERR(fio->encrypted_page)) {
1253                         err = PTR_ERR(fio->encrypted_page);
1254                         if (err == -ENOMEM) {
1255                                 /* flush pending ios and wait for a while */
1256                                 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1257                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1258                                 gfp_flags |= __GFP_NOFAIL;
1259                                 err = 0;
1260                                 goto retry_encrypt;
1261                         }
1262                         goto out_writepage;
1263                 }
1264         }
1265
1266         set_page_writeback(page);
1267
1268         /*
1269          * If current allocation needs SSR,
1270          * it had better in-place writes for updated data.
1271          */
1272         if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1273                         !is_cold_data(page) &&
1274                         !IS_ATOMIC_WRITTEN_PAGE(page) &&
1275                         need_inplace_update(inode))) {
1276                 rewrite_data_page(fio);
1277                 set_inode_flag(inode, FI_UPDATE_WRITE);
1278                 trace_f2fs_do_write_data_page(page, IPU);
1279         } else {
1280                 write_data_page(&dn, fio);
1281                 trace_f2fs_do_write_data_page(page, OPU);
1282                 set_inode_flag(inode, FI_APPEND_WRITE);
1283                 if (page->index == 0)
1284                         set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1285         }
1286 out_writepage:
1287         f2fs_put_dnode(&dn);
1288         return err;
1289 }
1290
1291 static int f2fs_write_data_page(struct page *page,
1292                                         struct writeback_control *wbc)
1293 {
1294         struct inode *inode = page->mapping->host;
1295         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296         loff_t i_size = i_size_read(inode);
1297         const pgoff_t end_index = ((unsigned long long) i_size)
1298                                                         >> PAGE_SHIFT;
1299         loff_t psize = (page->index + 1) << PAGE_SHIFT;
1300         unsigned offset = 0;
1301         bool need_balance_fs = false;
1302         int err = 0;
1303         struct f2fs_io_info fio = {
1304                 .sbi = sbi,
1305                 .type = DATA,
1306                 .op = REQ_OP_WRITE,
1307                 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1308                 .page = page,
1309                 .encrypted_page = NULL,
1310         };
1311
1312         trace_f2fs_writepage(page, DATA);
1313
1314         if (page->index < end_index)
1315                 goto write;
1316
1317         /*
1318          * If the offset is out-of-range of file size,
1319          * this page does not have to be written to disk.
1320          */
1321         offset = i_size & (PAGE_SIZE - 1);
1322         if ((page->index >= end_index + 1) || !offset)
1323                 goto out;
1324
1325         zero_user_segment(page, offset, PAGE_SIZE);
1326 write:
1327         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1328                 goto redirty_out;
1329         if (f2fs_is_drop_cache(inode))
1330                 goto out;
1331         /* we should not write 0'th page having journal header */
1332         if (f2fs_is_volatile_file(inode) && (!page->index ||
1333                         (!wbc->for_reclaim &&
1334                         available_free_memory(sbi, BASE_CHECK))))
1335                 goto redirty_out;
1336
1337         /* we should bypass data pages to proceed the kworkder jobs */
1338         if (unlikely(f2fs_cp_error(sbi))) {
1339                 mapping_set_error(page->mapping, -EIO);
1340                 goto out;
1341         }
1342
1343         /* Dentry blocks are controlled by checkpoint */
1344         if (S_ISDIR(inode->i_mode)) {
1345                 err = do_write_data_page(&fio);
1346                 goto done;
1347         }
1348
1349         if (!wbc->for_reclaim)
1350                 need_balance_fs = true;
1351         else if (has_not_enough_free_secs(sbi, 0, 0))
1352                 goto redirty_out;
1353
1354         err = -EAGAIN;
1355         f2fs_lock_op(sbi);
1356         if (f2fs_has_inline_data(inode))
1357                 err = f2fs_write_inline_data(inode, page);
1358         if (err == -EAGAIN)
1359                 err = do_write_data_page(&fio);
1360         if (F2FS_I(inode)->last_disk_size < psize)
1361                 F2FS_I(inode)->last_disk_size = psize;
1362         f2fs_unlock_op(sbi);
1363 done:
1364         if (err && err != -ENOENT)
1365                 goto redirty_out;
1366
1367 out:
1368         inode_dec_dirty_pages(inode);
1369         if (err)
1370                 ClearPageUptodate(page);
1371
1372         if (wbc->for_reclaim) {
1373                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1374                 remove_dirty_inode(inode);
1375         }
1376
1377         unlock_page(page);
1378         f2fs_balance_fs(sbi, need_balance_fs);
1379
1380         if (unlikely(f2fs_cp_error(sbi)))
1381                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1382
1383         return 0;
1384
1385 redirty_out:
1386         redirty_page_for_writepage(wbc, page);
1387         unlock_page(page);
1388         return err;
1389 }
1390
1391 /*
1392  * This function was copied from write_cche_pages from mm/page-writeback.c.
1393  * The major change is making write step of cold data page separately from
1394  * warm/hot data page.
1395  */
1396 static int f2fs_write_cache_pages(struct address_space *mapping,
1397                                         struct writeback_control *wbc)
1398 {
1399         int ret = 0;
1400         int done = 0;
1401         struct pagevec pvec;
1402         int nr_pages;
1403         pgoff_t uninitialized_var(writeback_index);
1404         pgoff_t index;
1405         pgoff_t end;            /* Inclusive */
1406         pgoff_t done_index;
1407         int cycled;
1408         int range_whole = 0;
1409         int tag;
1410         int nwritten = 0;
1411
1412         pagevec_init(&pvec, 0);
1413
1414         if (wbc->range_cyclic) {
1415                 writeback_index = mapping->writeback_index; /* prev offset */
1416                 index = writeback_index;
1417                 if (index == 0)
1418                         cycled = 1;
1419                 else
1420                         cycled = 0;
1421                 end = -1;
1422         } else {
1423                 index = wbc->range_start >> PAGE_SHIFT;
1424                 end = wbc->range_end >> PAGE_SHIFT;
1425                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1426                         range_whole = 1;
1427                 cycled = 1; /* ignore range_cyclic tests */
1428         }
1429         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1430                 tag = PAGECACHE_TAG_TOWRITE;
1431         else
1432                 tag = PAGECACHE_TAG_DIRTY;
1433 retry:
1434         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1435                 tag_pages_for_writeback(mapping, index, end);
1436         done_index = index;
1437         while (!done && (index <= end)) {
1438                 int i;
1439
1440                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1441                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1442                 if (nr_pages == 0)
1443                         break;
1444
1445                 for (i = 0; i < nr_pages; i++) {
1446                         struct page *page = pvec.pages[i];
1447
1448                         if (page->index > end) {
1449                                 done = 1;
1450                                 break;
1451                         }
1452
1453                         done_index = page->index;
1454
1455                         lock_page(page);
1456
1457                         if (unlikely(page->mapping != mapping)) {
1458 continue_unlock:
1459                                 unlock_page(page);
1460                                 continue;
1461                         }
1462
1463                         if (!PageDirty(page)) {
1464                                 /* someone wrote it for us */
1465                                 goto continue_unlock;
1466                         }
1467
1468                         if (PageWriteback(page)) {
1469                                 if (wbc->sync_mode != WB_SYNC_NONE)
1470                                         f2fs_wait_on_page_writeback(page,
1471                                                                 DATA, true);
1472                                 else
1473                                         goto continue_unlock;
1474                         }
1475
1476                         BUG_ON(PageWriteback(page));
1477                         if (!clear_page_dirty_for_io(page))
1478                                 goto continue_unlock;
1479
1480                         ret = mapping->a_ops->writepage(page, wbc);
1481                         if (unlikely(ret)) {
1482                                 done_index = page->index + 1;
1483                                 done = 1;
1484                                 break;
1485                         } else {
1486                                 nwritten++;
1487                         }
1488
1489                         if (--wbc->nr_to_write <= 0 &&
1490                             wbc->sync_mode == WB_SYNC_NONE) {
1491                                 done = 1;
1492                                 break;
1493                         }
1494                 }
1495                 pagevec_release(&pvec);
1496                 cond_resched();
1497         }
1498
1499         if (!cycled && !done) {
1500                 cycled = 1;
1501                 index = 0;
1502                 end = writeback_index - 1;
1503                 goto retry;
1504         }
1505         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1506                 mapping->writeback_index = done_index;
1507
1508         if (nwritten)
1509                 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1510                                                         NULL, 0, DATA, WRITE);
1511
1512         return ret;
1513 }
1514
1515 static int f2fs_write_data_pages(struct address_space *mapping,
1516                             struct writeback_control *wbc)
1517 {
1518         struct inode *inode = mapping->host;
1519         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1520         struct blk_plug plug;
1521         int ret;
1522
1523         /* deal with chardevs and other special file */
1524         if (!mapping->a_ops->writepage)
1525                 return 0;
1526
1527         /* skip writing if there is no dirty page in this inode */
1528         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1529                 return 0;
1530
1531         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1532                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1533                         available_free_memory(sbi, DIRTY_DENTS))
1534                 goto skip_write;
1535
1536         /* skip writing during file defragment */
1537         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1538                 goto skip_write;
1539
1540         /* during POR, we don't need to trigger writepage at all. */
1541         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1542                 goto skip_write;
1543
1544         trace_f2fs_writepages(mapping->host, wbc, DATA);
1545
1546         blk_start_plug(&plug);
1547         ret = f2fs_write_cache_pages(mapping, wbc);
1548         blk_finish_plug(&plug);
1549         /*
1550          * if some pages were truncated, we cannot guarantee its mapping->host
1551          * to detect pending bios.
1552          */
1553
1554         remove_dirty_inode(inode);
1555         return ret;
1556
1557 skip_write:
1558         wbc->pages_skipped += get_dirty_pages(inode);
1559         trace_f2fs_writepages(mapping->host, wbc, DATA);
1560         return 0;
1561 }
1562
1563 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1564 {
1565         struct inode *inode = mapping->host;
1566         loff_t i_size = i_size_read(inode);
1567
1568         if (to > i_size) {
1569                 truncate_pagecache(inode, i_size);
1570                 truncate_blocks(inode, i_size, true);
1571         }
1572 }
1573
1574 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1575                         struct page *page, loff_t pos, unsigned len,
1576                         block_t *blk_addr, bool *node_changed)
1577 {
1578         struct inode *inode = page->mapping->host;
1579         pgoff_t index = page->index;
1580         struct dnode_of_data dn;
1581         struct page *ipage;
1582         bool locked = false;
1583         struct extent_info ei;
1584         int err = 0;
1585
1586         /*
1587          * we already allocated all the blocks, so we don't need to get
1588          * the block addresses when there is no need to fill the page.
1589          */
1590         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1591                 return 0;
1592
1593         if (f2fs_has_inline_data(inode) ||
1594                         (pos & PAGE_MASK) >= i_size_read(inode)) {
1595                 f2fs_lock_op(sbi);
1596                 locked = true;
1597         }
1598 restart:
1599         /* check inline_data */
1600         ipage = get_node_page(sbi, inode->i_ino);
1601         if (IS_ERR(ipage)) {
1602                 err = PTR_ERR(ipage);
1603                 goto unlock_out;
1604         }
1605
1606         set_new_dnode(&dn, inode, ipage, ipage, 0);
1607
1608         if (f2fs_has_inline_data(inode)) {
1609                 if (pos + len <= MAX_INLINE_DATA) {
1610                         read_inline_data(page, ipage);
1611                         set_inode_flag(inode, FI_DATA_EXIST);
1612                         if (inode->i_nlink)
1613                                 set_inline_node(ipage);
1614                 } else {
1615                         err = f2fs_convert_inline_page(&dn, page);
1616                         if (err)
1617                                 goto out;
1618                         if (dn.data_blkaddr == NULL_ADDR)
1619                                 err = f2fs_get_block(&dn, index);
1620                 }
1621         } else if (locked) {
1622                 err = f2fs_get_block(&dn, index);
1623         } else {
1624                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1625                         dn.data_blkaddr = ei.blk + index - ei.fofs;
1626                 } else {
1627                         /* hole case */
1628                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1629                         if (err || dn.data_blkaddr == NULL_ADDR) {
1630                                 f2fs_put_dnode(&dn);
1631                                 f2fs_lock_op(sbi);
1632                                 locked = true;
1633                                 goto restart;
1634                         }
1635                 }
1636         }
1637
1638         /* convert_inline_page can make node_changed */
1639         *blk_addr = dn.data_blkaddr;
1640         *node_changed = dn.node_changed;
1641 out:
1642         f2fs_put_dnode(&dn);
1643 unlock_out:
1644         if (locked)
1645                 f2fs_unlock_op(sbi);
1646         return err;
1647 }
1648
1649 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1650                 loff_t pos, unsigned len, unsigned flags,
1651                 struct page **pagep, void **fsdata)
1652 {
1653         struct inode *inode = mapping->host;
1654         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1655         struct page *page = NULL;
1656         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1657         bool need_balance = false;
1658         block_t blkaddr = NULL_ADDR;
1659         int err = 0;
1660
1661         trace_f2fs_write_begin(inode, pos, len, flags);
1662
1663         /*
1664          * We should check this at this moment to avoid deadlock on inode page
1665          * and #0 page. The locking rule for inline_data conversion should be:
1666          * lock_page(page #0) -> lock_page(inode_page)
1667          */
1668         if (index != 0) {
1669                 err = f2fs_convert_inline_inode(inode);
1670                 if (err)
1671                         goto fail;
1672         }
1673 repeat:
1674         page = grab_cache_page_write_begin(mapping, index, flags);
1675         if (!page) {
1676                 err = -ENOMEM;
1677                 goto fail;
1678         }
1679
1680         *pagep = page;
1681
1682         err = prepare_write_begin(sbi, page, pos, len,
1683                                         &blkaddr, &need_balance);
1684         if (err)
1685                 goto fail;
1686
1687         if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1688                 unlock_page(page);
1689                 f2fs_balance_fs(sbi, true);
1690                 lock_page(page);
1691                 if (page->mapping != mapping) {
1692                         /* The page got truncated from under us */
1693                         f2fs_put_page(page, 1);
1694                         goto repeat;
1695                 }
1696         }
1697
1698         f2fs_wait_on_page_writeback(page, DATA, false);
1699
1700         /* wait for GCed encrypted page writeback */
1701         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1702                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1703
1704         if (len == PAGE_SIZE || PageUptodate(page))
1705                 return 0;
1706
1707         if (blkaddr == NEW_ADDR) {
1708                 zero_user_segment(page, 0, PAGE_SIZE);
1709                 SetPageUptodate(page);
1710         } else {
1711                 struct bio *bio;
1712
1713                 bio = f2fs_grab_bio(inode, blkaddr, 1);
1714                 if (IS_ERR(bio)) {
1715                         err = PTR_ERR(bio);
1716                         goto fail;
1717                 }
1718                 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC);
1719                 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1720                         bio_put(bio);
1721                         err = -EFAULT;
1722                         goto fail;
1723                 }
1724
1725                 __submit_bio(sbi, bio, DATA);
1726
1727                 lock_page(page);
1728                 if (unlikely(page->mapping != mapping)) {
1729                         f2fs_put_page(page, 1);
1730                         goto repeat;
1731                 }
1732                 if (unlikely(!PageUptodate(page))) {
1733                         err = -EIO;
1734                         goto fail;
1735                 }
1736         }
1737         return 0;
1738
1739 fail:
1740         f2fs_put_page(page, 1);
1741         f2fs_write_failed(mapping, pos + len);
1742         return err;
1743 }
1744
1745 static int f2fs_write_end(struct file *file,
1746                         struct address_space *mapping,
1747                         loff_t pos, unsigned len, unsigned copied,
1748                         struct page *page, void *fsdata)
1749 {
1750         struct inode *inode = page->mapping->host;
1751
1752         trace_f2fs_write_end(inode, pos, len, copied);
1753
1754         /*
1755          * This should be come from len == PAGE_SIZE, and we expect copied
1756          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1757          * let generic_perform_write() try to copy data again through copied=0.
1758          */
1759         if (!PageUptodate(page)) {
1760                 if (unlikely(copied != PAGE_SIZE))
1761                         copied = 0;
1762                 else
1763                         SetPageUptodate(page);
1764         }
1765         if (!copied)
1766                 goto unlock_out;
1767
1768         set_page_dirty(page);
1769
1770         if (pos + copied > i_size_read(inode))
1771                 f2fs_i_size_write(inode, pos + copied);
1772 unlock_out:
1773         f2fs_put_page(page, 1);
1774         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1775         return copied;
1776 }
1777
1778 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1779                            loff_t offset)
1780 {
1781         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1782
1783         if (offset & blocksize_mask)
1784                 return -EINVAL;
1785
1786         if (iov_iter_alignment(iter) & blocksize_mask)
1787                 return -EINVAL;
1788
1789         return 0;
1790 }
1791
1792 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1793 {
1794         struct address_space *mapping = iocb->ki_filp->f_mapping;
1795         struct inode *inode = mapping->host;
1796         size_t count = iov_iter_count(iter);
1797         loff_t offset = iocb->ki_pos;
1798         int rw = iov_iter_rw(iter);
1799         int err;
1800
1801         err = check_direct_IO(inode, iter, offset);
1802         if (err)
1803                 return err;
1804
1805         if (__force_buffered_io(inode, rw))
1806                 return 0;
1807
1808         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1809
1810         down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1811         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1812         up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1813
1814         if (rw == WRITE) {
1815                 if (err > 0)
1816                         set_inode_flag(inode, FI_UPDATE_WRITE);
1817                 else if (err < 0)
1818                         f2fs_write_failed(mapping, offset + count);
1819         }
1820
1821         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1822
1823         return err;
1824 }
1825
1826 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1827                                                         unsigned int length)
1828 {
1829         struct inode *inode = page->mapping->host;
1830         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1831
1832         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1833                 (offset % PAGE_SIZE || length != PAGE_SIZE))
1834                 return;
1835
1836         if (PageDirty(page)) {
1837                 if (inode->i_ino == F2FS_META_INO(sbi)) {
1838                         dec_page_count(sbi, F2FS_DIRTY_META);
1839                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1840                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1841                 } else {
1842                         inode_dec_dirty_pages(inode);
1843                         remove_dirty_inode(inode);
1844                 }
1845         }
1846
1847         /* This is atomic written page, keep Private */
1848         if (IS_ATOMIC_WRITTEN_PAGE(page))
1849                 return;
1850
1851         set_page_private(page, 0);
1852         ClearPagePrivate(page);
1853 }
1854
1855 int f2fs_release_page(struct page *page, gfp_t wait)
1856 {
1857         /* If this is dirty page, keep PagePrivate */
1858         if (PageDirty(page))
1859                 return 0;
1860
1861         /* This is atomic written page, keep Private */
1862         if (IS_ATOMIC_WRITTEN_PAGE(page))
1863                 return 0;
1864
1865         set_page_private(page, 0);
1866         ClearPagePrivate(page);
1867         return 1;
1868 }
1869
1870 /*
1871  * This was copied from __set_page_dirty_buffers which gives higher performance
1872  * in very high speed storages. (e.g., pmem)
1873  */
1874 void f2fs_set_page_dirty_nobuffers(struct page *page)
1875 {
1876         struct address_space *mapping = page->mapping;
1877         unsigned long flags;
1878
1879         if (unlikely(!mapping))
1880                 return;
1881
1882         spin_lock(&mapping->private_lock);
1883         lock_page_memcg(page);
1884         SetPageDirty(page);
1885         spin_unlock(&mapping->private_lock);
1886
1887         spin_lock_irqsave(&mapping->tree_lock, flags);
1888         WARN_ON_ONCE(!PageUptodate(page));
1889         account_page_dirtied(page, mapping);
1890         radix_tree_tag_set(&mapping->page_tree,
1891                         page_index(page), PAGECACHE_TAG_DIRTY);
1892         spin_unlock_irqrestore(&mapping->tree_lock, flags);
1893         unlock_page_memcg(page);
1894
1895         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1896         return;
1897 }
1898
1899 static int f2fs_set_data_page_dirty(struct page *page)
1900 {
1901         struct address_space *mapping = page->mapping;
1902         struct inode *inode = mapping->host;
1903
1904         trace_f2fs_set_page_dirty(page, DATA);
1905
1906         if (!PageUptodate(page))
1907                 SetPageUptodate(page);
1908
1909         if (f2fs_is_atomic_file(inode)) {
1910                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1911                         register_inmem_page(inode, page);
1912                         return 1;
1913                 }
1914                 /*
1915                  * Previously, this page has been registered, we just
1916                  * return here.
1917                  */
1918                 return 0;
1919         }
1920
1921         if (!PageDirty(page)) {
1922                 f2fs_set_page_dirty_nobuffers(page);
1923                 update_dirty_page(inode, page);
1924                 return 1;
1925         }
1926         return 0;
1927 }
1928
1929 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1930 {
1931         struct inode *inode = mapping->host;
1932
1933         if (f2fs_has_inline_data(inode))
1934                 return 0;
1935
1936         /* make sure allocating whole blocks */
1937         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1938                 filemap_write_and_wait(mapping);
1939
1940         return generic_block_bmap(mapping, block, get_data_block_bmap);
1941 }
1942
1943 #ifdef CONFIG_MIGRATION
1944 #include <linux/migrate.h>
1945
1946 int f2fs_migrate_page(struct address_space *mapping,
1947                 struct page *newpage, struct page *page, enum migrate_mode mode)
1948 {
1949         int rc, extra_count;
1950         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1951         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1952
1953         BUG_ON(PageWriteback(page));
1954
1955         /* migrating an atomic written page is safe with the inmem_lock hold */
1956         if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1957                 return -EAGAIN;
1958
1959         /*
1960          * A reference is expected if PagePrivate set when move mapping,
1961          * however F2FS breaks this for maintaining dirty page counts when
1962          * truncating pages. So here adjusting the 'extra_count' make it work.
1963          */
1964         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1965         rc = migrate_page_move_mapping(mapping, newpage,
1966                                 page, NULL, mode, extra_count);
1967         if (rc != MIGRATEPAGE_SUCCESS) {
1968                 if (atomic_written)
1969                         mutex_unlock(&fi->inmem_lock);
1970                 return rc;
1971         }
1972
1973         if (atomic_written) {
1974                 struct inmem_pages *cur;
1975                 list_for_each_entry(cur, &fi->inmem_pages, list)
1976                         if (cur->page == page) {
1977                                 cur->page = newpage;
1978                                 break;
1979                         }
1980                 mutex_unlock(&fi->inmem_lock);
1981                 put_page(page);
1982                 get_page(newpage);
1983         }
1984
1985         if (PagePrivate(page))
1986                 SetPagePrivate(newpage);
1987         set_page_private(newpage, page_private(page));
1988
1989         migrate_page_copy(newpage, page);
1990
1991         return MIGRATEPAGE_SUCCESS;
1992 }
1993 #endif
1994
1995 const struct address_space_operations f2fs_dblock_aops = {
1996         .readpage       = f2fs_read_data_page,
1997         .readpages      = f2fs_read_data_pages,
1998         .writepage      = f2fs_write_data_page,
1999         .writepages     = f2fs_write_data_pages,
2000         .write_begin    = f2fs_write_begin,
2001         .write_end      = f2fs_write_end,
2002         .set_page_dirty = f2fs_set_data_page_dirty,
2003         .invalidatepage = f2fs_invalidate_page,
2004         .releasepage    = f2fs_release_page,
2005         .direct_IO      = f2fs_direct_IO,
2006         .bmap           = f2fs_bmap,
2007 #ifdef CONFIG_MIGRATION
2008         .migratepage    = f2fs_migrate_page,
2009 #endif
2010 };