Merge tag 'irq_urgent_for_v6.8_rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29         unsigned int size = sizeof(struct page *) * nr;
30
31         if (likely(size <= sbi->page_array_slab_size))
32                 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33                                         GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34         return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40         unsigned int size = sizeof(struct page *) * nr;
41
42         if (!pages)
43                 return;
44
45         if (likely(size <= sbi->page_array_slab_size))
46                 kmem_cache_free(sbi->page_array_slab, pages);
47         else
48                 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52         int (*init_compress_ctx)(struct compress_ctx *cc);
53         void (*destroy_compress_ctx)(struct compress_ctx *cc);
54         int (*compress_pages)(struct compress_ctx *cc);
55         int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56         void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57         int (*decompress_pages)(struct decompress_io_ctx *dic);
58         bool (*is_level_valid)(int level);
59 };
60
61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63         return index & (cc->cluster_size - 1);
64 }
65
66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68         return index >> cc->log_cluster_size;
69 }
70
71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73         return cc->cluster_idx << cc->log_cluster_size;
74 }
75
76 bool f2fs_is_compressed_page(struct page *page)
77 {
78         if (!PagePrivate(page))
79                 return false;
80         if (!page_private(page))
81                 return false;
82         if (page_private_nonpointer(page))
83                 return false;
84
85         f2fs_bug_on(F2FS_M_SB(page->mapping),
86                 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87         return true;
88 }
89
90 static void f2fs_set_compressed_page(struct page *page,
91                 struct inode *inode, pgoff_t index, void *data)
92 {
93         attach_page_private(page, (void *)data);
94
95         /* i_crypto_info and iv index */
96         page->index = index;
97         page->mapping = inode->i_mapping;
98 }
99
100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102         int i;
103
104         for (i = 0; i < len; i++) {
105                 if (!cc->rpages[i])
106                         continue;
107                 if (unlock)
108                         unlock_page(cc->rpages[i]);
109                 else
110                         put_page(cc->rpages[i]);
111         }
112 }
113
114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116         f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118
119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121         f2fs_drop_rpages(cc, len, true);
122 }
123
124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125                 struct writeback_control *wbc, bool redirty, int unlock)
126 {
127         unsigned int i;
128
129         for (i = 0; i < cc->cluster_size; i++) {
130                 if (!cc->rpages[i])
131                         continue;
132                 if (redirty)
133                         redirty_page_for_writepage(wbc, cc->rpages[i]);
134                 f2fs_put_page(cc->rpages[i], unlock);
135         }
136 }
137
138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140         return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142
143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145         if (cc->rpages)
146                 return 0;
147
148         cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149         return cc->rpages ? 0 : -ENOMEM;
150 }
151
152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154         page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155         cc->rpages = NULL;
156         cc->nr_rpages = 0;
157         cc->nr_cpages = 0;
158         cc->valid_nr_cpages = 0;
159         if (!reuse)
160                 cc->cluster_idx = NULL_CLUSTER;
161 }
162
163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165         unsigned int cluster_ofs;
166
167         if (!f2fs_cluster_can_merge_page(cc, page->index))
168                 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170         cluster_ofs = offset_in_cluster(cc, page->index);
171         cc->rpages[cluster_ofs] = page;
172         cc->nr_rpages++;
173         cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180                                 LZO1X_MEM_COMPRESS, GFP_NOFS);
181         if (!cc->private)
182                 return -ENOMEM;
183
184         cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185         return 0;
186 }
187
188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190         kvfree(cc->private);
191         cc->private = NULL;
192 }
193
194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196         int ret;
197
198         ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199                                         &cc->clen, cc->private);
200         if (ret != LZO_E_OK) {
201                 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203                 return -EIO;
204         }
205         return 0;
206 }
207
208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210         int ret;
211
212         ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213                                                 dic->rbuf, &dic->rlen);
214         if (ret != LZO_E_OK) {
215                 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217                 return -EIO;
218         }
219
220         if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221                 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222                                         "expected:%lu\n", KERN_ERR,
223                                         F2FS_I_SB(dic->inode)->sb->s_id,
224                                         dic->rlen,
225                                         PAGE_SIZE << dic->log_cluster_size);
226                 return -EIO;
227         }
228         return 0;
229 }
230
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232         .init_compress_ctx      = lzo_init_compress_ctx,
233         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
234         .compress_pages         = lzo_compress_pages,
235         .decompress_pages       = lzo_decompress_pages,
236 };
237 #endif
238
239 #ifdef CONFIG_F2FS_FS_LZ4
240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242         unsigned int size = LZ4_MEM_COMPRESS;
243
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245         if (F2FS_I(cc->inode)->i_compress_level)
246                 size = LZ4HC_MEM_COMPRESS;
247 #endif
248
249         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250         if (!cc->private)
251                 return -ENOMEM;
252
253         /*
254          * we do not change cc->clen to LZ4_compressBound(inputsize) to
255          * adapt worst compress case, because lz4 compressor can handle
256          * output budget properly.
257          */
258         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259         return 0;
260 }
261
262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264         kvfree(cc->private);
265         cc->private = NULL;
266 }
267
268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270         int len = -EINVAL;
271         unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273         if (!level)
274                 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275                                                 cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277         else
278                 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279                                         cc->clen, level, cc->private);
280 #endif
281         if (len < 0)
282                 return len;
283         if (!len)
284                 return -EAGAIN;
285
286         cc->clen = len;
287         return 0;
288 }
289
290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292         int ret;
293
294         ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295                                                 dic->clen, dic->rlen);
296         if (ret < 0) {
297                 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299                 return -EIO;
300         }
301
302         if (ret != PAGE_SIZE << dic->log_cluster_size) {
303                 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304                                         "expected:%lu\n", KERN_ERR,
305                                         F2FS_I_SB(dic->inode)->sb->s_id, ret,
306                                         PAGE_SIZE << dic->log_cluster_size);
307                 return -EIO;
308         }
309         return 0;
310 }
311
312 static bool lz4_is_level_valid(int lvl)
313 {
314 #ifdef CONFIG_F2FS_FS_LZ4HC
315         return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316 #else
317         return lvl == 0;
318 #endif
319 }
320
321 static const struct f2fs_compress_ops f2fs_lz4_ops = {
322         .init_compress_ctx      = lz4_init_compress_ctx,
323         .destroy_compress_ctx   = lz4_destroy_compress_ctx,
324         .compress_pages         = lz4_compress_pages,
325         .decompress_pages       = lz4_decompress_pages,
326         .is_level_valid         = lz4_is_level_valid,
327 };
328 #endif
329
330 #ifdef CONFIG_F2FS_FS_ZSTD
331 static int zstd_init_compress_ctx(struct compress_ctx *cc)
332 {
333         zstd_parameters params;
334         zstd_cstream *stream;
335         void *workspace;
336         unsigned int workspace_size;
337         unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338
339         /* Need to remain this for backward compatibility */
340         if (!level)
341                 level = F2FS_ZSTD_DEFAULT_CLEVEL;
342
343         params = zstd_get_params(level, cc->rlen);
344         workspace_size = zstd_cstream_workspace_bound(&params.cParams);
345
346         workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347                                         workspace_size, GFP_NOFS);
348         if (!workspace)
349                 return -ENOMEM;
350
351         stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
352         if (!stream) {
353                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355                                 __func__);
356                 kvfree(workspace);
357                 return -EIO;
358         }
359
360         cc->private = workspace;
361         cc->private2 = stream;
362
363         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364         return 0;
365 }
366
367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368 {
369         kvfree(cc->private);
370         cc->private = NULL;
371         cc->private2 = NULL;
372 }
373
374 static int zstd_compress_pages(struct compress_ctx *cc)
375 {
376         zstd_cstream *stream = cc->private2;
377         zstd_in_buffer inbuf;
378         zstd_out_buffer outbuf;
379         int src_size = cc->rlen;
380         int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381         int ret;
382
383         inbuf.pos = 0;
384         inbuf.src = cc->rbuf;
385         inbuf.size = src_size;
386
387         outbuf.pos = 0;
388         outbuf.dst = cc->cbuf->cdata;
389         outbuf.size = dst_size;
390
391         ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392         if (zstd_is_error(ret)) {
393                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395                                 __func__, zstd_get_error_code(ret));
396                 return -EIO;
397         }
398
399         ret = zstd_end_stream(stream, &outbuf);
400         if (zstd_is_error(ret)) {
401                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403                                 __func__, zstd_get_error_code(ret));
404                 return -EIO;
405         }
406
407         /*
408          * there is compressed data remained in intermediate buffer due to
409          * no more space in cbuf.cdata
410          */
411         if (ret)
412                 return -EAGAIN;
413
414         cc->clen = outbuf.pos;
415         return 0;
416 }
417
418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419 {
420         zstd_dstream *stream;
421         void *workspace;
422         unsigned int workspace_size;
423         unsigned int max_window_size =
424                         MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425
426         workspace_size = zstd_dstream_workspace_bound(max_window_size);
427
428         workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429                                         workspace_size, GFP_NOFS);
430         if (!workspace)
431                 return -ENOMEM;
432
433         stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434         if (!stream) {
435                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437                                 __func__);
438                 kvfree(workspace);
439                 return -EIO;
440         }
441
442         dic->private = workspace;
443         dic->private2 = stream;
444
445         return 0;
446 }
447
448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449 {
450         kvfree(dic->private);
451         dic->private = NULL;
452         dic->private2 = NULL;
453 }
454
455 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456 {
457         zstd_dstream *stream = dic->private2;
458         zstd_in_buffer inbuf;
459         zstd_out_buffer outbuf;
460         int ret;
461
462         inbuf.pos = 0;
463         inbuf.src = dic->cbuf->cdata;
464         inbuf.size = dic->clen;
465
466         outbuf.pos = 0;
467         outbuf.dst = dic->rbuf;
468         outbuf.size = dic->rlen;
469
470         ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471         if (zstd_is_error(ret)) {
472                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474                                 __func__, zstd_get_error_code(ret));
475                 return -EIO;
476         }
477
478         if (dic->rlen != outbuf.pos) {
479                 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480                                 "expected:%lu\n", KERN_ERR,
481                                 F2FS_I_SB(dic->inode)->sb->s_id,
482                                 __func__, dic->rlen,
483                                 PAGE_SIZE << dic->log_cluster_size);
484                 return -EIO;
485         }
486
487         return 0;
488 }
489
490 static bool zstd_is_level_valid(int lvl)
491 {
492         return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493 }
494
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496         .init_compress_ctx      = zstd_init_compress_ctx,
497         .destroy_compress_ctx   = zstd_destroy_compress_ctx,
498         .compress_pages         = zstd_compress_pages,
499         .init_decompress_ctx    = zstd_init_decompress_ctx,
500         .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501         .decompress_pages       = zstd_decompress_pages,
502         .is_level_valid         = zstd_is_level_valid,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510         int ret;
511
512         ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513                                         &cc->clen, cc->private);
514         if (ret != LZO_E_OK) {
515                 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517                 return -EIO;
518         }
519         return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523         .init_compress_ctx      = lzo_init_compress_ctx,
524         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
525         .compress_pages         = lzorle_compress_pages,
526         .decompress_pages       = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533         &f2fs_lzo_ops,
534 #else
535         NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538         &f2fs_lz4_ops,
539 #else
540         NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543         &f2fs_zstd_ops,
544 #else
545         NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548         &f2fs_lzorle_ops,
549 #else
550         NULL,
551 #endif
552 };
553
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556         if (!f2fs_compressed_file(inode))
557                 return true;
558         return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 bool f2fs_is_compress_level_valid(int alg, int lvl)
562 {
563         const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564
565         if (cops->is_level_valid)
566                 return cops->is_level_valid(lvl);
567
568         return lvl == 0;
569 }
570
571 static mempool_t *compress_page_pool;
572 static int num_compress_pages = 512;
573 module_param(num_compress_pages, uint, 0444);
574 MODULE_PARM_DESC(num_compress_pages,
575                 "Number of intermediate compress pages to preallocate");
576
577 int __init f2fs_init_compress_mempool(void)
578 {
579         compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580         return compress_page_pool ? 0 : -ENOMEM;
581 }
582
583 void f2fs_destroy_compress_mempool(void)
584 {
585         mempool_destroy(compress_page_pool);
586 }
587
588 static struct page *f2fs_compress_alloc_page(void)
589 {
590         struct page *page;
591
592         page = mempool_alloc(compress_page_pool, GFP_NOFS);
593         lock_page(page);
594
595         return page;
596 }
597
598 static void f2fs_compress_free_page(struct page *page)
599 {
600         if (!page)
601                 return;
602         detach_page_private(page);
603         page->mapping = NULL;
604         unlock_page(page);
605         mempool_free(page, compress_page_pool);
606 }
607
608 #define MAX_VMAP_RETRIES        3
609
610 static void *f2fs_vmap(struct page **pages, unsigned int count)
611 {
612         int i;
613         void *buf = NULL;
614
615         for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616                 buf = vm_map_ram(pages, count, -1);
617                 if (buf)
618                         break;
619                 vm_unmap_aliases();
620         }
621         return buf;
622 }
623
624 static int f2fs_compress_pages(struct compress_ctx *cc)
625 {
626         struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627         const struct f2fs_compress_ops *cops =
628                                 f2fs_cops[fi->i_compress_algorithm];
629         unsigned int max_len, new_nr_cpages;
630         u32 chksum = 0;
631         int i, ret;
632
633         trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634                                 cc->cluster_size, fi->i_compress_algorithm);
635
636         if (cops->init_compress_ctx) {
637                 ret = cops->init_compress_ctx(cc);
638                 if (ret)
639                         goto out;
640         }
641
642         max_len = COMPRESS_HEADER_SIZE + cc->clen;
643         cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644         cc->valid_nr_cpages = cc->nr_cpages;
645
646         cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647         if (!cc->cpages) {
648                 ret = -ENOMEM;
649                 goto destroy_compress_ctx;
650         }
651
652         for (i = 0; i < cc->nr_cpages; i++)
653                 cc->cpages[i] = f2fs_compress_alloc_page();
654
655         cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
656         if (!cc->rbuf) {
657                 ret = -ENOMEM;
658                 goto out_free_cpages;
659         }
660
661         cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
662         if (!cc->cbuf) {
663                 ret = -ENOMEM;
664                 goto out_vunmap_rbuf;
665         }
666
667         ret = cops->compress_pages(cc);
668         if (ret)
669                 goto out_vunmap_cbuf;
670
671         max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
672
673         if (cc->clen > max_len) {
674                 ret = -EAGAIN;
675                 goto out_vunmap_cbuf;
676         }
677
678         cc->cbuf->clen = cpu_to_le32(cc->clen);
679
680         if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
681                 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
682                                         cc->cbuf->cdata, cc->clen);
683         cc->cbuf->chksum = cpu_to_le32(chksum);
684
685         for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
686                 cc->cbuf->reserved[i] = cpu_to_le32(0);
687
688         new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
689
690         /* zero out any unused part of the last page */
691         memset(&cc->cbuf->cdata[cc->clen], 0,
692                         (new_nr_cpages * PAGE_SIZE) -
693                         (cc->clen + COMPRESS_HEADER_SIZE));
694
695         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
696         vm_unmap_ram(cc->rbuf, cc->cluster_size);
697
698         for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
699                 f2fs_compress_free_page(cc->cpages[i]);
700                 cc->cpages[i] = NULL;
701         }
702
703         if (cops->destroy_compress_ctx)
704                 cops->destroy_compress_ctx(cc);
705
706         cc->valid_nr_cpages = new_nr_cpages;
707
708         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709                                                         cc->clen, ret);
710         return 0;
711
712 out_vunmap_cbuf:
713         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715         vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717         for (i = 0; i < cc->nr_cpages; i++) {
718                 if (cc->cpages[i])
719                         f2fs_compress_free_page(cc->cpages[i]);
720         }
721         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722         cc->cpages = NULL;
723 destroy_compress_ctx:
724         if (cops->destroy_compress_ctx)
725                 cops->destroy_compress_ctx(cc);
726 out:
727         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728                                                         cc->clen, ret);
729         return ret;
730 }
731
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733                 bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735                 bool bypass_destroy_callback, bool pre_alloc);
736
737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740         struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741         const struct f2fs_compress_ops *cops =
742                         f2fs_cops[fi->i_compress_algorithm];
743         bool bypass_callback = false;
744         int ret;
745
746         trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747                                 dic->cluster_size, fi->i_compress_algorithm);
748
749         if (dic->failed) {
750                 ret = -EIO;
751                 goto out_end_io;
752         }
753
754         ret = f2fs_prepare_decomp_mem(dic, false);
755         if (ret) {
756                 bypass_callback = true;
757                 goto out_release;
758         }
759
760         dic->clen = le32_to_cpu(dic->cbuf->clen);
761         dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763         if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764                 ret = -EFSCORRUPTED;
765
766                 /* Avoid f2fs_commit_super in irq context */
767                 if (!in_task)
768                         f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
769                 else
770                         f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771                 goto out_release;
772         }
773
774         ret = cops->decompress_pages(dic);
775
776         if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
777                 u32 provided = le32_to_cpu(dic->cbuf->chksum);
778                 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779
780                 if (provided != calculated) {
781                         if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782                                 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783                                 printk_ratelimited(
784                                         "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
785                                         KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
786                                         provided, calculated);
787                         }
788                         set_sbi_flag(sbi, SBI_NEED_FSCK);
789                 }
790         }
791
792 out_release:
793         f2fs_release_decomp_mem(dic, bypass_callback, false);
794
795 out_end_io:
796         trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797                                                         dic->clen, ret);
798         f2fs_decompress_end_io(dic, ret, in_task);
799 }
800
801 /*
802  * This is called when a page of a compressed cluster has been read from disk
803  * (or failed to be read from disk).  It checks whether this page was the last
804  * page being waited on in the cluster, and if so, it decompresses the cluster
805  * (or in the case of a failure, cleans up without actually decompressing).
806  */
807 void f2fs_end_read_compressed_page(struct page *page, bool failed,
808                 block_t blkaddr, bool in_task)
809 {
810         struct decompress_io_ctx *dic =
811                         (struct decompress_io_ctx *)page_private(page);
812         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813
814         dec_page_count(sbi, F2FS_RD_DATA);
815
816         if (failed)
817                 WRITE_ONCE(dic->failed, true);
818         else if (blkaddr && in_task)
819                 f2fs_cache_compressed_page(sbi, page,
820                                         dic->inode->i_ino, blkaddr);
821
822         if (atomic_dec_and_test(&dic->remaining_pages))
823                 f2fs_decompress_cluster(dic, in_task);
824 }
825
826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827 {
828         if (cc->cluster_idx == NULL_CLUSTER)
829                 return true;
830         return cc->cluster_idx == cluster_idx(cc, index);
831 }
832
833 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834 {
835         return cc->nr_rpages == 0;
836 }
837
838 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839 {
840         return cc->cluster_size == cc->nr_rpages;
841 }
842
843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844 {
845         if (f2fs_cluster_is_empty(cc))
846                 return true;
847         return is_page_in_cluster(cc, index);
848 }
849
850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851                                 int index, int nr_pages, bool uptodate)
852 {
853         unsigned long pgidx = pages[index]->index;
854         int i = uptodate ? 0 : 1;
855
856         /*
857          * when uptodate set to true, try to check all pages in cluster is
858          * uptodate or not.
859          */
860         if (uptodate && (pgidx % cc->cluster_size))
861                 return false;
862
863         if (nr_pages - index < cc->cluster_size)
864                 return false;
865
866         for (; i < cc->cluster_size; i++) {
867                 if (pages[index + i]->index != pgidx + i)
868                         return false;
869                 if (uptodate && !PageUptodate(pages[index + i]))
870                         return false;
871         }
872
873         return true;
874 }
875
876 static bool cluster_has_invalid_data(struct compress_ctx *cc)
877 {
878         loff_t i_size = i_size_read(cc->inode);
879         unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880         int i;
881
882         for (i = 0; i < cc->cluster_size; i++) {
883                 struct page *page = cc->rpages[i];
884
885                 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886
887                 /* beyond EOF */
888                 if (page->index >= nr_pages)
889                         return true;
890         }
891         return false;
892 }
893
894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895 {
896 #ifdef CONFIG_F2FS_CHECK_FS
897         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
898         unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
899         int cluster_end = 0;
900         unsigned int count;
901         int i;
902         char *reason = "";
903
904         if (dn->data_blkaddr != COMPRESS_ADDR)
905                 return false;
906
907         /* [..., COMPR_ADDR, ...] */
908         if (dn->ofs_in_node % cluster_size) {
909                 reason = "[*|C|*|*]";
910                 goto out;
911         }
912
913         for (i = 1, count = 1; i < cluster_size; i++, count++) {
914                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
915                                                         dn->ofs_in_node + i);
916
917                 /* [COMPR_ADDR, ..., COMPR_ADDR] */
918                 if (blkaddr == COMPRESS_ADDR) {
919                         reason = "[C|*|C|*]";
920                         goto out;
921                 }
922                 if (!__is_valid_data_blkaddr(blkaddr)) {
923                         if (!cluster_end)
924                                 cluster_end = i;
925                         continue;
926                 }
927                 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
928                 if (cluster_end) {
929                         reason = "[C|N|N|V]";
930                         goto out;
931                 }
932         }
933
934         f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
935                 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
936
937         return false;
938 out:
939         f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
940                         dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
941         set_sbi_flag(sbi, SBI_NEED_FSCK);
942         return true;
943 #else
944         return false;
945 #endif
946 }
947
948 static int __f2fs_get_cluster_blocks(struct inode *inode,
949                                         struct dnode_of_data *dn)
950 {
951         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
952         int count, i;
953
954         for (i = 1, count = 1; i < cluster_size; i++) {
955                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
956                                                         dn->ofs_in_node + i);
957
958                 if (__is_valid_data_blkaddr(blkaddr))
959                         count++;
960         }
961
962         return count;
963 }
964
965 static int __f2fs_cluster_blocks(struct inode *inode,
966                                 unsigned int cluster_idx, bool compr_blks)
967 {
968         struct dnode_of_data dn;
969         unsigned int start_idx = cluster_idx <<
970                                 F2FS_I(inode)->i_log_cluster_size;
971         int ret;
972
973         set_new_dnode(&dn, inode, NULL, NULL, 0);
974         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
975         if (ret) {
976                 if (ret == -ENOENT)
977                         ret = 0;
978                 goto fail;
979         }
980
981         if (f2fs_sanity_check_cluster(&dn)) {
982                 ret = -EFSCORRUPTED;
983                 goto fail;
984         }
985
986         if (dn.data_blkaddr == COMPRESS_ADDR) {
987                 if (compr_blks)
988                         ret = __f2fs_get_cluster_blocks(inode, &dn);
989                 else
990                         ret = 1;
991         }
992 fail:
993         f2fs_put_dnode(&dn);
994         return ret;
995 }
996
997 /* return # of compressed blocks in compressed cluster */
998 static int f2fs_compressed_blocks(struct compress_ctx *cc)
999 {
1000         return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1001 }
1002
1003 /* return whether cluster is compressed one or not */
1004 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1005 {
1006         return __f2fs_cluster_blocks(inode,
1007                 index >> F2FS_I(inode)->i_log_cluster_size,
1008                 false);
1009 }
1010
1011 static bool cluster_may_compress(struct compress_ctx *cc)
1012 {
1013         if (!f2fs_need_compress_data(cc->inode))
1014                 return false;
1015         if (f2fs_is_atomic_file(cc->inode))
1016                 return false;
1017         if (!f2fs_cluster_is_full(cc))
1018                 return false;
1019         if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1020                 return false;
1021         return !cluster_has_invalid_data(cc);
1022 }
1023
1024 static void set_cluster_writeback(struct compress_ctx *cc)
1025 {
1026         int i;
1027
1028         for (i = 0; i < cc->cluster_size; i++) {
1029                 if (cc->rpages[i])
1030                         set_page_writeback(cc->rpages[i]);
1031         }
1032 }
1033
1034 static void set_cluster_dirty(struct compress_ctx *cc)
1035 {
1036         int i;
1037
1038         for (i = 0; i < cc->cluster_size; i++)
1039                 if (cc->rpages[i]) {
1040                         set_page_dirty(cc->rpages[i]);
1041                         set_page_private_gcing(cc->rpages[i]);
1042                 }
1043 }
1044
1045 static int prepare_compress_overwrite(struct compress_ctx *cc,
1046                 struct page **pagep, pgoff_t index, void **fsdata)
1047 {
1048         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1049         struct address_space *mapping = cc->inode->i_mapping;
1050         struct page *page;
1051         sector_t last_block_in_bio;
1052         fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1053         pgoff_t start_idx = start_idx_of_cluster(cc);
1054         int i, ret;
1055
1056 retry:
1057         ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1058         if (ret <= 0)
1059                 return ret;
1060
1061         ret = f2fs_init_compress_ctx(cc);
1062         if (ret)
1063                 return ret;
1064
1065         /* keep page reference to avoid page reclaim */
1066         for (i = 0; i < cc->cluster_size; i++) {
1067                 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1068                                                         fgp_flag, GFP_NOFS);
1069                 if (!page) {
1070                         ret = -ENOMEM;
1071                         goto unlock_pages;
1072                 }
1073
1074                 if (PageUptodate(page))
1075                         f2fs_put_page(page, 1);
1076                 else
1077                         f2fs_compress_ctx_add_page(cc, page);
1078         }
1079
1080         if (!f2fs_cluster_is_empty(cc)) {
1081                 struct bio *bio = NULL;
1082
1083                 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1084                                         &last_block_in_bio, false, true);
1085                 f2fs_put_rpages(cc);
1086                 f2fs_destroy_compress_ctx(cc, true);
1087                 if (ret)
1088                         goto out;
1089                 if (bio)
1090                         f2fs_submit_read_bio(sbi, bio, DATA);
1091
1092                 ret = f2fs_init_compress_ctx(cc);
1093                 if (ret)
1094                         goto out;
1095         }
1096
1097         for (i = 0; i < cc->cluster_size; i++) {
1098                 f2fs_bug_on(sbi, cc->rpages[i]);
1099
1100                 page = find_lock_page(mapping, start_idx + i);
1101                 if (!page) {
1102                         /* page can be truncated */
1103                         goto release_and_retry;
1104                 }
1105
1106                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1107                 f2fs_compress_ctx_add_page(cc, page);
1108
1109                 if (!PageUptodate(page)) {
1110 release_and_retry:
1111                         f2fs_put_rpages(cc);
1112                         f2fs_unlock_rpages(cc, i + 1);
1113                         f2fs_destroy_compress_ctx(cc, true);
1114                         goto retry;
1115                 }
1116         }
1117
1118         if (likely(!ret)) {
1119                 *fsdata = cc->rpages;
1120                 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1121                 return cc->cluster_size;
1122         }
1123
1124 unlock_pages:
1125         f2fs_put_rpages(cc);
1126         f2fs_unlock_rpages(cc, i);
1127         f2fs_destroy_compress_ctx(cc, true);
1128 out:
1129         return ret;
1130 }
1131
1132 int f2fs_prepare_compress_overwrite(struct inode *inode,
1133                 struct page **pagep, pgoff_t index, void **fsdata)
1134 {
1135         struct compress_ctx cc = {
1136                 .inode = inode,
1137                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1138                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1139                 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1140                 .rpages = NULL,
1141                 .nr_rpages = 0,
1142         };
1143
1144         return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1145 }
1146
1147 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1148                                         pgoff_t index, unsigned copied)
1149
1150 {
1151         struct compress_ctx cc = {
1152                 .inode = inode,
1153                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1154                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1155                 .rpages = fsdata,
1156         };
1157         bool first_index = (index == cc.rpages[0]->index);
1158
1159         if (copied)
1160                 set_cluster_dirty(&cc);
1161
1162         f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1163         f2fs_destroy_compress_ctx(&cc, false);
1164
1165         return first_index;
1166 }
1167
1168 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1169 {
1170         void *fsdata = NULL;
1171         struct page *pagep;
1172         int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1173         pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1174                                                         log_cluster_size;
1175         int err;
1176
1177         err = f2fs_is_compressed_cluster(inode, start_idx);
1178         if (err < 0)
1179                 return err;
1180
1181         /* truncate normal cluster */
1182         if (!err)
1183                 return f2fs_do_truncate_blocks(inode, from, lock);
1184
1185         /* truncate compressed cluster */
1186         err = f2fs_prepare_compress_overwrite(inode, &pagep,
1187                                                 start_idx, &fsdata);
1188
1189         /* should not be a normal cluster */
1190         f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1191
1192         if (err <= 0)
1193                 return err;
1194
1195         if (err > 0) {
1196                 struct page **rpages = fsdata;
1197                 int cluster_size = F2FS_I(inode)->i_cluster_size;
1198                 int i;
1199
1200                 for (i = cluster_size - 1; i >= 0; i--) {
1201                         loff_t start = rpages[i]->index << PAGE_SHIFT;
1202
1203                         if (from <= start) {
1204                                 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1205                         } else {
1206                                 zero_user_segment(rpages[i], from - start,
1207                                                                 PAGE_SIZE);
1208                                 break;
1209                         }
1210                 }
1211
1212                 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1213         }
1214         return 0;
1215 }
1216
1217 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1218                                         int *submitted,
1219                                         struct writeback_control *wbc,
1220                                         enum iostat_type io_type)
1221 {
1222         struct inode *inode = cc->inode;
1223         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224         struct f2fs_inode_info *fi = F2FS_I(inode);
1225         struct f2fs_io_info fio = {
1226                 .sbi = sbi,
1227                 .ino = cc->inode->i_ino,
1228                 .type = DATA,
1229                 .op = REQ_OP_WRITE,
1230                 .op_flags = wbc_to_write_flags(wbc),
1231                 .old_blkaddr = NEW_ADDR,
1232                 .page = NULL,
1233                 .encrypted_page = NULL,
1234                 .compressed_page = NULL,
1235                 .submitted = 0,
1236                 .io_type = io_type,
1237                 .io_wbc = wbc,
1238                 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1239                                                                         1 : 0,
1240         };
1241         struct dnode_of_data dn;
1242         struct node_info ni;
1243         struct compress_io_ctx *cic;
1244         pgoff_t start_idx = start_idx_of_cluster(cc);
1245         unsigned int last_index = cc->cluster_size - 1;
1246         loff_t psize;
1247         int i, err;
1248         bool quota_inode = IS_NOQUOTA(inode);
1249
1250         /* we should bypass data pages to proceed the kworker jobs */
1251         if (unlikely(f2fs_cp_error(sbi))) {
1252                 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1253                 goto out_free;
1254         }
1255
1256         if (quota_inode) {
1257                 /*
1258                  * We need to wait for node_write to avoid block allocation during
1259                  * checkpoint. This can only happen to quota writes which can cause
1260                  * the below discard race condition.
1261                  */
1262                 f2fs_down_read(&sbi->node_write);
1263         } else if (!f2fs_trylock_op(sbi)) {
1264                 goto out_free;
1265         }
1266
1267         set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1268
1269         err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1270         if (err)
1271                 goto out_unlock_op;
1272
1273         for (i = 0; i < cc->cluster_size; i++) {
1274                 if (data_blkaddr(dn.inode, dn.node_page,
1275                                         dn.ofs_in_node + i) == NULL_ADDR)
1276                         goto out_put_dnode;
1277         }
1278
1279         psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1280
1281         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1282         if (err)
1283                 goto out_put_dnode;
1284
1285         fio.version = ni.version;
1286
1287         cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1288         if (!cic)
1289                 goto out_put_dnode;
1290
1291         cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1292         cic->inode = inode;
1293         atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1294         cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1295         if (!cic->rpages)
1296                 goto out_put_cic;
1297
1298         cic->nr_rpages = cc->cluster_size;
1299
1300         for (i = 0; i < cc->valid_nr_cpages; i++) {
1301                 f2fs_set_compressed_page(cc->cpages[i], inode,
1302                                         cc->rpages[i + 1]->index, cic);
1303                 fio.compressed_page = cc->cpages[i];
1304
1305                 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1306                                                 dn.ofs_in_node + i + 1);
1307
1308                 /* wait for GCed page writeback via META_MAPPING */
1309                 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1310
1311                 if (fio.encrypted) {
1312                         fio.page = cc->rpages[i + 1];
1313                         err = f2fs_encrypt_one_page(&fio);
1314                         if (err)
1315                                 goto out_destroy_crypt;
1316                         cc->cpages[i] = fio.encrypted_page;
1317                 }
1318         }
1319
1320         set_cluster_writeback(cc);
1321
1322         for (i = 0; i < cc->cluster_size; i++)
1323                 cic->rpages[i] = cc->rpages[i];
1324
1325         for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1326                 block_t blkaddr;
1327
1328                 blkaddr = f2fs_data_blkaddr(&dn);
1329                 fio.page = cc->rpages[i];
1330                 fio.old_blkaddr = blkaddr;
1331
1332                 /* cluster header */
1333                 if (i == 0) {
1334                         if (blkaddr == COMPRESS_ADDR)
1335                                 fio.compr_blocks++;
1336                         if (__is_valid_data_blkaddr(blkaddr))
1337                                 f2fs_invalidate_blocks(sbi, blkaddr);
1338                         f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1339                         goto unlock_continue;
1340                 }
1341
1342                 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1343                         fio.compr_blocks++;
1344
1345                 if (i > cc->valid_nr_cpages) {
1346                         if (__is_valid_data_blkaddr(blkaddr)) {
1347                                 f2fs_invalidate_blocks(sbi, blkaddr);
1348                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1349                         }
1350                         goto unlock_continue;
1351                 }
1352
1353                 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1354
1355                 if (fio.encrypted)
1356                         fio.encrypted_page = cc->cpages[i - 1];
1357                 else
1358                         fio.compressed_page = cc->cpages[i - 1];
1359
1360                 cc->cpages[i - 1] = NULL;
1361                 f2fs_outplace_write_data(&dn, &fio);
1362                 (*submitted)++;
1363 unlock_continue:
1364                 inode_dec_dirty_pages(cc->inode);
1365                 unlock_page(fio.page);
1366         }
1367
1368         if (fio.compr_blocks)
1369                 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1370         f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1371         add_compr_block_stat(inode, cc->valid_nr_cpages);
1372
1373         set_inode_flag(cc->inode, FI_APPEND_WRITE);
1374
1375         f2fs_put_dnode(&dn);
1376         if (quota_inode)
1377                 f2fs_up_read(&sbi->node_write);
1378         else
1379                 f2fs_unlock_op(sbi);
1380
1381         spin_lock(&fi->i_size_lock);
1382         if (fi->last_disk_size < psize)
1383                 fi->last_disk_size = psize;
1384         spin_unlock(&fi->i_size_lock);
1385
1386         f2fs_put_rpages(cc);
1387         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1388         cc->cpages = NULL;
1389         f2fs_destroy_compress_ctx(cc, false);
1390         return 0;
1391
1392 out_destroy_crypt:
1393         page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1394
1395         for (--i; i >= 0; i--)
1396                 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1397 out_put_cic:
1398         kmem_cache_free(cic_entry_slab, cic);
1399 out_put_dnode:
1400         f2fs_put_dnode(&dn);
1401 out_unlock_op:
1402         if (quota_inode)
1403                 f2fs_up_read(&sbi->node_write);
1404         else
1405                 f2fs_unlock_op(sbi);
1406 out_free:
1407         for (i = 0; i < cc->valid_nr_cpages; i++) {
1408                 f2fs_compress_free_page(cc->cpages[i]);
1409                 cc->cpages[i] = NULL;
1410         }
1411         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1412         cc->cpages = NULL;
1413         return -EAGAIN;
1414 }
1415
1416 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1417 {
1418         struct f2fs_sb_info *sbi = bio->bi_private;
1419         struct compress_io_ctx *cic =
1420                         (struct compress_io_ctx *)page_private(page);
1421         int i;
1422
1423         if (unlikely(bio->bi_status))
1424                 mapping_set_error(cic->inode->i_mapping, -EIO);
1425
1426         f2fs_compress_free_page(page);
1427
1428         dec_page_count(sbi, F2FS_WB_DATA);
1429
1430         if (atomic_dec_return(&cic->pending_pages))
1431                 return;
1432
1433         for (i = 0; i < cic->nr_rpages; i++) {
1434                 WARN_ON(!cic->rpages[i]);
1435                 clear_page_private_gcing(cic->rpages[i]);
1436                 end_page_writeback(cic->rpages[i]);
1437         }
1438
1439         page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1440         kmem_cache_free(cic_entry_slab, cic);
1441 }
1442
1443 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1444                                         int *submitted,
1445                                         struct writeback_control *wbc,
1446                                         enum iostat_type io_type)
1447 {
1448         struct address_space *mapping = cc->inode->i_mapping;
1449         int _submitted, compr_blocks, ret, i;
1450
1451         compr_blocks = f2fs_compressed_blocks(cc);
1452
1453         for (i = 0; i < cc->cluster_size; i++) {
1454                 if (!cc->rpages[i])
1455                         continue;
1456
1457                 redirty_page_for_writepage(wbc, cc->rpages[i]);
1458                 unlock_page(cc->rpages[i]);
1459         }
1460
1461         if (compr_blocks < 0)
1462                 return compr_blocks;
1463
1464         for (i = 0; i < cc->cluster_size; i++) {
1465                 if (!cc->rpages[i])
1466                         continue;
1467 retry_write:
1468                 lock_page(cc->rpages[i]);
1469
1470                 if (cc->rpages[i]->mapping != mapping) {
1471 continue_unlock:
1472                         unlock_page(cc->rpages[i]);
1473                         continue;
1474                 }
1475
1476                 if (!PageDirty(cc->rpages[i]))
1477                         goto continue_unlock;
1478
1479                 if (PageWriteback(cc->rpages[i])) {
1480                         if (wbc->sync_mode == WB_SYNC_NONE)
1481                                 goto continue_unlock;
1482                         f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1483                 }
1484
1485                 if (!clear_page_dirty_for_io(cc->rpages[i]))
1486                         goto continue_unlock;
1487
1488                 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1489                                                 NULL, NULL, wbc, io_type,
1490                                                 compr_blocks, false);
1491                 if (ret) {
1492                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
1493                                 unlock_page(cc->rpages[i]);
1494                                 ret = 0;
1495                         } else if (ret == -EAGAIN) {
1496                                 /*
1497                                  * for quota file, just redirty left pages to
1498                                  * avoid deadlock caused by cluster update race
1499                                  * from foreground operation.
1500                                  */
1501                                 if (IS_NOQUOTA(cc->inode))
1502                                         return 0;
1503                                 ret = 0;
1504                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1505                                 goto retry_write;
1506                         }
1507                         return ret;
1508                 }
1509
1510                 *submitted += _submitted;
1511         }
1512
1513         f2fs_balance_fs(F2FS_M_SB(mapping), true);
1514
1515         return 0;
1516 }
1517
1518 int f2fs_write_multi_pages(struct compress_ctx *cc,
1519                                         int *submitted,
1520                                         struct writeback_control *wbc,
1521                                         enum iostat_type io_type)
1522 {
1523         int err;
1524
1525         *submitted = 0;
1526         if (cluster_may_compress(cc)) {
1527                 err = f2fs_compress_pages(cc);
1528                 if (err == -EAGAIN) {
1529                         add_compr_block_stat(cc->inode, cc->cluster_size);
1530                         goto write;
1531                 } else if (err) {
1532                         f2fs_put_rpages_wbc(cc, wbc, true, 1);
1533                         goto destroy_out;
1534                 }
1535
1536                 err = f2fs_write_compressed_pages(cc, submitted,
1537                                                         wbc, io_type);
1538                 if (!err)
1539                         return 0;
1540                 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1541         }
1542 write:
1543         f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1544
1545         err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1546         f2fs_put_rpages_wbc(cc, wbc, false, 0);
1547 destroy_out:
1548         f2fs_destroy_compress_ctx(cc, false);
1549         return err;
1550 }
1551
1552 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1553                 bool pre_alloc)
1554 {
1555         return pre_alloc ^ f2fs_low_mem_mode(sbi);
1556 }
1557
1558 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1559                 bool pre_alloc)
1560 {
1561         const struct f2fs_compress_ops *cops =
1562                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1563         int i;
1564
1565         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1566                 return 0;
1567
1568         dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1569         if (!dic->tpages)
1570                 return -ENOMEM;
1571
1572         for (i = 0; i < dic->cluster_size; i++) {
1573                 if (dic->rpages[i]) {
1574                         dic->tpages[i] = dic->rpages[i];
1575                         continue;
1576                 }
1577
1578                 dic->tpages[i] = f2fs_compress_alloc_page();
1579         }
1580
1581         dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1582         if (!dic->rbuf)
1583                 return -ENOMEM;
1584
1585         dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1586         if (!dic->cbuf)
1587                 return -ENOMEM;
1588
1589         if (cops->init_decompress_ctx)
1590                 return cops->init_decompress_ctx(dic);
1591
1592         return 0;
1593 }
1594
1595 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1596                 bool bypass_destroy_callback, bool pre_alloc)
1597 {
1598         const struct f2fs_compress_ops *cops =
1599                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1600
1601         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1602                 return;
1603
1604         if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1605                 cops->destroy_decompress_ctx(dic);
1606
1607         if (dic->cbuf)
1608                 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1609
1610         if (dic->rbuf)
1611                 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1612 }
1613
1614 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1615                 bool bypass_destroy_callback);
1616
1617 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1618 {
1619         struct decompress_io_ctx *dic;
1620         pgoff_t start_idx = start_idx_of_cluster(cc);
1621         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1622         int i, ret;
1623
1624         dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1625         if (!dic)
1626                 return ERR_PTR(-ENOMEM);
1627
1628         dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1629         if (!dic->rpages) {
1630                 kmem_cache_free(dic_entry_slab, dic);
1631                 return ERR_PTR(-ENOMEM);
1632         }
1633
1634         dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1635         dic->inode = cc->inode;
1636         atomic_set(&dic->remaining_pages, cc->nr_cpages);
1637         dic->cluster_idx = cc->cluster_idx;
1638         dic->cluster_size = cc->cluster_size;
1639         dic->log_cluster_size = cc->log_cluster_size;
1640         dic->nr_cpages = cc->nr_cpages;
1641         refcount_set(&dic->refcnt, 1);
1642         dic->failed = false;
1643         dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1644
1645         for (i = 0; i < dic->cluster_size; i++)
1646                 dic->rpages[i] = cc->rpages[i];
1647         dic->nr_rpages = cc->cluster_size;
1648
1649         dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1650         if (!dic->cpages) {
1651                 ret = -ENOMEM;
1652                 goto out_free;
1653         }
1654
1655         for (i = 0; i < dic->nr_cpages; i++) {
1656                 struct page *page;
1657
1658                 page = f2fs_compress_alloc_page();
1659                 f2fs_set_compressed_page(page, cc->inode,
1660                                         start_idx + i + 1, dic);
1661                 dic->cpages[i] = page;
1662         }
1663
1664         ret = f2fs_prepare_decomp_mem(dic, true);
1665         if (ret)
1666                 goto out_free;
1667
1668         return dic;
1669
1670 out_free:
1671         f2fs_free_dic(dic, true);
1672         return ERR_PTR(ret);
1673 }
1674
1675 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1676                 bool bypass_destroy_callback)
1677 {
1678         int i;
1679
1680         f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1681
1682         if (dic->tpages) {
1683                 for (i = 0; i < dic->cluster_size; i++) {
1684                         if (dic->rpages[i])
1685                                 continue;
1686                         if (!dic->tpages[i])
1687                                 continue;
1688                         f2fs_compress_free_page(dic->tpages[i]);
1689                 }
1690                 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1691         }
1692
1693         if (dic->cpages) {
1694                 for (i = 0; i < dic->nr_cpages; i++) {
1695                         if (!dic->cpages[i])
1696                                 continue;
1697                         f2fs_compress_free_page(dic->cpages[i]);
1698                 }
1699                 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1700         }
1701
1702         page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1703         kmem_cache_free(dic_entry_slab, dic);
1704 }
1705
1706 static void f2fs_late_free_dic(struct work_struct *work)
1707 {
1708         struct decompress_io_ctx *dic =
1709                 container_of(work, struct decompress_io_ctx, free_work);
1710
1711         f2fs_free_dic(dic, false);
1712 }
1713
1714 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1715 {
1716         if (refcount_dec_and_test(&dic->refcnt)) {
1717                 if (in_task) {
1718                         f2fs_free_dic(dic, false);
1719                 } else {
1720                         INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1721                         queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1722                                         &dic->free_work);
1723                 }
1724         }
1725 }
1726
1727 static void f2fs_verify_cluster(struct work_struct *work)
1728 {
1729         struct decompress_io_ctx *dic =
1730                 container_of(work, struct decompress_io_ctx, verity_work);
1731         int i;
1732
1733         /* Verify, update, and unlock the decompressed pages. */
1734         for (i = 0; i < dic->cluster_size; i++) {
1735                 struct page *rpage = dic->rpages[i];
1736
1737                 if (!rpage)
1738                         continue;
1739
1740                 if (fsverity_verify_page(rpage))
1741                         SetPageUptodate(rpage);
1742                 else
1743                         ClearPageUptodate(rpage);
1744                 unlock_page(rpage);
1745         }
1746
1747         f2fs_put_dic(dic, true);
1748 }
1749
1750 /*
1751  * This is called when a compressed cluster has been decompressed
1752  * (or failed to be read and/or decompressed).
1753  */
1754 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1755                                 bool in_task)
1756 {
1757         int i;
1758
1759         if (!failed && dic->need_verity) {
1760                 /*
1761                  * Note that to avoid deadlocks, the verity work can't be done
1762                  * on the decompression workqueue.  This is because verifying
1763                  * the data pages can involve reading metadata pages from the
1764                  * file, and these metadata pages may be compressed.
1765                  */
1766                 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1767                 fsverity_enqueue_verify_work(&dic->verity_work);
1768                 return;
1769         }
1770
1771         /* Update and unlock the cluster's pagecache pages. */
1772         for (i = 0; i < dic->cluster_size; i++) {
1773                 struct page *rpage = dic->rpages[i];
1774
1775                 if (!rpage)
1776                         continue;
1777
1778                 if (failed)
1779                         ClearPageUptodate(rpage);
1780                 else
1781                         SetPageUptodate(rpage);
1782                 unlock_page(rpage);
1783         }
1784
1785         /*
1786          * Release the reference to the decompress_io_ctx that was being held
1787          * for I/O completion.
1788          */
1789         f2fs_put_dic(dic, in_task);
1790 }
1791
1792 /*
1793  * Put a reference to a compressed page's decompress_io_ctx.
1794  *
1795  * This is called when the page is no longer needed and can be freed.
1796  */
1797 void f2fs_put_page_dic(struct page *page, bool in_task)
1798 {
1799         struct decompress_io_ctx *dic =
1800                         (struct decompress_io_ctx *)page_private(page);
1801
1802         f2fs_put_dic(dic, in_task);
1803 }
1804
1805 /*
1806  * check whether cluster blocks are contiguous, and add extent cache entry
1807  * only if cluster blocks are logically and physically contiguous.
1808  */
1809 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1810 {
1811         bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1812         int i = compressed ? 1 : 0;
1813         block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1814                                                 dn->ofs_in_node + i);
1815
1816         for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1817                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1818                                                 dn->ofs_in_node + i);
1819
1820                 if (!__is_valid_data_blkaddr(blkaddr))
1821                         break;
1822                 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1823                         return 0;
1824         }
1825
1826         return compressed ? i - 1 : i;
1827 }
1828
1829 const struct address_space_operations f2fs_compress_aops = {
1830         .release_folio = f2fs_release_folio,
1831         .invalidate_folio = f2fs_invalidate_folio,
1832         .migrate_folio  = filemap_migrate_folio,
1833 };
1834
1835 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1836 {
1837         return sbi->compress_inode->i_mapping;
1838 }
1839
1840 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1841 {
1842         if (!sbi->compress_inode)
1843                 return;
1844         invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1845 }
1846
1847 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1848                                                 nid_t ino, block_t blkaddr)
1849 {
1850         struct page *cpage;
1851         int ret;
1852
1853         if (!test_opt(sbi, COMPRESS_CACHE))
1854                 return;
1855
1856         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1857                 return;
1858
1859         if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1860                 return;
1861
1862         cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1863         if (cpage) {
1864                 f2fs_put_page(cpage, 0);
1865                 return;
1866         }
1867
1868         cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1869         if (!cpage)
1870                 return;
1871
1872         ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1873                                                 blkaddr, GFP_NOFS);
1874         if (ret) {
1875                 f2fs_put_page(cpage, 0);
1876                 return;
1877         }
1878
1879         set_page_private_data(cpage, ino);
1880
1881         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1882                 goto out;
1883
1884         memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1885         SetPageUptodate(cpage);
1886 out:
1887         f2fs_put_page(cpage, 1);
1888 }
1889
1890 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1891                                                                 block_t blkaddr)
1892 {
1893         struct page *cpage;
1894         bool hitted = false;
1895
1896         if (!test_opt(sbi, COMPRESS_CACHE))
1897                 return false;
1898
1899         cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1900                                 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1901         if (cpage) {
1902                 if (PageUptodate(cpage)) {
1903                         atomic_inc(&sbi->compress_page_hit);
1904                         memcpy(page_address(page),
1905                                 page_address(cpage), PAGE_SIZE);
1906                         hitted = true;
1907                 }
1908                 f2fs_put_page(cpage, 1);
1909         }
1910
1911         return hitted;
1912 }
1913
1914 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1915 {
1916         struct address_space *mapping = COMPRESS_MAPPING(sbi);
1917         struct folio_batch fbatch;
1918         pgoff_t index = 0;
1919         pgoff_t end = MAX_BLKADDR(sbi);
1920
1921         if (!mapping->nrpages)
1922                 return;
1923
1924         folio_batch_init(&fbatch);
1925
1926         do {
1927                 unsigned int nr, i;
1928
1929                 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1930                 if (!nr)
1931                         break;
1932
1933                 for (i = 0; i < nr; i++) {
1934                         struct folio *folio = fbatch.folios[i];
1935
1936                         folio_lock(folio);
1937                         if (folio->mapping != mapping) {
1938                                 folio_unlock(folio);
1939                                 continue;
1940                         }
1941
1942                         if (ino != get_page_private_data(&folio->page)) {
1943                                 folio_unlock(folio);
1944                                 continue;
1945                         }
1946
1947                         generic_error_remove_folio(mapping, folio);
1948                         folio_unlock(folio);
1949                 }
1950                 folio_batch_release(&fbatch);
1951                 cond_resched();
1952         } while (index < end);
1953 }
1954
1955 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1956 {
1957         struct inode *inode;
1958
1959         if (!test_opt(sbi, COMPRESS_CACHE))
1960                 return 0;
1961
1962         inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1963         if (IS_ERR(inode))
1964                 return PTR_ERR(inode);
1965         sbi->compress_inode = inode;
1966
1967         sbi->compress_percent = COMPRESS_PERCENT;
1968         sbi->compress_watermark = COMPRESS_WATERMARK;
1969
1970         atomic_set(&sbi->compress_page_hit, 0);
1971
1972         return 0;
1973 }
1974
1975 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1976 {
1977         if (!sbi->compress_inode)
1978                 return;
1979         iput(sbi->compress_inode);
1980         sbi->compress_inode = NULL;
1981 }
1982
1983 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1984 {
1985         dev_t dev = sbi->sb->s_bdev->bd_dev;
1986         char slab_name[35];
1987
1988         if (!f2fs_sb_has_compression(sbi))
1989                 return 0;
1990
1991         sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1992
1993         sbi->page_array_slab_size = sizeof(struct page *) <<
1994                                         F2FS_OPTION(sbi).compress_log_size;
1995
1996         sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1997                                         sbi->page_array_slab_size);
1998         return sbi->page_array_slab ? 0 : -ENOMEM;
1999 }
2000
2001 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2002 {
2003         kmem_cache_destroy(sbi->page_array_slab);
2004 }
2005
2006 int __init f2fs_init_compress_cache(void)
2007 {
2008         cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2009                                         sizeof(struct compress_io_ctx));
2010         if (!cic_entry_slab)
2011                 return -ENOMEM;
2012         dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2013                                         sizeof(struct decompress_io_ctx));
2014         if (!dic_entry_slab)
2015                 goto free_cic;
2016         return 0;
2017 free_cic:
2018         kmem_cache_destroy(cic_entry_slab);
2019         return -ENOMEM;
2020 }
2021
2022 void f2fs_destroy_compress_cache(void)
2023 {
2024         kmem_cache_destroy(dic_entry_slab);
2025         kmem_cache_destroy(cic_entry_slab);
2026 }