Merge tag 'libnvdimm-fixes-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29         unsigned int size = sizeof(struct page *) * nr;
30
31         if (likely(size <= sbi->page_array_slab_size))
32                 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33                                         GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34         return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40         unsigned int size = sizeof(struct page *) * nr;
41
42         if (!pages)
43                 return;
44
45         if (likely(size <= sbi->page_array_slab_size))
46                 kmem_cache_free(sbi->page_array_slab, pages);
47         else
48                 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52         int (*init_compress_ctx)(struct compress_ctx *cc);
53         void (*destroy_compress_ctx)(struct compress_ctx *cc);
54         int (*compress_pages)(struct compress_ctx *cc);
55         int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56         void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57         int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62         return index & (cc->cluster_size - 1);
63 }
64
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67         return index >> cc->log_cluster_size;
68 }
69
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72         return cc->cluster_idx << cc->log_cluster_size;
73 }
74
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77         if (!PagePrivate(page))
78                 return false;
79         if (!page_private(page))
80                 return false;
81         if (page_private_nonpointer(page))
82                 return false;
83
84         f2fs_bug_on(F2FS_M_SB(page->mapping),
85                 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86         return true;
87 }
88
89 static void f2fs_set_compressed_page(struct page *page,
90                 struct inode *inode, pgoff_t index, void *data)
91 {
92         attach_page_private(page, (void *)data);
93
94         /* i_crypto_info and iv index */
95         page->index = index;
96         page->mapping = inode->i_mapping;
97 }
98
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101         int i;
102
103         for (i = 0; i < len; i++) {
104                 if (!cc->rpages[i])
105                         continue;
106                 if (unlock)
107                         unlock_page(cc->rpages[i]);
108                 else
109                         put_page(cc->rpages[i]);
110         }
111 }
112
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115         f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120         f2fs_drop_rpages(cc, len, true);
121 }
122
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124                 struct writeback_control *wbc, bool redirty, int unlock)
125 {
126         unsigned int i;
127
128         for (i = 0; i < cc->cluster_size; i++) {
129                 if (!cc->rpages[i])
130                         continue;
131                 if (redirty)
132                         redirty_page_for_writepage(wbc, cc->rpages[i]);
133                 f2fs_put_page(cc->rpages[i], unlock);
134         }
135 }
136
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139         return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144         if (cc->rpages)
145                 return 0;
146
147         cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148         return cc->rpages ? 0 : -ENOMEM;
149 }
150
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153         page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154         cc->rpages = NULL;
155         cc->nr_rpages = 0;
156         cc->nr_cpages = 0;
157         cc->valid_nr_cpages = 0;
158         if (!reuse)
159                 cc->cluster_idx = NULL_CLUSTER;
160 }
161
162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164         unsigned int cluster_ofs;
165
166         if (!f2fs_cluster_can_merge_page(cc, page->index))
167                 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168
169         cluster_ofs = offset_in_cluster(cc, page->index);
170         cc->rpages[cluster_ofs] = page;
171         cc->nr_rpages++;
172         cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174
175 #ifdef CONFIG_F2FS_FS_LZO
176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179                                 LZO1X_MEM_COMPRESS, GFP_NOFS);
180         if (!cc->private)
181                 return -ENOMEM;
182
183         cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184         return 0;
185 }
186
187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189         kvfree(cc->private);
190         cc->private = NULL;
191 }
192
193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195         int ret;
196
197         ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198                                         &cc->clen, cc->private);
199         if (ret != LZO_E_OK) {
200                 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202                 return -EIO;
203         }
204         return 0;
205 }
206
207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209         int ret;
210
211         ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212                                                 dic->rbuf, &dic->rlen);
213         if (ret != LZO_E_OK) {
214                 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216                 return -EIO;
217         }
218
219         if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220                 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221                                         "expected:%lu\n", KERN_ERR,
222                                         F2FS_I_SB(dic->inode)->sb->s_id,
223                                         dic->rlen,
224                                         PAGE_SIZE << dic->log_cluster_size);
225                 return -EIO;
226         }
227         return 0;
228 }
229
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231         .init_compress_ctx      = lzo_init_compress_ctx,
232         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
233         .compress_pages         = lzo_compress_pages,
234         .decompress_pages       = lzo_decompress_pages,
235 };
236 #endif
237
238 #ifdef CONFIG_F2FS_FS_LZ4
239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241         unsigned int size = LZ4_MEM_COMPRESS;
242
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244         if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245                 size = LZ4HC_MEM_COMPRESS;
246 #endif
247
248         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249         if (!cc->private)
250                 return -ENOMEM;
251
252         /*
253          * we do not change cc->clen to LZ4_compressBound(inputsize) to
254          * adapt worst compress case, because lz4 compressor can handle
255          * output budget properly.
256          */
257         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258         return 0;
259 }
260
261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263         kvfree(cc->private);
264         cc->private = NULL;
265 }
266
267 #ifdef CONFIG_F2FS_FS_LZ4HC
268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270         unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271                                                 COMPRESS_LEVEL_OFFSET;
272         int len;
273
274         if (level)
275                 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276                                         cc->clen, level, cc->private);
277         else
278                 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279                                                 cc->clen, cc->private);
280         if (!len)
281                 return -EAGAIN;
282
283         cc->clen = len;
284         return 0;
285 }
286 #endif
287
288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290         int len;
291
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293         return lz4hc_compress_pages(cc);
294 #endif
295         len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296                                                 cc->clen, cc->private);
297         if (!len)
298                 return -EAGAIN;
299
300         cc->clen = len;
301         return 0;
302 }
303
304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306         int ret;
307
308         ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309                                                 dic->clen, dic->rlen);
310         if (ret < 0) {
311                 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313                 return -EIO;
314         }
315
316         if (ret != PAGE_SIZE << dic->log_cluster_size) {
317                 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318                                         "expected:%lu\n", KERN_ERR,
319                                         F2FS_I_SB(dic->inode)->sb->s_id, ret,
320                                         PAGE_SIZE << dic->log_cluster_size);
321                 return -EIO;
322         }
323         return 0;
324 }
325
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327         .init_compress_ctx      = lz4_init_compress_ctx,
328         .destroy_compress_ctx   = lz4_destroy_compress_ctx,
329         .compress_pages         = lz4_compress_pages,
330         .decompress_pages       = lz4_decompress_pages,
331 };
332 #endif
333
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL        1
336
337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339         zstd_parameters params;
340         zstd_cstream *stream;
341         void *workspace;
342         unsigned int workspace_size;
343         unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344                                                 COMPRESS_LEVEL_OFFSET;
345
346         if (!level)
347                 level = F2FS_ZSTD_DEFAULT_CLEVEL;
348
349         params = zstd_get_params(level, cc->rlen);
350         workspace_size = zstd_cstream_workspace_bound(&params.cParams);
351
352         workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353                                         workspace_size, GFP_NOFS);
354         if (!workspace)
355                 return -ENOMEM;
356
357         stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
358         if (!stream) {
359                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361                                 __func__);
362                 kvfree(workspace);
363                 return -EIO;
364         }
365
366         cc->private = workspace;
367         cc->private2 = stream;
368
369         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370         return 0;
371 }
372
373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375         kvfree(cc->private);
376         cc->private = NULL;
377         cc->private2 = NULL;
378 }
379
380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382         zstd_cstream *stream = cc->private2;
383         zstd_in_buffer inbuf;
384         zstd_out_buffer outbuf;
385         int src_size = cc->rlen;
386         int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387         int ret;
388
389         inbuf.pos = 0;
390         inbuf.src = cc->rbuf;
391         inbuf.size = src_size;
392
393         outbuf.pos = 0;
394         outbuf.dst = cc->cbuf->cdata;
395         outbuf.size = dst_size;
396
397         ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398         if (zstd_is_error(ret)) {
399                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401                                 __func__, zstd_get_error_code(ret));
402                 return -EIO;
403         }
404
405         ret = zstd_end_stream(stream, &outbuf);
406         if (zstd_is_error(ret)) {
407                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409                                 __func__, zstd_get_error_code(ret));
410                 return -EIO;
411         }
412
413         /*
414          * there is compressed data remained in intermediate buffer due to
415          * no more space in cbuf.cdata
416          */
417         if (ret)
418                 return -EAGAIN;
419
420         cc->clen = outbuf.pos;
421         return 0;
422 }
423
424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426         zstd_dstream *stream;
427         void *workspace;
428         unsigned int workspace_size;
429         unsigned int max_window_size =
430                         MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431
432         workspace_size = zstd_dstream_workspace_bound(max_window_size);
433
434         workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435                                         workspace_size, GFP_NOFS);
436         if (!workspace)
437                 return -ENOMEM;
438
439         stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440         if (!stream) {
441                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443                                 __func__);
444                 kvfree(workspace);
445                 return -EIO;
446         }
447
448         dic->private = workspace;
449         dic->private2 = stream;
450
451         return 0;
452 }
453
454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456         kvfree(dic->private);
457         dic->private = NULL;
458         dic->private2 = NULL;
459 }
460
461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463         zstd_dstream *stream = dic->private2;
464         zstd_in_buffer inbuf;
465         zstd_out_buffer outbuf;
466         int ret;
467
468         inbuf.pos = 0;
469         inbuf.src = dic->cbuf->cdata;
470         inbuf.size = dic->clen;
471
472         outbuf.pos = 0;
473         outbuf.dst = dic->rbuf;
474         outbuf.size = dic->rlen;
475
476         ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477         if (zstd_is_error(ret)) {
478                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480                                 __func__, zstd_get_error_code(ret));
481                 return -EIO;
482         }
483
484         if (dic->rlen != outbuf.pos) {
485                 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486                                 "expected:%lu\n", KERN_ERR,
487                                 F2FS_I_SB(dic->inode)->sb->s_id,
488                                 __func__, dic->rlen,
489                                 PAGE_SIZE << dic->log_cluster_size);
490                 return -EIO;
491         }
492
493         return 0;
494 }
495
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497         .init_compress_ctx      = zstd_init_compress_ctx,
498         .destroy_compress_ctx   = zstd_destroy_compress_ctx,
499         .compress_pages         = zstd_compress_pages,
500         .init_decompress_ctx    = zstd_init_decompress_ctx,
501         .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
502         .decompress_pages       = zstd_decompress_pages,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510         int ret;
511
512         ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513                                         &cc->clen, cc->private);
514         if (ret != LZO_E_OK) {
515                 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517                 return -EIO;
518         }
519         return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523         .init_compress_ctx      = lzo_init_compress_ctx,
524         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
525         .compress_pages         = lzorle_compress_pages,
526         .decompress_pages       = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533         &f2fs_lzo_ops,
534 #else
535         NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538         &f2fs_lz4_ops,
539 #else
540         NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543         &f2fs_zstd_ops,
544 #else
545         NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548         &f2fs_lzorle_ops,
549 #else
550         NULL,
551 #endif
552 };
553
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556         if (!f2fs_compressed_file(inode))
557                 return true;
558         return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565                 "Number of intermediate compress pages to preallocate");
566
567 int f2fs_init_compress_mempool(void)
568 {
569         compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570         return compress_page_pool ? 0 : -ENOMEM;
571 }
572
573 void f2fs_destroy_compress_mempool(void)
574 {
575         mempool_destroy(compress_page_pool);
576 }
577
578 static struct page *f2fs_compress_alloc_page(void)
579 {
580         struct page *page;
581
582         page = mempool_alloc(compress_page_pool, GFP_NOFS);
583         lock_page(page);
584
585         return page;
586 }
587
588 static void f2fs_compress_free_page(struct page *page)
589 {
590         if (!page)
591                 return;
592         detach_page_private(page);
593         page->mapping = NULL;
594         unlock_page(page);
595         mempool_free(page, compress_page_pool);
596 }
597
598 #define MAX_VMAP_RETRIES        3
599
600 static void *f2fs_vmap(struct page **pages, unsigned int count)
601 {
602         int i;
603         void *buf = NULL;
604
605         for (i = 0; i < MAX_VMAP_RETRIES; i++) {
606                 buf = vm_map_ram(pages, count, -1);
607                 if (buf)
608                         break;
609                 vm_unmap_aliases();
610         }
611         return buf;
612 }
613
614 static int f2fs_compress_pages(struct compress_ctx *cc)
615 {
616         struct f2fs_inode_info *fi = F2FS_I(cc->inode);
617         const struct f2fs_compress_ops *cops =
618                                 f2fs_cops[fi->i_compress_algorithm];
619         unsigned int max_len, new_nr_cpages;
620         u32 chksum = 0;
621         int i, ret;
622
623         trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
624                                 cc->cluster_size, fi->i_compress_algorithm);
625
626         if (cops->init_compress_ctx) {
627                 ret = cops->init_compress_ctx(cc);
628                 if (ret)
629                         goto out;
630         }
631
632         max_len = COMPRESS_HEADER_SIZE + cc->clen;
633         cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
634         cc->valid_nr_cpages = cc->nr_cpages;
635
636         cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
637         if (!cc->cpages) {
638                 ret = -ENOMEM;
639                 goto destroy_compress_ctx;
640         }
641
642         for (i = 0; i < cc->nr_cpages; i++) {
643                 cc->cpages[i] = f2fs_compress_alloc_page();
644                 if (!cc->cpages[i]) {
645                         ret = -ENOMEM;
646                         goto out_free_cpages;
647                 }
648         }
649
650         cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
651         if (!cc->rbuf) {
652                 ret = -ENOMEM;
653                 goto out_free_cpages;
654         }
655
656         cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
657         if (!cc->cbuf) {
658                 ret = -ENOMEM;
659                 goto out_vunmap_rbuf;
660         }
661
662         ret = cops->compress_pages(cc);
663         if (ret)
664                 goto out_vunmap_cbuf;
665
666         max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
667
668         if (cc->clen > max_len) {
669                 ret = -EAGAIN;
670                 goto out_vunmap_cbuf;
671         }
672
673         cc->cbuf->clen = cpu_to_le32(cc->clen);
674
675         if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
676                 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
677                                         cc->cbuf->cdata, cc->clen);
678         cc->cbuf->chksum = cpu_to_le32(chksum);
679
680         for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
681                 cc->cbuf->reserved[i] = cpu_to_le32(0);
682
683         new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
684
685         /* zero out any unused part of the last page */
686         memset(&cc->cbuf->cdata[cc->clen], 0,
687                         (new_nr_cpages * PAGE_SIZE) -
688                         (cc->clen + COMPRESS_HEADER_SIZE));
689
690         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
691         vm_unmap_ram(cc->rbuf, cc->cluster_size);
692
693         for (i = 0; i < cc->nr_cpages; i++) {
694                 if (i < new_nr_cpages)
695                         continue;
696                 f2fs_compress_free_page(cc->cpages[i]);
697                 cc->cpages[i] = NULL;
698         }
699
700         if (cops->destroy_compress_ctx)
701                 cops->destroy_compress_ctx(cc);
702
703         cc->valid_nr_cpages = new_nr_cpages;
704
705         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
706                                                         cc->clen, ret);
707         return 0;
708
709 out_vunmap_cbuf:
710         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
711 out_vunmap_rbuf:
712         vm_unmap_ram(cc->rbuf, cc->cluster_size);
713 out_free_cpages:
714         for (i = 0; i < cc->nr_cpages; i++) {
715                 if (cc->cpages[i])
716                         f2fs_compress_free_page(cc->cpages[i]);
717         }
718         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
719         cc->cpages = NULL;
720 destroy_compress_ctx:
721         if (cops->destroy_compress_ctx)
722                 cops->destroy_compress_ctx(cc);
723 out:
724         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
725                                                         cc->clen, ret);
726         return ret;
727 }
728
729 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
730                 bool pre_alloc);
731 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
732                 bool bypass_destroy_callback, bool pre_alloc);
733
734 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
735 {
736         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
737         struct f2fs_inode_info *fi = F2FS_I(dic->inode);
738         const struct f2fs_compress_ops *cops =
739                         f2fs_cops[fi->i_compress_algorithm];
740         bool bypass_callback = false;
741         int ret;
742
743         trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
744                                 dic->cluster_size, fi->i_compress_algorithm);
745
746         if (dic->failed) {
747                 ret = -EIO;
748                 goto out_end_io;
749         }
750
751         ret = f2fs_prepare_decomp_mem(dic, false);
752         if (ret) {
753                 bypass_callback = true;
754                 goto out_release;
755         }
756
757         dic->clen = le32_to_cpu(dic->cbuf->clen);
758         dic->rlen = PAGE_SIZE << dic->log_cluster_size;
759
760         if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
761                 ret = -EFSCORRUPTED;
762                 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
763                 goto out_release;
764         }
765
766         ret = cops->decompress_pages(dic);
767
768         if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
769                 u32 provided = le32_to_cpu(dic->cbuf->chksum);
770                 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
771
772                 if (provided != calculated) {
773                         if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
774                                 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
775                                 printk_ratelimited(
776                                         "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
777                                         KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
778                                         provided, calculated);
779                         }
780                         set_sbi_flag(sbi, SBI_NEED_FSCK);
781                 }
782         }
783
784 out_release:
785         f2fs_release_decomp_mem(dic, bypass_callback, false);
786
787 out_end_io:
788         trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
789                                                         dic->clen, ret);
790         f2fs_decompress_end_io(dic, ret, in_task);
791 }
792
793 /*
794  * This is called when a page of a compressed cluster has been read from disk
795  * (or failed to be read from disk).  It checks whether this page was the last
796  * page being waited on in the cluster, and if so, it decompresses the cluster
797  * (or in the case of a failure, cleans up without actually decompressing).
798  */
799 void f2fs_end_read_compressed_page(struct page *page, bool failed,
800                 block_t blkaddr, bool in_task)
801 {
802         struct decompress_io_ctx *dic =
803                         (struct decompress_io_ctx *)page_private(page);
804         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
805
806         dec_page_count(sbi, F2FS_RD_DATA);
807
808         if (failed)
809                 WRITE_ONCE(dic->failed, true);
810         else if (blkaddr && in_task)
811                 f2fs_cache_compressed_page(sbi, page,
812                                         dic->inode->i_ino, blkaddr);
813
814         if (atomic_dec_and_test(&dic->remaining_pages))
815                 f2fs_decompress_cluster(dic, in_task);
816 }
817
818 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
819 {
820         if (cc->cluster_idx == NULL_CLUSTER)
821                 return true;
822         return cc->cluster_idx == cluster_idx(cc, index);
823 }
824
825 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
826 {
827         return cc->nr_rpages == 0;
828 }
829
830 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
831 {
832         return cc->cluster_size == cc->nr_rpages;
833 }
834
835 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
836 {
837         if (f2fs_cluster_is_empty(cc))
838                 return true;
839         return is_page_in_cluster(cc, index);
840 }
841
842 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
843                                 int index, int nr_pages, bool uptodate)
844 {
845         unsigned long pgidx = pages[index]->index;
846         int i = uptodate ? 0 : 1;
847
848         /*
849          * when uptodate set to true, try to check all pages in cluster is
850          * uptodate or not.
851          */
852         if (uptodate && (pgidx % cc->cluster_size))
853                 return false;
854
855         if (nr_pages - index < cc->cluster_size)
856                 return false;
857
858         for (; i < cc->cluster_size; i++) {
859                 if (pages[index + i]->index != pgidx + i)
860                         return false;
861                 if (uptodate && !PageUptodate(pages[index + i]))
862                         return false;
863         }
864
865         return true;
866 }
867
868 static bool cluster_has_invalid_data(struct compress_ctx *cc)
869 {
870         loff_t i_size = i_size_read(cc->inode);
871         unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
872         int i;
873
874         for (i = 0; i < cc->cluster_size; i++) {
875                 struct page *page = cc->rpages[i];
876
877                 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
878
879                 /* beyond EOF */
880                 if (page->index >= nr_pages)
881                         return true;
882         }
883         return false;
884 }
885
886 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
887 {
888         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
889         unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
890         bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
891         int cluster_end = 0;
892         int i;
893         char *reason = "";
894
895         if (!compressed)
896                 return false;
897
898         /* [..., COMPR_ADDR, ...] */
899         if (dn->ofs_in_node % cluster_size) {
900                 reason = "[*|C|*|*]";
901                 goto out;
902         }
903
904         for (i = 1; i < cluster_size; i++) {
905                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
906                                                         dn->ofs_in_node + i);
907
908                 /* [COMPR_ADDR, ..., COMPR_ADDR] */
909                 if (blkaddr == COMPRESS_ADDR) {
910                         reason = "[C|*|C|*]";
911                         goto out;
912                 }
913                 if (!__is_valid_data_blkaddr(blkaddr)) {
914                         if (!cluster_end)
915                                 cluster_end = i;
916                         continue;
917                 }
918                 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
919                 if (cluster_end) {
920                         reason = "[C|N|N|V]";
921                         goto out;
922                 }
923         }
924         return false;
925 out:
926         f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
927                         dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
928         set_sbi_flag(sbi, SBI_NEED_FSCK);
929         return true;
930 }
931
932 static int __f2fs_cluster_blocks(struct inode *inode,
933                                 unsigned int cluster_idx, bool compr)
934 {
935         struct dnode_of_data dn;
936         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
937         unsigned int start_idx = cluster_idx <<
938                                 F2FS_I(inode)->i_log_cluster_size;
939         int ret;
940
941         set_new_dnode(&dn, inode, NULL, NULL, 0);
942         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
943         if (ret) {
944                 if (ret == -ENOENT)
945                         ret = 0;
946                 goto fail;
947         }
948
949         if (f2fs_sanity_check_cluster(&dn)) {
950                 ret = -EFSCORRUPTED;
951                 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
952                 goto fail;
953         }
954
955         if (dn.data_blkaddr == COMPRESS_ADDR) {
956                 int i;
957
958                 ret = 1;
959                 for (i = 1; i < cluster_size; i++) {
960                         block_t blkaddr;
961
962                         blkaddr = data_blkaddr(dn.inode,
963                                         dn.node_page, dn.ofs_in_node + i);
964                         if (compr) {
965                                 if (__is_valid_data_blkaddr(blkaddr))
966                                         ret++;
967                         } else {
968                                 if (blkaddr != NULL_ADDR)
969                                         ret++;
970                         }
971                 }
972
973                 f2fs_bug_on(F2FS_I_SB(inode),
974                         !compr && ret != cluster_size &&
975                         !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
976         }
977 fail:
978         f2fs_put_dnode(&dn);
979         return ret;
980 }
981
982 /* return # of compressed blocks in compressed cluster */
983 static int f2fs_compressed_blocks(struct compress_ctx *cc)
984 {
985         return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
986 }
987
988 /* return # of valid blocks in compressed cluster */
989 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
990 {
991         return __f2fs_cluster_blocks(inode,
992                 index >> F2FS_I(inode)->i_log_cluster_size,
993                 false);
994 }
995
996 static bool cluster_may_compress(struct compress_ctx *cc)
997 {
998         if (!f2fs_need_compress_data(cc->inode))
999                 return false;
1000         if (f2fs_is_atomic_file(cc->inode))
1001                 return false;
1002         if (!f2fs_cluster_is_full(cc))
1003                 return false;
1004         if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1005                 return false;
1006         return !cluster_has_invalid_data(cc);
1007 }
1008
1009 static void set_cluster_writeback(struct compress_ctx *cc)
1010 {
1011         int i;
1012
1013         for (i = 0; i < cc->cluster_size; i++) {
1014                 if (cc->rpages[i])
1015                         set_page_writeback(cc->rpages[i]);
1016         }
1017 }
1018
1019 static void set_cluster_dirty(struct compress_ctx *cc)
1020 {
1021         int i;
1022
1023         for (i = 0; i < cc->cluster_size; i++)
1024                 if (cc->rpages[i])
1025                         set_page_dirty(cc->rpages[i]);
1026 }
1027
1028 static int prepare_compress_overwrite(struct compress_ctx *cc,
1029                 struct page **pagep, pgoff_t index, void **fsdata)
1030 {
1031         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1032         struct address_space *mapping = cc->inode->i_mapping;
1033         struct page *page;
1034         sector_t last_block_in_bio;
1035         unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1036         pgoff_t start_idx = start_idx_of_cluster(cc);
1037         int i, ret;
1038
1039 retry:
1040         ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1041         if (ret <= 0)
1042                 return ret;
1043
1044         ret = f2fs_init_compress_ctx(cc);
1045         if (ret)
1046                 return ret;
1047
1048         /* keep page reference to avoid page reclaim */
1049         for (i = 0; i < cc->cluster_size; i++) {
1050                 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1051                                                         fgp_flag, GFP_NOFS);
1052                 if (!page) {
1053                         ret = -ENOMEM;
1054                         goto unlock_pages;
1055                 }
1056
1057                 if (PageUptodate(page))
1058                         f2fs_put_page(page, 1);
1059                 else
1060                         f2fs_compress_ctx_add_page(cc, page);
1061         }
1062
1063         if (!f2fs_cluster_is_empty(cc)) {
1064                 struct bio *bio = NULL;
1065
1066                 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1067                                         &last_block_in_bio, false, true);
1068                 f2fs_put_rpages(cc);
1069                 f2fs_destroy_compress_ctx(cc, true);
1070                 if (ret)
1071                         goto out;
1072                 if (bio)
1073                         f2fs_submit_bio(sbi, bio, DATA);
1074
1075                 ret = f2fs_init_compress_ctx(cc);
1076                 if (ret)
1077                         goto out;
1078         }
1079
1080         for (i = 0; i < cc->cluster_size; i++) {
1081                 f2fs_bug_on(sbi, cc->rpages[i]);
1082
1083                 page = find_lock_page(mapping, start_idx + i);
1084                 if (!page) {
1085                         /* page can be truncated */
1086                         goto release_and_retry;
1087                 }
1088
1089                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1090                 f2fs_compress_ctx_add_page(cc, page);
1091
1092                 if (!PageUptodate(page)) {
1093 release_and_retry:
1094                         f2fs_put_rpages(cc);
1095                         f2fs_unlock_rpages(cc, i + 1);
1096                         f2fs_destroy_compress_ctx(cc, true);
1097                         goto retry;
1098                 }
1099         }
1100
1101         if (likely(!ret)) {
1102                 *fsdata = cc->rpages;
1103                 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1104                 return cc->cluster_size;
1105         }
1106
1107 unlock_pages:
1108         f2fs_put_rpages(cc);
1109         f2fs_unlock_rpages(cc, i);
1110         f2fs_destroy_compress_ctx(cc, true);
1111 out:
1112         return ret;
1113 }
1114
1115 int f2fs_prepare_compress_overwrite(struct inode *inode,
1116                 struct page **pagep, pgoff_t index, void **fsdata)
1117 {
1118         struct compress_ctx cc = {
1119                 .inode = inode,
1120                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1121                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1122                 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1123                 .rpages = NULL,
1124                 .nr_rpages = 0,
1125         };
1126
1127         return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1128 }
1129
1130 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1131                                         pgoff_t index, unsigned copied)
1132
1133 {
1134         struct compress_ctx cc = {
1135                 .inode = inode,
1136                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1137                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1138                 .rpages = fsdata,
1139         };
1140         bool first_index = (index == cc.rpages[0]->index);
1141
1142         if (copied)
1143                 set_cluster_dirty(&cc);
1144
1145         f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1146         f2fs_destroy_compress_ctx(&cc, false);
1147
1148         return first_index;
1149 }
1150
1151 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1152 {
1153         void *fsdata = NULL;
1154         struct page *pagep;
1155         int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1156         pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1157                                                         log_cluster_size;
1158         int err;
1159
1160         err = f2fs_is_compressed_cluster(inode, start_idx);
1161         if (err < 0)
1162                 return err;
1163
1164         /* truncate normal cluster */
1165         if (!err)
1166                 return f2fs_do_truncate_blocks(inode, from, lock);
1167
1168         /* truncate compressed cluster */
1169         err = f2fs_prepare_compress_overwrite(inode, &pagep,
1170                                                 start_idx, &fsdata);
1171
1172         /* should not be a normal cluster */
1173         f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1174
1175         if (err <= 0)
1176                 return err;
1177
1178         if (err > 0) {
1179                 struct page **rpages = fsdata;
1180                 int cluster_size = F2FS_I(inode)->i_cluster_size;
1181                 int i;
1182
1183                 for (i = cluster_size - 1; i >= 0; i--) {
1184                         loff_t start = rpages[i]->index << PAGE_SHIFT;
1185
1186                         if (from <= start) {
1187                                 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1188                         } else {
1189                                 zero_user_segment(rpages[i], from - start,
1190                                                                 PAGE_SIZE);
1191                                 break;
1192                         }
1193                 }
1194
1195                 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1196         }
1197         return 0;
1198 }
1199
1200 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1201                                         int *submitted,
1202                                         struct writeback_control *wbc,
1203                                         enum iostat_type io_type)
1204 {
1205         struct inode *inode = cc->inode;
1206         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207         struct f2fs_inode_info *fi = F2FS_I(inode);
1208         struct f2fs_io_info fio = {
1209                 .sbi = sbi,
1210                 .ino = cc->inode->i_ino,
1211                 .type = DATA,
1212                 .op = REQ_OP_WRITE,
1213                 .op_flags = wbc_to_write_flags(wbc),
1214                 .old_blkaddr = NEW_ADDR,
1215                 .page = NULL,
1216                 .encrypted_page = NULL,
1217                 .compressed_page = NULL,
1218                 .submitted = false,
1219                 .io_type = io_type,
1220                 .io_wbc = wbc,
1221                 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1222         };
1223         struct dnode_of_data dn;
1224         struct node_info ni;
1225         struct compress_io_ctx *cic;
1226         pgoff_t start_idx = start_idx_of_cluster(cc);
1227         unsigned int last_index = cc->cluster_size - 1;
1228         loff_t psize;
1229         int i, err;
1230
1231         /* we should bypass data pages to proceed the kworkder jobs */
1232         if (unlikely(f2fs_cp_error(sbi))) {
1233                 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1234                 goto out_free;
1235         }
1236
1237         if (IS_NOQUOTA(inode)) {
1238                 /*
1239                  * We need to wait for node_write to avoid block allocation during
1240                  * checkpoint. This can only happen to quota writes which can cause
1241                  * the below discard race condition.
1242                  */
1243                 f2fs_down_read(&sbi->node_write);
1244         } else if (!f2fs_trylock_op(sbi)) {
1245                 goto out_free;
1246         }
1247
1248         set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1249
1250         err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1251         if (err)
1252                 goto out_unlock_op;
1253
1254         for (i = 0; i < cc->cluster_size; i++) {
1255                 if (data_blkaddr(dn.inode, dn.node_page,
1256                                         dn.ofs_in_node + i) == NULL_ADDR)
1257                         goto out_put_dnode;
1258         }
1259
1260         psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1261
1262         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1263         if (err)
1264                 goto out_put_dnode;
1265
1266         fio.version = ni.version;
1267
1268         cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1269         if (!cic)
1270                 goto out_put_dnode;
1271
1272         cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1273         cic->inode = inode;
1274         atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1275         cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1276         if (!cic->rpages)
1277                 goto out_put_cic;
1278
1279         cic->nr_rpages = cc->cluster_size;
1280
1281         for (i = 0; i < cc->valid_nr_cpages; i++) {
1282                 f2fs_set_compressed_page(cc->cpages[i], inode,
1283                                         cc->rpages[i + 1]->index, cic);
1284                 fio.compressed_page = cc->cpages[i];
1285
1286                 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1287                                                 dn.ofs_in_node + i + 1);
1288
1289                 /* wait for GCed page writeback via META_MAPPING */
1290                 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1291
1292                 if (fio.encrypted) {
1293                         fio.page = cc->rpages[i + 1];
1294                         err = f2fs_encrypt_one_page(&fio);
1295                         if (err)
1296                                 goto out_destroy_crypt;
1297                         cc->cpages[i] = fio.encrypted_page;
1298                 }
1299         }
1300
1301         set_cluster_writeback(cc);
1302
1303         for (i = 0; i < cc->cluster_size; i++)
1304                 cic->rpages[i] = cc->rpages[i];
1305
1306         for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1307                 block_t blkaddr;
1308
1309                 blkaddr = f2fs_data_blkaddr(&dn);
1310                 fio.page = cc->rpages[i];
1311                 fio.old_blkaddr = blkaddr;
1312
1313                 /* cluster header */
1314                 if (i == 0) {
1315                         if (blkaddr == COMPRESS_ADDR)
1316                                 fio.compr_blocks++;
1317                         if (__is_valid_data_blkaddr(blkaddr))
1318                                 f2fs_invalidate_blocks(sbi, blkaddr);
1319                         f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1320                         goto unlock_continue;
1321                 }
1322
1323                 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1324                         fio.compr_blocks++;
1325
1326                 if (i > cc->valid_nr_cpages) {
1327                         if (__is_valid_data_blkaddr(blkaddr)) {
1328                                 f2fs_invalidate_blocks(sbi, blkaddr);
1329                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1330                         }
1331                         goto unlock_continue;
1332                 }
1333
1334                 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1335
1336                 if (fio.encrypted)
1337                         fio.encrypted_page = cc->cpages[i - 1];
1338                 else
1339                         fio.compressed_page = cc->cpages[i - 1];
1340
1341                 cc->cpages[i - 1] = NULL;
1342                 f2fs_outplace_write_data(&dn, &fio);
1343                 (*submitted)++;
1344 unlock_continue:
1345                 inode_dec_dirty_pages(cc->inode);
1346                 unlock_page(fio.page);
1347         }
1348
1349         if (fio.compr_blocks)
1350                 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1351         f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1352         add_compr_block_stat(inode, cc->valid_nr_cpages);
1353
1354         set_inode_flag(cc->inode, FI_APPEND_WRITE);
1355         if (cc->cluster_idx == 0)
1356                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1357
1358         f2fs_put_dnode(&dn);
1359         if (IS_NOQUOTA(inode))
1360                 f2fs_up_read(&sbi->node_write);
1361         else
1362                 f2fs_unlock_op(sbi);
1363
1364         spin_lock(&fi->i_size_lock);
1365         if (fi->last_disk_size < psize)
1366                 fi->last_disk_size = psize;
1367         spin_unlock(&fi->i_size_lock);
1368
1369         f2fs_put_rpages(cc);
1370         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1371         cc->cpages = NULL;
1372         f2fs_destroy_compress_ctx(cc, false);
1373         return 0;
1374
1375 out_destroy_crypt:
1376         page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1377
1378         for (--i; i >= 0; i--)
1379                 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1380 out_put_cic:
1381         kmem_cache_free(cic_entry_slab, cic);
1382 out_put_dnode:
1383         f2fs_put_dnode(&dn);
1384 out_unlock_op:
1385         if (IS_NOQUOTA(inode))
1386                 f2fs_up_read(&sbi->node_write);
1387         else
1388                 f2fs_unlock_op(sbi);
1389 out_free:
1390         for (i = 0; i < cc->valid_nr_cpages; i++) {
1391                 f2fs_compress_free_page(cc->cpages[i]);
1392                 cc->cpages[i] = NULL;
1393         }
1394         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1395         cc->cpages = NULL;
1396         return -EAGAIN;
1397 }
1398
1399 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1400 {
1401         struct f2fs_sb_info *sbi = bio->bi_private;
1402         struct compress_io_ctx *cic =
1403                         (struct compress_io_ctx *)page_private(page);
1404         int i;
1405
1406         if (unlikely(bio->bi_status))
1407                 mapping_set_error(cic->inode->i_mapping, -EIO);
1408
1409         f2fs_compress_free_page(page);
1410
1411         dec_page_count(sbi, F2FS_WB_DATA);
1412
1413         if (atomic_dec_return(&cic->pending_pages))
1414                 return;
1415
1416         for (i = 0; i < cic->nr_rpages; i++) {
1417                 WARN_ON(!cic->rpages[i]);
1418                 clear_page_private_gcing(cic->rpages[i]);
1419                 end_page_writeback(cic->rpages[i]);
1420         }
1421
1422         page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1423         kmem_cache_free(cic_entry_slab, cic);
1424 }
1425
1426 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1427                                         int *submitted,
1428                                         struct writeback_control *wbc,
1429                                         enum iostat_type io_type)
1430 {
1431         struct address_space *mapping = cc->inode->i_mapping;
1432         int _submitted, compr_blocks, ret, i;
1433
1434         compr_blocks = f2fs_compressed_blocks(cc);
1435
1436         for (i = 0; i < cc->cluster_size; i++) {
1437                 if (!cc->rpages[i])
1438                         continue;
1439
1440                 redirty_page_for_writepage(wbc, cc->rpages[i]);
1441                 unlock_page(cc->rpages[i]);
1442         }
1443
1444         if (compr_blocks < 0)
1445                 return compr_blocks;
1446
1447         for (i = 0; i < cc->cluster_size; i++) {
1448                 if (!cc->rpages[i])
1449                         continue;
1450 retry_write:
1451                 lock_page(cc->rpages[i]);
1452
1453                 if (cc->rpages[i]->mapping != mapping) {
1454 continue_unlock:
1455                         unlock_page(cc->rpages[i]);
1456                         continue;
1457                 }
1458
1459                 if (!PageDirty(cc->rpages[i]))
1460                         goto continue_unlock;
1461
1462                 if (!clear_page_dirty_for_io(cc->rpages[i]))
1463                         goto continue_unlock;
1464
1465                 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1466                                                 NULL, NULL, wbc, io_type,
1467                                                 compr_blocks, false);
1468                 if (ret) {
1469                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
1470                                 unlock_page(cc->rpages[i]);
1471                                 ret = 0;
1472                         } else if (ret == -EAGAIN) {
1473                                 /*
1474                                  * for quota file, just redirty left pages to
1475                                  * avoid deadlock caused by cluster update race
1476                                  * from foreground operation.
1477                                  */
1478                                 if (IS_NOQUOTA(cc->inode))
1479                                         return 0;
1480                                 ret = 0;
1481                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1482                                 goto retry_write;
1483                         }
1484                         return ret;
1485                 }
1486
1487                 *submitted += _submitted;
1488         }
1489
1490         f2fs_balance_fs(F2FS_M_SB(mapping), true);
1491
1492         return 0;
1493 }
1494
1495 int f2fs_write_multi_pages(struct compress_ctx *cc,
1496                                         int *submitted,
1497                                         struct writeback_control *wbc,
1498                                         enum iostat_type io_type)
1499 {
1500         int err;
1501
1502         *submitted = 0;
1503         if (cluster_may_compress(cc)) {
1504                 err = f2fs_compress_pages(cc);
1505                 if (err == -EAGAIN) {
1506                         add_compr_block_stat(cc->inode, cc->cluster_size);
1507                         goto write;
1508                 } else if (err) {
1509                         f2fs_put_rpages_wbc(cc, wbc, true, 1);
1510                         goto destroy_out;
1511                 }
1512
1513                 err = f2fs_write_compressed_pages(cc, submitted,
1514                                                         wbc, io_type);
1515                 if (!err)
1516                         return 0;
1517                 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1518         }
1519 write:
1520         f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1521
1522         err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1523         f2fs_put_rpages_wbc(cc, wbc, false, 0);
1524 destroy_out:
1525         f2fs_destroy_compress_ctx(cc, false);
1526         return err;
1527 }
1528
1529 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1530                 bool pre_alloc)
1531 {
1532         return pre_alloc ^ f2fs_low_mem_mode(sbi);
1533 }
1534
1535 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1536                 bool pre_alloc)
1537 {
1538         const struct f2fs_compress_ops *cops =
1539                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1540         int i;
1541
1542         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1543                 return 0;
1544
1545         dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1546         if (!dic->tpages)
1547                 return -ENOMEM;
1548
1549         for (i = 0; i < dic->cluster_size; i++) {
1550                 if (dic->rpages[i]) {
1551                         dic->tpages[i] = dic->rpages[i];
1552                         continue;
1553                 }
1554
1555                 dic->tpages[i] = f2fs_compress_alloc_page();
1556                 if (!dic->tpages[i])
1557                         return -ENOMEM;
1558         }
1559
1560         dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1561         if (!dic->rbuf)
1562                 return -ENOMEM;
1563
1564         dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1565         if (!dic->cbuf)
1566                 return -ENOMEM;
1567
1568         if (cops->init_decompress_ctx)
1569                 return cops->init_decompress_ctx(dic);
1570
1571         return 0;
1572 }
1573
1574 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1575                 bool bypass_destroy_callback, bool pre_alloc)
1576 {
1577         const struct f2fs_compress_ops *cops =
1578                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1579
1580         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1581                 return;
1582
1583         if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1584                 cops->destroy_decompress_ctx(dic);
1585
1586         if (dic->cbuf)
1587                 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1588
1589         if (dic->rbuf)
1590                 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1591 }
1592
1593 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1594                 bool bypass_destroy_callback);
1595
1596 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1597 {
1598         struct decompress_io_ctx *dic;
1599         pgoff_t start_idx = start_idx_of_cluster(cc);
1600         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1601         int i, ret;
1602
1603         dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1604         if (!dic)
1605                 return ERR_PTR(-ENOMEM);
1606
1607         dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1608         if (!dic->rpages) {
1609                 kmem_cache_free(dic_entry_slab, dic);
1610                 return ERR_PTR(-ENOMEM);
1611         }
1612
1613         dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1614         dic->inode = cc->inode;
1615         atomic_set(&dic->remaining_pages, cc->nr_cpages);
1616         dic->cluster_idx = cc->cluster_idx;
1617         dic->cluster_size = cc->cluster_size;
1618         dic->log_cluster_size = cc->log_cluster_size;
1619         dic->nr_cpages = cc->nr_cpages;
1620         refcount_set(&dic->refcnt, 1);
1621         dic->failed = false;
1622         dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1623
1624         for (i = 0; i < dic->cluster_size; i++)
1625                 dic->rpages[i] = cc->rpages[i];
1626         dic->nr_rpages = cc->cluster_size;
1627
1628         dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1629         if (!dic->cpages) {
1630                 ret = -ENOMEM;
1631                 goto out_free;
1632         }
1633
1634         for (i = 0; i < dic->nr_cpages; i++) {
1635                 struct page *page;
1636
1637                 page = f2fs_compress_alloc_page();
1638                 if (!page) {
1639                         ret = -ENOMEM;
1640                         goto out_free;
1641                 }
1642
1643                 f2fs_set_compressed_page(page, cc->inode,
1644                                         start_idx + i + 1, dic);
1645                 dic->cpages[i] = page;
1646         }
1647
1648         ret = f2fs_prepare_decomp_mem(dic, true);
1649         if (ret)
1650                 goto out_free;
1651
1652         return dic;
1653
1654 out_free:
1655         f2fs_free_dic(dic, true);
1656         return ERR_PTR(ret);
1657 }
1658
1659 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1660                 bool bypass_destroy_callback)
1661 {
1662         int i;
1663
1664         f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1665
1666         if (dic->tpages) {
1667                 for (i = 0; i < dic->cluster_size; i++) {
1668                         if (dic->rpages[i])
1669                                 continue;
1670                         if (!dic->tpages[i])
1671                                 continue;
1672                         f2fs_compress_free_page(dic->tpages[i]);
1673                 }
1674                 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1675         }
1676
1677         if (dic->cpages) {
1678                 for (i = 0; i < dic->nr_cpages; i++) {
1679                         if (!dic->cpages[i])
1680                                 continue;
1681                         f2fs_compress_free_page(dic->cpages[i]);
1682                 }
1683                 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1684         }
1685
1686         page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1687         kmem_cache_free(dic_entry_slab, dic);
1688 }
1689
1690 static void f2fs_late_free_dic(struct work_struct *work)
1691 {
1692         struct decompress_io_ctx *dic =
1693                 container_of(work, struct decompress_io_ctx, free_work);
1694
1695         f2fs_free_dic(dic, false);
1696 }
1697
1698 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1699 {
1700         if (refcount_dec_and_test(&dic->refcnt)) {
1701                 if (in_task) {
1702                         f2fs_free_dic(dic, false);
1703                 } else {
1704                         INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1705                         queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1706                                         &dic->free_work);
1707                 }
1708         }
1709 }
1710
1711 static void f2fs_verify_cluster(struct work_struct *work)
1712 {
1713         struct decompress_io_ctx *dic =
1714                 container_of(work, struct decompress_io_ctx, verity_work);
1715         int i;
1716
1717         /* Verify, update, and unlock the decompressed pages. */
1718         for (i = 0; i < dic->cluster_size; i++) {
1719                 struct page *rpage = dic->rpages[i];
1720
1721                 if (!rpage)
1722                         continue;
1723
1724                 if (fsverity_verify_page(rpage))
1725                         SetPageUptodate(rpage);
1726                 else
1727                         ClearPageUptodate(rpage);
1728                 unlock_page(rpage);
1729         }
1730
1731         f2fs_put_dic(dic, true);
1732 }
1733
1734 /*
1735  * This is called when a compressed cluster has been decompressed
1736  * (or failed to be read and/or decompressed).
1737  */
1738 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1739                                 bool in_task)
1740 {
1741         int i;
1742
1743         if (!failed && dic->need_verity) {
1744                 /*
1745                  * Note that to avoid deadlocks, the verity work can't be done
1746                  * on the decompression workqueue.  This is because verifying
1747                  * the data pages can involve reading metadata pages from the
1748                  * file, and these metadata pages may be compressed.
1749                  */
1750                 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1751                 fsverity_enqueue_verify_work(&dic->verity_work);
1752                 return;
1753         }
1754
1755         /* Update and unlock the cluster's pagecache pages. */
1756         for (i = 0; i < dic->cluster_size; i++) {
1757                 struct page *rpage = dic->rpages[i];
1758
1759                 if (!rpage)
1760                         continue;
1761
1762                 if (failed)
1763                         ClearPageUptodate(rpage);
1764                 else
1765                         SetPageUptodate(rpage);
1766                 unlock_page(rpage);
1767         }
1768
1769         /*
1770          * Release the reference to the decompress_io_ctx that was being held
1771          * for I/O completion.
1772          */
1773         f2fs_put_dic(dic, in_task);
1774 }
1775
1776 /*
1777  * Put a reference to a compressed page's decompress_io_ctx.
1778  *
1779  * This is called when the page is no longer needed and can be freed.
1780  */
1781 void f2fs_put_page_dic(struct page *page, bool in_task)
1782 {
1783         struct decompress_io_ctx *dic =
1784                         (struct decompress_io_ctx *)page_private(page);
1785
1786         f2fs_put_dic(dic, in_task);
1787 }
1788
1789 /*
1790  * check whether cluster blocks are contiguous, and add extent cache entry
1791  * only if cluster blocks are logically and physically contiguous.
1792  */
1793 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1794 {
1795         bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1796         int i = compressed ? 1 : 0;
1797         block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1798                                                 dn->ofs_in_node + i);
1799
1800         for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1801                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1802                                                 dn->ofs_in_node + i);
1803
1804                 if (!__is_valid_data_blkaddr(blkaddr))
1805                         break;
1806                 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1807                         return 0;
1808         }
1809
1810         return compressed ? i - 1 : i;
1811 }
1812
1813 const struct address_space_operations f2fs_compress_aops = {
1814         .release_folio = f2fs_release_folio,
1815         .invalidate_folio = f2fs_invalidate_folio,
1816 };
1817
1818 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1819 {
1820         return sbi->compress_inode->i_mapping;
1821 }
1822
1823 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1824 {
1825         if (!sbi->compress_inode)
1826                 return;
1827         invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1828 }
1829
1830 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1831                                                 nid_t ino, block_t blkaddr)
1832 {
1833         struct page *cpage;
1834         int ret;
1835
1836         if (!test_opt(sbi, COMPRESS_CACHE))
1837                 return;
1838
1839         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1840                 return;
1841
1842         if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1843                 return;
1844
1845         cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1846         if (cpage) {
1847                 f2fs_put_page(cpage, 0);
1848                 return;
1849         }
1850
1851         cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1852         if (!cpage)
1853                 return;
1854
1855         ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1856                                                 blkaddr, GFP_NOFS);
1857         if (ret) {
1858                 f2fs_put_page(cpage, 0);
1859                 return;
1860         }
1861
1862         set_page_private_data(cpage, ino);
1863
1864         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1865                 goto out;
1866
1867         memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1868         SetPageUptodate(cpage);
1869 out:
1870         f2fs_put_page(cpage, 1);
1871 }
1872
1873 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1874                                                                 block_t blkaddr)
1875 {
1876         struct page *cpage;
1877         bool hitted = false;
1878
1879         if (!test_opt(sbi, COMPRESS_CACHE))
1880                 return false;
1881
1882         cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1883                                 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1884         if (cpage) {
1885                 if (PageUptodate(cpage)) {
1886                         atomic_inc(&sbi->compress_page_hit);
1887                         memcpy(page_address(page),
1888                                 page_address(cpage), PAGE_SIZE);
1889                         hitted = true;
1890                 }
1891                 f2fs_put_page(cpage, 1);
1892         }
1893
1894         return hitted;
1895 }
1896
1897 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1898 {
1899         struct address_space *mapping = COMPRESS_MAPPING(sbi);
1900         struct folio_batch fbatch;
1901         pgoff_t index = 0;
1902         pgoff_t end = MAX_BLKADDR(sbi);
1903
1904         if (!mapping->nrpages)
1905                 return;
1906
1907         folio_batch_init(&fbatch);
1908
1909         do {
1910                 unsigned int nr, i;
1911
1912                 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1913                 if (!nr)
1914                         break;
1915
1916                 for (i = 0; i < nr; i++) {
1917                         struct folio *folio = fbatch.folios[i];
1918
1919                         folio_lock(folio);
1920                         if (folio->mapping != mapping) {
1921                                 folio_unlock(folio);
1922                                 continue;
1923                         }
1924
1925                         if (ino != get_page_private_data(&folio->page)) {
1926                                 folio_unlock(folio);
1927                                 continue;
1928                         }
1929
1930                         generic_error_remove_page(mapping, &folio->page);
1931                         folio_unlock(folio);
1932                 }
1933                 folio_batch_release(&fbatch);
1934                 cond_resched();
1935         } while (index < end);
1936 }
1937
1938 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1939 {
1940         struct inode *inode;
1941
1942         if (!test_opt(sbi, COMPRESS_CACHE))
1943                 return 0;
1944
1945         inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1946         if (IS_ERR(inode))
1947                 return PTR_ERR(inode);
1948         sbi->compress_inode = inode;
1949
1950         sbi->compress_percent = COMPRESS_PERCENT;
1951         sbi->compress_watermark = COMPRESS_WATERMARK;
1952
1953         atomic_set(&sbi->compress_page_hit, 0);
1954
1955         return 0;
1956 }
1957
1958 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1959 {
1960         if (!sbi->compress_inode)
1961                 return;
1962         iput(sbi->compress_inode);
1963         sbi->compress_inode = NULL;
1964 }
1965
1966 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1967 {
1968         dev_t dev = sbi->sb->s_bdev->bd_dev;
1969         char slab_name[32];
1970
1971         if (!f2fs_sb_has_compression(sbi))
1972                 return 0;
1973
1974         sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1975
1976         sbi->page_array_slab_size = sizeof(struct page *) <<
1977                                         F2FS_OPTION(sbi).compress_log_size;
1978
1979         sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1980                                         sbi->page_array_slab_size);
1981         return sbi->page_array_slab ? 0 : -ENOMEM;
1982 }
1983
1984 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1985 {
1986         kmem_cache_destroy(sbi->page_array_slab);
1987 }
1988
1989 int __init f2fs_init_compress_cache(void)
1990 {
1991         cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1992                                         sizeof(struct compress_io_ctx));
1993         if (!cic_entry_slab)
1994                 return -ENOMEM;
1995         dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1996                                         sizeof(struct decompress_io_ctx));
1997         if (!dic_entry_slab)
1998                 goto free_cic;
1999         return 0;
2000 free_cic:
2001         kmem_cache_destroy(cic_entry_slab);
2002         return -ENOMEM;
2003 }
2004
2005 void f2fs_destroy_compress_cache(void)
2006 {
2007         kmem_cache_destroy(dic_entry_slab);
2008         kmem_cache_destroy(cic_entry_slab);
2009 }