f149ec28aefdc390bdd02f6c947e69dbfe7a9318
[linux-2.6-block.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_RT, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30                                                 unsigned char reason)
31 {
32         f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35         f2fs_handle_critical_error(sbi, reason);
36 }
37
38 /*
39  * We guarantee no failure on the returned page.
40  */
41 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index)
42 {
43         struct address_space *mapping = META_MAPPING(sbi);
44         struct folio *folio;
45 repeat:
46         folio = f2fs_grab_cache_folio(mapping, index, false);
47         if (IS_ERR(folio)) {
48                 cond_resched();
49                 goto repeat;
50         }
51         f2fs_folio_wait_writeback(folio, META, true, true);
52         if (!folio_test_uptodate(folio))
53                 folio_mark_uptodate(folio);
54         return folio;
55 }
56
57 static struct folio *__get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index,
58                                                         bool is_meta)
59 {
60         struct address_space *mapping = META_MAPPING(sbi);
61         struct folio *folio;
62         struct f2fs_io_info fio = {
63                 .sbi = sbi,
64                 .type = META,
65                 .op = REQ_OP_READ,
66                 .op_flags = REQ_META | REQ_PRIO,
67                 .old_blkaddr = index,
68                 .new_blkaddr = index,
69                 .encrypted_page = NULL,
70                 .is_por = !is_meta ? 1 : 0,
71         };
72         int err;
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         folio = f2fs_grab_cache_folio(mapping, index, false);
78         if (IS_ERR(folio)) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (folio_test_uptodate(folio))
83                 goto out;
84
85         fio.page = &folio->page;
86
87         err = f2fs_submit_page_bio(&fio);
88         if (err) {
89                 f2fs_folio_put(folio, true);
90                 return ERR_PTR(err);
91         }
92
93         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
94
95         folio_lock(folio);
96         if (unlikely(!is_meta_folio(folio))) {
97                 f2fs_folio_put(folio, true);
98                 goto repeat;
99         }
100
101         if (unlikely(!folio_test_uptodate(folio))) {
102                 f2fs_handle_page_eio(sbi, folio, META);
103                 f2fs_folio_put(folio, true);
104                 return ERR_PTR(-EIO);
105         }
106 out:
107         return folio;
108 }
109
110 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112         return __get_meta_folio(sbi, index, true);
113 }
114
115 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         struct folio *folio;
118         int count = 0;
119
120 retry:
121         folio = __get_meta_folio(sbi, index, true);
122         if (IS_ERR(folio)) {
123                 if (PTR_ERR(folio) == -EIO &&
124                                 ++count <= DEFAULT_RETRY_IO_COUNT)
125                         goto retry;
126                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127         }
128         return folio;
129 }
130
131 /* for POR only */
132 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134         return __get_meta_folio(sbi, index, false);
135 }
136
137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138                                                         int type)
139 {
140         struct seg_entry *se;
141         unsigned int segno, offset;
142         bool exist;
143
144         if (type == DATA_GENERIC)
145                 return true;
146
147         segno = GET_SEGNO(sbi, blkaddr);
148         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149         se = get_seg_entry(sbi, segno);
150
151         exist = f2fs_test_bit(offset, se->cur_valid_map);
152
153         /* skip data, if we already have an error in checkpoint. */
154         if (unlikely(f2fs_cp_error(sbi)))
155                 return exist;
156
157         if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158                 (!exist && type == DATA_GENERIC_ENHANCE))
159                 goto out_err;
160         if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161                 goto out_handle;
162         return exist;
163
164 out_err:
165         f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166                  blkaddr, exist);
167         set_sbi_flag(sbi, SBI_NEED_FSCK);
168         dump_stack();
169 out_handle:
170         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
171         return exist;
172 }
173
174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175                                         block_t blkaddr, int type)
176 {
177         switch (type) {
178         case META_NAT:
179                 break;
180         case META_SIT:
181                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182                         goto check_only;
183                 break;
184         case META_SSA:
185                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186                         blkaddr < SM_I(sbi)->ssa_blkaddr))
187                         goto check_only;
188                 break;
189         case META_CP:
190                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191                         blkaddr < __start_cp_addr(sbi)))
192                         goto check_only;
193                 break;
194         case META_POR:
195                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196                         blkaddr < MAIN_BLKADDR(sbi)))
197                         goto check_only;
198                 break;
199         case DATA_GENERIC:
200         case DATA_GENERIC_ENHANCE:
201         case DATA_GENERIC_ENHANCE_READ:
202         case DATA_GENERIC_ENHANCE_UPDATE:
203                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204                                 blkaddr < MAIN_BLKADDR(sbi))) {
205
206                         /* Skip to emit an error message. */
207                         if (unlikely(f2fs_cp_error(sbi)))
208                                 return false;
209
210                         f2fs_warn(sbi, "access invalid blkaddr:%u",
211                                   blkaddr);
212                         set_sbi_flag(sbi, SBI_NEED_FSCK);
213                         dump_stack();
214                         goto err;
215                 } else {
216                         return __is_bitmap_valid(sbi, blkaddr, type);
217                 }
218                 break;
219         case META_GENERIC:
220                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221                         blkaddr >= MAIN_BLKADDR(sbi)))
222                         goto err;
223                 break;
224         default:
225                 BUG();
226         }
227
228         return true;
229 err:
230         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
231 check_only:
232         return false;
233 }
234
235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
236                                         block_t blkaddr, int type)
237 {
238         if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
239                 return false;
240         return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
241 }
242
243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
244                                         block_t blkaddr, int type)
245 {
246         return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
247 }
248
249 /*
250  * Readahead CP/NAT/SIT/SSA/POR pages
251  */
252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
253                                                         int type, bool sync)
254 {
255         block_t blkno = start;
256         struct f2fs_io_info fio = {
257                 .sbi = sbi,
258                 .type = META,
259                 .op = REQ_OP_READ,
260                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
261                 .encrypted_page = NULL,
262                 .in_list = 0,
263                 .is_por = (type == META_POR) ? 1 : 0,
264         };
265         struct blk_plug plug;
266         int err;
267
268         if (unlikely(type == META_POR))
269                 fio.op_flags &= ~REQ_META;
270
271         blk_start_plug(&plug);
272         for (; nrpages-- > 0; blkno++) {
273                 struct folio *folio;
274
275                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
276                         goto out;
277
278                 switch (type) {
279                 case META_NAT:
280                         if (unlikely(blkno >=
281                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
282                                 blkno = 0;
283                         /* get nat block addr */
284                         fio.new_blkaddr = current_nat_addr(sbi,
285                                         blkno * NAT_ENTRY_PER_BLOCK);
286                         break;
287                 case META_SIT:
288                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
289                                 goto out;
290                         /* get sit block addr */
291                         fio.new_blkaddr = current_sit_addr(sbi,
292                                         blkno * SIT_ENTRY_PER_BLOCK);
293                         break;
294                 case META_SSA:
295                 case META_CP:
296                 case META_POR:
297                         fio.new_blkaddr = blkno;
298                         break;
299                 default:
300                         BUG();
301                 }
302
303                 folio = f2fs_grab_cache_folio(META_MAPPING(sbi),
304                                                 fio.new_blkaddr, false);
305                 if (IS_ERR(folio))
306                         continue;
307                 if (folio_test_uptodate(folio)) {
308                         f2fs_folio_put(folio, true);
309                         continue;
310                 }
311
312                 fio.page = &folio->page;
313                 err = f2fs_submit_page_bio(&fio);
314                 f2fs_folio_put(folio, err ? true : false);
315
316                 if (!err)
317                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
318                                                         F2FS_BLKSIZE);
319         }
320 out:
321         blk_finish_plug(&plug);
322         return blkno - start;
323 }
324
325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
326                                                         unsigned int ra_blocks)
327 {
328         struct folio *folio;
329         bool readahead = false;
330
331         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
332                 return;
333
334         folio = filemap_get_folio(META_MAPPING(sbi), index);
335         if (IS_ERR(folio) || !folio_test_uptodate(folio))
336                 readahead = true;
337         f2fs_folio_put(folio, false);
338
339         if (readahead)
340                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
341 }
342
343 static bool __f2fs_write_meta_folio(struct folio *folio,
344                                 struct writeback_control *wbc,
345                                 enum iostat_type io_type)
346 {
347         struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
348
349         trace_f2fs_writepage(folio, META);
350
351         if (unlikely(f2fs_cp_error(sbi))) {
352                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
353                         folio_clear_uptodate(folio);
354                         dec_page_count(sbi, F2FS_DIRTY_META);
355                         folio_unlock(folio);
356                         return true;
357                 }
358                 goto redirty_out;
359         }
360         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
361                 goto redirty_out;
362
363         f2fs_do_write_meta_page(sbi, folio, io_type);
364         dec_page_count(sbi, F2FS_DIRTY_META);
365
366         folio_unlock(folio);
367
368         if (unlikely(f2fs_cp_error(sbi)))
369                 f2fs_submit_merged_write(sbi, META);
370
371         return true;
372
373 redirty_out:
374         folio_redirty_for_writepage(wbc, folio);
375         return false;
376 }
377
378 static int f2fs_write_meta_pages(struct address_space *mapping,
379                                 struct writeback_control *wbc)
380 {
381         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
382         long diff, written;
383
384         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
385                 goto skip_write;
386
387         /* collect a number of dirty meta pages and write together */
388         if (wbc->sync_mode != WB_SYNC_ALL &&
389                         get_pages(sbi, F2FS_DIRTY_META) <
390                                         nr_pages_to_skip(sbi, META))
391                 goto skip_write;
392
393         /* if locked failed, cp will flush dirty pages instead */
394         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
395                 goto skip_write;
396
397         trace_f2fs_writepages(mapping->host, wbc, META);
398         diff = nr_pages_to_write(sbi, META, wbc);
399         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
400         f2fs_up_write(&sbi->cp_global_sem);
401         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
402         return 0;
403
404 skip_write:
405         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
406         trace_f2fs_writepages(mapping->host, wbc, META);
407         return 0;
408 }
409
410 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
411                                 long nr_to_write, enum iostat_type io_type)
412 {
413         struct address_space *mapping = META_MAPPING(sbi);
414         pgoff_t index = 0, prev = ULONG_MAX;
415         struct folio_batch fbatch;
416         long nwritten = 0;
417         int nr_folios;
418         struct writeback_control wbc = {};
419         struct blk_plug plug;
420
421         folio_batch_init(&fbatch);
422
423         blk_start_plug(&plug);
424
425         while ((nr_folios = filemap_get_folios_tag(mapping, &index,
426                                         (pgoff_t)-1,
427                                         PAGECACHE_TAG_DIRTY, &fbatch))) {
428                 int i;
429
430                 for (i = 0; i < nr_folios; i++) {
431                         struct folio *folio = fbatch.folios[i];
432
433                         if (nr_to_write != LONG_MAX && i != 0 &&
434                                         folio->index != prev +
435                                         folio_nr_pages(fbatch.folios[i-1])) {
436                                 folio_batch_release(&fbatch);
437                                 goto stop;
438                         }
439
440                         folio_lock(folio);
441
442                         if (unlikely(!is_meta_folio(folio))) {
443 continue_unlock:
444                                 folio_unlock(folio);
445                                 continue;
446                         }
447                         if (!folio_test_dirty(folio)) {
448                                 /* someone wrote it for us */
449                                 goto continue_unlock;
450                         }
451
452                         f2fs_folio_wait_writeback(folio, META, true, true);
453
454                         if (!folio_clear_dirty_for_io(folio))
455                                 goto continue_unlock;
456
457                         if (!__f2fs_write_meta_folio(folio, &wbc,
458                                                 io_type)) {
459                                 folio_unlock(folio);
460                                 break;
461                         }
462                         nwritten += folio_nr_pages(folio);
463                         prev = folio->index;
464                         if (unlikely(nwritten >= nr_to_write))
465                                 break;
466                 }
467                 folio_batch_release(&fbatch);
468                 cond_resched();
469         }
470 stop:
471         if (nwritten)
472                 f2fs_submit_merged_write(sbi, type);
473
474         blk_finish_plug(&plug);
475
476         return nwritten;
477 }
478
479 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
480                 struct folio *folio)
481 {
482         trace_f2fs_set_page_dirty(folio, META);
483
484         if (!folio_test_uptodate(folio))
485                 folio_mark_uptodate(folio);
486         if (filemap_dirty_folio(mapping, folio)) {
487                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
488                 set_page_private_reference(&folio->page);
489                 return true;
490         }
491         return false;
492 }
493
494 const struct address_space_operations f2fs_meta_aops = {
495         .writepages     = f2fs_write_meta_pages,
496         .dirty_folio    = f2fs_dirty_meta_folio,
497         .invalidate_folio = f2fs_invalidate_folio,
498         .release_folio  = f2fs_release_folio,
499         .migrate_folio  = filemap_migrate_folio,
500 };
501
502 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
503                                                 unsigned int devidx, int type)
504 {
505         struct inode_management *im = &sbi->im[type];
506         struct ino_entry *e = NULL, *new = NULL;
507         int ret;
508
509         if (type == FLUSH_INO) {
510                 rcu_read_lock();
511                 e = radix_tree_lookup(&im->ino_root, ino);
512                 rcu_read_unlock();
513         }
514
515 retry:
516         if (!e)
517                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
518                                                 GFP_NOFS, true, NULL);
519
520         ret = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
521         f2fs_bug_on(sbi, ret);
522
523         spin_lock(&im->ino_lock);
524         e = radix_tree_lookup(&im->ino_root, ino);
525         if (!e) {
526                 if (!new) {
527                         spin_unlock(&im->ino_lock);
528                         radix_tree_preload_end();
529                         goto retry;
530                 }
531                 e = new;
532                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
533                         f2fs_bug_on(sbi, 1);
534
535                 memset(e, 0, sizeof(struct ino_entry));
536                 e->ino = ino;
537
538                 list_add_tail(&e->list, &im->ino_list);
539                 if (type != ORPHAN_INO)
540                         im->ino_num++;
541         }
542
543         if (type == FLUSH_INO)
544                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
545
546         spin_unlock(&im->ino_lock);
547         radix_tree_preload_end();
548
549         if (new && e != new)
550                 kmem_cache_free(ino_entry_slab, new);
551 }
552
553 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
554 {
555         struct inode_management *im = &sbi->im[type];
556         struct ino_entry *e;
557
558         spin_lock(&im->ino_lock);
559         e = radix_tree_lookup(&im->ino_root, ino);
560         if (e) {
561                 list_del(&e->list);
562                 radix_tree_delete(&im->ino_root, ino);
563                 im->ino_num--;
564                 spin_unlock(&im->ino_lock);
565                 kmem_cache_free(ino_entry_slab, e);
566                 return;
567         }
568         spin_unlock(&im->ino_lock);
569 }
570
571 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
572 {
573         /* add new dirty ino entry into list */
574         __add_ino_entry(sbi, ino, 0, type);
575 }
576
577 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
578 {
579         /* remove dirty ino entry from list */
580         __remove_ino_entry(sbi, ino, type);
581 }
582
583 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
584 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
585 {
586         struct inode_management *im = &sbi->im[mode];
587         struct ino_entry *e;
588
589         spin_lock(&im->ino_lock);
590         e = radix_tree_lookup(&im->ino_root, ino);
591         spin_unlock(&im->ino_lock);
592         return e ? true : false;
593 }
594
595 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
596 {
597         struct ino_entry *e, *tmp;
598         int i;
599
600         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
601                 struct inode_management *im = &sbi->im[i];
602
603                 spin_lock(&im->ino_lock);
604                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
605                         list_del(&e->list);
606                         radix_tree_delete(&im->ino_root, e->ino);
607                         kmem_cache_free(ino_entry_slab, e);
608                         im->ino_num--;
609                 }
610                 spin_unlock(&im->ino_lock);
611         }
612 }
613
614 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
615                                         unsigned int devidx, int type)
616 {
617         __add_ino_entry(sbi, ino, devidx, type);
618 }
619
620 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
621                                         unsigned int devidx, int type)
622 {
623         struct inode_management *im = &sbi->im[type];
624         struct ino_entry *e;
625         bool is_dirty = false;
626
627         spin_lock(&im->ino_lock);
628         e = radix_tree_lookup(&im->ino_root, ino);
629         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
630                 is_dirty = true;
631         spin_unlock(&im->ino_lock);
632         return is_dirty;
633 }
634
635 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
636 {
637         struct inode_management *im = &sbi->im[ORPHAN_INO];
638         int err = 0;
639
640         spin_lock(&im->ino_lock);
641
642         if (time_to_inject(sbi, FAULT_ORPHAN)) {
643                 spin_unlock(&im->ino_lock);
644                 return -ENOSPC;
645         }
646
647         if (unlikely(im->ino_num >= sbi->max_orphans))
648                 err = -ENOSPC;
649         else
650                 im->ino_num++;
651         spin_unlock(&im->ino_lock);
652
653         return err;
654 }
655
656 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
657 {
658         struct inode_management *im = &sbi->im[ORPHAN_INO];
659
660         spin_lock(&im->ino_lock);
661         f2fs_bug_on(sbi, im->ino_num == 0);
662         im->ino_num--;
663         spin_unlock(&im->ino_lock);
664 }
665
666 void f2fs_add_orphan_inode(struct inode *inode)
667 {
668         /* add new orphan ino entry into list */
669         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
670         f2fs_update_inode_page(inode);
671 }
672
673 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
674 {
675         /* remove orphan entry from orphan list */
676         __remove_ino_entry(sbi, ino, ORPHAN_INO);
677 }
678
679 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
680 {
681         struct inode *inode;
682         struct node_info ni;
683         int err;
684
685         inode = f2fs_iget_retry(sbi->sb, ino);
686         if (IS_ERR(inode)) {
687                 /*
688                  * there should be a bug that we can't find the entry
689                  * to orphan inode.
690                  */
691                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
692                 return PTR_ERR(inode);
693         }
694
695         err = f2fs_dquot_initialize(inode);
696         if (err) {
697                 iput(inode);
698                 goto err_out;
699         }
700
701         clear_nlink(inode);
702
703         /* truncate all the data during iput */
704         iput(inode);
705
706         err = f2fs_get_node_info(sbi, ino, &ni, false);
707         if (err)
708                 goto err_out;
709
710         /* ENOMEM was fully retried in f2fs_evict_inode. */
711         if (ni.blk_addr != NULL_ADDR) {
712                 err = -EIO;
713                 goto err_out;
714         }
715         return 0;
716
717 err_out:
718         set_sbi_flag(sbi, SBI_NEED_FSCK);
719         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
720                   __func__, ino);
721         return err;
722 }
723
724 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
725 {
726         block_t start_blk, orphan_blocks, i, j;
727         int err = 0;
728
729         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
730                 return 0;
731
732         if (f2fs_hw_is_readonly(sbi)) {
733                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
734                 return 0;
735         }
736
737         if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
738                 f2fs_info(sbi, "orphan cleanup on readonly fs");
739
740         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
741         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
742
743         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
744
745         for (i = 0; i < orphan_blocks; i++) {
746                 struct folio *folio;
747                 struct f2fs_orphan_block *orphan_blk;
748
749                 folio = f2fs_get_meta_folio(sbi, start_blk + i);
750                 if (IS_ERR(folio)) {
751                         err = PTR_ERR(folio);
752                         goto out;
753                 }
754
755                 orphan_blk = folio_address(folio);
756                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
757                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
758
759                         err = recover_orphan_inode(sbi, ino);
760                         if (err) {
761                                 f2fs_folio_put(folio, true);
762                                 goto out;
763                         }
764                 }
765                 f2fs_folio_put(folio, true);
766         }
767         /* clear Orphan Flag */
768         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
769 out:
770         set_sbi_flag(sbi, SBI_IS_RECOVERED);
771
772         return err;
773 }
774
775 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
776 {
777         struct list_head *head;
778         struct f2fs_orphan_block *orphan_blk = NULL;
779         unsigned int nentries = 0;
780         unsigned short index = 1;
781         unsigned short orphan_blocks;
782         struct folio *folio = NULL;
783         struct ino_entry *orphan = NULL;
784         struct inode_management *im = &sbi->im[ORPHAN_INO];
785
786         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
787
788         /*
789          * we don't need to do spin_lock(&im->ino_lock) here, since all the
790          * orphan inode operations are covered under f2fs_lock_op().
791          * And, spin_lock should be avoided due to page operations below.
792          */
793         head = &im->ino_list;
794
795         /* loop for each orphan inode entry and write them in journal block */
796         list_for_each_entry(orphan, head, list) {
797                 if (!folio) {
798                         folio = f2fs_grab_meta_folio(sbi, start_blk++);
799                         orphan_blk = folio_address(folio);
800                         memset(orphan_blk, 0, sizeof(*orphan_blk));
801                 }
802
803                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
804
805                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
806                         /*
807                          * an orphan block is full of 1020 entries,
808                          * then we need to flush current orphan blocks
809                          * and bring another one in memory
810                          */
811                         orphan_blk->blk_addr = cpu_to_le16(index);
812                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
813                         orphan_blk->entry_count = cpu_to_le32(nentries);
814                         folio_mark_dirty(folio);
815                         f2fs_folio_put(folio, true);
816                         index++;
817                         nentries = 0;
818                         folio = NULL;
819                 }
820         }
821
822         if (folio) {
823                 orphan_blk->blk_addr = cpu_to_le16(index);
824                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
825                 orphan_blk->entry_count = cpu_to_le32(nentries);
826                 folio_mark_dirty(folio);
827                 f2fs_folio_put(folio, true);
828         }
829 }
830
831 static __u32 f2fs_checkpoint_chksum(struct f2fs_checkpoint *ckpt)
832 {
833         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
834         __u32 chksum;
835
836         chksum = f2fs_crc32(ckpt, chksum_ofs);
837         if (chksum_ofs < CP_CHKSUM_OFFSET) {
838                 chksum_ofs += sizeof(chksum);
839                 chksum = f2fs_chksum(chksum, (__u8 *)ckpt + chksum_ofs,
840                                      F2FS_BLKSIZE - chksum_ofs);
841         }
842         return chksum;
843 }
844
845 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
846                 struct f2fs_checkpoint **cp_block, struct folio **cp_folio,
847                 unsigned long long *version)
848 {
849         size_t crc_offset = 0;
850         __u32 crc;
851
852         *cp_folio = f2fs_get_meta_folio(sbi, cp_addr);
853         if (IS_ERR(*cp_folio))
854                 return PTR_ERR(*cp_folio);
855
856         *cp_block = folio_address(*cp_folio);
857
858         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
859         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
860                         crc_offset > CP_CHKSUM_OFFSET) {
861                 f2fs_folio_put(*cp_folio, true);
862                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
863                 return -EINVAL;
864         }
865
866         crc = f2fs_checkpoint_chksum(*cp_block);
867         if (crc != cur_cp_crc(*cp_block)) {
868                 f2fs_folio_put(*cp_folio, true);
869                 f2fs_warn(sbi, "invalid crc value");
870                 return -EINVAL;
871         }
872
873         *version = cur_cp_version(*cp_block);
874         return 0;
875 }
876
877 static struct folio *validate_checkpoint(struct f2fs_sb_info *sbi,
878                                 block_t cp_addr, unsigned long long *version)
879 {
880         struct folio *cp_folio_1 = NULL, *cp_folio_2 = NULL;
881         struct f2fs_checkpoint *cp_block = NULL;
882         unsigned long long cur_version = 0, pre_version = 0;
883         unsigned int cp_blocks;
884         int err;
885
886         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
887                                         &cp_folio_1, version);
888         if (err)
889                 return NULL;
890
891         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
892
893         if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
894                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
895                           le32_to_cpu(cp_block->cp_pack_total_block_count));
896                 goto invalid_cp;
897         }
898         pre_version = *version;
899
900         cp_addr += cp_blocks - 1;
901         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
902                                         &cp_folio_2, version);
903         if (err)
904                 goto invalid_cp;
905         cur_version = *version;
906
907         if (cur_version == pre_version) {
908                 *version = cur_version;
909                 f2fs_folio_put(cp_folio_2, true);
910                 return cp_folio_1;
911         }
912         f2fs_folio_put(cp_folio_2, true);
913 invalid_cp:
914         f2fs_folio_put(cp_folio_1, true);
915         return NULL;
916 }
917
918 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
919 {
920         struct f2fs_checkpoint *cp_block;
921         struct f2fs_super_block *fsb = sbi->raw_super;
922         struct folio *cp1, *cp2, *cur_folio;
923         unsigned long blk_size = sbi->blocksize;
924         unsigned long long cp1_version = 0, cp2_version = 0;
925         unsigned long long cp_start_blk_no;
926         unsigned int cp_blks = 1 + __cp_payload(sbi);
927         block_t cp_blk_no;
928         int i;
929         int err;
930
931         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
932                                   GFP_KERNEL);
933         if (!sbi->ckpt)
934                 return -ENOMEM;
935         /*
936          * Finding out valid cp block involves read both
937          * sets( cp pack 1 and cp pack 2)
938          */
939         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
940         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
941
942         /* The second checkpoint pack should start at the next segment */
943         cp_start_blk_no += ((unsigned long long)1) <<
944                                 le32_to_cpu(fsb->log_blocks_per_seg);
945         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
946
947         if (cp1 && cp2) {
948                 if (ver_after(cp2_version, cp1_version))
949                         cur_folio = cp2;
950                 else
951                         cur_folio = cp1;
952         } else if (cp1) {
953                 cur_folio = cp1;
954         } else if (cp2) {
955                 cur_folio = cp2;
956         } else {
957                 err = -EFSCORRUPTED;
958                 goto fail_no_cp;
959         }
960
961         cp_block = folio_address(cur_folio);
962         memcpy(sbi->ckpt, cp_block, blk_size);
963
964         if (cur_folio == cp1)
965                 sbi->cur_cp_pack = 1;
966         else
967                 sbi->cur_cp_pack = 2;
968
969         /* Sanity checking of checkpoint */
970         if (f2fs_sanity_check_ckpt(sbi)) {
971                 err = -EFSCORRUPTED;
972                 goto free_fail_no_cp;
973         }
974
975         if (cp_blks <= 1)
976                 goto done;
977
978         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
979         if (cur_folio == cp2)
980                 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
981
982         for (i = 1; i < cp_blks; i++) {
983                 void *sit_bitmap_ptr;
984                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
985
986                 cur_folio = f2fs_get_meta_folio(sbi, cp_blk_no + i);
987                 if (IS_ERR(cur_folio)) {
988                         err = PTR_ERR(cur_folio);
989                         goto free_fail_no_cp;
990                 }
991                 sit_bitmap_ptr = folio_address(cur_folio);
992                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
993                 f2fs_folio_put(cur_folio, true);
994         }
995 done:
996         f2fs_folio_put(cp1, true);
997         f2fs_folio_put(cp2, true);
998         return 0;
999
1000 free_fail_no_cp:
1001         f2fs_folio_put(cp1, true);
1002         f2fs_folio_put(cp2, true);
1003 fail_no_cp:
1004         kvfree(sbi->ckpt);
1005         return err;
1006 }
1007
1008 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1009 {
1010         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1011         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1012
1013         if (is_inode_flag_set(inode, flag))
1014                 return;
1015
1016         set_inode_flag(inode, flag);
1017         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1018         stat_inc_dirty_inode(sbi, type);
1019 }
1020
1021 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1022 {
1023         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1024
1025         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1026                 return;
1027
1028         list_del_init(&F2FS_I(inode)->dirty_list);
1029         clear_inode_flag(inode, flag);
1030         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1031 }
1032
1033 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1034 {
1035         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1037
1038         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1039                         !S_ISLNK(inode->i_mode))
1040                 return;
1041
1042         spin_lock(&sbi->inode_lock[type]);
1043         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1044                 __add_dirty_inode(inode, type);
1045         inode_inc_dirty_pages(inode);
1046         spin_unlock(&sbi->inode_lock[type]);
1047
1048         set_page_private_reference(&folio->page);
1049 }
1050
1051 void f2fs_remove_dirty_inode(struct inode *inode)
1052 {
1053         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1055
1056         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1057                         !S_ISLNK(inode->i_mode))
1058                 return;
1059
1060         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1061                 return;
1062
1063         spin_lock(&sbi->inode_lock[type]);
1064         __remove_dirty_inode(inode, type);
1065         spin_unlock(&sbi->inode_lock[type]);
1066 }
1067
1068 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1069                                                 bool from_cp)
1070 {
1071         struct list_head *head;
1072         struct inode *inode;
1073         struct f2fs_inode_info *fi;
1074         bool is_dir = (type == DIR_INODE);
1075         unsigned long ino = 0;
1076
1077         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1078                                 get_pages(sbi, is_dir ?
1079                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1080 retry:
1081         if (unlikely(f2fs_cp_error(sbi))) {
1082                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1083                                 get_pages(sbi, is_dir ?
1084                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1085                 return -EIO;
1086         }
1087
1088         spin_lock(&sbi->inode_lock[type]);
1089
1090         head = &sbi->inode_list[type];
1091         if (list_empty(head)) {
1092                 spin_unlock(&sbi->inode_lock[type]);
1093                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1094                                 get_pages(sbi, is_dir ?
1095                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1096                 return 0;
1097         }
1098         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1099         inode = igrab(&fi->vfs_inode);
1100         spin_unlock(&sbi->inode_lock[type]);
1101         if (inode) {
1102                 unsigned long cur_ino = inode->i_ino;
1103
1104                 if (from_cp)
1105                         F2FS_I(inode)->cp_task = current;
1106                 F2FS_I(inode)->wb_task = current;
1107
1108                 filemap_fdatawrite(inode->i_mapping);
1109
1110                 F2FS_I(inode)->wb_task = NULL;
1111                 if (from_cp)
1112                         F2FS_I(inode)->cp_task = NULL;
1113
1114                 iput(inode);
1115                 /* We need to give cpu to another writers. */
1116                 if (ino == cur_ino)
1117                         cond_resched();
1118                 else
1119                         ino = cur_ino;
1120         } else {
1121                 /*
1122                  * We should submit bio, since it exists several
1123                  * writebacking dentry pages in the freeing inode.
1124                  */
1125                 f2fs_submit_merged_write(sbi, DATA);
1126                 cond_resched();
1127         }
1128         goto retry;
1129 }
1130
1131 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1132 {
1133         struct list_head *head = &sbi->inode_list[DIRTY_META];
1134         struct inode *inode;
1135         struct f2fs_inode_info *fi;
1136         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1137
1138         while (total--) {
1139                 if (unlikely(f2fs_cp_error(sbi)))
1140                         return -EIO;
1141
1142                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1143                 if (list_empty(head)) {
1144                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1145                         return 0;
1146                 }
1147                 fi = list_first_entry(head, struct f2fs_inode_info,
1148                                                         gdirty_list);
1149                 inode = igrab(&fi->vfs_inode);
1150                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151                 if (inode) {
1152                         sync_inode_metadata(inode, 0);
1153
1154                         /* it's on eviction */
1155                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1156                                 f2fs_update_inode_page(inode);
1157                         iput(inode);
1158                 }
1159         }
1160         return 0;
1161 }
1162
1163 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1164 {
1165         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1166         struct f2fs_nm_info *nm_i = NM_I(sbi);
1167         nid_t last_nid = nm_i->next_scan_nid;
1168
1169         next_free_nid(sbi, &last_nid);
1170         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1171         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1172         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1173         ckpt->next_free_nid = cpu_to_le32(last_nid);
1174
1175         /* update user_block_counts */
1176         sbi->last_valid_block_count = sbi->total_valid_block_count;
1177         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1178         percpu_counter_set(&sbi->rf_node_block_count, 0);
1179 }
1180
1181 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1182 {
1183         bool ret = false;
1184
1185         if (!is_journalled_quota(sbi))
1186                 return false;
1187
1188         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1189                 return true;
1190         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1191                 ret = false;
1192         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1193                 ret = false;
1194         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1195                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1196                 ret = true;
1197         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1198                 ret = true;
1199         }
1200         f2fs_up_write(&sbi->quota_sem);
1201         return ret;
1202 }
1203
1204 /*
1205  * Freeze all the FS-operations for checkpoint.
1206  */
1207 static int block_operations(struct f2fs_sb_info *sbi)
1208 {
1209         struct writeback_control wbc = {
1210                 .sync_mode = WB_SYNC_ALL,
1211                 .nr_to_write = LONG_MAX,
1212         };
1213         int err = 0, cnt = 0;
1214
1215         /*
1216          * Let's flush inline_data in dirty node pages.
1217          */
1218         f2fs_flush_inline_data(sbi);
1219
1220 retry_flush_quotas:
1221         f2fs_lock_all(sbi);
1222         if (__need_flush_quota(sbi)) {
1223                 bool need_lock = sbi->umount_lock_holder != current;
1224
1225                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1226                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1227                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1228                         goto retry_flush_dents;
1229                 }
1230                 f2fs_unlock_all(sbi);
1231
1232                 /* don't grab s_umount lock during mount/umount/remount/freeze/quotactl */
1233                 if (!need_lock) {
1234                         f2fs_do_quota_sync(sbi->sb, -1);
1235                 } else if (down_read_trylock(&sbi->sb->s_umount)) {
1236                         f2fs_do_quota_sync(sbi->sb, -1);
1237                         up_read(&sbi->sb->s_umount);
1238                 }
1239                 cond_resched();
1240                 goto retry_flush_quotas;
1241         }
1242
1243 retry_flush_dents:
1244         /* write all the dirty dentry pages */
1245         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1246                 f2fs_unlock_all(sbi);
1247                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1248                 if (err)
1249                         return err;
1250                 cond_resched();
1251                 goto retry_flush_quotas;
1252         }
1253
1254         /*
1255          * POR: we should ensure that there are no dirty node pages
1256          * until finishing nat/sit flush. inode->i_blocks can be updated.
1257          */
1258         f2fs_down_write(&sbi->node_change);
1259
1260         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1261                 f2fs_up_write(&sbi->node_change);
1262                 f2fs_unlock_all(sbi);
1263                 err = f2fs_sync_inode_meta(sbi);
1264                 if (err)
1265                         return err;
1266                 cond_resched();
1267                 goto retry_flush_quotas;
1268         }
1269
1270 retry_flush_nodes:
1271         f2fs_down_write(&sbi->node_write);
1272
1273         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1274                 f2fs_up_write(&sbi->node_write);
1275                 atomic_inc(&sbi->wb_sync_req[NODE]);
1276                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1277                 atomic_dec(&sbi->wb_sync_req[NODE]);
1278                 if (err) {
1279                         f2fs_up_write(&sbi->node_change);
1280                         f2fs_unlock_all(sbi);
1281                         return err;
1282                 }
1283                 cond_resched();
1284                 goto retry_flush_nodes;
1285         }
1286
1287         /*
1288          * sbi->node_change is used only for AIO write_begin path which produces
1289          * dirty node blocks and some checkpoint values by block allocation.
1290          */
1291         __prepare_cp_block(sbi);
1292         f2fs_up_write(&sbi->node_change);
1293         return err;
1294 }
1295
1296 static void unblock_operations(struct f2fs_sb_info *sbi)
1297 {
1298         f2fs_up_write(&sbi->node_write);
1299         f2fs_unlock_all(sbi);
1300 }
1301
1302 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1303 {
1304         DEFINE_WAIT(wait);
1305
1306         for (;;) {
1307                 if (!get_pages(sbi, type))
1308                         break;
1309
1310                 if (unlikely(f2fs_cp_error(sbi) &&
1311                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1312                         break;
1313
1314                 if (type == F2FS_DIRTY_META)
1315                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1316                                                         FS_CP_META_IO);
1317                 else if (type == F2FS_WB_CP_DATA)
1318                         f2fs_submit_merged_write(sbi, DATA);
1319
1320                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1321                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1322         }
1323         finish_wait(&sbi->cp_wait, &wait);
1324 }
1325
1326 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1327 {
1328         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1329         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1330         unsigned long flags;
1331
1332         spin_lock_irqsave(&sbi->cp_lock, flags);
1333
1334         if ((cpc->reason & CP_UMOUNT) &&
1335                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1336                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1337                 disable_nat_bits(sbi, false);
1338
1339         if (cpc->reason & CP_TRIMMED)
1340                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1341         else
1342                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1343
1344         if (cpc->reason & CP_UMOUNT)
1345                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1346         else
1347                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1348
1349         if (cpc->reason & CP_FASTBOOT)
1350                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1351         else
1352                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1353
1354         if (orphan_num)
1355                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1356         else
1357                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1358
1359         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1360                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1361
1362         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1363                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1364         else
1365                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1366
1367         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1368                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1369         else
1370                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1371
1372         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1373                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1374         else
1375                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1376
1377         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1378                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1379         else
1380                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1381
1382         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1383                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1384
1385         /* set this flag to activate crc|cp_ver for recovery */
1386         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1387         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1388
1389         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1390 }
1391
1392 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1393         void *src, block_t blk_addr)
1394 {
1395         struct writeback_control wbc = {};
1396
1397         /*
1398          * filemap_get_folios_tag and folio_lock again will take
1399          * some extra time. Therefore, f2fs_update_meta_pages and
1400          * f2fs_sync_meta_pages are combined in this function.
1401          */
1402         struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
1403
1404         memcpy(folio_address(folio), src, PAGE_SIZE);
1405
1406         folio_mark_dirty(folio);
1407         if (unlikely(!folio_clear_dirty_for_io(folio)))
1408                 f2fs_bug_on(sbi, 1);
1409
1410         /* writeout cp pack 2 page */
1411         if (unlikely(!__f2fs_write_meta_folio(folio, &wbc, FS_CP_META_IO))) {
1412                 if (f2fs_cp_error(sbi)) {
1413                         f2fs_folio_put(folio, true);
1414                         return;
1415                 }
1416                 f2fs_bug_on(sbi, true);
1417         }
1418
1419         f2fs_folio_put(folio, false);
1420
1421         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1422         f2fs_submit_merged_write(sbi, META_FLUSH);
1423 }
1424
1425 static inline u64 get_sectors_written(struct block_device *bdev)
1426 {
1427         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1428 }
1429
1430 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1431 {
1432         if (f2fs_is_multi_device(sbi)) {
1433                 u64 sectors = 0;
1434                 int i;
1435
1436                 for (i = 0; i < sbi->s_ndevs; i++)
1437                         sectors += get_sectors_written(FDEV(i).bdev);
1438
1439                 return sectors;
1440         }
1441
1442         return get_sectors_written(sbi->sb->s_bdev);
1443 }
1444
1445 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1446 {
1447         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1448         struct f2fs_nm_info *nm_i = NM_I(sbi);
1449         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1450         block_t start_blk;
1451         unsigned int data_sum_blocks, orphan_blocks;
1452         __u32 crc32 = 0;
1453         int i;
1454         int cp_payload_blks = __cp_payload(sbi);
1455         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1456         u64 kbytes_written;
1457         int err;
1458
1459         /* Flush all the NAT/SIT pages */
1460         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1461
1462         /* start to update checkpoint, cp ver is already updated previously */
1463         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1464         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1465         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1466                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1467
1468                 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1469                 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1470                 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1471         }
1472         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1473                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1474
1475                 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1476                 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1477                 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1478         }
1479
1480         /* 2 cp + n data seg summary + orphan inode blocks */
1481         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1482         spin_lock_irqsave(&sbi->cp_lock, flags);
1483         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1484                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1485         else
1486                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1487         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1488
1489         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1490         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1491                         orphan_blocks);
1492
1493         if (__remain_node_summaries(cpc->reason))
1494                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1495                                 cp_payload_blks + data_sum_blocks +
1496                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1497         else
1498                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1499                                 cp_payload_blks + data_sum_blocks +
1500                                 orphan_blocks);
1501
1502         /* update ckpt flag for checkpoint */
1503         update_ckpt_flags(sbi, cpc);
1504
1505         /* update SIT/NAT bitmap */
1506         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1507         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1508
1509         crc32 = f2fs_checkpoint_chksum(ckpt);
1510         *((__le32 *)((unsigned char *)ckpt +
1511                                 le32_to_cpu(ckpt->checksum_offset)))
1512                                 = cpu_to_le32(crc32);
1513
1514         start_blk = __start_cp_next_addr(sbi);
1515
1516         /* write nat bits */
1517         if (enabled_nat_bits(sbi, cpc)) {
1518                 __u64 cp_ver = cur_cp_version(ckpt);
1519                 block_t blk;
1520
1521                 cp_ver |= ((__u64)crc32 << 32);
1522                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1523
1524                 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1525                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1526                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1527                                         F2FS_BLK_TO_BYTES(i), blk + i);
1528         }
1529
1530         /* write out checkpoint buffer at block 0 */
1531         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1532
1533         for (i = 1; i < 1 + cp_payload_blks; i++)
1534                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1535                                                         start_blk++);
1536
1537         if (orphan_num) {
1538                 write_orphan_inodes(sbi, start_blk);
1539                 start_blk += orphan_blocks;
1540         }
1541
1542         f2fs_write_data_summaries(sbi, start_blk);
1543         start_blk += data_sum_blocks;
1544
1545         /* Record write statistics in the hot node summary */
1546         kbytes_written = sbi->kbytes_written;
1547         kbytes_written += (f2fs_get_sectors_written(sbi) -
1548                                 sbi->sectors_written_start) >> 1;
1549         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1550
1551         if (__remain_node_summaries(cpc->reason)) {
1552                 f2fs_write_node_summaries(sbi, start_blk);
1553                 start_blk += NR_CURSEG_NODE_TYPE;
1554         }
1555
1556         /* Here, we have one bio having CP pack except cp pack 2 page */
1557         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1558         /* Wait for all dirty meta pages to be submitted for IO */
1559         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1560
1561         /* wait for previous submitted meta pages writeback */
1562         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1563
1564         /* flush all device cache */
1565         err = f2fs_flush_device_cache(sbi);
1566         if (err)
1567                 return err;
1568
1569         /* barrier and flush checkpoint cp pack 2 page if it can */
1570         commit_checkpoint(sbi, ckpt, start_blk);
1571         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1572
1573         /*
1574          * invalidate intermediate page cache borrowed from meta inode which are
1575          * used for migration of encrypted, verity or compressed inode's blocks.
1576          */
1577         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1578                 f2fs_sb_has_compression(sbi))
1579                 f2fs_bug_on(sbi,
1580                         invalidate_inode_pages2_range(META_MAPPING(sbi),
1581                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1582
1583         f2fs_release_ino_entry(sbi, false);
1584
1585         f2fs_reset_fsync_node_info(sbi);
1586
1587         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1588         clear_sbi_flag(sbi, SBI_NEED_CP);
1589         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1590
1591         spin_lock(&sbi->stat_lock);
1592         sbi->unusable_block_count = 0;
1593         spin_unlock(&sbi->stat_lock);
1594
1595         __set_cp_next_pack(sbi);
1596
1597         /*
1598          * redirty superblock if metadata like node page or inode cache is
1599          * updated during writing checkpoint.
1600          */
1601         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1602                         get_pages(sbi, F2FS_DIRTY_IMETA))
1603                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1604
1605         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1606
1607         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1608 }
1609
1610 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1611 {
1612         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1613         unsigned long long ckpt_ver;
1614         int err = 0;
1615
1616         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1617                 return -EROFS;
1618
1619         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1620                 if (cpc->reason != CP_PAUSE)
1621                         return 0;
1622                 f2fs_warn(sbi, "Start checkpoint disabled!");
1623         }
1624         if (cpc->reason != CP_RESIZE)
1625                 f2fs_down_write(&sbi->cp_global_sem);
1626
1627         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1628                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1629                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1630                 goto out;
1631         if (unlikely(f2fs_cp_error(sbi))) {
1632                 err = -EIO;
1633                 goto out;
1634         }
1635
1636         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1637
1638         err = block_operations(sbi);
1639         if (err)
1640                 goto out;
1641
1642         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1643
1644         f2fs_flush_merged_writes(sbi);
1645
1646         /* this is the case of multiple fstrims without any changes */
1647         if (cpc->reason & CP_DISCARD) {
1648                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1649                         unblock_operations(sbi);
1650                         goto out;
1651                 }
1652
1653                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1654                                 SIT_I(sbi)->dirty_sentries == 0 &&
1655                                 prefree_segments(sbi) == 0) {
1656                         f2fs_flush_sit_entries(sbi, cpc);
1657                         f2fs_clear_prefree_segments(sbi, cpc);
1658                         unblock_operations(sbi);
1659                         goto out;
1660                 }
1661         }
1662
1663         /*
1664          * update checkpoint pack index
1665          * Increase the version number so that
1666          * SIT entries and seg summaries are written at correct place
1667          */
1668         ckpt_ver = cur_cp_version(ckpt);
1669         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1670
1671         /* write cached NAT/SIT entries to NAT/SIT area */
1672         err = f2fs_flush_nat_entries(sbi, cpc);
1673         if (err) {
1674                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1675                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1676                 goto stop;
1677         }
1678
1679         f2fs_flush_sit_entries(sbi, cpc);
1680
1681         /* save inmem log status */
1682         f2fs_save_inmem_curseg(sbi);
1683
1684         err = do_checkpoint(sbi, cpc);
1685         if (err) {
1686                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1687                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1688                 f2fs_release_discard_addrs(sbi);
1689         } else {
1690                 f2fs_clear_prefree_segments(sbi, cpc);
1691         }
1692
1693         f2fs_restore_inmem_curseg(sbi);
1694         f2fs_reinit_atgc_curseg(sbi);
1695         stat_inc_cp_count(sbi);
1696 stop:
1697         unblock_operations(sbi);
1698
1699         if (cpc->reason & CP_RECOVERY)
1700                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1701
1702         /* update CP_TIME to trigger checkpoint periodically */
1703         f2fs_update_time(sbi, CP_TIME);
1704         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1705 out:
1706         if (cpc->reason != CP_RESIZE)
1707                 f2fs_up_write(&sbi->cp_global_sem);
1708         return err;
1709 }
1710
1711 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1712 {
1713         int i;
1714
1715         for (i = 0; i < MAX_INO_ENTRY; i++) {
1716                 struct inode_management *im = &sbi->im[i];
1717
1718                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1719                 spin_lock_init(&im->ino_lock);
1720                 INIT_LIST_HEAD(&im->ino_list);
1721                 im->ino_num = 0;
1722         }
1723
1724         sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1725                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1726                         F2FS_ORPHANS_PER_BLOCK;
1727 }
1728
1729 int __init f2fs_create_checkpoint_caches(void)
1730 {
1731         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1732                         sizeof(struct ino_entry));
1733         if (!ino_entry_slab)
1734                 return -ENOMEM;
1735         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1736                         sizeof(struct inode_entry));
1737         if (!f2fs_inode_entry_slab) {
1738                 kmem_cache_destroy(ino_entry_slab);
1739                 return -ENOMEM;
1740         }
1741         return 0;
1742 }
1743
1744 void f2fs_destroy_checkpoint_caches(void)
1745 {
1746         kmem_cache_destroy(ino_entry_slab);
1747         kmem_cache_destroy(f2fs_inode_entry_slab);
1748 }
1749
1750 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1751 {
1752         struct cp_control cpc = { .reason = CP_SYNC, };
1753         int err;
1754
1755         f2fs_down_write(&sbi->gc_lock);
1756         err = f2fs_write_checkpoint(sbi, &cpc);
1757         f2fs_up_write(&sbi->gc_lock);
1758
1759         return err;
1760 }
1761
1762 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1763 {
1764         struct ckpt_req_control *cprc = &sbi->cprc_info;
1765         struct ckpt_req *req, *next;
1766         struct llist_node *dispatch_list;
1767         u64 sum_diff = 0, diff, count = 0;
1768         int ret;
1769
1770         dispatch_list = llist_del_all(&cprc->issue_list);
1771         if (!dispatch_list)
1772                 return;
1773         dispatch_list = llist_reverse_order(dispatch_list);
1774
1775         ret = __write_checkpoint_sync(sbi);
1776         atomic_inc(&cprc->issued_ckpt);
1777
1778         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1779                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1780                 req->ret = ret;
1781                 complete(&req->wait);
1782
1783                 sum_diff += diff;
1784                 count++;
1785         }
1786         atomic_sub(count, &cprc->queued_ckpt);
1787         atomic_add(count, &cprc->total_ckpt);
1788
1789         spin_lock(&cprc->stat_lock);
1790         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1791         if (cprc->peak_time < cprc->cur_time)
1792                 cprc->peak_time = cprc->cur_time;
1793         spin_unlock(&cprc->stat_lock);
1794 }
1795
1796 static int issue_checkpoint_thread(void *data)
1797 {
1798         struct f2fs_sb_info *sbi = data;
1799         struct ckpt_req_control *cprc = &sbi->cprc_info;
1800         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1801 repeat:
1802         if (kthread_should_stop())
1803                 return 0;
1804
1805         if (!llist_empty(&cprc->issue_list))
1806                 __checkpoint_and_complete_reqs(sbi);
1807
1808         wait_event_interruptible(*q,
1809                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1810         goto repeat;
1811 }
1812
1813 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1814                 struct ckpt_req *wait_req)
1815 {
1816         struct ckpt_req_control *cprc = &sbi->cprc_info;
1817
1818         if (!llist_empty(&cprc->issue_list)) {
1819                 __checkpoint_and_complete_reqs(sbi);
1820         } else {
1821                 /* already dispatched by issue_checkpoint_thread */
1822                 if (wait_req)
1823                         wait_for_completion(&wait_req->wait);
1824         }
1825 }
1826
1827 static void init_ckpt_req(struct ckpt_req *req)
1828 {
1829         memset(req, 0, sizeof(struct ckpt_req));
1830
1831         init_completion(&req->wait);
1832         req->queue_time = ktime_get();
1833 }
1834
1835 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1836 {
1837         struct ckpt_req_control *cprc = &sbi->cprc_info;
1838         struct ckpt_req req;
1839         struct cp_control cpc;
1840
1841         cpc.reason = __get_cp_reason(sbi);
1842         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC ||
1843                 sbi->umount_lock_holder == current) {
1844                 int ret;
1845
1846                 f2fs_down_write(&sbi->gc_lock);
1847                 ret = f2fs_write_checkpoint(sbi, &cpc);
1848                 f2fs_up_write(&sbi->gc_lock);
1849
1850                 return ret;
1851         }
1852
1853         if (!cprc->f2fs_issue_ckpt)
1854                 return __write_checkpoint_sync(sbi);
1855
1856         init_ckpt_req(&req);
1857
1858         llist_add(&req.llnode, &cprc->issue_list);
1859         atomic_inc(&cprc->queued_ckpt);
1860
1861         /*
1862          * update issue_list before we wake up issue_checkpoint thread,
1863          * this smp_mb() pairs with another barrier in ___wait_event(),
1864          * see more details in comments of waitqueue_active().
1865          */
1866         smp_mb();
1867
1868         if (waitqueue_active(&cprc->ckpt_wait_queue))
1869                 wake_up(&cprc->ckpt_wait_queue);
1870
1871         if (cprc->f2fs_issue_ckpt)
1872                 wait_for_completion(&req.wait);
1873         else
1874                 flush_remained_ckpt_reqs(sbi, &req);
1875
1876         return req.ret;
1877 }
1878
1879 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1880 {
1881         dev_t dev = sbi->sb->s_bdev->bd_dev;
1882         struct ckpt_req_control *cprc = &sbi->cprc_info;
1883
1884         if (cprc->f2fs_issue_ckpt)
1885                 return 0;
1886
1887         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1888                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1889         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1890                 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1891
1892                 cprc->f2fs_issue_ckpt = NULL;
1893                 return err;
1894         }
1895
1896         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1897
1898         return 0;
1899 }
1900
1901 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1902 {
1903         struct ckpt_req_control *cprc = &sbi->cprc_info;
1904         struct task_struct *ckpt_task;
1905
1906         if (!cprc->f2fs_issue_ckpt)
1907                 return;
1908
1909         ckpt_task = cprc->f2fs_issue_ckpt;
1910         cprc->f2fs_issue_ckpt = NULL;
1911         kthread_stop(ckpt_task);
1912
1913         f2fs_flush_ckpt_thread(sbi);
1914 }
1915
1916 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1917 {
1918         struct ckpt_req_control *cprc = &sbi->cprc_info;
1919
1920         flush_remained_ckpt_reqs(sbi, NULL);
1921
1922         /* Let's wait for the previous dispatched checkpoint. */
1923         while (atomic_read(&cprc->queued_ckpt))
1924                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1925 }
1926
1927 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1928 {
1929         struct ckpt_req_control *cprc = &sbi->cprc_info;
1930
1931         atomic_set(&cprc->issued_ckpt, 0);
1932         atomic_set(&cprc->total_ckpt, 0);
1933         atomic_set(&cprc->queued_ckpt, 0);
1934         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1935         init_waitqueue_head(&cprc->ckpt_wait_queue);
1936         init_llist_head(&cprc->issue_list);
1937         spin_lock_init(&cprc->stat_lock);
1938 }