f2fs: use f2fs_grab_cache_page instead of grab_cache_page
[linux-2.6-block.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = f2fs_grab_cache_page(mapping, index, false);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META, true);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .old_blkaddr = index,
60                 .new_blkaddr = index,
61                 .encrypted_page = NULL,
62         };
63
64         if (unlikely(!is_meta))
65                 fio.rw &= ~REQ_META;
66 repeat:
67         page = f2fs_grab_cache_page(mapping, index, false);
68         if (!page) {
69                 cond_resched();
70                 goto repeat;
71         }
72         if (PageUptodate(page))
73                 goto out;
74
75         fio.page = page;
76
77         if (f2fs_submit_page_bio(&fio)) {
78                 f2fs_put_page(page, 1);
79                 goto repeat;
80         }
81
82         lock_page(page);
83         if (unlikely(page->mapping != mapping)) {
84                 f2fs_put_page(page, 1);
85                 goto repeat;
86         }
87
88         /*
89          * if there is any IO error when accessing device, make our filesystem
90          * readonly and make sure do not write checkpoint with non-uptodate
91          * meta page.
92          */
93         if (unlikely(!PageUptodate(page)))
94                 f2fs_stop_checkpoint(sbi);
95 out:
96         return page;
97 }
98
99 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 {
101         return __get_meta_page(sbi, index, true);
102 }
103
104 /* for POR only */
105 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107         return __get_meta_page(sbi, index, false);
108 }
109
110 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 {
112         switch (type) {
113         case META_NAT:
114                 break;
115         case META_SIT:
116                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
117                         return false;
118                 break;
119         case META_SSA:
120                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
121                         blkaddr < SM_I(sbi)->ssa_blkaddr))
122                         return false;
123                 break;
124         case META_CP:
125                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
126                         blkaddr < __start_cp_addr(sbi)))
127                         return false;
128                 break;
129         case META_POR:
130                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
131                         blkaddr < MAIN_BLKADDR(sbi)))
132                         return false;
133                 break;
134         default:
135                 BUG();
136         }
137
138         return true;
139 }
140
141 /*
142  * Readahead CP/NAT/SIT/SSA pages
143  */
144 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
145                                                         int type, bool sync)
146 {
147         struct page *page;
148         block_t blkno = start;
149         struct f2fs_io_info fio = {
150                 .sbi = sbi,
151                 .type = META,
152                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153                 .encrypted_page = NULL,
154         };
155         struct blk_plug plug;
156
157         if (unlikely(type == META_POR))
158                 fio.rw &= ~REQ_META;
159
160         blk_start_plug(&plug);
161         for (; nrpages-- > 0; blkno++) {
162
163                 if (!is_valid_blkaddr(sbi, blkno, type))
164                         goto out;
165
166                 switch (type) {
167                 case META_NAT:
168                         if (unlikely(blkno >=
169                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
170                                 blkno = 0;
171                         /* get nat block addr */
172                         fio.new_blkaddr = current_nat_addr(sbi,
173                                         blkno * NAT_ENTRY_PER_BLOCK);
174                         break;
175                 case META_SIT:
176                         /* get sit block addr */
177                         fio.new_blkaddr = current_sit_addr(sbi,
178                                         blkno * SIT_ENTRY_PER_BLOCK);
179                         break;
180                 case META_SSA:
181                 case META_CP:
182                 case META_POR:
183                         fio.new_blkaddr = blkno;
184                         break;
185                 default:
186                         BUG();
187                 }
188
189                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
190                                                 fio.new_blkaddr, false);
191                 if (!page)
192                         continue;
193                 if (PageUptodate(page)) {
194                         f2fs_put_page(page, 1);
195                         continue;
196                 }
197
198                 fio.page = page;
199                 fio.old_blkaddr = fio.new_blkaddr;
200                 f2fs_submit_page_mbio(&fio);
201                 f2fs_put_page(page, 0);
202         }
203 out:
204         f2fs_submit_merged_bio(sbi, META, READ);
205         blk_finish_plug(&plug);
206         return blkno - start;
207 }
208
209 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
210 {
211         struct page *page;
212         bool readahead = false;
213
214         page = find_get_page(META_MAPPING(sbi), index);
215         if (!page || !PageUptodate(page))
216                 readahead = true;
217         f2fs_put_page(page, 0);
218
219         if (readahead)
220                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
221 }
222
223 static int f2fs_write_meta_page(struct page *page,
224                                 struct writeback_control *wbc)
225 {
226         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
227
228         trace_f2fs_writepage(page, META);
229
230         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
231                 goto redirty_out;
232         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
233                 goto redirty_out;
234         if (unlikely(f2fs_cp_error(sbi)))
235                 goto redirty_out;
236
237         write_meta_page(sbi, page);
238         dec_page_count(sbi, F2FS_DIRTY_META);
239
240         if (wbc->for_reclaim)
241                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
242
243         unlock_page(page);
244
245         if (unlikely(f2fs_cp_error(sbi)))
246                 f2fs_submit_merged_bio(sbi, META, WRITE);
247
248         return 0;
249
250 redirty_out:
251         redirty_page_for_writepage(wbc, page);
252         return AOP_WRITEPAGE_ACTIVATE;
253 }
254
255 static int f2fs_write_meta_pages(struct address_space *mapping,
256                                 struct writeback_control *wbc)
257 {
258         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
259         long diff, written;
260
261         /* collect a number of dirty meta pages and write together */
262         if (wbc->for_kupdate ||
263                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
264                 goto skip_write;
265
266         trace_f2fs_writepages(mapping->host, wbc, META);
267
268         /* if mounting is failed, skip writing node pages */
269         mutex_lock(&sbi->cp_mutex);
270         diff = nr_pages_to_write(sbi, META, wbc);
271         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
272         mutex_unlock(&sbi->cp_mutex);
273         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
274         return 0;
275
276 skip_write:
277         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
278         trace_f2fs_writepages(mapping->host, wbc, META);
279         return 0;
280 }
281
282 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
283                                                 long nr_to_write)
284 {
285         struct address_space *mapping = META_MAPPING(sbi);
286         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
287         struct pagevec pvec;
288         long nwritten = 0;
289         struct writeback_control wbc = {
290                 .for_reclaim = 0,
291         };
292         struct blk_plug plug;
293
294         pagevec_init(&pvec, 0);
295
296         blk_start_plug(&plug);
297
298         while (index <= end) {
299                 int i, nr_pages;
300                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
301                                 PAGECACHE_TAG_DIRTY,
302                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
303                 if (unlikely(nr_pages == 0))
304                         break;
305
306                 for (i = 0; i < nr_pages; i++) {
307                         struct page *page = pvec.pages[i];
308
309                         if (prev == ULONG_MAX)
310                                 prev = page->index - 1;
311                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
312                                 pagevec_release(&pvec);
313                                 goto stop;
314                         }
315
316                         lock_page(page);
317
318                         if (unlikely(page->mapping != mapping)) {
319 continue_unlock:
320                                 unlock_page(page);
321                                 continue;
322                         }
323                         if (!PageDirty(page)) {
324                                 /* someone wrote it for us */
325                                 goto continue_unlock;
326                         }
327
328                         f2fs_wait_on_page_writeback(page, META, true);
329
330                         BUG_ON(PageWriteback(page));
331                         if (!clear_page_dirty_for_io(page))
332                                 goto continue_unlock;
333
334                         if (mapping->a_ops->writepage(page, &wbc)) {
335                                 unlock_page(page);
336                                 break;
337                         }
338                         nwritten++;
339                         prev = page->index;
340                         if (unlikely(nwritten >= nr_to_write))
341                                 break;
342                 }
343                 pagevec_release(&pvec);
344                 cond_resched();
345         }
346 stop:
347         if (nwritten)
348                 f2fs_submit_merged_bio(sbi, type, WRITE);
349
350         blk_finish_plug(&plug);
351
352         return nwritten;
353 }
354
355 static int f2fs_set_meta_page_dirty(struct page *page)
356 {
357         trace_f2fs_set_page_dirty(page, META);
358
359         SetPageUptodate(page);
360         if (!PageDirty(page)) {
361                 __set_page_dirty_nobuffers(page);
362                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
363                 SetPagePrivate(page);
364                 f2fs_trace_pid(page);
365                 return 1;
366         }
367         return 0;
368 }
369
370 const struct address_space_operations f2fs_meta_aops = {
371         .writepage      = f2fs_write_meta_page,
372         .writepages     = f2fs_write_meta_pages,
373         .set_page_dirty = f2fs_set_meta_page_dirty,
374         .invalidatepage = f2fs_invalidate_page,
375         .releasepage    = f2fs_release_page,
376 };
377
378 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
379 {
380         struct inode_management *im = &sbi->im[type];
381         struct ino_entry *e, *tmp;
382
383         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
384 retry:
385         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
386
387         spin_lock(&im->ino_lock);
388         e = radix_tree_lookup(&im->ino_root, ino);
389         if (!e) {
390                 e = tmp;
391                 if (radix_tree_insert(&im->ino_root, ino, e)) {
392                         spin_unlock(&im->ino_lock);
393                         radix_tree_preload_end();
394                         goto retry;
395                 }
396                 memset(e, 0, sizeof(struct ino_entry));
397                 e->ino = ino;
398
399                 list_add_tail(&e->list, &im->ino_list);
400                 if (type != ORPHAN_INO)
401                         im->ino_num++;
402         }
403         spin_unlock(&im->ino_lock);
404         radix_tree_preload_end();
405
406         if (e != tmp)
407                 kmem_cache_free(ino_entry_slab, tmp);
408 }
409
410 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
411 {
412         struct inode_management *im = &sbi->im[type];
413         struct ino_entry *e;
414
415         spin_lock(&im->ino_lock);
416         e = radix_tree_lookup(&im->ino_root, ino);
417         if (e) {
418                 list_del(&e->list);
419                 radix_tree_delete(&im->ino_root, ino);
420                 im->ino_num--;
421                 spin_unlock(&im->ino_lock);
422                 kmem_cache_free(ino_entry_slab, e);
423                 return;
424         }
425         spin_unlock(&im->ino_lock);
426 }
427
428 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
429 {
430         /* add new dirty ino entry into list */
431         __add_ino_entry(sbi, ino, type);
432 }
433
434 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
435 {
436         /* remove dirty ino entry from list */
437         __remove_ino_entry(sbi, ino, type);
438 }
439
440 /* mode should be APPEND_INO or UPDATE_INO */
441 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
442 {
443         struct inode_management *im = &sbi->im[mode];
444         struct ino_entry *e;
445
446         spin_lock(&im->ino_lock);
447         e = radix_tree_lookup(&im->ino_root, ino);
448         spin_unlock(&im->ino_lock);
449         return e ? true : false;
450 }
451
452 void release_ino_entry(struct f2fs_sb_info *sbi)
453 {
454         struct ino_entry *e, *tmp;
455         int i;
456
457         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
458                 struct inode_management *im = &sbi->im[i];
459
460                 spin_lock(&im->ino_lock);
461                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
462                         list_del(&e->list);
463                         radix_tree_delete(&im->ino_root, e->ino);
464                         kmem_cache_free(ino_entry_slab, e);
465                         im->ino_num--;
466                 }
467                 spin_unlock(&im->ino_lock);
468         }
469 }
470
471 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
472 {
473         struct inode_management *im = &sbi->im[ORPHAN_INO];
474         int err = 0;
475
476         spin_lock(&im->ino_lock);
477         if (unlikely(im->ino_num >= sbi->max_orphans))
478                 err = -ENOSPC;
479         else
480                 im->ino_num++;
481         spin_unlock(&im->ino_lock);
482
483         return err;
484 }
485
486 void release_orphan_inode(struct f2fs_sb_info *sbi)
487 {
488         struct inode_management *im = &sbi->im[ORPHAN_INO];
489
490         spin_lock(&im->ino_lock);
491         f2fs_bug_on(sbi, im->ino_num == 0);
492         im->ino_num--;
493         spin_unlock(&im->ino_lock);
494 }
495
496 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
497 {
498         /* add new orphan ino entry into list */
499         __add_ino_entry(sbi, ino, ORPHAN_INO);
500 }
501
502 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
503 {
504         /* remove orphan entry from orphan list */
505         __remove_ino_entry(sbi, ino, ORPHAN_INO);
506 }
507
508 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
509 {
510         struct inode *inode;
511
512         inode = f2fs_iget(sbi->sb, ino);
513         if (IS_ERR(inode)) {
514                 /*
515                  * there should be a bug that we can't find the entry
516                  * to orphan inode.
517                  */
518                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
519                 return PTR_ERR(inode);
520         }
521
522         clear_nlink(inode);
523
524         /* truncate all the data during iput */
525         iput(inode);
526         return 0;
527 }
528
529 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
530 {
531         block_t start_blk, orphan_blocks, i, j;
532         int err;
533
534         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
535                 return 0;
536
537         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
538         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
539
540         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
541
542         for (i = 0; i < orphan_blocks; i++) {
543                 struct page *page = get_meta_page(sbi, start_blk + i);
544                 struct f2fs_orphan_block *orphan_blk;
545
546                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
547                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
548                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
549                         err = recover_orphan_inode(sbi, ino);
550                         if (err) {
551                                 f2fs_put_page(page, 1);
552                                 return err;
553                         }
554                 }
555                 f2fs_put_page(page, 1);
556         }
557         /* clear Orphan Flag */
558         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
559         return 0;
560 }
561
562 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
563 {
564         struct list_head *head;
565         struct f2fs_orphan_block *orphan_blk = NULL;
566         unsigned int nentries = 0;
567         unsigned short index = 1;
568         unsigned short orphan_blocks;
569         struct page *page = NULL;
570         struct ino_entry *orphan = NULL;
571         struct inode_management *im = &sbi->im[ORPHAN_INO];
572
573         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
574
575         /*
576          * we don't need to do spin_lock(&im->ino_lock) here, since all the
577          * orphan inode operations are covered under f2fs_lock_op().
578          * And, spin_lock should be avoided due to page operations below.
579          */
580         head = &im->ino_list;
581
582         /* loop for each orphan inode entry and write them in Jornal block */
583         list_for_each_entry(orphan, head, list) {
584                 if (!page) {
585                         page = grab_meta_page(sbi, start_blk++);
586                         orphan_blk =
587                                 (struct f2fs_orphan_block *)page_address(page);
588                         memset(orphan_blk, 0, sizeof(*orphan_blk));
589                 }
590
591                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
592
593                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
594                         /*
595                          * an orphan block is full of 1020 entries,
596                          * then we need to flush current orphan blocks
597                          * and bring another one in memory
598                          */
599                         orphan_blk->blk_addr = cpu_to_le16(index);
600                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
601                         orphan_blk->entry_count = cpu_to_le32(nentries);
602                         set_page_dirty(page);
603                         f2fs_put_page(page, 1);
604                         index++;
605                         nentries = 0;
606                         page = NULL;
607                 }
608         }
609
610         if (page) {
611                 orphan_blk->blk_addr = cpu_to_le16(index);
612                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
613                 orphan_blk->entry_count = cpu_to_le32(nentries);
614                 set_page_dirty(page);
615                 f2fs_put_page(page, 1);
616         }
617 }
618
619 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
620                                 block_t cp_addr, unsigned long long *version)
621 {
622         struct page *cp_page_1, *cp_page_2 = NULL;
623         unsigned long blk_size = sbi->blocksize;
624         struct f2fs_checkpoint *cp_block;
625         unsigned long long cur_version = 0, pre_version = 0;
626         size_t crc_offset;
627         __u32 crc = 0;
628
629         /* Read the 1st cp block in this CP pack */
630         cp_page_1 = get_meta_page(sbi, cp_addr);
631
632         /* get the version number */
633         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
634         crc_offset = le32_to_cpu(cp_block->checksum_offset);
635         if (crc_offset >= blk_size)
636                 goto invalid_cp1;
637
638         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
639         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
640                 goto invalid_cp1;
641
642         pre_version = cur_cp_version(cp_block);
643
644         /* Read the 2nd cp block in this CP pack */
645         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
646         cp_page_2 = get_meta_page(sbi, cp_addr);
647
648         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
649         crc_offset = le32_to_cpu(cp_block->checksum_offset);
650         if (crc_offset >= blk_size)
651                 goto invalid_cp2;
652
653         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
654         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
655                 goto invalid_cp2;
656
657         cur_version = cur_cp_version(cp_block);
658
659         if (cur_version == pre_version) {
660                 *version = cur_version;
661                 f2fs_put_page(cp_page_2, 1);
662                 return cp_page_1;
663         }
664 invalid_cp2:
665         f2fs_put_page(cp_page_2, 1);
666 invalid_cp1:
667         f2fs_put_page(cp_page_1, 1);
668         return NULL;
669 }
670
671 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
672 {
673         struct f2fs_checkpoint *cp_block;
674         struct f2fs_super_block *fsb = sbi->raw_super;
675         struct page *cp1, *cp2, *cur_page;
676         unsigned long blk_size = sbi->blocksize;
677         unsigned long long cp1_version = 0, cp2_version = 0;
678         unsigned long long cp_start_blk_no;
679         unsigned int cp_blks = 1 + __cp_payload(sbi);
680         block_t cp_blk_no;
681         int i;
682
683         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
684         if (!sbi->ckpt)
685                 return -ENOMEM;
686         /*
687          * Finding out valid cp block involves read both
688          * sets( cp pack1 and cp pack 2)
689          */
690         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
691         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
692
693         /* The second checkpoint pack should start at the next segment */
694         cp_start_blk_no += ((unsigned long long)1) <<
695                                 le32_to_cpu(fsb->log_blocks_per_seg);
696         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
697
698         if (cp1 && cp2) {
699                 if (ver_after(cp2_version, cp1_version))
700                         cur_page = cp2;
701                 else
702                         cur_page = cp1;
703         } else if (cp1) {
704                 cur_page = cp1;
705         } else if (cp2) {
706                 cur_page = cp2;
707         } else {
708                 goto fail_no_cp;
709         }
710
711         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
712         memcpy(sbi->ckpt, cp_block, blk_size);
713
714         /* Sanity checking of checkpoint */
715         if (sanity_check_ckpt(sbi))
716                 goto fail_no_cp;
717
718         if (cp_blks <= 1)
719                 goto done;
720
721         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
722         if (cur_page == cp2)
723                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
724
725         for (i = 1; i < cp_blks; i++) {
726                 void *sit_bitmap_ptr;
727                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
728
729                 cur_page = get_meta_page(sbi, cp_blk_no + i);
730                 sit_bitmap_ptr = page_address(cur_page);
731                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
732                 f2fs_put_page(cur_page, 1);
733         }
734 done:
735         f2fs_put_page(cp1, 1);
736         f2fs_put_page(cp2, 1);
737         return 0;
738
739 fail_no_cp:
740         kfree(sbi->ckpt);
741         return -EINVAL;
742 }
743
744 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
745 {
746         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
747         struct f2fs_inode_info *fi = F2FS_I(inode);
748         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
749
750         if (is_inode_flag_set(fi, flag))
751                 return;
752
753         set_inode_flag(fi, flag);
754         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
755         stat_inc_dirty_inode(sbi, type);
756 }
757
758 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
759 {
760         struct f2fs_inode_info *fi = F2FS_I(inode);
761         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
762
763         if (get_dirty_pages(inode) ||
764                         !is_inode_flag_set(F2FS_I(inode), flag))
765                 return;
766
767         list_del_init(&fi->dirty_list);
768         clear_inode_flag(fi, flag);
769         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
770 }
771
772 void update_dirty_page(struct inode *inode, struct page *page)
773 {
774         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
775         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
776
777         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
778                         !S_ISLNK(inode->i_mode))
779                 return;
780
781         spin_lock(&sbi->inode_lock[type]);
782         __add_dirty_inode(inode, type);
783         inode_inc_dirty_pages(inode);
784         spin_unlock(&sbi->inode_lock[type]);
785
786         SetPagePrivate(page);
787         f2fs_trace_pid(page);
788 }
789
790 void add_dirty_dir_inode(struct inode *inode)
791 {
792         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
793
794         spin_lock(&sbi->inode_lock[DIR_INODE]);
795         __add_dirty_inode(inode, DIR_INODE);
796         spin_unlock(&sbi->inode_lock[DIR_INODE]);
797 }
798
799 void remove_dirty_inode(struct inode *inode)
800 {
801         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
802         struct f2fs_inode_info *fi = F2FS_I(inode);
803         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
804
805         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
806                         !S_ISLNK(inode->i_mode))
807                 return;
808
809         spin_lock(&sbi->inode_lock[type]);
810         __remove_dirty_inode(inode, type);
811         spin_unlock(&sbi->inode_lock[type]);
812
813         /* Only from the recovery routine */
814         if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
815                 clear_inode_flag(fi, FI_DELAY_IPUT);
816                 iput(inode);
817         }
818 }
819
820 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
821 {
822         struct list_head *head;
823         struct inode *inode;
824         struct f2fs_inode_info *fi;
825         bool is_dir = (type == DIR_INODE);
826
827         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
828                                 get_pages(sbi, is_dir ?
829                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
830 retry:
831         if (unlikely(f2fs_cp_error(sbi)))
832                 return -EIO;
833
834         spin_lock(&sbi->inode_lock[type]);
835
836         head = &sbi->inode_list[type];
837         if (list_empty(head)) {
838                 spin_unlock(&sbi->inode_lock[type]);
839                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
840                                 get_pages(sbi, is_dir ?
841                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
842                 return 0;
843         }
844         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
845         inode = igrab(&fi->vfs_inode);
846         spin_unlock(&sbi->inode_lock[type]);
847         if (inode) {
848                 filemap_fdatawrite(inode->i_mapping);
849                 iput(inode);
850         } else {
851                 /*
852                  * We should submit bio, since it exists several
853                  * wribacking dentry pages in the freeing inode.
854                  */
855                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
856                 cond_resched();
857         }
858         goto retry;
859 }
860
861 /*
862  * Freeze all the FS-operations for checkpoint.
863  */
864 static int block_operations(struct f2fs_sb_info *sbi)
865 {
866         struct writeback_control wbc = {
867                 .sync_mode = WB_SYNC_ALL,
868                 .nr_to_write = LONG_MAX,
869                 .for_reclaim = 0,
870         };
871         struct blk_plug plug;
872         int err = 0;
873
874         blk_start_plug(&plug);
875
876 retry_flush_dents:
877         f2fs_lock_all(sbi);
878         /* write all the dirty dentry pages */
879         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
880                 f2fs_unlock_all(sbi);
881                 err = sync_dirty_inodes(sbi, DIR_INODE);
882                 if (err)
883                         goto out;
884                 goto retry_flush_dents;
885         }
886
887         /*
888          * POR: we should ensure that there are no dirty node pages
889          * until finishing nat/sit flush.
890          */
891 retry_flush_nodes:
892         down_write(&sbi->node_write);
893
894         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
895                 up_write(&sbi->node_write);
896                 err = sync_node_pages(sbi, &wbc);
897                 if (err) {
898                         f2fs_unlock_all(sbi);
899                         goto out;
900                 }
901                 goto retry_flush_nodes;
902         }
903 out:
904         blk_finish_plug(&plug);
905         return err;
906 }
907
908 static void unblock_operations(struct f2fs_sb_info *sbi)
909 {
910         up_write(&sbi->node_write);
911         f2fs_unlock_all(sbi);
912 }
913
914 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
915 {
916         DEFINE_WAIT(wait);
917
918         for (;;) {
919                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
920
921                 if (!get_pages(sbi, F2FS_WRITEBACK))
922                         break;
923
924                 io_schedule_timeout(5*HZ);
925         }
926         finish_wait(&sbi->cp_wait, &wait);
927 }
928
929 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
930 {
931         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
932         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
933         struct f2fs_nm_info *nm_i = NM_I(sbi);
934         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
935         nid_t last_nid = nm_i->next_scan_nid;
936         block_t start_blk;
937         unsigned int data_sum_blocks, orphan_blocks;
938         __u32 crc32 = 0;
939         int i;
940         int cp_payload_blks = __cp_payload(sbi);
941         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
942         bool invalidate = false;
943         struct super_block *sb = sbi->sb;
944         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
945         u64 kbytes_written;
946
947         /*
948          * This avoids to conduct wrong roll-forward operations and uses
949          * metapages, so should be called prior to sync_meta_pages below.
950          */
951         if (discard_next_dnode(sbi, discard_blk))
952                 invalidate = true;
953
954         /* Flush all the NAT/SIT pages */
955         while (get_pages(sbi, F2FS_DIRTY_META)) {
956                 sync_meta_pages(sbi, META, LONG_MAX);
957                 if (unlikely(f2fs_cp_error(sbi)))
958                         return -EIO;
959         }
960
961         next_free_nid(sbi, &last_nid);
962
963         /*
964          * modify checkpoint
965          * version number is already updated
966          */
967         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
968         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
969         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
970         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
971                 ckpt->cur_node_segno[i] =
972                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
973                 ckpt->cur_node_blkoff[i] =
974                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
975                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
976                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
977         }
978         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
979                 ckpt->cur_data_segno[i] =
980                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
981                 ckpt->cur_data_blkoff[i] =
982                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
983                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
984                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
985         }
986
987         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
988         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
989         ckpt->next_free_nid = cpu_to_le32(last_nid);
990
991         /* 2 cp  + n data seg summary + orphan inode blocks */
992         data_sum_blocks = npages_for_summary_flush(sbi, false);
993         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
994                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
995         else
996                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
997
998         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
999         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1000                         orphan_blocks);
1001
1002         if (__remain_node_summaries(cpc->reason))
1003                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1004                                 cp_payload_blks + data_sum_blocks +
1005                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1006         else
1007                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1008                                 cp_payload_blks + data_sum_blocks +
1009                                 orphan_blocks);
1010
1011         if (cpc->reason == CP_UMOUNT)
1012                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1013         else
1014                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1015
1016         if (cpc->reason == CP_FASTBOOT)
1017                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1018         else
1019                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1020
1021         if (orphan_num)
1022                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1023         else
1024                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1025
1026         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1027                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1028
1029         /* update SIT/NAT bitmap */
1030         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1031         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1032
1033         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1034         *((__le32 *)((unsigned char *)ckpt +
1035                                 le32_to_cpu(ckpt->checksum_offset)))
1036                                 = cpu_to_le32(crc32);
1037
1038         start_blk = __start_cp_addr(sbi);
1039
1040         /* need to wait for end_io results */
1041         wait_on_all_pages_writeback(sbi);
1042         if (unlikely(f2fs_cp_error(sbi)))
1043                 return -EIO;
1044
1045         /* write out checkpoint buffer at block 0 */
1046         update_meta_page(sbi, ckpt, start_blk++);
1047
1048         for (i = 1; i < 1 + cp_payload_blks; i++)
1049                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1050                                                         start_blk++);
1051
1052         if (orphan_num) {
1053                 write_orphan_inodes(sbi, start_blk);
1054                 start_blk += orphan_blocks;
1055         }
1056
1057         write_data_summaries(sbi, start_blk);
1058         start_blk += data_sum_blocks;
1059
1060         /* Record write statistics in the hot node summary */
1061         kbytes_written = sbi->kbytes_written;
1062         if (sb->s_bdev->bd_part)
1063                 kbytes_written += BD_PART_WRITTEN(sbi);
1064
1065         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1066
1067         if (__remain_node_summaries(cpc->reason)) {
1068                 write_node_summaries(sbi, start_blk);
1069                 start_blk += NR_CURSEG_NODE_TYPE;
1070         }
1071
1072         /* writeout checkpoint block */
1073         update_meta_page(sbi, ckpt, start_blk);
1074
1075         /* wait for previous submitted node/meta pages writeback */
1076         wait_on_all_pages_writeback(sbi);
1077
1078         if (unlikely(f2fs_cp_error(sbi)))
1079                 return -EIO;
1080
1081         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1082         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1083
1084         /* update user_block_counts */
1085         sbi->last_valid_block_count = sbi->total_valid_block_count;
1086         sbi->alloc_valid_block_count = 0;
1087
1088         /* Here, we only have one bio having CP pack */
1089         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1090
1091         /* wait for previous submitted meta pages writeback */
1092         wait_on_all_pages_writeback(sbi);
1093
1094         /*
1095          * invalidate meta page which is used temporarily for zeroing out
1096          * block at the end of warm node chain.
1097          */
1098         if (invalidate)
1099                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1100                                                                 discard_blk);
1101
1102         release_ino_entry(sbi);
1103
1104         if (unlikely(f2fs_cp_error(sbi)))
1105                 return -EIO;
1106
1107         clear_prefree_segments(sbi, cpc);
1108         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1109
1110         return 0;
1111 }
1112
1113 /*
1114  * We guarantee that this checkpoint procedure will not fail.
1115  */
1116 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1117 {
1118         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1119         unsigned long long ckpt_ver;
1120         int err = 0;
1121
1122         mutex_lock(&sbi->cp_mutex);
1123
1124         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1125                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1126                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1127                 goto out;
1128         if (unlikely(f2fs_cp_error(sbi))) {
1129                 err = -EIO;
1130                 goto out;
1131         }
1132         if (f2fs_readonly(sbi->sb)) {
1133                 err = -EROFS;
1134                 goto out;
1135         }
1136
1137         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1138
1139         err = block_operations(sbi);
1140         if (err)
1141                 goto out;
1142
1143         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1144
1145         f2fs_flush_merged_bios(sbi);
1146
1147         /*
1148          * update checkpoint pack index
1149          * Increase the version number so that
1150          * SIT entries and seg summaries are written at correct place
1151          */
1152         ckpt_ver = cur_cp_version(ckpt);
1153         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1154
1155         /* write cached NAT/SIT entries to NAT/SIT area */
1156         flush_nat_entries(sbi);
1157         flush_sit_entries(sbi, cpc);
1158
1159         /* unlock all the fs_lock[] in do_checkpoint() */
1160         err = do_checkpoint(sbi, cpc);
1161
1162         unblock_operations(sbi);
1163         stat_inc_cp_count(sbi->stat_info);
1164
1165         if (cpc->reason == CP_RECOVERY)
1166                 f2fs_msg(sbi->sb, KERN_NOTICE,
1167                         "checkpoint: version = %llx", ckpt_ver);
1168
1169         /* do checkpoint periodically */
1170         f2fs_update_time(sbi, CP_TIME);
1171         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1172 out:
1173         mutex_unlock(&sbi->cp_mutex);
1174         return err;
1175 }
1176
1177 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1178 {
1179         int i;
1180
1181         for (i = 0; i < MAX_INO_ENTRY; i++) {
1182                 struct inode_management *im = &sbi->im[i];
1183
1184                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1185                 spin_lock_init(&im->ino_lock);
1186                 INIT_LIST_HEAD(&im->ino_list);
1187                 im->ino_num = 0;
1188         }
1189
1190         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1191                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1192                                 F2FS_ORPHANS_PER_BLOCK;
1193 }
1194
1195 int __init create_checkpoint_caches(void)
1196 {
1197         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1198                         sizeof(struct ino_entry));
1199         if (!ino_entry_slab)
1200                 return -ENOMEM;
1201         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1202                         sizeof(struct inode_entry));
1203         if (!inode_entry_slab) {
1204                 kmem_cache_destroy(ino_entry_slab);
1205                 return -ENOMEM;
1206         }
1207         return 0;
1208 }
1209
1210 void destroy_checkpoint_caches(void)
1211 {
1212         kmem_cache_destroy(ino_entry_slab);
1213         kmem_cache_destroy(inode_entry_slab);
1214 }