f2fs: readahead contiguous SSA blocks for f2fs_gc
[linux-block.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_submit_page_bio(sbi, page, index,
65                                 READ_SYNC | REQ_META | REQ_PRIO))
66                 goto repeat;
67
68         lock_page(page);
69         if (unlikely(page->mapping != mapping)) {
70                 f2fs_put_page(page, 1);
71                 goto repeat;
72         }
73 out:
74         mark_page_accessed(page);
75         return page;
76 }
77
78 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
79 {
80         switch (type) {
81         case META_NAT:
82                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
83         case META_SIT:
84                 return SIT_BLK_CNT(sbi);
85         case META_SSA:
86         case META_CP:
87                 return 0;
88         default:
89                 BUG();
90         }
91 }
92
93 /*
94  * Readahead CP/NAT/SIT/SSA pages
95  */
96 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
97 {
98         block_t prev_blk_addr = 0;
99         struct page *page;
100         int blkno = start;
101         int max_blks = get_max_meta_blks(sbi, type);
102
103         struct f2fs_io_info fio = {
104                 .type = META,
105                 .rw = READ_SYNC | REQ_META | REQ_PRIO
106         };
107
108         for (; nrpages-- > 0; blkno++) {
109                 block_t blk_addr;
110
111                 switch (type) {
112                 case META_NAT:
113                         /* get nat block addr */
114                         if (unlikely(blkno >= max_blks))
115                                 blkno = 0;
116                         blk_addr = current_nat_addr(sbi,
117                                         blkno * NAT_ENTRY_PER_BLOCK);
118                         break;
119                 case META_SIT:
120                         /* get sit block addr */
121                         if (unlikely(blkno >= max_blks))
122                                 goto out;
123                         blk_addr = current_sit_addr(sbi,
124                                         blkno * SIT_ENTRY_PER_BLOCK);
125                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
126                                 goto out;
127                         prev_blk_addr = blk_addr;
128                         break;
129                 case META_SSA:
130                 case META_CP:
131                         /* get ssa/cp block addr */
132                         blk_addr = blkno;
133                         break;
134                 default:
135                         BUG();
136                 }
137
138                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
139                 if (!page)
140                         continue;
141                 if (PageUptodate(page)) {
142                         mark_page_accessed(page);
143                         f2fs_put_page(page, 1);
144                         continue;
145                 }
146
147                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
148                 mark_page_accessed(page);
149                 f2fs_put_page(page, 0);
150         }
151 out:
152         f2fs_submit_merged_bio(sbi, META, READ);
153         return blkno - start;
154 }
155
156 static int f2fs_write_meta_page(struct page *page,
157                                 struct writeback_control *wbc)
158 {
159         struct inode *inode = page->mapping->host;
160         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
161
162         if (unlikely(sbi->por_doing))
163                 goto redirty_out;
164         if (wbc->for_reclaim)
165                 goto redirty_out;
166
167         /* Should not write any meta pages, if any IO error was occurred */
168         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
169                 goto no_write;
170
171         wait_on_page_writeback(page);
172         write_meta_page(sbi, page);
173 no_write:
174         dec_page_count(sbi, F2FS_DIRTY_META);
175         unlock_page(page);
176         return 0;
177
178 redirty_out:
179         dec_page_count(sbi, F2FS_DIRTY_META);
180         wbc->pages_skipped++;
181         set_page_dirty(page);
182         return AOP_WRITEPAGE_ACTIVATE;
183 }
184
185 static int f2fs_write_meta_pages(struct address_space *mapping,
186                                 struct writeback_control *wbc)
187 {
188         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
189         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
190         long written;
191
192         if (wbc->for_kupdate)
193                 return 0;
194
195         /* collect a number of dirty meta pages and write together */
196         if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
197                 return 0;
198
199         /* if mounting is failed, skip writing node pages */
200         mutex_lock(&sbi->cp_mutex);
201         written = sync_meta_pages(sbi, META, nrpages);
202         mutex_unlock(&sbi->cp_mutex);
203         wbc->nr_to_write -= written;
204         return 0;
205 }
206
207 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
208                                                 long nr_to_write)
209 {
210         struct address_space *mapping = META_MAPPING(sbi);
211         pgoff_t index = 0, end = LONG_MAX;
212         struct pagevec pvec;
213         long nwritten = 0;
214         struct writeback_control wbc = {
215                 .for_reclaim = 0,
216         };
217
218         pagevec_init(&pvec, 0);
219
220         while (index <= end) {
221                 int i, nr_pages;
222                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
223                                 PAGECACHE_TAG_DIRTY,
224                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
225                 if (unlikely(nr_pages == 0))
226                         break;
227
228                 for (i = 0; i < nr_pages; i++) {
229                         struct page *page = pvec.pages[i];
230
231                         lock_page(page);
232
233                         if (unlikely(page->mapping != mapping)) {
234 continue_unlock:
235                                 unlock_page(page);
236                                 continue;
237                         }
238                         if (!PageDirty(page)) {
239                                 /* someone wrote it for us */
240                                 goto continue_unlock;
241                         }
242
243                         if (!clear_page_dirty_for_io(page))
244                                 goto continue_unlock;
245
246                         if (f2fs_write_meta_page(page, &wbc)) {
247                                 unlock_page(page);
248                                 break;
249                         }
250                         nwritten++;
251                         if (unlikely(nwritten >= nr_to_write))
252                                 break;
253                 }
254                 pagevec_release(&pvec);
255                 cond_resched();
256         }
257
258         if (nwritten)
259                 f2fs_submit_merged_bio(sbi, type, WRITE);
260
261         return nwritten;
262 }
263
264 static int f2fs_set_meta_page_dirty(struct page *page)
265 {
266         struct address_space *mapping = page->mapping;
267         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
268
269         trace_f2fs_set_page_dirty(page, META);
270
271         SetPageUptodate(page);
272         if (!PageDirty(page)) {
273                 __set_page_dirty_nobuffers(page);
274                 inc_page_count(sbi, F2FS_DIRTY_META);
275                 return 1;
276         }
277         return 0;
278 }
279
280 const struct address_space_operations f2fs_meta_aops = {
281         .writepage      = f2fs_write_meta_page,
282         .writepages     = f2fs_write_meta_pages,
283         .set_page_dirty = f2fs_set_meta_page_dirty,
284 };
285
286 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
287 {
288         int err = 0;
289
290         spin_lock(&sbi->orphan_inode_lock);
291         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
292                 err = -ENOSPC;
293         else
294                 sbi->n_orphans++;
295         spin_unlock(&sbi->orphan_inode_lock);
296
297         return err;
298 }
299
300 void release_orphan_inode(struct f2fs_sb_info *sbi)
301 {
302         spin_lock(&sbi->orphan_inode_lock);
303         f2fs_bug_on(sbi->n_orphans == 0);
304         sbi->n_orphans--;
305         spin_unlock(&sbi->orphan_inode_lock);
306 }
307
308 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
309 {
310         struct list_head *head, *this;
311         struct orphan_inode_entry *new = NULL, *orphan = NULL;
312
313         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
314         new->ino = ino;
315
316         spin_lock(&sbi->orphan_inode_lock);
317         head = &sbi->orphan_inode_list;
318         list_for_each(this, head) {
319                 orphan = list_entry(this, struct orphan_inode_entry, list);
320                 if (orphan->ino == ino) {
321                         spin_unlock(&sbi->orphan_inode_lock);
322                         kmem_cache_free(orphan_entry_slab, new);
323                         return;
324                 }
325
326                 if (orphan->ino > ino)
327                         break;
328                 orphan = NULL;
329         }
330
331         /* add new_oentry into list which is sorted by inode number */
332         if (orphan)
333                 list_add(&new->list, this->prev);
334         else
335                 list_add_tail(&new->list, head);
336         spin_unlock(&sbi->orphan_inode_lock);
337 }
338
339 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
340 {
341         struct list_head *head;
342         struct orphan_inode_entry *orphan;
343
344         spin_lock(&sbi->orphan_inode_lock);
345         head = &sbi->orphan_inode_list;
346         list_for_each_entry(orphan, head, list) {
347                 if (orphan->ino == ino) {
348                         list_del(&orphan->list);
349                         kmem_cache_free(orphan_entry_slab, orphan);
350                         f2fs_bug_on(sbi->n_orphans == 0);
351                         sbi->n_orphans--;
352                         break;
353                 }
354         }
355         spin_unlock(&sbi->orphan_inode_lock);
356 }
357
358 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
359 {
360         struct inode *inode = f2fs_iget(sbi->sb, ino);
361         f2fs_bug_on(IS_ERR(inode));
362         clear_nlink(inode);
363
364         /* truncate all the data during iput */
365         iput(inode);
366 }
367
368 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
369 {
370         block_t start_blk, orphan_blkaddr, i, j;
371
372         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
373                 return;
374
375         sbi->por_doing = true;
376         start_blk = __start_cp_addr(sbi) + 1;
377         orphan_blkaddr = __start_sum_addr(sbi) - 1;
378
379         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
380
381         for (i = 0; i < orphan_blkaddr; i++) {
382                 struct page *page = get_meta_page(sbi, start_blk + i);
383                 struct f2fs_orphan_block *orphan_blk;
384
385                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
386                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
387                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
388                         recover_orphan_inode(sbi, ino);
389                 }
390                 f2fs_put_page(page, 1);
391         }
392         /* clear Orphan Flag */
393         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
394         sbi->por_doing = false;
395         return;
396 }
397
398 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
399 {
400         struct list_head *head;
401         struct f2fs_orphan_block *orphan_blk = NULL;
402         unsigned int nentries = 0;
403         unsigned short index;
404         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
405                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
406         struct page *page = NULL;
407         struct orphan_inode_entry *orphan = NULL;
408
409         for (index = 0; index < orphan_blocks; index++)
410                 grab_meta_page(sbi, start_blk + index);
411
412         index = 1;
413         spin_lock(&sbi->orphan_inode_lock);
414         head = &sbi->orphan_inode_list;
415
416         /* loop for each orphan inode entry and write them in Jornal block */
417         list_for_each_entry(orphan, head, list) {
418                 if (!page) {
419                         page = find_get_page(META_MAPPING(sbi), start_blk++);
420                         f2fs_bug_on(!page);
421                         orphan_blk =
422                                 (struct f2fs_orphan_block *)page_address(page);
423                         memset(orphan_blk, 0, sizeof(*orphan_blk));
424                         f2fs_put_page(page, 0);
425                 }
426
427                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
428
429                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
430                         /*
431                          * an orphan block is full of 1020 entries,
432                          * then we need to flush current orphan blocks
433                          * and bring another one in memory
434                          */
435                         orphan_blk->blk_addr = cpu_to_le16(index);
436                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
437                         orphan_blk->entry_count = cpu_to_le32(nentries);
438                         set_page_dirty(page);
439                         f2fs_put_page(page, 1);
440                         index++;
441                         nentries = 0;
442                         page = NULL;
443                 }
444         }
445
446         if (page) {
447                 orphan_blk->blk_addr = cpu_to_le16(index);
448                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
449                 orphan_blk->entry_count = cpu_to_le32(nentries);
450                 set_page_dirty(page);
451                 f2fs_put_page(page, 1);
452         }
453
454         spin_unlock(&sbi->orphan_inode_lock);
455 }
456
457 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
458                                 block_t cp_addr, unsigned long long *version)
459 {
460         struct page *cp_page_1, *cp_page_2 = NULL;
461         unsigned long blk_size = sbi->blocksize;
462         struct f2fs_checkpoint *cp_block;
463         unsigned long long cur_version = 0, pre_version = 0;
464         size_t crc_offset;
465         __u32 crc = 0;
466
467         /* Read the 1st cp block in this CP pack */
468         cp_page_1 = get_meta_page(sbi, cp_addr);
469
470         /* get the version number */
471         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
472         crc_offset = le32_to_cpu(cp_block->checksum_offset);
473         if (crc_offset >= blk_size)
474                 goto invalid_cp1;
475
476         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
477         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
478                 goto invalid_cp1;
479
480         pre_version = cur_cp_version(cp_block);
481
482         /* Read the 2nd cp block in this CP pack */
483         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
484         cp_page_2 = get_meta_page(sbi, cp_addr);
485
486         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
487         crc_offset = le32_to_cpu(cp_block->checksum_offset);
488         if (crc_offset >= blk_size)
489                 goto invalid_cp2;
490
491         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
492         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
493                 goto invalid_cp2;
494
495         cur_version = cur_cp_version(cp_block);
496
497         if (cur_version == pre_version) {
498                 *version = cur_version;
499                 f2fs_put_page(cp_page_2, 1);
500                 return cp_page_1;
501         }
502 invalid_cp2:
503         f2fs_put_page(cp_page_2, 1);
504 invalid_cp1:
505         f2fs_put_page(cp_page_1, 1);
506         return NULL;
507 }
508
509 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
510 {
511         struct f2fs_checkpoint *cp_block;
512         struct f2fs_super_block *fsb = sbi->raw_super;
513         struct page *cp1, *cp2, *cur_page;
514         unsigned long blk_size = sbi->blocksize;
515         unsigned long long cp1_version = 0, cp2_version = 0;
516         unsigned long long cp_start_blk_no;
517
518         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
519         if (!sbi->ckpt)
520                 return -ENOMEM;
521         /*
522          * Finding out valid cp block involves read both
523          * sets( cp pack1 and cp pack 2)
524          */
525         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
526         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
527
528         /* The second checkpoint pack should start at the next segment */
529         cp_start_blk_no += ((unsigned long long)1) <<
530                                 le32_to_cpu(fsb->log_blocks_per_seg);
531         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
532
533         if (cp1 && cp2) {
534                 if (ver_after(cp2_version, cp1_version))
535                         cur_page = cp2;
536                 else
537                         cur_page = cp1;
538         } else if (cp1) {
539                 cur_page = cp1;
540         } else if (cp2) {
541                 cur_page = cp2;
542         } else {
543                 goto fail_no_cp;
544         }
545
546         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
547         memcpy(sbi->ckpt, cp_block, blk_size);
548
549         f2fs_put_page(cp1, 1);
550         f2fs_put_page(cp2, 1);
551         return 0;
552
553 fail_no_cp:
554         kfree(sbi->ckpt);
555         return -EINVAL;
556 }
557
558 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
559 {
560         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
561         struct list_head *head = &sbi->dir_inode_list;
562         struct list_head *this;
563
564         list_for_each(this, head) {
565                 struct dir_inode_entry *entry;
566                 entry = list_entry(this, struct dir_inode_entry, list);
567                 if (unlikely(entry->inode == inode))
568                         return -EEXIST;
569         }
570         list_add_tail(&new->list, head);
571         stat_inc_dirty_dir(sbi);
572         return 0;
573 }
574
575 void set_dirty_dir_page(struct inode *inode, struct page *page)
576 {
577         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
578         struct dir_inode_entry *new;
579
580         if (!S_ISDIR(inode->i_mode))
581                 return;
582
583         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
584         new->inode = inode;
585         INIT_LIST_HEAD(&new->list);
586
587         spin_lock(&sbi->dir_inode_lock);
588         if (__add_dirty_inode(inode, new))
589                 kmem_cache_free(inode_entry_slab, new);
590
591         inode_inc_dirty_dents(inode);
592         SetPagePrivate(page);
593         spin_unlock(&sbi->dir_inode_lock);
594 }
595
596 void add_dirty_dir_inode(struct inode *inode)
597 {
598         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
599         struct dir_inode_entry *new =
600                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
601
602         new->inode = inode;
603         INIT_LIST_HEAD(&new->list);
604
605         spin_lock(&sbi->dir_inode_lock);
606         if (__add_dirty_inode(inode, new))
607                 kmem_cache_free(inode_entry_slab, new);
608         spin_unlock(&sbi->dir_inode_lock);
609 }
610
611 void remove_dirty_dir_inode(struct inode *inode)
612 {
613         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614
615         struct list_head *this, *head;
616
617         if (!S_ISDIR(inode->i_mode))
618                 return;
619
620         spin_lock(&sbi->dir_inode_lock);
621         if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
622                 spin_unlock(&sbi->dir_inode_lock);
623                 return;
624         }
625
626         head = &sbi->dir_inode_list;
627         list_for_each(this, head) {
628                 struct dir_inode_entry *entry;
629                 entry = list_entry(this, struct dir_inode_entry, list);
630                 if (entry->inode == inode) {
631                         list_del(&entry->list);
632                         kmem_cache_free(inode_entry_slab, entry);
633                         stat_dec_dirty_dir(sbi);
634                         break;
635                 }
636         }
637         spin_unlock(&sbi->dir_inode_lock);
638
639         /* Only from the recovery routine */
640         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642                 iput(inode);
643         }
644 }
645
646 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648
649         struct list_head *this, *head;
650         struct inode *inode = NULL;
651
652         spin_lock(&sbi->dir_inode_lock);
653
654         head = &sbi->dir_inode_list;
655         list_for_each(this, head) {
656                 struct dir_inode_entry *entry;
657                 entry = list_entry(this, struct dir_inode_entry, list);
658                 if (entry->inode->i_ino == ino) {
659                         inode = entry->inode;
660                         break;
661                 }
662         }
663         spin_unlock(&sbi->dir_inode_lock);
664         return inode;
665 }
666
667 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
668 {
669         struct list_head *head;
670         struct dir_inode_entry *entry;
671         struct inode *inode;
672 retry:
673         spin_lock(&sbi->dir_inode_lock);
674
675         head = &sbi->dir_inode_list;
676         if (list_empty(head)) {
677                 spin_unlock(&sbi->dir_inode_lock);
678                 return;
679         }
680         entry = list_entry(head->next, struct dir_inode_entry, list);
681         inode = igrab(entry->inode);
682         spin_unlock(&sbi->dir_inode_lock);
683         if (inode) {
684                 filemap_flush(inode->i_mapping);
685                 iput(inode);
686         } else {
687                 /*
688                  * We should submit bio, since it exists several
689                  * wribacking dentry pages in the freeing inode.
690                  */
691                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
692         }
693         goto retry;
694 }
695
696 /*
697  * Freeze all the FS-operations for checkpoint.
698  */
699 static void block_operations(struct f2fs_sb_info *sbi)
700 {
701         struct writeback_control wbc = {
702                 .sync_mode = WB_SYNC_ALL,
703                 .nr_to_write = LONG_MAX,
704                 .for_reclaim = 0,
705         };
706         struct blk_plug plug;
707
708         blk_start_plug(&plug);
709
710 retry_flush_dents:
711         f2fs_lock_all(sbi);
712         /* write all the dirty dentry pages */
713         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
714                 f2fs_unlock_all(sbi);
715                 sync_dirty_dir_inodes(sbi);
716                 goto retry_flush_dents;
717         }
718
719         /*
720          * POR: we should ensure that there is no dirty node pages
721          * until finishing nat/sit flush.
722          */
723 retry_flush_nodes:
724         mutex_lock(&sbi->node_write);
725
726         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
727                 mutex_unlock(&sbi->node_write);
728                 sync_node_pages(sbi, 0, &wbc);
729                 goto retry_flush_nodes;
730         }
731         blk_finish_plug(&plug);
732 }
733
734 static void unblock_operations(struct f2fs_sb_info *sbi)
735 {
736         mutex_unlock(&sbi->node_write);
737         f2fs_unlock_all(sbi);
738 }
739
740 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
741 {
742         DEFINE_WAIT(wait);
743
744         for (;;) {
745                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
746
747                 if (!get_pages(sbi, F2FS_WRITEBACK))
748                         break;
749
750                 io_schedule();
751         }
752         finish_wait(&sbi->cp_wait, &wait);
753 }
754
755 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
756 {
757         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
758         nid_t last_nid = 0;
759         block_t start_blk;
760         struct page *cp_page;
761         unsigned int data_sum_blocks, orphan_blocks;
762         __u32 crc32 = 0;
763         void *kaddr;
764         int i;
765
766         /* Flush all the NAT/SIT pages */
767         while (get_pages(sbi, F2FS_DIRTY_META))
768                 sync_meta_pages(sbi, META, LONG_MAX);
769
770         next_free_nid(sbi, &last_nid);
771
772         /*
773          * modify checkpoint
774          * version number is already updated
775          */
776         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
777         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
778         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
779         for (i = 0; i < 3; i++) {
780                 ckpt->cur_node_segno[i] =
781                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
782                 ckpt->cur_node_blkoff[i] =
783                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
784                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
785                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
786         }
787         for (i = 0; i < 3; i++) {
788                 ckpt->cur_data_segno[i] =
789                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
790                 ckpt->cur_data_blkoff[i] =
791                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
792                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
793                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
794         }
795
796         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
797         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
798         ckpt->next_free_nid = cpu_to_le32(last_nid);
799
800         /* 2 cp  + n data seg summary + orphan inode blocks */
801         data_sum_blocks = npages_for_summary_flush(sbi);
802         if (data_sum_blocks < 3)
803                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
804         else
805                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
806
807         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
808                                         / F2FS_ORPHANS_PER_BLOCK;
809         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
810
811         if (is_umount) {
812                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
813                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
814                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
815         } else {
816                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
817                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
818                         data_sum_blocks + orphan_blocks);
819         }
820
821         if (sbi->n_orphans)
822                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
823         else
824                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
825
826         /* update SIT/NAT bitmap */
827         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
828         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
829
830         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
831         *((__le32 *)((unsigned char *)ckpt +
832                                 le32_to_cpu(ckpt->checksum_offset)))
833                                 = cpu_to_le32(crc32);
834
835         start_blk = __start_cp_addr(sbi);
836
837         /* write out checkpoint buffer at block 0 */
838         cp_page = grab_meta_page(sbi, start_blk++);
839         kaddr = page_address(cp_page);
840         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
841         set_page_dirty(cp_page);
842         f2fs_put_page(cp_page, 1);
843
844         if (sbi->n_orphans) {
845                 write_orphan_inodes(sbi, start_blk);
846                 start_blk += orphan_blocks;
847         }
848
849         write_data_summaries(sbi, start_blk);
850         start_blk += data_sum_blocks;
851         if (is_umount) {
852                 write_node_summaries(sbi, start_blk);
853                 start_blk += NR_CURSEG_NODE_TYPE;
854         }
855
856         /* writeout checkpoint block */
857         cp_page = grab_meta_page(sbi, start_blk);
858         kaddr = page_address(cp_page);
859         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
860         set_page_dirty(cp_page);
861         f2fs_put_page(cp_page, 1);
862
863         /* wait for previous submitted node/meta pages writeback */
864         wait_on_all_pages_writeback(sbi);
865
866         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
867         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
868
869         /* update user_block_counts */
870         sbi->last_valid_block_count = sbi->total_valid_block_count;
871         sbi->alloc_valid_block_count = 0;
872
873         /* Here, we only have one bio having CP pack */
874         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
875
876         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
877                 clear_prefree_segments(sbi);
878                 F2FS_RESET_SB_DIRT(sbi);
879         }
880 }
881
882 /*
883  * We guarantee that this checkpoint procedure should not fail.
884  */
885 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
886 {
887         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
888         unsigned long long ckpt_ver;
889
890         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
891
892         mutex_lock(&sbi->cp_mutex);
893         block_operations(sbi);
894
895         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
896
897         f2fs_submit_merged_bio(sbi, DATA, WRITE);
898         f2fs_submit_merged_bio(sbi, NODE, WRITE);
899         f2fs_submit_merged_bio(sbi, META, WRITE);
900
901         /*
902          * update checkpoint pack index
903          * Increase the version number so that
904          * SIT entries and seg summaries are written at correct place
905          */
906         ckpt_ver = cur_cp_version(ckpt);
907         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
908
909         /* write cached NAT/SIT entries to NAT/SIT area */
910         flush_nat_entries(sbi);
911         flush_sit_entries(sbi);
912
913         /* unlock all the fs_lock[] in do_checkpoint() */
914         do_checkpoint(sbi, is_umount);
915
916         unblock_operations(sbi);
917         mutex_unlock(&sbi->cp_mutex);
918
919         stat_inc_cp_count(sbi->stat_info);
920         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
921 }
922
923 void init_orphan_info(struct f2fs_sb_info *sbi)
924 {
925         spin_lock_init(&sbi->orphan_inode_lock);
926         INIT_LIST_HEAD(&sbi->orphan_inode_list);
927         sbi->n_orphans = 0;
928         /*
929          * considering 512 blocks in a segment 8 blocks are needed for cp
930          * and log segment summaries. Remaining blocks are used to keep
931          * orphan entries with the limitation one reserved segment
932          * for cp pack we can have max 1020*504 orphan entries
933          */
934         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
935                                 * F2FS_ORPHANS_PER_BLOCK;
936 }
937
938 int __init create_checkpoint_caches(void)
939 {
940         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
941                         sizeof(struct orphan_inode_entry), NULL);
942         if (!orphan_entry_slab)
943                 return -ENOMEM;
944         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
945                         sizeof(struct dir_inode_entry), NULL);
946         if (!inode_entry_slab) {
947                 kmem_cache_destroy(orphan_entry_slab);
948                 return -ENOMEM;
949         }
950         return 0;
951 }
952
953 void destroy_checkpoint_caches(void)
954 {
955         kmem_cache_destroy(orphan_entry_slab);
956         kmem_cache_destroy(inode_entry_slab);
957 }