f2fs: invalidate temporary meta page
[linux-2.6-block.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .sbi = sbi,
56                 .type = META,
57                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
58                 .blk_addr = index,
59                 .encrypted_page = NULL,
60         };
61 repeat:
62         page = grab_cache_page(mapping, index);
63         if (!page) {
64                 cond_resched();
65                 goto repeat;
66         }
67         if (PageUptodate(page))
68                 goto out;
69
70         fio.page = page;
71
72         if (f2fs_submit_page_bio(&fio)) {
73                 f2fs_put_page(page, 1);
74                 goto repeat;
75         }
76
77         lock_page(page);
78         if (unlikely(page->mapping != mapping)) {
79                 f2fs_put_page(page, 1);
80                 goto repeat;
81         }
82
83         /*
84          * if there is any IO error when accessing device, make our filesystem
85          * readonly and make sure do not write checkpoint with non-uptodate
86          * meta page.
87          */
88         if (unlikely(!PageUptodate(page)))
89                 f2fs_stop_checkpoint(sbi);
90 out:
91         return page;
92 }
93
94 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
95 {
96         switch (type) {
97         case META_NAT:
98                 break;
99         case META_SIT:
100                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
101                         return false;
102                 break;
103         case META_SSA:
104                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
105                         blkaddr < SM_I(sbi)->ssa_blkaddr))
106                         return false;
107                 break;
108         case META_CP:
109                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
110                         blkaddr < __start_cp_addr(sbi)))
111                         return false;
112                 break;
113         case META_POR:
114                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
115                         blkaddr < MAIN_BLKADDR(sbi)))
116                         return false;
117                 break;
118         default:
119                 BUG();
120         }
121
122         return true;
123 }
124
125 /*
126  * Readahead CP/NAT/SIT/SSA pages
127  */
128 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
129 {
130         block_t prev_blk_addr = 0;
131         struct page *page;
132         block_t blkno = start;
133         struct f2fs_io_info fio = {
134                 .sbi = sbi,
135                 .type = META,
136                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
137                 .encrypted_page = NULL,
138         };
139
140         for (; nrpages-- > 0; blkno++) {
141
142                 if (!is_valid_blkaddr(sbi, blkno, type))
143                         goto out;
144
145                 switch (type) {
146                 case META_NAT:
147                         if (unlikely(blkno >=
148                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
149                                 blkno = 0;
150                         /* get nat block addr */
151                         fio.blk_addr = current_nat_addr(sbi,
152                                         blkno * NAT_ENTRY_PER_BLOCK);
153                         break;
154                 case META_SIT:
155                         /* get sit block addr */
156                         fio.blk_addr = current_sit_addr(sbi,
157                                         blkno * SIT_ENTRY_PER_BLOCK);
158                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
159                                 goto out;
160                         prev_blk_addr = fio.blk_addr;
161                         break;
162                 case META_SSA:
163                 case META_CP:
164                 case META_POR:
165                         fio.blk_addr = blkno;
166                         break;
167                 default:
168                         BUG();
169                 }
170
171                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
172                 if (!page)
173                         continue;
174                 if (PageUptodate(page)) {
175                         f2fs_put_page(page, 1);
176                         continue;
177                 }
178
179                 fio.page = page;
180                 f2fs_submit_page_mbio(&fio);
181                 f2fs_put_page(page, 0);
182         }
183 out:
184         f2fs_submit_merged_bio(sbi, META, READ);
185         return blkno - start;
186 }
187
188 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
189 {
190         struct page *page;
191         bool readahead = false;
192
193         page = find_get_page(META_MAPPING(sbi), index);
194         if (!page || (page && !PageUptodate(page)))
195                 readahead = true;
196         f2fs_put_page(page, 0);
197
198         if (readahead)
199                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
200 }
201
202 static int f2fs_write_meta_page(struct page *page,
203                                 struct writeback_control *wbc)
204 {
205         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
206
207         trace_f2fs_writepage(page, META);
208
209         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
210                 goto redirty_out;
211         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
212                 goto redirty_out;
213         if (unlikely(f2fs_cp_error(sbi)))
214                 goto redirty_out;
215
216         f2fs_wait_on_page_writeback(page, META);
217         write_meta_page(sbi, page);
218         dec_page_count(sbi, F2FS_DIRTY_META);
219         unlock_page(page);
220
221         if (wbc->for_reclaim)
222                 f2fs_submit_merged_bio(sbi, META, WRITE);
223         return 0;
224
225 redirty_out:
226         redirty_page_for_writepage(wbc, page);
227         return AOP_WRITEPAGE_ACTIVATE;
228 }
229
230 static int f2fs_write_meta_pages(struct address_space *mapping,
231                                 struct writeback_control *wbc)
232 {
233         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
234         long diff, written;
235
236         trace_f2fs_writepages(mapping->host, wbc, META);
237
238         /* collect a number of dirty meta pages and write together */
239         if (wbc->for_kupdate ||
240                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
241                 goto skip_write;
242
243         /* if mounting is failed, skip writing node pages */
244         mutex_lock(&sbi->cp_mutex);
245         diff = nr_pages_to_write(sbi, META, wbc);
246         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
247         mutex_unlock(&sbi->cp_mutex);
248         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
249         return 0;
250
251 skip_write:
252         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
253         return 0;
254 }
255
256 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
257                                                 long nr_to_write)
258 {
259         struct address_space *mapping = META_MAPPING(sbi);
260         pgoff_t index = 0, end = LONG_MAX;
261         struct pagevec pvec;
262         long nwritten = 0;
263         struct writeback_control wbc = {
264                 .for_reclaim = 0,
265         };
266
267         pagevec_init(&pvec, 0);
268
269         while (index <= end) {
270                 int i, nr_pages;
271                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
272                                 PAGECACHE_TAG_DIRTY,
273                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
274                 if (unlikely(nr_pages == 0))
275                         break;
276
277                 for (i = 0; i < nr_pages; i++) {
278                         struct page *page = pvec.pages[i];
279
280                         lock_page(page);
281
282                         if (unlikely(page->mapping != mapping)) {
283 continue_unlock:
284                                 unlock_page(page);
285                                 continue;
286                         }
287                         if (!PageDirty(page)) {
288                                 /* someone wrote it for us */
289                                 goto continue_unlock;
290                         }
291
292                         if (!clear_page_dirty_for_io(page))
293                                 goto continue_unlock;
294
295                         if (mapping->a_ops->writepage(page, &wbc)) {
296                                 unlock_page(page);
297                                 break;
298                         }
299                         nwritten++;
300                         if (unlikely(nwritten >= nr_to_write))
301                                 break;
302                 }
303                 pagevec_release(&pvec);
304                 cond_resched();
305         }
306
307         if (nwritten)
308                 f2fs_submit_merged_bio(sbi, type, WRITE);
309
310         return nwritten;
311 }
312
313 static int f2fs_set_meta_page_dirty(struct page *page)
314 {
315         trace_f2fs_set_page_dirty(page, META);
316
317         SetPageUptodate(page);
318         if (!PageDirty(page)) {
319                 __set_page_dirty_nobuffers(page);
320                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
321                 SetPagePrivate(page);
322                 f2fs_trace_pid(page);
323                 return 1;
324         }
325         return 0;
326 }
327
328 const struct address_space_operations f2fs_meta_aops = {
329         .writepage      = f2fs_write_meta_page,
330         .writepages     = f2fs_write_meta_pages,
331         .set_page_dirty = f2fs_set_meta_page_dirty,
332         .invalidatepage = f2fs_invalidate_page,
333         .releasepage    = f2fs_release_page,
334 };
335
336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
337 {
338         struct inode_management *im = &sbi->im[type];
339         struct ino_entry *e;
340 retry:
341         if (radix_tree_preload(GFP_NOFS)) {
342                 cond_resched();
343                 goto retry;
344         }
345
346         spin_lock(&im->ino_lock);
347
348         e = radix_tree_lookup(&im->ino_root, ino);
349         if (!e) {
350                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
351                 if (!e) {
352                         spin_unlock(&im->ino_lock);
353                         radix_tree_preload_end();
354                         goto retry;
355                 }
356                 if (radix_tree_insert(&im->ino_root, ino, e)) {
357                         spin_unlock(&im->ino_lock);
358                         kmem_cache_free(ino_entry_slab, e);
359                         radix_tree_preload_end();
360                         goto retry;
361                 }
362                 memset(e, 0, sizeof(struct ino_entry));
363                 e->ino = ino;
364
365                 list_add_tail(&e->list, &im->ino_list);
366                 if (type != ORPHAN_INO)
367                         im->ino_num++;
368         }
369         spin_unlock(&im->ino_lock);
370         radix_tree_preload_end();
371 }
372
373 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
374 {
375         struct inode_management *im = &sbi->im[type];
376         struct ino_entry *e;
377
378         spin_lock(&im->ino_lock);
379         e = radix_tree_lookup(&im->ino_root, ino);
380         if (e) {
381                 list_del(&e->list);
382                 radix_tree_delete(&im->ino_root, ino);
383                 im->ino_num--;
384                 spin_unlock(&im->ino_lock);
385                 kmem_cache_free(ino_entry_slab, e);
386                 return;
387         }
388         spin_unlock(&im->ino_lock);
389 }
390
391 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
392 {
393         /* add new dirty ino entry into list */
394         __add_ino_entry(sbi, ino, type);
395 }
396
397 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
398 {
399         /* remove dirty ino entry from list */
400         __remove_ino_entry(sbi, ino, type);
401 }
402
403 /* mode should be APPEND_INO or UPDATE_INO */
404 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
405 {
406         struct inode_management *im = &sbi->im[mode];
407         struct ino_entry *e;
408
409         spin_lock(&im->ino_lock);
410         e = radix_tree_lookup(&im->ino_root, ino);
411         spin_unlock(&im->ino_lock);
412         return e ? true : false;
413 }
414
415 void release_dirty_inode(struct f2fs_sb_info *sbi)
416 {
417         struct ino_entry *e, *tmp;
418         int i;
419
420         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
421                 struct inode_management *im = &sbi->im[i];
422
423                 spin_lock(&im->ino_lock);
424                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
425                         list_del(&e->list);
426                         radix_tree_delete(&im->ino_root, e->ino);
427                         kmem_cache_free(ino_entry_slab, e);
428                         im->ino_num--;
429                 }
430                 spin_unlock(&im->ino_lock);
431         }
432 }
433
434 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
435 {
436         struct inode_management *im = &sbi->im[ORPHAN_INO];
437         int err = 0;
438
439         spin_lock(&im->ino_lock);
440         if (unlikely(im->ino_num >= sbi->max_orphans))
441                 err = -ENOSPC;
442         else
443                 im->ino_num++;
444         spin_unlock(&im->ino_lock);
445
446         return err;
447 }
448
449 void release_orphan_inode(struct f2fs_sb_info *sbi)
450 {
451         struct inode_management *im = &sbi->im[ORPHAN_INO];
452
453         spin_lock(&im->ino_lock);
454         f2fs_bug_on(sbi, im->ino_num == 0);
455         im->ino_num--;
456         spin_unlock(&im->ino_lock);
457 }
458
459 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
460 {
461         /* add new orphan ino entry into list */
462         __add_ino_entry(sbi, ino, ORPHAN_INO);
463 }
464
465 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
466 {
467         /* remove orphan entry from orphan list */
468         __remove_ino_entry(sbi, ino, ORPHAN_INO);
469 }
470
471 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
472 {
473         struct inode *inode = f2fs_iget(sbi->sb, ino);
474         f2fs_bug_on(sbi, IS_ERR(inode));
475         clear_nlink(inode);
476
477         /* truncate all the data during iput */
478         iput(inode);
479 }
480
481 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
482 {
483         block_t start_blk, orphan_blocks, i, j;
484
485         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
486                 return;
487
488         set_sbi_flag(sbi, SBI_POR_DOING);
489
490         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
491         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
492
493         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
494
495         for (i = 0; i < orphan_blocks; i++) {
496                 struct page *page = get_meta_page(sbi, start_blk + i);
497                 struct f2fs_orphan_block *orphan_blk;
498
499                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
500                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
501                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
502                         recover_orphan_inode(sbi, ino);
503                 }
504                 f2fs_put_page(page, 1);
505         }
506         /* clear Orphan Flag */
507         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
508         clear_sbi_flag(sbi, SBI_POR_DOING);
509         return;
510 }
511
512 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
513 {
514         struct list_head *head;
515         struct f2fs_orphan_block *orphan_blk = NULL;
516         unsigned int nentries = 0;
517         unsigned short index = 1;
518         unsigned short orphan_blocks;
519         struct page *page = NULL;
520         struct ino_entry *orphan = NULL;
521         struct inode_management *im = &sbi->im[ORPHAN_INO];
522
523         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
524
525         /*
526          * we don't need to do spin_lock(&im->ino_lock) here, since all the
527          * orphan inode operations are covered under f2fs_lock_op().
528          * And, spin_lock should be avoided due to page operations below.
529          */
530         head = &im->ino_list;
531
532         /* loop for each orphan inode entry and write them in Jornal block */
533         list_for_each_entry(orphan, head, list) {
534                 if (!page) {
535                         page = grab_meta_page(sbi, start_blk++);
536                         orphan_blk =
537                                 (struct f2fs_orphan_block *)page_address(page);
538                         memset(orphan_blk, 0, sizeof(*orphan_blk));
539                 }
540
541                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
542
543                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
544                         /*
545                          * an orphan block is full of 1020 entries,
546                          * then we need to flush current orphan blocks
547                          * and bring another one in memory
548                          */
549                         orphan_blk->blk_addr = cpu_to_le16(index);
550                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
551                         orphan_blk->entry_count = cpu_to_le32(nentries);
552                         set_page_dirty(page);
553                         f2fs_put_page(page, 1);
554                         index++;
555                         nentries = 0;
556                         page = NULL;
557                 }
558         }
559
560         if (page) {
561                 orphan_blk->blk_addr = cpu_to_le16(index);
562                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
563                 orphan_blk->entry_count = cpu_to_le32(nentries);
564                 set_page_dirty(page);
565                 f2fs_put_page(page, 1);
566         }
567 }
568
569 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
570                                 block_t cp_addr, unsigned long long *version)
571 {
572         struct page *cp_page_1, *cp_page_2 = NULL;
573         unsigned long blk_size = sbi->blocksize;
574         struct f2fs_checkpoint *cp_block;
575         unsigned long long cur_version = 0, pre_version = 0;
576         size_t crc_offset;
577         __u32 crc = 0;
578
579         /* Read the 1st cp block in this CP pack */
580         cp_page_1 = get_meta_page(sbi, cp_addr);
581
582         /* get the version number */
583         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
584         crc_offset = le32_to_cpu(cp_block->checksum_offset);
585         if (crc_offset >= blk_size)
586                 goto invalid_cp1;
587
588         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
589         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
590                 goto invalid_cp1;
591
592         pre_version = cur_cp_version(cp_block);
593
594         /* Read the 2nd cp block in this CP pack */
595         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
596         cp_page_2 = get_meta_page(sbi, cp_addr);
597
598         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
599         crc_offset = le32_to_cpu(cp_block->checksum_offset);
600         if (crc_offset >= blk_size)
601                 goto invalid_cp2;
602
603         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
604         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
605                 goto invalid_cp2;
606
607         cur_version = cur_cp_version(cp_block);
608
609         if (cur_version == pre_version) {
610                 *version = cur_version;
611                 f2fs_put_page(cp_page_2, 1);
612                 return cp_page_1;
613         }
614 invalid_cp2:
615         f2fs_put_page(cp_page_2, 1);
616 invalid_cp1:
617         f2fs_put_page(cp_page_1, 1);
618         return NULL;
619 }
620
621 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
622 {
623         struct f2fs_checkpoint *cp_block;
624         struct f2fs_super_block *fsb = sbi->raw_super;
625         struct page *cp1, *cp2, *cur_page;
626         unsigned long blk_size = sbi->blocksize;
627         unsigned long long cp1_version = 0, cp2_version = 0;
628         unsigned long long cp_start_blk_no;
629         unsigned int cp_blks = 1 + __cp_payload(sbi);
630         block_t cp_blk_no;
631         int i;
632
633         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
634         if (!sbi->ckpt)
635                 return -ENOMEM;
636         /*
637          * Finding out valid cp block involves read both
638          * sets( cp pack1 and cp pack 2)
639          */
640         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
641         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
642
643         /* The second checkpoint pack should start at the next segment */
644         cp_start_blk_no += ((unsigned long long)1) <<
645                                 le32_to_cpu(fsb->log_blocks_per_seg);
646         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
647
648         if (cp1 && cp2) {
649                 if (ver_after(cp2_version, cp1_version))
650                         cur_page = cp2;
651                 else
652                         cur_page = cp1;
653         } else if (cp1) {
654                 cur_page = cp1;
655         } else if (cp2) {
656                 cur_page = cp2;
657         } else {
658                 goto fail_no_cp;
659         }
660
661         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
662         memcpy(sbi->ckpt, cp_block, blk_size);
663
664         if (cp_blks <= 1)
665                 goto done;
666
667         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
668         if (cur_page == cp2)
669                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
670
671         for (i = 1; i < cp_blks; i++) {
672                 void *sit_bitmap_ptr;
673                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
674
675                 cur_page = get_meta_page(sbi, cp_blk_no + i);
676                 sit_bitmap_ptr = page_address(cur_page);
677                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
678                 f2fs_put_page(cur_page, 1);
679         }
680 done:
681         f2fs_put_page(cp1, 1);
682         f2fs_put_page(cp2, 1);
683         return 0;
684
685 fail_no_cp:
686         kfree(sbi->ckpt);
687         return -EINVAL;
688 }
689
690 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
691 {
692         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
693
694         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
695                 return -EEXIST;
696
697         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
698         F2FS_I(inode)->dirty_dir = new;
699         list_add_tail(&new->list, &sbi->dir_inode_list);
700         stat_inc_dirty_dir(sbi);
701         return 0;
702 }
703
704 void update_dirty_page(struct inode *inode, struct page *page)
705 {
706         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
707         struct inode_entry *new;
708         int ret = 0;
709
710         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
711                         !S_ISLNK(inode->i_mode))
712                 return;
713
714         if (!S_ISDIR(inode->i_mode)) {
715                 inode_inc_dirty_pages(inode);
716                 goto out;
717         }
718
719         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
720         new->inode = inode;
721         INIT_LIST_HEAD(&new->list);
722
723         spin_lock(&sbi->dir_inode_lock);
724         ret = __add_dirty_inode(inode, new);
725         inode_inc_dirty_pages(inode);
726         spin_unlock(&sbi->dir_inode_lock);
727
728         if (ret)
729                 kmem_cache_free(inode_entry_slab, new);
730 out:
731         SetPagePrivate(page);
732         f2fs_trace_pid(page);
733 }
734
735 void add_dirty_dir_inode(struct inode *inode)
736 {
737         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
738         struct inode_entry *new =
739                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
740         int ret = 0;
741
742         new->inode = inode;
743         INIT_LIST_HEAD(&new->list);
744
745         spin_lock(&sbi->dir_inode_lock);
746         ret = __add_dirty_inode(inode, new);
747         spin_unlock(&sbi->dir_inode_lock);
748
749         if (ret)
750                 kmem_cache_free(inode_entry_slab, new);
751 }
752
753 void remove_dirty_dir_inode(struct inode *inode)
754 {
755         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
756         struct inode_entry *entry;
757
758         if (!S_ISDIR(inode->i_mode))
759                 return;
760
761         spin_lock(&sbi->dir_inode_lock);
762         if (get_dirty_pages(inode) ||
763                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
764                 spin_unlock(&sbi->dir_inode_lock);
765                 return;
766         }
767
768         entry = F2FS_I(inode)->dirty_dir;
769         list_del(&entry->list);
770         F2FS_I(inode)->dirty_dir = NULL;
771         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
772         stat_dec_dirty_dir(sbi);
773         spin_unlock(&sbi->dir_inode_lock);
774         kmem_cache_free(inode_entry_slab, entry);
775
776         /* Only from the recovery routine */
777         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
778                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
779                 iput(inode);
780         }
781 }
782
783 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
784 {
785         struct list_head *head;
786         struct inode_entry *entry;
787         struct inode *inode;
788 retry:
789         if (unlikely(f2fs_cp_error(sbi)))
790                 return;
791
792         spin_lock(&sbi->dir_inode_lock);
793
794         head = &sbi->dir_inode_list;
795         if (list_empty(head)) {
796                 spin_unlock(&sbi->dir_inode_lock);
797                 return;
798         }
799         entry = list_entry(head->next, struct inode_entry, list);
800         inode = igrab(entry->inode);
801         spin_unlock(&sbi->dir_inode_lock);
802         if (inode) {
803                 filemap_fdatawrite(inode->i_mapping);
804                 iput(inode);
805         } else {
806                 /*
807                  * We should submit bio, since it exists several
808                  * wribacking dentry pages in the freeing inode.
809                  */
810                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
811                 cond_resched();
812         }
813         goto retry;
814 }
815
816 /*
817  * Freeze all the FS-operations for checkpoint.
818  */
819 static int block_operations(struct f2fs_sb_info *sbi)
820 {
821         struct writeback_control wbc = {
822                 .sync_mode = WB_SYNC_ALL,
823                 .nr_to_write = LONG_MAX,
824                 .for_reclaim = 0,
825         };
826         struct blk_plug plug;
827         int err = 0;
828
829         blk_start_plug(&plug);
830
831 retry_flush_dents:
832         f2fs_lock_all(sbi);
833         /* write all the dirty dentry pages */
834         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
835                 f2fs_unlock_all(sbi);
836                 sync_dirty_dir_inodes(sbi);
837                 if (unlikely(f2fs_cp_error(sbi))) {
838                         err = -EIO;
839                         goto out;
840                 }
841                 goto retry_flush_dents;
842         }
843
844         /*
845          * POR: we should ensure that there are no dirty node pages
846          * until finishing nat/sit flush.
847          */
848 retry_flush_nodes:
849         down_write(&sbi->node_write);
850
851         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
852                 up_write(&sbi->node_write);
853                 sync_node_pages(sbi, 0, &wbc);
854                 if (unlikely(f2fs_cp_error(sbi))) {
855                         f2fs_unlock_all(sbi);
856                         err = -EIO;
857                         goto out;
858                 }
859                 goto retry_flush_nodes;
860         }
861 out:
862         blk_finish_plug(&plug);
863         return err;
864 }
865
866 static void unblock_operations(struct f2fs_sb_info *sbi)
867 {
868         up_write(&sbi->node_write);
869         f2fs_unlock_all(sbi);
870 }
871
872 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
873 {
874         DEFINE_WAIT(wait);
875
876         for (;;) {
877                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
878
879                 if (!get_pages(sbi, F2FS_WRITEBACK))
880                         break;
881
882                 io_schedule();
883         }
884         finish_wait(&sbi->cp_wait, &wait);
885 }
886
887 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
888 {
889         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
890         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
891         struct f2fs_nm_info *nm_i = NM_I(sbi);
892         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
893         nid_t last_nid = nm_i->next_scan_nid;
894         block_t start_blk;
895         unsigned int data_sum_blocks, orphan_blocks;
896         __u32 crc32 = 0;
897         int i;
898         int cp_payload_blks = __cp_payload(sbi);
899         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
900         bool invalidate = false;
901
902         /*
903          * This avoids to conduct wrong roll-forward operations and uses
904          * metapages, so should be called prior to sync_meta_pages below.
905          */
906         if (discard_next_dnode(sbi, discard_blk))
907                 invalidate = true;
908
909         /* Flush all the NAT/SIT pages */
910         while (get_pages(sbi, F2FS_DIRTY_META)) {
911                 sync_meta_pages(sbi, META, LONG_MAX);
912                 if (unlikely(f2fs_cp_error(sbi)))
913                         return;
914         }
915
916         next_free_nid(sbi, &last_nid);
917
918         /*
919          * modify checkpoint
920          * version number is already updated
921          */
922         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
923         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
924         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
925         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
926                 ckpt->cur_node_segno[i] =
927                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
928                 ckpt->cur_node_blkoff[i] =
929                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
930                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
931                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
932         }
933         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
934                 ckpt->cur_data_segno[i] =
935                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
936                 ckpt->cur_data_blkoff[i] =
937                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
938                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
939                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
940         }
941
942         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
943         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
944         ckpt->next_free_nid = cpu_to_le32(last_nid);
945
946         /* 2 cp  + n data seg summary + orphan inode blocks */
947         data_sum_blocks = npages_for_summary_flush(sbi, false);
948         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
949                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
950         else
951                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
952
953         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
954         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
955                         orphan_blocks);
956
957         if (__remain_node_summaries(cpc->reason))
958                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
959                                 cp_payload_blks + data_sum_blocks +
960                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
961         else
962                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
963                                 cp_payload_blks + data_sum_blocks +
964                                 orphan_blocks);
965
966         if (cpc->reason == CP_UMOUNT)
967                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
968         else
969                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
970
971         if (cpc->reason == CP_FASTBOOT)
972                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
973         else
974                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
975
976         if (orphan_num)
977                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
978         else
979                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
980
981         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
982                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
983
984         /* update SIT/NAT bitmap */
985         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
986         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
987
988         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
989         *((__le32 *)((unsigned char *)ckpt +
990                                 le32_to_cpu(ckpt->checksum_offset)))
991                                 = cpu_to_le32(crc32);
992
993         start_blk = __start_cp_addr(sbi);
994
995         /* write out checkpoint buffer at block 0 */
996         update_meta_page(sbi, ckpt, start_blk++);
997
998         for (i = 1; i < 1 + cp_payload_blks; i++)
999                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1000                                                         start_blk++);
1001
1002         if (orphan_num) {
1003                 write_orphan_inodes(sbi, start_blk);
1004                 start_blk += orphan_blocks;
1005         }
1006
1007         write_data_summaries(sbi, start_blk);
1008         start_blk += data_sum_blocks;
1009         if (__remain_node_summaries(cpc->reason)) {
1010                 write_node_summaries(sbi, start_blk);
1011                 start_blk += NR_CURSEG_NODE_TYPE;
1012         }
1013
1014         /* writeout checkpoint block */
1015         update_meta_page(sbi, ckpt, start_blk);
1016
1017         /* wait for previous submitted node/meta pages writeback */
1018         wait_on_all_pages_writeback(sbi);
1019
1020         if (unlikely(f2fs_cp_error(sbi)))
1021                 return;
1022
1023         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1024         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1025
1026         /* update user_block_counts */
1027         sbi->last_valid_block_count = sbi->total_valid_block_count;
1028         sbi->alloc_valid_block_count = 0;
1029
1030         /* Here, we only have one bio having CP pack */
1031         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1032
1033         /* wait for previous submitted meta pages writeback */
1034         wait_on_all_pages_writeback(sbi);
1035
1036         /*
1037          * invalidate meta page which is used temporarily for zeroing out
1038          * block at the end of warm node chain.
1039          */
1040         if (invalidate)
1041                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1042                                                                 discard_blk);
1043
1044         release_dirty_inode(sbi);
1045
1046         if (unlikely(f2fs_cp_error(sbi)))
1047                 return;
1048
1049         clear_prefree_segments(sbi, cpc);
1050         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1051 }
1052
1053 /*
1054  * We guarantee that this checkpoint procedure will not fail.
1055  */
1056 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1057 {
1058         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1059         unsigned long long ckpt_ver;
1060
1061         mutex_lock(&sbi->cp_mutex);
1062
1063         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1064                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1065                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1066                 goto out;
1067         if (unlikely(f2fs_cp_error(sbi)))
1068                 goto out;
1069         if (f2fs_readonly(sbi->sb))
1070                 goto out;
1071
1072         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1073
1074         if (block_operations(sbi))
1075                 goto out;
1076
1077         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1078
1079         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1080         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1081         f2fs_submit_merged_bio(sbi, META, WRITE);
1082
1083         /*
1084          * update checkpoint pack index
1085          * Increase the version number so that
1086          * SIT entries and seg summaries are written at correct place
1087          */
1088         ckpt_ver = cur_cp_version(ckpt);
1089         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1090
1091         /* write cached NAT/SIT entries to NAT/SIT area */
1092         flush_nat_entries(sbi);
1093         flush_sit_entries(sbi, cpc);
1094
1095         /* unlock all the fs_lock[] in do_checkpoint() */
1096         do_checkpoint(sbi, cpc);
1097
1098         unblock_operations(sbi);
1099         stat_inc_cp_count(sbi->stat_info);
1100
1101         if (cpc->reason == CP_RECOVERY)
1102                 f2fs_msg(sbi->sb, KERN_NOTICE,
1103                         "checkpoint: version = %llx", ckpt_ver);
1104 out:
1105         mutex_unlock(&sbi->cp_mutex);
1106         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1107 }
1108
1109 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1110 {
1111         int i;
1112
1113         for (i = 0; i < MAX_INO_ENTRY; i++) {
1114                 struct inode_management *im = &sbi->im[i];
1115
1116                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1117                 spin_lock_init(&im->ino_lock);
1118                 INIT_LIST_HEAD(&im->ino_list);
1119                 im->ino_num = 0;
1120         }
1121
1122         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1123                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1124                                 F2FS_ORPHANS_PER_BLOCK;
1125 }
1126
1127 int __init create_checkpoint_caches(void)
1128 {
1129         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1130                         sizeof(struct ino_entry));
1131         if (!ino_entry_slab)
1132                 return -ENOMEM;
1133         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1134                         sizeof(struct inode_entry));
1135         if (!inode_entry_slab) {
1136                 kmem_cache_destroy(ino_entry_slab);
1137                 return -ENOMEM;
1138         }
1139         return 0;
1140 }
1141
1142 void destroy_checkpoint_caches(void)
1143 {
1144         kmem_cache_destroy(ino_entry_slab);
1145         kmem_cache_destroy(inode_entry_slab);
1146 }