Merge tag 'pinctrl-v4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6-block.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         if (!end_io)
33                 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41         struct address_space *mapping = META_MAPPING(sbi);
42         struct page *page = NULL;
43 repeat:
44         page = f2fs_grab_cache_page(mapping, index, false);
45         if (!page) {
46                 cond_resched();
47                 goto repeat;
48         }
49         f2fs_wait_on_page_writeback(page, META, true);
50         if (!PageUptodate(page))
51                 SetPageUptodate(page);
52         return page;
53 }
54
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59                                                         bool is_meta)
60 {
61         struct address_space *mapping = META_MAPPING(sbi);
62         struct page *page;
63         struct f2fs_io_info fio = {
64                 .sbi = sbi,
65                 .type = META,
66                 .op = REQ_OP_READ,
67                 .op_flags = REQ_META | REQ_PRIO,
68                 .old_blkaddr = index,
69                 .new_blkaddr = index,
70                 .encrypted_page = NULL,
71                 .is_meta = is_meta,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165                 .in_list = false,
166                 .is_meta = (type != META_POR),
167         };
168         struct blk_plug plug;
169
170         if (unlikely(type == META_POR))
171                 fio.op_flags &= ~REQ_META;
172
173         blk_start_plug(&plug);
174         for (; nrpages-- > 0; blkno++) {
175
176                 if (!is_valid_blkaddr(sbi, blkno, type))
177                         goto out;
178
179                 switch (type) {
180                 case META_NAT:
181                         if (unlikely(blkno >=
182                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
183                                 blkno = 0;
184                         /* get nat block addr */
185                         fio.new_blkaddr = current_nat_addr(sbi,
186                                         blkno * NAT_ENTRY_PER_BLOCK);
187                         break;
188                 case META_SIT:
189                         /* get sit block addr */
190                         fio.new_blkaddr = current_sit_addr(sbi,
191                                         blkno * SIT_ENTRY_PER_BLOCK);
192                         break;
193                 case META_SSA:
194                 case META_CP:
195                 case META_POR:
196                         fio.new_blkaddr = blkno;
197                         break;
198                 default:
199                         BUG();
200                 }
201
202                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
203                                                 fio.new_blkaddr, false);
204                 if (!page)
205                         continue;
206                 if (PageUptodate(page)) {
207                         f2fs_put_page(page, 1);
208                         continue;
209                 }
210
211                 fio.page = page;
212                 f2fs_submit_page_bio(&fio);
213                 f2fs_put_page(page, 0);
214         }
215 out:
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233
234 static int __f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc,
236                                 enum iostat_type io_type)
237 {
238         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
239
240         trace_f2fs_writepage(page, META);
241
242         if (unlikely(f2fs_cp_error(sbi))) {
243                 dec_page_count(sbi, F2FS_DIRTY_META);
244                 unlock_page(page);
245                 return 0;
246         }
247         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
248                 goto redirty_out;
249         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
250                 goto redirty_out;
251
252         write_meta_page(sbi, page, io_type);
253         dec_page_count(sbi, F2FS_DIRTY_META);
254
255         if (wbc->for_reclaim)
256                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
257                                                 0, page->index, META);
258
259         unlock_page(page);
260
261         if (unlikely(f2fs_cp_error(sbi)))
262                 f2fs_submit_merged_write(sbi, META);
263
264         return 0;
265
266 redirty_out:
267         redirty_page_for_writepage(wbc, page);
268         return AOP_WRITEPAGE_ACTIVATE;
269 }
270
271 static int f2fs_write_meta_page(struct page *page,
272                                 struct writeback_control *wbc)
273 {
274         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
275 }
276
277 static int f2fs_write_meta_pages(struct address_space *mapping,
278                                 struct writeback_control *wbc)
279 {
280         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
281         long diff, written;
282
283         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
284                 goto skip_write;
285
286         /* collect a number of dirty meta pages and write together */
287         if (wbc->for_kupdate ||
288                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
289                 goto skip_write;
290
291         /* if locked failed, cp will flush dirty pages instead */
292         if (!mutex_trylock(&sbi->cp_mutex))
293                 goto skip_write;
294
295         trace_f2fs_writepages(mapping->host, wbc, META);
296         diff = nr_pages_to_write(sbi, META, wbc);
297         written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
298         mutex_unlock(&sbi->cp_mutex);
299         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
300         return 0;
301
302 skip_write:
303         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
304         trace_f2fs_writepages(mapping->host, wbc, META);
305         return 0;
306 }
307
308 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
309                                 long nr_to_write, enum iostat_type io_type)
310 {
311         struct address_space *mapping = META_MAPPING(sbi);
312         pgoff_t index = 0, prev = ULONG_MAX;
313         struct pagevec pvec;
314         long nwritten = 0;
315         int nr_pages;
316         struct writeback_control wbc = {
317                 .for_reclaim = 0,
318         };
319         struct blk_plug plug;
320
321         pagevec_init(&pvec);
322
323         blk_start_plug(&plug);
324
325         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
326                                 PAGECACHE_TAG_DIRTY))) {
327                 int i;
328
329                 for (i = 0; i < nr_pages; i++) {
330                         struct page *page = pvec.pages[i];
331
332                         if (prev == ULONG_MAX)
333                                 prev = page->index - 1;
334                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
335                                 pagevec_release(&pvec);
336                                 goto stop;
337                         }
338
339                         lock_page(page);
340
341                         if (unlikely(page->mapping != mapping)) {
342 continue_unlock:
343                                 unlock_page(page);
344                                 continue;
345                         }
346                         if (!PageDirty(page)) {
347                                 /* someone wrote it for us */
348                                 goto continue_unlock;
349                         }
350
351                         f2fs_wait_on_page_writeback(page, META, true);
352
353                         BUG_ON(PageWriteback(page));
354                         if (!clear_page_dirty_for_io(page))
355                                 goto continue_unlock;
356
357                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
358                                 unlock_page(page);
359                                 break;
360                         }
361                         nwritten++;
362                         prev = page->index;
363                         if (unlikely(nwritten >= nr_to_write))
364                                 break;
365                 }
366                 pagevec_release(&pvec);
367                 cond_resched();
368         }
369 stop:
370         if (nwritten)
371                 f2fs_submit_merged_write(sbi, type);
372
373         blk_finish_plug(&plug);
374
375         return nwritten;
376 }
377
378 static int f2fs_set_meta_page_dirty(struct page *page)
379 {
380         trace_f2fs_set_page_dirty(page, META);
381
382         if (!PageUptodate(page))
383                 SetPageUptodate(page);
384         if (!PageDirty(page)) {
385                 f2fs_set_page_dirty_nobuffers(page);
386                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
387                 SetPagePrivate(page);
388                 f2fs_trace_pid(page);
389                 return 1;
390         }
391         return 0;
392 }
393
394 const struct address_space_operations f2fs_meta_aops = {
395         .writepage      = f2fs_write_meta_page,
396         .writepages     = f2fs_write_meta_pages,
397         .set_page_dirty = f2fs_set_meta_page_dirty,
398         .invalidatepage = f2fs_invalidate_page,
399         .releasepage    = f2fs_release_page,
400 #ifdef CONFIG_MIGRATION
401         .migratepage    = f2fs_migrate_page,
402 #endif
403 };
404
405 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
406                                                 unsigned int devidx, int type)
407 {
408         struct inode_management *im = &sbi->im[type];
409         struct ino_entry *e, *tmp;
410
411         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
412
413         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
414
415         spin_lock(&im->ino_lock);
416         e = radix_tree_lookup(&im->ino_root, ino);
417         if (!e) {
418                 e = tmp;
419                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
420                         f2fs_bug_on(sbi, 1);
421
422                 memset(e, 0, sizeof(struct ino_entry));
423                 e->ino = ino;
424
425                 list_add_tail(&e->list, &im->ino_list);
426                 if (type != ORPHAN_INO)
427                         im->ino_num++;
428         }
429
430         if (type == FLUSH_INO)
431                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
432
433         spin_unlock(&im->ino_lock);
434         radix_tree_preload_end();
435
436         if (e != tmp)
437                 kmem_cache_free(ino_entry_slab, tmp);
438 }
439
440 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
441 {
442         struct inode_management *im = &sbi->im[type];
443         struct ino_entry *e;
444
445         spin_lock(&im->ino_lock);
446         e = radix_tree_lookup(&im->ino_root, ino);
447         if (e) {
448                 list_del(&e->list);
449                 radix_tree_delete(&im->ino_root, ino);
450                 im->ino_num--;
451                 spin_unlock(&im->ino_lock);
452                 kmem_cache_free(ino_entry_slab, e);
453                 return;
454         }
455         spin_unlock(&im->ino_lock);
456 }
457
458 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
459 {
460         /* add new dirty ino entry into list */
461         __add_ino_entry(sbi, ino, 0, type);
462 }
463
464 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
465 {
466         /* remove dirty ino entry from list */
467         __remove_ino_entry(sbi, ino, type);
468 }
469
470 /* mode should be APPEND_INO or UPDATE_INO */
471 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
472 {
473         struct inode_management *im = &sbi->im[mode];
474         struct ino_entry *e;
475
476         spin_lock(&im->ino_lock);
477         e = radix_tree_lookup(&im->ino_root, ino);
478         spin_unlock(&im->ino_lock);
479         return e ? true : false;
480 }
481
482 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
483 {
484         struct ino_entry *e, *tmp;
485         int i;
486
487         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
488                 struct inode_management *im = &sbi->im[i];
489
490                 spin_lock(&im->ino_lock);
491                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
492                         list_del(&e->list);
493                         radix_tree_delete(&im->ino_root, e->ino);
494                         kmem_cache_free(ino_entry_slab, e);
495                         im->ino_num--;
496                 }
497                 spin_unlock(&im->ino_lock);
498         }
499 }
500
501 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
502                                         unsigned int devidx, int type)
503 {
504         __add_ino_entry(sbi, ino, devidx, type);
505 }
506
507 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
508                                         unsigned int devidx, int type)
509 {
510         struct inode_management *im = &sbi->im[type];
511         struct ino_entry *e;
512         bool is_dirty = false;
513
514         spin_lock(&im->ino_lock);
515         e = radix_tree_lookup(&im->ino_root, ino);
516         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
517                 is_dirty = true;
518         spin_unlock(&im->ino_lock);
519         return is_dirty;
520 }
521
522 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
523 {
524         struct inode_management *im = &sbi->im[ORPHAN_INO];
525         int err = 0;
526
527         spin_lock(&im->ino_lock);
528
529 #ifdef CONFIG_F2FS_FAULT_INJECTION
530         if (time_to_inject(sbi, FAULT_ORPHAN)) {
531                 spin_unlock(&im->ino_lock);
532                 f2fs_show_injection_info(FAULT_ORPHAN);
533                 return -ENOSPC;
534         }
535 #endif
536         if (unlikely(im->ino_num >= sbi->max_orphans))
537                 err = -ENOSPC;
538         else
539                 im->ino_num++;
540         spin_unlock(&im->ino_lock);
541
542         return err;
543 }
544
545 void release_orphan_inode(struct f2fs_sb_info *sbi)
546 {
547         struct inode_management *im = &sbi->im[ORPHAN_INO];
548
549         spin_lock(&im->ino_lock);
550         f2fs_bug_on(sbi, im->ino_num == 0);
551         im->ino_num--;
552         spin_unlock(&im->ino_lock);
553 }
554
555 void add_orphan_inode(struct inode *inode)
556 {
557         /* add new orphan ino entry into list */
558         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
559         update_inode_page(inode);
560 }
561
562 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
563 {
564         /* remove orphan entry from orphan list */
565         __remove_ino_entry(sbi, ino, ORPHAN_INO);
566 }
567
568 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
569 {
570         struct inode *inode;
571         struct node_info ni;
572         int err = acquire_orphan_inode(sbi);
573
574         if (err)
575                 goto err_out;
576
577         __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578
579         inode = f2fs_iget_retry(sbi->sb, ino);
580         if (IS_ERR(inode)) {
581                 /*
582                  * there should be a bug that we can't find the entry
583                  * to orphan inode.
584                  */
585                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586                 return PTR_ERR(inode);
587         }
588
589         err = dquot_initialize(inode);
590         if (err)
591                 goto err_out;
592
593         dquot_initialize(inode);
594         clear_nlink(inode);
595
596         /* truncate all the data during iput */
597         iput(inode);
598
599         get_node_info(sbi, ino, &ni);
600
601         /* ENOMEM was fully retried in f2fs_evict_inode. */
602         if (ni.blk_addr != NULL_ADDR) {
603                 err = -EIO;
604                 goto err_out;
605         }
606         __remove_ino_entry(sbi, ino, ORPHAN_INO);
607         return 0;
608
609 err_out:
610         set_sbi_flag(sbi, SBI_NEED_FSCK);
611         f2fs_msg(sbi->sb, KERN_WARNING,
612                         "%s: orphan failed (ino=%x), run fsck to fix.",
613                         __func__, ino);
614         return err;
615 }
616
617 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
618 {
619         block_t start_blk, orphan_blocks, i, j;
620         unsigned int s_flags = sbi->sb->s_flags;
621         int err = 0;
622 #ifdef CONFIG_QUOTA
623         int quota_enabled;
624 #endif
625
626         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
627                 return 0;
628
629         if (s_flags & SB_RDONLY) {
630                 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
631                 sbi->sb->s_flags &= ~SB_RDONLY;
632         }
633
634 #ifdef CONFIG_QUOTA
635         /* Needed for iput() to work correctly and not trash data */
636         sbi->sb->s_flags |= SB_ACTIVE;
637
638         /* Turn on quotas so that they are updated correctly */
639         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
640 #endif
641
642         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
643         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
644
645         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
646
647         for (i = 0; i < orphan_blocks; i++) {
648                 struct page *page = get_meta_page(sbi, start_blk + i);
649                 struct f2fs_orphan_block *orphan_blk;
650
651                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
652                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
653                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
654                         err = recover_orphan_inode(sbi, ino);
655                         if (err) {
656                                 f2fs_put_page(page, 1);
657                                 goto out;
658                         }
659                 }
660                 f2fs_put_page(page, 1);
661         }
662         /* clear Orphan Flag */
663         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
664 out:
665 #ifdef CONFIG_QUOTA
666         /* Turn quotas off */
667         if (quota_enabled)
668                 f2fs_quota_off_umount(sbi->sb);
669 #endif
670         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
671
672         return err;
673 }
674
675 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
676 {
677         struct list_head *head;
678         struct f2fs_orphan_block *orphan_blk = NULL;
679         unsigned int nentries = 0;
680         unsigned short index = 1;
681         unsigned short orphan_blocks;
682         struct page *page = NULL;
683         struct ino_entry *orphan = NULL;
684         struct inode_management *im = &sbi->im[ORPHAN_INO];
685
686         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
687
688         /*
689          * we don't need to do spin_lock(&im->ino_lock) here, since all the
690          * orphan inode operations are covered under f2fs_lock_op().
691          * And, spin_lock should be avoided due to page operations below.
692          */
693         head = &im->ino_list;
694
695         /* loop for each orphan inode entry and write them in Jornal block */
696         list_for_each_entry(orphan, head, list) {
697                 if (!page) {
698                         page = grab_meta_page(sbi, start_blk++);
699                         orphan_blk =
700                                 (struct f2fs_orphan_block *)page_address(page);
701                         memset(orphan_blk, 0, sizeof(*orphan_blk));
702                 }
703
704                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
705
706                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
707                         /*
708                          * an orphan block is full of 1020 entries,
709                          * then we need to flush current orphan blocks
710                          * and bring another one in memory
711                          */
712                         orphan_blk->blk_addr = cpu_to_le16(index);
713                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
714                         orphan_blk->entry_count = cpu_to_le32(nentries);
715                         set_page_dirty(page);
716                         f2fs_put_page(page, 1);
717                         index++;
718                         nentries = 0;
719                         page = NULL;
720                 }
721         }
722
723         if (page) {
724                 orphan_blk->blk_addr = cpu_to_le16(index);
725                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
726                 orphan_blk->entry_count = cpu_to_le32(nentries);
727                 set_page_dirty(page);
728                 f2fs_put_page(page, 1);
729         }
730 }
731
732 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
733                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
734                 unsigned long long *version)
735 {
736         unsigned long blk_size = sbi->blocksize;
737         size_t crc_offset = 0;
738         __u32 crc = 0;
739
740         *cp_page = get_meta_page(sbi, cp_addr);
741         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
742
743         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
744         if (crc_offset > (blk_size - sizeof(__le32))) {
745                 f2fs_msg(sbi->sb, KERN_WARNING,
746                         "invalid crc_offset: %zu", crc_offset);
747                 return -EINVAL;
748         }
749
750         crc = cur_cp_crc(*cp_block);
751         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
752                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
753                 return -EINVAL;
754         }
755
756         *version = cur_cp_version(*cp_block);
757         return 0;
758 }
759
760 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
761                                 block_t cp_addr, unsigned long long *version)
762 {
763         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
764         struct f2fs_checkpoint *cp_block = NULL;
765         unsigned long long cur_version = 0, pre_version = 0;
766         int err;
767
768         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
769                                         &cp_page_1, version);
770         if (err)
771                 goto invalid_cp1;
772         pre_version = *version;
773
774         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
775         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
776                                         &cp_page_2, version);
777         if (err)
778                 goto invalid_cp2;
779         cur_version = *version;
780
781         if (cur_version == pre_version) {
782                 *version = cur_version;
783                 f2fs_put_page(cp_page_2, 1);
784                 return cp_page_1;
785         }
786 invalid_cp2:
787         f2fs_put_page(cp_page_2, 1);
788 invalid_cp1:
789         f2fs_put_page(cp_page_1, 1);
790         return NULL;
791 }
792
793 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
794 {
795         struct f2fs_checkpoint *cp_block;
796         struct f2fs_super_block *fsb = sbi->raw_super;
797         struct page *cp1, *cp2, *cur_page;
798         unsigned long blk_size = sbi->blocksize;
799         unsigned long long cp1_version = 0, cp2_version = 0;
800         unsigned long long cp_start_blk_no;
801         unsigned int cp_blks = 1 + __cp_payload(sbi);
802         block_t cp_blk_no;
803         int i;
804
805         sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
806         if (!sbi->ckpt)
807                 return -ENOMEM;
808         /*
809          * Finding out valid cp block involves read both
810          * sets( cp pack1 and cp pack 2)
811          */
812         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
813         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
814
815         /* The second checkpoint pack should start at the next segment */
816         cp_start_blk_no += ((unsigned long long)1) <<
817                                 le32_to_cpu(fsb->log_blocks_per_seg);
818         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
819
820         if (cp1 && cp2) {
821                 if (ver_after(cp2_version, cp1_version))
822                         cur_page = cp2;
823                 else
824                         cur_page = cp1;
825         } else if (cp1) {
826                 cur_page = cp1;
827         } else if (cp2) {
828                 cur_page = cp2;
829         } else {
830                 goto fail_no_cp;
831         }
832
833         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
834         memcpy(sbi->ckpt, cp_block, blk_size);
835
836         /* Sanity checking of checkpoint */
837         if (sanity_check_ckpt(sbi))
838                 goto free_fail_no_cp;
839
840         if (cur_page == cp1)
841                 sbi->cur_cp_pack = 1;
842         else
843                 sbi->cur_cp_pack = 2;
844
845         if (cp_blks <= 1)
846                 goto done;
847
848         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
849         if (cur_page == cp2)
850                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
851
852         for (i = 1; i < cp_blks; i++) {
853                 void *sit_bitmap_ptr;
854                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
855
856                 cur_page = get_meta_page(sbi, cp_blk_no + i);
857                 sit_bitmap_ptr = page_address(cur_page);
858                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
859                 f2fs_put_page(cur_page, 1);
860         }
861 done:
862         f2fs_put_page(cp1, 1);
863         f2fs_put_page(cp2, 1);
864         return 0;
865
866 free_fail_no_cp:
867         f2fs_put_page(cp1, 1);
868         f2fs_put_page(cp2, 1);
869 fail_no_cp:
870         kfree(sbi->ckpt);
871         return -EINVAL;
872 }
873
874 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
875 {
876         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
877         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
878
879         if (is_inode_flag_set(inode, flag))
880                 return;
881
882         set_inode_flag(inode, flag);
883         if (!f2fs_is_volatile_file(inode))
884                 list_add_tail(&F2FS_I(inode)->dirty_list,
885                                                 &sbi->inode_list[type]);
886         stat_inc_dirty_inode(sbi, type);
887 }
888
889 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
890 {
891         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
892
893         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
894                 return;
895
896         list_del_init(&F2FS_I(inode)->dirty_list);
897         clear_inode_flag(inode, flag);
898         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
899 }
900
901 void update_dirty_page(struct inode *inode, struct page *page)
902 {
903         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
905
906         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
907                         !S_ISLNK(inode->i_mode))
908                 return;
909
910         spin_lock(&sbi->inode_lock[type]);
911         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
912                 __add_dirty_inode(inode, type);
913         inode_inc_dirty_pages(inode);
914         spin_unlock(&sbi->inode_lock[type]);
915
916         SetPagePrivate(page);
917         f2fs_trace_pid(page);
918 }
919
920 void remove_dirty_inode(struct inode *inode)
921 {
922         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
924
925         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
926                         !S_ISLNK(inode->i_mode))
927                 return;
928
929         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
930                 return;
931
932         spin_lock(&sbi->inode_lock[type]);
933         __remove_dirty_inode(inode, type);
934         spin_unlock(&sbi->inode_lock[type]);
935 }
936
937 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
938 {
939         struct list_head *head;
940         struct inode *inode;
941         struct f2fs_inode_info *fi;
942         bool is_dir = (type == DIR_INODE);
943         unsigned long ino = 0;
944
945         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
946                                 get_pages(sbi, is_dir ?
947                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
948 retry:
949         if (unlikely(f2fs_cp_error(sbi)))
950                 return -EIO;
951
952         spin_lock(&sbi->inode_lock[type]);
953
954         head = &sbi->inode_list[type];
955         if (list_empty(head)) {
956                 spin_unlock(&sbi->inode_lock[type]);
957                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
958                                 get_pages(sbi, is_dir ?
959                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
960                 return 0;
961         }
962         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
963         inode = igrab(&fi->vfs_inode);
964         spin_unlock(&sbi->inode_lock[type]);
965         if (inode) {
966                 unsigned long cur_ino = inode->i_ino;
967
968                 if (is_dir)
969                         F2FS_I(inode)->cp_task = current;
970
971                 filemap_fdatawrite(inode->i_mapping);
972
973                 if (is_dir)
974                         F2FS_I(inode)->cp_task = NULL;
975
976                 iput(inode);
977                 /* We need to give cpu to another writers. */
978                 if (ino == cur_ino) {
979                         congestion_wait(BLK_RW_ASYNC, HZ/50);
980                         cond_resched();
981                 } else {
982                         ino = cur_ino;
983                 }
984         } else {
985                 /*
986                  * We should submit bio, since it exists several
987                  * wribacking dentry pages in the freeing inode.
988                  */
989                 f2fs_submit_merged_write(sbi, DATA);
990                 cond_resched();
991         }
992         goto retry;
993 }
994
995 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
996 {
997         struct list_head *head = &sbi->inode_list[DIRTY_META];
998         struct inode *inode;
999         struct f2fs_inode_info *fi;
1000         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1001
1002         while (total--) {
1003                 if (unlikely(f2fs_cp_error(sbi)))
1004                         return -EIO;
1005
1006                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1007                 if (list_empty(head)) {
1008                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1009                         return 0;
1010                 }
1011                 fi = list_first_entry(head, struct f2fs_inode_info,
1012                                                         gdirty_list);
1013                 inode = igrab(&fi->vfs_inode);
1014                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1015                 if (inode) {
1016                         sync_inode_metadata(inode, 0);
1017
1018                         /* it's on eviction */
1019                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1020                                 update_inode_page(inode);
1021                         iput(inode);
1022                 }
1023         }
1024         return 0;
1025 }
1026
1027 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1028 {
1029         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1030         struct f2fs_nm_info *nm_i = NM_I(sbi);
1031         nid_t last_nid = nm_i->next_scan_nid;
1032
1033         next_free_nid(sbi, &last_nid);
1034         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1035         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1036         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1037         ckpt->next_free_nid = cpu_to_le32(last_nid);
1038 }
1039
1040 /*
1041  * Freeze all the FS-operations for checkpoint.
1042  */
1043 static int block_operations(struct f2fs_sb_info *sbi)
1044 {
1045         struct writeback_control wbc = {
1046                 .sync_mode = WB_SYNC_ALL,
1047                 .nr_to_write = LONG_MAX,
1048                 .for_reclaim = 0,
1049         };
1050         struct blk_plug plug;
1051         int err = 0;
1052
1053         blk_start_plug(&plug);
1054
1055 retry_flush_dents:
1056         f2fs_lock_all(sbi);
1057         /* write all the dirty dentry pages */
1058         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1059                 f2fs_unlock_all(sbi);
1060                 err = sync_dirty_inodes(sbi, DIR_INODE);
1061                 if (err)
1062                         goto out;
1063                 cond_resched();
1064                 goto retry_flush_dents;
1065         }
1066
1067         /*
1068          * POR: we should ensure that there are no dirty node pages
1069          * until finishing nat/sit flush. inode->i_blocks can be updated.
1070          */
1071         down_write(&sbi->node_change);
1072
1073         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1074                 up_write(&sbi->node_change);
1075                 f2fs_unlock_all(sbi);
1076                 err = f2fs_sync_inode_meta(sbi);
1077                 if (err)
1078                         goto out;
1079                 cond_resched();
1080                 goto retry_flush_dents;
1081         }
1082
1083 retry_flush_nodes:
1084         down_write(&sbi->node_write);
1085
1086         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1087                 up_write(&sbi->node_write);
1088                 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1089                 if (err) {
1090                         up_write(&sbi->node_change);
1091                         f2fs_unlock_all(sbi);
1092                         goto out;
1093                 }
1094                 cond_resched();
1095                 goto retry_flush_nodes;
1096         }
1097
1098         /*
1099          * sbi->node_change is used only for AIO write_begin path which produces
1100          * dirty node blocks and some checkpoint values by block allocation.
1101          */
1102         __prepare_cp_block(sbi);
1103         up_write(&sbi->node_change);
1104 out:
1105         blk_finish_plug(&plug);
1106         return err;
1107 }
1108
1109 static void unblock_operations(struct f2fs_sb_info *sbi)
1110 {
1111         up_write(&sbi->node_write);
1112         f2fs_unlock_all(sbi);
1113 }
1114
1115 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1116 {
1117         DEFINE_WAIT(wait);
1118
1119         for (;;) {
1120                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1121
1122                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1123                         break;
1124
1125                 io_schedule_timeout(5*HZ);
1126         }
1127         finish_wait(&sbi->cp_wait, &wait);
1128 }
1129
1130 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1131 {
1132         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1133         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134         unsigned long flags;
1135
1136         spin_lock_irqsave(&sbi->cp_lock, flags);
1137
1138         if ((cpc->reason & CP_UMOUNT) &&
1139                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1140                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1141                 disable_nat_bits(sbi, false);
1142
1143         if (cpc->reason & CP_TRIMMED)
1144                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1145         else
1146                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1147
1148         if (cpc->reason & CP_UMOUNT)
1149                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1150         else
1151                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1152
1153         if (cpc->reason & CP_FASTBOOT)
1154                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1155         else
1156                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1157
1158         if (orphan_num)
1159                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1160         else
1161                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1162
1163         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1164                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1165
1166         /* set this flag to activate crc|cp_ver for recovery */
1167         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1168         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1169
1170         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1171 }
1172
1173 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1174         void *src, block_t blk_addr)
1175 {
1176         struct writeback_control wbc = {
1177                 .for_reclaim = 0,
1178         };
1179
1180         /*
1181          * pagevec_lookup_tag and lock_page again will take
1182          * some extra time. Therefore, update_meta_pages and
1183          * sync_meta_pages are combined in this function.
1184          */
1185         struct page *page = grab_meta_page(sbi, blk_addr);
1186         int err;
1187
1188         memcpy(page_address(page), src, PAGE_SIZE);
1189         set_page_dirty(page);
1190
1191         f2fs_wait_on_page_writeback(page, META, true);
1192         f2fs_bug_on(sbi, PageWriteback(page));
1193         if (unlikely(!clear_page_dirty_for_io(page)))
1194                 f2fs_bug_on(sbi, 1);
1195
1196         /* writeout cp pack 2 page */
1197         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1198         f2fs_bug_on(sbi, err);
1199
1200         f2fs_put_page(page, 0);
1201
1202         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1203         f2fs_submit_merged_write(sbi, META_FLUSH);
1204 }
1205
1206 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1207 {
1208         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1209         struct f2fs_nm_info *nm_i = NM_I(sbi);
1210         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1211         block_t start_blk;
1212         unsigned int data_sum_blocks, orphan_blocks;
1213         __u32 crc32 = 0;
1214         int i;
1215         int cp_payload_blks = __cp_payload(sbi);
1216         struct super_block *sb = sbi->sb;
1217         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1218         u64 kbytes_written;
1219         int err;
1220
1221         /* Flush all the NAT/SIT pages */
1222         while (get_pages(sbi, F2FS_DIRTY_META)) {
1223                 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1224                 if (unlikely(f2fs_cp_error(sbi)))
1225                         return -EIO;
1226         }
1227
1228         /*
1229          * modify checkpoint
1230          * version number is already updated
1231          */
1232         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1233         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1234         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1235                 ckpt->cur_node_segno[i] =
1236                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1237                 ckpt->cur_node_blkoff[i] =
1238                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1239                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1240                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1241         }
1242         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1243                 ckpt->cur_data_segno[i] =
1244                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1245                 ckpt->cur_data_blkoff[i] =
1246                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1247                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1248                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1249         }
1250
1251         /* 2 cp  + n data seg summary + orphan inode blocks */
1252         data_sum_blocks = npages_for_summary_flush(sbi, false);
1253         spin_lock_irqsave(&sbi->cp_lock, flags);
1254         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1255                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1256         else
1257                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1258         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1259
1260         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1261         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1262                         orphan_blocks);
1263
1264         if (__remain_node_summaries(cpc->reason))
1265                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1266                                 cp_payload_blks + data_sum_blocks +
1267                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1268         else
1269                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1270                                 cp_payload_blks + data_sum_blocks +
1271                                 orphan_blocks);
1272
1273         /* update ckpt flag for checkpoint */
1274         update_ckpt_flags(sbi, cpc);
1275
1276         /* update SIT/NAT bitmap */
1277         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1278         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1279
1280         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1281         *((__le32 *)((unsigned char *)ckpt +
1282                                 le32_to_cpu(ckpt->checksum_offset)))
1283                                 = cpu_to_le32(crc32);
1284
1285         start_blk = __start_cp_next_addr(sbi);
1286
1287         /* write nat bits */
1288         if (enabled_nat_bits(sbi, cpc)) {
1289                 __u64 cp_ver = cur_cp_version(ckpt);
1290                 block_t blk;
1291
1292                 cp_ver |= ((__u64)crc32 << 32);
1293                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1294
1295                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1296                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1297                         update_meta_page(sbi, nm_i->nat_bits +
1298                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1299
1300                 /* Flush all the NAT BITS pages */
1301                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1302                         sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1303                         if (unlikely(f2fs_cp_error(sbi)))
1304                                 return -EIO;
1305                 }
1306         }
1307
1308         /* write out checkpoint buffer at block 0 */
1309         update_meta_page(sbi, ckpt, start_blk++);
1310
1311         for (i = 1; i < 1 + cp_payload_blks; i++)
1312                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1313                                                         start_blk++);
1314
1315         if (orphan_num) {
1316                 write_orphan_inodes(sbi, start_blk);
1317                 start_blk += orphan_blocks;
1318         }
1319
1320         write_data_summaries(sbi, start_blk);
1321         start_blk += data_sum_blocks;
1322
1323         /* Record write statistics in the hot node summary */
1324         kbytes_written = sbi->kbytes_written;
1325         if (sb->s_bdev->bd_part)
1326                 kbytes_written += BD_PART_WRITTEN(sbi);
1327
1328         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1329
1330         if (__remain_node_summaries(cpc->reason)) {
1331                 write_node_summaries(sbi, start_blk);
1332                 start_blk += NR_CURSEG_NODE_TYPE;
1333         }
1334
1335         /* update user_block_counts */
1336         sbi->last_valid_block_count = sbi->total_valid_block_count;
1337         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1338
1339         /* Here, we have one bio having CP pack except cp pack 2 page */
1340         sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1341
1342         /* wait for previous submitted meta pages writeback */
1343         wait_on_all_pages_writeback(sbi);
1344
1345         if (unlikely(f2fs_cp_error(sbi)))
1346                 return -EIO;
1347
1348         /* flush all device cache */
1349         err = f2fs_flush_device_cache(sbi);
1350         if (err)
1351                 return err;
1352
1353         /* barrier and flush checkpoint cp pack 2 page if it can */
1354         commit_checkpoint(sbi, ckpt, start_blk);
1355         wait_on_all_pages_writeback(sbi);
1356
1357         release_ino_entry(sbi, false);
1358
1359         if (unlikely(f2fs_cp_error(sbi)))
1360                 return -EIO;
1361
1362         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1363         clear_sbi_flag(sbi, SBI_NEED_CP);
1364         __set_cp_next_pack(sbi);
1365
1366         /*
1367          * redirty superblock if metadata like node page or inode cache is
1368          * updated during writing checkpoint.
1369          */
1370         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1371                         get_pages(sbi, F2FS_DIRTY_IMETA))
1372                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1373
1374         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1375
1376         return 0;
1377 }
1378
1379 /*
1380  * We guarantee that this checkpoint procedure will not fail.
1381  */
1382 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1383 {
1384         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1385         unsigned long long ckpt_ver;
1386         int err = 0;
1387
1388         mutex_lock(&sbi->cp_mutex);
1389
1390         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1391                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1392                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1393                 goto out;
1394         if (unlikely(f2fs_cp_error(sbi))) {
1395                 err = -EIO;
1396                 goto out;
1397         }
1398         if (f2fs_readonly(sbi->sb)) {
1399                 err = -EROFS;
1400                 goto out;
1401         }
1402
1403         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1404
1405         err = block_operations(sbi);
1406         if (err)
1407                 goto out;
1408
1409         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1410
1411         f2fs_flush_merged_writes(sbi);
1412
1413         /* this is the case of multiple fstrims without any changes */
1414         if (cpc->reason & CP_DISCARD) {
1415                 if (!exist_trim_candidates(sbi, cpc)) {
1416                         unblock_operations(sbi);
1417                         goto out;
1418                 }
1419
1420                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1421                                 SIT_I(sbi)->dirty_sentries == 0 &&
1422                                 prefree_segments(sbi) == 0) {
1423                         flush_sit_entries(sbi, cpc);
1424                         clear_prefree_segments(sbi, cpc);
1425                         unblock_operations(sbi);
1426                         goto out;
1427                 }
1428         }
1429
1430         /*
1431          * update checkpoint pack index
1432          * Increase the version number so that
1433          * SIT entries and seg summaries are written at correct place
1434          */
1435         ckpt_ver = cur_cp_version(ckpt);
1436         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1437
1438         /* write cached NAT/SIT entries to NAT/SIT area */
1439         flush_nat_entries(sbi, cpc);
1440         flush_sit_entries(sbi, cpc);
1441
1442         /* unlock all the fs_lock[] in do_checkpoint() */
1443         err = do_checkpoint(sbi, cpc);
1444         if (err)
1445                 release_discard_addrs(sbi);
1446         else
1447                 clear_prefree_segments(sbi, cpc);
1448
1449         unblock_operations(sbi);
1450         stat_inc_cp_count(sbi->stat_info);
1451
1452         if (cpc->reason & CP_RECOVERY)
1453                 f2fs_msg(sbi->sb, KERN_NOTICE,
1454                         "checkpoint: version = %llx", ckpt_ver);
1455
1456         /* do checkpoint periodically */
1457         f2fs_update_time(sbi, CP_TIME);
1458         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1459 out:
1460         mutex_unlock(&sbi->cp_mutex);
1461         return err;
1462 }
1463
1464 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1465 {
1466         int i;
1467
1468         for (i = 0; i < MAX_INO_ENTRY; i++) {
1469                 struct inode_management *im = &sbi->im[i];
1470
1471                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1472                 spin_lock_init(&im->ino_lock);
1473                 INIT_LIST_HEAD(&im->ino_list);
1474                 im->ino_num = 0;
1475         }
1476
1477         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1478                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1479                                 F2FS_ORPHANS_PER_BLOCK;
1480 }
1481
1482 int __init create_checkpoint_caches(void)
1483 {
1484         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1485                         sizeof(struct ino_entry));
1486         if (!ino_entry_slab)
1487                 return -ENOMEM;
1488         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1489                         sizeof(struct inode_entry));
1490         if (!inode_entry_slab) {
1491                 kmem_cache_destroy(ino_entry_slab);
1492                 return -ENOMEM;
1493         }
1494         return 0;
1495 }
1496
1497 void destroy_checkpoint_caches(void)
1498 {
1499         kmem_cache_destroy(ino_entry_slab);
1500         kmem_cache_destroy(inode_entry_slab);
1501 }