Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[linux-2.6-block.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META, true);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .old_blkaddr = index,
60                 .new_blkaddr = index,
61                 .encrypted_page = NULL,
62         };
63
64         if (unlikely(!is_meta))
65                 fio.rw &= ~REQ_META;
66 repeat:
67         page = grab_cache_page(mapping, index);
68         if (!page) {
69                 cond_resched();
70                 goto repeat;
71         }
72         if (PageUptodate(page))
73                 goto out;
74
75         fio.page = page;
76
77         if (f2fs_submit_page_bio(&fio)) {
78                 f2fs_put_page(page, 1);
79                 goto repeat;
80         }
81
82         lock_page(page);
83         if (unlikely(page->mapping != mapping)) {
84                 f2fs_put_page(page, 1);
85                 goto repeat;
86         }
87
88         /*
89          * if there is any IO error when accessing device, make our filesystem
90          * readonly and make sure do not write checkpoint with non-uptodate
91          * meta page.
92          */
93         if (unlikely(!PageUptodate(page)))
94                 f2fs_stop_checkpoint(sbi);
95 out:
96         return page;
97 }
98
99 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 {
101         return __get_meta_page(sbi, index, true);
102 }
103
104 /* for POR only */
105 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107         return __get_meta_page(sbi, index, false);
108 }
109
110 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 {
112         switch (type) {
113         case META_NAT:
114                 break;
115         case META_SIT:
116                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
117                         return false;
118                 break;
119         case META_SSA:
120                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
121                         blkaddr < SM_I(sbi)->ssa_blkaddr))
122                         return false;
123                 break;
124         case META_CP:
125                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
126                         blkaddr < __start_cp_addr(sbi)))
127                         return false;
128                 break;
129         case META_POR:
130                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
131                         blkaddr < MAIN_BLKADDR(sbi)))
132                         return false;
133                 break;
134         default:
135                 BUG();
136         }
137
138         return true;
139 }
140
141 /*
142  * Readahead CP/NAT/SIT/SSA pages
143  */
144 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
145                                                         int type, bool sync)
146 {
147         struct page *page;
148         block_t blkno = start;
149         struct f2fs_io_info fio = {
150                 .sbi = sbi,
151                 .type = META,
152                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153                 .encrypted_page = NULL,
154         };
155         struct blk_plug plug;
156
157         if (unlikely(type == META_POR))
158                 fio.rw &= ~REQ_META;
159
160         blk_start_plug(&plug);
161         for (; nrpages-- > 0; blkno++) {
162
163                 if (!is_valid_blkaddr(sbi, blkno, type))
164                         goto out;
165
166                 switch (type) {
167                 case META_NAT:
168                         if (unlikely(blkno >=
169                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
170                                 blkno = 0;
171                         /* get nat block addr */
172                         fio.new_blkaddr = current_nat_addr(sbi,
173                                         blkno * NAT_ENTRY_PER_BLOCK);
174                         break;
175                 case META_SIT:
176                         /* get sit block addr */
177                         fio.new_blkaddr = current_sit_addr(sbi,
178                                         blkno * SIT_ENTRY_PER_BLOCK);
179                         break;
180                 case META_SSA:
181                 case META_CP:
182                 case META_POR:
183                         fio.new_blkaddr = blkno;
184                         break;
185                 default:
186                         BUG();
187                 }
188
189                 page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
190                 if (!page)
191                         continue;
192                 if (PageUptodate(page)) {
193                         f2fs_put_page(page, 1);
194                         continue;
195                 }
196
197                 fio.page = page;
198                 fio.old_blkaddr = fio.new_blkaddr;
199                 f2fs_submit_page_mbio(&fio);
200                 f2fs_put_page(page, 0);
201         }
202 out:
203         f2fs_submit_merged_bio(sbi, META, READ);
204         blk_finish_plug(&plug);
205         return blkno - start;
206 }
207
208 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
209 {
210         struct page *page;
211         bool readahead = false;
212
213         page = find_get_page(META_MAPPING(sbi), index);
214         if (!page || (page && !PageUptodate(page)))
215                 readahead = true;
216         f2fs_put_page(page, 0);
217
218         if (readahead)
219                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
220 }
221
222 static int f2fs_write_meta_page(struct page *page,
223                                 struct writeback_control *wbc)
224 {
225         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
226
227         trace_f2fs_writepage(page, META);
228
229         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
230                 goto redirty_out;
231         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
232                 goto redirty_out;
233         if (unlikely(f2fs_cp_error(sbi)))
234                 goto redirty_out;
235
236         write_meta_page(sbi, page);
237         dec_page_count(sbi, F2FS_DIRTY_META);
238
239         if (wbc->for_reclaim)
240                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
241
242         unlock_page(page);
243
244         if (unlikely(f2fs_cp_error(sbi)))
245                 f2fs_submit_merged_bio(sbi, META, WRITE);
246
247         return 0;
248
249 redirty_out:
250         redirty_page_for_writepage(wbc, page);
251         return AOP_WRITEPAGE_ACTIVATE;
252 }
253
254 static int f2fs_write_meta_pages(struct address_space *mapping,
255                                 struct writeback_control *wbc)
256 {
257         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
258         long diff, written;
259
260         /* collect a number of dirty meta pages and write together */
261         if (wbc->for_kupdate ||
262                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
263                 goto skip_write;
264
265         trace_f2fs_writepages(mapping->host, wbc, META);
266
267         /* if mounting is failed, skip writing node pages */
268         mutex_lock(&sbi->cp_mutex);
269         diff = nr_pages_to_write(sbi, META, wbc);
270         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
271         mutex_unlock(&sbi->cp_mutex);
272         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
273         return 0;
274
275 skip_write:
276         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
277         trace_f2fs_writepages(mapping->host, wbc, META);
278         return 0;
279 }
280
281 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
282                                                 long nr_to_write)
283 {
284         struct address_space *mapping = META_MAPPING(sbi);
285         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
286         struct pagevec pvec;
287         long nwritten = 0;
288         struct writeback_control wbc = {
289                 .for_reclaim = 0,
290         };
291         struct blk_plug plug;
292
293         pagevec_init(&pvec, 0);
294
295         blk_start_plug(&plug);
296
297         while (index <= end) {
298                 int i, nr_pages;
299                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
300                                 PAGECACHE_TAG_DIRTY,
301                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
302                 if (unlikely(nr_pages == 0))
303                         break;
304
305                 for (i = 0; i < nr_pages; i++) {
306                         struct page *page = pvec.pages[i];
307
308                         if (prev == ULONG_MAX)
309                                 prev = page->index - 1;
310                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
311                                 pagevec_release(&pvec);
312                                 goto stop;
313                         }
314
315                         lock_page(page);
316
317                         if (unlikely(page->mapping != mapping)) {
318 continue_unlock:
319                                 unlock_page(page);
320                                 continue;
321                         }
322                         if (!PageDirty(page)) {
323                                 /* someone wrote it for us */
324                                 goto continue_unlock;
325                         }
326
327                         f2fs_wait_on_page_writeback(page, META, true);
328
329                         BUG_ON(PageWriteback(page));
330                         if (!clear_page_dirty_for_io(page))
331                                 goto continue_unlock;
332
333                         if (mapping->a_ops->writepage(page, &wbc)) {
334                                 unlock_page(page);
335                                 break;
336                         }
337                         nwritten++;
338                         prev = page->index;
339                         if (unlikely(nwritten >= nr_to_write))
340                                 break;
341                 }
342                 pagevec_release(&pvec);
343                 cond_resched();
344         }
345 stop:
346         if (nwritten)
347                 f2fs_submit_merged_bio(sbi, type, WRITE);
348
349         blk_finish_plug(&plug);
350
351         return nwritten;
352 }
353
354 static int f2fs_set_meta_page_dirty(struct page *page)
355 {
356         trace_f2fs_set_page_dirty(page, META);
357
358         SetPageUptodate(page);
359         if (!PageDirty(page)) {
360                 __set_page_dirty_nobuffers(page);
361                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
362                 SetPagePrivate(page);
363                 f2fs_trace_pid(page);
364                 return 1;
365         }
366         return 0;
367 }
368
369 const struct address_space_operations f2fs_meta_aops = {
370         .writepage      = f2fs_write_meta_page,
371         .writepages     = f2fs_write_meta_pages,
372         .set_page_dirty = f2fs_set_meta_page_dirty,
373         .invalidatepage = f2fs_invalidate_page,
374         .releasepage    = f2fs_release_page,
375 };
376
377 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
378 {
379         struct inode_management *im = &sbi->im[type];
380         struct ino_entry *e, *tmp;
381
382         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
383 retry:
384         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
385
386         spin_lock(&im->ino_lock);
387         e = radix_tree_lookup(&im->ino_root, ino);
388         if (!e) {
389                 e = tmp;
390                 if (radix_tree_insert(&im->ino_root, ino, e)) {
391                         spin_unlock(&im->ino_lock);
392                         radix_tree_preload_end();
393                         goto retry;
394                 }
395                 memset(e, 0, sizeof(struct ino_entry));
396                 e->ino = ino;
397
398                 list_add_tail(&e->list, &im->ino_list);
399                 if (type != ORPHAN_INO)
400                         im->ino_num++;
401         }
402         spin_unlock(&im->ino_lock);
403         radix_tree_preload_end();
404
405         if (e != tmp)
406                 kmem_cache_free(ino_entry_slab, tmp);
407 }
408
409 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
410 {
411         struct inode_management *im = &sbi->im[type];
412         struct ino_entry *e;
413
414         spin_lock(&im->ino_lock);
415         e = radix_tree_lookup(&im->ino_root, ino);
416         if (e) {
417                 list_del(&e->list);
418                 radix_tree_delete(&im->ino_root, ino);
419                 im->ino_num--;
420                 spin_unlock(&im->ino_lock);
421                 kmem_cache_free(ino_entry_slab, e);
422                 return;
423         }
424         spin_unlock(&im->ino_lock);
425 }
426
427 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429         /* add new dirty ino entry into list */
430         __add_ino_entry(sbi, ino, type);
431 }
432
433 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
434 {
435         /* remove dirty ino entry from list */
436         __remove_ino_entry(sbi, ino, type);
437 }
438
439 /* mode should be APPEND_INO or UPDATE_INO */
440 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
441 {
442         struct inode_management *im = &sbi->im[mode];
443         struct ino_entry *e;
444
445         spin_lock(&im->ino_lock);
446         e = radix_tree_lookup(&im->ino_root, ino);
447         spin_unlock(&im->ino_lock);
448         return e ? true : false;
449 }
450
451 void release_ino_entry(struct f2fs_sb_info *sbi)
452 {
453         struct ino_entry *e, *tmp;
454         int i;
455
456         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
457                 struct inode_management *im = &sbi->im[i];
458
459                 spin_lock(&im->ino_lock);
460                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
461                         list_del(&e->list);
462                         radix_tree_delete(&im->ino_root, e->ino);
463                         kmem_cache_free(ino_entry_slab, e);
464                         im->ino_num--;
465                 }
466                 spin_unlock(&im->ino_lock);
467         }
468 }
469
470 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
471 {
472         struct inode_management *im = &sbi->im[ORPHAN_INO];
473         int err = 0;
474
475         spin_lock(&im->ino_lock);
476         if (unlikely(im->ino_num >= sbi->max_orphans))
477                 err = -ENOSPC;
478         else
479                 im->ino_num++;
480         spin_unlock(&im->ino_lock);
481
482         return err;
483 }
484
485 void release_orphan_inode(struct f2fs_sb_info *sbi)
486 {
487         struct inode_management *im = &sbi->im[ORPHAN_INO];
488
489         spin_lock(&im->ino_lock);
490         f2fs_bug_on(sbi, im->ino_num == 0);
491         im->ino_num--;
492         spin_unlock(&im->ino_lock);
493 }
494
495 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
496 {
497         /* add new orphan ino entry into list */
498         __add_ino_entry(sbi, ino, ORPHAN_INO);
499 }
500
501 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
502 {
503         /* remove orphan entry from orphan list */
504         __remove_ino_entry(sbi, ino, ORPHAN_INO);
505 }
506
507 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
508 {
509         struct inode *inode;
510
511         inode = f2fs_iget(sbi->sb, ino);
512         if (IS_ERR(inode)) {
513                 /*
514                  * there should be a bug that we can't find the entry
515                  * to orphan inode.
516                  */
517                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
518                 return PTR_ERR(inode);
519         }
520
521         clear_nlink(inode);
522
523         /* truncate all the data during iput */
524         iput(inode);
525         return 0;
526 }
527
528 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
529 {
530         block_t start_blk, orphan_blocks, i, j;
531         int err;
532
533         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
534                 return 0;
535
536         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
537         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
538
539         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
540
541         for (i = 0; i < orphan_blocks; i++) {
542                 struct page *page = get_meta_page(sbi, start_blk + i);
543                 struct f2fs_orphan_block *orphan_blk;
544
545                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
546                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
547                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
548                         err = recover_orphan_inode(sbi, ino);
549                         if (err) {
550                                 f2fs_put_page(page, 1);
551                                 return err;
552                         }
553                 }
554                 f2fs_put_page(page, 1);
555         }
556         /* clear Orphan Flag */
557         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
558         return 0;
559 }
560
561 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
562 {
563         struct list_head *head;
564         struct f2fs_orphan_block *orphan_blk = NULL;
565         unsigned int nentries = 0;
566         unsigned short index = 1;
567         unsigned short orphan_blocks;
568         struct page *page = NULL;
569         struct ino_entry *orphan = NULL;
570         struct inode_management *im = &sbi->im[ORPHAN_INO];
571
572         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
573
574         /*
575          * we don't need to do spin_lock(&im->ino_lock) here, since all the
576          * orphan inode operations are covered under f2fs_lock_op().
577          * And, spin_lock should be avoided due to page operations below.
578          */
579         head = &im->ino_list;
580
581         /* loop for each orphan inode entry and write them in Jornal block */
582         list_for_each_entry(orphan, head, list) {
583                 if (!page) {
584                         page = grab_meta_page(sbi, start_blk++);
585                         orphan_blk =
586                                 (struct f2fs_orphan_block *)page_address(page);
587                         memset(orphan_blk, 0, sizeof(*orphan_blk));
588                 }
589
590                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
591
592                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
593                         /*
594                          * an orphan block is full of 1020 entries,
595                          * then we need to flush current orphan blocks
596                          * and bring another one in memory
597                          */
598                         orphan_blk->blk_addr = cpu_to_le16(index);
599                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
600                         orphan_blk->entry_count = cpu_to_le32(nentries);
601                         set_page_dirty(page);
602                         f2fs_put_page(page, 1);
603                         index++;
604                         nentries = 0;
605                         page = NULL;
606                 }
607         }
608
609         if (page) {
610                 orphan_blk->blk_addr = cpu_to_le16(index);
611                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
612                 orphan_blk->entry_count = cpu_to_le32(nentries);
613                 set_page_dirty(page);
614                 f2fs_put_page(page, 1);
615         }
616 }
617
618 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
619                                 block_t cp_addr, unsigned long long *version)
620 {
621         struct page *cp_page_1, *cp_page_2 = NULL;
622         unsigned long blk_size = sbi->blocksize;
623         struct f2fs_checkpoint *cp_block;
624         unsigned long long cur_version = 0, pre_version = 0;
625         size_t crc_offset;
626         __u32 crc = 0;
627
628         /* Read the 1st cp block in this CP pack */
629         cp_page_1 = get_meta_page(sbi, cp_addr);
630
631         /* get the version number */
632         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
633         crc_offset = le32_to_cpu(cp_block->checksum_offset);
634         if (crc_offset >= blk_size)
635                 goto invalid_cp1;
636
637         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
638         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
639                 goto invalid_cp1;
640
641         pre_version = cur_cp_version(cp_block);
642
643         /* Read the 2nd cp block in this CP pack */
644         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
645         cp_page_2 = get_meta_page(sbi, cp_addr);
646
647         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
648         crc_offset = le32_to_cpu(cp_block->checksum_offset);
649         if (crc_offset >= blk_size)
650                 goto invalid_cp2;
651
652         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
653         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
654                 goto invalid_cp2;
655
656         cur_version = cur_cp_version(cp_block);
657
658         if (cur_version == pre_version) {
659                 *version = cur_version;
660                 f2fs_put_page(cp_page_2, 1);
661                 return cp_page_1;
662         }
663 invalid_cp2:
664         f2fs_put_page(cp_page_2, 1);
665 invalid_cp1:
666         f2fs_put_page(cp_page_1, 1);
667         return NULL;
668 }
669
670 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
671 {
672         struct f2fs_checkpoint *cp_block;
673         struct f2fs_super_block *fsb = sbi->raw_super;
674         struct page *cp1, *cp2, *cur_page;
675         unsigned long blk_size = sbi->blocksize;
676         unsigned long long cp1_version = 0, cp2_version = 0;
677         unsigned long long cp_start_blk_no;
678         unsigned int cp_blks = 1 + __cp_payload(sbi);
679         block_t cp_blk_no;
680         int i;
681
682         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
683         if (!sbi->ckpt)
684                 return -ENOMEM;
685         /*
686          * Finding out valid cp block involves read both
687          * sets( cp pack1 and cp pack 2)
688          */
689         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
690         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
691
692         /* The second checkpoint pack should start at the next segment */
693         cp_start_blk_no += ((unsigned long long)1) <<
694                                 le32_to_cpu(fsb->log_blocks_per_seg);
695         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
696
697         if (cp1 && cp2) {
698                 if (ver_after(cp2_version, cp1_version))
699                         cur_page = cp2;
700                 else
701                         cur_page = cp1;
702         } else if (cp1) {
703                 cur_page = cp1;
704         } else if (cp2) {
705                 cur_page = cp2;
706         } else {
707                 goto fail_no_cp;
708         }
709
710         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
711         memcpy(sbi->ckpt, cp_block, blk_size);
712
713         /* Sanity checking of checkpoint */
714         if (sanity_check_ckpt(sbi))
715                 goto fail_no_cp;
716
717         if (cp_blks <= 1)
718                 goto done;
719
720         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
721         if (cur_page == cp2)
722                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
723
724         for (i = 1; i < cp_blks; i++) {
725                 void *sit_bitmap_ptr;
726                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
727
728                 cur_page = get_meta_page(sbi, cp_blk_no + i);
729                 sit_bitmap_ptr = page_address(cur_page);
730                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
731                 f2fs_put_page(cur_page, 1);
732         }
733 done:
734         f2fs_put_page(cp1, 1);
735         f2fs_put_page(cp2, 1);
736         return 0;
737
738 fail_no_cp:
739         kfree(sbi->ckpt);
740         return -EINVAL;
741 }
742
743 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
744 {
745         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746         struct f2fs_inode_info *fi = F2FS_I(inode);
747         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
748
749         if (is_inode_flag_set(fi, flag))
750                 return;
751
752         set_inode_flag(fi, flag);
753         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
754         stat_inc_dirty_inode(sbi, type);
755 }
756
757 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
758 {
759         struct f2fs_inode_info *fi = F2FS_I(inode);
760         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
761
762         if (get_dirty_pages(inode) ||
763                         !is_inode_flag_set(F2FS_I(inode), flag))
764                 return;
765
766         list_del_init(&fi->dirty_list);
767         clear_inode_flag(fi, flag);
768         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
769 }
770
771 void update_dirty_page(struct inode *inode, struct page *page)
772 {
773         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
774         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
775
776         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
777                         !S_ISLNK(inode->i_mode))
778                 return;
779
780         spin_lock(&sbi->inode_lock[type]);
781         __add_dirty_inode(inode, type);
782         inode_inc_dirty_pages(inode);
783         spin_unlock(&sbi->inode_lock[type]);
784
785         SetPagePrivate(page);
786         f2fs_trace_pid(page);
787 }
788
789 void add_dirty_dir_inode(struct inode *inode)
790 {
791         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
792
793         spin_lock(&sbi->inode_lock[DIR_INODE]);
794         __add_dirty_inode(inode, DIR_INODE);
795         spin_unlock(&sbi->inode_lock[DIR_INODE]);
796 }
797
798 void remove_dirty_inode(struct inode *inode)
799 {
800         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
801         struct f2fs_inode_info *fi = F2FS_I(inode);
802         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
803
804         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
805                         !S_ISLNK(inode->i_mode))
806                 return;
807
808         spin_lock(&sbi->inode_lock[type]);
809         __remove_dirty_inode(inode, type);
810         spin_unlock(&sbi->inode_lock[type]);
811
812         /* Only from the recovery routine */
813         if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
814                 clear_inode_flag(fi, FI_DELAY_IPUT);
815                 iput(inode);
816         }
817 }
818
819 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
820 {
821         struct list_head *head;
822         struct inode *inode;
823         struct f2fs_inode_info *fi;
824         bool is_dir = (type == DIR_INODE);
825
826         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
827                                 get_pages(sbi, is_dir ?
828                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
829 retry:
830         if (unlikely(f2fs_cp_error(sbi)))
831                 return -EIO;
832
833         spin_lock(&sbi->inode_lock[type]);
834
835         head = &sbi->inode_list[type];
836         if (list_empty(head)) {
837                 spin_unlock(&sbi->inode_lock[type]);
838                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
839                                 get_pages(sbi, is_dir ?
840                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
841                 return 0;
842         }
843         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
844         inode = igrab(&fi->vfs_inode);
845         spin_unlock(&sbi->inode_lock[type]);
846         if (inode) {
847                 filemap_fdatawrite(inode->i_mapping);
848                 iput(inode);
849         } else {
850                 /*
851                  * We should submit bio, since it exists several
852                  * wribacking dentry pages in the freeing inode.
853                  */
854                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
855                 cond_resched();
856         }
857         goto retry;
858 }
859
860 /*
861  * Freeze all the FS-operations for checkpoint.
862  */
863 static int block_operations(struct f2fs_sb_info *sbi)
864 {
865         struct writeback_control wbc = {
866                 .sync_mode = WB_SYNC_ALL,
867                 .nr_to_write = LONG_MAX,
868                 .for_reclaim = 0,
869         };
870         struct blk_plug plug;
871         int err = 0;
872
873         blk_start_plug(&plug);
874
875 retry_flush_dents:
876         f2fs_lock_all(sbi);
877         /* write all the dirty dentry pages */
878         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
879                 f2fs_unlock_all(sbi);
880                 err = sync_dirty_inodes(sbi, DIR_INODE);
881                 if (err)
882                         goto out;
883                 goto retry_flush_dents;
884         }
885
886         /*
887          * POR: we should ensure that there are no dirty node pages
888          * until finishing nat/sit flush.
889          */
890 retry_flush_nodes:
891         down_write(&sbi->node_write);
892
893         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
894                 up_write(&sbi->node_write);
895                 err = sync_node_pages(sbi, 0, &wbc);
896                 if (err) {
897                         f2fs_unlock_all(sbi);
898                         goto out;
899                 }
900                 goto retry_flush_nodes;
901         }
902 out:
903         blk_finish_plug(&plug);
904         return err;
905 }
906
907 static void unblock_operations(struct f2fs_sb_info *sbi)
908 {
909         up_write(&sbi->node_write);
910         f2fs_unlock_all(sbi);
911 }
912
913 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
914 {
915         DEFINE_WAIT(wait);
916
917         for (;;) {
918                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
919
920                 if (!get_pages(sbi, F2FS_WRITEBACK))
921                         break;
922
923                 io_schedule_timeout(5*HZ);
924         }
925         finish_wait(&sbi->cp_wait, &wait);
926 }
927
928 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
929 {
930         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
931         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
932         struct f2fs_nm_info *nm_i = NM_I(sbi);
933         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
934         nid_t last_nid = nm_i->next_scan_nid;
935         block_t start_blk;
936         unsigned int data_sum_blocks, orphan_blocks;
937         __u32 crc32 = 0;
938         int i;
939         int cp_payload_blks = __cp_payload(sbi);
940         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
941         bool invalidate = false;
942         struct super_block *sb = sbi->sb;
943         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
944         u64 kbytes_written;
945
946         /*
947          * This avoids to conduct wrong roll-forward operations and uses
948          * metapages, so should be called prior to sync_meta_pages below.
949          */
950         if (discard_next_dnode(sbi, discard_blk))
951                 invalidate = true;
952
953         /* Flush all the NAT/SIT pages */
954         while (get_pages(sbi, F2FS_DIRTY_META)) {
955                 sync_meta_pages(sbi, META, LONG_MAX);
956                 if (unlikely(f2fs_cp_error(sbi)))
957                         return -EIO;
958         }
959
960         next_free_nid(sbi, &last_nid);
961
962         /*
963          * modify checkpoint
964          * version number is already updated
965          */
966         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
967         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
968         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
969         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
970                 ckpt->cur_node_segno[i] =
971                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
972                 ckpt->cur_node_blkoff[i] =
973                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
974                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
975                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
976         }
977         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
978                 ckpt->cur_data_segno[i] =
979                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
980                 ckpt->cur_data_blkoff[i] =
981                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
982                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
983                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
984         }
985
986         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
987         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
988         ckpt->next_free_nid = cpu_to_le32(last_nid);
989
990         /* 2 cp  + n data seg summary + orphan inode blocks */
991         data_sum_blocks = npages_for_summary_flush(sbi, false);
992         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
993                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
994         else
995                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
996
997         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
998         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
999                         orphan_blocks);
1000
1001         if (__remain_node_summaries(cpc->reason))
1002                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003                                 cp_payload_blks + data_sum_blocks +
1004                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1005         else
1006                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007                                 cp_payload_blks + data_sum_blocks +
1008                                 orphan_blocks);
1009
1010         if (cpc->reason == CP_UMOUNT)
1011                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012         else
1013                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1014
1015         if (cpc->reason == CP_FASTBOOT)
1016                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017         else
1018                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019
1020         if (orphan_num)
1021                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022         else
1023                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024
1025         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027
1028         /* update SIT/NAT bitmap */
1029         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031
1032         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033         *((__le32 *)((unsigned char *)ckpt +
1034                                 le32_to_cpu(ckpt->checksum_offset)))
1035                                 = cpu_to_le32(crc32);
1036
1037         start_blk = __start_cp_addr(sbi);
1038
1039         /* need to wait for end_io results */
1040         wait_on_all_pages_writeback(sbi);
1041         if (unlikely(f2fs_cp_error(sbi)))
1042                 return -EIO;
1043
1044         /* write out checkpoint buffer at block 0 */
1045         update_meta_page(sbi, ckpt, start_blk++);
1046
1047         for (i = 1; i < 1 + cp_payload_blks; i++)
1048                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049                                                         start_blk++);
1050
1051         if (orphan_num) {
1052                 write_orphan_inodes(sbi, start_blk);
1053                 start_blk += orphan_blocks;
1054         }
1055
1056         write_data_summaries(sbi, start_blk);
1057         start_blk += data_sum_blocks;
1058
1059         /* Record write statistics in the hot node summary */
1060         kbytes_written = sbi->kbytes_written;
1061         if (sb->s_bdev->bd_part)
1062                 kbytes_written += BD_PART_WRITTEN(sbi);
1063
1064         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065
1066         if (__remain_node_summaries(cpc->reason)) {
1067                 write_node_summaries(sbi, start_blk);
1068                 start_blk += NR_CURSEG_NODE_TYPE;
1069         }
1070
1071         /* writeout checkpoint block */
1072         update_meta_page(sbi, ckpt, start_blk);
1073
1074         /* wait for previous submitted node/meta pages writeback */
1075         wait_on_all_pages_writeback(sbi);
1076
1077         if (unlikely(f2fs_cp_error(sbi)))
1078                 return -EIO;
1079
1080         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082
1083         /* update user_block_counts */
1084         sbi->last_valid_block_count = sbi->total_valid_block_count;
1085         sbi->alloc_valid_block_count = 0;
1086
1087         /* Here, we only have one bio having CP pack */
1088         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1089
1090         /* wait for previous submitted meta pages writeback */
1091         wait_on_all_pages_writeback(sbi);
1092
1093         /*
1094          * invalidate meta page which is used temporarily for zeroing out
1095          * block at the end of warm node chain.
1096          */
1097         if (invalidate)
1098                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099                                                                 discard_blk);
1100
1101         release_ino_entry(sbi);
1102
1103         if (unlikely(f2fs_cp_error(sbi)))
1104                 return -EIO;
1105
1106         clear_prefree_segments(sbi, cpc);
1107         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1108
1109         return 0;
1110 }
1111
1112 /*
1113  * We guarantee that this checkpoint procedure will not fail.
1114  */
1115 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116 {
1117         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118         unsigned long long ckpt_ver;
1119         int err = 0;
1120
1121         mutex_lock(&sbi->cp_mutex);
1122
1123         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126                 goto out;
1127         if (unlikely(f2fs_cp_error(sbi))) {
1128                 err = -EIO;
1129                 goto out;
1130         }
1131         if (f2fs_readonly(sbi->sb)) {
1132                 err = -EROFS;
1133                 goto out;
1134         }
1135
1136         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137
1138         err = block_operations(sbi);
1139         if (err)
1140                 goto out;
1141
1142         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143
1144         f2fs_flush_merged_bios(sbi);
1145
1146         /*
1147          * update checkpoint pack index
1148          * Increase the version number so that
1149          * SIT entries and seg summaries are written at correct place
1150          */
1151         ckpt_ver = cur_cp_version(ckpt);
1152         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153
1154         /* write cached NAT/SIT entries to NAT/SIT area */
1155         flush_nat_entries(sbi);
1156         flush_sit_entries(sbi, cpc);
1157
1158         /* unlock all the fs_lock[] in do_checkpoint() */
1159         err = do_checkpoint(sbi, cpc);
1160
1161         unblock_operations(sbi);
1162         stat_inc_cp_count(sbi->stat_info);
1163
1164         if (cpc->reason == CP_RECOVERY)
1165                 f2fs_msg(sbi->sb, KERN_NOTICE,
1166                         "checkpoint: version = %llx", ckpt_ver);
1167
1168         /* do checkpoint periodically */
1169         f2fs_update_time(sbi, CP_TIME);
1170         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171 out:
1172         mutex_unlock(&sbi->cp_mutex);
1173         return err;
1174 }
1175
1176 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177 {
1178         int i;
1179
1180         for (i = 0; i < MAX_INO_ENTRY; i++) {
1181                 struct inode_management *im = &sbi->im[i];
1182
1183                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184                 spin_lock_init(&im->ino_lock);
1185                 INIT_LIST_HEAD(&im->ino_list);
1186                 im->ino_num = 0;
1187         }
1188
1189         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191                                 F2FS_ORPHANS_PER_BLOCK;
1192 }
1193
1194 int __init create_checkpoint_caches(void)
1195 {
1196         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197                         sizeof(struct ino_entry));
1198         if (!ino_entry_slab)
1199                 return -ENOMEM;
1200         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201                         sizeof(struct inode_entry));
1202         if (!inode_entry_slab) {
1203                 kmem_cache_destroy(ino_entry_slab);
1204                 return -ENOMEM;
1205         }
1206         return 0;
1207 }
1208
1209 void destroy_checkpoint_caches(void)
1210 {
1211         kmem_cache_destroy(ino_entry_slab);
1212         kmem_cache_destroy(inode_entry_slab);
1213 }