Merge tag 'sh-for-v6.7-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/glaubit...
[linux-block.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h"       /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68                              unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73                                         struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75                                   struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86                                             unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89                                       struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124
125 static const struct fs_context_operations ext4_context_ops = {
126         .parse_param    = ext4_parse_param,
127         .get_tree       = ext4_get_tree,
128         .reconfigure    = ext4_reconfigure,
129         .free           = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135         .owner                  = THIS_MODULE,
136         .name                   = "ext2",
137         .init_fs_context        = ext4_init_fs_context,
138         .parameters             = ext4_param_specs,
139         .kill_sb                = ext4_kill_sb,
140         .fs_flags               = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151         .owner                  = THIS_MODULE,
152         .name                   = "ext3",
153         .init_fs_context        = ext4_init_fs_context,
154         .parameters             = ext4_param_specs,
155         .kill_sb                = ext4_kill_sb,
156         .fs_flags               = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164                                   bh_end_io_t *end_io)
165 {
166         /*
167          * buffer's verified bit is no longer valid after reading from
168          * disk again due to write out error, clear it to make sure we
169          * recheck the buffer contents.
170          */
171         clear_buffer_verified(bh);
172
173         bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174         get_bh(bh);
175         submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179                          bh_end_io_t *end_io)
180 {
181         BUG_ON(!buffer_locked(bh));
182
183         if (ext4_buffer_uptodate(bh)) {
184                 unlock_buffer(bh);
185                 return;
186         }
187         __ext4_read_bh(bh, op_flags, end_io);
188 }
189
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192         BUG_ON(!buffer_locked(bh));
193
194         if (ext4_buffer_uptodate(bh)) {
195                 unlock_buffer(bh);
196                 return 0;
197         }
198
199         __ext4_read_bh(bh, op_flags, end_io);
200
201         wait_on_buffer(bh);
202         if (buffer_uptodate(bh))
203                 return 0;
204         return -EIO;
205 }
206
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209         lock_buffer(bh);
210         if (!wait) {
211                 ext4_read_bh_nowait(bh, op_flags, NULL);
212                 return 0;
213         }
214         return ext4_read_bh(bh, op_flags, NULL);
215 }
216
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224                                                sector_t block,
225                                                blk_opf_t op_flags, gfp_t gfp)
226 {
227         struct buffer_head *bh;
228         int ret;
229
230         bh = sb_getblk_gfp(sb, block, gfp);
231         if (bh == NULL)
232                 return ERR_PTR(-ENOMEM);
233         if (ext4_buffer_uptodate(bh))
234                 return bh;
235
236         ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237         if (ret) {
238                 put_bh(bh);
239                 return ERR_PTR(ret);
240         }
241         return bh;
242 }
243
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245                                    blk_opf_t op_flags)
246 {
247         return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
248 }
249
250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
251                                             sector_t block)
252 {
253         return __ext4_sb_bread_gfp(sb, block, 0, 0);
254 }
255
256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
257 {
258         struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
259
260         if (likely(bh)) {
261                 if (trylock_buffer(bh))
262                         ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
263                 brelse(bh);
264         }
265 }
266
267 static int ext4_verify_csum_type(struct super_block *sb,
268                                  struct ext4_super_block *es)
269 {
270         if (!ext4_has_feature_metadata_csum(sb))
271                 return 1;
272
273         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
274 }
275
276 __le32 ext4_superblock_csum(struct super_block *sb,
277                             struct ext4_super_block *es)
278 {
279         struct ext4_sb_info *sbi = EXT4_SB(sb);
280         int offset = offsetof(struct ext4_super_block, s_checksum);
281         __u32 csum;
282
283         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
284
285         return cpu_to_le32(csum);
286 }
287
288 static int ext4_superblock_csum_verify(struct super_block *sb,
289                                        struct ext4_super_block *es)
290 {
291         if (!ext4_has_metadata_csum(sb))
292                 return 1;
293
294         return es->s_checksum == ext4_superblock_csum(sb, es);
295 }
296
297 void ext4_superblock_csum_set(struct super_block *sb)
298 {
299         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
300
301         if (!ext4_has_metadata_csum(sb))
302                 return;
303
304         es->s_checksum = ext4_superblock_csum(sb, es);
305 }
306
307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
308                                struct ext4_group_desc *bg)
309 {
310         return le32_to_cpu(bg->bg_block_bitmap_lo) |
311                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
312                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
313 }
314
315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
316                                struct ext4_group_desc *bg)
317 {
318         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
319                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
320                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
321 }
322
323 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
324                               struct ext4_group_desc *bg)
325 {
326         return le32_to_cpu(bg->bg_inode_table_lo) |
327                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
328                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
329 }
330
331 __u32 ext4_free_group_clusters(struct super_block *sb,
332                                struct ext4_group_desc *bg)
333 {
334         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
335                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
336                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
337 }
338
339 __u32 ext4_free_inodes_count(struct super_block *sb,
340                               struct ext4_group_desc *bg)
341 {
342         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
343                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
344                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
345 }
346
347 __u32 ext4_used_dirs_count(struct super_block *sb,
348                               struct ext4_group_desc *bg)
349 {
350         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
351                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
352                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
353 }
354
355 __u32 ext4_itable_unused_count(struct super_block *sb,
356                               struct ext4_group_desc *bg)
357 {
358         return le16_to_cpu(bg->bg_itable_unused_lo) |
359                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
360                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
361 }
362
363 void ext4_block_bitmap_set(struct super_block *sb,
364                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
365 {
366         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
367         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
368                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
369 }
370
371 void ext4_inode_bitmap_set(struct super_block *sb,
372                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 {
374         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
375         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
376                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
377 }
378
379 void ext4_inode_table_set(struct super_block *sb,
380                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 {
382         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
383         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
384                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
385 }
386
387 void ext4_free_group_clusters_set(struct super_block *sb,
388                                   struct ext4_group_desc *bg, __u32 count)
389 {
390         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
391         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
392                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
393 }
394
395 void ext4_free_inodes_set(struct super_block *sb,
396                           struct ext4_group_desc *bg, __u32 count)
397 {
398         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
399         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
400                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
401 }
402
403 void ext4_used_dirs_set(struct super_block *sb,
404                           struct ext4_group_desc *bg, __u32 count)
405 {
406         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
407         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
408                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
409 }
410
411 void ext4_itable_unused_set(struct super_block *sb,
412                           struct ext4_group_desc *bg, __u32 count)
413 {
414         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
415         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
416                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
417 }
418
419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
420 {
421         now = clamp_val(now, 0, (1ull << 40) - 1);
422
423         *lo = cpu_to_le32(lower_32_bits(now));
424         *hi = upper_32_bits(now);
425 }
426
427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
428 {
429         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
430 }
431 #define ext4_update_tstamp(es, tstamp) \
432         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
433                              ktime_get_real_seconds())
434 #define ext4_get_tstamp(es, tstamp) \
435         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436
437 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
438 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
439
440 /*
441  * The ext4_maybe_update_superblock() function checks and updates the
442  * superblock if needed.
443  *
444  * This function is designed to update the on-disk superblock only under
445  * certain conditions to prevent excessive disk writes and unnecessary
446  * waking of the disk from sleep. The superblock will be updated if:
447  * 1. More than an hour has passed since the last superblock update, and
448  * 2. More than 16MB have been written since the last superblock update.
449  *
450  * @sb: The superblock
451  */
452 static void ext4_maybe_update_superblock(struct super_block *sb)
453 {
454         struct ext4_sb_info *sbi = EXT4_SB(sb);
455         struct ext4_super_block *es = sbi->s_es;
456         journal_t *journal = sbi->s_journal;
457         time64_t now;
458         __u64 last_update;
459         __u64 lifetime_write_kbytes;
460         __u64 diff_size;
461
462         if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
463             !journal || (journal->j_flags & JBD2_UNMOUNT))
464                 return;
465
466         now = ktime_get_real_seconds();
467         last_update = ext4_get_tstamp(es, s_wtime);
468
469         if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
470                 return;
471
472         lifetime_write_kbytes = sbi->s_kbytes_written +
473                 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
474                   sbi->s_sectors_written_start) >> 1);
475
476         /* Get the number of kilobytes not written to disk to account
477          * for statistics and compare with a multiple of 16 MB. This
478          * is used to determine when the next superblock commit should
479          * occur (i.e. not more often than once per 16MB if there was
480          * less written in an hour).
481          */
482         diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
483
484         if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
485                 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
486 }
487
488 /*
489  * The del_gendisk() function uninitializes the disk-specific data
490  * structures, including the bdi structure, without telling anyone
491  * else.  Once this happens, any attempt to call mark_buffer_dirty()
492  * (for example, by ext4_commit_super), will cause a kernel OOPS.
493  * This is a kludge to prevent these oops until we can put in a proper
494  * hook in del_gendisk() to inform the VFS and file system layers.
495  */
496 static int block_device_ejected(struct super_block *sb)
497 {
498         struct inode *bd_inode = sb->s_bdev->bd_inode;
499         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
500
501         return bdi->dev == NULL;
502 }
503
504 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
505 {
506         struct super_block              *sb = journal->j_private;
507         struct ext4_sb_info             *sbi = EXT4_SB(sb);
508         int                             error = is_journal_aborted(journal);
509         struct ext4_journal_cb_entry    *jce;
510
511         BUG_ON(txn->t_state == T_FINISHED);
512
513         ext4_process_freed_data(sb, txn->t_tid);
514         ext4_maybe_update_superblock(sb);
515
516         spin_lock(&sbi->s_md_lock);
517         while (!list_empty(&txn->t_private_list)) {
518                 jce = list_entry(txn->t_private_list.next,
519                                  struct ext4_journal_cb_entry, jce_list);
520                 list_del_init(&jce->jce_list);
521                 spin_unlock(&sbi->s_md_lock);
522                 jce->jce_func(sb, jce, error);
523                 spin_lock(&sbi->s_md_lock);
524         }
525         spin_unlock(&sbi->s_md_lock);
526 }
527
528 /*
529  * This writepage callback for write_cache_pages()
530  * takes care of a few cases after page cleaning.
531  *
532  * write_cache_pages() already checks for dirty pages
533  * and calls clear_page_dirty_for_io(), which we want,
534  * to write protect the pages.
535  *
536  * However, we may have to redirty a page (see below.)
537  */
538 static int ext4_journalled_writepage_callback(struct folio *folio,
539                                               struct writeback_control *wbc,
540                                               void *data)
541 {
542         transaction_t *transaction = (transaction_t *) data;
543         struct buffer_head *bh, *head;
544         struct journal_head *jh;
545
546         bh = head = folio_buffers(folio);
547         do {
548                 /*
549                  * We have to redirty a page in these cases:
550                  * 1) If buffer is dirty, it means the page was dirty because it
551                  * contains a buffer that needs checkpointing. So the dirty bit
552                  * needs to be preserved so that checkpointing writes the buffer
553                  * properly.
554                  * 2) If buffer is not part of the committing transaction
555                  * (we may have just accidentally come across this buffer because
556                  * inode range tracking is not exact) or if the currently running
557                  * transaction already contains this buffer as well, dirty bit
558                  * needs to be preserved so that the buffer gets writeprotected
559                  * properly on running transaction's commit.
560                  */
561                 jh = bh2jh(bh);
562                 if (buffer_dirty(bh) ||
563                     (jh && (jh->b_transaction != transaction ||
564                             jh->b_next_transaction))) {
565                         folio_redirty_for_writepage(wbc, folio);
566                         goto out;
567                 }
568         } while ((bh = bh->b_this_page) != head);
569
570 out:
571         return AOP_WRITEPAGE_ACTIVATE;
572 }
573
574 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
575 {
576         struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
577         struct writeback_control wbc = {
578                 .sync_mode =  WB_SYNC_ALL,
579                 .nr_to_write = LONG_MAX,
580                 .range_start = jinode->i_dirty_start,
581                 .range_end = jinode->i_dirty_end,
582         };
583
584         return write_cache_pages(mapping, &wbc,
585                                  ext4_journalled_writepage_callback,
586                                  jinode->i_transaction);
587 }
588
589 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
590 {
591         int ret;
592
593         if (ext4_should_journal_data(jinode->i_vfs_inode))
594                 ret = ext4_journalled_submit_inode_data_buffers(jinode);
595         else
596                 ret = ext4_normal_submit_inode_data_buffers(jinode);
597         return ret;
598 }
599
600 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
601 {
602         int ret = 0;
603
604         if (!ext4_should_journal_data(jinode->i_vfs_inode))
605                 ret = jbd2_journal_finish_inode_data_buffers(jinode);
606
607         return ret;
608 }
609
610 static bool system_going_down(void)
611 {
612         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
613                 || system_state == SYSTEM_RESTART;
614 }
615
616 struct ext4_err_translation {
617         int code;
618         int errno;
619 };
620
621 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
622
623 static struct ext4_err_translation err_translation[] = {
624         EXT4_ERR_TRANSLATE(EIO),
625         EXT4_ERR_TRANSLATE(ENOMEM),
626         EXT4_ERR_TRANSLATE(EFSBADCRC),
627         EXT4_ERR_TRANSLATE(EFSCORRUPTED),
628         EXT4_ERR_TRANSLATE(ENOSPC),
629         EXT4_ERR_TRANSLATE(ENOKEY),
630         EXT4_ERR_TRANSLATE(EROFS),
631         EXT4_ERR_TRANSLATE(EFBIG),
632         EXT4_ERR_TRANSLATE(EEXIST),
633         EXT4_ERR_TRANSLATE(ERANGE),
634         EXT4_ERR_TRANSLATE(EOVERFLOW),
635         EXT4_ERR_TRANSLATE(EBUSY),
636         EXT4_ERR_TRANSLATE(ENOTDIR),
637         EXT4_ERR_TRANSLATE(ENOTEMPTY),
638         EXT4_ERR_TRANSLATE(ESHUTDOWN),
639         EXT4_ERR_TRANSLATE(EFAULT),
640 };
641
642 static int ext4_errno_to_code(int errno)
643 {
644         int i;
645
646         for (i = 0; i < ARRAY_SIZE(err_translation); i++)
647                 if (err_translation[i].errno == errno)
648                         return err_translation[i].code;
649         return EXT4_ERR_UNKNOWN;
650 }
651
652 static void save_error_info(struct super_block *sb, int error,
653                             __u32 ino, __u64 block,
654                             const char *func, unsigned int line)
655 {
656         struct ext4_sb_info *sbi = EXT4_SB(sb);
657
658         /* We default to EFSCORRUPTED error... */
659         if (error == 0)
660                 error = EFSCORRUPTED;
661
662         spin_lock(&sbi->s_error_lock);
663         sbi->s_add_error_count++;
664         sbi->s_last_error_code = error;
665         sbi->s_last_error_line = line;
666         sbi->s_last_error_ino = ino;
667         sbi->s_last_error_block = block;
668         sbi->s_last_error_func = func;
669         sbi->s_last_error_time = ktime_get_real_seconds();
670         if (!sbi->s_first_error_time) {
671                 sbi->s_first_error_code = error;
672                 sbi->s_first_error_line = line;
673                 sbi->s_first_error_ino = ino;
674                 sbi->s_first_error_block = block;
675                 sbi->s_first_error_func = func;
676                 sbi->s_first_error_time = sbi->s_last_error_time;
677         }
678         spin_unlock(&sbi->s_error_lock);
679 }
680
681 /* Deal with the reporting of failure conditions on a filesystem such as
682  * inconsistencies detected or read IO failures.
683  *
684  * On ext2, we can store the error state of the filesystem in the
685  * superblock.  That is not possible on ext4, because we may have other
686  * write ordering constraints on the superblock which prevent us from
687  * writing it out straight away; and given that the journal is about to
688  * be aborted, we can't rely on the current, or future, transactions to
689  * write out the superblock safely.
690  *
691  * We'll just use the jbd2_journal_abort() error code to record an error in
692  * the journal instead.  On recovery, the journal will complain about
693  * that error until we've noted it down and cleared it.
694  *
695  * If force_ro is set, we unconditionally force the filesystem into an
696  * ABORT|READONLY state, unless the error response on the fs has been set to
697  * panic in which case we take the easy way out and panic immediately. This is
698  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
699  * at a critical moment in log management.
700  */
701 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
702                               __u32 ino, __u64 block,
703                               const char *func, unsigned int line)
704 {
705         journal_t *journal = EXT4_SB(sb)->s_journal;
706         bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
707
708         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
709         if (test_opt(sb, WARN_ON_ERROR))
710                 WARN_ON_ONCE(1);
711
712         if (!continue_fs && !sb_rdonly(sb)) {
713                 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
714                 if (journal)
715                         jbd2_journal_abort(journal, -EIO);
716         }
717
718         if (!bdev_read_only(sb->s_bdev)) {
719                 save_error_info(sb, error, ino, block, func, line);
720                 /*
721                  * In case the fs should keep running, we need to writeout
722                  * superblock through the journal. Due to lock ordering
723                  * constraints, it may not be safe to do it right here so we
724                  * defer superblock flushing to a workqueue.
725                  */
726                 if (continue_fs && journal)
727                         schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
728                 else
729                         ext4_commit_super(sb);
730         }
731
732         /*
733          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
734          * could panic during 'reboot -f' as the underlying device got already
735          * disabled.
736          */
737         if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
738                 panic("EXT4-fs (device %s): panic forced after error\n",
739                         sb->s_id);
740         }
741
742         if (sb_rdonly(sb) || continue_fs)
743                 return;
744
745         ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
746         /*
747          * Make sure updated value of ->s_mount_flags will be visible before
748          * ->s_flags update
749          */
750         smp_wmb();
751         sb->s_flags |= SB_RDONLY;
752 }
753
754 static void update_super_work(struct work_struct *work)
755 {
756         struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
757                                                 s_sb_upd_work);
758         journal_t *journal = sbi->s_journal;
759         handle_t *handle;
760
761         /*
762          * If the journal is still running, we have to write out superblock
763          * through the journal to avoid collisions of other journalled sb
764          * updates.
765          *
766          * We use directly jbd2 functions here to avoid recursing back into
767          * ext4 error handling code during handling of previous errors.
768          */
769         if (!sb_rdonly(sbi->s_sb) && journal) {
770                 struct buffer_head *sbh = sbi->s_sbh;
771                 bool call_notify_err = false;
772
773                 handle = jbd2_journal_start(journal, 1);
774                 if (IS_ERR(handle))
775                         goto write_directly;
776                 if (jbd2_journal_get_write_access(handle, sbh)) {
777                         jbd2_journal_stop(handle);
778                         goto write_directly;
779                 }
780
781                 if (sbi->s_add_error_count > 0)
782                         call_notify_err = true;
783
784                 ext4_update_super(sbi->s_sb);
785                 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
786                         ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
787                                  "superblock detected");
788                         clear_buffer_write_io_error(sbh);
789                         set_buffer_uptodate(sbh);
790                 }
791
792                 if (jbd2_journal_dirty_metadata(handle, sbh)) {
793                         jbd2_journal_stop(handle);
794                         goto write_directly;
795                 }
796                 jbd2_journal_stop(handle);
797
798                 if (call_notify_err)
799                         ext4_notify_error_sysfs(sbi);
800
801                 return;
802         }
803 write_directly:
804         /*
805          * Write through journal failed. Write sb directly to get error info
806          * out and hope for the best.
807          */
808         ext4_commit_super(sbi->s_sb);
809         ext4_notify_error_sysfs(sbi);
810 }
811
812 #define ext4_error_ratelimit(sb)                                        \
813                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
814                              "EXT4-fs error")
815
816 void __ext4_error(struct super_block *sb, const char *function,
817                   unsigned int line, bool force_ro, int error, __u64 block,
818                   const char *fmt, ...)
819 {
820         struct va_format vaf;
821         va_list args;
822
823         if (unlikely(ext4_forced_shutdown(sb)))
824                 return;
825
826         trace_ext4_error(sb, function, line);
827         if (ext4_error_ratelimit(sb)) {
828                 va_start(args, fmt);
829                 vaf.fmt = fmt;
830                 vaf.va = &args;
831                 printk(KERN_CRIT
832                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
833                        sb->s_id, function, line, current->comm, &vaf);
834                 va_end(args);
835         }
836         fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
837
838         ext4_handle_error(sb, force_ro, error, 0, block, function, line);
839 }
840
841 void __ext4_error_inode(struct inode *inode, const char *function,
842                         unsigned int line, ext4_fsblk_t block, int error,
843                         const char *fmt, ...)
844 {
845         va_list args;
846         struct va_format vaf;
847
848         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
849                 return;
850
851         trace_ext4_error(inode->i_sb, function, line);
852         if (ext4_error_ratelimit(inode->i_sb)) {
853                 va_start(args, fmt);
854                 vaf.fmt = fmt;
855                 vaf.va = &args;
856                 if (block)
857                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
858                                "inode #%lu: block %llu: comm %s: %pV\n",
859                                inode->i_sb->s_id, function, line, inode->i_ino,
860                                block, current->comm, &vaf);
861                 else
862                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
863                                "inode #%lu: comm %s: %pV\n",
864                                inode->i_sb->s_id, function, line, inode->i_ino,
865                                current->comm, &vaf);
866                 va_end(args);
867         }
868         fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
869
870         ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
871                           function, line);
872 }
873
874 void __ext4_error_file(struct file *file, const char *function,
875                        unsigned int line, ext4_fsblk_t block,
876                        const char *fmt, ...)
877 {
878         va_list args;
879         struct va_format vaf;
880         struct inode *inode = file_inode(file);
881         char pathname[80], *path;
882
883         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
884                 return;
885
886         trace_ext4_error(inode->i_sb, function, line);
887         if (ext4_error_ratelimit(inode->i_sb)) {
888                 path = file_path(file, pathname, sizeof(pathname));
889                 if (IS_ERR(path))
890                         path = "(unknown)";
891                 va_start(args, fmt);
892                 vaf.fmt = fmt;
893                 vaf.va = &args;
894                 if (block)
895                         printk(KERN_CRIT
896                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
897                                "block %llu: comm %s: path %s: %pV\n",
898                                inode->i_sb->s_id, function, line, inode->i_ino,
899                                block, current->comm, path, &vaf);
900                 else
901                         printk(KERN_CRIT
902                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
903                                "comm %s: path %s: %pV\n",
904                                inode->i_sb->s_id, function, line, inode->i_ino,
905                                current->comm, path, &vaf);
906                 va_end(args);
907         }
908         fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
909
910         ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
911                           function, line);
912 }
913
914 const char *ext4_decode_error(struct super_block *sb, int errno,
915                               char nbuf[16])
916 {
917         char *errstr = NULL;
918
919         switch (errno) {
920         case -EFSCORRUPTED:
921                 errstr = "Corrupt filesystem";
922                 break;
923         case -EFSBADCRC:
924                 errstr = "Filesystem failed CRC";
925                 break;
926         case -EIO:
927                 errstr = "IO failure";
928                 break;
929         case -ENOMEM:
930                 errstr = "Out of memory";
931                 break;
932         case -EROFS:
933                 if (!sb || (EXT4_SB(sb)->s_journal &&
934                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
935                         errstr = "Journal has aborted";
936                 else
937                         errstr = "Readonly filesystem";
938                 break;
939         default:
940                 /* If the caller passed in an extra buffer for unknown
941                  * errors, textualise them now.  Else we just return
942                  * NULL. */
943                 if (nbuf) {
944                         /* Check for truncated error codes... */
945                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
946                                 errstr = nbuf;
947                 }
948                 break;
949         }
950
951         return errstr;
952 }
953
954 /* __ext4_std_error decodes expected errors from journaling functions
955  * automatically and invokes the appropriate error response.  */
956
957 void __ext4_std_error(struct super_block *sb, const char *function,
958                       unsigned int line, int errno)
959 {
960         char nbuf[16];
961         const char *errstr;
962
963         if (unlikely(ext4_forced_shutdown(sb)))
964                 return;
965
966         /* Special case: if the error is EROFS, and we're not already
967          * inside a transaction, then there's really no point in logging
968          * an error. */
969         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
970                 return;
971
972         if (ext4_error_ratelimit(sb)) {
973                 errstr = ext4_decode_error(sb, errno, nbuf);
974                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
975                        sb->s_id, function, line, errstr);
976         }
977         fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
978
979         ext4_handle_error(sb, false, -errno, 0, 0, function, line);
980 }
981
982 void __ext4_msg(struct super_block *sb,
983                 const char *prefix, const char *fmt, ...)
984 {
985         struct va_format vaf;
986         va_list args;
987
988         if (sb) {
989                 atomic_inc(&EXT4_SB(sb)->s_msg_count);
990                 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
991                                   "EXT4-fs"))
992                         return;
993         }
994
995         va_start(args, fmt);
996         vaf.fmt = fmt;
997         vaf.va = &args;
998         if (sb)
999                 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1000         else
1001                 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1002         va_end(args);
1003 }
1004
1005 static int ext4_warning_ratelimit(struct super_block *sb)
1006 {
1007         atomic_inc(&EXT4_SB(sb)->s_warning_count);
1008         return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1009                             "EXT4-fs warning");
1010 }
1011
1012 void __ext4_warning(struct super_block *sb, const char *function,
1013                     unsigned int line, const char *fmt, ...)
1014 {
1015         struct va_format vaf;
1016         va_list args;
1017
1018         if (!ext4_warning_ratelimit(sb))
1019                 return;
1020
1021         va_start(args, fmt);
1022         vaf.fmt = fmt;
1023         vaf.va = &args;
1024         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1025                sb->s_id, function, line, &vaf);
1026         va_end(args);
1027 }
1028
1029 void __ext4_warning_inode(const struct inode *inode, const char *function,
1030                           unsigned int line, const char *fmt, ...)
1031 {
1032         struct va_format vaf;
1033         va_list args;
1034
1035         if (!ext4_warning_ratelimit(inode->i_sb))
1036                 return;
1037
1038         va_start(args, fmt);
1039         vaf.fmt = fmt;
1040         vaf.va = &args;
1041         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1042                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1043                function, line, inode->i_ino, current->comm, &vaf);
1044         va_end(args);
1045 }
1046
1047 void __ext4_grp_locked_error(const char *function, unsigned int line,
1048                              struct super_block *sb, ext4_group_t grp,
1049                              unsigned long ino, ext4_fsblk_t block,
1050                              const char *fmt, ...)
1051 __releases(bitlock)
1052 __acquires(bitlock)
1053 {
1054         struct va_format vaf;
1055         va_list args;
1056
1057         if (unlikely(ext4_forced_shutdown(sb)))
1058                 return;
1059
1060         trace_ext4_error(sb, function, line);
1061         if (ext4_error_ratelimit(sb)) {
1062                 va_start(args, fmt);
1063                 vaf.fmt = fmt;
1064                 vaf.va = &args;
1065                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1066                        sb->s_id, function, line, grp);
1067                 if (ino)
1068                         printk(KERN_CONT "inode %lu: ", ino);
1069                 if (block)
1070                         printk(KERN_CONT "block %llu:",
1071                                (unsigned long long) block);
1072                 printk(KERN_CONT "%pV\n", &vaf);
1073                 va_end(args);
1074         }
1075
1076         if (test_opt(sb, ERRORS_CONT)) {
1077                 if (test_opt(sb, WARN_ON_ERROR))
1078                         WARN_ON_ONCE(1);
1079                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1080                 if (!bdev_read_only(sb->s_bdev)) {
1081                         save_error_info(sb, EFSCORRUPTED, ino, block, function,
1082                                         line);
1083                         schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1084                 }
1085                 return;
1086         }
1087         ext4_unlock_group(sb, grp);
1088         ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1089         /*
1090          * We only get here in the ERRORS_RO case; relocking the group
1091          * may be dangerous, but nothing bad will happen since the
1092          * filesystem will have already been marked read/only and the
1093          * journal has been aborted.  We return 1 as a hint to callers
1094          * who might what to use the return value from
1095          * ext4_grp_locked_error() to distinguish between the
1096          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1097          * aggressively from the ext4 function in question, with a
1098          * more appropriate error code.
1099          */
1100         ext4_lock_group(sb, grp);
1101         return;
1102 }
1103
1104 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1105                                      ext4_group_t group,
1106                                      unsigned int flags)
1107 {
1108         struct ext4_sb_info *sbi = EXT4_SB(sb);
1109         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1110         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1111         int ret;
1112
1113         if (!grp || !gdp)
1114                 return;
1115         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1116                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1117                                             &grp->bb_state);
1118                 if (!ret)
1119                         percpu_counter_sub(&sbi->s_freeclusters_counter,
1120                                            grp->bb_free);
1121         }
1122
1123         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1124                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1125                                             &grp->bb_state);
1126                 if (!ret && gdp) {
1127                         int count;
1128
1129                         count = ext4_free_inodes_count(sb, gdp);
1130                         percpu_counter_sub(&sbi->s_freeinodes_counter,
1131                                            count);
1132                 }
1133         }
1134 }
1135
1136 void ext4_update_dynamic_rev(struct super_block *sb)
1137 {
1138         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1139
1140         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1141                 return;
1142
1143         ext4_warning(sb,
1144                      "updating to rev %d because of new feature flag, "
1145                      "running e2fsck is recommended",
1146                      EXT4_DYNAMIC_REV);
1147
1148         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1149         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1150         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1151         /* leave es->s_feature_*compat flags alone */
1152         /* es->s_uuid will be set by e2fsck if empty */
1153
1154         /*
1155          * The rest of the superblock fields should be zero, and if not it
1156          * means they are likely already in use, so leave them alone.  We
1157          * can leave it up to e2fsck to clean up any inconsistencies there.
1158          */
1159 }
1160
1161 static inline struct inode *orphan_list_entry(struct list_head *l)
1162 {
1163         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1164 }
1165
1166 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1167 {
1168         struct list_head *l;
1169
1170         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1171                  le32_to_cpu(sbi->s_es->s_last_orphan));
1172
1173         printk(KERN_ERR "sb_info orphan list:\n");
1174         list_for_each(l, &sbi->s_orphan) {
1175                 struct inode *inode = orphan_list_entry(l);
1176                 printk(KERN_ERR "  "
1177                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1178                        inode->i_sb->s_id, inode->i_ino, inode,
1179                        inode->i_mode, inode->i_nlink,
1180                        NEXT_ORPHAN(inode));
1181         }
1182 }
1183
1184 #ifdef CONFIG_QUOTA
1185 static int ext4_quota_off(struct super_block *sb, int type);
1186
1187 static inline void ext4_quotas_off(struct super_block *sb, int type)
1188 {
1189         BUG_ON(type > EXT4_MAXQUOTAS);
1190
1191         /* Use our quota_off function to clear inode flags etc. */
1192         for (type--; type >= 0; type--)
1193                 ext4_quota_off(sb, type);
1194 }
1195
1196 /*
1197  * This is a helper function which is used in the mount/remount
1198  * codepaths (which holds s_umount) to fetch the quota file name.
1199  */
1200 static inline char *get_qf_name(struct super_block *sb,
1201                                 struct ext4_sb_info *sbi,
1202                                 int type)
1203 {
1204         return rcu_dereference_protected(sbi->s_qf_names[type],
1205                                          lockdep_is_held(&sb->s_umount));
1206 }
1207 #else
1208 static inline void ext4_quotas_off(struct super_block *sb, int type)
1209 {
1210 }
1211 #endif
1212
1213 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1214 {
1215         ext4_fsblk_t block;
1216         int err;
1217
1218         block = ext4_count_free_clusters(sbi->s_sb);
1219         ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1220         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1221                                   GFP_KERNEL);
1222         if (!err) {
1223                 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1224                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1225                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1226                                           GFP_KERNEL);
1227         }
1228         if (!err)
1229                 err = percpu_counter_init(&sbi->s_dirs_counter,
1230                                           ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1231         if (!err)
1232                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1233                                           GFP_KERNEL);
1234         if (!err)
1235                 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1236                                           GFP_KERNEL);
1237         if (!err)
1238                 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1239
1240         if (err)
1241                 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1242
1243         return err;
1244 }
1245
1246 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1247 {
1248         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1249         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1250         percpu_counter_destroy(&sbi->s_dirs_counter);
1251         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1252         percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1253         percpu_free_rwsem(&sbi->s_writepages_rwsem);
1254 }
1255
1256 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1257 {
1258         struct buffer_head **group_desc;
1259         int i;
1260
1261         rcu_read_lock();
1262         group_desc = rcu_dereference(sbi->s_group_desc);
1263         for (i = 0; i < sbi->s_gdb_count; i++)
1264                 brelse(group_desc[i]);
1265         kvfree(group_desc);
1266         rcu_read_unlock();
1267 }
1268
1269 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1270 {
1271         struct flex_groups **flex_groups;
1272         int i;
1273
1274         rcu_read_lock();
1275         flex_groups = rcu_dereference(sbi->s_flex_groups);
1276         if (flex_groups) {
1277                 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1278                         kvfree(flex_groups[i]);
1279                 kvfree(flex_groups);
1280         }
1281         rcu_read_unlock();
1282 }
1283
1284 static void ext4_put_super(struct super_block *sb)
1285 {
1286         struct ext4_sb_info *sbi = EXT4_SB(sb);
1287         struct ext4_super_block *es = sbi->s_es;
1288         int aborted = 0;
1289         int err;
1290
1291         /*
1292          * Unregister sysfs before destroying jbd2 journal.
1293          * Since we could still access attr_journal_task attribute via sysfs
1294          * path which could have sbi->s_journal->j_task as NULL
1295          * Unregister sysfs before flush sbi->s_sb_upd_work.
1296          * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1297          * read metadata verify failed then will queue error work.
1298          * update_super_work will call start_this_handle may trigger
1299          * BUG_ON.
1300          */
1301         ext4_unregister_sysfs(sb);
1302
1303         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1304                 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1305                          &sb->s_uuid);
1306
1307         ext4_unregister_li_request(sb);
1308         ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1309
1310         flush_work(&sbi->s_sb_upd_work);
1311         destroy_workqueue(sbi->rsv_conversion_wq);
1312         ext4_release_orphan_info(sb);
1313
1314         if (sbi->s_journal) {
1315                 aborted = is_journal_aborted(sbi->s_journal);
1316                 err = jbd2_journal_destroy(sbi->s_journal);
1317                 sbi->s_journal = NULL;
1318                 if ((err < 0) && !aborted) {
1319                         ext4_abort(sb, -err, "Couldn't clean up the journal");
1320                 }
1321         }
1322
1323         ext4_es_unregister_shrinker(sbi);
1324         timer_shutdown_sync(&sbi->s_err_report);
1325         ext4_release_system_zone(sb);
1326         ext4_mb_release(sb);
1327         ext4_ext_release(sb);
1328
1329         if (!sb_rdonly(sb) && !aborted) {
1330                 ext4_clear_feature_journal_needs_recovery(sb);
1331                 ext4_clear_feature_orphan_present(sb);
1332                 es->s_state = cpu_to_le16(sbi->s_mount_state);
1333         }
1334         if (!sb_rdonly(sb))
1335                 ext4_commit_super(sb);
1336
1337         ext4_group_desc_free(sbi);
1338         ext4_flex_groups_free(sbi);
1339         ext4_percpu_param_destroy(sbi);
1340 #ifdef CONFIG_QUOTA
1341         for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1342                 kfree(get_qf_name(sb, sbi, i));
1343 #endif
1344
1345         /* Debugging code just in case the in-memory inode orphan list
1346          * isn't empty.  The on-disk one can be non-empty if we've
1347          * detected an error and taken the fs readonly, but the
1348          * in-memory list had better be clean by this point. */
1349         if (!list_empty(&sbi->s_orphan))
1350                 dump_orphan_list(sb, sbi);
1351         ASSERT(list_empty(&sbi->s_orphan));
1352
1353         sync_blockdev(sb->s_bdev);
1354         invalidate_bdev(sb->s_bdev);
1355         if (sbi->s_journal_bdev_handle) {
1356                 /*
1357                  * Invalidate the journal device's buffers.  We don't want them
1358                  * floating about in memory - the physical journal device may
1359                  * hotswapped, and it breaks the `ro-after' testing code.
1360                  */
1361                 sync_blockdev(sbi->s_journal_bdev_handle->bdev);
1362                 invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
1363         }
1364
1365         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1366         sbi->s_ea_inode_cache = NULL;
1367
1368         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1369         sbi->s_ea_block_cache = NULL;
1370
1371         ext4_stop_mmpd(sbi);
1372
1373         brelse(sbi->s_sbh);
1374         sb->s_fs_info = NULL;
1375         /*
1376          * Now that we are completely done shutting down the
1377          * superblock, we need to actually destroy the kobject.
1378          */
1379         kobject_put(&sbi->s_kobj);
1380         wait_for_completion(&sbi->s_kobj_unregister);
1381         if (sbi->s_chksum_driver)
1382                 crypto_free_shash(sbi->s_chksum_driver);
1383         kfree(sbi->s_blockgroup_lock);
1384         fs_put_dax(sbi->s_daxdev, NULL);
1385         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1386 #if IS_ENABLED(CONFIG_UNICODE)
1387         utf8_unload(sb->s_encoding);
1388 #endif
1389         kfree(sbi);
1390 }
1391
1392 static struct kmem_cache *ext4_inode_cachep;
1393
1394 /*
1395  * Called inside transaction, so use GFP_NOFS
1396  */
1397 static struct inode *ext4_alloc_inode(struct super_block *sb)
1398 {
1399         struct ext4_inode_info *ei;
1400
1401         ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1402         if (!ei)
1403                 return NULL;
1404
1405         inode_set_iversion(&ei->vfs_inode, 1);
1406         ei->i_flags = 0;
1407         spin_lock_init(&ei->i_raw_lock);
1408         ei->i_prealloc_node = RB_ROOT;
1409         atomic_set(&ei->i_prealloc_active, 0);
1410         rwlock_init(&ei->i_prealloc_lock);
1411         ext4_es_init_tree(&ei->i_es_tree);
1412         rwlock_init(&ei->i_es_lock);
1413         INIT_LIST_HEAD(&ei->i_es_list);
1414         ei->i_es_all_nr = 0;
1415         ei->i_es_shk_nr = 0;
1416         ei->i_es_shrink_lblk = 0;
1417         ei->i_reserved_data_blocks = 0;
1418         spin_lock_init(&(ei->i_block_reservation_lock));
1419         ext4_init_pending_tree(&ei->i_pending_tree);
1420 #ifdef CONFIG_QUOTA
1421         ei->i_reserved_quota = 0;
1422         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1423 #endif
1424         ei->jinode = NULL;
1425         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1426         spin_lock_init(&ei->i_completed_io_lock);
1427         ei->i_sync_tid = 0;
1428         ei->i_datasync_tid = 0;
1429         atomic_set(&ei->i_unwritten, 0);
1430         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1431         ext4_fc_init_inode(&ei->vfs_inode);
1432         mutex_init(&ei->i_fc_lock);
1433         return &ei->vfs_inode;
1434 }
1435
1436 static int ext4_drop_inode(struct inode *inode)
1437 {
1438         int drop = generic_drop_inode(inode);
1439
1440         if (!drop)
1441                 drop = fscrypt_drop_inode(inode);
1442
1443         trace_ext4_drop_inode(inode, drop);
1444         return drop;
1445 }
1446
1447 static void ext4_free_in_core_inode(struct inode *inode)
1448 {
1449         fscrypt_free_inode(inode);
1450         if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1451                 pr_warn("%s: inode %ld still in fc list",
1452                         __func__, inode->i_ino);
1453         }
1454         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1455 }
1456
1457 static void ext4_destroy_inode(struct inode *inode)
1458 {
1459         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1460                 ext4_msg(inode->i_sb, KERN_ERR,
1461                          "Inode %lu (%p): orphan list check failed!",
1462                          inode->i_ino, EXT4_I(inode));
1463                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1464                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1465                                 true);
1466                 dump_stack();
1467         }
1468
1469         if (EXT4_I(inode)->i_reserved_data_blocks)
1470                 ext4_msg(inode->i_sb, KERN_ERR,
1471                          "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1472                          inode->i_ino, EXT4_I(inode),
1473                          EXT4_I(inode)->i_reserved_data_blocks);
1474 }
1475
1476 static void ext4_shutdown(struct super_block *sb)
1477 {
1478        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1479 }
1480
1481 static void init_once(void *foo)
1482 {
1483         struct ext4_inode_info *ei = foo;
1484
1485         INIT_LIST_HEAD(&ei->i_orphan);
1486         init_rwsem(&ei->xattr_sem);
1487         init_rwsem(&ei->i_data_sem);
1488         inode_init_once(&ei->vfs_inode);
1489         ext4_fc_init_inode(&ei->vfs_inode);
1490 }
1491
1492 static int __init init_inodecache(void)
1493 {
1494         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1495                                 sizeof(struct ext4_inode_info), 0,
1496                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1497                                         SLAB_ACCOUNT),
1498                                 offsetof(struct ext4_inode_info, i_data),
1499                                 sizeof_field(struct ext4_inode_info, i_data),
1500                                 init_once);
1501         if (ext4_inode_cachep == NULL)
1502                 return -ENOMEM;
1503         return 0;
1504 }
1505
1506 static void destroy_inodecache(void)
1507 {
1508         /*
1509          * Make sure all delayed rcu free inodes are flushed before we
1510          * destroy cache.
1511          */
1512         rcu_barrier();
1513         kmem_cache_destroy(ext4_inode_cachep);
1514 }
1515
1516 void ext4_clear_inode(struct inode *inode)
1517 {
1518         ext4_fc_del(inode);
1519         invalidate_inode_buffers(inode);
1520         clear_inode(inode);
1521         ext4_discard_preallocations(inode, 0);
1522         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1523         dquot_drop(inode);
1524         if (EXT4_I(inode)->jinode) {
1525                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1526                                                EXT4_I(inode)->jinode);
1527                 jbd2_free_inode(EXT4_I(inode)->jinode);
1528                 EXT4_I(inode)->jinode = NULL;
1529         }
1530         fscrypt_put_encryption_info(inode);
1531         fsverity_cleanup_inode(inode);
1532 }
1533
1534 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1535                                         u64 ino, u32 generation)
1536 {
1537         struct inode *inode;
1538
1539         /*
1540          * Currently we don't know the generation for parent directory, so
1541          * a generation of 0 means "accept any"
1542          */
1543         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1544         if (IS_ERR(inode))
1545                 return ERR_CAST(inode);
1546         if (generation && inode->i_generation != generation) {
1547                 iput(inode);
1548                 return ERR_PTR(-ESTALE);
1549         }
1550
1551         return inode;
1552 }
1553
1554 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1555                                         int fh_len, int fh_type)
1556 {
1557         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1558                                     ext4_nfs_get_inode);
1559 }
1560
1561 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1562                                         int fh_len, int fh_type)
1563 {
1564         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1565                                     ext4_nfs_get_inode);
1566 }
1567
1568 static int ext4_nfs_commit_metadata(struct inode *inode)
1569 {
1570         struct writeback_control wbc = {
1571                 .sync_mode = WB_SYNC_ALL
1572         };
1573
1574         trace_ext4_nfs_commit_metadata(inode);
1575         return ext4_write_inode(inode, &wbc);
1576 }
1577
1578 #ifdef CONFIG_QUOTA
1579 static const char * const quotatypes[] = INITQFNAMES;
1580 #define QTYPE2NAME(t) (quotatypes[t])
1581
1582 static int ext4_write_dquot(struct dquot *dquot);
1583 static int ext4_acquire_dquot(struct dquot *dquot);
1584 static int ext4_release_dquot(struct dquot *dquot);
1585 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1586 static int ext4_write_info(struct super_block *sb, int type);
1587 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1588                          const struct path *path);
1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1590                                size_t len, loff_t off);
1591 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1592                                 const char *data, size_t len, loff_t off);
1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1594                              unsigned int flags);
1595
1596 static struct dquot **ext4_get_dquots(struct inode *inode)
1597 {
1598         return EXT4_I(inode)->i_dquot;
1599 }
1600
1601 static const struct dquot_operations ext4_quota_operations = {
1602         .get_reserved_space     = ext4_get_reserved_space,
1603         .write_dquot            = ext4_write_dquot,
1604         .acquire_dquot          = ext4_acquire_dquot,
1605         .release_dquot          = ext4_release_dquot,
1606         .mark_dirty             = ext4_mark_dquot_dirty,
1607         .write_info             = ext4_write_info,
1608         .alloc_dquot            = dquot_alloc,
1609         .destroy_dquot          = dquot_destroy,
1610         .get_projid             = ext4_get_projid,
1611         .get_inode_usage        = ext4_get_inode_usage,
1612         .get_next_id            = dquot_get_next_id,
1613 };
1614
1615 static const struct quotactl_ops ext4_qctl_operations = {
1616         .quota_on       = ext4_quota_on,
1617         .quota_off      = ext4_quota_off,
1618         .quota_sync     = dquot_quota_sync,
1619         .get_state      = dquot_get_state,
1620         .set_info       = dquot_set_dqinfo,
1621         .get_dqblk      = dquot_get_dqblk,
1622         .set_dqblk      = dquot_set_dqblk,
1623         .get_nextdqblk  = dquot_get_next_dqblk,
1624 };
1625 #endif
1626
1627 static const struct super_operations ext4_sops = {
1628         .alloc_inode    = ext4_alloc_inode,
1629         .free_inode     = ext4_free_in_core_inode,
1630         .destroy_inode  = ext4_destroy_inode,
1631         .write_inode    = ext4_write_inode,
1632         .dirty_inode    = ext4_dirty_inode,
1633         .drop_inode     = ext4_drop_inode,
1634         .evict_inode    = ext4_evict_inode,
1635         .put_super      = ext4_put_super,
1636         .sync_fs        = ext4_sync_fs,
1637         .freeze_fs      = ext4_freeze,
1638         .unfreeze_fs    = ext4_unfreeze,
1639         .statfs         = ext4_statfs,
1640         .show_options   = ext4_show_options,
1641         .shutdown       = ext4_shutdown,
1642 #ifdef CONFIG_QUOTA
1643         .quota_read     = ext4_quota_read,
1644         .quota_write    = ext4_quota_write,
1645         .get_dquots     = ext4_get_dquots,
1646 #endif
1647 };
1648
1649 static const struct export_operations ext4_export_ops = {
1650         .fh_to_dentry = ext4_fh_to_dentry,
1651         .fh_to_parent = ext4_fh_to_parent,
1652         .get_parent = ext4_get_parent,
1653         .commit_metadata = ext4_nfs_commit_metadata,
1654 };
1655
1656 enum {
1657         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1658         Opt_resgid, Opt_resuid, Opt_sb,
1659         Opt_nouid32, Opt_debug, Opt_removed,
1660         Opt_user_xattr, Opt_acl,
1661         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1662         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1663         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1664         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1665         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1666         Opt_inlinecrypt,
1667         Opt_usrjquota, Opt_grpjquota, Opt_quota,
1668         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1669         Opt_usrquota, Opt_grpquota, Opt_prjquota,
1670         Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1671         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1672         Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1673         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1674         Opt_inode_readahead_blks, Opt_journal_ioprio,
1675         Opt_dioread_nolock, Opt_dioread_lock,
1676         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1677         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1678         Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1679         Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1680 #ifdef CONFIG_EXT4_DEBUG
1681         Opt_fc_debug_max_replay, Opt_fc_debug_force
1682 #endif
1683 };
1684
1685 static const struct constant_table ext4_param_errors[] = {
1686         {"continue",    EXT4_MOUNT_ERRORS_CONT},
1687         {"panic",       EXT4_MOUNT_ERRORS_PANIC},
1688         {"remount-ro",  EXT4_MOUNT_ERRORS_RO},
1689         {}
1690 };
1691
1692 static const struct constant_table ext4_param_data[] = {
1693         {"journal",     EXT4_MOUNT_JOURNAL_DATA},
1694         {"ordered",     EXT4_MOUNT_ORDERED_DATA},
1695         {"writeback",   EXT4_MOUNT_WRITEBACK_DATA},
1696         {}
1697 };
1698
1699 static const struct constant_table ext4_param_data_err[] = {
1700         {"abort",       Opt_data_err_abort},
1701         {"ignore",      Opt_data_err_ignore},
1702         {}
1703 };
1704
1705 static const struct constant_table ext4_param_jqfmt[] = {
1706         {"vfsold",      QFMT_VFS_OLD},
1707         {"vfsv0",       QFMT_VFS_V0},
1708         {"vfsv1",       QFMT_VFS_V1},
1709         {}
1710 };
1711
1712 static const struct constant_table ext4_param_dax[] = {
1713         {"always",      Opt_dax_always},
1714         {"inode",       Opt_dax_inode},
1715         {"never",       Opt_dax_never},
1716         {}
1717 };
1718
1719 /* String parameter that allows empty argument */
1720 #define fsparam_string_empty(NAME, OPT) \
1721         __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1722
1723 /*
1724  * Mount option specification
1725  * We don't use fsparam_flag_no because of the way we set the
1726  * options and the way we show them in _ext4_show_options(). To
1727  * keep the changes to a minimum, let's keep the negative options
1728  * separate for now.
1729  */
1730 static const struct fs_parameter_spec ext4_param_specs[] = {
1731         fsparam_flag    ("bsddf",               Opt_bsd_df),
1732         fsparam_flag    ("minixdf",             Opt_minix_df),
1733         fsparam_flag    ("grpid",               Opt_grpid),
1734         fsparam_flag    ("bsdgroups",           Opt_grpid),
1735         fsparam_flag    ("nogrpid",             Opt_nogrpid),
1736         fsparam_flag    ("sysvgroups",          Opt_nogrpid),
1737         fsparam_u32     ("resgid",              Opt_resgid),
1738         fsparam_u32     ("resuid",              Opt_resuid),
1739         fsparam_u32     ("sb",                  Opt_sb),
1740         fsparam_enum    ("errors",              Opt_errors, ext4_param_errors),
1741         fsparam_flag    ("nouid32",             Opt_nouid32),
1742         fsparam_flag    ("debug",               Opt_debug),
1743         fsparam_flag    ("oldalloc",            Opt_removed),
1744         fsparam_flag    ("orlov",               Opt_removed),
1745         fsparam_flag    ("user_xattr",          Opt_user_xattr),
1746         fsparam_flag    ("acl",                 Opt_acl),
1747         fsparam_flag    ("norecovery",          Opt_noload),
1748         fsparam_flag    ("noload",              Opt_noload),
1749         fsparam_flag    ("bh",                  Opt_removed),
1750         fsparam_flag    ("nobh",                Opt_removed),
1751         fsparam_u32     ("commit",              Opt_commit),
1752         fsparam_u32     ("min_batch_time",      Opt_min_batch_time),
1753         fsparam_u32     ("max_batch_time",      Opt_max_batch_time),
1754         fsparam_u32     ("journal_dev",         Opt_journal_dev),
1755         fsparam_bdev    ("journal_path",        Opt_journal_path),
1756         fsparam_flag    ("journal_checksum",    Opt_journal_checksum),
1757         fsparam_flag    ("nojournal_checksum",  Opt_nojournal_checksum),
1758         fsparam_flag    ("journal_async_commit",Opt_journal_async_commit),
1759         fsparam_flag    ("abort",               Opt_abort),
1760         fsparam_enum    ("data",                Opt_data, ext4_param_data),
1761         fsparam_enum    ("data_err",            Opt_data_err,
1762                                                 ext4_param_data_err),
1763         fsparam_string_empty
1764                         ("usrjquota",           Opt_usrjquota),
1765         fsparam_string_empty
1766                         ("grpjquota",           Opt_grpjquota),
1767         fsparam_enum    ("jqfmt",               Opt_jqfmt, ext4_param_jqfmt),
1768         fsparam_flag    ("grpquota",            Opt_grpquota),
1769         fsparam_flag    ("quota",               Opt_quota),
1770         fsparam_flag    ("noquota",             Opt_noquota),
1771         fsparam_flag    ("usrquota",            Opt_usrquota),
1772         fsparam_flag    ("prjquota",            Opt_prjquota),
1773         fsparam_flag    ("barrier",             Opt_barrier),
1774         fsparam_u32     ("barrier",             Opt_barrier),
1775         fsparam_flag    ("nobarrier",           Opt_nobarrier),
1776         fsparam_flag    ("i_version",           Opt_removed),
1777         fsparam_flag    ("dax",                 Opt_dax),
1778         fsparam_enum    ("dax",                 Opt_dax_type, ext4_param_dax),
1779         fsparam_u32     ("stripe",              Opt_stripe),
1780         fsparam_flag    ("delalloc",            Opt_delalloc),
1781         fsparam_flag    ("nodelalloc",          Opt_nodelalloc),
1782         fsparam_flag    ("warn_on_error",       Opt_warn_on_error),
1783         fsparam_flag    ("nowarn_on_error",     Opt_nowarn_on_error),
1784         fsparam_u32     ("debug_want_extra_isize",
1785                                                 Opt_debug_want_extra_isize),
1786         fsparam_flag    ("mblk_io_submit",      Opt_removed),
1787         fsparam_flag    ("nomblk_io_submit",    Opt_removed),
1788         fsparam_flag    ("block_validity",      Opt_block_validity),
1789         fsparam_flag    ("noblock_validity",    Opt_noblock_validity),
1790         fsparam_u32     ("inode_readahead_blks",
1791                                                 Opt_inode_readahead_blks),
1792         fsparam_u32     ("journal_ioprio",      Opt_journal_ioprio),
1793         fsparam_u32     ("auto_da_alloc",       Opt_auto_da_alloc),
1794         fsparam_flag    ("auto_da_alloc",       Opt_auto_da_alloc),
1795         fsparam_flag    ("noauto_da_alloc",     Opt_noauto_da_alloc),
1796         fsparam_flag    ("dioread_nolock",      Opt_dioread_nolock),
1797         fsparam_flag    ("nodioread_nolock",    Opt_dioread_lock),
1798         fsparam_flag    ("dioread_lock",        Opt_dioread_lock),
1799         fsparam_flag    ("discard",             Opt_discard),
1800         fsparam_flag    ("nodiscard",           Opt_nodiscard),
1801         fsparam_u32     ("init_itable",         Opt_init_itable),
1802         fsparam_flag    ("init_itable",         Opt_init_itable),
1803         fsparam_flag    ("noinit_itable",       Opt_noinit_itable),
1804 #ifdef CONFIG_EXT4_DEBUG
1805         fsparam_flag    ("fc_debug_force",      Opt_fc_debug_force),
1806         fsparam_u32     ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1807 #endif
1808         fsparam_u32     ("max_dir_size_kb",     Opt_max_dir_size_kb),
1809         fsparam_flag    ("test_dummy_encryption",
1810                                                 Opt_test_dummy_encryption),
1811         fsparam_string  ("test_dummy_encryption",
1812                                                 Opt_test_dummy_encryption),
1813         fsparam_flag    ("inlinecrypt",         Opt_inlinecrypt),
1814         fsparam_flag    ("nombcache",           Opt_nombcache),
1815         fsparam_flag    ("no_mbcache",          Opt_nombcache), /* for backward compatibility */
1816         fsparam_flag    ("prefetch_block_bitmaps",
1817                                                 Opt_removed),
1818         fsparam_flag    ("no_prefetch_block_bitmaps",
1819                                                 Opt_no_prefetch_block_bitmaps),
1820         fsparam_s32     ("mb_optimize_scan",    Opt_mb_optimize_scan),
1821         fsparam_string  ("check",               Opt_removed),   /* mount option from ext2/3 */
1822         fsparam_flag    ("nocheck",             Opt_removed),   /* mount option from ext2/3 */
1823         fsparam_flag    ("reservation",         Opt_removed),   /* mount option from ext2/3 */
1824         fsparam_flag    ("noreservation",       Opt_removed),   /* mount option from ext2/3 */
1825         fsparam_u32     ("journal",             Opt_removed),   /* mount option from ext2/3 */
1826         {}
1827 };
1828
1829 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1830
1831 #define MOPT_SET        0x0001
1832 #define MOPT_CLEAR      0x0002
1833 #define MOPT_NOSUPPORT  0x0004
1834 #define MOPT_EXPLICIT   0x0008
1835 #ifdef CONFIG_QUOTA
1836 #define MOPT_Q          0
1837 #define MOPT_QFMT       0x0010
1838 #else
1839 #define MOPT_Q          MOPT_NOSUPPORT
1840 #define MOPT_QFMT       MOPT_NOSUPPORT
1841 #endif
1842 #define MOPT_NO_EXT2    0x0020
1843 #define MOPT_NO_EXT3    0x0040
1844 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1845 #define MOPT_SKIP       0x0080
1846 #define MOPT_2          0x0100
1847
1848 static const struct mount_opts {
1849         int     token;
1850         int     mount_opt;
1851         int     flags;
1852 } ext4_mount_opts[] = {
1853         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1854         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1855         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1856         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1857         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1858         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1859         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1860          MOPT_EXT4_ONLY | MOPT_SET},
1861         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1862          MOPT_EXT4_ONLY | MOPT_CLEAR},
1863         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1864         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1865         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1866          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1867         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1868          MOPT_EXT4_ONLY | MOPT_CLEAR},
1869         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1870         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1871         {Opt_commit, 0, MOPT_NO_EXT2},
1872         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1873          MOPT_EXT4_ONLY | MOPT_CLEAR},
1874         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1875          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1876         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1877                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1878          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1879         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1880         {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1881         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1882         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1883         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1884         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1885         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1886         {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1887         {Opt_journal_dev, 0, MOPT_NO_EXT2},
1888         {Opt_journal_path, 0, MOPT_NO_EXT2},
1889         {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1890         {Opt_data, 0, MOPT_NO_EXT2},
1891         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1892 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1893         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1894 #else
1895         {Opt_acl, 0, MOPT_NOSUPPORT},
1896 #endif
1897         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1898         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1899         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1900         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1901                                                         MOPT_SET | MOPT_Q},
1902         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1903                                                         MOPT_SET | MOPT_Q},
1904         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1905                                                         MOPT_SET | MOPT_Q},
1906         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1907                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1908                                                         MOPT_CLEAR | MOPT_Q},
1909         {Opt_usrjquota, 0, MOPT_Q},
1910         {Opt_grpjquota, 0, MOPT_Q},
1911         {Opt_jqfmt, 0, MOPT_QFMT},
1912         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1913         {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1914          MOPT_SET},
1915 #ifdef CONFIG_EXT4_DEBUG
1916         {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1917          MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1918 #endif
1919         {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1920         {Opt_err, 0, 0}
1921 };
1922
1923 #if IS_ENABLED(CONFIG_UNICODE)
1924 static const struct ext4_sb_encodings {
1925         __u16 magic;
1926         char *name;
1927         unsigned int version;
1928 } ext4_sb_encoding_map[] = {
1929         {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1930 };
1931
1932 static const struct ext4_sb_encodings *
1933 ext4_sb_read_encoding(const struct ext4_super_block *es)
1934 {
1935         __u16 magic = le16_to_cpu(es->s_encoding);
1936         int i;
1937
1938         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1939                 if (magic == ext4_sb_encoding_map[i].magic)
1940                         return &ext4_sb_encoding_map[i];
1941
1942         return NULL;
1943 }
1944 #endif
1945
1946 #define EXT4_SPEC_JQUOTA                        (1 <<  0)
1947 #define EXT4_SPEC_JQFMT                         (1 <<  1)
1948 #define EXT4_SPEC_DATAJ                         (1 <<  2)
1949 #define EXT4_SPEC_SB_BLOCK                      (1 <<  3)
1950 #define EXT4_SPEC_JOURNAL_DEV                   (1 <<  4)
1951 #define EXT4_SPEC_JOURNAL_IOPRIO                (1 <<  5)
1952 #define EXT4_SPEC_s_want_extra_isize            (1 <<  7)
1953 #define EXT4_SPEC_s_max_batch_time              (1 <<  8)
1954 #define EXT4_SPEC_s_min_batch_time              (1 <<  9)
1955 #define EXT4_SPEC_s_inode_readahead_blks        (1 << 10)
1956 #define EXT4_SPEC_s_li_wait_mult                (1 << 11)
1957 #define EXT4_SPEC_s_max_dir_size_kb             (1 << 12)
1958 #define EXT4_SPEC_s_stripe                      (1 << 13)
1959 #define EXT4_SPEC_s_resuid                      (1 << 14)
1960 #define EXT4_SPEC_s_resgid                      (1 << 15)
1961 #define EXT4_SPEC_s_commit_interval             (1 << 16)
1962 #define EXT4_SPEC_s_fc_debug_max_replay         (1 << 17)
1963 #define EXT4_SPEC_s_sb_block                    (1 << 18)
1964 #define EXT4_SPEC_mb_optimize_scan              (1 << 19)
1965
1966 struct ext4_fs_context {
1967         char            *s_qf_names[EXT4_MAXQUOTAS];
1968         struct fscrypt_dummy_policy dummy_enc_policy;
1969         int             s_jquota_fmt;   /* Format of quota to use */
1970 #ifdef CONFIG_EXT4_DEBUG
1971         int s_fc_debug_max_replay;
1972 #endif
1973         unsigned short  qname_spec;
1974         unsigned long   vals_s_flags;   /* Bits to set in s_flags */
1975         unsigned long   mask_s_flags;   /* Bits changed in s_flags */
1976         unsigned long   journal_devnum;
1977         unsigned long   s_commit_interval;
1978         unsigned long   s_stripe;
1979         unsigned int    s_inode_readahead_blks;
1980         unsigned int    s_want_extra_isize;
1981         unsigned int    s_li_wait_mult;
1982         unsigned int    s_max_dir_size_kb;
1983         unsigned int    journal_ioprio;
1984         unsigned int    vals_s_mount_opt;
1985         unsigned int    mask_s_mount_opt;
1986         unsigned int    vals_s_mount_opt2;
1987         unsigned int    mask_s_mount_opt2;
1988         unsigned int    opt_flags;      /* MOPT flags */
1989         unsigned int    spec;
1990         u32             s_max_batch_time;
1991         u32             s_min_batch_time;
1992         kuid_t          s_resuid;
1993         kgid_t          s_resgid;
1994         ext4_fsblk_t    s_sb_block;
1995 };
1996
1997 static void ext4_fc_free(struct fs_context *fc)
1998 {
1999         struct ext4_fs_context *ctx = fc->fs_private;
2000         int i;
2001
2002         if (!ctx)
2003                 return;
2004
2005         for (i = 0; i < EXT4_MAXQUOTAS; i++)
2006                 kfree(ctx->s_qf_names[i]);
2007
2008         fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2009         kfree(ctx);
2010 }
2011
2012 int ext4_init_fs_context(struct fs_context *fc)
2013 {
2014         struct ext4_fs_context *ctx;
2015
2016         ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2017         if (!ctx)
2018                 return -ENOMEM;
2019
2020         fc->fs_private = ctx;
2021         fc->ops = &ext4_context_ops;
2022
2023         return 0;
2024 }
2025
2026 #ifdef CONFIG_QUOTA
2027 /*
2028  * Note the name of the specified quota file.
2029  */
2030 static int note_qf_name(struct fs_context *fc, int qtype,
2031                        struct fs_parameter *param)
2032 {
2033         struct ext4_fs_context *ctx = fc->fs_private;
2034         char *qname;
2035
2036         if (param->size < 1) {
2037                 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2038                 return -EINVAL;
2039         }
2040         if (strchr(param->string, '/')) {
2041                 ext4_msg(NULL, KERN_ERR,
2042                          "quotafile must be on filesystem root");
2043                 return -EINVAL;
2044         }
2045         if (ctx->s_qf_names[qtype]) {
2046                 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2047                         ext4_msg(NULL, KERN_ERR,
2048                                  "%s quota file already specified",
2049                                  QTYPE2NAME(qtype));
2050                         return -EINVAL;
2051                 }
2052                 return 0;
2053         }
2054
2055         qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2056         if (!qname) {
2057                 ext4_msg(NULL, KERN_ERR,
2058                          "Not enough memory for storing quotafile name");
2059                 return -ENOMEM;
2060         }
2061         ctx->s_qf_names[qtype] = qname;
2062         ctx->qname_spec |= 1 << qtype;
2063         ctx->spec |= EXT4_SPEC_JQUOTA;
2064         return 0;
2065 }
2066
2067 /*
2068  * Clear the name of the specified quota file.
2069  */
2070 static int unnote_qf_name(struct fs_context *fc, int qtype)
2071 {
2072         struct ext4_fs_context *ctx = fc->fs_private;
2073
2074         if (ctx->s_qf_names[qtype])
2075                 kfree(ctx->s_qf_names[qtype]);
2076
2077         ctx->s_qf_names[qtype] = NULL;
2078         ctx->qname_spec |= 1 << qtype;
2079         ctx->spec |= EXT4_SPEC_JQUOTA;
2080         return 0;
2081 }
2082 #endif
2083
2084 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2085                                             struct ext4_fs_context *ctx)
2086 {
2087         int err;
2088
2089         if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2090                 ext4_msg(NULL, KERN_WARNING,
2091                          "test_dummy_encryption option not supported");
2092                 return -EINVAL;
2093         }
2094         err = fscrypt_parse_test_dummy_encryption(param,
2095                                                   &ctx->dummy_enc_policy);
2096         if (err == -EINVAL) {
2097                 ext4_msg(NULL, KERN_WARNING,
2098                          "Value of option \"%s\" is unrecognized", param->key);
2099         } else if (err == -EEXIST) {
2100                 ext4_msg(NULL, KERN_WARNING,
2101                          "Conflicting test_dummy_encryption options");
2102                 return -EINVAL;
2103         }
2104         return err;
2105 }
2106
2107 #define EXT4_SET_CTX(name)                                              \
2108 static inline void ctx_set_##name(struct ext4_fs_context *ctx,          \
2109                                   unsigned long flag)                   \
2110 {                                                                       \
2111         ctx->mask_s_##name |= flag;                                     \
2112         ctx->vals_s_##name |= flag;                                     \
2113 }
2114
2115 #define EXT4_CLEAR_CTX(name)                                            \
2116 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,        \
2117                                     unsigned long flag)                 \
2118 {                                                                       \
2119         ctx->mask_s_##name |= flag;                                     \
2120         ctx->vals_s_##name &= ~flag;                                    \
2121 }
2122
2123 #define EXT4_TEST_CTX(name)                                             \
2124 static inline unsigned long                                             \
2125 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)        \
2126 {                                                                       \
2127         return (ctx->vals_s_##name & flag);                             \
2128 }
2129
2130 EXT4_SET_CTX(flags); /* set only */
2131 EXT4_SET_CTX(mount_opt);
2132 EXT4_CLEAR_CTX(mount_opt);
2133 EXT4_TEST_CTX(mount_opt);
2134 EXT4_SET_CTX(mount_opt2);
2135 EXT4_CLEAR_CTX(mount_opt2);
2136 EXT4_TEST_CTX(mount_opt2);
2137
2138 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2139 {
2140         struct ext4_fs_context *ctx = fc->fs_private;
2141         struct fs_parse_result result;
2142         const struct mount_opts *m;
2143         int is_remount;
2144         kuid_t uid;
2145         kgid_t gid;
2146         int token;
2147
2148         token = fs_parse(fc, ext4_param_specs, param, &result);
2149         if (token < 0)
2150                 return token;
2151         is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2152
2153         for (m = ext4_mount_opts; m->token != Opt_err; m++)
2154                 if (token == m->token)
2155                         break;
2156
2157         ctx->opt_flags |= m->flags;
2158
2159         if (m->flags & MOPT_EXPLICIT) {
2160                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2161                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2162                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2163                         ctx_set_mount_opt2(ctx,
2164                                        EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2165                 } else
2166                         return -EINVAL;
2167         }
2168
2169         if (m->flags & MOPT_NOSUPPORT) {
2170                 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2171                          param->key);
2172                 return 0;
2173         }
2174
2175         switch (token) {
2176 #ifdef CONFIG_QUOTA
2177         case Opt_usrjquota:
2178                 if (!*param->string)
2179                         return unnote_qf_name(fc, USRQUOTA);
2180                 else
2181                         return note_qf_name(fc, USRQUOTA, param);
2182         case Opt_grpjquota:
2183                 if (!*param->string)
2184                         return unnote_qf_name(fc, GRPQUOTA);
2185                 else
2186                         return note_qf_name(fc, GRPQUOTA, param);
2187 #endif
2188         case Opt_sb:
2189                 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2190                         ext4_msg(NULL, KERN_WARNING,
2191                                  "Ignoring %s option on remount", param->key);
2192                 } else {
2193                         ctx->s_sb_block = result.uint_32;
2194                         ctx->spec |= EXT4_SPEC_s_sb_block;
2195                 }
2196                 return 0;
2197         case Opt_removed:
2198                 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2199                          param->key);
2200                 return 0;
2201         case Opt_inlinecrypt:
2202 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2203                 ctx_set_flags(ctx, SB_INLINECRYPT);
2204 #else
2205                 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2206 #endif
2207                 return 0;
2208         case Opt_errors:
2209                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2210                 ctx_set_mount_opt(ctx, result.uint_32);
2211                 return 0;
2212 #ifdef CONFIG_QUOTA
2213         case Opt_jqfmt:
2214                 ctx->s_jquota_fmt = result.uint_32;
2215                 ctx->spec |= EXT4_SPEC_JQFMT;
2216                 return 0;
2217 #endif
2218         case Opt_data:
2219                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2220                 ctx_set_mount_opt(ctx, result.uint_32);
2221                 ctx->spec |= EXT4_SPEC_DATAJ;
2222                 return 0;
2223         case Opt_commit:
2224                 if (result.uint_32 == 0)
2225                         result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2226                 else if (result.uint_32 > INT_MAX / HZ) {
2227                         ext4_msg(NULL, KERN_ERR,
2228                                  "Invalid commit interval %d, "
2229                                  "must be smaller than %d",
2230                                  result.uint_32, INT_MAX / HZ);
2231                         return -EINVAL;
2232                 }
2233                 ctx->s_commit_interval = HZ * result.uint_32;
2234                 ctx->spec |= EXT4_SPEC_s_commit_interval;
2235                 return 0;
2236         case Opt_debug_want_extra_isize:
2237                 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2238                         ext4_msg(NULL, KERN_ERR,
2239                                  "Invalid want_extra_isize %d", result.uint_32);
2240                         return -EINVAL;
2241                 }
2242                 ctx->s_want_extra_isize = result.uint_32;
2243                 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2244                 return 0;
2245         case Opt_max_batch_time:
2246                 ctx->s_max_batch_time = result.uint_32;
2247                 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2248                 return 0;
2249         case Opt_min_batch_time:
2250                 ctx->s_min_batch_time = result.uint_32;
2251                 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2252                 return 0;
2253         case Opt_inode_readahead_blks:
2254                 if (result.uint_32 &&
2255                     (result.uint_32 > (1 << 30) ||
2256                      !is_power_of_2(result.uint_32))) {
2257                         ext4_msg(NULL, KERN_ERR,
2258                                  "EXT4-fs: inode_readahead_blks must be "
2259                                  "0 or a power of 2 smaller than 2^31");
2260                         return -EINVAL;
2261                 }
2262                 ctx->s_inode_readahead_blks = result.uint_32;
2263                 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2264                 return 0;
2265         case Opt_init_itable:
2266                 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2267                 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2268                 if (param->type == fs_value_is_string)
2269                         ctx->s_li_wait_mult = result.uint_32;
2270                 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2271                 return 0;
2272         case Opt_max_dir_size_kb:
2273                 ctx->s_max_dir_size_kb = result.uint_32;
2274                 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2275                 return 0;
2276 #ifdef CONFIG_EXT4_DEBUG
2277         case Opt_fc_debug_max_replay:
2278                 ctx->s_fc_debug_max_replay = result.uint_32;
2279                 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2280                 return 0;
2281 #endif
2282         case Opt_stripe:
2283                 ctx->s_stripe = result.uint_32;
2284                 ctx->spec |= EXT4_SPEC_s_stripe;
2285                 return 0;
2286         case Opt_resuid:
2287                 uid = make_kuid(current_user_ns(), result.uint_32);
2288                 if (!uid_valid(uid)) {
2289                         ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2290                                  result.uint_32);
2291                         return -EINVAL;
2292                 }
2293                 ctx->s_resuid = uid;
2294                 ctx->spec |= EXT4_SPEC_s_resuid;
2295                 return 0;
2296         case Opt_resgid:
2297                 gid = make_kgid(current_user_ns(), result.uint_32);
2298                 if (!gid_valid(gid)) {
2299                         ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2300                                  result.uint_32);
2301                         return -EINVAL;
2302                 }
2303                 ctx->s_resgid = gid;
2304                 ctx->spec |= EXT4_SPEC_s_resgid;
2305                 return 0;
2306         case Opt_journal_dev:
2307                 if (is_remount) {
2308                         ext4_msg(NULL, KERN_ERR,
2309                                  "Cannot specify journal on remount");
2310                         return -EINVAL;
2311                 }
2312                 ctx->journal_devnum = result.uint_32;
2313                 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2314                 return 0;
2315         case Opt_journal_path:
2316         {
2317                 struct inode *journal_inode;
2318                 struct path path;
2319                 int error;
2320
2321                 if (is_remount) {
2322                         ext4_msg(NULL, KERN_ERR,
2323                                  "Cannot specify journal on remount");
2324                         return -EINVAL;
2325                 }
2326
2327                 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2328                 if (error) {
2329                         ext4_msg(NULL, KERN_ERR, "error: could not find "
2330                                  "journal device path");
2331                         return -EINVAL;
2332                 }
2333
2334                 journal_inode = d_inode(path.dentry);
2335                 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2336                 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2337                 path_put(&path);
2338                 return 0;
2339         }
2340         case Opt_journal_ioprio:
2341                 if (result.uint_32 > 7) {
2342                         ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2343                                  " (must be 0-7)");
2344                         return -EINVAL;
2345                 }
2346                 ctx->journal_ioprio =
2347                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2348                 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2349                 return 0;
2350         case Opt_test_dummy_encryption:
2351                 return ext4_parse_test_dummy_encryption(param, ctx);
2352         case Opt_dax:
2353         case Opt_dax_type:
2354 #ifdef CONFIG_FS_DAX
2355         {
2356                 int type = (token == Opt_dax) ?
2357                            Opt_dax : result.uint_32;
2358
2359                 switch (type) {
2360                 case Opt_dax:
2361                 case Opt_dax_always:
2362                         ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2363                         ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2364                         break;
2365                 case Opt_dax_never:
2366                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2367                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2368                         break;
2369                 case Opt_dax_inode:
2370                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371                         ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372                         /* Strictly for printing options */
2373                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2374                         break;
2375                 }
2376                 return 0;
2377         }
2378 #else
2379                 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2380                 return -EINVAL;
2381 #endif
2382         case Opt_data_err:
2383                 if (result.uint_32 == Opt_data_err_abort)
2384                         ctx_set_mount_opt(ctx, m->mount_opt);
2385                 else if (result.uint_32 == Opt_data_err_ignore)
2386                         ctx_clear_mount_opt(ctx, m->mount_opt);
2387                 return 0;
2388         case Opt_mb_optimize_scan:
2389                 if (result.int_32 == 1) {
2390                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2391                         ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2392                 } else if (result.int_32 == 0) {
2393                         ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2394                         ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2395                 } else {
2396                         ext4_msg(NULL, KERN_WARNING,
2397                                  "mb_optimize_scan should be set to 0 or 1.");
2398                         return -EINVAL;
2399                 }
2400                 return 0;
2401         }
2402
2403         /*
2404          * At this point we should only be getting options requiring MOPT_SET,
2405          * or MOPT_CLEAR. Anything else is a bug
2406          */
2407         if (m->token == Opt_err) {
2408                 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2409                          param->key);
2410                 WARN_ON(1);
2411                 return -EINVAL;
2412         }
2413
2414         else {
2415                 unsigned int set = 0;
2416
2417                 if ((param->type == fs_value_is_flag) ||
2418                     result.uint_32 > 0)
2419                         set = 1;
2420
2421                 if (m->flags & MOPT_CLEAR)
2422                         set = !set;
2423                 else if (unlikely(!(m->flags & MOPT_SET))) {
2424                         ext4_msg(NULL, KERN_WARNING,
2425                                  "buggy handling of option %s",
2426                                  param->key);
2427                         WARN_ON(1);
2428                         return -EINVAL;
2429                 }
2430                 if (m->flags & MOPT_2) {
2431                         if (set != 0)
2432                                 ctx_set_mount_opt2(ctx, m->mount_opt);
2433                         else
2434                                 ctx_clear_mount_opt2(ctx, m->mount_opt);
2435                 } else {
2436                         if (set != 0)
2437                                 ctx_set_mount_opt(ctx, m->mount_opt);
2438                         else
2439                                 ctx_clear_mount_opt(ctx, m->mount_opt);
2440                 }
2441         }
2442
2443         return 0;
2444 }
2445
2446 static int parse_options(struct fs_context *fc, char *options)
2447 {
2448         struct fs_parameter param;
2449         int ret;
2450         char *key;
2451
2452         if (!options)
2453                 return 0;
2454
2455         while ((key = strsep(&options, ",")) != NULL) {
2456                 if (*key) {
2457                         size_t v_len = 0;
2458                         char *value = strchr(key, '=');
2459
2460                         param.type = fs_value_is_flag;
2461                         param.string = NULL;
2462
2463                         if (value) {
2464                                 if (value == key)
2465                                         continue;
2466
2467                                 *value++ = 0;
2468                                 v_len = strlen(value);
2469                                 param.string = kmemdup_nul(value, v_len,
2470                                                            GFP_KERNEL);
2471                                 if (!param.string)
2472                                         return -ENOMEM;
2473                                 param.type = fs_value_is_string;
2474                         }
2475
2476                         param.key = key;
2477                         param.size = v_len;
2478
2479                         ret = ext4_parse_param(fc, &param);
2480                         if (param.string)
2481                                 kfree(param.string);
2482                         if (ret < 0)
2483                                 return ret;
2484                 }
2485         }
2486
2487         ret = ext4_validate_options(fc);
2488         if (ret < 0)
2489                 return ret;
2490
2491         return 0;
2492 }
2493
2494 static int parse_apply_sb_mount_options(struct super_block *sb,
2495                                         struct ext4_fs_context *m_ctx)
2496 {
2497         struct ext4_sb_info *sbi = EXT4_SB(sb);
2498         char *s_mount_opts = NULL;
2499         struct ext4_fs_context *s_ctx = NULL;
2500         struct fs_context *fc = NULL;
2501         int ret = -ENOMEM;
2502
2503         if (!sbi->s_es->s_mount_opts[0])
2504                 return 0;
2505
2506         s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2507                                 sizeof(sbi->s_es->s_mount_opts),
2508                                 GFP_KERNEL);
2509         if (!s_mount_opts)
2510                 return ret;
2511
2512         fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2513         if (!fc)
2514                 goto out_free;
2515
2516         s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2517         if (!s_ctx)
2518                 goto out_free;
2519
2520         fc->fs_private = s_ctx;
2521         fc->s_fs_info = sbi;
2522
2523         ret = parse_options(fc, s_mount_opts);
2524         if (ret < 0)
2525                 goto parse_failed;
2526
2527         ret = ext4_check_opt_consistency(fc, sb);
2528         if (ret < 0) {
2529 parse_failed:
2530                 ext4_msg(sb, KERN_WARNING,
2531                          "failed to parse options in superblock: %s",
2532                          s_mount_opts);
2533                 ret = 0;
2534                 goto out_free;
2535         }
2536
2537         if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2538                 m_ctx->journal_devnum = s_ctx->journal_devnum;
2539         if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2540                 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2541
2542         ext4_apply_options(fc, sb);
2543         ret = 0;
2544
2545 out_free:
2546         if (fc) {
2547                 ext4_fc_free(fc);
2548                 kfree(fc);
2549         }
2550         kfree(s_mount_opts);
2551         return ret;
2552 }
2553
2554 static void ext4_apply_quota_options(struct fs_context *fc,
2555                                      struct super_block *sb)
2556 {
2557 #ifdef CONFIG_QUOTA
2558         bool quota_feature = ext4_has_feature_quota(sb);
2559         struct ext4_fs_context *ctx = fc->fs_private;
2560         struct ext4_sb_info *sbi = EXT4_SB(sb);
2561         char *qname;
2562         int i;
2563
2564         if (quota_feature)
2565                 return;
2566
2567         if (ctx->spec & EXT4_SPEC_JQUOTA) {
2568                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2569                         if (!(ctx->qname_spec & (1 << i)))
2570                                 continue;
2571
2572                         qname = ctx->s_qf_names[i]; /* May be NULL */
2573                         if (qname)
2574                                 set_opt(sb, QUOTA);
2575                         ctx->s_qf_names[i] = NULL;
2576                         qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2577                                                 lockdep_is_held(&sb->s_umount));
2578                         if (qname)
2579                                 kfree_rcu_mightsleep(qname);
2580                 }
2581         }
2582
2583         if (ctx->spec & EXT4_SPEC_JQFMT)
2584                 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2585 #endif
2586 }
2587
2588 /*
2589  * Check quota settings consistency.
2590  */
2591 static int ext4_check_quota_consistency(struct fs_context *fc,
2592                                         struct super_block *sb)
2593 {
2594 #ifdef CONFIG_QUOTA
2595         struct ext4_fs_context *ctx = fc->fs_private;
2596         struct ext4_sb_info *sbi = EXT4_SB(sb);
2597         bool quota_feature = ext4_has_feature_quota(sb);
2598         bool quota_loaded = sb_any_quota_loaded(sb);
2599         bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2600         int quota_flags, i;
2601
2602         /*
2603          * We do the test below only for project quotas. 'usrquota' and
2604          * 'grpquota' mount options are allowed even without quota feature
2605          * to support legacy quotas in quota files.
2606          */
2607         if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2608             !ext4_has_feature_project(sb)) {
2609                 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2610                          "Cannot enable project quota enforcement.");
2611                 return -EINVAL;
2612         }
2613
2614         quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2615                       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2616         if (quota_loaded &&
2617             ctx->mask_s_mount_opt & quota_flags &&
2618             !ctx_test_mount_opt(ctx, quota_flags))
2619                 goto err_quota_change;
2620
2621         if (ctx->spec & EXT4_SPEC_JQUOTA) {
2622
2623                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2624                         if (!(ctx->qname_spec & (1 << i)))
2625                                 continue;
2626
2627                         if (quota_loaded &&
2628                             !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2629                                 goto err_jquota_change;
2630
2631                         if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2632                             strcmp(get_qf_name(sb, sbi, i),
2633                                    ctx->s_qf_names[i]) != 0)
2634                                 goto err_jquota_specified;
2635                 }
2636
2637                 if (quota_feature) {
2638                         ext4_msg(NULL, KERN_INFO,
2639                                  "Journaled quota options ignored when "
2640                                  "QUOTA feature is enabled");
2641                         return 0;
2642                 }
2643         }
2644
2645         if (ctx->spec & EXT4_SPEC_JQFMT) {
2646                 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2647                         goto err_jquota_change;
2648                 if (quota_feature) {
2649                         ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2650                                  "ignored when QUOTA feature is enabled");
2651                         return 0;
2652                 }
2653         }
2654
2655         /* Make sure we don't mix old and new quota format */
2656         usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2657                        ctx->s_qf_names[USRQUOTA]);
2658         grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2659                        ctx->s_qf_names[GRPQUOTA]);
2660
2661         usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2662                     test_opt(sb, USRQUOTA));
2663
2664         grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2665                     test_opt(sb, GRPQUOTA));
2666
2667         if (usr_qf_name) {
2668                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2669                 usrquota = false;
2670         }
2671         if (grp_qf_name) {
2672                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2673                 grpquota = false;
2674         }
2675
2676         if (usr_qf_name || grp_qf_name) {
2677                 if (usrquota || grpquota) {
2678                         ext4_msg(NULL, KERN_ERR, "old and new quota "
2679                                  "format mixing");
2680                         return -EINVAL;
2681                 }
2682
2683                 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2684                         ext4_msg(NULL, KERN_ERR, "journaled quota format "
2685                                  "not specified");
2686                         return -EINVAL;
2687                 }
2688         }
2689
2690         return 0;
2691
2692 err_quota_change:
2693         ext4_msg(NULL, KERN_ERR,
2694                  "Cannot change quota options when quota turned on");
2695         return -EINVAL;
2696 err_jquota_change:
2697         ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2698                  "options when quota turned on");
2699         return -EINVAL;
2700 err_jquota_specified:
2701         ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2702                  QTYPE2NAME(i));
2703         return -EINVAL;
2704 #else
2705         return 0;
2706 #endif
2707 }
2708
2709 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2710                                             struct super_block *sb)
2711 {
2712         const struct ext4_fs_context *ctx = fc->fs_private;
2713         const struct ext4_sb_info *sbi = EXT4_SB(sb);
2714
2715         if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2716                 return 0;
2717
2718         if (!ext4_has_feature_encrypt(sb)) {
2719                 ext4_msg(NULL, KERN_WARNING,
2720                          "test_dummy_encryption requires encrypt feature");
2721                 return -EINVAL;
2722         }
2723         /*
2724          * This mount option is just for testing, and it's not worthwhile to
2725          * implement the extra complexity (e.g. RCU protection) that would be
2726          * needed to allow it to be set or changed during remount.  We do allow
2727          * it to be specified during remount, but only if there is no change.
2728          */
2729         if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2730                 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2731                                                  &ctx->dummy_enc_policy))
2732                         return 0;
2733                 ext4_msg(NULL, KERN_WARNING,
2734                          "Can't set or change test_dummy_encryption on remount");
2735                 return -EINVAL;
2736         }
2737         /* Also make sure s_mount_opts didn't contain a conflicting value. */
2738         if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2739                 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2740                                                  &ctx->dummy_enc_policy))
2741                         return 0;
2742                 ext4_msg(NULL, KERN_WARNING,
2743                          "Conflicting test_dummy_encryption options");
2744                 return -EINVAL;
2745         }
2746         return 0;
2747 }
2748
2749 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2750                                              struct super_block *sb)
2751 {
2752         if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2753             /* if already set, it was already verified to be the same */
2754             fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2755                 return;
2756         EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2757         memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2758         ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2759 }
2760
2761 static int ext4_check_opt_consistency(struct fs_context *fc,
2762                                       struct super_block *sb)
2763 {
2764         struct ext4_fs_context *ctx = fc->fs_private;
2765         struct ext4_sb_info *sbi = fc->s_fs_info;
2766         int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2767         int err;
2768
2769         if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2770                 ext4_msg(NULL, KERN_ERR,
2771                          "Mount option(s) incompatible with ext2");
2772                 return -EINVAL;
2773         }
2774         if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2775                 ext4_msg(NULL, KERN_ERR,
2776                          "Mount option(s) incompatible with ext3");
2777                 return -EINVAL;
2778         }
2779
2780         if (ctx->s_want_extra_isize >
2781             (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2782                 ext4_msg(NULL, KERN_ERR,
2783                          "Invalid want_extra_isize %d",
2784                          ctx->s_want_extra_isize);
2785                 return -EINVAL;
2786         }
2787
2788         if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2789                 int blocksize =
2790                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2791                 if (blocksize < PAGE_SIZE)
2792                         ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2793                                  "experimental mount option 'dioread_nolock' "
2794                                  "for blocksize < PAGE_SIZE");
2795         }
2796
2797         err = ext4_check_test_dummy_encryption(fc, sb);
2798         if (err)
2799                 return err;
2800
2801         if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2802                 if (!sbi->s_journal) {
2803                         ext4_msg(NULL, KERN_WARNING,
2804                                  "Remounting file system with no journal "
2805                                  "so ignoring journalled data option");
2806                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2807                 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2808                            test_opt(sb, DATA_FLAGS)) {
2809                         ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2810                                  "on remount");
2811                         return -EINVAL;
2812                 }
2813         }
2814
2815         if (is_remount) {
2816                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2817                     (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2818                         ext4_msg(NULL, KERN_ERR, "can't mount with "
2819                                  "both data=journal and dax");
2820                         return -EINVAL;
2821                 }
2822
2823                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2824                     (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2825                      (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2826 fail_dax_change_remount:
2827                         ext4_msg(NULL, KERN_ERR, "can't change "
2828                                  "dax mount option while remounting");
2829                         return -EINVAL;
2830                 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2831                          (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2832                           (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2833                         goto fail_dax_change_remount;
2834                 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2835                            ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2836                             (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2837                             !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2838                         goto fail_dax_change_remount;
2839                 }
2840         }
2841
2842         return ext4_check_quota_consistency(fc, sb);
2843 }
2844
2845 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2846 {
2847         struct ext4_fs_context *ctx = fc->fs_private;
2848         struct ext4_sb_info *sbi = fc->s_fs_info;
2849
2850         sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2851         sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2852         sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2853         sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2854         sb->s_flags &= ~ctx->mask_s_flags;
2855         sb->s_flags |= ctx->vals_s_flags;
2856
2857 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2858         APPLY(s_commit_interval);
2859         APPLY(s_stripe);
2860         APPLY(s_max_batch_time);
2861         APPLY(s_min_batch_time);
2862         APPLY(s_want_extra_isize);
2863         APPLY(s_inode_readahead_blks);
2864         APPLY(s_max_dir_size_kb);
2865         APPLY(s_li_wait_mult);
2866         APPLY(s_resgid);
2867         APPLY(s_resuid);
2868
2869 #ifdef CONFIG_EXT4_DEBUG
2870         APPLY(s_fc_debug_max_replay);
2871 #endif
2872
2873         ext4_apply_quota_options(fc, sb);
2874         ext4_apply_test_dummy_encryption(ctx, sb);
2875 }
2876
2877
2878 static int ext4_validate_options(struct fs_context *fc)
2879 {
2880 #ifdef CONFIG_QUOTA
2881         struct ext4_fs_context *ctx = fc->fs_private;
2882         char *usr_qf_name, *grp_qf_name;
2883
2884         usr_qf_name = ctx->s_qf_names[USRQUOTA];
2885         grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2886
2887         if (usr_qf_name || grp_qf_name) {
2888                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2889                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2890
2891                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2892                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2893
2894                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2895                     ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2896                         ext4_msg(NULL, KERN_ERR, "old and new quota "
2897                                  "format mixing");
2898                         return -EINVAL;
2899                 }
2900         }
2901 #endif
2902         return 1;
2903 }
2904
2905 static inline void ext4_show_quota_options(struct seq_file *seq,
2906                                            struct super_block *sb)
2907 {
2908 #if defined(CONFIG_QUOTA)
2909         struct ext4_sb_info *sbi = EXT4_SB(sb);
2910         char *usr_qf_name, *grp_qf_name;
2911
2912         if (sbi->s_jquota_fmt) {
2913                 char *fmtname = "";
2914
2915                 switch (sbi->s_jquota_fmt) {
2916                 case QFMT_VFS_OLD:
2917                         fmtname = "vfsold";
2918                         break;
2919                 case QFMT_VFS_V0:
2920                         fmtname = "vfsv0";
2921                         break;
2922                 case QFMT_VFS_V1:
2923                         fmtname = "vfsv1";
2924                         break;
2925                 }
2926                 seq_printf(seq, ",jqfmt=%s", fmtname);
2927         }
2928
2929         rcu_read_lock();
2930         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2931         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2932         if (usr_qf_name)
2933                 seq_show_option(seq, "usrjquota", usr_qf_name);
2934         if (grp_qf_name)
2935                 seq_show_option(seq, "grpjquota", grp_qf_name);
2936         rcu_read_unlock();
2937 #endif
2938 }
2939
2940 static const char *token2str(int token)
2941 {
2942         const struct fs_parameter_spec *spec;
2943
2944         for (spec = ext4_param_specs; spec->name != NULL; spec++)
2945                 if (spec->opt == token && !spec->type)
2946                         break;
2947         return spec->name;
2948 }
2949
2950 /*
2951  * Show an option if
2952  *  - it's set to a non-default value OR
2953  *  - if the per-sb default is different from the global default
2954  */
2955 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2956                               int nodefs)
2957 {
2958         struct ext4_sb_info *sbi = EXT4_SB(sb);
2959         struct ext4_super_block *es = sbi->s_es;
2960         int def_errors;
2961         const struct mount_opts *m;
2962         char sep = nodefs ? '\n' : ',';
2963
2964 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2965 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2966
2967         if (sbi->s_sb_block != 1)
2968                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2969
2970         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2971                 int want_set = m->flags & MOPT_SET;
2972                 int opt_2 = m->flags & MOPT_2;
2973                 unsigned int mount_opt, def_mount_opt;
2974
2975                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2976                     m->flags & MOPT_SKIP)
2977                         continue;
2978
2979                 if (opt_2) {
2980                         mount_opt = sbi->s_mount_opt2;
2981                         def_mount_opt = sbi->s_def_mount_opt2;
2982                 } else {
2983                         mount_opt = sbi->s_mount_opt;
2984                         def_mount_opt = sbi->s_def_mount_opt;
2985                 }
2986                 /* skip if same as the default */
2987                 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2988                         continue;
2989                 /* select Opt_noFoo vs Opt_Foo */
2990                 if ((want_set &&
2991                      (mount_opt & m->mount_opt) != m->mount_opt) ||
2992                     (!want_set && (mount_opt & m->mount_opt)))
2993                         continue;
2994                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2995         }
2996
2997         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2998             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2999                 SEQ_OPTS_PRINT("resuid=%u",
3000                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3001         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3002             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3003                 SEQ_OPTS_PRINT("resgid=%u",
3004                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3005         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3006         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3007                 SEQ_OPTS_PUTS("errors=remount-ro");
3008         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3009                 SEQ_OPTS_PUTS("errors=continue");
3010         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3011                 SEQ_OPTS_PUTS("errors=panic");
3012         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3013                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3014         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3015                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3016         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3017                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3018         if (nodefs || sbi->s_stripe)
3019                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3020         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3021                         (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3022                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3023                         SEQ_OPTS_PUTS("data=journal");
3024                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3025                         SEQ_OPTS_PUTS("data=ordered");
3026                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3027                         SEQ_OPTS_PUTS("data=writeback");
3028         }
3029         if (nodefs ||
3030             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3031                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3032                                sbi->s_inode_readahead_blks);
3033
3034         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3035                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3036                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3037         if (nodefs || sbi->s_max_dir_size_kb)
3038                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3039         if (test_opt(sb, DATA_ERR_ABORT))
3040                 SEQ_OPTS_PUTS("data_err=abort");
3041
3042         fscrypt_show_test_dummy_encryption(seq, sep, sb);
3043
3044         if (sb->s_flags & SB_INLINECRYPT)
3045                 SEQ_OPTS_PUTS("inlinecrypt");
3046
3047         if (test_opt(sb, DAX_ALWAYS)) {
3048                 if (IS_EXT2_SB(sb))
3049                         SEQ_OPTS_PUTS("dax");
3050                 else
3051                         SEQ_OPTS_PUTS("dax=always");
3052         } else if (test_opt2(sb, DAX_NEVER)) {
3053                 SEQ_OPTS_PUTS("dax=never");
3054         } else if (test_opt2(sb, DAX_INODE)) {
3055                 SEQ_OPTS_PUTS("dax=inode");
3056         }
3057
3058         if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3059                         !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3060                 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3061         } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3062                         test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3063                 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3064         }
3065
3066         ext4_show_quota_options(seq, sb);
3067         return 0;
3068 }
3069
3070 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3071 {
3072         return _ext4_show_options(seq, root->d_sb, 0);
3073 }
3074
3075 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3076 {
3077         struct super_block *sb = seq->private;
3078         int rc;
3079
3080         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3081         rc = _ext4_show_options(seq, sb, 1);
3082         seq_puts(seq, "\n");
3083         return rc;
3084 }
3085
3086 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3087                             int read_only)
3088 {
3089         struct ext4_sb_info *sbi = EXT4_SB(sb);
3090         int err = 0;
3091
3092         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3093                 ext4_msg(sb, KERN_ERR, "revision level too high, "
3094                          "forcing read-only mode");
3095                 err = -EROFS;
3096                 goto done;
3097         }
3098         if (read_only)
3099                 goto done;
3100         if (!(sbi->s_mount_state & EXT4_VALID_FS))
3101                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3102                          "running e2fsck is recommended");
3103         else if (sbi->s_mount_state & EXT4_ERROR_FS)
3104                 ext4_msg(sb, KERN_WARNING,
3105                          "warning: mounting fs with errors, "
3106                          "running e2fsck is recommended");
3107         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3108                  le16_to_cpu(es->s_mnt_count) >=
3109                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3110                 ext4_msg(sb, KERN_WARNING,
3111                          "warning: maximal mount count reached, "
3112                          "running e2fsck is recommended");
3113         else if (le32_to_cpu(es->s_checkinterval) &&
3114                  (ext4_get_tstamp(es, s_lastcheck) +
3115                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3116                 ext4_msg(sb, KERN_WARNING,
3117                          "warning: checktime reached, "
3118                          "running e2fsck is recommended");
3119         if (!sbi->s_journal)
3120                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3121         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3122                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3123         le16_add_cpu(&es->s_mnt_count, 1);
3124         ext4_update_tstamp(es, s_mtime);
3125         if (sbi->s_journal) {
3126                 ext4_set_feature_journal_needs_recovery(sb);
3127                 if (ext4_has_feature_orphan_file(sb))
3128                         ext4_set_feature_orphan_present(sb);
3129         }
3130
3131         err = ext4_commit_super(sb);
3132 done:
3133         if (test_opt(sb, DEBUG))
3134                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3135                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3136                         sb->s_blocksize,
3137                         sbi->s_groups_count,
3138                         EXT4_BLOCKS_PER_GROUP(sb),
3139                         EXT4_INODES_PER_GROUP(sb),
3140                         sbi->s_mount_opt, sbi->s_mount_opt2);
3141         return err;
3142 }
3143
3144 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3145 {
3146         struct ext4_sb_info *sbi = EXT4_SB(sb);
3147         struct flex_groups **old_groups, **new_groups;
3148         int size, i, j;
3149
3150         if (!sbi->s_log_groups_per_flex)
3151                 return 0;
3152
3153         size = ext4_flex_group(sbi, ngroup - 1) + 1;
3154         if (size <= sbi->s_flex_groups_allocated)
3155                 return 0;
3156
3157         new_groups = kvzalloc(roundup_pow_of_two(size *
3158                               sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3159         if (!new_groups) {
3160                 ext4_msg(sb, KERN_ERR,
3161                          "not enough memory for %d flex group pointers", size);
3162                 return -ENOMEM;
3163         }
3164         for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3165                 new_groups[i] = kvzalloc(roundup_pow_of_two(
3166                                          sizeof(struct flex_groups)),
3167                                          GFP_KERNEL);
3168                 if (!new_groups[i]) {
3169                         for (j = sbi->s_flex_groups_allocated; j < i; j++)
3170                                 kvfree(new_groups[j]);
3171                         kvfree(new_groups);
3172                         ext4_msg(sb, KERN_ERR,
3173                                  "not enough memory for %d flex groups", size);
3174                         return -ENOMEM;
3175                 }
3176         }
3177         rcu_read_lock();
3178         old_groups = rcu_dereference(sbi->s_flex_groups);
3179         if (old_groups)
3180                 memcpy(new_groups, old_groups,
3181                        (sbi->s_flex_groups_allocated *
3182                         sizeof(struct flex_groups *)));
3183         rcu_read_unlock();
3184         rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3185         sbi->s_flex_groups_allocated = size;
3186         if (old_groups)
3187                 ext4_kvfree_array_rcu(old_groups);
3188         return 0;
3189 }
3190
3191 static int ext4_fill_flex_info(struct super_block *sb)
3192 {
3193         struct ext4_sb_info *sbi = EXT4_SB(sb);
3194         struct ext4_group_desc *gdp = NULL;
3195         struct flex_groups *fg;
3196         ext4_group_t flex_group;
3197         int i, err;
3198
3199         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3200         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3201                 sbi->s_log_groups_per_flex = 0;
3202                 return 1;
3203         }
3204
3205         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3206         if (err)
3207                 goto failed;
3208
3209         for (i = 0; i < sbi->s_groups_count; i++) {
3210                 gdp = ext4_get_group_desc(sb, i, NULL);
3211
3212                 flex_group = ext4_flex_group(sbi, i);
3213                 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3214                 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3215                 atomic64_add(ext4_free_group_clusters(sb, gdp),
3216                              &fg->free_clusters);
3217                 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3218         }
3219
3220         return 1;
3221 failed:
3222         return 0;
3223 }
3224
3225 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3226                                    struct ext4_group_desc *gdp)
3227 {
3228         int offset = offsetof(struct ext4_group_desc, bg_checksum);
3229         __u16 crc = 0;
3230         __le32 le_group = cpu_to_le32(block_group);
3231         struct ext4_sb_info *sbi = EXT4_SB(sb);
3232
3233         if (ext4_has_metadata_csum(sbi->s_sb)) {
3234                 /* Use new metadata_csum algorithm */
3235                 __u32 csum32;
3236                 __u16 dummy_csum = 0;
3237
3238                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3239                                      sizeof(le_group));
3240                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3241                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3242                                      sizeof(dummy_csum));
3243                 offset += sizeof(dummy_csum);
3244                 if (offset < sbi->s_desc_size)
3245                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3246                                              sbi->s_desc_size - offset);
3247
3248                 crc = csum32 & 0xFFFF;
3249                 goto out;
3250         }
3251
3252         /* old crc16 code */
3253         if (!ext4_has_feature_gdt_csum(sb))
3254                 return 0;
3255
3256         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3257         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3258         crc = crc16(crc, (__u8 *)gdp, offset);
3259         offset += sizeof(gdp->bg_checksum); /* skip checksum */
3260         /* for checksum of struct ext4_group_desc do the rest...*/
3261         if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3262                 crc = crc16(crc, (__u8 *)gdp + offset,
3263                             sbi->s_desc_size - offset);
3264
3265 out:
3266         return cpu_to_le16(crc);
3267 }
3268
3269 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3270                                 struct ext4_group_desc *gdp)
3271 {
3272         if (ext4_has_group_desc_csum(sb) &&
3273             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3274                 return 0;
3275
3276         return 1;
3277 }
3278
3279 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3280                               struct ext4_group_desc *gdp)
3281 {
3282         if (!ext4_has_group_desc_csum(sb))
3283                 return;
3284         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3285 }
3286
3287 /* Called at mount-time, super-block is locked */
3288 static int ext4_check_descriptors(struct super_block *sb,
3289                                   ext4_fsblk_t sb_block,
3290                                   ext4_group_t *first_not_zeroed)
3291 {
3292         struct ext4_sb_info *sbi = EXT4_SB(sb);
3293         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3294         ext4_fsblk_t last_block;
3295         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3296         ext4_fsblk_t block_bitmap;
3297         ext4_fsblk_t inode_bitmap;
3298         ext4_fsblk_t inode_table;
3299         int flexbg_flag = 0;
3300         ext4_group_t i, grp = sbi->s_groups_count;
3301
3302         if (ext4_has_feature_flex_bg(sb))
3303                 flexbg_flag = 1;
3304
3305         ext4_debug("Checking group descriptors");
3306
3307         for (i = 0; i < sbi->s_groups_count; i++) {
3308                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3309
3310                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3311                         last_block = ext4_blocks_count(sbi->s_es) - 1;
3312                 else
3313                         last_block = first_block +
3314                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3315
3316                 if ((grp == sbi->s_groups_count) &&
3317                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3318                         grp = i;
3319
3320                 block_bitmap = ext4_block_bitmap(sb, gdp);
3321                 if (block_bitmap == sb_block) {
3322                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3323                                  "Block bitmap for group %u overlaps "
3324                                  "superblock", i);
3325                         if (!sb_rdonly(sb))
3326                                 return 0;
3327                 }
3328                 if (block_bitmap >= sb_block + 1 &&
3329                     block_bitmap <= last_bg_block) {
3330                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3331                                  "Block bitmap for group %u overlaps "
3332                                  "block group descriptors", i);
3333                         if (!sb_rdonly(sb))
3334                                 return 0;
3335                 }
3336                 if (block_bitmap < first_block || block_bitmap > last_block) {
3337                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338                                "Block bitmap for group %u not in group "
3339                                "(block %llu)!", i, block_bitmap);
3340                         return 0;
3341                 }
3342                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3343                 if (inode_bitmap == sb_block) {
3344                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3345                                  "Inode bitmap for group %u overlaps "
3346                                  "superblock", i);
3347                         if (!sb_rdonly(sb))
3348                                 return 0;
3349                 }
3350                 if (inode_bitmap >= sb_block + 1 &&
3351                     inode_bitmap <= last_bg_block) {
3352                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3353                                  "Inode bitmap for group %u overlaps "
3354                                  "block group descriptors", i);
3355                         if (!sb_rdonly(sb))
3356                                 return 0;
3357                 }
3358                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3359                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360                                "Inode bitmap for group %u not in group "
3361                                "(block %llu)!", i, inode_bitmap);
3362                         return 0;
3363                 }
3364                 inode_table = ext4_inode_table(sb, gdp);
3365                 if (inode_table == sb_block) {
3366                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367                                  "Inode table for group %u overlaps "
3368                                  "superblock", i);
3369                         if (!sb_rdonly(sb))
3370                                 return 0;
3371                 }
3372                 if (inode_table >= sb_block + 1 &&
3373                     inode_table <= last_bg_block) {
3374                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375                                  "Inode table for group %u overlaps "
3376                                  "block group descriptors", i);
3377                         if (!sb_rdonly(sb))
3378                                 return 0;
3379                 }
3380                 if (inode_table < first_block ||
3381                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
3382                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3383                                "Inode table for group %u not in group "
3384                                "(block %llu)!", i, inode_table);
3385                         return 0;
3386                 }
3387                 ext4_lock_group(sb, i);
3388                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3389                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3390                                  "Checksum for group %u failed (%u!=%u)",
3391                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3392                                      gdp)), le16_to_cpu(gdp->bg_checksum));
3393                         if (!sb_rdonly(sb)) {
3394                                 ext4_unlock_group(sb, i);
3395                                 return 0;
3396                         }
3397                 }
3398                 ext4_unlock_group(sb, i);
3399                 if (!flexbg_flag)
3400                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
3401         }
3402         if (NULL != first_not_zeroed)
3403                 *first_not_zeroed = grp;
3404         return 1;
3405 }
3406
3407 /*
3408  * Maximal extent format file size.
3409  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3410  * extent format containers, within a sector_t, and within i_blocks
3411  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3412  * so that won't be a limiting factor.
3413  *
3414  * However there is other limiting factor. We do store extents in the form
3415  * of starting block and length, hence the resulting length of the extent
3416  * covering maximum file size must fit into on-disk format containers as
3417  * well. Given that length is always by 1 unit bigger than max unit (because
3418  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3419  *
3420  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3421  */
3422 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3423 {
3424         loff_t res;
3425         loff_t upper_limit = MAX_LFS_FILESIZE;
3426
3427         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3428
3429         if (!has_huge_files) {
3430                 upper_limit = (1LL << 32) - 1;
3431
3432                 /* total blocks in file system block size */
3433                 upper_limit >>= (blkbits - 9);
3434                 upper_limit <<= blkbits;
3435         }
3436
3437         /*
3438          * 32-bit extent-start container, ee_block. We lower the maxbytes
3439          * by one fs block, so ee_len can cover the extent of maximum file
3440          * size
3441          */
3442         res = (1LL << 32) - 1;
3443         res <<= blkbits;
3444
3445         /* Sanity check against vm- & vfs- imposed limits */
3446         if (res > upper_limit)
3447                 res = upper_limit;
3448
3449         return res;
3450 }
3451
3452 /*
3453  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3454  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3455  * We need to be 1 filesystem block less than the 2^48 sector limit.
3456  */
3457 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3458 {
3459         loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3460         int meta_blocks;
3461         unsigned int ppb = 1 << (bits - 2);
3462
3463         /*
3464          * This is calculated to be the largest file size for a dense, block
3465          * mapped file such that the file's total number of 512-byte sectors,
3466          * including data and all indirect blocks, does not exceed (2^48 - 1).
3467          *
3468          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3469          * number of 512-byte sectors of the file.
3470          */
3471         if (!has_huge_files) {
3472                 /*
3473                  * !has_huge_files or implies that the inode i_block field
3474                  * represents total file blocks in 2^32 512-byte sectors ==
3475                  * size of vfs inode i_blocks * 8
3476                  */
3477                 upper_limit = (1LL << 32) - 1;
3478
3479                 /* total blocks in file system block size */
3480                 upper_limit >>= (bits - 9);
3481
3482         } else {
3483                 /*
3484                  * We use 48 bit ext4_inode i_blocks
3485                  * With EXT4_HUGE_FILE_FL set the i_blocks
3486                  * represent total number of blocks in
3487                  * file system block size
3488                  */
3489                 upper_limit = (1LL << 48) - 1;
3490
3491         }
3492
3493         /* Compute how many blocks we can address by block tree */
3494         res += ppb;
3495         res += ppb * ppb;
3496         res += ((loff_t)ppb) * ppb * ppb;
3497         /* Compute how many metadata blocks are needed */
3498         meta_blocks = 1;
3499         meta_blocks += 1 + ppb;
3500         meta_blocks += 1 + ppb + ppb * ppb;
3501         /* Does block tree limit file size? */
3502         if (res + meta_blocks <= upper_limit)
3503                 goto check_lfs;
3504
3505         res = upper_limit;
3506         /* How many metadata blocks are needed for addressing upper_limit? */
3507         upper_limit -= EXT4_NDIR_BLOCKS;
3508         /* indirect blocks */
3509         meta_blocks = 1;
3510         upper_limit -= ppb;
3511         /* double indirect blocks */
3512         if (upper_limit < ppb * ppb) {
3513                 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3514                 res -= meta_blocks;
3515                 goto check_lfs;
3516         }
3517         meta_blocks += 1 + ppb;
3518         upper_limit -= ppb * ppb;
3519         /* tripple indirect blocks for the rest */
3520         meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3521                 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3522         res -= meta_blocks;
3523 check_lfs:
3524         res <<= bits;
3525         if (res > MAX_LFS_FILESIZE)
3526                 res = MAX_LFS_FILESIZE;
3527
3528         return res;
3529 }
3530
3531 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3532                                    ext4_fsblk_t logical_sb_block, int nr)
3533 {
3534         struct ext4_sb_info *sbi = EXT4_SB(sb);
3535         ext4_group_t bg, first_meta_bg;
3536         int has_super = 0;
3537
3538         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3539
3540         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3541                 return logical_sb_block + nr + 1;
3542         bg = sbi->s_desc_per_block * nr;
3543         if (ext4_bg_has_super(sb, bg))
3544                 has_super = 1;
3545
3546         /*
3547          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3548          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3549          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3550          * compensate.
3551          */
3552         if (sb->s_blocksize == 1024 && nr == 0 &&
3553             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3554                 has_super++;
3555
3556         return (has_super + ext4_group_first_block_no(sb, bg));
3557 }
3558
3559 /**
3560  * ext4_get_stripe_size: Get the stripe size.
3561  * @sbi: In memory super block info
3562  *
3563  * If we have specified it via mount option, then
3564  * use the mount option value. If the value specified at mount time is
3565  * greater than the blocks per group use the super block value.
3566  * If the super block value is greater than blocks per group return 0.
3567  * Allocator needs it be less than blocks per group.
3568  *
3569  */
3570 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3571 {
3572         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3573         unsigned long stripe_width =
3574                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3575         int ret;
3576
3577         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3578                 ret = sbi->s_stripe;
3579         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3580                 ret = stripe_width;
3581         else if (stride && stride <= sbi->s_blocks_per_group)
3582                 ret = stride;
3583         else
3584                 ret = 0;
3585
3586         /*
3587          * If the stripe width is 1, this makes no sense and
3588          * we set it to 0 to turn off stripe handling code.
3589          */
3590         if (ret <= 1)
3591                 ret = 0;
3592
3593         return ret;
3594 }
3595
3596 /*
3597  * Check whether this filesystem can be mounted based on
3598  * the features present and the RDONLY/RDWR mount requested.
3599  * Returns 1 if this filesystem can be mounted as requested,
3600  * 0 if it cannot be.
3601  */
3602 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3603 {
3604         if (ext4_has_unknown_ext4_incompat_features(sb)) {
3605                 ext4_msg(sb, KERN_ERR,
3606                         "Couldn't mount because of "
3607                         "unsupported optional features (%x)",
3608                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3609                         ~EXT4_FEATURE_INCOMPAT_SUPP));
3610                 return 0;
3611         }
3612
3613 #if !IS_ENABLED(CONFIG_UNICODE)
3614         if (ext4_has_feature_casefold(sb)) {
3615                 ext4_msg(sb, KERN_ERR,
3616                          "Filesystem with casefold feature cannot be "
3617                          "mounted without CONFIG_UNICODE");
3618                 return 0;
3619         }
3620 #endif
3621
3622         if (readonly)
3623                 return 1;
3624
3625         if (ext4_has_feature_readonly(sb)) {
3626                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3627                 sb->s_flags |= SB_RDONLY;
3628                 return 1;
3629         }
3630
3631         /* Check that feature set is OK for a read-write mount */
3632         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3633                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3634                          "unsupported optional features (%x)",
3635                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3636                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3637                 return 0;
3638         }
3639         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3640                 ext4_msg(sb, KERN_ERR,
3641                          "Can't support bigalloc feature without "
3642                          "extents feature\n");
3643                 return 0;
3644         }
3645
3646 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3647         if (!readonly && (ext4_has_feature_quota(sb) ||
3648                           ext4_has_feature_project(sb))) {
3649                 ext4_msg(sb, KERN_ERR,
3650                          "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3651                 return 0;
3652         }
3653 #endif  /* CONFIG_QUOTA */
3654         return 1;
3655 }
3656
3657 /*
3658  * This function is called once a day if we have errors logged
3659  * on the file system
3660  */
3661 static void print_daily_error_info(struct timer_list *t)
3662 {
3663         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3664         struct super_block *sb = sbi->s_sb;
3665         struct ext4_super_block *es = sbi->s_es;
3666
3667         if (es->s_error_count)
3668                 /* fsck newer than v1.41.13 is needed to clean this condition. */
3669                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3670                          le32_to_cpu(es->s_error_count));
3671         if (es->s_first_error_time) {
3672                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3673                        sb->s_id,
3674                        ext4_get_tstamp(es, s_first_error_time),
3675                        (int) sizeof(es->s_first_error_func),
3676                        es->s_first_error_func,
3677                        le32_to_cpu(es->s_first_error_line));
3678                 if (es->s_first_error_ino)
3679                         printk(KERN_CONT ": inode %u",
3680                                le32_to_cpu(es->s_first_error_ino));
3681                 if (es->s_first_error_block)
3682                         printk(KERN_CONT ": block %llu", (unsigned long long)
3683                                le64_to_cpu(es->s_first_error_block));
3684                 printk(KERN_CONT "\n");
3685         }
3686         if (es->s_last_error_time) {
3687                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3688                        sb->s_id,
3689                        ext4_get_tstamp(es, s_last_error_time),
3690                        (int) sizeof(es->s_last_error_func),
3691                        es->s_last_error_func,
3692                        le32_to_cpu(es->s_last_error_line));
3693                 if (es->s_last_error_ino)
3694                         printk(KERN_CONT ": inode %u",
3695                                le32_to_cpu(es->s_last_error_ino));
3696                 if (es->s_last_error_block)
3697                         printk(KERN_CONT ": block %llu", (unsigned long long)
3698                                le64_to_cpu(es->s_last_error_block));
3699                 printk(KERN_CONT "\n");
3700         }
3701         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3702 }
3703
3704 /* Find next suitable group and run ext4_init_inode_table */
3705 static int ext4_run_li_request(struct ext4_li_request *elr)
3706 {
3707         struct ext4_group_desc *gdp = NULL;
3708         struct super_block *sb = elr->lr_super;
3709         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3710         ext4_group_t group = elr->lr_next_group;
3711         unsigned int prefetch_ios = 0;
3712         int ret = 0;
3713         int nr = EXT4_SB(sb)->s_mb_prefetch;
3714         u64 start_time;
3715
3716         if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3717                 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3718                 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3719                 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3720                 if (group >= elr->lr_next_group) {
3721                         ret = 1;
3722                         if (elr->lr_first_not_zeroed != ngroups &&
3723                             !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3724                                 elr->lr_next_group = elr->lr_first_not_zeroed;
3725                                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3726                                 ret = 0;
3727                         }
3728                 }
3729                 return ret;
3730         }
3731
3732         for (; group < ngroups; group++) {
3733                 gdp = ext4_get_group_desc(sb, group, NULL);
3734                 if (!gdp) {
3735                         ret = 1;
3736                         break;
3737                 }
3738
3739                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3740                         break;
3741         }
3742
3743         if (group >= ngroups)
3744                 ret = 1;
3745
3746         if (!ret) {
3747                 start_time = ktime_get_real_ns();
3748                 ret = ext4_init_inode_table(sb, group,
3749                                             elr->lr_timeout ? 0 : 1);
3750                 trace_ext4_lazy_itable_init(sb, group);
3751                 if (elr->lr_timeout == 0) {
3752                         elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3753                                 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3754                 }
3755                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3756                 elr->lr_next_group = group + 1;
3757         }
3758         return ret;
3759 }
3760
3761 /*
3762  * Remove lr_request from the list_request and free the
3763  * request structure. Should be called with li_list_mtx held
3764  */
3765 static void ext4_remove_li_request(struct ext4_li_request *elr)
3766 {
3767         if (!elr)
3768                 return;
3769
3770         list_del(&elr->lr_request);
3771         EXT4_SB(elr->lr_super)->s_li_request = NULL;
3772         kfree(elr);
3773 }
3774
3775 static void ext4_unregister_li_request(struct super_block *sb)
3776 {
3777         mutex_lock(&ext4_li_mtx);
3778         if (!ext4_li_info) {
3779                 mutex_unlock(&ext4_li_mtx);
3780                 return;
3781         }
3782
3783         mutex_lock(&ext4_li_info->li_list_mtx);
3784         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3785         mutex_unlock(&ext4_li_info->li_list_mtx);
3786         mutex_unlock(&ext4_li_mtx);
3787 }
3788
3789 static struct task_struct *ext4_lazyinit_task;
3790
3791 /*
3792  * This is the function where ext4lazyinit thread lives. It walks
3793  * through the request list searching for next scheduled filesystem.
3794  * When such a fs is found, run the lazy initialization request
3795  * (ext4_rn_li_request) and keep track of the time spend in this
3796  * function. Based on that time we compute next schedule time of
3797  * the request. When walking through the list is complete, compute
3798  * next waking time and put itself into sleep.
3799  */
3800 static int ext4_lazyinit_thread(void *arg)
3801 {
3802         struct ext4_lazy_init *eli = arg;
3803         struct list_head *pos, *n;
3804         struct ext4_li_request *elr;
3805         unsigned long next_wakeup, cur;
3806
3807         BUG_ON(NULL == eli);
3808         set_freezable();
3809
3810 cont_thread:
3811         while (true) {
3812                 next_wakeup = MAX_JIFFY_OFFSET;
3813
3814                 mutex_lock(&eli->li_list_mtx);
3815                 if (list_empty(&eli->li_request_list)) {
3816                         mutex_unlock(&eli->li_list_mtx);
3817                         goto exit_thread;
3818                 }
3819                 list_for_each_safe(pos, n, &eli->li_request_list) {
3820                         int err = 0;
3821                         int progress = 0;
3822                         elr = list_entry(pos, struct ext4_li_request,
3823                                          lr_request);
3824
3825                         if (time_before(jiffies, elr->lr_next_sched)) {
3826                                 if (time_before(elr->lr_next_sched, next_wakeup))
3827                                         next_wakeup = elr->lr_next_sched;
3828                                 continue;
3829                         }
3830                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3831                                 if (sb_start_write_trylock(elr->lr_super)) {
3832                                         progress = 1;
3833                                         /*
3834                                          * We hold sb->s_umount, sb can not
3835                                          * be removed from the list, it is
3836                                          * now safe to drop li_list_mtx
3837                                          */
3838                                         mutex_unlock(&eli->li_list_mtx);
3839                                         err = ext4_run_li_request(elr);
3840                                         sb_end_write(elr->lr_super);
3841                                         mutex_lock(&eli->li_list_mtx);
3842                                         n = pos->next;
3843                                 }
3844                                 up_read((&elr->lr_super->s_umount));
3845                         }
3846                         /* error, remove the lazy_init job */
3847                         if (err) {
3848                                 ext4_remove_li_request(elr);
3849                                 continue;
3850                         }
3851                         if (!progress) {
3852                                 elr->lr_next_sched = jiffies +
3853                                         get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3854                         }
3855                         if (time_before(elr->lr_next_sched, next_wakeup))
3856                                 next_wakeup = elr->lr_next_sched;
3857                 }
3858                 mutex_unlock(&eli->li_list_mtx);
3859
3860                 try_to_freeze();
3861
3862                 cur = jiffies;
3863                 if ((time_after_eq(cur, next_wakeup)) ||
3864                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3865                         cond_resched();
3866                         continue;
3867                 }
3868
3869                 schedule_timeout_interruptible(next_wakeup - cur);
3870
3871                 if (kthread_should_stop()) {
3872                         ext4_clear_request_list();
3873                         goto exit_thread;
3874                 }
3875         }
3876
3877 exit_thread:
3878         /*
3879          * It looks like the request list is empty, but we need
3880          * to check it under the li_list_mtx lock, to prevent any
3881          * additions into it, and of course we should lock ext4_li_mtx
3882          * to atomically free the list and ext4_li_info, because at
3883          * this point another ext4 filesystem could be registering
3884          * new one.
3885          */
3886         mutex_lock(&ext4_li_mtx);
3887         mutex_lock(&eli->li_list_mtx);
3888         if (!list_empty(&eli->li_request_list)) {
3889                 mutex_unlock(&eli->li_list_mtx);
3890                 mutex_unlock(&ext4_li_mtx);
3891                 goto cont_thread;
3892         }
3893         mutex_unlock(&eli->li_list_mtx);
3894         kfree(ext4_li_info);
3895         ext4_li_info = NULL;
3896         mutex_unlock(&ext4_li_mtx);
3897
3898         return 0;
3899 }
3900
3901 static void ext4_clear_request_list(void)
3902 {
3903         struct list_head *pos, *n;
3904         struct ext4_li_request *elr;
3905
3906         mutex_lock(&ext4_li_info->li_list_mtx);
3907         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3908                 elr = list_entry(pos, struct ext4_li_request,
3909                                  lr_request);
3910                 ext4_remove_li_request(elr);
3911         }
3912         mutex_unlock(&ext4_li_info->li_list_mtx);
3913 }
3914
3915 static int ext4_run_lazyinit_thread(void)
3916 {
3917         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3918                                          ext4_li_info, "ext4lazyinit");
3919         if (IS_ERR(ext4_lazyinit_task)) {
3920                 int err = PTR_ERR(ext4_lazyinit_task);
3921                 ext4_clear_request_list();
3922                 kfree(ext4_li_info);
3923                 ext4_li_info = NULL;
3924                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3925                                  "initialization thread\n",
3926                                  err);
3927                 return err;
3928         }
3929         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3930         return 0;
3931 }
3932
3933 /*
3934  * Check whether it make sense to run itable init. thread or not.
3935  * If there is at least one uninitialized inode table, return
3936  * corresponding group number, else the loop goes through all
3937  * groups and return total number of groups.
3938  */
3939 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3940 {
3941         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3942         struct ext4_group_desc *gdp = NULL;
3943
3944         if (!ext4_has_group_desc_csum(sb))
3945                 return ngroups;
3946
3947         for (group = 0; group < ngroups; group++) {
3948                 gdp = ext4_get_group_desc(sb, group, NULL);
3949                 if (!gdp)
3950                         continue;
3951
3952                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3953                         break;
3954         }
3955
3956         return group;
3957 }
3958
3959 static int ext4_li_info_new(void)
3960 {
3961         struct ext4_lazy_init *eli = NULL;
3962
3963         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3964         if (!eli)
3965                 return -ENOMEM;
3966
3967         INIT_LIST_HEAD(&eli->li_request_list);
3968         mutex_init(&eli->li_list_mtx);
3969
3970         eli->li_state |= EXT4_LAZYINIT_QUIT;
3971
3972         ext4_li_info = eli;
3973
3974         return 0;
3975 }
3976
3977 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3978                                             ext4_group_t start)
3979 {
3980         struct ext4_li_request *elr;
3981
3982         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3983         if (!elr)
3984                 return NULL;
3985
3986         elr->lr_super = sb;
3987         elr->lr_first_not_zeroed = start;
3988         if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3989                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3990                 elr->lr_next_group = start;
3991         } else {
3992                 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3993         }
3994
3995         /*
3996          * Randomize first schedule time of the request to
3997          * spread the inode table initialization requests
3998          * better.
3999          */
4000         elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4001         return elr;
4002 }
4003
4004 int ext4_register_li_request(struct super_block *sb,
4005                              ext4_group_t first_not_zeroed)
4006 {
4007         struct ext4_sb_info *sbi = EXT4_SB(sb);
4008         struct ext4_li_request *elr = NULL;
4009         ext4_group_t ngroups = sbi->s_groups_count;
4010         int ret = 0;
4011
4012         mutex_lock(&ext4_li_mtx);
4013         if (sbi->s_li_request != NULL) {
4014                 /*
4015                  * Reset timeout so it can be computed again, because
4016                  * s_li_wait_mult might have changed.
4017                  */
4018                 sbi->s_li_request->lr_timeout = 0;
4019                 goto out;
4020         }
4021
4022         if (sb_rdonly(sb) ||
4023             (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4024              (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4025                 goto out;
4026
4027         elr = ext4_li_request_new(sb, first_not_zeroed);
4028         if (!elr) {
4029                 ret = -ENOMEM;
4030                 goto out;
4031         }
4032
4033         if (NULL == ext4_li_info) {
4034                 ret = ext4_li_info_new();
4035                 if (ret)
4036                         goto out;
4037         }
4038
4039         mutex_lock(&ext4_li_info->li_list_mtx);
4040         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4041         mutex_unlock(&ext4_li_info->li_list_mtx);
4042
4043         sbi->s_li_request = elr;
4044         /*
4045          * set elr to NULL here since it has been inserted to
4046          * the request_list and the removal and free of it is
4047          * handled by ext4_clear_request_list from now on.
4048          */
4049         elr = NULL;
4050
4051         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4052                 ret = ext4_run_lazyinit_thread();
4053                 if (ret)
4054                         goto out;
4055         }
4056 out:
4057         mutex_unlock(&ext4_li_mtx);
4058         if (ret)
4059                 kfree(elr);
4060         return ret;
4061 }
4062
4063 /*
4064  * We do not need to lock anything since this is called on
4065  * module unload.
4066  */
4067 static void ext4_destroy_lazyinit_thread(void)
4068 {
4069         /*
4070          * If thread exited earlier
4071          * there's nothing to be done.
4072          */
4073         if (!ext4_li_info || !ext4_lazyinit_task)
4074                 return;
4075
4076         kthread_stop(ext4_lazyinit_task);
4077 }
4078
4079 static int set_journal_csum_feature_set(struct super_block *sb)
4080 {
4081         int ret = 1;
4082         int compat, incompat;
4083         struct ext4_sb_info *sbi = EXT4_SB(sb);
4084
4085         if (ext4_has_metadata_csum(sb)) {
4086                 /* journal checksum v3 */
4087                 compat = 0;
4088                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4089         } else {
4090                 /* journal checksum v1 */
4091                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4092                 incompat = 0;
4093         }
4094
4095         jbd2_journal_clear_features(sbi->s_journal,
4096                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4097                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4098                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
4099         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4100                 ret = jbd2_journal_set_features(sbi->s_journal,
4101                                 compat, 0,
4102                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4103                                 incompat);
4104         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4105                 ret = jbd2_journal_set_features(sbi->s_journal,
4106                                 compat, 0,
4107                                 incompat);
4108                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4109                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4110         } else {
4111                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4112                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4113         }
4114
4115         return ret;
4116 }
4117
4118 /*
4119  * Note: calculating the overhead so we can be compatible with
4120  * historical BSD practice is quite difficult in the face of
4121  * clusters/bigalloc.  This is because multiple metadata blocks from
4122  * different block group can end up in the same allocation cluster.
4123  * Calculating the exact overhead in the face of clustered allocation
4124  * requires either O(all block bitmaps) in memory or O(number of block
4125  * groups**2) in time.  We will still calculate the superblock for
4126  * older file systems --- and if we come across with a bigalloc file
4127  * system with zero in s_overhead_clusters the estimate will be close to
4128  * correct especially for very large cluster sizes --- but for newer
4129  * file systems, it's better to calculate this figure once at mkfs
4130  * time, and store it in the superblock.  If the superblock value is
4131  * present (even for non-bigalloc file systems), we will use it.
4132  */
4133 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4134                           char *buf)
4135 {
4136         struct ext4_sb_info     *sbi = EXT4_SB(sb);
4137         struct ext4_group_desc  *gdp;
4138         ext4_fsblk_t            first_block, last_block, b;
4139         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
4140         int                     s, j, count = 0;
4141         int                     has_super = ext4_bg_has_super(sb, grp);
4142
4143         if (!ext4_has_feature_bigalloc(sb))
4144                 return (has_super + ext4_bg_num_gdb(sb, grp) +
4145                         (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4146                         sbi->s_itb_per_group + 2);
4147
4148         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4149                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4150         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4151         for (i = 0; i < ngroups; i++) {
4152                 gdp = ext4_get_group_desc(sb, i, NULL);
4153                 b = ext4_block_bitmap(sb, gdp);
4154                 if (b >= first_block && b <= last_block) {
4155                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4156                         count++;
4157                 }
4158                 b = ext4_inode_bitmap(sb, gdp);
4159                 if (b >= first_block && b <= last_block) {
4160                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4161                         count++;
4162                 }
4163                 b = ext4_inode_table(sb, gdp);
4164                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4165                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4166                                 int c = EXT4_B2C(sbi, b - first_block);
4167                                 ext4_set_bit(c, buf);
4168                                 count++;
4169                         }
4170                 if (i != grp)
4171                         continue;
4172                 s = 0;
4173                 if (ext4_bg_has_super(sb, grp)) {
4174                         ext4_set_bit(s++, buf);
4175                         count++;
4176                 }
4177                 j = ext4_bg_num_gdb(sb, grp);
4178                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4179                         ext4_error(sb, "Invalid number of block group "
4180                                    "descriptor blocks: %d", j);
4181                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4182                 }
4183                 count += j;
4184                 for (; j > 0; j--)
4185                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4186         }
4187         if (!count)
4188                 return 0;
4189         return EXT4_CLUSTERS_PER_GROUP(sb) -
4190                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4191 }
4192
4193 /*
4194  * Compute the overhead and stash it in sbi->s_overhead
4195  */
4196 int ext4_calculate_overhead(struct super_block *sb)
4197 {
4198         struct ext4_sb_info *sbi = EXT4_SB(sb);
4199         struct ext4_super_block *es = sbi->s_es;
4200         struct inode *j_inode;
4201         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4202         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4203         ext4_fsblk_t overhead = 0;
4204         char *buf = (char *) get_zeroed_page(GFP_NOFS);
4205
4206         if (!buf)
4207                 return -ENOMEM;
4208
4209         /*
4210          * Compute the overhead (FS structures).  This is constant
4211          * for a given filesystem unless the number of block groups
4212          * changes so we cache the previous value until it does.
4213          */
4214
4215         /*
4216          * All of the blocks before first_data_block are overhead
4217          */
4218         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4219
4220         /*
4221          * Add the overhead found in each block group
4222          */
4223         for (i = 0; i < ngroups; i++) {
4224                 int blks;
4225
4226                 blks = count_overhead(sb, i, buf);
4227                 overhead += blks;
4228                 if (blks)
4229                         memset(buf, 0, PAGE_SIZE);
4230                 cond_resched();
4231         }
4232
4233         /*
4234          * Add the internal journal blocks whether the journal has been
4235          * loaded or not
4236          */
4237         if (sbi->s_journal && !sbi->s_journal_bdev_handle)
4238                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4239         else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4240                 /* j_inum for internal journal is non-zero */
4241                 j_inode = ext4_get_journal_inode(sb, j_inum);
4242                 if (!IS_ERR(j_inode)) {
4243                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4244                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
4245                         iput(j_inode);
4246                 } else {
4247                         ext4_msg(sb, KERN_ERR, "can't get journal size");
4248                 }
4249         }
4250         sbi->s_overhead = overhead;
4251         smp_wmb();
4252         free_page((unsigned long) buf);
4253         return 0;
4254 }
4255
4256 static void ext4_set_resv_clusters(struct super_block *sb)
4257 {
4258         ext4_fsblk_t resv_clusters;
4259         struct ext4_sb_info *sbi = EXT4_SB(sb);
4260
4261         /*
4262          * There's no need to reserve anything when we aren't using extents.
4263          * The space estimates are exact, there are no unwritten extents,
4264          * hole punching doesn't need new metadata... This is needed especially
4265          * to keep ext2/3 backward compatibility.
4266          */
4267         if (!ext4_has_feature_extents(sb))
4268                 return;
4269         /*
4270          * By default we reserve 2% or 4096 clusters, whichever is smaller.
4271          * This should cover the situations where we can not afford to run
4272          * out of space like for example punch hole, or converting
4273          * unwritten extents in delalloc path. In most cases such
4274          * allocation would require 1, or 2 blocks, higher numbers are
4275          * very rare.
4276          */
4277         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4278                          sbi->s_cluster_bits);
4279
4280         do_div(resv_clusters, 50);
4281         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4282
4283         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4284 }
4285
4286 static const char *ext4_quota_mode(struct super_block *sb)
4287 {
4288 #ifdef CONFIG_QUOTA
4289         if (!ext4_quota_capable(sb))
4290                 return "none";
4291
4292         if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4293                 return "journalled";
4294         else
4295                 return "writeback";
4296 #else
4297         return "disabled";
4298 #endif
4299 }
4300
4301 static void ext4_setup_csum_trigger(struct super_block *sb,
4302                                     enum ext4_journal_trigger_type type,
4303                                     void (*trigger)(
4304                                         struct jbd2_buffer_trigger_type *type,
4305                                         struct buffer_head *bh,
4306                                         void *mapped_data,
4307                                         size_t size))
4308 {
4309         struct ext4_sb_info *sbi = EXT4_SB(sb);
4310
4311         sbi->s_journal_triggers[type].sb = sb;
4312         sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4313 }
4314
4315 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4316 {
4317         if (!sbi)
4318                 return;
4319
4320         kfree(sbi->s_blockgroup_lock);
4321         fs_put_dax(sbi->s_daxdev, NULL);
4322         kfree(sbi);
4323 }
4324
4325 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4326 {
4327         struct ext4_sb_info *sbi;
4328
4329         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4330         if (!sbi)
4331                 return NULL;
4332
4333         sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4334                                            NULL, NULL);
4335
4336         sbi->s_blockgroup_lock =
4337                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4338
4339         if (!sbi->s_blockgroup_lock)
4340                 goto err_out;
4341
4342         sb->s_fs_info = sbi;
4343         sbi->s_sb = sb;
4344         return sbi;
4345 err_out:
4346         fs_put_dax(sbi->s_daxdev, NULL);
4347         kfree(sbi);
4348         return NULL;
4349 }
4350
4351 static void ext4_set_def_opts(struct super_block *sb,
4352                               struct ext4_super_block *es)
4353 {
4354         unsigned long def_mount_opts;
4355
4356         /* Set defaults before we parse the mount options */
4357         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4358         set_opt(sb, INIT_INODE_TABLE);
4359         if (def_mount_opts & EXT4_DEFM_DEBUG)
4360                 set_opt(sb, DEBUG);
4361         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4362                 set_opt(sb, GRPID);
4363         if (def_mount_opts & EXT4_DEFM_UID16)
4364                 set_opt(sb, NO_UID32);
4365         /* xattr user namespace & acls are now defaulted on */
4366         set_opt(sb, XATTR_USER);
4367 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4368         set_opt(sb, POSIX_ACL);
4369 #endif
4370         if (ext4_has_feature_fast_commit(sb))
4371                 set_opt2(sb, JOURNAL_FAST_COMMIT);
4372         /* don't forget to enable journal_csum when metadata_csum is enabled. */
4373         if (ext4_has_metadata_csum(sb))
4374                 set_opt(sb, JOURNAL_CHECKSUM);
4375
4376         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4377                 set_opt(sb, JOURNAL_DATA);
4378         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4379                 set_opt(sb, ORDERED_DATA);
4380         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4381                 set_opt(sb, WRITEBACK_DATA);
4382
4383         if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4384                 set_opt(sb, ERRORS_PANIC);
4385         else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4386                 set_opt(sb, ERRORS_CONT);
4387         else
4388                 set_opt(sb, ERRORS_RO);
4389         /* block_validity enabled by default; disable with noblock_validity */
4390         set_opt(sb, BLOCK_VALIDITY);
4391         if (def_mount_opts & EXT4_DEFM_DISCARD)
4392                 set_opt(sb, DISCARD);
4393
4394         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4395                 set_opt(sb, BARRIER);
4396
4397         /*
4398          * enable delayed allocation by default
4399          * Use -o nodelalloc to turn it off
4400          */
4401         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4402             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4403                 set_opt(sb, DELALLOC);
4404
4405         if (sb->s_blocksize == PAGE_SIZE)
4406                 set_opt(sb, DIOREAD_NOLOCK);
4407 }
4408
4409 static int ext4_handle_clustersize(struct super_block *sb)
4410 {
4411         struct ext4_sb_info *sbi = EXT4_SB(sb);
4412         struct ext4_super_block *es = sbi->s_es;
4413         int clustersize;
4414
4415         /* Handle clustersize */
4416         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4417         if (ext4_has_feature_bigalloc(sb)) {
4418                 if (clustersize < sb->s_blocksize) {
4419                         ext4_msg(sb, KERN_ERR,
4420                                  "cluster size (%d) smaller than "
4421                                  "block size (%lu)", clustersize, sb->s_blocksize);
4422                         return -EINVAL;
4423                 }
4424                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4425                         le32_to_cpu(es->s_log_block_size);
4426                 sbi->s_clusters_per_group =
4427                         le32_to_cpu(es->s_clusters_per_group);
4428                 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4429                         ext4_msg(sb, KERN_ERR,
4430                                  "#clusters per group too big: %lu",
4431                                  sbi->s_clusters_per_group);
4432                         return -EINVAL;
4433                 }
4434                 if (sbi->s_blocks_per_group !=
4435                     (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4436                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4437                                  "clusters per group (%lu) inconsistent",
4438                                  sbi->s_blocks_per_group,
4439                                  sbi->s_clusters_per_group);
4440                         return -EINVAL;
4441                 }
4442         } else {
4443                 if (clustersize != sb->s_blocksize) {
4444                         ext4_msg(sb, KERN_ERR,
4445                                  "fragment/cluster size (%d) != "
4446                                  "block size (%lu)", clustersize, sb->s_blocksize);
4447                         return -EINVAL;
4448                 }
4449                 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4450                         ext4_msg(sb, KERN_ERR,
4451                                  "#blocks per group too big: %lu",
4452                                  sbi->s_blocks_per_group);
4453                         return -EINVAL;
4454                 }
4455                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4456                 sbi->s_cluster_bits = 0;
4457         }
4458         sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4459
4460         /* Do we have standard group size of clustersize * 8 blocks ? */
4461         if (sbi->s_blocks_per_group == clustersize << 3)
4462                 set_opt2(sb, STD_GROUP_SIZE);
4463
4464         return 0;
4465 }
4466
4467 static void ext4_fast_commit_init(struct super_block *sb)
4468 {
4469         struct ext4_sb_info *sbi = EXT4_SB(sb);
4470
4471         /* Initialize fast commit stuff */
4472         atomic_set(&sbi->s_fc_subtid, 0);
4473         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4474         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4475         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4476         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4477         sbi->s_fc_bytes = 0;
4478         ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4479         sbi->s_fc_ineligible_tid = 0;
4480         spin_lock_init(&sbi->s_fc_lock);
4481         memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4482         sbi->s_fc_replay_state.fc_regions = NULL;
4483         sbi->s_fc_replay_state.fc_regions_size = 0;
4484         sbi->s_fc_replay_state.fc_regions_used = 0;
4485         sbi->s_fc_replay_state.fc_regions_valid = 0;
4486         sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4487         sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4488         sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4489 }
4490
4491 static int ext4_inode_info_init(struct super_block *sb,
4492                                 struct ext4_super_block *es)
4493 {
4494         struct ext4_sb_info *sbi = EXT4_SB(sb);
4495
4496         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4497                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4498                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4499         } else {
4500                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4501                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4502                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4503                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4504                                  sbi->s_first_ino);
4505                         return -EINVAL;
4506                 }
4507                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4508                     (!is_power_of_2(sbi->s_inode_size)) ||
4509                     (sbi->s_inode_size > sb->s_blocksize)) {
4510                         ext4_msg(sb, KERN_ERR,
4511                                "unsupported inode size: %d",
4512                                sbi->s_inode_size);
4513                         ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4514                         return -EINVAL;
4515                 }
4516                 /*
4517                  * i_atime_extra is the last extra field available for
4518                  * [acm]times in struct ext4_inode. Checking for that
4519                  * field should suffice to ensure we have extra space
4520                  * for all three.
4521                  */
4522                 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4523                         sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4524                         sb->s_time_gran = 1;
4525                         sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4526                 } else {
4527                         sb->s_time_gran = NSEC_PER_SEC;
4528                         sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4529                 }
4530                 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4531         }
4532
4533         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4534                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4535                         EXT4_GOOD_OLD_INODE_SIZE;
4536                 if (ext4_has_feature_extra_isize(sb)) {
4537                         unsigned v, max = (sbi->s_inode_size -
4538                                            EXT4_GOOD_OLD_INODE_SIZE);
4539
4540                         v = le16_to_cpu(es->s_want_extra_isize);
4541                         if (v > max) {
4542                                 ext4_msg(sb, KERN_ERR,
4543                                          "bad s_want_extra_isize: %d", v);
4544                                 return -EINVAL;
4545                         }
4546                         if (sbi->s_want_extra_isize < v)
4547                                 sbi->s_want_extra_isize = v;
4548
4549                         v = le16_to_cpu(es->s_min_extra_isize);
4550                         if (v > max) {
4551                                 ext4_msg(sb, KERN_ERR,
4552                                          "bad s_min_extra_isize: %d", v);
4553                                 return -EINVAL;
4554                         }
4555                         if (sbi->s_want_extra_isize < v)
4556                                 sbi->s_want_extra_isize = v;
4557                 }
4558         }
4559
4560         return 0;
4561 }
4562
4563 #if IS_ENABLED(CONFIG_UNICODE)
4564 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4565 {
4566         const struct ext4_sb_encodings *encoding_info;
4567         struct unicode_map *encoding;
4568         __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4569
4570         if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4571                 return 0;
4572
4573         encoding_info = ext4_sb_read_encoding(es);
4574         if (!encoding_info) {
4575                 ext4_msg(sb, KERN_ERR,
4576                         "Encoding requested by superblock is unknown");
4577                 return -EINVAL;
4578         }
4579
4580         encoding = utf8_load(encoding_info->version);
4581         if (IS_ERR(encoding)) {
4582                 ext4_msg(sb, KERN_ERR,
4583                         "can't mount with superblock charset: %s-%u.%u.%u "
4584                         "not supported by the kernel. flags: 0x%x.",
4585                         encoding_info->name,
4586                         unicode_major(encoding_info->version),
4587                         unicode_minor(encoding_info->version),
4588                         unicode_rev(encoding_info->version),
4589                         encoding_flags);
4590                 return -EINVAL;
4591         }
4592         ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4593                 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4594                 unicode_major(encoding_info->version),
4595                 unicode_minor(encoding_info->version),
4596                 unicode_rev(encoding_info->version),
4597                 encoding_flags);
4598
4599         sb->s_encoding = encoding;
4600         sb->s_encoding_flags = encoding_flags;
4601
4602         return 0;
4603 }
4604 #else
4605 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4606 {
4607         return 0;
4608 }
4609 #endif
4610
4611 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4612 {
4613         struct ext4_sb_info *sbi = EXT4_SB(sb);
4614
4615         /* Warn if metadata_csum and gdt_csum are both set. */
4616         if (ext4_has_feature_metadata_csum(sb) &&
4617             ext4_has_feature_gdt_csum(sb))
4618                 ext4_warning(sb, "metadata_csum and uninit_bg are "
4619                              "redundant flags; please run fsck.");
4620
4621         /* Check for a known checksum algorithm */
4622         if (!ext4_verify_csum_type(sb, es)) {
4623                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4624                          "unknown checksum algorithm.");
4625                 return -EINVAL;
4626         }
4627         ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4628                                 ext4_orphan_file_block_trigger);
4629
4630         /* Load the checksum driver */
4631         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4632         if (IS_ERR(sbi->s_chksum_driver)) {
4633                 int ret = PTR_ERR(sbi->s_chksum_driver);
4634                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4635                 sbi->s_chksum_driver = NULL;
4636                 return ret;
4637         }
4638
4639         /* Check superblock checksum */
4640         if (!ext4_superblock_csum_verify(sb, es)) {
4641                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4642                          "invalid superblock checksum.  Run e2fsck?");
4643                 return -EFSBADCRC;
4644         }
4645
4646         /* Precompute checksum seed for all metadata */
4647         if (ext4_has_feature_csum_seed(sb))
4648                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4649         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4650                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4651                                                sizeof(es->s_uuid));
4652         return 0;
4653 }
4654
4655 static int ext4_check_feature_compatibility(struct super_block *sb,
4656                                             struct ext4_super_block *es,
4657                                             int silent)
4658 {
4659         struct ext4_sb_info *sbi = EXT4_SB(sb);
4660
4661         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4662             (ext4_has_compat_features(sb) ||
4663              ext4_has_ro_compat_features(sb) ||
4664              ext4_has_incompat_features(sb)))
4665                 ext4_msg(sb, KERN_WARNING,
4666                        "feature flags set on rev 0 fs, "
4667                        "running e2fsck is recommended");
4668
4669         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4670                 set_opt2(sb, HURD_COMPAT);
4671                 if (ext4_has_feature_64bit(sb)) {
4672                         ext4_msg(sb, KERN_ERR,
4673                                  "The Hurd can't support 64-bit file systems");
4674                         return -EINVAL;
4675                 }
4676
4677                 /*
4678                  * ea_inode feature uses l_i_version field which is not
4679                  * available in HURD_COMPAT mode.
4680                  */
4681                 if (ext4_has_feature_ea_inode(sb)) {
4682                         ext4_msg(sb, KERN_ERR,
4683                                  "ea_inode feature is not supported for Hurd");
4684                         return -EINVAL;
4685                 }
4686         }
4687
4688         if (IS_EXT2_SB(sb)) {
4689                 if (ext2_feature_set_ok(sb))
4690                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4691                                  "using the ext4 subsystem");
4692                 else {
4693                         /*
4694                          * If we're probing be silent, if this looks like
4695                          * it's actually an ext[34] filesystem.
4696                          */
4697                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4698                                 return -EINVAL;
4699                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4700                                  "to feature incompatibilities");
4701                         return -EINVAL;
4702                 }
4703         }
4704
4705         if (IS_EXT3_SB(sb)) {
4706                 if (ext3_feature_set_ok(sb))
4707                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4708                                  "using the ext4 subsystem");
4709                 else {
4710                         /*
4711                          * If we're probing be silent, if this looks like
4712                          * it's actually an ext4 filesystem.
4713                          */
4714                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4715                                 return -EINVAL;
4716                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4717                                  "to feature incompatibilities");
4718                         return -EINVAL;
4719                 }
4720         }
4721
4722         /*
4723          * Check feature flags regardless of the revision level, since we
4724          * previously didn't change the revision level when setting the flags,
4725          * so there is a chance incompat flags are set on a rev 0 filesystem.
4726          */
4727         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4728                 return -EINVAL;
4729
4730         if (sbi->s_daxdev) {
4731                 if (sb->s_blocksize == PAGE_SIZE)
4732                         set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4733                 else
4734                         ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4735         }
4736
4737         if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4738                 if (ext4_has_feature_inline_data(sb)) {
4739                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4740                                         " that may contain inline data");
4741                         return -EINVAL;
4742                 }
4743                 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4744                         ext4_msg(sb, KERN_ERR,
4745                                 "DAX unsupported by block device.");
4746                         return -EINVAL;
4747                 }
4748         }
4749
4750         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4751                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4752                          es->s_encryption_level);
4753                 return -EINVAL;
4754         }
4755
4756         return 0;
4757 }
4758
4759 static int ext4_check_geometry(struct super_block *sb,
4760                                struct ext4_super_block *es)
4761 {
4762         struct ext4_sb_info *sbi = EXT4_SB(sb);
4763         __u64 blocks_count;
4764         int err;
4765
4766         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4767                 ext4_msg(sb, KERN_ERR,
4768                          "Number of reserved GDT blocks insanely large: %d",
4769                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4770                 return -EINVAL;
4771         }
4772         /*
4773          * Test whether we have more sectors than will fit in sector_t,
4774          * and whether the max offset is addressable by the page cache.
4775          */
4776         err = generic_check_addressable(sb->s_blocksize_bits,
4777                                         ext4_blocks_count(es));
4778         if (err) {
4779                 ext4_msg(sb, KERN_ERR, "filesystem"
4780                          " too large to mount safely on this system");
4781                 return err;
4782         }
4783
4784         /* check blocks count against device size */
4785         blocks_count = sb_bdev_nr_blocks(sb);
4786         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4787                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4788                        "exceeds size of device (%llu blocks)",
4789                        ext4_blocks_count(es), blocks_count);
4790                 return -EINVAL;
4791         }
4792
4793         /*
4794          * It makes no sense for the first data block to be beyond the end
4795          * of the filesystem.
4796          */
4797         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4798                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4799                          "block %u is beyond end of filesystem (%llu)",
4800                          le32_to_cpu(es->s_first_data_block),
4801                          ext4_blocks_count(es));
4802                 return -EINVAL;
4803         }
4804         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4805             (sbi->s_cluster_ratio == 1)) {
4806                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4807                          "block is 0 with a 1k block and cluster size");
4808                 return -EINVAL;
4809         }
4810
4811         blocks_count = (ext4_blocks_count(es) -
4812                         le32_to_cpu(es->s_first_data_block) +
4813                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4814         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4815         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4816                 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4817                        "(block count %llu, first data block %u, "
4818                        "blocks per group %lu)", blocks_count,
4819                        ext4_blocks_count(es),
4820                        le32_to_cpu(es->s_first_data_block),
4821                        EXT4_BLOCKS_PER_GROUP(sb));
4822                 return -EINVAL;
4823         }
4824         sbi->s_groups_count = blocks_count;
4825         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4826                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4827         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4828             le32_to_cpu(es->s_inodes_count)) {
4829                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4830                          le32_to_cpu(es->s_inodes_count),
4831                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4832                 return -EINVAL;
4833         }
4834
4835         return 0;
4836 }
4837
4838 static int ext4_group_desc_init(struct super_block *sb,
4839                                 struct ext4_super_block *es,
4840                                 ext4_fsblk_t logical_sb_block,
4841                                 ext4_group_t *first_not_zeroed)
4842 {
4843         struct ext4_sb_info *sbi = EXT4_SB(sb);
4844         unsigned int db_count;
4845         ext4_fsblk_t block;
4846         int i;
4847
4848         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4849                    EXT4_DESC_PER_BLOCK(sb);
4850         if (ext4_has_feature_meta_bg(sb)) {
4851                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4852                         ext4_msg(sb, KERN_WARNING,
4853                                  "first meta block group too large: %u "
4854                                  "(group descriptor block count %u)",
4855                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4856                         return -EINVAL;
4857                 }
4858         }
4859         rcu_assign_pointer(sbi->s_group_desc,
4860                            kvmalloc_array(db_count,
4861                                           sizeof(struct buffer_head *),
4862                                           GFP_KERNEL));
4863         if (sbi->s_group_desc == NULL) {
4864                 ext4_msg(sb, KERN_ERR, "not enough memory");
4865                 return -ENOMEM;
4866         }
4867
4868         bgl_lock_init(sbi->s_blockgroup_lock);
4869
4870         /* Pre-read the descriptors into the buffer cache */
4871         for (i = 0; i < db_count; i++) {
4872                 block = descriptor_loc(sb, logical_sb_block, i);
4873                 ext4_sb_breadahead_unmovable(sb, block);
4874         }
4875
4876         for (i = 0; i < db_count; i++) {
4877                 struct buffer_head *bh;
4878
4879                 block = descriptor_loc(sb, logical_sb_block, i);
4880                 bh = ext4_sb_bread_unmovable(sb, block);
4881                 if (IS_ERR(bh)) {
4882                         ext4_msg(sb, KERN_ERR,
4883                                "can't read group descriptor %d", i);
4884                         sbi->s_gdb_count = i;
4885                         return PTR_ERR(bh);
4886                 }
4887                 rcu_read_lock();
4888                 rcu_dereference(sbi->s_group_desc)[i] = bh;
4889                 rcu_read_unlock();
4890         }
4891         sbi->s_gdb_count = db_count;
4892         if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4893                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4894                 return -EFSCORRUPTED;
4895         }
4896
4897         return 0;
4898 }
4899
4900 static int ext4_load_and_init_journal(struct super_block *sb,
4901                                       struct ext4_super_block *es,
4902                                       struct ext4_fs_context *ctx)
4903 {
4904         struct ext4_sb_info *sbi = EXT4_SB(sb);
4905         int err;
4906
4907         err = ext4_load_journal(sb, es, ctx->journal_devnum);
4908         if (err)
4909                 return err;
4910
4911         if (ext4_has_feature_64bit(sb) &&
4912             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4913                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4914                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4915                 goto out;
4916         }
4917
4918         if (!set_journal_csum_feature_set(sb)) {
4919                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4920                          "feature set");
4921                 goto out;
4922         }
4923
4924         if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4925                 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4926                                           JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4927                 ext4_msg(sb, KERN_ERR,
4928                         "Failed to set fast commit journal feature");
4929                 goto out;
4930         }
4931
4932         /* We have now updated the journal if required, so we can
4933          * validate the data journaling mode. */
4934         switch (test_opt(sb, DATA_FLAGS)) {
4935         case 0:
4936                 /* No mode set, assume a default based on the journal
4937                  * capabilities: ORDERED_DATA if the journal can
4938                  * cope, else JOURNAL_DATA
4939                  */
4940                 if (jbd2_journal_check_available_features
4941                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4942                         set_opt(sb, ORDERED_DATA);
4943                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4944                 } else {
4945                         set_opt(sb, JOURNAL_DATA);
4946                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4947                 }
4948                 break;
4949
4950         case EXT4_MOUNT_ORDERED_DATA:
4951         case EXT4_MOUNT_WRITEBACK_DATA:
4952                 if (!jbd2_journal_check_available_features
4953                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4954                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4955                                "requested data journaling mode");
4956                         goto out;
4957                 }
4958                 break;
4959         default:
4960                 break;
4961         }
4962
4963         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4964             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4965                 ext4_msg(sb, KERN_ERR, "can't mount with "
4966                         "journal_async_commit in data=ordered mode");
4967                 goto out;
4968         }
4969
4970         set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4971
4972         sbi->s_journal->j_submit_inode_data_buffers =
4973                 ext4_journal_submit_inode_data_buffers;
4974         sbi->s_journal->j_finish_inode_data_buffers =
4975                 ext4_journal_finish_inode_data_buffers;
4976
4977         return 0;
4978
4979 out:
4980         /* flush s_sb_upd_work before destroying the journal. */
4981         flush_work(&sbi->s_sb_upd_work);
4982         jbd2_journal_destroy(sbi->s_journal);
4983         sbi->s_journal = NULL;
4984         return -EINVAL;
4985 }
4986
4987 static int ext4_check_journal_data_mode(struct super_block *sb)
4988 {
4989         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4990                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4991                             "data=journal disables delayed allocation, "
4992                             "dioread_nolock, O_DIRECT and fast_commit support!\n");
4993                 /* can't mount with both data=journal and dioread_nolock. */
4994                 clear_opt(sb, DIOREAD_NOLOCK);
4995                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4996                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4997                         ext4_msg(sb, KERN_ERR, "can't mount with "
4998                                  "both data=journal and delalloc");
4999                         return -EINVAL;
5000                 }
5001                 if (test_opt(sb, DAX_ALWAYS)) {
5002                         ext4_msg(sb, KERN_ERR, "can't mount with "
5003                                  "both data=journal and dax");
5004                         return -EINVAL;
5005                 }
5006                 if (ext4_has_feature_encrypt(sb)) {
5007                         ext4_msg(sb, KERN_WARNING,
5008                                  "encrypted files will use data=ordered "
5009                                  "instead of data journaling mode");
5010                 }
5011                 if (test_opt(sb, DELALLOC))
5012                         clear_opt(sb, DELALLOC);
5013         } else {
5014                 sb->s_iflags |= SB_I_CGROUPWB;
5015         }
5016
5017         return 0;
5018 }
5019
5020 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5021                            int silent)
5022 {
5023         struct ext4_sb_info *sbi = EXT4_SB(sb);
5024         struct ext4_super_block *es;
5025         ext4_fsblk_t logical_sb_block;
5026         unsigned long offset = 0;
5027         struct buffer_head *bh;
5028         int ret = -EINVAL;
5029         int blocksize;
5030
5031         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5032         if (!blocksize) {
5033                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5034                 return -EINVAL;
5035         }
5036
5037         /*
5038          * The ext4 superblock will not be buffer aligned for other than 1kB
5039          * block sizes.  We need to calculate the offset from buffer start.
5040          */
5041         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5042                 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5043                 offset = do_div(logical_sb_block, blocksize);
5044         } else {
5045                 logical_sb_block = sbi->s_sb_block;
5046         }
5047
5048         bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5049         if (IS_ERR(bh)) {
5050                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5051                 return PTR_ERR(bh);
5052         }
5053         /*
5054          * Note: s_es must be initialized as soon as possible because
5055          *       some ext4 macro-instructions depend on its value
5056          */
5057         es = (struct ext4_super_block *) (bh->b_data + offset);
5058         sbi->s_es = es;
5059         sb->s_magic = le16_to_cpu(es->s_magic);
5060         if (sb->s_magic != EXT4_SUPER_MAGIC) {
5061                 if (!silent)
5062                         ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5063                 goto out;
5064         }
5065
5066         if (le32_to_cpu(es->s_log_block_size) >
5067             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5068                 ext4_msg(sb, KERN_ERR,
5069                          "Invalid log block size: %u",
5070                          le32_to_cpu(es->s_log_block_size));
5071                 goto out;
5072         }
5073         if (le32_to_cpu(es->s_log_cluster_size) >
5074             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5075                 ext4_msg(sb, KERN_ERR,
5076                          "Invalid log cluster size: %u",
5077                          le32_to_cpu(es->s_log_cluster_size));
5078                 goto out;
5079         }
5080
5081         blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5082
5083         /*
5084          * If the default block size is not the same as the real block size,
5085          * we need to reload it.
5086          */
5087         if (sb->s_blocksize == blocksize) {
5088                 *lsb = logical_sb_block;
5089                 sbi->s_sbh = bh;
5090                 return 0;
5091         }
5092
5093         /*
5094          * bh must be released before kill_bdev(), otherwise
5095          * it won't be freed and its page also. kill_bdev()
5096          * is called by sb_set_blocksize().
5097          */
5098         brelse(bh);
5099         /* Validate the filesystem blocksize */
5100         if (!sb_set_blocksize(sb, blocksize)) {
5101                 ext4_msg(sb, KERN_ERR, "bad block size %d",
5102                                 blocksize);
5103                 bh = NULL;
5104                 goto out;
5105         }
5106
5107         logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5108         offset = do_div(logical_sb_block, blocksize);
5109         bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5110         if (IS_ERR(bh)) {
5111                 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5112                 ret = PTR_ERR(bh);
5113                 bh = NULL;
5114                 goto out;
5115         }
5116         es = (struct ext4_super_block *)(bh->b_data + offset);
5117         sbi->s_es = es;
5118         if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5119                 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5120                 goto out;
5121         }
5122         *lsb = logical_sb_block;
5123         sbi->s_sbh = bh;
5124         return 0;
5125 out:
5126         brelse(bh);
5127         return ret;
5128 }
5129
5130 static void ext4_hash_info_init(struct super_block *sb)
5131 {
5132         struct ext4_sb_info *sbi = EXT4_SB(sb);
5133         struct ext4_super_block *es = sbi->s_es;
5134         unsigned int i;
5135
5136         for (i = 0; i < 4; i++)
5137                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5138
5139         sbi->s_def_hash_version = es->s_def_hash_version;
5140         if (ext4_has_feature_dir_index(sb)) {
5141                 i = le32_to_cpu(es->s_flags);
5142                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5143                         sbi->s_hash_unsigned = 3;
5144                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5145 #ifdef __CHAR_UNSIGNED__
5146                         if (!sb_rdonly(sb))
5147                                 es->s_flags |=
5148                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5149                         sbi->s_hash_unsigned = 3;
5150 #else
5151                         if (!sb_rdonly(sb))
5152                                 es->s_flags |=
5153                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5154 #endif
5155                 }
5156         }
5157 }
5158
5159 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5160 {
5161         struct ext4_sb_info *sbi = EXT4_SB(sb);
5162         struct ext4_super_block *es = sbi->s_es;
5163         int has_huge_files;
5164
5165         has_huge_files = ext4_has_feature_huge_file(sb);
5166         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5167                                                       has_huge_files);
5168         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5169
5170         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5171         if (ext4_has_feature_64bit(sb)) {
5172                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5173                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5174                     !is_power_of_2(sbi->s_desc_size)) {
5175                         ext4_msg(sb, KERN_ERR,
5176                                "unsupported descriptor size %lu",
5177                                sbi->s_desc_size);
5178                         return -EINVAL;
5179                 }
5180         } else
5181                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5182
5183         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5184         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5185
5186         sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5187         if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5188                 if (!silent)
5189                         ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5190                 return -EINVAL;
5191         }
5192         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5193             sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5194                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5195                          sbi->s_inodes_per_group);
5196                 return -EINVAL;
5197         }
5198         sbi->s_itb_per_group = sbi->s_inodes_per_group /
5199                                         sbi->s_inodes_per_block;
5200         sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5201         sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5202         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5203         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5204
5205         return 0;
5206 }
5207
5208 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5209 {
5210         struct ext4_super_block *es = NULL;
5211         struct ext4_sb_info *sbi = EXT4_SB(sb);
5212         ext4_fsblk_t logical_sb_block;
5213         struct inode *root;
5214         int needs_recovery;
5215         int err;
5216         ext4_group_t first_not_zeroed;
5217         struct ext4_fs_context *ctx = fc->fs_private;
5218         int silent = fc->sb_flags & SB_SILENT;
5219
5220         /* Set defaults for the variables that will be set during parsing */
5221         if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5222                 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5223
5224         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5225         sbi->s_sectors_written_start =
5226                 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5227
5228         err = ext4_load_super(sb, &logical_sb_block, silent);
5229         if (err)
5230                 goto out_fail;
5231
5232         es = sbi->s_es;
5233         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5234
5235         err = ext4_init_metadata_csum(sb, es);
5236         if (err)
5237                 goto failed_mount;
5238
5239         ext4_set_def_opts(sb, es);
5240
5241         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5242         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5243         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5244         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5245         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5246
5247         /*
5248          * set default s_li_wait_mult for lazyinit, for the case there is
5249          * no mount option specified.
5250          */
5251         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5252
5253         err = ext4_inode_info_init(sb, es);
5254         if (err)
5255                 goto failed_mount;
5256
5257         err = parse_apply_sb_mount_options(sb, ctx);
5258         if (err < 0)
5259                 goto failed_mount;
5260
5261         sbi->s_def_mount_opt = sbi->s_mount_opt;
5262         sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5263
5264         err = ext4_check_opt_consistency(fc, sb);
5265         if (err < 0)
5266                 goto failed_mount;
5267
5268         ext4_apply_options(fc, sb);
5269
5270         err = ext4_encoding_init(sb, es);
5271         if (err)
5272                 goto failed_mount;
5273
5274         err = ext4_check_journal_data_mode(sb);
5275         if (err)
5276                 goto failed_mount;
5277
5278         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5279                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5280
5281         /* i_version is always enabled now */
5282         sb->s_flags |= SB_I_VERSION;
5283
5284         err = ext4_check_feature_compatibility(sb, es, silent);
5285         if (err)
5286                 goto failed_mount;
5287
5288         err = ext4_block_group_meta_init(sb, silent);
5289         if (err)
5290                 goto failed_mount;
5291
5292         ext4_hash_info_init(sb);
5293
5294         err = ext4_handle_clustersize(sb);
5295         if (err)
5296                 goto failed_mount;
5297
5298         err = ext4_check_geometry(sb, es);
5299         if (err)
5300                 goto failed_mount;
5301
5302         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5303         spin_lock_init(&sbi->s_error_lock);
5304         INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5305
5306         err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5307         if (err)
5308                 goto failed_mount3;
5309
5310         err = ext4_es_register_shrinker(sbi);
5311         if (err)
5312                 goto failed_mount3;
5313
5314         sbi->s_stripe = ext4_get_stripe_size(sbi);
5315         /*
5316          * It's hard to get stripe aligned blocks if stripe is not aligned with
5317          * cluster, just disable stripe and alert user to simpfy code and avoid
5318          * stripe aligned allocation which will rarely successes.
5319          */
5320         if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5321             sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5322                 ext4_msg(sb, KERN_WARNING,
5323                          "stripe (%lu) is not aligned with cluster size (%u), "
5324                          "stripe is disabled",
5325                          sbi->s_stripe, sbi->s_cluster_ratio);
5326                 sbi->s_stripe = 0;
5327         }
5328         sbi->s_extent_max_zeroout_kb = 32;
5329
5330         /*
5331          * set up enough so that it can read an inode
5332          */
5333         sb->s_op = &ext4_sops;
5334         sb->s_export_op = &ext4_export_ops;
5335         sb->s_xattr = ext4_xattr_handlers;
5336 #ifdef CONFIG_FS_ENCRYPTION
5337         sb->s_cop = &ext4_cryptops;
5338 #endif
5339 #ifdef CONFIG_FS_VERITY
5340         sb->s_vop = &ext4_verityops;
5341 #endif
5342 #ifdef CONFIG_QUOTA
5343         sb->dq_op = &ext4_quota_operations;
5344         if (ext4_has_feature_quota(sb))
5345                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5346         else
5347                 sb->s_qcop = &ext4_qctl_operations;
5348         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5349 #endif
5350         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5351
5352         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5353         mutex_init(&sbi->s_orphan_lock);
5354
5355         ext4_fast_commit_init(sb);
5356
5357         sb->s_root = NULL;
5358
5359         needs_recovery = (es->s_last_orphan != 0 ||
5360                           ext4_has_feature_orphan_present(sb) ||
5361                           ext4_has_feature_journal_needs_recovery(sb));
5362
5363         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5364                 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5365                 if (err)
5366                         goto failed_mount3a;
5367         }
5368
5369         err = -EINVAL;
5370         /*
5371          * The first inode we look at is the journal inode.  Don't try
5372          * root first: it may be modified in the journal!
5373          */
5374         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5375                 err = ext4_load_and_init_journal(sb, es, ctx);
5376                 if (err)
5377                         goto failed_mount3a;
5378         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5379                    ext4_has_feature_journal_needs_recovery(sb)) {
5380                 ext4_msg(sb, KERN_ERR, "required journal recovery "
5381                        "suppressed and not mounted read-only");
5382                 goto failed_mount3a;
5383         } else {
5384                 /* Nojournal mode, all journal mount options are illegal */
5385                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5386                         ext4_msg(sb, KERN_ERR, "can't mount with "
5387                                  "journal_async_commit, fs mounted w/o journal");
5388                         goto failed_mount3a;
5389                 }
5390
5391                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5392                         ext4_msg(sb, KERN_ERR, "can't mount with "
5393                                  "journal_checksum, fs mounted w/o journal");
5394                         goto failed_mount3a;
5395                 }
5396                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5397                         ext4_msg(sb, KERN_ERR, "can't mount with "
5398                                  "commit=%lu, fs mounted w/o journal",
5399                                  sbi->s_commit_interval / HZ);
5400                         goto failed_mount3a;
5401                 }
5402                 if (EXT4_MOUNT_DATA_FLAGS &
5403                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5404                         ext4_msg(sb, KERN_ERR, "can't mount with "
5405                                  "data=, fs mounted w/o journal");
5406                         goto failed_mount3a;
5407                 }
5408                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5409                 clear_opt(sb, JOURNAL_CHECKSUM);
5410                 clear_opt(sb, DATA_FLAGS);
5411                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5412                 sbi->s_journal = NULL;
5413                 needs_recovery = 0;
5414         }
5415
5416         if (!test_opt(sb, NO_MBCACHE)) {
5417                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5418                 if (!sbi->s_ea_block_cache) {
5419                         ext4_msg(sb, KERN_ERR,
5420                                  "Failed to create ea_block_cache");
5421                         err = -EINVAL;
5422                         goto failed_mount_wq;
5423                 }
5424
5425                 if (ext4_has_feature_ea_inode(sb)) {
5426                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5427                         if (!sbi->s_ea_inode_cache) {
5428                                 ext4_msg(sb, KERN_ERR,
5429                                          "Failed to create ea_inode_cache");
5430                                 err = -EINVAL;
5431                                 goto failed_mount_wq;
5432                         }
5433                 }
5434         }
5435
5436         /*
5437          * Get the # of file system overhead blocks from the
5438          * superblock if present.
5439          */
5440         sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5441         /* ignore the precalculated value if it is ridiculous */
5442         if (sbi->s_overhead > ext4_blocks_count(es))
5443                 sbi->s_overhead = 0;
5444         /*
5445          * If the bigalloc feature is not enabled recalculating the
5446          * overhead doesn't take long, so we might as well just redo
5447          * it to make sure we are using the correct value.
5448          */
5449         if (!ext4_has_feature_bigalloc(sb))
5450                 sbi->s_overhead = 0;
5451         if (sbi->s_overhead == 0) {
5452                 err = ext4_calculate_overhead(sb);
5453                 if (err)
5454                         goto failed_mount_wq;
5455         }
5456
5457         /*
5458          * The maximum number of concurrent works can be high and
5459          * concurrency isn't really necessary.  Limit it to 1.
5460          */
5461         EXT4_SB(sb)->rsv_conversion_wq =
5462                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5463         if (!EXT4_SB(sb)->rsv_conversion_wq) {
5464                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5465                 err = -ENOMEM;
5466                 goto failed_mount4;
5467         }
5468
5469         /*
5470          * The jbd2_journal_load will have done any necessary log recovery,
5471          * so we can safely mount the rest of the filesystem now.
5472          */
5473
5474         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5475         if (IS_ERR(root)) {
5476                 ext4_msg(sb, KERN_ERR, "get root inode failed");
5477                 err = PTR_ERR(root);
5478                 root = NULL;
5479                 goto failed_mount4;
5480         }
5481         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5482                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5483                 iput(root);
5484                 err = -EFSCORRUPTED;
5485                 goto failed_mount4;
5486         }
5487
5488         sb->s_root = d_make_root(root);
5489         if (!sb->s_root) {
5490                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5491                 err = -ENOMEM;
5492                 goto failed_mount4;
5493         }
5494
5495         err = ext4_setup_super(sb, es, sb_rdonly(sb));
5496         if (err == -EROFS) {
5497                 sb->s_flags |= SB_RDONLY;
5498         } else if (err)
5499                 goto failed_mount4a;
5500
5501         ext4_set_resv_clusters(sb);
5502
5503         if (test_opt(sb, BLOCK_VALIDITY)) {
5504                 err = ext4_setup_system_zone(sb);
5505                 if (err) {
5506                         ext4_msg(sb, KERN_ERR, "failed to initialize system "
5507                                  "zone (%d)", err);
5508                         goto failed_mount4a;
5509                 }
5510         }
5511         ext4_fc_replay_cleanup(sb);
5512
5513         ext4_ext_init(sb);
5514
5515         /*
5516          * Enable optimize_scan if number of groups is > threshold. This can be
5517          * turned off by passing "mb_optimize_scan=0". This can also be
5518          * turned on forcefully by passing "mb_optimize_scan=1".
5519          */
5520         if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5521                 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5522                         set_opt2(sb, MB_OPTIMIZE_SCAN);
5523                 else
5524                         clear_opt2(sb, MB_OPTIMIZE_SCAN);
5525         }
5526
5527         err = ext4_mb_init(sb);
5528         if (err) {
5529                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5530                          err);
5531                 goto failed_mount5;
5532         }
5533
5534         /*
5535          * We can only set up the journal commit callback once
5536          * mballoc is initialized
5537          */
5538         if (sbi->s_journal)
5539                 sbi->s_journal->j_commit_callback =
5540                         ext4_journal_commit_callback;
5541
5542         err = ext4_percpu_param_init(sbi);
5543         if (err)
5544                 goto failed_mount6;
5545
5546         if (ext4_has_feature_flex_bg(sb))
5547                 if (!ext4_fill_flex_info(sb)) {
5548                         ext4_msg(sb, KERN_ERR,
5549                                "unable to initialize "
5550                                "flex_bg meta info!");
5551                         err = -ENOMEM;
5552                         goto failed_mount6;
5553                 }
5554
5555         err = ext4_register_li_request(sb, first_not_zeroed);
5556         if (err)
5557                 goto failed_mount6;
5558
5559         err = ext4_register_sysfs(sb);
5560         if (err)
5561                 goto failed_mount7;
5562
5563         err = ext4_init_orphan_info(sb);
5564         if (err)
5565                 goto failed_mount8;
5566 #ifdef CONFIG_QUOTA
5567         /* Enable quota usage during mount. */
5568         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5569                 err = ext4_enable_quotas(sb);
5570                 if (err)
5571                         goto failed_mount9;
5572         }
5573 #endif  /* CONFIG_QUOTA */
5574
5575         /*
5576          * Save the original bdev mapping's wb_err value which could be
5577          * used to detect the metadata async write error.
5578          */
5579         spin_lock_init(&sbi->s_bdev_wb_lock);
5580         errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5581                                  &sbi->s_bdev_wb_err);
5582         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5583         ext4_orphan_cleanup(sb, es);
5584         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5585         /*
5586          * Update the checksum after updating free space/inode counters and
5587          * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5588          * checksum in the buffer cache until it is written out and
5589          * e2fsprogs programs trying to open a file system immediately
5590          * after it is mounted can fail.
5591          */
5592         ext4_superblock_csum_set(sb);
5593         if (needs_recovery) {
5594                 ext4_msg(sb, KERN_INFO, "recovery complete");
5595                 err = ext4_mark_recovery_complete(sb, es);
5596                 if (err)
5597                         goto failed_mount10;
5598         }
5599
5600         if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5601                 ext4_msg(sb, KERN_WARNING,
5602                          "mounting with \"discard\" option, but the device does not support discard");
5603
5604         if (es->s_error_count)
5605                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5606
5607         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5608         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5609         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5610         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5611         atomic_set(&sbi->s_warning_count, 0);
5612         atomic_set(&sbi->s_msg_count, 0);
5613
5614         return 0;
5615
5616 failed_mount10:
5617         ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5618 failed_mount9: __maybe_unused
5619         ext4_release_orphan_info(sb);
5620 failed_mount8:
5621         ext4_unregister_sysfs(sb);
5622         kobject_put(&sbi->s_kobj);
5623 failed_mount7:
5624         ext4_unregister_li_request(sb);
5625 failed_mount6:
5626         ext4_mb_release(sb);
5627         ext4_flex_groups_free(sbi);
5628         ext4_percpu_param_destroy(sbi);
5629 failed_mount5:
5630         ext4_ext_release(sb);
5631         ext4_release_system_zone(sb);
5632 failed_mount4a:
5633         dput(sb->s_root);
5634         sb->s_root = NULL;
5635 failed_mount4:
5636         ext4_msg(sb, KERN_ERR, "mount failed");
5637         if (EXT4_SB(sb)->rsv_conversion_wq)
5638                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5639 failed_mount_wq:
5640         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5641         sbi->s_ea_inode_cache = NULL;
5642
5643         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5644         sbi->s_ea_block_cache = NULL;
5645
5646         if (sbi->s_journal) {
5647                 /* flush s_sb_upd_work before journal destroy. */
5648                 flush_work(&sbi->s_sb_upd_work);
5649                 jbd2_journal_destroy(sbi->s_journal);
5650                 sbi->s_journal = NULL;
5651         }
5652 failed_mount3a:
5653         ext4_es_unregister_shrinker(sbi);
5654 failed_mount3:
5655         /* flush s_sb_upd_work before sbi destroy */
5656         flush_work(&sbi->s_sb_upd_work);
5657         del_timer_sync(&sbi->s_err_report);
5658         ext4_stop_mmpd(sbi);
5659         ext4_group_desc_free(sbi);
5660 failed_mount:
5661         if (sbi->s_chksum_driver)
5662                 crypto_free_shash(sbi->s_chksum_driver);
5663
5664 #if IS_ENABLED(CONFIG_UNICODE)
5665         utf8_unload(sb->s_encoding);
5666 #endif
5667
5668 #ifdef CONFIG_QUOTA
5669         for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5670                 kfree(get_qf_name(sb, sbi, i));
5671 #endif
5672         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5673         brelse(sbi->s_sbh);
5674         if (sbi->s_journal_bdev_handle) {
5675                 invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
5676                 bdev_release(sbi->s_journal_bdev_handle);
5677         }
5678 out_fail:
5679         invalidate_bdev(sb->s_bdev);
5680         sb->s_fs_info = NULL;
5681         return err;
5682 }
5683
5684 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5685 {
5686         struct ext4_fs_context *ctx = fc->fs_private;
5687         struct ext4_sb_info *sbi;
5688         const char *descr;
5689         int ret;
5690
5691         sbi = ext4_alloc_sbi(sb);
5692         if (!sbi)
5693                 return -ENOMEM;
5694
5695         fc->s_fs_info = sbi;
5696
5697         /* Cleanup superblock name */
5698         strreplace(sb->s_id, '/', '!');
5699
5700         sbi->s_sb_block = 1;    /* Default super block location */
5701         if (ctx->spec & EXT4_SPEC_s_sb_block)
5702                 sbi->s_sb_block = ctx->s_sb_block;
5703
5704         ret = __ext4_fill_super(fc, sb);
5705         if (ret < 0)
5706                 goto free_sbi;
5707
5708         if (sbi->s_journal) {
5709                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5710                         descr = " journalled data mode";
5711                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5712                         descr = " ordered data mode";
5713                 else
5714                         descr = " writeback data mode";
5715         } else
5716                 descr = "out journal";
5717
5718         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5719                 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5720                          "Quota mode: %s.", &sb->s_uuid,
5721                          sb_rdonly(sb) ? "ro" : "r/w", descr,
5722                          ext4_quota_mode(sb));
5723
5724         /* Update the s_overhead_clusters if necessary */
5725         ext4_update_overhead(sb, false);
5726         return 0;
5727
5728 free_sbi:
5729         ext4_free_sbi(sbi);
5730         fc->s_fs_info = NULL;
5731         return ret;
5732 }
5733
5734 static int ext4_get_tree(struct fs_context *fc)
5735 {
5736         return get_tree_bdev(fc, ext4_fill_super);
5737 }
5738
5739 /*
5740  * Setup any per-fs journal parameters now.  We'll do this both on
5741  * initial mount, once the journal has been initialised but before we've
5742  * done any recovery; and again on any subsequent remount.
5743  */
5744 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5745 {
5746         struct ext4_sb_info *sbi = EXT4_SB(sb);
5747
5748         journal->j_commit_interval = sbi->s_commit_interval;
5749         journal->j_min_batch_time = sbi->s_min_batch_time;
5750         journal->j_max_batch_time = sbi->s_max_batch_time;
5751         ext4_fc_init(sb, journal);
5752
5753         write_lock(&journal->j_state_lock);
5754         if (test_opt(sb, BARRIER))
5755                 journal->j_flags |= JBD2_BARRIER;
5756         else
5757                 journal->j_flags &= ~JBD2_BARRIER;
5758         if (test_opt(sb, DATA_ERR_ABORT))
5759                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5760         else
5761                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5762         /*
5763          * Always enable journal cycle record option, letting the journal
5764          * records log transactions continuously between each mount.
5765          */
5766         journal->j_flags |= JBD2_CYCLE_RECORD;
5767         write_unlock(&journal->j_state_lock);
5768 }
5769
5770 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5771                                              unsigned int journal_inum)
5772 {
5773         struct inode *journal_inode;
5774
5775         /*
5776          * Test for the existence of a valid inode on disk.  Bad things
5777          * happen if we iget() an unused inode, as the subsequent iput()
5778          * will try to delete it.
5779          */
5780         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5781         if (IS_ERR(journal_inode)) {
5782                 ext4_msg(sb, KERN_ERR, "no journal found");
5783                 return ERR_CAST(journal_inode);
5784         }
5785         if (!journal_inode->i_nlink) {
5786                 make_bad_inode(journal_inode);
5787                 iput(journal_inode);
5788                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5789                 return ERR_PTR(-EFSCORRUPTED);
5790         }
5791         if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5792                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5793                 iput(journal_inode);
5794                 return ERR_PTR(-EFSCORRUPTED);
5795         }
5796
5797         ext4_debug("Journal inode found at %p: %lld bytes\n",
5798                   journal_inode, journal_inode->i_size);
5799         return journal_inode;
5800 }
5801
5802 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5803 {
5804         struct ext4_map_blocks map;
5805         int ret;
5806
5807         if (journal->j_inode == NULL)
5808                 return 0;
5809
5810         map.m_lblk = *block;
5811         map.m_len = 1;
5812         ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5813         if (ret <= 0) {
5814                 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5815                          "journal bmap failed: block %llu ret %d\n",
5816                          *block, ret);
5817                 jbd2_journal_abort(journal, ret ? ret : -EIO);
5818                 return ret;
5819         }
5820         *block = map.m_pblk;
5821         return 0;
5822 }
5823
5824 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5825                                           unsigned int journal_inum)
5826 {
5827         struct inode *journal_inode;
5828         journal_t *journal;
5829
5830         journal_inode = ext4_get_journal_inode(sb, journal_inum);
5831         if (IS_ERR(journal_inode))
5832                 return ERR_CAST(journal_inode);
5833
5834         journal = jbd2_journal_init_inode(journal_inode);
5835         if (IS_ERR(journal)) {
5836                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5837                 iput(journal_inode);
5838                 return ERR_CAST(journal);
5839         }
5840         journal->j_private = sb;
5841         journal->j_bmap = ext4_journal_bmap;
5842         ext4_init_journal_params(sb, journal);
5843         return journal;
5844 }
5845
5846 static struct bdev_handle *ext4_get_journal_blkdev(struct super_block *sb,
5847                                         dev_t j_dev, ext4_fsblk_t *j_start,
5848                                         ext4_fsblk_t *j_len)
5849 {
5850         struct buffer_head *bh;
5851         struct block_device *bdev;
5852         struct bdev_handle *bdev_handle;
5853         int hblock, blocksize;
5854         ext4_fsblk_t sb_block;
5855         unsigned long offset;
5856         struct ext4_super_block *es;
5857         int errno;
5858
5859         /* see get_tree_bdev why this is needed and safe */
5860         up_write(&sb->s_umount);
5861         bdev_handle = bdev_open_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE,
5862                                        sb, &fs_holder_ops);
5863         down_write(&sb->s_umount);
5864         if (IS_ERR(bdev_handle)) {
5865                 ext4_msg(sb, KERN_ERR,
5866                          "failed to open journal device unknown-block(%u,%u) %ld",
5867                          MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_handle));
5868                 return bdev_handle;
5869         }
5870
5871         bdev = bdev_handle->bdev;
5872         blocksize = sb->s_blocksize;
5873         hblock = bdev_logical_block_size(bdev);
5874         if (blocksize < hblock) {
5875                 ext4_msg(sb, KERN_ERR,
5876                         "blocksize too small for journal device");
5877                 errno = -EINVAL;
5878                 goto out_bdev;
5879         }
5880
5881         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5882         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5883         set_blocksize(bdev, blocksize);
5884         bh = __bread(bdev, sb_block, blocksize);
5885         if (!bh) {
5886                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5887                        "external journal");
5888                 errno = -EINVAL;
5889                 goto out_bdev;
5890         }
5891
5892         es = (struct ext4_super_block *) (bh->b_data + offset);
5893         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5894             !(le32_to_cpu(es->s_feature_incompat) &
5895               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5896                 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5897                 errno = -EFSCORRUPTED;
5898                 goto out_bh;
5899         }
5900
5901         if ((le32_to_cpu(es->s_feature_ro_compat) &
5902              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5903             es->s_checksum != ext4_superblock_csum(sb, es)) {
5904                 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5905                 errno = -EFSCORRUPTED;
5906                 goto out_bh;
5907         }
5908
5909         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5910                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5911                 errno = -EFSCORRUPTED;
5912                 goto out_bh;
5913         }
5914
5915         *j_start = sb_block + 1;
5916         *j_len = ext4_blocks_count(es);
5917         brelse(bh);
5918         return bdev_handle;
5919
5920 out_bh:
5921         brelse(bh);
5922 out_bdev:
5923         bdev_release(bdev_handle);
5924         return ERR_PTR(errno);
5925 }
5926
5927 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5928                                         dev_t j_dev)
5929 {
5930         journal_t *journal;
5931         ext4_fsblk_t j_start;
5932         ext4_fsblk_t j_len;
5933         struct bdev_handle *bdev_handle;
5934         int errno = 0;
5935
5936         bdev_handle = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5937         if (IS_ERR(bdev_handle))
5938                 return ERR_CAST(bdev_handle);
5939
5940         journal = jbd2_journal_init_dev(bdev_handle->bdev, sb->s_bdev, j_start,
5941                                         j_len, sb->s_blocksize);
5942         if (IS_ERR(journal)) {
5943                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5944                 errno = PTR_ERR(journal);
5945                 goto out_bdev;
5946         }
5947         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5948                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5949                                         "user (unsupported) - %d",
5950                         be32_to_cpu(journal->j_superblock->s_nr_users));
5951                 errno = -EINVAL;
5952                 goto out_journal;
5953         }
5954         journal->j_private = sb;
5955         EXT4_SB(sb)->s_journal_bdev_handle = bdev_handle;
5956         ext4_init_journal_params(sb, journal);
5957         return journal;
5958
5959 out_journal:
5960         jbd2_journal_destroy(journal);
5961 out_bdev:
5962         bdev_release(bdev_handle);
5963         return ERR_PTR(errno);
5964 }
5965
5966 static int ext4_load_journal(struct super_block *sb,
5967                              struct ext4_super_block *es,
5968                              unsigned long journal_devnum)
5969 {
5970         journal_t *journal;
5971         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5972         dev_t journal_dev;
5973         int err = 0;
5974         int really_read_only;
5975         int journal_dev_ro;
5976
5977         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5978                 return -EFSCORRUPTED;
5979
5980         if (journal_devnum &&
5981             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5982                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5983                         "numbers have changed");
5984                 journal_dev = new_decode_dev(journal_devnum);
5985         } else
5986                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5987
5988         if (journal_inum && journal_dev) {
5989                 ext4_msg(sb, KERN_ERR,
5990                          "filesystem has both journal inode and journal device!");
5991                 return -EINVAL;
5992         }
5993
5994         if (journal_inum) {
5995                 journal = ext4_open_inode_journal(sb, journal_inum);
5996                 if (IS_ERR(journal))
5997                         return PTR_ERR(journal);
5998         } else {
5999                 journal = ext4_open_dev_journal(sb, journal_dev);
6000                 if (IS_ERR(journal))
6001                         return PTR_ERR(journal);
6002         }
6003
6004         journal_dev_ro = bdev_read_only(journal->j_dev);
6005         really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6006
6007         if (journal_dev_ro && !sb_rdonly(sb)) {
6008                 ext4_msg(sb, KERN_ERR,
6009                          "journal device read-only, try mounting with '-o ro'");
6010                 err = -EROFS;
6011                 goto err_out;
6012         }
6013
6014         /*
6015          * Are we loading a blank journal or performing recovery after a
6016          * crash?  For recovery, we need to check in advance whether we
6017          * can get read-write access to the device.
6018          */
6019         if (ext4_has_feature_journal_needs_recovery(sb)) {
6020                 if (sb_rdonly(sb)) {
6021                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
6022                                         "required on readonly filesystem");
6023                         if (really_read_only) {
6024                                 ext4_msg(sb, KERN_ERR, "write access "
6025                                         "unavailable, cannot proceed "
6026                                         "(try mounting with noload)");
6027                                 err = -EROFS;
6028                                 goto err_out;
6029                         }
6030                         ext4_msg(sb, KERN_INFO, "write access will "
6031                                "be enabled during recovery");
6032                 }
6033         }
6034
6035         if (!(journal->j_flags & JBD2_BARRIER))
6036                 ext4_msg(sb, KERN_INFO, "barriers disabled");
6037
6038         if (!ext4_has_feature_journal_needs_recovery(sb))
6039                 err = jbd2_journal_wipe(journal, !really_read_only);
6040         if (!err) {
6041                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6042                 __le16 orig_state;
6043                 bool changed = false;
6044
6045                 if (save)
6046                         memcpy(save, ((char *) es) +
6047                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6048                 err = jbd2_journal_load(journal);
6049                 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6050                                    save, EXT4_S_ERR_LEN)) {
6051                         memcpy(((char *) es) + EXT4_S_ERR_START,
6052                                save, EXT4_S_ERR_LEN);
6053                         changed = true;
6054                 }
6055                 kfree(save);
6056                 orig_state = es->s_state;
6057                 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6058                                            EXT4_ERROR_FS);
6059                 if (orig_state != es->s_state)
6060                         changed = true;
6061                 /* Write out restored error information to the superblock */
6062                 if (changed && !really_read_only) {
6063                         int err2;
6064                         err2 = ext4_commit_super(sb);
6065                         err = err ? : err2;
6066                 }
6067         }
6068
6069         if (err) {
6070                 ext4_msg(sb, KERN_ERR, "error loading journal");
6071                 goto err_out;
6072         }
6073
6074         EXT4_SB(sb)->s_journal = journal;
6075         err = ext4_clear_journal_err(sb, es);
6076         if (err) {
6077                 EXT4_SB(sb)->s_journal = NULL;
6078                 jbd2_journal_destroy(journal);
6079                 return err;
6080         }
6081
6082         if (!really_read_only && journal_devnum &&
6083             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6084                 es->s_journal_dev = cpu_to_le32(journal_devnum);
6085                 ext4_commit_super(sb);
6086         }
6087         if (!really_read_only && journal_inum &&
6088             journal_inum != le32_to_cpu(es->s_journal_inum)) {
6089                 es->s_journal_inum = cpu_to_le32(journal_inum);
6090                 ext4_commit_super(sb);
6091         }
6092
6093         return 0;
6094
6095 err_out:
6096         jbd2_journal_destroy(journal);
6097         return err;
6098 }
6099
6100 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6101 static void ext4_update_super(struct super_block *sb)
6102 {
6103         struct ext4_sb_info *sbi = EXT4_SB(sb);
6104         struct ext4_super_block *es = sbi->s_es;
6105         struct buffer_head *sbh = sbi->s_sbh;
6106
6107         lock_buffer(sbh);
6108         /*
6109          * If the file system is mounted read-only, don't update the
6110          * superblock write time.  This avoids updating the superblock
6111          * write time when we are mounting the root file system
6112          * read/only but we need to replay the journal; at that point,
6113          * for people who are east of GMT and who make their clock
6114          * tick in localtime for Windows bug-for-bug compatibility,
6115          * the clock is set in the future, and this will cause e2fsck
6116          * to complain and force a full file system check.
6117          */
6118         if (!sb_rdonly(sb))
6119                 ext4_update_tstamp(es, s_wtime);
6120         es->s_kbytes_written =
6121                 cpu_to_le64(sbi->s_kbytes_written +
6122                     ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6123                       sbi->s_sectors_written_start) >> 1));
6124         if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6125                 ext4_free_blocks_count_set(es,
6126                         EXT4_C2B(sbi, percpu_counter_sum_positive(
6127                                 &sbi->s_freeclusters_counter)));
6128         if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6129                 es->s_free_inodes_count =
6130                         cpu_to_le32(percpu_counter_sum_positive(
6131                                 &sbi->s_freeinodes_counter));
6132         /* Copy error information to the on-disk superblock */
6133         spin_lock(&sbi->s_error_lock);
6134         if (sbi->s_add_error_count > 0) {
6135                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6136                 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6137                         __ext4_update_tstamp(&es->s_first_error_time,
6138                                              &es->s_first_error_time_hi,
6139                                              sbi->s_first_error_time);
6140                         strncpy(es->s_first_error_func, sbi->s_first_error_func,
6141                                 sizeof(es->s_first_error_func));
6142                         es->s_first_error_line =
6143                                 cpu_to_le32(sbi->s_first_error_line);
6144                         es->s_first_error_ino =
6145                                 cpu_to_le32(sbi->s_first_error_ino);
6146                         es->s_first_error_block =
6147                                 cpu_to_le64(sbi->s_first_error_block);
6148                         es->s_first_error_errcode =
6149                                 ext4_errno_to_code(sbi->s_first_error_code);
6150                 }
6151                 __ext4_update_tstamp(&es->s_last_error_time,
6152                                      &es->s_last_error_time_hi,
6153                                      sbi->s_last_error_time);
6154                 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6155                         sizeof(es->s_last_error_func));
6156                 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6157                 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6158                 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6159                 es->s_last_error_errcode =
6160                                 ext4_errno_to_code(sbi->s_last_error_code);
6161                 /*
6162                  * Start the daily error reporting function if it hasn't been
6163                  * started already
6164                  */
6165                 if (!es->s_error_count)
6166                         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6167                 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6168                 sbi->s_add_error_count = 0;
6169         }
6170         spin_unlock(&sbi->s_error_lock);
6171
6172         ext4_superblock_csum_set(sb);
6173         unlock_buffer(sbh);
6174 }
6175
6176 static int ext4_commit_super(struct super_block *sb)
6177 {
6178         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6179
6180         if (!sbh)
6181                 return -EINVAL;
6182         if (block_device_ejected(sb))
6183                 return -ENODEV;
6184
6185         ext4_update_super(sb);
6186
6187         lock_buffer(sbh);
6188         /* Buffer got discarded which means block device got invalidated */
6189         if (!buffer_mapped(sbh)) {
6190                 unlock_buffer(sbh);
6191                 return -EIO;
6192         }
6193
6194         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6195                 /*
6196                  * Oh, dear.  A previous attempt to write the
6197                  * superblock failed.  This could happen because the
6198                  * USB device was yanked out.  Or it could happen to
6199                  * be a transient write error and maybe the block will
6200                  * be remapped.  Nothing we can do but to retry the
6201                  * write and hope for the best.
6202                  */
6203                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6204                        "superblock detected");
6205                 clear_buffer_write_io_error(sbh);
6206                 set_buffer_uptodate(sbh);
6207         }
6208         get_bh(sbh);
6209         /* Clear potential dirty bit if it was journalled update */
6210         clear_buffer_dirty(sbh);
6211         sbh->b_end_io = end_buffer_write_sync;
6212         submit_bh(REQ_OP_WRITE | REQ_SYNC |
6213                   (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6214         wait_on_buffer(sbh);
6215         if (buffer_write_io_error(sbh)) {
6216                 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6217                        "superblock");
6218                 clear_buffer_write_io_error(sbh);
6219                 set_buffer_uptodate(sbh);
6220                 return -EIO;
6221         }
6222         return 0;
6223 }
6224
6225 /*
6226  * Have we just finished recovery?  If so, and if we are mounting (or
6227  * remounting) the filesystem readonly, then we will end up with a
6228  * consistent fs on disk.  Record that fact.
6229  */
6230 static int ext4_mark_recovery_complete(struct super_block *sb,
6231                                        struct ext4_super_block *es)
6232 {
6233         int err;
6234         journal_t *journal = EXT4_SB(sb)->s_journal;
6235
6236         if (!ext4_has_feature_journal(sb)) {
6237                 if (journal != NULL) {
6238                         ext4_error(sb, "Journal got removed while the fs was "
6239                                    "mounted!");
6240                         return -EFSCORRUPTED;
6241                 }
6242                 return 0;
6243         }
6244         jbd2_journal_lock_updates(journal);
6245         err = jbd2_journal_flush(journal, 0);
6246         if (err < 0)
6247                 goto out;
6248
6249         if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6250             ext4_has_feature_orphan_present(sb))) {
6251                 if (!ext4_orphan_file_empty(sb)) {
6252                         ext4_error(sb, "Orphan file not empty on read-only fs.");
6253                         err = -EFSCORRUPTED;
6254                         goto out;
6255                 }
6256                 ext4_clear_feature_journal_needs_recovery(sb);
6257                 ext4_clear_feature_orphan_present(sb);
6258                 ext4_commit_super(sb);
6259         }
6260 out:
6261         jbd2_journal_unlock_updates(journal);
6262         return err;
6263 }
6264
6265 /*
6266  * If we are mounting (or read-write remounting) a filesystem whose journal
6267  * has recorded an error from a previous lifetime, move that error to the
6268  * main filesystem now.
6269  */
6270 static int ext4_clear_journal_err(struct super_block *sb,
6271                                    struct ext4_super_block *es)
6272 {
6273         journal_t *journal;
6274         int j_errno;
6275         const char *errstr;
6276
6277         if (!ext4_has_feature_journal(sb)) {
6278                 ext4_error(sb, "Journal got removed while the fs was mounted!");
6279                 return -EFSCORRUPTED;
6280         }
6281
6282         journal = EXT4_SB(sb)->s_journal;
6283
6284         /*
6285          * Now check for any error status which may have been recorded in the
6286          * journal by a prior ext4_error() or ext4_abort()
6287          */
6288
6289         j_errno = jbd2_journal_errno(journal);
6290         if (j_errno) {
6291                 char nbuf[16];
6292
6293                 errstr = ext4_decode_error(sb, j_errno, nbuf);
6294                 ext4_warning(sb, "Filesystem error recorded "
6295                              "from previous mount: %s", errstr);
6296
6297                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6298                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6299                 j_errno = ext4_commit_super(sb);
6300                 if (j_errno)
6301                         return j_errno;
6302                 ext4_warning(sb, "Marked fs in need of filesystem check.");
6303
6304                 jbd2_journal_clear_err(journal);
6305                 jbd2_journal_update_sb_errno(journal);
6306         }
6307         return 0;
6308 }
6309
6310 /*
6311  * Force the running and committing transactions to commit,
6312  * and wait on the commit.
6313  */
6314 int ext4_force_commit(struct super_block *sb)
6315 {
6316         return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6317 }
6318
6319 static int ext4_sync_fs(struct super_block *sb, int wait)
6320 {
6321         int ret = 0;
6322         tid_t target;
6323         bool needs_barrier = false;
6324         struct ext4_sb_info *sbi = EXT4_SB(sb);
6325
6326         if (unlikely(ext4_forced_shutdown(sb)))
6327                 return 0;
6328
6329         trace_ext4_sync_fs(sb, wait);
6330         flush_workqueue(sbi->rsv_conversion_wq);
6331         /*
6332          * Writeback quota in non-journalled quota case - journalled quota has
6333          * no dirty dquots
6334          */
6335         dquot_writeback_dquots(sb, -1);
6336         /*
6337          * Data writeback is possible w/o journal transaction, so barrier must
6338          * being sent at the end of the function. But we can skip it if
6339          * transaction_commit will do it for us.
6340          */
6341         if (sbi->s_journal) {
6342                 target = jbd2_get_latest_transaction(sbi->s_journal);
6343                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6344                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6345                         needs_barrier = true;
6346
6347                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6348                         if (wait)
6349                                 ret = jbd2_log_wait_commit(sbi->s_journal,
6350                                                            target);
6351                 }
6352         } else if (wait && test_opt(sb, BARRIER))
6353                 needs_barrier = true;
6354         if (needs_barrier) {
6355                 int err;
6356                 err = blkdev_issue_flush(sb->s_bdev);
6357                 if (!ret)
6358                         ret = err;
6359         }
6360
6361         return ret;
6362 }
6363
6364 /*
6365  * LVM calls this function before a (read-only) snapshot is created.  This
6366  * gives us a chance to flush the journal completely and mark the fs clean.
6367  *
6368  * Note that only this function cannot bring a filesystem to be in a clean
6369  * state independently. It relies on upper layer to stop all data & metadata
6370  * modifications.
6371  */
6372 static int ext4_freeze(struct super_block *sb)
6373 {
6374         int error = 0;
6375         journal_t *journal = EXT4_SB(sb)->s_journal;
6376
6377         if (journal) {
6378                 /* Now we set up the journal barrier. */
6379                 jbd2_journal_lock_updates(journal);
6380
6381                 /*
6382                  * Don't clear the needs_recovery flag if we failed to
6383                  * flush the journal.
6384                  */
6385                 error = jbd2_journal_flush(journal, 0);
6386                 if (error < 0)
6387                         goto out;
6388
6389                 /* Journal blocked and flushed, clear needs_recovery flag. */
6390                 ext4_clear_feature_journal_needs_recovery(sb);
6391                 if (ext4_orphan_file_empty(sb))
6392                         ext4_clear_feature_orphan_present(sb);
6393         }
6394
6395         error = ext4_commit_super(sb);
6396 out:
6397         if (journal)
6398                 /* we rely on upper layer to stop further updates */
6399                 jbd2_journal_unlock_updates(journal);
6400         return error;
6401 }
6402
6403 /*
6404  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6405  * flag here, even though the filesystem is not technically dirty yet.
6406  */
6407 static int ext4_unfreeze(struct super_block *sb)
6408 {
6409         if (ext4_forced_shutdown(sb))
6410                 return 0;
6411
6412         if (EXT4_SB(sb)->s_journal) {
6413                 /* Reset the needs_recovery flag before the fs is unlocked. */
6414                 ext4_set_feature_journal_needs_recovery(sb);
6415                 if (ext4_has_feature_orphan_file(sb))
6416                         ext4_set_feature_orphan_present(sb);
6417         }
6418
6419         ext4_commit_super(sb);
6420         return 0;
6421 }
6422
6423 /*
6424  * Structure to save mount options for ext4_remount's benefit
6425  */
6426 struct ext4_mount_options {
6427         unsigned long s_mount_opt;
6428         unsigned long s_mount_opt2;
6429         kuid_t s_resuid;
6430         kgid_t s_resgid;
6431         unsigned long s_commit_interval;
6432         u32 s_min_batch_time, s_max_batch_time;
6433 #ifdef CONFIG_QUOTA
6434         int s_jquota_fmt;
6435         char *s_qf_names[EXT4_MAXQUOTAS];
6436 #endif
6437 };
6438
6439 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6440 {
6441         struct ext4_fs_context *ctx = fc->fs_private;
6442         struct ext4_super_block *es;
6443         struct ext4_sb_info *sbi = EXT4_SB(sb);
6444         unsigned long old_sb_flags;
6445         struct ext4_mount_options old_opts;
6446         ext4_group_t g;
6447         int err = 0;
6448         int alloc_ctx;
6449 #ifdef CONFIG_QUOTA
6450         int enable_quota = 0;
6451         int i, j;
6452         char *to_free[EXT4_MAXQUOTAS];
6453 #endif
6454
6455
6456         /* Store the original options */
6457         old_sb_flags = sb->s_flags;
6458         old_opts.s_mount_opt = sbi->s_mount_opt;
6459         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6460         old_opts.s_resuid = sbi->s_resuid;
6461         old_opts.s_resgid = sbi->s_resgid;
6462         old_opts.s_commit_interval = sbi->s_commit_interval;
6463         old_opts.s_min_batch_time = sbi->s_min_batch_time;
6464         old_opts.s_max_batch_time = sbi->s_max_batch_time;
6465 #ifdef CONFIG_QUOTA
6466         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6467         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6468                 if (sbi->s_qf_names[i]) {
6469                         char *qf_name = get_qf_name(sb, sbi, i);
6470
6471                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6472                         if (!old_opts.s_qf_names[i]) {
6473                                 for (j = 0; j < i; j++)
6474                                         kfree(old_opts.s_qf_names[j]);
6475                                 return -ENOMEM;
6476                         }
6477                 } else
6478                         old_opts.s_qf_names[i] = NULL;
6479 #endif
6480         if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6481                 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6482                         ctx->journal_ioprio =
6483                                 sbi->s_journal->j_task->io_context->ioprio;
6484                 else
6485                         ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6486
6487         }
6488
6489         /*
6490          * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6491          * two calls to ext4_should_dioread_nolock() to return inconsistent
6492          * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6493          * here s_writepages_rwsem to avoid race between writepages ops and
6494          * remount.
6495          */
6496         alloc_ctx = ext4_writepages_down_write(sb);
6497         ext4_apply_options(fc, sb);
6498         ext4_writepages_up_write(sb, alloc_ctx);
6499
6500         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6501             test_opt(sb, JOURNAL_CHECKSUM)) {
6502                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6503                          "during remount not supported; ignoring");
6504                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6505         }
6506
6507         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6508                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6509                         ext4_msg(sb, KERN_ERR, "can't mount with "
6510                                  "both data=journal and delalloc");
6511                         err = -EINVAL;
6512                         goto restore_opts;
6513                 }
6514                 if (test_opt(sb, DIOREAD_NOLOCK)) {
6515                         ext4_msg(sb, KERN_ERR, "can't mount with "
6516                                  "both data=journal and dioread_nolock");
6517                         err = -EINVAL;
6518                         goto restore_opts;
6519                 }
6520         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6521                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6522                         ext4_msg(sb, KERN_ERR, "can't mount with "
6523                                 "journal_async_commit in data=ordered mode");
6524                         err = -EINVAL;
6525                         goto restore_opts;
6526                 }
6527         }
6528
6529         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6530                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6531                 err = -EINVAL;
6532                 goto restore_opts;
6533         }
6534
6535         if (test_opt2(sb, ABORT))
6536                 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6537
6538         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6539                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6540
6541         es = sbi->s_es;
6542
6543         if (sbi->s_journal) {
6544                 ext4_init_journal_params(sb, sbi->s_journal);
6545                 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6546         }
6547
6548         /* Flush outstanding errors before changing fs state */
6549         flush_work(&sbi->s_sb_upd_work);
6550
6551         if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6552                 if (ext4_forced_shutdown(sb)) {
6553                         err = -EROFS;
6554                         goto restore_opts;
6555                 }
6556
6557                 if (fc->sb_flags & SB_RDONLY) {
6558                         err = sync_filesystem(sb);
6559                         if (err < 0)
6560                                 goto restore_opts;
6561                         err = dquot_suspend(sb, -1);
6562                         if (err < 0)
6563                                 goto restore_opts;
6564
6565                         /*
6566                          * First of all, the unconditional stuff we have to do
6567                          * to disable replay of the journal when we next remount
6568                          */
6569                         sb->s_flags |= SB_RDONLY;
6570
6571                         /*
6572                          * OK, test if we are remounting a valid rw partition
6573                          * readonly, and if so set the rdonly flag and then
6574                          * mark the partition as valid again.
6575                          */
6576                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6577                             (sbi->s_mount_state & EXT4_VALID_FS))
6578                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
6579
6580                         if (sbi->s_journal) {
6581                                 /*
6582                                  * We let remount-ro finish even if marking fs
6583                                  * as clean failed...
6584                                  */
6585                                 ext4_mark_recovery_complete(sb, es);
6586                         }
6587                 } else {
6588                         /* Make sure we can mount this feature set readwrite */
6589                         if (ext4_has_feature_readonly(sb) ||
6590                             !ext4_feature_set_ok(sb, 0)) {
6591                                 err = -EROFS;
6592                                 goto restore_opts;
6593                         }
6594                         /*
6595                          * Make sure the group descriptor checksums
6596                          * are sane.  If they aren't, refuse to remount r/w.
6597                          */
6598                         for (g = 0; g < sbi->s_groups_count; g++) {
6599                                 struct ext4_group_desc *gdp =
6600                                         ext4_get_group_desc(sb, g, NULL);
6601
6602                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6603                                         ext4_msg(sb, KERN_ERR,
6604                "ext4_remount: Checksum for group %u failed (%u!=%u)",
6605                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6606                                                le16_to_cpu(gdp->bg_checksum));
6607                                         err = -EFSBADCRC;
6608                                         goto restore_opts;
6609                                 }
6610                         }
6611
6612                         /*
6613                          * If we have an unprocessed orphan list hanging
6614                          * around from a previously readonly bdev mount,
6615                          * require a full umount/remount for now.
6616                          */
6617                         if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6618                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
6619                                        "remount RDWR because of unprocessed "
6620                                        "orphan inode list.  Please "
6621                                        "umount/remount instead");
6622                                 err = -EINVAL;
6623                                 goto restore_opts;
6624                         }
6625
6626                         /*
6627                          * Mounting a RDONLY partition read-write, so reread
6628                          * and store the current valid flag.  (It may have
6629                          * been changed by e2fsck since we originally mounted
6630                          * the partition.)
6631                          */
6632                         if (sbi->s_journal) {
6633                                 err = ext4_clear_journal_err(sb, es);
6634                                 if (err)
6635                                         goto restore_opts;
6636                         }
6637                         sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6638                                               ~EXT4_FC_REPLAY);
6639
6640                         err = ext4_setup_super(sb, es, 0);
6641                         if (err)
6642                                 goto restore_opts;
6643
6644                         sb->s_flags &= ~SB_RDONLY;
6645                         if (ext4_has_feature_mmp(sb)) {
6646                                 err = ext4_multi_mount_protect(sb,
6647                                                 le64_to_cpu(es->s_mmp_block));
6648                                 if (err)
6649                                         goto restore_opts;
6650                         }
6651 #ifdef CONFIG_QUOTA
6652                         enable_quota = 1;
6653 #endif
6654                 }
6655         }
6656
6657         /*
6658          * Handle creation of system zone data early because it can fail.
6659          * Releasing of existing data is done when we are sure remount will
6660          * succeed.
6661          */
6662         if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6663                 err = ext4_setup_system_zone(sb);
6664                 if (err)
6665                         goto restore_opts;
6666         }
6667
6668         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6669                 err = ext4_commit_super(sb);
6670                 if (err)
6671                         goto restore_opts;
6672         }
6673
6674 #ifdef CONFIG_QUOTA
6675         if (enable_quota) {
6676                 if (sb_any_quota_suspended(sb))
6677                         dquot_resume(sb, -1);
6678                 else if (ext4_has_feature_quota(sb)) {
6679                         err = ext4_enable_quotas(sb);
6680                         if (err)
6681                                 goto restore_opts;
6682                 }
6683         }
6684         /* Release old quota file names */
6685         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6686                 kfree(old_opts.s_qf_names[i]);
6687 #endif
6688         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6689                 ext4_release_system_zone(sb);
6690
6691         /*
6692          * Reinitialize lazy itable initialization thread based on
6693          * current settings
6694          */
6695         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6696                 ext4_unregister_li_request(sb);
6697         else {
6698                 ext4_group_t first_not_zeroed;
6699                 first_not_zeroed = ext4_has_uninit_itable(sb);
6700                 ext4_register_li_request(sb, first_not_zeroed);
6701         }
6702
6703         if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6704                 ext4_stop_mmpd(sbi);
6705
6706         return 0;
6707
6708 restore_opts:
6709         /*
6710          * If there was a failing r/w to ro transition, we may need to
6711          * re-enable quota
6712          */
6713         if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6714             sb_any_quota_suspended(sb))
6715                 dquot_resume(sb, -1);
6716
6717         alloc_ctx = ext4_writepages_down_write(sb);
6718         sb->s_flags = old_sb_flags;
6719         sbi->s_mount_opt = old_opts.s_mount_opt;
6720         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6721         sbi->s_resuid = old_opts.s_resuid;
6722         sbi->s_resgid = old_opts.s_resgid;
6723         sbi->s_commit_interval = old_opts.s_commit_interval;
6724         sbi->s_min_batch_time = old_opts.s_min_batch_time;
6725         sbi->s_max_batch_time = old_opts.s_max_batch_time;
6726         ext4_writepages_up_write(sb, alloc_ctx);
6727
6728         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6729                 ext4_release_system_zone(sb);
6730 #ifdef CONFIG_QUOTA
6731         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6732         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6733                 to_free[i] = get_qf_name(sb, sbi, i);
6734                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6735         }
6736         synchronize_rcu();
6737         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6738                 kfree(to_free[i]);
6739 #endif
6740         if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6741                 ext4_stop_mmpd(sbi);
6742         return err;
6743 }
6744
6745 static int ext4_reconfigure(struct fs_context *fc)
6746 {
6747         struct super_block *sb = fc->root->d_sb;
6748         int ret;
6749
6750         fc->s_fs_info = EXT4_SB(sb);
6751
6752         ret = ext4_check_opt_consistency(fc, sb);
6753         if (ret < 0)
6754                 return ret;
6755
6756         ret = __ext4_remount(fc, sb);
6757         if (ret < 0)
6758                 return ret;
6759
6760         ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6761                  &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6762                  ext4_quota_mode(sb));
6763
6764         return 0;
6765 }
6766
6767 #ifdef CONFIG_QUOTA
6768 static int ext4_statfs_project(struct super_block *sb,
6769                                kprojid_t projid, struct kstatfs *buf)
6770 {
6771         struct kqid qid;
6772         struct dquot *dquot;
6773         u64 limit;
6774         u64 curblock;
6775
6776         qid = make_kqid_projid(projid);
6777         dquot = dqget(sb, qid);
6778         if (IS_ERR(dquot))
6779                 return PTR_ERR(dquot);
6780         spin_lock(&dquot->dq_dqb_lock);
6781
6782         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6783                              dquot->dq_dqb.dqb_bhardlimit);
6784         limit >>= sb->s_blocksize_bits;
6785
6786         if (limit && buf->f_blocks > limit) {
6787                 curblock = (dquot->dq_dqb.dqb_curspace +
6788                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6789                 buf->f_blocks = limit;
6790                 buf->f_bfree = buf->f_bavail =
6791                         (buf->f_blocks > curblock) ?
6792                          (buf->f_blocks - curblock) : 0;
6793         }
6794
6795         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6796                              dquot->dq_dqb.dqb_ihardlimit);
6797         if (limit && buf->f_files > limit) {
6798                 buf->f_files = limit;
6799                 buf->f_ffree =
6800                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6801                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6802         }
6803
6804         spin_unlock(&dquot->dq_dqb_lock);
6805         dqput(dquot);
6806         return 0;
6807 }
6808 #endif
6809
6810 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6811 {
6812         struct super_block *sb = dentry->d_sb;
6813         struct ext4_sb_info *sbi = EXT4_SB(sb);
6814         struct ext4_super_block *es = sbi->s_es;
6815         ext4_fsblk_t overhead = 0, resv_blocks;
6816         s64 bfree;
6817         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6818
6819         if (!test_opt(sb, MINIX_DF))
6820                 overhead = sbi->s_overhead;
6821
6822         buf->f_type = EXT4_SUPER_MAGIC;
6823         buf->f_bsize = sb->s_blocksize;
6824         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6825         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6826                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6827         /* prevent underflow in case that few free space is available */
6828         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6829         buf->f_bavail = buf->f_bfree -
6830                         (ext4_r_blocks_count(es) + resv_blocks);
6831         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6832                 buf->f_bavail = 0;
6833         buf->f_files = le32_to_cpu(es->s_inodes_count);
6834         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6835         buf->f_namelen = EXT4_NAME_LEN;
6836         buf->f_fsid = uuid_to_fsid(es->s_uuid);
6837
6838 #ifdef CONFIG_QUOTA
6839         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6840             sb_has_quota_limits_enabled(sb, PRJQUOTA))
6841                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6842 #endif
6843         return 0;
6844 }
6845
6846
6847 #ifdef CONFIG_QUOTA
6848
6849 /*
6850  * Helper functions so that transaction is started before we acquire dqio_sem
6851  * to keep correct lock ordering of transaction > dqio_sem
6852  */
6853 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6854 {
6855         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6856 }
6857
6858 static int ext4_write_dquot(struct dquot *dquot)
6859 {
6860         int ret, err;
6861         handle_t *handle;
6862         struct inode *inode;
6863
6864         inode = dquot_to_inode(dquot);
6865         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6866                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6867         if (IS_ERR(handle))
6868                 return PTR_ERR(handle);
6869         ret = dquot_commit(dquot);
6870         err = ext4_journal_stop(handle);
6871         if (!ret)
6872                 ret = err;
6873         return ret;
6874 }
6875
6876 static int ext4_acquire_dquot(struct dquot *dquot)
6877 {
6878         int ret, err;
6879         handle_t *handle;
6880
6881         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6882                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6883         if (IS_ERR(handle))
6884                 return PTR_ERR(handle);
6885         ret = dquot_acquire(dquot);
6886         err = ext4_journal_stop(handle);
6887         if (!ret)
6888                 ret = err;
6889         return ret;
6890 }
6891
6892 static int ext4_release_dquot(struct dquot *dquot)
6893 {
6894         int ret, err;
6895         handle_t *handle;
6896
6897         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6898                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6899         if (IS_ERR(handle)) {
6900                 /* Release dquot anyway to avoid endless cycle in dqput() */
6901                 dquot_release(dquot);
6902                 return PTR_ERR(handle);
6903         }
6904         ret = dquot_release(dquot);
6905         err = ext4_journal_stop(handle);
6906         if (!ret)
6907                 ret = err;
6908         return ret;
6909 }
6910
6911 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6912 {
6913         struct super_block *sb = dquot->dq_sb;
6914
6915         if (ext4_is_quota_journalled(sb)) {
6916                 dquot_mark_dquot_dirty(dquot);
6917                 return ext4_write_dquot(dquot);
6918         } else {
6919                 return dquot_mark_dquot_dirty(dquot);
6920         }
6921 }
6922
6923 static int ext4_write_info(struct super_block *sb, int type)
6924 {
6925         int ret, err;
6926         handle_t *handle;
6927
6928         /* Data block + inode block */
6929         handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6930         if (IS_ERR(handle))
6931                 return PTR_ERR(handle);
6932         ret = dquot_commit_info(sb, type);
6933         err = ext4_journal_stop(handle);
6934         if (!ret)
6935                 ret = err;
6936         return ret;
6937 }
6938
6939 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6940 {
6941         struct ext4_inode_info *ei = EXT4_I(inode);
6942
6943         /* The first argument of lockdep_set_subclass has to be
6944          * *exactly* the same as the argument to init_rwsem() --- in
6945          * this case, in init_once() --- or lockdep gets unhappy
6946          * because the name of the lock is set using the
6947          * stringification of the argument to init_rwsem().
6948          */
6949         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
6950         lockdep_set_subclass(&ei->i_data_sem, subclass);
6951 }
6952
6953 /*
6954  * Standard function to be called on quota_on
6955  */
6956 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6957                          const struct path *path)
6958 {
6959         int err;
6960
6961         if (!test_opt(sb, QUOTA))
6962                 return -EINVAL;
6963
6964         /* Quotafile not on the same filesystem? */
6965         if (path->dentry->d_sb != sb)
6966                 return -EXDEV;
6967
6968         /* Quota already enabled for this file? */
6969         if (IS_NOQUOTA(d_inode(path->dentry)))
6970                 return -EBUSY;
6971
6972         /* Journaling quota? */
6973         if (EXT4_SB(sb)->s_qf_names[type]) {
6974                 /* Quotafile not in fs root? */
6975                 if (path->dentry->d_parent != sb->s_root)
6976                         ext4_msg(sb, KERN_WARNING,
6977                                 "Quota file not on filesystem root. "
6978                                 "Journaled quota will not work");
6979                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6980         } else {
6981                 /*
6982                  * Clear the flag just in case mount options changed since
6983                  * last time.
6984                  */
6985                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6986         }
6987
6988         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6989         err = dquot_quota_on(sb, type, format_id, path);
6990         if (!err) {
6991                 struct inode *inode = d_inode(path->dentry);
6992                 handle_t *handle;
6993
6994                 /*
6995                  * Set inode flags to prevent userspace from messing with quota
6996                  * files. If this fails, we return success anyway since quotas
6997                  * are already enabled and this is not a hard failure.
6998                  */
6999                 inode_lock(inode);
7000                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7001                 if (IS_ERR(handle))
7002                         goto unlock_inode;
7003                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7004                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7005                                 S_NOATIME | S_IMMUTABLE);
7006                 err = ext4_mark_inode_dirty(handle, inode);
7007                 ext4_journal_stop(handle);
7008         unlock_inode:
7009                 inode_unlock(inode);
7010                 if (err)
7011                         dquot_quota_off(sb, type);
7012         }
7013         if (err)
7014                 lockdep_set_quota_inode(path->dentry->d_inode,
7015                                              I_DATA_SEM_NORMAL);
7016         return err;
7017 }
7018
7019 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7020 {
7021         switch (type) {
7022         case USRQUOTA:
7023                 return qf_inum == EXT4_USR_QUOTA_INO;
7024         case GRPQUOTA:
7025                 return qf_inum == EXT4_GRP_QUOTA_INO;
7026         case PRJQUOTA:
7027                 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7028         default:
7029                 BUG();
7030         }
7031 }
7032
7033 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7034                              unsigned int flags)
7035 {
7036         int err;
7037         struct inode *qf_inode;
7038         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7039                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7040                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7041                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7042         };
7043
7044         BUG_ON(!ext4_has_feature_quota(sb));
7045
7046         if (!qf_inums[type])
7047                 return -EPERM;
7048
7049         if (!ext4_check_quota_inum(type, qf_inums[type])) {
7050                 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7051                                 qf_inums[type], type);
7052                 return -EUCLEAN;
7053         }
7054
7055         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7056         if (IS_ERR(qf_inode)) {
7057                 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7058                                 qf_inums[type], type);
7059                 return PTR_ERR(qf_inode);
7060         }
7061
7062         /* Don't account quota for quota files to avoid recursion */
7063         qf_inode->i_flags |= S_NOQUOTA;
7064         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7065         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7066         if (err)
7067                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7068         iput(qf_inode);
7069
7070         return err;
7071 }
7072
7073 /* Enable usage tracking for all quota types. */
7074 int ext4_enable_quotas(struct super_block *sb)
7075 {
7076         int type, err = 0;
7077         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7078                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7079                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7080                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7081         };
7082         bool quota_mopt[EXT4_MAXQUOTAS] = {
7083                 test_opt(sb, USRQUOTA),
7084                 test_opt(sb, GRPQUOTA),
7085                 test_opt(sb, PRJQUOTA),
7086         };
7087
7088         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7089         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7090                 if (qf_inums[type]) {
7091                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7092                                 DQUOT_USAGE_ENABLED |
7093                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7094                         if (err) {
7095                                 ext4_warning(sb,
7096                                         "Failed to enable quota tracking "
7097                                         "(type=%d, err=%d, ino=%lu). "
7098                                         "Please run e2fsck to fix.", type,
7099                                         err, qf_inums[type]);
7100
7101                                 ext4_quotas_off(sb, type);
7102                                 return err;
7103                         }
7104                 }
7105         }
7106         return 0;
7107 }
7108
7109 static int ext4_quota_off(struct super_block *sb, int type)
7110 {
7111         struct inode *inode = sb_dqopt(sb)->files[type];
7112         handle_t *handle;
7113         int err;
7114
7115         /* Force all delayed allocation blocks to be allocated.
7116          * Caller already holds s_umount sem */
7117         if (test_opt(sb, DELALLOC))
7118                 sync_filesystem(sb);
7119
7120         if (!inode || !igrab(inode))
7121                 goto out;
7122
7123         err = dquot_quota_off(sb, type);
7124         if (err || ext4_has_feature_quota(sb))
7125                 goto out_put;
7126         /*
7127          * When the filesystem was remounted read-only first, we cannot cleanup
7128          * inode flags here. Bad luck but people should be using QUOTA feature
7129          * these days anyway.
7130          */
7131         if (sb_rdonly(sb))
7132                 goto out_put;
7133
7134         inode_lock(inode);
7135         /*
7136          * Update modification times of quota files when userspace can
7137          * start looking at them. If we fail, we return success anyway since
7138          * this is not a hard failure and quotas are already disabled.
7139          */
7140         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7141         if (IS_ERR(handle)) {
7142                 err = PTR_ERR(handle);
7143                 goto out_unlock;
7144         }
7145         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7146         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7147         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7148         err = ext4_mark_inode_dirty(handle, inode);
7149         ext4_journal_stop(handle);
7150 out_unlock:
7151         inode_unlock(inode);
7152 out_put:
7153         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7154         iput(inode);
7155         return err;
7156 out:
7157         return dquot_quota_off(sb, type);
7158 }
7159
7160 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7161  * acquiring the locks... As quota files are never truncated and quota code
7162  * itself serializes the operations (and no one else should touch the files)
7163  * we don't have to be afraid of races */
7164 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7165                                size_t len, loff_t off)
7166 {
7167         struct inode *inode = sb_dqopt(sb)->files[type];
7168         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7169         int offset = off & (sb->s_blocksize - 1);
7170         int tocopy;
7171         size_t toread;
7172         struct buffer_head *bh;
7173         loff_t i_size = i_size_read(inode);
7174
7175         if (off > i_size)
7176                 return 0;
7177         if (off+len > i_size)
7178                 len = i_size-off;
7179         toread = len;
7180         while (toread > 0) {
7181                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7182                 bh = ext4_bread(NULL, inode, blk, 0);
7183                 if (IS_ERR(bh))
7184                         return PTR_ERR(bh);
7185                 if (!bh)        /* A hole? */
7186                         memset(data, 0, tocopy);
7187                 else
7188                         memcpy(data, bh->b_data+offset, tocopy);
7189                 brelse(bh);
7190                 offset = 0;
7191                 toread -= tocopy;
7192                 data += tocopy;
7193                 blk++;
7194         }
7195         return len;
7196 }
7197
7198 /* Write to quotafile (we know the transaction is already started and has
7199  * enough credits) */
7200 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7201                                 const char *data, size_t len, loff_t off)
7202 {
7203         struct inode *inode = sb_dqopt(sb)->files[type];
7204         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7205         int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7206         int retries = 0;
7207         struct buffer_head *bh;
7208         handle_t *handle = journal_current_handle();
7209
7210         if (!handle) {
7211                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7212                         " cancelled because transaction is not started",
7213                         (unsigned long long)off, (unsigned long long)len);
7214                 return -EIO;
7215         }
7216         /*
7217          * Since we account only one data block in transaction credits,
7218          * then it is impossible to cross a block boundary.
7219          */
7220         if (sb->s_blocksize - offset < len) {
7221                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7222                         " cancelled because not block aligned",
7223                         (unsigned long long)off, (unsigned long long)len);
7224                 return -EIO;
7225         }
7226
7227         do {
7228                 bh = ext4_bread(handle, inode, blk,
7229                                 EXT4_GET_BLOCKS_CREATE |
7230                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7231         } while (PTR_ERR(bh) == -ENOSPC &&
7232                  ext4_should_retry_alloc(inode->i_sb, &retries));
7233         if (IS_ERR(bh))
7234                 return PTR_ERR(bh);
7235         if (!bh)
7236                 goto out;
7237         BUFFER_TRACE(bh, "get write access");
7238         err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7239         if (err) {
7240                 brelse(bh);
7241                 return err;
7242         }
7243         lock_buffer(bh);
7244         memcpy(bh->b_data+offset, data, len);
7245         flush_dcache_page(bh->b_page);
7246         unlock_buffer(bh);
7247         err = ext4_handle_dirty_metadata(handle, NULL, bh);
7248         brelse(bh);
7249 out:
7250         if (inode->i_size < off + len) {
7251                 i_size_write(inode, off + len);
7252                 EXT4_I(inode)->i_disksize = inode->i_size;
7253                 err2 = ext4_mark_inode_dirty(handle, inode);
7254                 if (unlikely(err2 && !err))
7255                         err = err2;
7256         }
7257         return err ? err : len;
7258 }
7259 #endif
7260
7261 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7262 static inline void register_as_ext2(void)
7263 {
7264         int err = register_filesystem(&ext2_fs_type);
7265         if (err)
7266                 printk(KERN_WARNING
7267                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7268 }
7269
7270 static inline void unregister_as_ext2(void)
7271 {
7272         unregister_filesystem(&ext2_fs_type);
7273 }
7274
7275 static inline int ext2_feature_set_ok(struct super_block *sb)
7276 {
7277         if (ext4_has_unknown_ext2_incompat_features(sb))
7278                 return 0;
7279         if (sb_rdonly(sb))
7280                 return 1;
7281         if (ext4_has_unknown_ext2_ro_compat_features(sb))
7282                 return 0;
7283         return 1;
7284 }
7285 #else
7286 static inline void register_as_ext2(void) { }
7287 static inline void unregister_as_ext2(void) { }
7288 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7289 #endif
7290
7291 static inline void register_as_ext3(void)
7292 {
7293         int err = register_filesystem(&ext3_fs_type);
7294         if (err)
7295                 printk(KERN_WARNING
7296                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7297 }
7298
7299 static inline void unregister_as_ext3(void)
7300 {
7301         unregister_filesystem(&ext3_fs_type);
7302 }
7303
7304 static inline int ext3_feature_set_ok(struct super_block *sb)
7305 {
7306         if (ext4_has_unknown_ext3_incompat_features(sb))
7307                 return 0;
7308         if (!ext4_has_feature_journal(sb))
7309                 return 0;
7310         if (sb_rdonly(sb))
7311                 return 1;
7312         if (ext4_has_unknown_ext3_ro_compat_features(sb))
7313                 return 0;
7314         return 1;
7315 }
7316
7317 static void ext4_kill_sb(struct super_block *sb)
7318 {
7319         struct ext4_sb_info *sbi = EXT4_SB(sb);
7320         struct bdev_handle *handle = sbi ? sbi->s_journal_bdev_handle : NULL;
7321
7322         kill_block_super(sb);
7323
7324         if (handle)
7325                 bdev_release(handle);
7326 }
7327
7328 static struct file_system_type ext4_fs_type = {
7329         .owner                  = THIS_MODULE,
7330         .name                   = "ext4",
7331         .init_fs_context        = ext4_init_fs_context,
7332         .parameters             = ext4_param_specs,
7333         .kill_sb                = ext4_kill_sb,
7334         .fs_flags               = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7335 };
7336 MODULE_ALIAS_FS("ext4");
7337
7338 /* Shared across all ext4 file systems */
7339 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7340
7341 static int __init ext4_init_fs(void)
7342 {
7343         int i, err;
7344
7345         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7346         ext4_li_info = NULL;
7347
7348         /* Build-time check for flags consistency */
7349         ext4_check_flag_values();
7350
7351         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7352                 init_waitqueue_head(&ext4__ioend_wq[i]);
7353
7354         err = ext4_init_es();
7355         if (err)
7356                 return err;
7357
7358         err = ext4_init_pending();
7359         if (err)
7360                 goto out7;
7361
7362         err = ext4_init_post_read_processing();
7363         if (err)
7364                 goto out6;
7365
7366         err = ext4_init_pageio();
7367         if (err)
7368                 goto out5;
7369
7370         err = ext4_init_system_zone();
7371         if (err)
7372                 goto out4;
7373
7374         err = ext4_init_sysfs();
7375         if (err)
7376                 goto out3;
7377
7378         err = ext4_init_mballoc();
7379         if (err)
7380                 goto out2;
7381         err = init_inodecache();
7382         if (err)
7383                 goto out1;
7384
7385         err = ext4_fc_init_dentry_cache();
7386         if (err)
7387                 goto out05;
7388
7389         register_as_ext3();
7390         register_as_ext2();
7391         err = register_filesystem(&ext4_fs_type);
7392         if (err)
7393                 goto out;
7394
7395         return 0;
7396 out:
7397         unregister_as_ext2();
7398         unregister_as_ext3();
7399         ext4_fc_destroy_dentry_cache();
7400 out05:
7401         destroy_inodecache();
7402 out1:
7403         ext4_exit_mballoc();
7404 out2:
7405         ext4_exit_sysfs();
7406 out3:
7407         ext4_exit_system_zone();
7408 out4:
7409         ext4_exit_pageio();
7410 out5:
7411         ext4_exit_post_read_processing();
7412 out6:
7413         ext4_exit_pending();
7414 out7:
7415         ext4_exit_es();
7416
7417         return err;
7418 }
7419
7420 static void __exit ext4_exit_fs(void)
7421 {
7422         ext4_destroy_lazyinit_thread();
7423         unregister_as_ext2();
7424         unregister_as_ext3();
7425         unregister_filesystem(&ext4_fs_type);
7426         ext4_fc_destroy_dentry_cache();
7427         destroy_inodecache();
7428         ext4_exit_mballoc();
7429         ext4_exit_sysfs();
7430         ext4_exit_system_zone();
7431         ext4_exit_pageio();
7432         ext4_exit_post_read_processing();
7433         ext4_exit_es();
7434         ext4_exit_pending();
7435 }
7436
7437 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7438 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7439 MODULE_LICENSE("GPL");
7440 MODULE_SOFTDEP("pre: crc32c");
7441 module_init(ext4_init_fs)
7442 module_exit(ext4_exit_fs)