fc6fa2c93e77c193939d095435a84fc188c53479
[linux-2.6-block.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h"       /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66                              unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70                                         struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72                                    struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79                        const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87                                             unsigned int journal_inum);
88
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_sem
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_sem
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119         .owner          = THIS_MODULE,
120         .name           = "ext2",
121         .mount          = ext4_mount,
122         .kill_sb        = kill_block_super,
123         .fs_flags       = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134         .owner          = THIS_MODULE,
135         .name           = "ext3",
136         .mount          = ext4_mount,
137         .kill_sb        = kill_block_super,
138         .fs_flags       = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144 /*
145  * This works like sb_bread() except it uses ERR_PTR for error
146  * returns.  Currently with sb_bread it's impossible to distinguish
147  * between ENOMEM and EIO situations (since both result in a NULL
148  * return.
149  */
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153         struct buffer_head *bh = sb_getblk(sb, block);
154
155         if (bh == NULL)
156                 return ERR_PTR(-ENOMEM);
157         if (buffer_uptodate(bh))
158                 return bh;
159         ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160         wait_on_buffer(bh);
161         if (buffer_uptodate(bh))
162                 return bh;
163         put_bh(bh);
164         return ERR_PTR(-EIO);
165 }
166
167 static int ext4_verify_csum_type(struct super_block *sb,
168                                  struct ext4_super_block *es)
169 {
170         if (!ext4_has_feature_metadata_csum(sb))
171                 return 1;
172
173         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177                                    struct ext4_super_block *es)
178 {
179         struct ext4_sb_info *sbi = EXT4_SB(sb);
180         int offset = offsetof(struct ext4_super_block, s_checksum);
181         __u32 csum;
182
183         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185         return cpu_to_le32(csum);
186 }
187
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189                                        struct ext4_super_block *es)
190 {
191         if (!ext4_has_metadata_csum(sb))
192                 return 1;
193
194         return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196
197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201         if (!ext4_has_metadata_csum(sb))
202                 return;
203
204         es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206
207 void *ext4_kvmalloc(size_t size, gfp_t flags)
208 {
209         void *ret;
210
211         ret = kmalloc(size, flags | __GFP_NOWARN);
212         if (!ret)
213                 ret = __vmalloc(size, flags, PAGE_KERNEL);
214         return ret;
215 }
216
217 void *ext4_kvzalloc(size_t size, gfp_t flags)
218 {
219         void *ret;
220
221         ret = kzalloc(size, flags | __GFP_NOWARN);
222         if (!ret)
223                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224         return ret;
225 }
226
227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228                                struct ext4_group_desc *bg)
229 {
230         return le32_to_cpu(bg->bg_block_bitmap_lo) |
231                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233 }
234
235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236                                struct ext4_group_desc *bg)
237 {
238         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241 }
242
243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244                               struct ext4_group_desc *bg)
245 {
246         return le32_to_cpu(bg->bg_inode_table_lo) |
247                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249 }
250
251 __u32 ext4_free_group_clusters(struct super_block *sb,
252                                struct ext4_group_desc *bg)
253 {
254         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257 }
258
259 __u32 ext4_free_inodes_count(struct super_block *sb,
260                               struct ext4_group_desc *bg)
261 {
262         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265 }
266
267 __u32 ext4_used_dirs_count(struct super_block *sb,
268                               struct ext4_group_desc *bg)
269 {
270         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273 }
274
275 __u32 ext4_itable_unused_count(struct super_block *sb,
276                               struct ext4_group_desc *bg)
277 {
278         return le16_to_cpu(bg->bg_itable_unused_lo) |
279                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281 }
282
283 void ext4_block_bitmap_set(struct super_block *sb,
284                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
285 {
286         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289 }
290
291 void ext4_inode_bitmap_set(struct super_block *sb,
292                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
293 {
294         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
295         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297 }
298
299 void ext4_inode_table_set(struct super_block *sb,
300                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
301 {
302         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305 }
306
307 void ext4_free_group_clusters_set(struct super_block *sb,
308                                   struct ext4_group_desc *bg, __u32 count)
309 {
310         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313 }
314
315 void ext4_free_inodes_set(struct super_block *sb,
316                           struct ext4_group_desc *bg, __u32 count)
317 {
318         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321 }
322
323 void ext4_used_dirs_set(struct super_block *sb,
324                           struct ext4_group_desc *bg, __u32 count)
325 {
326         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329 }
330
331 void ext4_itable_unused_set(struct super_block *sb,
332                           struct ext4_group_desc *bg, __u32 count)
333 {
334         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337 }
338
339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340 {
341         time64_t now = ktime_get_real_seconds();
342
343         now = clamp_val(now, 0, (1ull << 40) - 1);
344
345         *lo = cpu_to_le32(lower_32_bits(now));
346         *hi = upper_32_bits(now);
347 }
348
349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350 {
351         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352 }
353 #define ext4_update_tstamp(es, tstamp) \
354         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357
358 static void __save_error_info(struct super_block *sb, const char *func,
359                             unsigned int line)
360 {
361         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362
363         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364         if (bdev_read_only(sb->s_bdev))
365                 return;
366         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367         ext4_update_tstamp(es, s_last_error_time);
368         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369         es->s_last_error_line = cpu_to_le32(line);
370         if (!es->s_first_error_time) {
371                 es->s_first_error_time = es->s_last_error_time;
372                 es->s_first_error_time_hi = es->s_last_error_time_hi;
373                 strncpy(es->s_first_error_func, func,
374                         sizeof(es->s_first_error_func));
375                 es->s_first_error_line = cpu_to_le32(line);
376                 es->s_first_error_ino = es->s_last_error_ino;
377                 es->s_first_error_block = es->s_last_error_block;
378         }
379         /*
380          * Start the daily error reporting function if it hasn't been
381          * started already
382          */
383         if (!es->s_error_count)
384                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385         le32_add_cpu(&es->s_error_count, 1);
386 }
387
388 static void save_error_info(struct super_block *sb, const char *func,
389                             unsigned int line)
390 {
391         __save_error_info(sb, func, line);
392         ext4_commit_super(sb, 1);
393 }
394
395 /*
396  * The del_gendisk() function uninitializes the disk-specific data
397  * structures, including the bdi structure, without telling anyone
398  * else.  Once this happens, any attempt to call mark_buffer_dirty()
399  * (for example, by ext4_commit_super), will cause a kernel OOPS.
400  * This is a kludge to prevent these oops until we can put in a proper
401  * hook in del_gendisk() to inform the VFS and file system layers.
402  */
403 static int block_device_ejected(struct super_block *sb)
404 {
405         struct inode *bd_inode = sb->s_bdev->bd_inode;
406         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408         return bdi->dev == NULL;
409 }
410
411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413         struct super_block              *sb = journal->j_private;
414         struct ext4_sb_info             *sbi = EXT4_SB(sb);
415         int                             error = is_journal_aborted(journal);
416         struct ext4_journal_cb_entry    *jce;
417
418         BUG_ON(txn->t_state == T_FINISHED);
419
420         ext4_process_freed_data(sb, txn->t_tid);
421
422         spin_lock(&sbi->s_md_lock);
423         while (!list_empty(&txn->t_private_list)) {
424                 jce = list_entry(txn->t_private_list.next,
425                                  struct ext4_journal_cb_entry, jce_list);
426                 list_del_init(&jce->jce_list);
427                 spin_unlock(&sbi->s_md_lock);
428                 jce->jce_func(sb, jce, error);
429                 spin_lock(&sbi->s_md_lock);
430         }
431         spin_unlock(&sbi->s_md_lock);
432 }
433
434 static bool system_going_down(void)
435 {
436         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437                 || system_state == SYSTEM_RESTART;
438 }
439
440 /* Deal with the reporting of failure conditions on a filesystem such as
441  * inconsistencies detected or read IO failures.
442  *
443  * On ext2, we can store the error state of the filesystem in the
444  * superblock.  That is not possible on ext4, because we may have other
445  * write ordering constraints on the superblock which prevent us from
446  * writing it out straight away; and given that the journal is about to
447  * be aborted, we can't rely on the current, or future, transactions to
448  * write out the superblock safely.
449  *
450  * We'll just use the jbd2_journal_abort() error code to record an error in
451  * the journal instead.  On recovery, the journal will complain about
452  * that error until we've noted it down and cleared it.
453  */
454
455 static void ext4_handle_error(struct super_block *sb)
456 {
457         if (test_opt(sb, WARN_ON_ERROR))
458                 WARN_ON_ONCE(1);
459
460         if (sb_rdonly(sb))
461                 return;
462
463         if (!test_opt(sb, ERRORS_CONT)) {
464                 journal_t *journal = EXT4_SB(sb)->s_journal;
465
466                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467                 if (journal)
468                         jbd2_journal_abort(journal, -EIO);
469         }
470         /*
471          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472          * could panic during 'reboot -f' as the underlying device got already
473          * disabled.
474          */
475         if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477                 /*
478                  * Make sure updated value of ->s_mount_flags will be visible
479                  * before ->s_flags update
480                  */
481                 smp_wmb();
482                 sb->s_flags |= SB_RDONLY;
483         } else if (test_opt(sb, ERRORS_PANIC)) {
484                 if (EXT4_SB(sb)->s_journal &&
485                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486                         return;
487                 panic("EXT4-fs (device %s): panic forced after error\n",
488                         sb->s_id);
489         }
490 }
491
492 #define ext4_error_ratelimit(sb)                                        \
493                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
494                              "EXT4-fs error")
495
496 void __ext4_error(struct super_block *sb, const char *function,
497                   unsigned int line, const char *fmt, ...)
498 {
499         struct va_format vaf;
500         va_list args;
501
502         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503                 return;
504
505         trace_ext4_error(sb, function, line);
506         if (ext4_error_ratelimit(sb)) {
507                 va_start(args, fmt);
508                 vaf.fmt = fmt;
509                 vaf.va = &args;
510                 printk(KERN_CRIT
511                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512                        sb->s_id, function, line, current->comm, &vaf);
513                 va_end(args);
514         }
515         save_error_info(sb, function, line);
516         ext4_handle_error(sb);
517 }
518
519 void __ext4_error_inode(struct inode *inode, const char *function,
520                         unsigned int line, ext4_fsblk_t block,
521                         const char *fmt, ...)
522 {
523         va_list args;
524         struct va_format vaf;
525         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526
527         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528                 return;
529
530         trace_ext4_error(inode->i_sb, function, line);
531         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532         es->s_last_error_block = cpu_to_le64(block);
533         if (ext4_error_ratelimit(inode->i_sb)) {
534                 va_start(args, fmt);
535                 vaf.fmt = fmt;
536                 vaf.va = &args;
537                 if (block)
538                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539                                "inode #%lu: block %llu: comm %s: %pV\n",
540                                inode->i_sb->s_id, function, line, inode->i_ino,
541                                block, current->comm, &vaf);
542                 else
543                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544                                "inode #%lu: comm %s: %pV\n",
545                                inode->i_sb->s_id, function, line, inode->i_ino,
546                                current->comm, &vaf);
547                 va_end(args);
548         }
549         save_error_info(inode->i_sb, function, line);
550         ext4_handle_error(inode->i_sb);
551 }
552
553 void __ext4_error_file(struct file *file, const char *function,
554                        unsigned int line, ext4_fsblk_t block,
555                        const char *fmt, ...)
556 {
557         va_list args;
558         struct va_format vaf;
559         struct ext4_super_block *es;
560         struct inode *inode = file_inode(file);
561         char pathname[80], *path;
562
563         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564                 return;
565
566         trace_ext4_error(inode->i_sb, function, line);
567         es = EXT4_SB(inode->i_sb)->s_es;
568         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569         if (ext4_error_ratelimit(inode->i_sb)) {
570                 path = file_path(file, pathname, sizeof(pathname));
571                 if (IS_ERR(path))
572                         path = "(unknown)";
573                 va_start(args, fmt);
574                 vaf.fmt = fmt;
575                 vaf.va = &args;
576                 if (block)
577                         printk(KERN_CRIT
578                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579                                "block %llu: comm %s: path %s: %pV\n",
580                                inode->i_sb->s_id, function, line, inode->i_ino,
581                                block, current->comm, path, &vaf);
582                 else
583                         printk(KERN_CRIT
584                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585                                "comm %s: path %s: %pV\n",
586                                inode->i_sb->s_id, function, line, inode->i_ino,
587                                current->comm, path, &vaf);
588                 va_end(args);
589         }
590         save_error_info(inode->i_sb, function, line);
591         ext4_handle_error(inode->i_sb);
592 }
593
594 const char *ext4_decode_error(struct super_block *sb, int errno,
595                               char nbuf[16])
596 {
597         char *errstr = NULL;
598
599         switch (errno) {
600         case -EFSCORRUPTED:
601                 errstr = "Corrupt filesystem";
602                 break;
603         case -EFSBADCRC:
604                 errstr = "Filesystem failed CRC";
605                 break;
606         case -EIO:
607                 errstr = "IO failure";
608                 break;
609         case -ENOMEM:
610                 errstr = "Out of memory";
611                 break;
612         case -EROFS:
613                 if (!sb || (EXT4_SB(sb)->s_journal &&
614                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615                         errstr = "Journal has aborted";
616                 else
617                         errstr = "Readonly filesystem";
618                 break;
619         default:
620                 /* If the caller passed in an extra buffer for unknown
621                  * errors, textualise them now.  Else we just return
622                  * NULL. */
623                 if (nbuf) {
624                         /* Check for truncated error codes... */
625                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626                                 errstr = nbuf;
627                 }
628                 break;
629         }
630
631         return errstr;
632 }
633
634 /* __ext4_std_error decodes expected errors from journaling functions
635  * automatically and invokes the appropriate error response.  */
636
637 void __ext4_std_error(struct super_block *sb, const char *function,
638                       unsigned int line, int errno)
639 {
640         char nbuf[16];
641         const char *errstr;
642
643         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644                 return;
645
646         /* Special case: if the error is EROFS, and we're not already
647          * inside a transaction, then there's really no point in logging
648          * an error. */
649         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650                 return;
651
652         if (ext4_error_ratelimit(sb)) {
653                 errstr = ext4_decode_error(sb, errno, nbuf);
654                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655                        sb->s_id, function, line, errstr);
656         }
657
658         save_error_info(sb, function, line);
659         ext4_handle_error(sb);
660 }
661
662 /*
663  * ext4_abort is a much stronger failure handler than ext4_error.  The
664  * abort function may be used to deal with unrecoverable failures such
665  * as journal IO errors or ENOMEM at a critical moment in log management.
666  *
667  * We unconditionally force the filesystem into an ABORT|READONLY state,
668  * unless the error response on the fs has been set to panic in which
669  * case we take the easy way out and panic immediately.
670  */
671
672 void __ext4_abort(struct super_block *sb, const char *function,
673                 unsigned int line, const char *fmt, ...)
674 {
675         struct va_format vaf;
676         va_list args;
677
678         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679                 return;
680
681         save_error_info(sb, function, line);
682         va_start(args, fmt);
683         vaf.fmt = fmt;
684         vaf.va = &args;
685         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686                sb->s_id, function, line, &vaf);
687         va_end(args);
688
689         if (sb_rdonly(sb) == 0) {
690                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692                 /*
693                  * Make sure updated value of ->s_mount_flags will be visible
694                  * before ->s_flags update
695                  */
696                 smp_wmb();
697                 sb->s_flags |= SB_RDONLY;
698                 if (EXT4_SB(sb)->s_journal)
699                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700                 save_error_info(sb, function, line);
701         }
702         if (test_opt(sb, ERRORS_PANIC)) {
703                 if (EXT4_SB(sb)->s_journal &&
704                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705                         return;
706                 panic("EXT4-fs panic from previous error\n");
707         }
708 }
709
710 void __ext4_msg(struct super_block *sb,
711                 const char *prefix, const char *fmt, ...)
712 {
713         struct va_format vaf;
714         va_list args;
715
716         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717                 return;
718
719         va_start(args, fmt);
720         vaf.fmt = fmt;
721         vaf.va = &args;
722         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723         va_end(args);
724 }
725
726 #define ext4_warning_ratelimit(sb)                                      \
727                 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728                              "EXT4-fs warning")
729
730 void __ext4_warning(struct super_block *sb, const char *function,
731                     unsigned int line, const char *fmt, ...)
732 {
733         struct va_format vaf;
734         va_list args;
735
736         if (!ext4_warning_ratelimit(sb))
737                 return;
738
739         va_start(args, fmt);
740         vaf.fmt = fmt;
741         vaf.va = &args;
742         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743                sb->s_id, function, line, &vaf);
744         va_end(args);
745 }
746
747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748                           unsigned int line, const char *fmt, ...)
749 {
750         struct va_format vaf;
751         va_list args;
752
753         if (!ext4_warning_ratelimit(inode->i_sb))
754                 return;
755
756         va_start(args, fmt);
757         vaf.fmt = fmt;
758         vaf.va = &args;
759         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761                function, line, inode->i_ino, current->comm, &vaf);
762         va_end(args);
763 }
764
765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766                              struct super_block *sb, ext4_group_t grp,
767                              unsigned long ino, ext4_fsblk_t block,
768                              const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772         struct va_format vaf;
773         va_list args;
774         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775
776         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777                 return;
778
779         trace_ext4_error(sb, function, line);
780         es->s_last_error_ino = cpu_to_le32(ino);
781         es->s_last_error_block = cpu_to_le64(block);
782         __save_error_info(sb, function, line);
783
784         if (ext4_error_ratelimit(sb)) {
785                 va_start(args, fmt);
786                 vaf.fmt = fmt;
787                 vaf.va = &args;
788                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789                        sb->s_id, function, line, grp);
790                 if (ino)
791                         printk(KERN_CONT "inode %lu: ", ino);
792                 if (block)
793                         printk(KERN_CONT "block %llu:",
794                                (unsigned long long) block);
795                 printk(KERN_CONT "%pV\n", &vaf);
796                 va_end(args);
797         }
798
799         if (test_opt(sb, WARN_ON_ERROR))
800                 WARN_ON_ONCE(1);
801
802         if (test_opt(sb, ERRORS_CONT)) {
803                 ext4_commit_super(sb, 0);
804                 return;
805         }
806
807         ext4_unlock_group(sb, grp);
808         ext4_commit_super(sb, 1);
809         ext4_handle_error(sb);
810         /*
811          * We only get here in the ERRORS_RO case; relocking the group
812          * may be dangerous, but nothing bad will happen since the
813          * filesystem will have already been marked read/only and the
814          * journal has been aborted.  We return 1 as a hint to callers
815          * who might what to use the return value from
816          * ext4_grp_locked_error() to distinguish between the
817          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818          * aggressively from the ext4 function in question, with a
819          * more appropriate error code.
820          */
821         ext4_lock_group(sb, grp);
822         return;
823 }
824
825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826                                      ext4_group_t group,
827                                      unsigned int flags)
828 {
829         struct ext4_sb_info *sbi = EXT4_SB(sb);
830         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832         int ret;
833
834         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836                                             &grp->bb_state);
837                 if (!ret)
838                         percpu_counter_sub(&sbi->s_freeclusters_counter,
839                                            grp->bb_free);
840         }
841
842         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844                                             &grp->bb_state);
845                 if (!ret && gdp) {
846                         int count;
847
848                         count = ext4_free_inodes_count(sb, gdp);
849                         percpu_counter_sub(&sbi->s_freeinodes_counter,
850                                            count);
851                 }
852         }
853 }
854
855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858
859         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860                 return;
861
862         ext4_warning(sb,
863                      "updating to rev %d because of new feature flag, "
864                      "running e2fsck is recommended",
865                      EXT4_DYNAMIC_REV);
866
867         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870         /* leave es->s_feature_*compat flags alone */
871         /* es->s_uuid will be set by e2fsck if empty */
872
873         /*
874          * The rest of the superblock fields should be zero, and if not it
875          * means they are likely already in use, so leave them alone.  We
876          * can leave it up to e2fsck to clean up any inconsistencies there.
877          */
878 }
879
880 /*
881  * Open the external journal device
882  */
883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885         struct block_device *bdev;
886         char b[BDEVNAME_SIZE];
887
888         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889         if (IS_ERR(bdev))
890                 goto fail;
891         return bdev;
892
893 fail:
894         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895                         __bdevname(dev, b), PTR_ERR(bdev));
896         return NULL;
897 }
898
899 /*
900  * Release the journal device
901  */
902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906
907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909         struct block_device *bdev;
910         bdev = sbi->journal_bdev;
911         if (bdev) {
912                 ext4_blkdev_put(bdev);
913                 sbi->journal_bdev = NULL;
914         }
915 }
916
917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921
922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924         struct list_head *l;
925
926         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927                  le32_to_cpu(sbi->s_es->s_last_orphan));
928
929         printk(KERN_ERR "sb_info orphan list:\n");
930         list_for_each(l, &sbi->s_orphan) {
931                 struct inode *inode = orphan_list_entry(l);
932                 printk(KERN_ERR "  "
933                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934                        inode->i_sb->s_id, inode->i_ino, inode,
935                        inode->i_mode, inode->i_nlink,
936                        NEXT_ORPHAN(inode));
937         }
938 }
939
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942
943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945         int type;
946
947         /* Use our quota_off function to clear inode flags etc. */
948         for (type = 0; type < EXT4_MAXQUOTAS; type++)
949                 ext4_quota_off(sb, type);
950 }
951
952 /*
953  * This is a helper function which is used in the mount/remount
954  * codepaths (which holds s_umount) to fetch the quota file name.
955  */
956 static inline char *get_qf_name(struct super_block *sb,
957                                 struct ext4_sb_info *sbi,
958                                 int type)
959 {
960         return rcu_dereference_protected(sbi->s_qf_names[type],
961                                          lockdep_is_held(&sb->s_umount));
962 }
963 #else
964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968
969 static void ext4_put_super(struct super_block *sb)
970 {
971         struct ext4_sb_info *sbi = EXT4_SB(sb);
972         struct ext4_super_block *es = sbi->s_es;
973         int aborted = 0;
974         int i, err;
975
976         ext4_unregister_li_request(sb);
977         ext4_quota_off_umount(sb);
978
979         destroy_workqueue(sbi->rsv_conversion_wq);
980
981         if (sbi->s_journal) {
982                 aborted = is_journal_aborted(sbi->s_journal);
983                 err = jbd2_journal_destroy(sbi->s_journal);
984                 sbi->s_journal = NULL;
985                 if ((err < 0) && !aborted)
986                         ext4_abort(sb, "Couldn't clean up the journal");
987         }
988
989         ext4_unregister_sysfs(sb);
990         ext4_es_unregister_shrinker(sbi);
991         del_timer_sync(&sbi->s_err_report);
992         ext4_release_system_zone(sb);
993         ext4_mb_release(sb);
994         ext4_ext_release(sb);
995
996         if (!sb_rdonly(sb) && !aborted) {
997                 ext4_clear_feature_journal_needs_recovery(sb);
998                 es->s_state = cpu_to_le16(sbi->s_mount_state);
999         }
1000         if (!sb_rdonly(sb))
1001                 ext4_commit_super(sb, 1);
1002
1003         for (i = 0; i < sbi->s_gdb_count; i++)
1004                 brelse(sbi->s_group_desc[i]);
1005         kvfree(sbi->s_group_desc);
1006         kvfree(sbi->s_flex_groups);
1007         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009         percpu_counter_destroy(&sbi->s_dirs_counter);
1010         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014                 kfree(get_qf_name(sb, sbi, i));
1015 #endif
1016
1017         /* Debugging code just in case the in-memory inode orphan list
1018          * isn't empty.  The on-disk one can be non-empty if we've
1019          * detected an error and taken the fs readonly, but the
1020          * in-memory list had better be clean by this point. */
1021         if (!list_empty(&sbi->s_orphan))
1022                 dump_orphan_list(sb, sbi);
1023         J_ASSERT(list_empty(&sbi->s_orphan));
1024
1025         sync_blockdev(sb->s_bdev);
1026         invalidate_bdev(sb->s_bdev);
1027         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028                 /*
1029                  * Invalidate the journal device's buffers.  We don't want them
1030                  * floating about in memory - the physical journal device may
1031                  * hotswapped, and it breaks the `ro-after' testing code.
1032                  */
1033                 sync_blockdev(sbi->journal_bdev);
1034                 invalidate_bdev(sbi->journal_bdev);
1035                 ext4_blkdev_remove(sbi);
1036         }
1037
1038         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039         sbi->s_ea_inode_cache = NULL;
1040
1041         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042         sbi->s_ea_block_cache = NULL;
1043
1044         if (sbi->s_mmp_tsk)
1045                 kthread_stop(sbi->s_mmp_tsk);
1046         brelse(sbi->s_sbh);
1047         sb->s_fs_info = NULL;
1048         /*
1049          * Now that we are completely done shutting down the
1050          * superblock, we need to actually destroy the kobject.
1051          */
1052         kobject_put(&sbi->s_kobj);
1053         wait_for_completion(&sbi->s_kobj_unregister);
1054         if (sbi->s_chksum_driver)
1055                 crypto_free_shash(sbi->s_chksum_driver);
1056         kfree(sbi->s_blockgroup_lock);
1057         fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059         utf8_unload(sbi->s_encoding);
1060 #endif
1061         kfree(sbi);
1062 }
1063
1064 static struct kmem_cache *ext4_inode_cachep;
1065
1066 /*
1067  * Called inside transaction, so use GFP_NOFS
1068  */
1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1070 {
1071         struct ext4_inode_info *ei;
1072
1073         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074         if (!ei)
1075                 return NULL;
1076
1077         inode_set_iversion(&ei->vfs_inode, 1);
1078         spin_lock_init(&ei->i_raw_lock);
1079         INIT_LIST_HEAD(&ei->i_prealloc_list);
1080         spin_lock_init(&ei->i_prealloc_lock);
1081         ext4_es_init_tree(&ei->i_es_tree);
1082         rwlock_init(&ei->i_es_lock);
1083         INIT_LIST_HEAD(&ei->i_es_list);
1084         ei->i_es_all_nr = 0;
1085         ei->i_es_shk_nr = 0;
1086         ei->i_es_shrink_lblk = 0;
1087         ei->i_reserved_data_blocks = 0;
1088         ei->i_da_metadata_calc_len = 0;
1089         ei->i_da_metadata_calc_last_lblock = 0;
1090         spin_lock_init(&(ei->i_block_reservation_lock));
1091         ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093         ei->i_reserved_quota = 0;
1094         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096         ei->jinode = NULL;
1097         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098         spin_lock_init(&ei->i_completed_io_lock);
1099         ei->i_sync_tid = 0;
1100         ei->i_datasync_tid = 0;
1101         atomic_set(&ei->i_unwritten, 0);
1102         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103         return &ei->vfs_inode;
1104 }
1105
1106 static int ext4_drop_inode(struct inode *inode)
1107 {
1108         int drop = generic_drop_inode(inode);
1109
1110         trace_ext4_drop_inode(inode, drop);
1111         return drop;
1112 }
1113
1114 static void ext4_i_callback(struct rcu_head *head)
1115 {
1116         struct inode *inode = container_of(head, struct inode, i_rcu);
1117         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1118 }
1119
1120 static void ext4_destroy_inode(struct inode *inode)
1121 {
1122         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1123                 ext4_msg(inode->i_sb, KERN_ERR,
1124                          "Inode %lu (%p): orphan list check failed!",
1125                          inode->i_ino, EXT4_I(inode));
1126                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1127                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1128                                 true);
1129                 dump_stack();
1130         }
1131         call_rcu(&inode->i_rcu, ext4_i_callback);
1132 }
1133
1134 static void init_once(void *foo)
1135 {
1136         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1137
1138         INIT_LIST_HEAD(&ei->i_orphan);
1139         init_rwsem(&ei->xattr_sem);
1140         init_rwsem(&ei->i_data_sem);
1141         init_rwsem(&ei->i_mmap_sem);
1142         inode_init_once(&ei->vfs_inode);
1143 }
1144
1145 static int __init init_inodecache(void)
1146 {
1147         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1148                                 sizeof(struct ext4_inode_info), 0,
1149                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1150                                         SLAB_ACCOUNT),
1151                                 offsetof(struct ext4_inode_info, i_data),
1152                                 sizeof_field(struct ext4_inode_info, i_data),
1153                                 init_once);
1154         if (ext4_inode_cachep == NULL)
1155                 return -ENOMEM;
1156         return 0;
1157 }
1158
1159 static void destroy_inodecache(void)
1160 {
1161         /*
1162          * Make sure all delayed rcu free inodes are flushed before we
1163          * destroy cache.
1164          */
1165         rcu_barrier();
1166         kmem_cache_destroy(ext4_inode_cachep);
1167 }
1168
1169 void ext4_clear_inode(struct inode *inode)
1170 {
1171         invalidate_inode_buffers(inode);
1172         clear_inode(inode);
1173         dquot_drop(inode);
1174         ext4_discard_preallocations(inode);
1175         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1176         if (EXT4_I(inode)->jinode) {
1177                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1178                                                EXT4_I(inode)->jinode);
1179                 jbd2_free_inode(EXT4_I(inode)->jinode);
1180                 EXT4_I(inode)->jinode = NULL;
1181         }
1182         fscrypt_put_encryption_info(inode);
1183 }
1184
1185 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1186                                         u64 ino, u32 generation)
1187 {
1188         struct inode *inode;
1189
1190         /*
1191          * Currently we don't know the generation for parent directory, so
1192          * a generation of 0 means "accept any"
1193          */
1194         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1195         if (IS_ERR(inode))
1196                 return ERR_CAST(inode);
1197         if (generation && inode->i_generation != generation) {
1198                 iput(inode);
1199                 return ERR_PTR(-ESTALE);
1200         }
1201
1202         return inode;
1203 }
1204
1205 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1206                                         int fh_len, int fh_type)
1207 {
1208         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1209                                     ext4_nfs_get_inode);
1210 }
1211
1212 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1213                                         int fh_len, int fh_type)
1214 {
1215         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1216                                     ext4_nfs_get_inode);
1217 }
1218
1219 static int ext4_nfs_commit_metadata(struct inode *inode)
1220 {
1221         struct writeback_control wbc = {
1222                 .sync_mode = WB_SYNC_ALL
1223         };
1224
1225         trace_ext4_nfs_commit_metadata(inode);
1226         return ext4_write_inode(inode, &wbc);
1227 }
1228
1229 /*
1230  * Try to release metadata pages (indirect blocks, directories) which are
1231  * mapped via the block device.  Since these pages could have journal heads
1232  * which would prevent try_to_free_buffers() from freeing them, we must use
1233  * jbd2 layer's try_to_free_buffers() function to release them.
1234  */
1235 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1236                                  gfp_t wait)
1237 {
1238         journal_t *journal = EXT4_SB(sb)->s_journal;
1239
1240         WARN_ON(PageChecked(page));
1241         if (!page_has_buffers(page))
1242                 return 0;
1243         if (journal)
1244                 return jbd2_journal_try_to_free_buffers(journal, page,
1245                                                 wait & ~__GFP_DIRECT_RECLAIM);
1246         return try_to_free_buffers(page);
1247 }
1248
1249 #ifdef CONFIG_FS_ENCRYPTION
1250 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1251 {
1252         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1253                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1254 }
1255
1256 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1257                                                         void *fs_data)
1258 {
1259         handle_t *handle = fs_data;
1260         int res, res2, credits, retries = 0;
1261
1262         /*
1263          * Encrypting the root directory is not allowed because e2fsck expects
1264          * lost+found to exist and be unencrypted, and encrypting the root
1265          * directory would imply encrypting the lost+found directory as well as
1266          * the filename "lost+found" itself.
1267          */
1268         if (inode->i_ino == EXT4_ROOT_INO)
1269                 return -EPERM;
1270
1271         if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1272                 return -EINVAL;
1273
1274         res = ext4_convert_inline_data(inode);
1275         if (res)
1276                 return res;
1277
1278         /*
1279          * If a journal handle was specified, then the encryption context is
1280          * being set on a new inode via inheritance and is part of a larger
1281          * transaction to create the inode.  Otherwise the encryption context is
1282          * being set on an existing inode in its own transaction.  Only in the
1283          * latter case should the "retry on ENOSPC" logic be used.
1284          */
1285
1286         if (handle) {
1287                 res = ext4_xattr_set_handle(handle, inode,
1288                                             EXT4_XATTR_INDEX_ENCRYPTION,
1289                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1290                                             ctx, len, 0);
1291                 if (!res) {
1292                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1293                         ext4_clear_inode_state(inode,
1294                                         EXT4_STATE_MAY_INLINE_DATA);
1295                         /*
1296                          * Update inode->i_flags - S_ENCRYPTED will be enabled,
1297                          * S_DAX may be disabled
1298                          */
1299                         ext4_set_inode_flags(inode);
1300                 }
1301                 return res;
1302         }
1303
1304         res = dquot_initialize(inode);
1305         if (res)
1306                 return res;
1307 retry:
1308         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1309                                      &credits);
1310         if (res)
1311                 return res;
1312
1313         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1314         if (IS_ERR(handle))
1315                 return PTR_ERR(handle);
1316
1317         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1318                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1319                                     ctx, len, 0);
1320         if (!res) {
1321                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1322                 /*
1323                  * Update inode->i_flags - S_ENCRYPTED will be enabled,
1324                  * S_DAX may be disabled
1325                  */
1326                 ext4_set_inode_flags(inode);
1327                 res = ext4_mark_inode_dirty(handle, inode);
1328                 if (res)
1329                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1330         }
1331         res2 = ext4_journal_stop(handle);
1332
1333         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1334                 goto retry;
1335         if (!res)
1336                 res = res2;
1337         return res;
1338 }
1339
1340 static bool ext4_dummy_context(struct inode *inode)
1341 {
1342         return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1343 }
1344
1345 static const struct fscrypt_operations ext4_cryptops = {
1346         .key_prefix             = "ext4:",
1347         .get_context            = ext4_get_context,
1348         .set_context            = ext4_set_context,
1349         .dummy_context          = ext4_dummy_context,
1350         .empty_dir              = ext4_empty_dir,
1351         .max_namelen            = EXT4_NAME_LEN,
1352 };
1353 #endif
1354
1355 #ifdef CONFIG_QUOTA
1356 static const char * const quotatypes[] = INITQFNAMES;
1357 #define QTYPE2NAME(t) (quotatypes[t])
1358
1359 static int ext4_write_dquot(struct dquot *dquot);
1360 static int ext4_acquire_dquot(struct dquot *dquot);
1361 static int ext4_release_dquot(struct dquot *dquot);
1362 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1363 static int ext4_write_info(struct super_block *sb, int type);
1364 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1365                          const struct path *path);
1366 static int ext4_quota_on_mount(struct super_block *sb, int type);
1367 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1368                                size_t len, loff_t off);
1369 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1370                                 const char *data, size_t len, loff_t off);
1371 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1372                              unsigned int flags);
1373 static int ext4_enable_quotas(struct super_block *sb);
1374 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1375
1376 static struct dquot **ext4_get_dquots(struct inode *inode)
1377 {
1378         return EXT4_I(inode)->i_dquot;
1379 }
1380
1381 static const struct dquot_operations ext4_quota_operations = {
1382         .get_reserved_space     = ext4_get_reserved_space,
1383         .write_dquot            = ext4_write_dquot,
1384         .acquire_dquot          = ext4_acquire_dquot,
1385         .release_dquot          = ext4_release_dquot,
1386         .mark_dirty             = ext4_mark_dquot_dirty,
1387         .write_info             = ext4_write_info,
1388         .alloc_dquot            = dquot_alloc,
1389         .destroy_dquot          = dquot_destroy,
1390         .get_projid             = ext4_get_projid,
1391         .get_inode_usage        = ext4_get_inode_usage,
1392         .get_next_id            = ext4_get_next_id,
1393 };
1394
1395 static const struct quotactl_ops ext4_qctl_operations = {
1396         .quota_on       = ext4_quota_on,
1397         .quota_off      = ext4_quota_off,
1398         .quota_sync     = dquot_quota_sync,
1399         .get_state      = dquot_get_state,
1400         .set_info       = dquot_set_dqinfo,
1401         .get_dqblk      = dquot_get_dqblk,
1402         .set_dqblk      = dquot_set_dqblk,
1403         .get_nextdqblk  = dquot_get_next_dqblk,
1404 };
1405 #endif
1406
1407 static const struct super_operations ext4_sops = {
1408         .alloc_inode    = ext4_alloc_inode,
1409         .destroy_inode  = ext4_destroy_inode,
1410         .write_inode    = ext4_write_inode,
1411         .dirty_inode    = ext4_dirty_inode,
1412         .drop_inode     = ext4_drop_inode,
1413         .evict_inode    = ext4_evict_inode,
1414         .put_super      = ext4_put_super,
1415         .sync_fs        = ext4_sync_fs,
1416         .freeze_fs      = ext4_freeze,
1417         .unfreeze_fs    = ext4_unfreeze,
1418         .statfs         = ext4_statfs,
1419         .remount_fs     = ext4_remount,
1420         .show_options   = ext4_show_options,
1421 #ifdef CONFIG_QUOTA
1422         .quota_read     = ext4_quota_read,
1423         .quota_write    = ext4_quota_write,
1424         .get_dquots     = ext4_get_dquots,
1425 #endif
1426         .bdev_try_to_free_page = bdev_try_to_free_page,
1427 };
1428
1429 static const struct export_operations ext4_export_ops = {
1430         .fh_to_dentry = ext4_fh_to_dentry,
1431         .fh_to_parent = ext4_fh_to_parent,
1432         .get_parent = ext4_get_parent,
1433         .commit_metadata = ext4_nfs_commit_metadata,
1434 };
1435
1436 enum {
1437         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1438         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1439         Opt_nouid32, Opt_debug, Opt_removed,
1440         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1441         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1442         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1443         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1444         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1445         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1446         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1447         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1448         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1449         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1450         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1451         Opt_nowarn_on_error, Opt_mblk_io_submit,
1452         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1453         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1454         Opt_inode_readahead_blks, Opt_journal_ioprio,
1455         Opt_dioread_nolock, Opt_dioread_lock,
1456         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1457         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1458 };
1459
1460 static const match_table_t tokens = {
1461         {Opt_bsd_df, "bsddf"},
1462         {Opt_minix_df, "minixdf"},
1463         {Opt_grpid, "grpid"},
1464         {Opt_grpid, "bsdgroups"},
1465         {Opt_nogrpid, "nogrpid"},
1466         {Opt_nogrpid, "sysvgroups"},
1467         {Opt_resgid, "resgid=%u"},
1468         {Opt_resuid, "resuid=%u"},
1469         {Opt_sb, "sb=%u"},
1470         {Opt_err_cont, "errors=continue"},
1471         {Opt_err_panic, "errors=panic"},
1472         {Opt_err_ro, "errors=remount-ro"},
1473         {Opt_nouid32, "nouid32"},
1474         {Opt_debug, "debug"},
1475         {Opt_removed, "oldalloc"},
1476         {Opt_removed, "orlov"},
1477         {Opt_user_xattr, "user_xattr"},
1478         {Opt_nouser_xattr, "nouser_xattr"},
1479         {Opt_acl, "acl"},
1480         {Opt_noacl, "noacl"},
1481         {Opt_noload, "norecovery"},
1482         {Opt_noload, "noload"},
1483         {Opt_removed, "nobh"},
1484         {Opt_removed, "bh"},
1485         {Opt_commit, "commit=%u"},
1486         {Opt_min_batch_time, "min_batch_time=%u"},
1487         {Opt_max_batch_time, "max_batch_time=%u"},
1488         {Opt_journal_dev, "journal_dev=%u"},
1489         {Opt_journal_path, "journal_path=%s"},
1490         {Opt_journal_checksum, "journal_checksum"},
1491         {Opt_nojournal_checksum, "nojournal_checksum"},
1492         {Opt_journal_async_commit, "journal_async_commit"},
1493         {Opt_abort, "abort"},
1494         {Opt_data_journal, "data=journal"},
1495         {Opt_data_ordered, "data=ordered"},
1496         {Opt_data_writeback, "data=writeback"},
1497         {Opt_data_err_abort, "data_err=abort"},
1498         {Opt_data_err_ignore, "data_err=ignore"},
1499         {Opt_offusrjquota, "usrjquota="},
1500         {Opt_usrjquota, "usrjquota=%s"},
1501         {Opt_offgrpjquota, "grpjquota="},
1502         {Opt_grpjquota, "grpjquota=%s"},
1503         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1504         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1505         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1506         {Opt_grpquota, "grpquota"},
1507         {Opt_noquota, "noquota"},
1508         {Opt_quota, "quota"},
1509         {Opt_usrquota, "usrquota"},
1510         {Opt_prjquota, "prjquota"},
1511         {Opt_barrier, "barrier=%u"},
1512         {Opt_barrier, "barrier"},
1513         {Opt_nobarrier, "nobarrier"},
1514         {Opt_i_version, "i_version"},
1515         {Opt_dax, "dax"},
1516         {Opt_stripe, "stripe=%u"},
1517         {Opt_delalloc, "delalloc"},
1518         {Opt_warn_on_error, "warn_on_error"},
1519         {Opt_nowarn_on_error, "nowarn_on_error"},
1520         {Opt_lazytime, "lazytime"},
1521         {Opt_nolazytime, "nolazytime"},
1522         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1523         {Opt_nodelalloc, "nodelalloc"},
1524         {Opt_removed, "mblk_io_submit"},
1525         {Opt_removed, "nomblk_io_submit"},
1526         {Opt_block_validity, "block_validity"},
1527         {Opt_noblock_validity, "noblock_validity"},
1528         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1529         {Opt_journal_ioprio, "journal_ioprio=%u"},
1530         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1531         {Opt_auto_da_alloc, "auto_da_alloc"},
1532         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1533         {Opt_dioread_nolock, "dioread_nolock"},
1534         {Opt_dioread_lock, "dioread_lock"},
1535         {Opt_discard, "discard"},
1536         {Opt_nodiscard, "nodiscard"},
1537         {Opt_init_itable, "init_itable=%u"},
1538         {Opt_init_itable, "init_itable"},
1539         {Opt_noinit_itable, "noinit_itable"},
1540         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1541         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1542         {Opt_nombcache, "nombcache"},
1543         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1544         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1545         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1546         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1547         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1548         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1549         {Opt_err, NULL},
1550 };
1551
1552 static ext4_fsblk_t get_sb_block(void **data)
1553 {
1554         ext4_fsblk_t    sb_block;
1555         char            *options = (char *) *data;
1556
1557         if (!options || strncmp(options, "sb=", 3) != 0)
1558                 return 1;       /* Default location */
1559
1560         options += 3;
1561         /* TODO: use simple_strtoll with >32bit ext4 */
1562         sb_block = simple_strtoul(options, &options, 0);
1563         if (*options && *options != ',') {
1564                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1565                        (char *) *data);
1566                 return 1;
1567         }
1568         if (*options == ',')
1569                 options++;
1570         *data = (void *) options;
1571
1572         return sb_block;
1573 }
1574
1575 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1576 static const char deprecated_msg[] =
1577         "Mount option \"%s\" will be removed by %s\n"
1578         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1579
1580 #ifdef CONFIG_QUOTA
1581 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1582 {
1583         struct ext4_sb_info *sbi = EXT4_SB(sb);
1584         char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1585         int ret = -1;
1586
1587         if (sb_any_quota_loaded(sb) && !old_qname) {
1588                 ext4_msg(sb, KERN_ERR,
1589                         "Cannot change journaled "
1590                         "quota options when quota turned on");
1591                 return -1;
1592         }
1593         if (ext4_has_feature_quota(sb)) {
1594                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1595                          "ignored when QUOTA feature is enabled");
1596                 return 1;
1597         }
1598         qname = match_strdup(args);
1599         if (!qname) {
1600                 ext4_msg(sb, KERN_ERR,
1601                         "Not enough memory for storing quotafile name");
1602                 return -1;
1603         }
1604         if (old_qname) {
1605                 if (strcmp(old_qname, qname) == 0)
1606                         ret = 1;
1607                 else
1608                         ext4_msg(sb, KERN_ERR,
1609                                  "%s quota file already specified",
1610                                  QTYPE2NAME(qtype));
1611                 goto errout;
1612         }
1613         if (strchr(qname, '/')) {
1614                 ext4_msg(sb, KERN_ERR,
1615                         "quotafile must be on filesystem root");
1616                 goto errout;
1617         }
1618         rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1619         set_opt(sb, QUOTA);
1620         return 1;
1621 errout:
1622         kfree(qname);
1623         return ret;
1624 }
1625
1626 static int clear_qf_name(struct super_block *sb, int qtype)
1627 {
1628
1629         struct ext4_sb_info *sbi = EXT4_SB(sb);
1630         char *old_qname = get_qf_name(sb, sbi, qtype);
1631
1632         if (sb_any_quota_loaded(sb) && old_qname) {
1633                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1634                         " when quota turned on");
1635                 return -1;
1636         }
1637         rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1638         synchronize_rcu();
1639         kfree(old_qname);
1640         return 1;
1641 }
1642 #endif
1643
1644 #define MOPT_SET        0x0001
1645 #define MOPT_CLEAR      0x0002
1646 #define MOPT_NOSUPPORT  0x0004
1647 #define MOPT_EXPLICIT   0x0008
1648 #define MOPT_CLEAR_ERR  0x0010
1649 #define MOPT_GTE0       0x0020
1650 #ifdef CONFIG_QUOTA
1651 #define MOPT_Q          0
1652 #define MOPT_QFMT       0x0040
1653 #else
1654 #define MOPT_Q          MOPT_NOSUPPORT
1655 #define MOPT_QFMT       MOPT_NOSUPPORT
1656 #endif
1657 #define MOPT_DATAJ      0x0080
1658 #define MOPT_NO_EXT2    0x0100
1659 #define MOPT_NO_EXT3    0x0200
1660 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1661 #define MOPT_STRING     0x0400
1662
1663 static const struct mount_opts {
1664         int     token;
1665         int     mount_opt;
1666         int     flags;
1667 } ext4_mount_opts[] = {
1668         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1669         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1670         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1671         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1672         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1673         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1674         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1675          MOPT_EXT4_ONLY | MOPT_SET},
1676         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1677          MOPT_EXT4_ONLY | MOPT_CLEAR},
1678         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1679         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1680         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1681          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1682         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1683          MOPT_EXT4_ONLY | MOPT_CLEAR},
1684         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1685         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1686         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1687          MOPT_EXT4_ONLY | MOPT_CLEAR},
1688         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1689          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1690         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1691                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1692          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1693         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1694         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1695         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1696         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1697         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1698          MOPT_NO_EXT2},
1699         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1700          MOPT_NO_EXT2},
1701         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1702         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1703         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1704         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1705         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1706         {Opt_commit, 0, MOPT_GTE0},
1707         {Opt_max_batch_time, 0, MOPT_GTE0},
1708         {Opt_min_batch_time, 0, MOPT_GTE0},
1709         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1710         {Opt_init_itable, 0, MOPT_GTE0},
1711         {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1712         {Opt_stripe, 0, MOPT_GTE0},
1713         {Opt_resuid, 0, MOPT_GTE0},
1714         {Opt_resgid, 0, MOPT_GTE0},
1715         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1716         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1717         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1718         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1719         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1720         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1721          MOPT_NO_EXT2 | MOPT_DATAJ},
1722         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1723         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1724 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1725         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1726         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1727 #else
1728         {Opt_acl, 0, MOPT_NOSUPPORT},
1729         {Opt_noacl, 0, MOPT_NOSUPPORT},
1730 #endif
1731         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1732         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1733         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1734         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1735         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1736                                                         MOPT_SET | MOPT_Q},
1737         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1738                                                         MOPT_SET | MOPT_Q},
1739         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1740                                                         MOPT_SET | MOPT_Q},
1741         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1742                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1743                                                         MOPT_CLEAR | MOPT_Q},
1744         {Opt_usrjquota, 0, MOPT_Q},
1745         {Opt_grpjquota, 0, MOPT_Q},
1746         {Opt_offusrjquota, 0, MOPT_Q},
1747         {Opt_offgrpjquota, 0, MOPT_Q},
1748         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1749         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1750         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1751         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1752         {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1753         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1754         {Opt_err, 0, 0}
1755 };
1756
1757 #ifdef CONFIG_UNICODE
1758 static const struct ext4_sb_encodings {
1759         __u16 magic;
1760         char *name;
1761         char *version;
1762 } ext4_sb_encoding_map[] = {
1763         {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1764 };
1765
1766 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1767                                  const struct ext4_sb_encodings **encoding,
1768                                  __u16 *flags)
1769 {
1770         __u16 magic = le16_to_cpu(es->s_encoding);
1771         int i;
1772
1773         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1774                 if (magic == ext4_sb_encoding_map[i].magic)
1775                         break;
1776
1777         if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1778                 return -EINVAL;
1779
1780         *encoding = &ext4_sb_encoding_map[i];
1781         *flags = le16_to_cpu(es->s_encoding_flags);
1782
1783         return 0;
1784 }
1785 #endif
1786
1787 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1788                             substring_t *args, unsigned long *journal_devnum,
1789                             unsigned int *journal_ioprio, int is_remount)
1790 {
1791         struct ext4_sb_info *sbi = EXT4_SB(sb);
1792         const struct mount_opts *m;
1793         kuid_t uid;
1794         kgid_t gid;
1795         int arg = 0;
1796
1797 #ifdef CONFIG_QUOTA
1798         if (token == Opt_usrjquota)
1799                 return set_qf_name(sb, USRQUOTA, &args[0]);
1800         else if (token == Opt_grpjquota)
1801                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1802         else if (token == Opt_offusrjquota)
1803                 return clear_qf_name(sb, USRQUOTA);
1804         else if (token == Opt_offgrpjquota)
1805                 return clear_qf_name(sb, GRPQUOTA);
1806 #endif
1807         switch (token) {
1808         case Opt_noacl:
1809         case Opt_nouser_xattr:
1810                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1811                 break;
1812         case Opt_sb:
1813                 return 1;       /* handled by get_sb_block() */
1814         case Opt_removed:
1815                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1816                 return 1;
1817         case Opt_abort:
1818                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1819                 return 1;
1820         case Opt_i_version:
1821                 sb->s_flags |= SB_I_VERSION;
1822                 return 1;
1823         case Opt_lazytime:
1824                 sb->s_flags |= SB_LAZYTIME;
1825                 return 1;
1826         case Opt_nolazytime:
1827                 sb->s_flags &= ~SB_LAZYTIME;
1828                 return 1;
1829         }
1830
1831         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1832                 if (token == m->token)
1833                         break;
1834
1835         if (m->token == Opt_err) {
1836                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1837                          "or missing value", opt);
1838                 return -1;
1839         }
1840
1841         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1842                 ext4_msg(sb, KERN_ERR,
1843                          "Mount option \"%s\" incompatible with ext2", opt);
1844                 return -1;
1845         }
1846         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1847                 ext4_msg(sb, KERN_ERR,
1848                          "Mount option \"%s\" incompatible with ext3", opt);
1849                 return -1;
1850         }
1851
1852         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1853                 return -1;
1854         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1855                 return -1;
1856         if (m->flags & MOPT_EXPLICIT) {
1857                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1858                         set_opt2(sb, EXPLICIT_DELALLOC);
1859                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1860                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1861                 } else
1862                         return -1;
1863         }
1864         if (m->flags & MOPT_CLEAR_ERR)
1865                 clear_opt(sb, ERRORS_MASK);
1866         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1867                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1868                          "options when quota turned on");
1869                 return -1;
1870         }
1871
1872         if (m->flags & MOPT_NOSUPPORT) {
1873                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1874         } else if (token == Opt_commit) {
1875                 if (arg == 0)
1876                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1877                 sbi->s_commit_interval = HZ * arg;
1878         } else if (token == Opt_debug_want_extra_isize) {
1879                 sbi->s_want_extra_isize = arg;
1880         } else if (token == Opt_max_batch_time) {
1881                 sbi->s_max_batch_time = arg;
1882         } else if (token == Opt_min_batch_time) {
1883                 sbi->s_min_batch_time = arg;
1884         } else if (token == Opt_inode_readahead_blks) {
1885                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1886                         ext4_msg(sb, KERN_ERR,
1887                                  "EXT4-fs: inode_readahead_blks must be "
1888                                  "0 or a power of 2 smaller than 2^31");
1889                         return -1;
1890                 }
1891                 sbi->s_inode_readahead_blks = arg;
1892         } else if (token == Opt_init_itable) {
1893                 set_opt(sb, INIT_INODE_TABLE);
1894                 if (!args->from)
1895                         arg = EXT4_DEF_LI_WAIT_MULT;
1896                 sbi->s_li_wait_mult = arg;
1897         } else if (token == Opt_max_dir_size_kb) {
1898                 sbi->s_max_dir_size_kb = arg;
1899         } else if (token == Opt_stripe) {
1900                 sbi->s_stripe = arg;
1901         } else if (token == Opt_resuid) {
1902                 uid = make_kuid(current_user_ns(), arg);
1903                 if (!uid_valid(uid)) {
1904                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1905                         return -1;
1906                 }
1907                 sbi->s_resuid = uid;
1908         } else if (token == Opt_resgid) {
1909                 gid = make_kgid(current_user_ns(), arg);
1910                 if (!gid_valid(gid)) {
1911                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1912                         return -1;
1913                 }
1914                 sbi->s_resgid = gid;
1915         } else if (token == Opt_journal_dev) {
1916                 if (is_remount) {
1917                         ext4_msg(sb, KERN_ERR,
1918                                  "Cannot specify journal on remount");
1919                         return -1;
1920                 }
1921                 *journal_devnum = arg;
1922         } else if (token == Opt_journal_path) {
1923                 char *journal_path;
1924                 struct inode *journal_inode;
1925                 struct path path;
1926                 int error;
1927
1928                 if (is_remount) {
1929                         ext4_msg(sb, KERN_ERR,
1930                                  "Cannot specify journal on remount");
1931                         return -1;
1932                 }
1933                 journal_path = match_strdup(&args[0]);
1934                 if (!journal_path) {
1935                         ext4_msg(sb, KERN_ERR, "error: could not dup "
1936                                 "journal device string");
1937                         return -1;
1938                 }
1939
1940                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1941                 if (error) {
1942                         ext4_msg(sb, KERN_ERR, "error: could not find "
1943                                 "journal device path: error %d", error);
1944                         kfree(journal_path);
1945                         return -1;
1946                 }
1947
1948                 journal_inode = d_inode(path.dentry);
1949                 if (!S_ISBLK(journal_inode->i_mode)) {
1950                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
1951                                 "is not a block device", journal_path);
1952                         path_put(&path);
1953                         kfree(journal_path);
1954                         return -1;
1955                 }
1956
1957                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1958                 path_put(&path);
1959                 kfree(journal_path);
1960         } else if (token == Opt_journal_ioprio) {
1961                 if (arg > 7) {
1962                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1963                                  " (must be 0-7)");
1964                         return -1;
1965                 }
1966                 *journal_ioprio =
1967                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1968         } else if (token == Opt_test_dummy_encryption) {
1969 #ifdef CONFIG_FS_ENCRYPTION
1970                 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1971                 ext4_msg(sb, KERN_WARNING,
1972                          "Test dummy encryption mode enabled");
1973 #else
1974                 ext4_msg(sb, KERN_WARNING,
1975                          "Test dummy encryption mount option ignored");
1976 #endif
1977         } else if (m->flags & MOPT_DATAJ) {
1978                 if (is_remount) {
1979                         if (!sbi->s_journal)
1980                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1981                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1982                                 ext4_msg(sb, KERN_ERR,
1983                                          "Cannot change data mode on remount");
1984                                 return -1;
1985                         }
1986                 } else {
1987                         clear_opt(sb, DATA_FLAGS);
1988                         sbi->s_mount_opt |= m->mount_opt;
1989                 }
1990 #ifdef CONFIG_QUOTA
1991         } else if (m->flags & MOPT_QFMT) {
1992                 if (sb_any_quota_loaded(sb) &&
1993                     sbi->s_jquota_fmt != m->mount_opt) {
1994                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1995                                  "quota options when quota turned on");
1996                         return -1;
1997                 }
1998                 if (ext4_has_feature_quota(sb)) {
1999                         ext4_msg(sb, KERN_INFO,
2000                                  "Quota format mount options ignored "
2001                                  "when QUOTA feature is enabled");
2002                         return 1;
2003                 }
2004                 sbi->s_jquota_fmt = m->mount_opt;
2005 #endif
2006         } else if (token == Opt_dax) {
2007 #ifdef CONFIG_FS_DAX
2008                 ext4_msg(sb, KERN_WARNING,
2009                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2010                 sbi->s_mount_opt |= m->mount_opt;
2011 #else
2012                 ext4_msg(sb, KERN_INFO, "dax option not supported");
2013                 return -1;
2014 #endif
2015         } else if (token == Opt_data_err_abort) {
2016                 sbi->s_mount_opt |= m->mount_opt;
2017         } else if (token == Opt_data_err_ignore) {
2018                 sbi->s_mount_opt &= ~m->mount_opt;
2019         } else {
2020                 if (!args->from)
2021                         arg = 1;
2022                 if (m->flags & MOPT_CLEAR)
2023                         arg = !arg;
2024                 else if (unlikely(!(m->flags & MOPT_SET))) {
2025                         ext4_msg(sb, KERN_WARNING,
2026                                  "buggy handling of option %s", opt);
2027                         WARN_ON(1);
2028                         return -1;
2029                 }
2030                 if (arg != 0)
2031                         sbi->s_mount_opt |= m->mount_opt;
2032                 else
2033                         sbi->s_mount_opt &= ~m->mount_opt;
2034         }
2035         return 1;
2036 }
2037
2038 static int parse_options(char *options, struct super_block *sb,
2039                          unsigned long *journal_devnum,
2040                          unsigned int *journal_ioprio,
2041                          int is_remount)
2042 {
2043         struct ext4_sb_info *sbi = EXT4_SB(sb);
2044         char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2045         substring_t args[MAX_OPT_ARGS];
2046         int token;
2047
2048         if (!options)
2049                 return 1;
2050
2051         while ((p = strsep(&options, ",")) != NULL) {
2052                 if (!*p)
2053                         continue;
2054                 /*
2055                  * Initialize args struct so we know whether arg was
2056                  * found; some options take optional arguments.
2057                  */
2058                 args[0].to = args[0].from = NULL;
2059                 token = match_token(p, tokens, args);
2060                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2061                                      journal_ioprio, is_remount) < 0)
2062                         return 0;
2063         }
2064 #ifdef CONFIG_QUOTA
2065         /*
2066          * We do the test below only for project quotas. 'usrquota' and
2067          * 'grpquota' mount options are allowed even without quota feature
2068          * to support legacy quotas in quota files.
2069          */
2070         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2071                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2072                          "Cannot enable project quota enforcement.");
2073                 return 0;
2074         }
2075         usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2076         grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2077         if (usr_qf_name || grp_qf_name) {
2078                 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2079                         clear_opt(sb, USRQUOTA);
2080
2081                 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2082                         clear_opt(sb, GRPQUOTA);
2083
2084                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2085                         ext4_msg(sb, KERN_ERR, "old and new quota "
2086                                         "format mixing");
2087                         return 0;
2088                 }
2089
2090                 if (!sbi->s_jquota_fmt) {
2091                         ext4_msg(sb, KERN_ERR, "journaled quota format "
2092                                         "not specified");
2093                         return 0;
2094                 }
2095         }
2096 #endif
2097         if (test_opt(sb, DIOREAD_NOLOCK)) {
2098                 int blocksize =
2099                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2100
2101                 if (blocksize < PAGE_SIZE) {
2102                         ext4_msg(sb, KERN_ERR, "can't mount with "
2103                                  "dioread_nolock if block size != PAGE_SIZE");
2104                         return 0;
2105                 }
2106         }
2107         return 1;
2108 }
2109
2110 static inline void ext4_show_quota_options(struct seq_file *seq,
2111                                            struct super_block *sb)
2112 {
2113 #if defined(CONFIG_QUOTA)
2114         struct ext4_sb_info *sbi = EXT4_SB(sb);
2115         char *usr_qf_name, *grp_qf_name;
2116
2117         if (sbi->s_jquota_fmt) {
2118                 char *fmtname = "";
2119
2120                 switch (sbi->s_jquota_fmt) {
2121                 case QFMT_VFS_OLD:
2122                         fmtname = "vfsold";
2123                         break;
2124                 case QFMT_VFS_V0:
2125                         fmtname = "vfsv0";
2126                         break;
2127                 case QFMT_VFS_V1:
2128                         fmtname = "vfsv1";
2129                         break;
2130                 }
2131                 seq_printf(seq, ",jqfmt=%s", fmtname);
2132         }
2133
2134         rcu_read_lock();
2135         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2136         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2137         if (usr_qf_name)
2138                 seq_show_option(seq, "usrjquota", usr_qf_name);
2139         if (grp_qf_name)
2140                 seq_show_option(seq, "grpjquota", grp_qf_name);
2141         rcu_read_unlock();
2142 #endif
2143 }
2144
2145 static const char *token2str(int token)
2146 {
2147         const struct match_token *t;
2148
2149         for (t = tokens; t->token != Opt_err; t++)
2150                 if (t->token == token && !strchr(t->pattern, '='))
2151                         break;
2152         return t->pattern;
2153 }
2154
2155 /*
2156  * Show an option if
2157  *  - it's set to a non-default value OR
2158  *  - if the per-sb default is different from the global default
2159  */
2160 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2161                               int nodefs)
2162 {
2163         struct ext4_sb_info *sbi = EXT4_SB(sb);
2164         struct ext4_super_block *es = sbi->s_es;
2165         int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2166         const struct mount_opts *m;
2167         char sep = nodefs ? '\n' : ',';
2168
2169 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2170 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2171
2172         if (sbi->s_sb_block != 1)
2173                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2174
2175         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2176                 int want_set = m->flags & MOPT_SET;
2177                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2178                     (m->flags & MOPT_CLEAR_ERR))
2179                         continue;
2180                 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2181                         continue; /* skip if same as the default */
2182                 if ((want_set &&
2183                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2184                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2185                         continue; /* select Opt_noFoo vs Opt_Foo */
2186                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2187         }
2188
2189         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2190             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2191                 SEQ_OPTS_PRINT("resuid=%u",
2192                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2193         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2194             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2195                 SEQ_OPTS_PRINT("resgid=%u",
2196                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2197         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2198         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2199                 SEQ_OPTS_PUTS("errors=remount-ro");
2200         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2201                 SEQ_OPTS_PUTS("errors=continue");
2202         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2203                 SEQ_OPTS_PUTS("errors=panic");
2204         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2205                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2206         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2207                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2208         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2209                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2210         if (sb->s_flags & SB_I_VERSION)
2211                 SEQ_OPTS_PUTS("i_version");
2212         if (nodefs || sbi->s_stripe)
2213                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2214         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2215                         (sbi->s_mount_opt ^ def_mount_opt)) {
2216                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2217                         SEQ_OPTS_PUTS("data=journal");
2218                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2219                         SEQ_OPTS_PUTS("data=ordered");
2220                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2221                         SEQ_OPTS_PUTS("data=writeback");
2222         }
2223         if (nodefs ||
2224             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2225                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2226                                sbi->s_inode_readahead_blks);
2227
2228         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2229                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2230                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2231         if (nodefs || sbi->s_max_dir_size_kb)
2232                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2233         if (test_opt(sb, DATA_ERR_ABORT))
2234                 SEQ_OPTS_PUTS("data_err=abort");
2235         if (DUMMY_ENCRYPTION_ENABLED(sbi))
2236                 SEQ_OPTS_PUTS("test_dummy_encryption");
2237
2238         ext4_show_quota_options(seq, sb);
2239         return 0;
2240 }
2241
2242 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2243 {
2244         return _ext4_show_options(seq, root->d_sb, 0);
2245 }
2246
2247 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2248 {
2249         struct super_block *sb = seq->private;
2250         int rc;
2251
2252         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2253         rc = _ext4_show_options(seq, sb, 1);
2254         seq_puts(seq, "\n");
2255         return rc;
2256 }
2257
2258 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2259                             int read_only)
2260 {
2261         struct ext4_sb_info *sbi = EXT4_SB(sb);
2262         int err = 0;
2263
2264         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2265                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2266                          "forcing read-only mode");
2267                 err = -EROFS;
2268         }
2269         if (read_only)
2270                 goto done;
2271         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2272                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2273                          "running e2fsck is recommended");
2274         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2275                 ext4_msg(sb, KERN_WARNING,
2276                          "warning: mounting fs with errors, "
2277                          "running e2fsck is recommended");
2278         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2279                  le16_to_cpu(es->s_mnt_count) >=
2280                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2281                 ext4_msg(sb, KERN_WARNING,
2282                          "warning: maximal mount count reached, "
2283                          "running e2fsck is recommended");
2284         else if (le32_to_cpu(es->s_checkinterval) &&
2285                  (ext4_get_tstamp(es, s_lastcheck) +
2286                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2287                 ext4_msg(sb, KERN_WARNING,
2288                          "warning: checktime reached, "
2289                          "running e2fsck is recommended");
2290         if (!sbi->s_journal)
2291                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2292         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2293                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2294         le16_add_cpu(&es->s_mnt_count, 1);
2295         ext4_update_tstamp(es, s_mtime);
2296         if (sbi->s_journal)
2297                 ext4_set_feature_journal_needs_recovery(sb);
2298
2299         err = ext4_commit_super(sb, 1);
2300 done:
2301         if (test_opt(sb, DEBUG))
2302                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2303                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2304                         sb->s_blocksize,
2305                         sbi->s_groups_count,
2306                         EXT4_BLOCKS_PER_GROUP(sb),
2307                         EXT4_INODES_PER_GROUP(sb),
2308                         sbi->s_mount_opt, sbi->s_mount_opt2);
2309
2310         cleancache_init_fs(sb);
2311         return err;
2312 }
2313
2314 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2315 {
2316         struct ext4_sb_info *sbi = EXT4_SB(sb);
2317         struct flex_groups *new_groups;
2318         int size;
2319
2320         if (!sbi->s_log_groups_per_flex)
2321                 return 0;
2322
2323         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2324         if (size <= sbi->s_flex_groups_allocated)
2325                 return 0;
2326
2327         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2328         new_groups = kvzalloc(size, GFP_KERNEL);
2329         if (!new_groups) {
2330                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2331                          size / (int) sizeof(struct flex_groups));
2332                 return -ENOMEM;
2333         }
2334
2335         if (sbi->s_flex_groups) {
2336                 memcpy(new_groups, sbi->s_flex_groups,
2337                        (sbi->s_flex_groups_allocated *
2338                         sizeof(struct flex_groups)));
2339                 kvfree(sbi->s_flex_groups);
2340         }
2341         sbi->s_flex_groups = new_groups;
2342         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2343         return 0;
2344 }
2345
2346 static int ext4_fill_flex_info(struct super_block *sb)
2347 {
2348         struct ext4_sb_info *sbi = EXT4_SB(sb);
2349         struct ext4_group_desc *gdp = NULL;
2350         ext4_group_t flex_group;
2351         int i, err;
2352
2353         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2354         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2355                 sbi->s_log_groups_per_flex = 0;
2356                 return 1;
2357         }
2358
2359         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2360         if (err)
2361                 goto failed;
2362
2363         for (i = 0; i < sbi->s_groups_count; i++) {
2364                 gdp = ext4_get_group_desc(sb, i, NULL);
2365
2366                 flex_group = ext4_flex_group(sbi, i);
2367                 atomic_add(ext4_free_inodes_count(sb, gdp),
2368                            &sbi->s_flex_groups[flex_group].free_inodes);
2369                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2370                              &sbi->s_flex_groups[flex_group].free_clusters);
2371                 atomic_add(ext4_used_dirs_count(sb, gdp),
2372                            &sbi->s_flex_groups[flex_group].used_dirs);
2373         }
2374
2375         return 1;
2376 failed:
2377         return 0;
2378 }
2379
2380 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2381                                    struct ext4_group_desc *gdp)
2382 {
2383         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2384         __u16 crc = 0;
2385         __le32 le_group = cpu_to_le32(block_group);
2386         struct ext4_sb_info *sbi = EXT4_SB(sb);
2387
2388         if (ext4_has_metadata_csum(sbi->s_sb)) {
2389                 /* Use new metadata_csum algorithm */
2390                 __u32 csum32;
2391                 __u16 dummy_csum = 0;
2392
2393                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2394                                      sizeof(le_group));
2395                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2396                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2397                                      sizeof(dummy_csum));
2398                 offset += sizeof(dummy_csum);
2399                 if (offset < sbi->s_desc_size)
2400                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2401                                              sbi->s_desc_size - offset);
2402
2403                 crc = csum32 & 0xFFFF;
2404                 goto out;
2405         }
2406
2407         /* old crc16 code */
2408         if (!ext4_has_feature_gdt_csum(sb))
2409                 return 0;
2410
2411         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2412         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2413         crc = crc16(crc, (__u8 *)gdp, offset);
2414         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2415         /* for checksum of struct ext4_group_desc do the rest...*/
2416         if (ext4_has_feature_64bit(sb) &&
2417             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2418                 crc = crc16(crc, (__u8 *)gdp + offset,
2419                             le16_to_cpu(sbi->s_es->s_desc_size) -
2420                                 offset);
2421
2422 out:
2423         return cpu_to_le16(crc);
2424 }
2425
2426 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2427                                 struct ext4_group_desc *gdp)
2428 {
2429         if (ext4_has_group_desc_csum(sb) &&
2430             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2431                 return 0;
2432
2433         return 1;
2434 }
2435
2436 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2437                               struct ext4_group_desc *gdp)
2438 {
2439         if (!ext4_has_group_desc_csum(sb))
2440                 return;
2441         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2442 }
2443
2444 /* Called at mount-time, super-block is locked */
2445 static int ext4_check_descriptors(struct super_block *sb,
2446                                   ext4_fsblk_t sb_block,
2447                                   ext4_group_t *first_not_zeroed)
2448 {
2449         struct ext4_sb_info *sbi = EXT4_SB(sb);
2450         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2451         ext4_fsblk_t last_block;
2452         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2453         ext4_fsblk_t block_bitmap;
2454         ext4_fsblk_t inode_bitmap;
2455         ext4_fsblk_t inode_table;
2456         int flexbg_flag = 0;
2457         ext4_group_t i, grp = sbi->s_groups_count;
2458
2459         if (ext4_has_feature_flex_bg(sb))
2460                 flexbg_flag = 1;
2461
2462         ext4_debug("Checking group descriptors");
2463
2464         for (i = 0; i < sbi->s_groups_count; i++) {
2465                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2466
2467                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2468                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2469                 else
2470                         last_block = first_block +
2471                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2472
2473                 if ((grp == sbi->s_groups_count) &&
2474                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2475                         grp = i;
2476
2477                 block_bitmap = ext4_block_bitmap(sb, gdp);
2478                 if (block_bitmap == sb_block) {
2479                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2480                                  "Block bitmap for group %u overlaps "
2481                                  "superblock", i);
2482                         if (!sb_rdonly(sb))
2483                                 return 0;
2484                 }
2485                 if (block_bitmap >= sb_block + 1 &&
2486                     block_bitmap <= last_bg_block) {
2487                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2488                                  "Block bitmap for group %u overlaps "
2489                                  "block group descriptors", i);
2490                         if (!sb_rdonly(sb))
2491                                 return 0;
2492                 }
2493                 if (block_bitmap < first_block || block_bitmap > last_block) {
2494                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2495                                "Block bitmap for group %u not in group "
2496                                "(block %llu)!", i, block_bitmap);
2497                         return 0;
2498                 }
2499                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2500                 if (inode_bitmap == sb_block) {
2501                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2502                                  "Inode bitmap for group %u overlaps "
2503                                  "superblock", i);
2504                         if (!sb_rdonly(sb))
2505                                 return 0;
2506                 }
2507                 if (inode_bitmap >= sb_block + 1 &&
2508                     inode_bitmap <= last_bg_block) {
2509                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2510                                  "Inode bitmap for group %u overlaps "
2511                                  "block group descriptors", i);
2512                         if (!sb_rdonly(sb))
2513                                 return 0;
2514                 }
2515                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2516                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2517                                "Inode bitmap for group %u not in group "
2518                                "(block %llu)!", i, inode_bitmap);
2519                         return 0;
2520                 }
2521                 inode_table = ext4_inode_table(sb, gdp);
2522                 if (inode_table == sb_block) {
2523                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2524                                  "Inode table for group %u overlaps "
2525                                  "superblock", i);
2526                         if (!sb_rdonly(sb))
2527                                 return 0;
2528                 }
2529                 if (inode_table >= sb_block + 1 &&
2530                     inode_table <= last_bg_block) {
2531                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2532                                  "Inode table for group %u overlaps "
2533                                  "block group descriptors", i);
2534                         if (!sb_rdonly(sb))
2535                                 return 0;
2536                 }
2537                 if (inode_table < first_block ||
2538                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2539                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2540                                "Inode table for group %u not in group "
2541                                "(block %llu)!", i, inode_table);
2542                         return 0;
2543                 }
2544                 ext4_lock_group(sb, i);
2545                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2546                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2547                                  "Checksum for group %u failed (%u!=%u)",
2548                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2549                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2550                         if (!sb_rdonly(sb)) {
2551                                 ext4_unlock_group(sb, i);
2552                                 return 0;
2553                         }
2554                 }
2555                 ext4_unlock_group(sb, i);
2556                 if (!flexbg_flag)
2557                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2558         }
2559         if (NULL != first_not_zeroed)
2560                 *first_not_zeroed = grp;
2561         return 1;
2562 }
2563
2564 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2565  * the superblock) which were deleted from all directories, but held open by
2566  * a process at the time of a crash.  We walk the list and try to delete these
2567  * inodes at recovery time (only with a read-write filesystem).
2568  *
2569  * In order to keep the orphan inode chain consistent during traversal (in
2570  * case of crash during recovery), we link each inode into the superblock
2571  * orphan list_head and handle it the same way as an inode deletion during
2572  * normal operation (which journals the operations for us).
2573  *
2574  * We only do an iget() and an iput() on each inode, which is very safe if we
2575  * accidentally point at an in-use or already deleted inode.  The worst that
2576  * can happen in this case is that we get a "bit already cleared" message from
2577  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2578  * e2fsck was run on this filesystem, and it must have already done the orphan
2579  * inode cleanup for us, so we can safely abort without any further action.
2580  */
2581 static void ext4_orphan_cleanup(struct super_block *sb,
2582                                 struct ext4_super_block *es)
2583 {
2584         unsigned int s_flags = sb->s_flags;
2585         int ret, nr_orphans = 0, nr_truncates = 0;
2586 #ifdef CONFIG_QUOTA
2587         int quota_update = 0;
2588         int i;
2589 #endif
2590         if (!es->s_last_orphan) {
2591                 jbd_debug(4, "no orphan inodes to clean up\n");
2592                 return;
2593         }
2594
2595         if (bdev_read_only(sb->s_bdev)) {
2596                 ext4_msg(sb, KERN_ERR, "write access "
2597                         "unavailable, skipping orphan cleanup");
2598                 return;
2599         }
2600
2601         /* Check if feature set would not allow a r/w mount */
2602         if (!ext4_feature_set_ok(sb, 0)) {
2603                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2604                          "unknown ROCOMPAT features");
2605                 return;
2606         }
2607
2608         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2609                 /* don't clear list on RO mount w/ errors */
2610                 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2611                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2612                                   "clearing orphan list.\n");
2613                         es->s_last_orphan = 0;
2614                 }
2615                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2616                 return;
2617         }
2618
2619         if (s_flags & SB_RDONLY) {
2620                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2621                 sb->s_flags &= ~SB_RDONLY;
2622         }
2623 #ifdef CONFIG_QUOTA
2624         /* Needed for iput() to work correctly and not trash data */
2625         sb->s_flags |= SB_ACTIVE;
2626
2627         /*
2628          * Turn on quotas which were not enabled for read-only mounts if
2629          * filesystem has quota feature, so that they are updated correctly.
2630          */
2631         if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2632                 int ret = ext4_enable_quotas(sb);
2633
2634                 if (!ret)
2635                         quota_update = 1;
2636                 else
2637                         ext4_msg(sb, KERN_ERR,
2638                                 "Cannot turn on quotas: error %d", ret);
2639         }
2640
2641         /* Turn on journaled quotas used for old sytle */
2642         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2643                 if (EXT4_SB(sb)->s_qf_names[i]) {
2644                         int ret = ext4_quota_on_mount(sb, i);
2645
2646                         if (!ret)
2647                                 quota_update = 1;
2648                         else
2649                                 ext4_msg(sb, KERN_ERR,
2650                                         "Cannot turn on journaled "
2651                                         "quota: type %d: error %d", i, ret);
2652                 }
2653         }
2654 #endif
2655
2656         while (es->s_last_orphan) {
2657                 struct inode *inode;
2658
2659                 /*
2660                  * We may have encountered an error during cleanup; if
2661                  * so, skip the rest.
2662                  */
2663                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2664                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2665                         es->s_last_orphan = 0;
2666                         break;
2667                 }
2668
2669                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2670                 if (IS_ERR(inode)) {
2671                         es->s_last_orphan = 0;
2672                         break;
2673                 }
2674
2675                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2676                 dquot_initialize(inode);
2677                 if (inode->i_nlink) {
2678                         if (test_opt(sb, DEBUG))
2679                                 ext4_msg(sb, KERN_DEBUG,
2680                                         "%s: truncating inode %lu to %lld bytes",
2681                                         __func__, inode->i_ino, inode->i_size);
2682                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2683                                   inode->i_ino, inode->i_size);
2684                         inode_lock(inode);
2685                         truncate_inode_pages(inode->i_mapping, inode->i_size);
2686                         ret = ext4_truncate(inode);
2687                         if (ret)
2688                                 ext4_std_error(inode->i_sb, ret);
2689                         inode_unlock(inode);
2690                         nr_truncates++;
2691                 } else {
2692                         if (test_opt(sb, DEBUG))
2693                                 ext4_msg(sb, KERN_DEBUG,
2694                                         "%s: deleting unreferenced inode %lu",
2695                                         __func__, inode->i_ino);
2696                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2697                                   inode->i_ino);
2698                         nr_orphans++;
2699                 }
2700                 iput(inode);  /* The delete magic happens here! */
2701         }
2702
2703 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2704
2705         if (nr_orphans)
2706                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2707                        PLURAL(nr_orphans));
2708         if (nr_truncates)
2709                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2710                        PLURAL(nr_truncates));
2711 #ifdef CONFIG_QUOTA
2712         /* Turn off quotas if they were enabled for orphan cleanup */
2713         if (quota_update) {
2714                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2715                         if (sb_dqopt(sb)->files[i])
2716                                 dquot_quota_off(sb, i);
2717                 }
2718         }
2719 #endif
2720         sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2721 }
2722
2723 /*
2724  * Maximal extent format file size.
2725  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2726  * extent format containers, within a sector_t, and within i_blocks
2727  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2728  * so that won't be a limiting factor.
2729  *
2730  * However there is other limiting factor. We do store extents in the form
2731  * of starting block and length, hence the resulting length of the extent
2732  * covering maximum file size must fit into on-disk format containers as
2733  * well. Given that length is always by 1 unit bigger than max unit (because
2734  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2735  *
2736  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2737  */
2738 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2739 {
2740         loff_t res;
2741         loff_t upper_limit = MAX_LFS_FILESIZE;
2742
2743         /* small i_blocks in vfs inode? */
2744         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2745                 /*
2746                  * CONFIG_LBDAF is not enabled implies the inode
2747                  * i_block represent total blocks in 512 bytes
2748                  * 32 == size of vfs inode i_blocks * 8
2749                  */
2750                 upper_limit = (1LL << 32) - 1;
2751
2752                 /* total blocks in file system block size */
2753                 upper_limit >>= (blkbits - 9);
2754                 upper_limit <<= blkbits;
2755         }
2756
2757         /*
2758          * 32-bit extent-start container, ee_block. We lower the maxbytes
2759          * by one fs block, so ee_len can cover the extent of maximum file
2760          * size
2761          */
2762         res = (1LL << 32) - 1;
2763         res <<= blkbits;
2764
2765         /* Sanity check against vm- & vfs- imposed limits */
2766         if (res > upper_limit)
2767                 res = upper_limit;
2768
2769         return res;
2770 }
2771
2772 /*
2773  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2774  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2775  * We need to be 1 filesystem block less than the 2^48 sector limit.
2776  */
2777 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2778 {
2779         loff_t res = EXT4_NDIR_BLOCKS;
2780         int meta_blocks;
2781         loff_t upper_limit;
2782         /* This is calculated to be the largest file size for a dense, block
2783          * mapped file such that the file's total number of 512-byte sectors,
2784          * including data and all indirect blocks, does not exceed (2^48 - 1).
2785          *
2786          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2787          * number of 512-byte sectors of the file.
2788          */
2789
2790         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2791                 /*
2792                  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2793                  * the inode i_block field represents total file blocks in
2794                  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2795                  */
2796                 upper_limit = (1LL << 32) - 1;
2797
2798                 /* total blocks in file system block size */
2799                 upper_limit >>= (bits - 9);
2800
2801         } else {
2802                 /*
2803                  * We use 48 bit ext4_inode i_blocks
2804                  * With EXT4_HUGE_FILE_FL set the i_blocks
2805                  * represent total number of blocks in
2806                  * file system block size
2807                  */
2808                 upper_limit = (1LL << 48) - 1;
2809
2810         }
2811
2812         /* indirect blocks */
2813         meta_blocks = 1;
2814         /* double indirect blocks */
2815         meta_blocks += 1 + (1LL << (bits-2));
2816         /* tripple indirect blocks */
2817         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2818
2819         upper_limit -= meta_blocks;
2820         upper_limit <<= bits;
2821
2822         res += 1LL << (bits-2);
2823         res += 1LL << (2*(bits-2));
2824         res += 1LL << (3*(bits-2));
2825         res <<= bits;
2826         if (res > upper_limit)
2827                 res = upper_limit;
2828
2829         if (res > MAX_LFS_FILESIZE)
2830                 res = MAX_LFS_FILESIZE;
2831
2832         return res;
2833 }
2834
2835 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2836                                    ext4_fsblk_t logical_sb_block, int nr)
2837 {
2838         struct ext4_sb_info *sbi = EXT4_SB(sb);
2839         ext4_group_t bg, first_meta_bg;
2840         int has_super = 0;
2841
2842         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2843
2844         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2845                 return logical_sb_block + nr + 1;
2846         bg = sbi->s_desc_per_block * nr;
2847         if (ext4_bg_has_super(sb, bg))
2848                 has_super = 1;
2849
2850         /*
2851          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2852          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2853          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2854          * compensate.
2855          */
2856         if (sb->s_blocksize == 1024 && nr == 0 &&
2857             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2858                 has_super++;
2859
2860         return (has_super + ext4_group_first_block_no(sb, bg));
2861 }
2862
2863 /**
2864  * ext4_get_stripe_size: Get the stripe size.
2865  * @sbi: In memory super block info
2866  *
2867  * If we have specified it via mount option, then
2868  * use the mount option value. If the value specified at mount time is
2869  * greater than the blocks per group use the super block value.
2870  * If the super block value is greater than blocks per group return 0.
2871  * Allocator needs it be less than blocks per group.
2872  *
2873  */
2874 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2875 {
2876         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2877         unsigned long stripe_width =
2878                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2879         int ret;
2880
2881         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2882                 ret = sbi->s_stripe;
2883         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2884                 ret = stripe_width;
2885         else if (stride && stride <= sbi->s_blocks_per_group)
2886                 ret = stride;
2887         else
2888                 ret = 0;
2889
2890         /*
2891          * If the stripe width is 1, this makes no sense and
2892          * we set it to 0 to turn off stripe handling code.
2893          */
2894         if (ret <= 1)
2895                 ret = 0;
2896
2897         return ret;
2898 }
2899
2900 /*
2901  * Check whether this filesystem can be mounted based on
2902  * the features present and the RDONLY/RDWR mount requested.
2903  * Returns 1 if this filesystem can be mounted as requested,
2904  * 0 if it cannot be.
2905  */
2906 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2907 {
2908         if (ext4_has_unknown_ext4_incompat_features(sb)) {
2909                 ext4_msg(sb, KERN_ERR,
2910                         "Couldn't mount because of "
2911                         "unsupported optional features (%x)",
2912                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2913                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2914                 return 0;
2915         }
2916
2917 #ifndef CONFIG_UNICODE
2918         if (ext4_has_feature_casefold(sb)) {
2919                 ext4_msg(sb, KERN_ERR,
2920                          "Filesystem with casefold feature cannot be "
2921                          "mounted without CONFIG_UNICODE");
2922                 return 0;
2923         }
2924 #endif
2925
2926         if (readonly)
2927                 return 1;
2928
2929         if (ext4_has_feature_readonly(sb)) {
2930                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2931                 sb->s_flags |= SB_RDONLY;
2932                 return 1;
2933         }
2934
2935         /* Check that feature set is OK for a read-write mount */
2936         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2937                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2938                          "unsupported optional features (%x)",
2939                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2940                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2941                 return 0;
2942         }
2943         /*
2944          * Large file size enabled file system can only be mounted
2945          * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2946          */
2947         if (ext4_has_feature_huge_file(sb)) {
2948                 if (sizeof(blkcnt_t) < sizeof(u64)) {
2949                         ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2950                                  "cannot be mounted RDWR without "
2951                                  "CONFIG_LBDAF");
2952                         return 0;
2953                 }
2954         }
2955         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2956                 ext4_msg(sb, KERN_ERR,
2957                          "Can't support bigalloc feature without "
2958                          "extents feature\n");
2959                 return 0;
2960         }
2961
2962 #ifndef CONFIG_QUOTA
2963         if (ext4_has_feature_quota(sb) && !readonly) {
2964                 ext4_msg(sb, KERN_ERR,
2965                          "Filesystem with quota feature cannot be mounted RDWR "
2966                          "without CONFIG_QUOTA");
2967                 return 0;
2968         }
2969         if (ext4_has_feature_project(sb) && !readonly) {
2970                 ext4_msg(sb, KERN_ERR,
2971                          "Filesystem with project quota feature cannot be mounted RDWR "
2972                          "without CONFIG_QUOTA");
2973                 return 0;
2974         }
2975 #endif  /* CONFIG_QUOTA */
2976         return 1;
2977 }
2978
2979 /*
2980  * This function is called once a day if we have errors logged
2981  * on the file system
2982  */
2983 static void print_daily_error_info(struct timer_list *t)
2984 {
2985         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2986         struct super_block *sb = sbi->s_sb;
2987         struct ext4_super_block *es = sbi->s_es;
2988
2989         if (es->s_error_count)
2990                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2991                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2992                          le32_to_cpu(es->s_error_count));
2993         if (es->s_first_error_time) {
2994                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2995                        sb->s_id,
2996                        ext4_get_tstamp(es, s_first_error_time),
2997                        (int) sizeof(es->s_first_error_func),
2998                        es->s_first_error_func,
2999                        le32_to_cpu(es->s_first_error_line));
3000                 if (es->s_first_error_ino)
3001                         printk(KERN_CONT ": inode %u",
3002                                le32_to_cpu(es->s_first_error_ino));
3003                 if (es->s_first_error_block)
3004                         printk(KERN_CONT ": block %llu", (unsigned long long)
3005                                le64_to_cpu(es->s_first_error_block));
3006                 printk(KERN_CONT "\n");
3007         }
3008         if (es->s_last_error_time) {
3009                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3010                        sb->s_id,
3011                        ext4_get_tstamp(es, s_last_error_time),
3012                        (int) sizeof(es->s_last_error_func),
3013                        es->s_last_error_func,
3014                        le32_to_cpu(es->s_last_error_line));
3015                 if (es->s_last_error_ino)
3016                         printk(KERN_CONT ": inode %u",
3017                                le32_to_cpu(es->s_last_error_ino));
3018                 if (es->s_last_error_block)
3019                         printk(KERN_CONT ": block %llu", (unsigned long long)
3020                                le64_to_cpu(es->s_last_error_block));
3021                 printk(KERN_CONT "\n");
3022         }
3023         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3024 }
3025
3026 /* Find next suitable group and run ext4_init_inode_table */
3027 static int ext4_run_li_request(struct ext4_li_request *elr)
3028 {
3029         struct ext4_group_desc *gdp = NULL;
3030         ext4_group_t group, ngroups;
3031         struct super_block *sb;
3032         unsigned long timeout = 0;
3033         int ret = 0;
3034
3035         sb = elr->lr_super;
3036         ngroups = EXT4_SB(sb)->s_groups_count;
3037
3038         for (group = elr->lr_next_group; group < ngroups; group++) {
3039                 gdp = ext4_get_group_desc(sb, group, NULL);
3040                 if (!gdp) {
3041                         ret = 1;
3042                         break;
3043                 }
3044
3045                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3046                         break;
3047         }
3048
3049         if (group >= ngroups)
3050                 ret = 1;
3051
3052         if (!ret) {
3053                 timeout = jiffies;
3054                 ret = ext4_init_inode_table(sb, group,
3055                                             elr->lr_timeout ? 0 : 1);
3056                 if (elr->lr_timeout == 0) {
3057                         timeout = (jiffies - timeout) *
3058                                   elr->lr_sbi->s_li_wait_mult;
3059                         elr->lr_timeout = timeout;
3060                 }
3061                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3062                 elr->lr_next_group = group + 1;
3063         }
3064         return ret;
3065 }
3066
3067 /*
3068  * Remove lr_request from the list_request and free the
3069  * request structure. Should be called with li_list_mtx held
3070  */
3071 static void ext4_remove_li_request(struct ext4_li_request *elr)
3072 {
3073         struct ext4_sb_info *sbi;
3074
3075         if (!elr)
3076                 return;
3077
3078         sbi = elr->lr_sbi;
3079
3080         list_del(&elr->lr_request);
3081         sbi->s_li_request = NULL;
3082         kfree(elr);
3083 }
3084
3085 static void ext4_unregister_li_request(struct super_block *sb)
3086 {
3087         mutex_lock(&ext4_li_mtx);
3088         if (!ext4_li_info) {
3089                 mutex_unlock(&ext4_li_mtx);
3090                 return;
3091         }
3092
3093         mutex_lock(&ext4_li_info->li_list_mtx);
3094         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3095         mutex_unlock(&ext4_li_info->li_list_mtx);
3096         mutex_unlock(&ext4_li_mtx);
3097 }
3098
3099 static struct task_struct *ext4_lazyinit_task;
3100
3101 /*
3102  * This is the function where ext4lazyinit thread lives. It walks
3103  * through the request list searching for next scheduled filesystem.
3104  * When such a fs is found, run the lazy initialization request
3105  * (ext4_rn_li_request) and keep track of the time spend in this
3106  * function. Based on that time we compute next schedule time of
3107  * the request. When walking through the list is complete, compute
3108  * next waking time and put itself into sleep.
3109  */
3110 static int ext4_lazyinit_thread(void *arg)
3111 {
3112         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3113         struct list_head *pos, *n;
3114         struct ext4_li_request *elr;
3115         unsigned long next_wakeup, cur;
3116
3117         BUG_ON(NULL == eli);
3118
3119 cont_thread:
3120         while (true) {
3121                 next_wakeup = MAX_JIFFY_OFFSET;
3122
3123                 mutex_lock(&eli->li_list_mtx);
3124                 if (list_empty(&eli->li_request_list)) {
3125                         mutex_unlock(&eli->li_list_mtx);
3126                         goto exit_thread;
3127                 }
3128                 list_for_each_safe(pos, n, &eli->li_request_list) {
3129                         int err = 0;
3130                         int progress = 0;
3131                         elr = list_entry(pos, struct ext4_li_request,
3132                                          lr_request);
3133
3134                         if (time_before(jiffies, elr->lr_next_sched)) {
3135                                 if (time_before(elr->lr_next_sched, next_wakeup))
3136                                         next_wakeup = elr->lr_next_sched;
3137                                 continue;
3138                         }
3139                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3140                                 if (sb_start_write_trylock(elr->lr_super)) {
3141                                         progress = 1;
3142                                         /*
3143                                          * We hold sb->s_umount, sb can not
3144                                          * be removed from the list, it is
3145                                          * now safe to drop li_list_mtx
3146                                          */
3147                                         mutex_unlock(&eli->li_list_mtx);
3148                                         err = ext4_run_li_request(elr);
3149                                         sb_end_write(elr->lr_super);
3150                                         mutex_lock(&eli->li_list_mtx);
3151                                         n = pos->next;
3152                                 }
3153                                 up_read((&elr->lr_super->s_umount));
3154                         }
3155                         /* error, remove the lazy_init job */
3156                         if (err) {
3157                                 ext4_remove_li_request(elr);
3158                                 continue;
3159                         }
3160                         if (!progress) {
3161                                 elr->lr_next_sched = jiffies +
3162                                         (prandom_u32()
3163                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3164                         }
3165                         if (time_before(elr->lr_next_sched, next_wakeup))
3166                                 next_wakeup = elr->lr_next_sched;
3167                 }
3168                 mutex_unlock(&eli->li_list_mtx);
3169
3170                 try_to_freeze();
3171
3172                 cur = jiffies;
3173                 if ((time_after_eq(cur, next_wakeup)) ||
3174                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3175                         cond_resched();
3176                         continue;
3177                 }
3178
3179                 schedule_timeout_interruptible(next_wakeup - cur);
3180
3181                 if (kthread_should_stop()) {
3182                         ext4_clear_request_list();
3183                         goto exit_thread;
3184                 }
3185         }
3186
3187 exit_thread:
3188         /*
3189          * It looks like the request list is empty, but we need
3190          * to check it under the li_list_mtx lock, to prevent any
3191          * additions into it, and of course we should lock ext4_li_mtx
3192          * to atomically free the list and ext4_li_info, because at
3193          * this point another ext4 filesystem could be registering
3194          * new one.
3195          */
3196         mutex_lock(&ext4_li_mtx);
3197         mutex_lock(&eli->li_list_mtx);
3198         if (!list_empty(&eli->li_request_list)) {
3199                 mutex_unlock(&eli->li_list_mtx);
3200                 mutex_unlock(&ext4_li_mtx);
3201                 goto cont_thread;
3202         }
3203         mutex_unlock(&eli->li_list_mtx);
3204         kfree(ext4_li_info);
3205         ext4_li_info = NULL;
3206         mutex_unlock(&ext4_li_mtx);
3207
3208         return 0;
3209 }
3210
3211 static void ext4_clear_request_list(void)
3212 {
3213         struct list_head *pos, *n;
3214         struct ext4_li_request *elr;
3215
3216         mutex_lock(&ext4_li_info->li_list_mtx);
3217         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3218                 elr = list_entry(pos, struct ext4_li_request,
3219                                  lr_request);
3220                 ext4_remove_li_request(elr);
3221         }
3222         mutex_unlock(&ext4_li_info->li_list_mtx);
3223 }
3224
3225 static int ext4_run_lazyinit_thread(void)
3226 {
3227         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3228                                          ext4_li_info, "ext4lazyinit");
3229         if (IS_ERR(ext4_lazyinit_task)) {
3230                 int err = PTR_ERR(ext4_lazyinit_task);
3231                 ext4_clear_request_list();
3232                 kfree(ext4_li_info);
3233                 ext4_li_info = NULL;
3234                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3235                                  "initialization thread\n",
3236                                  err);
3237                 return err;
3238         }
3239         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3240         return 0;
3241 }
3242
3243 /*
3244  * Check whether it make sense to run itable init. thread or not.
3245  * If there is at least one uninitialized inode table, return
3246  * corresponding group number, else the loop goes through all
3247  * groups and return total number of groups.
3248  */
3249 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3250 {
3251         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3252         struct ext4_group_desc *gdp = NULL;
3253
3254         if (!ext4_has_group_desc_csum(sb))
3255                 return ngroups;
3256
3257         for (group = 0; group < ngroups; group++) {
3258                 gdp = ext4_get_group_desc(sb, group, NULL);
3259                 if (!gdp)
3260                         continue;
3261
3262                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3263                         break;
3264         }
3265
3266         return group;
3267 }
3268
3269 static int ext4_li_info_new(void)
3270 {
3271         struct ext4_lazy_init *eli = NULL;
3272
3273         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3274         if (!eli)
3275                 return -ENOMEM;
3276
3277         INIT_LIST_HEAD(&eli->li_request_list);
3278         mutex_init(&eli->li_list_mtx);
3279
3280         eli->li_state |= EXT4_LAZYINIT_QUIT;
3281
3282         ext4_li_info = eli;
3283
3284         return 0;
3285 }
3286
3287 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3288                                             ext4_group_t start)
3289 {
3290         struct ext4_sb_info *sbi = EXT4_SB(sb);
3291         struct ext4_li_request *elr;
3292
3293         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3294         if (!elr)
3295                 return NULL;
3296
3297         elr->lr_super = sb;
3298         elr->lr_sbi = sbi;
3299         elr->lr_next_group = start;
3300
3301         /*
3302          * Randomize first schedule time of the request to
3303          * spread the inode table initialization requests
3304          * better.
3305          */
3306         elr->lr_next_sched = jiffies + (prandom_u32() %
3307                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3308         return elr;
3309 }
3310
3311 int ext4_register_li_request(struct super_block *sb,
3312                              ext4_group_t first_not_zeroed)
3313 {
3314         struct ext4_sb_info *sbi = EXT4_SB(sb);
3315         struct ext4_li_request *elr = NULL;
3316         ext4_group_t ngroups = sbi->s_groups_count;
3317         int ret = 0;
3318
3319         mutex_lock(&ext4_li_mtx);
3320         if (sbi->s_li_request != NULL) {
3321                 /*
3322                  * Reset timeout so it can be computed again, because
3323                  * s_li_wait_mult might have changed.
3324                  */
3325                 sbi->s_li_request->lr_timeout = 0;
3326                 goto out;
3327         }
3328
3329         if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3330             !test_opt(sb, INIT_INODE_TABLE))
3331                 goto out;
3332
3333         elr = ext4_li_request_new(sb, first_not_zeroed);
3334         if (!elr) {
3335                 ret = -ENOMEM;
3336                 goto out;
3337         }
3338
3339         if (NULL == ext4_li_info) {
3340                 ret = ext4_li_info_new();
3341                 if (ret)
3342                         goto out;
3343         }
3344
3345         mutex_lock(&ext4_li_info->li_list_mtx);
3346         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3347         mutex_unlock(&ext4_li_info->li_list_mtx);
3348
3349         sbi->s_li_request = elr;
3350         /*
3351          * set elr to NULL here since it has been inserted to
3352          * the request_list and the removal and free of it is
3353          * handled by ext4_clear_request_list from now on.
3354          */
3355         elr = NULL;
3356
3357         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3358                 ret = ext4_run_lazyinit_thread();
3359                 if (ret)
3360                         goto out;
3361         }
3362 out:
3363         mutex_unlock(&ext4_li_mtx);
3364         if (ret)
3365                 kfree(elr);
3366         return ret;
3367 }
3368
3369 /*
3370  * We do not need to lock anything since this is called on
3371  * module unload.
3372  */
3373 static void ext4_destroy_lazyinit_thread(void)
3374 {
3375         /*
3376          * If thread exited earlier
3377          * there's nothing to be done.
3378          */
3379         if (!ext4_li_info || !ext4_lazyinit_task)
3380                 return;
3381
3382         kthread_stop(ext4_lazyinit_task);
3383 }
3384
3385 static int set_journal_csum_feature_set(struct super_block *sb)
3386 {
3387         int ret = 1;
3388         int compat, incompat;
3389         struct ext4_sb_info *sbi = EXT4_SB(sb);
3390
3391         if (ext4_has_metadata_csum(sb)) {
3392                 /* journal checksum v3 */
3393                 compat = 0;
3394                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3395         } else {
3396                 /* journal checksum v1 */
3397                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3398                 incompat = 0;
3399         }
3400
3401         jbd2_journal_clear_features(sbi->s_journal,
3402                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3403                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3404                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3405         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3406                 ret = jbd2_journal_set_features(sbi->s_journal,
3407                                 compat, 0,
3408                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3409                                 incompat);
3410         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3411                 ret = jbd2_journal_set_features(sbi->s_journal,
3412                                 compat, 0,
3413                                 incompat);
3414                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3415                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3416         } else {
3417                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3418                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3419         }
3420
3421         return ret;
3422 }
3423
3424 /*
3425  * Note: calculating the overhead so we can be compatible with
3426  * historical BSD practice is quite difficult in the face of
3427  * clusters/bigalloc.  This is because multiple metadata blocks from
3428  * different block group can end up in the same allocation cluster.
3429  * Calculating the exact overhead in the face of clustered allocation
3430  * requires either O(all block bitmaps) in memory or O(number of block
3431  * groups**2) in time.  We will still calculate the superblock for
3432  * older file systems --- and if we come across with a bigalloc file
3433  * system with zero in s_overhead_clusters the estimate will be close to
3434  * correct especially for very large cluster sizes --- but for newer
3435  * file systems, it's better to calculate this figure once at mkfs
3436  * time, and store it in the superblock.  If the superblock value is
3437  * present (even for non-bigalloc file systems), we will use it.
3438  */
3439 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3440                           char *buf)
3441 {
3442         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3443         struct ext4_group_desc  *gdp;
3444         ext4_fsblk_t            first_block, last_block, b;
3445         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3446         int                     s, j, count = 0;
3447
3448         if (!ext4_has_feature_bigalloc(sb))
3449                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3450                         sbi->s_itb_per_group + 2);
3451
3452         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3453                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3454         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3455         for (i = 0; i < ngroups; i++) {
3456                 gdp = ext4_get_group_desc(sb, i, NULL);
3457                 b = ext4_block_bitmap(sb, gdp);
3458                 if (b >= first_block && b <= last_block) {
3459                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3460                         count++;
3461                 }
3462                 b = ext4_inode_bitmap(sb, gdp);
3463                 if (b >= first_block && b <= last_block) {
3464                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3465                         count++;
3466                 }
3467                 b = ext4_inode_table(sb, gdp);
3468                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3469                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3470                                 int c = EXT4_B2C(sbi, b - first_block);
3471                                 ext4_set_bit(c, buf);
3472                                 count++;
3473                         }
3474                 if (i != grp)
3475                         continue;
3476                 s = 0;
3477                 if (ext4_bg_has_super(sb, grp)) {
3478                         ext4_set_bit(s++, buf);
3479                         count++;
3480                 }
3481                 j = ext4_bg_num_gdb(sb, grp);
3482                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3483                         ext4_error(sb, "Invalid number of block group "
3484                                    "descriptor blocks: %d", j);
3485                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3486                 }
3487                 count += j;
3488                 for (; j > 0; j--)
3489                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3490         }
3491         if (!count)
3492                 return 0;
3493         return EXT4_CLUSTERS_PER_GROUP(sb) -
3494                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3495 }
3496
3497 /*
3498  * Compute the overhead and stash it in sbi->s_overhead
3499  */
3500 int ext4_calculate_overhead(struct super_block *sb)
3501 {
3502         struct ext4_sb_info *sbi = EXT4_SB(sb);
3503         struct ext4_super_block *es = sbi->s_es;
3504         struct inode *j_inode;
3505         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3506         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3507         ext4_fsblk_t overhead = 0;
3508         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3509
3510         if (!buf)
3511                 return -ENOMEM;
3512
3513         /*
3514          * Compute the overhead (FS structures).  This is constant
3515          * for a given filesystem unless the number of block groups
3516          * changes so we cache the previous value until it does.
3517          */
3518
3519         /*
3520          * All of the blocks before first_data_block are overhead
3521          */
3522         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3523
3524         /*
3525          * Add the overhead found in each block group
3526          */
3527         for (i = 0; i < ngroups; i++) {
3528                 int blks;
3529
3530                 blks = count_overhead(sb, i, buf);
3531                 overhead += blks;
3532                 if (blks)
3533                         memset(buf, 0, PAGE_SIZE);
3534                 cond_resched();
3535         }
3536
3537         /*
3538          * Add the internal journal blocks whether the journal has been
3539          * loaded or not
3540          */
3541         if (sbi->s_journal && !sbi->journal_bdev)
3542                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3543         else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3544                 j_inode = ext4_get_journal_inode(sb, j_inum);
3545                 if (j_inode) {
3546                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3547                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3548                         iput(j_inode);
3549                 } else {
3550                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3551                 }
3552         }
3553         sbi->s_overhead = overhead;
3554         smp_wmb();
3555         free_page((unsigned long) buf);
3556         return 0;
3557 }
3558
3559 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3560 {
3561         struct ext4_sb_info *sbi = EXT4_SB(sb);
3562         struct ext4_super_block *es = sbi->s_es;
3563
3564         /* determine the minimum size of new large inodes, if present */
3565         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
3566             sbi->s_want_extra_isize == 0) {
3567                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3568                                                      EXT4_GOOD_OLD_INODE_SIZE;
3569                 if (ext4_has_feature_extra_isize(sb)) {
3570                         if (sbi->s_want_extra_isize <
3571                             le16_to_cpu(es->s_want_extra_isize))
3572                                 sbi->s_want_extra_isize =
3573                                         le16_to_cpu(es->s_want_extra_isize);
3574                         if (sbi->s_want_extra_isize <
3575                             le16_to_cpu(es->s_min_extra_isize))
3576                                 sbi->s_want_extra_isize =
3577                                         le16_to_cpu(es->s_min_extra_isize);
3578                 }
3579         }
3580         /* Check if enough inode space is available */
3581         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3582                                                         sbi->s_inode_size) {
3583                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3584                                                        EXT4_GOOD_OLD_INODE_SIZE;
3585                 ext4_msg(sb, KERN_INFO,
3586                          "required extra inode space not available");
3587         }
3588 }
3589
3590 static void ext4_set_resv_clusters(struct super_block *sb)
3591 {
3592         ext4_fsblk_t resv_clusters;
3593         struct ext4_sb_info *sbi = EXT4_SB(sb);
3594
3595         /*
3596          * There's no need to reserve anything when we aren't using extents.
3597          * The space estimates are exact, there are no unwritten extents,
3598          * hole punching doesn't need new metadata... This is needed especially
3599          * to keep ext2/3 backward compatibility.
3600          */
3601         if (!ext4_has_feature_extents(sb))
3602                 return;
3603         /*
3604          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3605          * This should cover the situations where we can not afford to run
3606          * out of space like for example punch hole, or converting
3607          * unwritten extents in delalloc path. In most cases such
3608          * allocation would require 1, or 2 blocks, higher numbers are
3609          * very rare.
3610          */
3611         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3612                          sbi->s_cluster_bits);
3613
3614         do_div(resv_clusters, 50);
3615         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3616
3617         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3618 }
3619
3620 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3621 {
3622         struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3623         char *orig_data = kstrdup(data, GFP_KERNEL);
3624         struct buffer_head *bh;
3625         struct ext4_super_block *es = NULL;
3626         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3627         ext4_fsblk_t block;
3628         ext4_fsblk_t sb_block = get_sb_block(&data);
3629         ext4_fsblk_t logical_sb_block;
3630         unsigned long offset = 0;
3631         unsigned long journal_devnum = 0;
3632         unsigned long def_mount_opts;
3633         struct inode *root;
3634         const char *descr;
3635         int ret = -ENOMEM;
3636         int blocksize, clustersize;
3637         unsigned int db_count;
3638         unsigned int i;
3639         int needs_recovery, has_huge_files, has_bigalloc;
3640         __u64 blocks_count;
3641         int err = 0;
3642         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3643         ext4_group_t first_not_zeroed;
3644
3645         if ((data && !orig_data) || !sbi)
3646                 goto out_free_base;
3647
3648         sbi->s_daxdev = dax_dev;
3649         sbi->s_blockgroup_lock =
3650                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3651         if (!sbi->s_blockgroup_lock)
3652                 goto out_free_base;
3653
3654         sb->s_fs_info = sbi;
3655         sbi->s_sb = sb;
3656         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3657         sbi->s_sb_block = sb_block;
3658         if (sb->s_bdev->bd_part)
3659                 sbi->s_sectors_written_start =
3660                         part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3661
3662         /* Cleanup superblock name */
3663         strreplace(sb->s_id, '/', '!');
3664
3665         /* -EINVAL is default */
3666         ret = -EINVAL;
3667         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3668         if (!blocksize) {
3669                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3670                 goto out_fail;
3671         }
3672
3673         /*
3674          * The ext4 superblock will not be buffer aligned for other than 1kB
3675          * block sizes.  We need to calculate the offset from buffer start.
3676          */
3677         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3678                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3679                 offset = do_div(logical_sb_block, blocksize);
3680         } else {
3681                 logical_sb_block = sb_block;
3682         }
3683
3684         if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3685                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3686                 goto out_fail;
3687         }
3688         /*
3689          * Note: s_es must be initialized as soon as possible because
3690          *       some ext4 macro-instructions depend on its value
3691          */
3692         es = (struct ext4_super_block *) (bh->b_data + offset);
3693         sbi->s_es = es;
3694         sb->s_magic = le16_to_cpu(es->s_magic);
3695         if (sb->s_magic != EXT4_SUPER_MAGIC)
3696                 goto cantfind_ext4;
3697         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3698
3699         /* Warn if metadata_csum and gdt_csum are both set. */
3700         if (ext4_has_feature_metadata_csum(sb) &&
3701             ext4_has_feature_gdt_csum(sb))
3702                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3703                              "redundant flags; please run fsck.");
3704
3705         /* Check for a known checksum algorithm */
3706         if (!ext4_verify_csum_type(sb, es)) {
3707                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3708                          "unknown checksum algorithm.");
3709                 silent = 1;
3710                 goto cantfind_ext4;
3711         }
3712
3713         /* Load the checksum driver */
3714         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3715         if (IS_ERR(sbi->s_chksum_driver)) {
3716                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3717                 ret = PTR_ERR(sbi->s_chksum_driver);
3718                 sbi->s_chksum_driver = NULL;
3719                 goto failed_mount;
3720         }
3721
3722         /* Check superblock checksum */
3723         if (!ext4_superblock_csum_verify(sb, es)) {
3724                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3725                          "invalid superblock checksum.  Run e2fsck?");
3726                 silent = 1;
3727                 ret = -EFSBADCRC;
3728                 goto cantfind_ext4;
3729         }
3730
3731         /* Precompute checksum seed for all metadata */
3732         if (ext4_has_feature_csum_seed(sb))
3733                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3734         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3735                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3736                                                sizeof(es->s_uuid));
3737
3738         /* Set defaults before we parse the mount options */
3739         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3740         set_opt(sb, INIT_INODE_TABLE);
3741         if (def_mount_opts & EXT4_DEFM_DEBUG)
3742                 set_opt(sb, DEBUG);
3743         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3744                 set_opt(sb, GRPID);
3745         if (def_mount_opts & EXT4_DEFM_UID16)
3746                 set_opt(sb, NO_UID32);
3747         /* xattr user namespace & acls are now defaulted on */
3748         set_opt(sb, XATTR_USER);
3749 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3750         set_opt(sb, POSIX_ACL);
3751 #endif
3752         /* don't forget to enable journal_csum when metadata_csum is enabled. */
3753         if (ext4_has_metadata_csum(sb))
3754                 set_opt(sb, JOURNAL_CHECKSUM);
3755
3756         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3757                 set_opt(sb, JOURNAL_DATA);
3758         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3759                 set_opt(sb, ORDERED_DATA);
3760         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3761                 set_opt(sb, WRITEBACK_DATA);
3762
3763         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3764                 set_opt(sb, ERRORS_PANIC);
3765         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3766                 set_opt(sb, ERRORS_CONT);
3767         else
3768                 set_opt(sb, ERRORS_RO);
3769         /* block_validity enabled by default; disable with noblock_validity */
3770         set_opt(sb, BLOCK_VALIDITY);
3771         if (def_mount_opts & EXT4_DEFM_DISCARD)
3772                 set_opt(sb, DISCARD);
3773
3774         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3775         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3776         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3777         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3778         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3779
3780         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3781                 set_opt(sb, BARRIER);
3782
3783         /*
3784          * enable delayed allocation by default
3785          * Use -o nodelalloc to turn it off
3786          */
3787         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3788             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3789                 set_opt(sb, DELALLOC);
3790
3791         /*
3792          * set default s_li_wait_mult for lazyinit, for the case there is
3793          * no mount option specified.
3794          */
3795         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3796
3797         if (sbi->s_es->s_mount_opts[0]) {
3798                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3799                                               sizeof(sbi->s_es->s_mount_opts),
3800                                               GFP_KERNEL);
3801                 if (!s_mount_opts)
3802                         goto failed_mount;
3803                 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3804                                    &journal_ioprio, 0)) {
3805                         ext4_msg(sb, KERN_WARNING,
3806                                  "failed to parse options in superblock: %s",
3807                                  s_mount_opts);
3808                 }
3809                 kfree(s_mount_opts);
3810         }
3811         sbi->s_def_mount_opt = sbi->s_mount_opt;
3812         if (!parse_options((char *) data, sb, &journal_devnum,
3813                            &journal_ioprio, 0))
3814                 goto failed_mount;
3815
3816 #ifdef CONFIG_UNICODE
3817         if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3818                 const struct ext4_sb_encodings *encoding_info;
3819                 struct unicode_map *encoding;
3820                 __u16 encoding_flags;
3821
3822                 if (ext4_has_feature_encrypt(sb)) {
3823                         ext4_msg(sb, KERN_ERR,
3824                                  "Can't mount with encoding and encryption");
3825                         goto failed_mount;
3826                 }
3827
3828                 if (ext4_sb_read_encoding(es, &encoding_info,
3829                                           &encoding_flags)) {
3830                         ext4_msg(sb, KERN_ERR,
3831                                  "Encoding requested by superblock is unknown");
3832                         goto failed_mount;
3833                 }
3834
3835                 encoding = utf8_load(encoding_info->version);
3836                 if (IS_ERR(encoding)) {
3837                         ext4_msg(sb, KERN_ERR,
3838                                  "can't mount with superblock charset: %s-%s "
3839                                  "not supported by the kernel. flags: 0x%x.",
3840                                  encoding_info->name, encoding_info->version,
3841                                  encoding_flags);
3842                         goto failed_mount;
3843                 }
3844                 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3845                          "%s-%s with flags 0x%hx", encoding_info->name,
3846                          encoding_info->version?:"\b", encoding_flags);
3847
3848                 sbi->s_encoding = encoding;
3849                 sbi->s_encoding_flags = encoding_flags;
3850         }
3851 #endif
3852
3853         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3854                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3855                             "with data=journal disables delayed "
3856                             "allocation and O_DIRECT support!\n");
3857                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3858                         ext4_msg(sb, KERN_ERR, "can't mount with "
3859                                  "both data=journal and delalloc");
3860                         goto failed_mount;
3861                 }
3862                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3863                         ext4_msg(sb, KERN_ERR, "can't mount with "
3864                                  "both data=journal and dioread_nolock");
3865                         goto failed_mount;
3866                 }
3867                 if (test_opt(sb, DAX)) {
3868                         ext4_msg(sb, KERN_ERR, "can't mount with "
3869                                  "both data=journal and dax");
3870                         goto failed_mount;
3871                 }
3872                 if (ext4_has_feature_encrypt(sb)) {
3873                         ext4_msg(sb, KERN_WARNING,
3874                                  "encrypted files will use data=ordered "
3875                                  "instead of data journaling mode");
3876                 }
3877                 if (test_opt(sb, DELALLOC))
3878                         clear_opt(sb, DELALLOC);
3879         } else {
3880                 sb->s_iflags |= SB_I_CGROUPWB;
3881         }
3882
3883         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3884                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3885
3886         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3887             (ext4_has_compat_features(sb) ||
3888              ext4_has_ro_compat_features(sb) ||
3889              ext4_has_incompat_features(sb)))
3890                 ext4_msg(sb, KERN_WARNING,
3891                        "feature flags set on rev 0 fs, "
3892                        "running e2fsck is recommended");
3893
3894         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3895                 set_opt2(sb, HURD_COMPAT);
3896                 if (ext4_has_feature_64bit(sb)) {
3897                         ext4_msg(sb, KERN_ERR,
3898                                  "The Hurd can't support 64-bit file systems");
3899                         goto failed_mount;
3900                 }
3901
3902                 /*
3903                  * ea_inode feature uses l_i_version field which is not
3904                  * available in HURD_COMPAT mode.
3905                  */
3906                 if (ext4_has_feature_ea_inode(sb)) {
3907                         ext4_msg(sb, KERN_ERR,
3908                                  "ea_inode feature is not supported for Hurd");
3909                         goto failed_mount;
3910                 }
3911         }
3912
3913         if (IS_EXT2_SB(sb)) {
3914                 if (ext2_feature_set_ok(sb))
3915                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3916                                  "using the ext4 subsystem");
3917                 else {
3918                         /*
3919                          * If we're probing be silent, if this looks like
3920                          * it's actually an ext[34] filesystem.
3921                          */
3922                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3923                                 goto failed_mount;
3924                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3925                                  "to feature incompatibilities");
3926                         goto failed_mount;
3927                 }
3928         }
3929
3930         if (IS_EXT3_SB(sb)) {
3931                 if (ext3_feature_set_ok(sb))
3932                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3933                                  "using the ext4 subsystem");
3934                 else {
3935                         /*
3936                          * If we're probing be silent, if this looks like
3937                          * it's actually an ext4 filesystem.
3938                          */
3939                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3940                                 goto failed_mount;
3941                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3942                                  "to feature incompatibilities");
3943                         goto failed_mount;
3944                 }
3945         }
3946
3947         /*
3948          * Check feature flags regardless of the revision level, since we
3949          * previously didn't change the revision level when setting the flags,
3950          * so there is a chance incompat flags are set on a rev 0 filesystem.
3951          */
3952         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3953                 goto failed_mount;
3954
3955         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3956         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3957             blocksize > EXT4_MAX_BLOCK_SIZE) {
3958                 ext4_msg(sb, KERN_ERR,
3959                        "Unsupported filesystem blocksize %d (%d log_block_size)",
3960                          blocksize, le32_to_cpu(es->s_log_block_size));
3961                 goto failed_mount;
3962         }
3963         if (le32_to_cpu(es->s_log_block_size) >
3964             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3965                 ext4_msg(sb, KERN_ERR,
3966                          "Invalid log block size: %u",
3967                          le32_to_cpu(es->s_log_block_size));
3968                 goto failed_mount;
3969         }
3970         if (le32_to_cpu(es->s_log_cluster_size) >
3971             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3972                 ext4_msg(sb, KERN_ERR,
3973                          "Invalid log cluster size: %u",
3974                          le32_to_cpu(es->s_log_cluster_size));
3975                 goto failed_mount;
3976         }
3977
3978         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3979                 ext4_msg(sb, KERN_ERR,
3980                          "Number of reserved GDT blocks insanely large: %d",
3981                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3982                 goto failed_mount;
3983         }
3984
3985         if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3986                 if (ext4_has_feature_inline_data(sb)) {
3987                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3988                                         " that may contain inline data");
3989                         goto failed_mount;
3990                 }
3991                 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3992                         ext4_msg(sb, KERN_ERR,
3993                                 "DAX unsupported by block device.");
3994                         goto failed_mount;
3995                 }
3996         }
3997
3998         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3999                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4000                          es->s_encryption_level);
4001                 goto failed_mount;
4002         }
4003
4004         if (sb->s_blocksize != blocksize) {
4005                 /* Validate the filesystem blocksize */
4006                 if (!sb_set_blocksize(sb, blocksize)) {
4007                         ext4_msg(sb, KERN_ERR, "bad block size %d",
4008                                         blocksize);
4009                         goto failed_mount;
4010                 }
4011
4012                 brelse(bh);
4013                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4014                 offset = do_div(logical_sb_block, blocksize);
4015                 bh = sb_bread_unmovable(sb, logical_sb_block);
4016                 if (!bh) {
4017                         ext4_msg(sb, KERN_ERR,
4018                                "Can't read superblock on 2nd try");
4019                         goto failed_mount;
4020                 }
4021                 es = (struct ext4_super_block *)(bh->b_data + offset);
4022                 sbi->s_es = es;
4023                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4024                         ext4_msg(sb, KERN_ERR,
4025                                "Magic mismatch, very weird!");
4026                         goto failed_mount;
4027                 }
4028         }
4029
4030         has_huge_files = ext4_has_feature_huge_file(sb);
4031         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4032                                                       has_huge_files);
4033         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4034
4035         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4036                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4037                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4038         } else {
4039                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4040                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4041                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4042                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4043                                  sbi->s_first_ino);
4044                         goto failed_mount;
4045                 }
4046                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4047                     (!is_power_of_2(sbi->s_inode_size)) ||
4048                     (sbi->s_inode_size > blocksize)) {
4049                         ext4_msg(sb, KERN_ERR,
4050                                "unsupported inode size: %d",
4051                                sbi->s_inode_size);
4052                         goto failed_mount;
4053                 }
4054                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
4055                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
4056         }
4057
4058         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4059         if (ext4_has_feature_64bit(sb)) {
4060                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4061                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4062                     !is_power_of_2(sbi->s_desc_size)) {
4063                         ext4_msg(sb, KERN_ERR,
4064                                "unsupported descriptor size %lu",
4065                                sbi->s_desc_size);
4066                         goto failed_mount;
4067                 }
4068         } else
4069                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4070
4071         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4072         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4073
4074         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4075         if (sbi->s_inodes_per_block == 0)
4076                 goto cantfind_ext4;
4077         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4078             sbi->s_inodes_per_group > blocksize * 8) {
4079                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4080                          sbi->s_blocks_per_group);
4081                 goto failed_mount;
4082         }
4083         sbi->s_itb_per_group = sbi->s_inodes_per_group /
4084                                         sbi->s_inodes_per_block;
4085         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4086         sbi->s_sbh = bh;
4087         sbi->s_mount_state = le16_to_cpu(es->s_state);
4088         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4089         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4090
4091         for (i = 0; i < 4; i++)
4092                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4093         sbi->s_def_hash_version = es->s_def_hash_version;
4094         if (ext4_has_feature_dir_index(sb)) {
4095                 i = le32_to_cpu(es->s_flags);
4096                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4097                         sbi->s_hash_unsigned = 3;
4098                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4099 #ifdef __CHAR_UNSIGNED__
4100                         if (!sb_rdonly(sb))
4101                                 es->s_flags |=
4102                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4103                         sbi->s_hash_unsigned = 3;
4104 #else
4105                         if (!sb_rdonly(sb))
4106                                 es->s_flags |=
4107                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4108 #endif
4109                 }
4110         }
4111
4112         /* Handle clustersize */
4113         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4114         has_bigalloc = ext4_has_feature_bigalloc(sb);
4115         if (has_bigalloc) {
4116                 if (clustersize < blocksize) {
4117                         ext4_msg(sb, KERN_ERR,
4118                                  "cluster size (%d) smaller than "
4119                                  "block size (%d)", clustersize, blocksize);
4120                         goto failed_mount;
4121                 }
4122                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4123                         le32_to_cpu(es->s_log_block_size);
4124                 sbi->s_clusters_per_group =
4125                         le32_to_cpu(es->s_clusters_per_group);
4126                 if (sbi->s_clusters_per_group > blocksize * 8) {
4127                         ext4_msg(sb, KERN_ERR,
4128                                  "#clusters per group too big: %lu",
4129                                  sbi->s_clusters_per_group);
4130                         goto failed_mount;
4131                 }
4132                 if (sbi->s_blocks_per_group !=
4133                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4134                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4135                                  "clusters per group (%lu) inconsistent",
4136                                  sbi->s_blocks_per_group,
4137                                  sbi->s_clusters_per_group);
4138                         goto failed_mount;
4139                 }
4140         } else {
4141                 if (clustersize != blocksize) {
4142                         ext4_msg(sb, KERN_ERR,
4143                                  "fragment/cluster size (%d) != "
4144                                  "block size (%d)", clustersize, blocksize);
4145                         goto failed_mount;
4146                 }
4147                 if (sbi->s_blocks_per_group > blocksize * 8) {
4148                         ext4_msg(sb, KERN_ERR,
4149                                  "#blocks per group too big: %lu",
4150                                  sbi->s_blocks_per_group);
4151                         goto failed_mount;
4152                 }
4153                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4154                 sbi->s_cluster_bits = 0;
4155         }
4156         sbi->s_cluster_ratio = clustersize / blocksize;
4157
4158         /* Do we have standard group size of clustersize * 8 blocks ? */
4159         if (sbi->s_blocks_per_group == clustersize << 3)
4160                 set_opt2(sb, STD_GROUP_SIZE);
4161
4162         /*
4163          * Test whether we have more sectors than will fit in sector_t,
4164          * and whether the max offset is addressable by the page cache.
4165          */
4166         err = generic_check_addressable(sb->s_blocksize_bits,
4167                                         ext4_blocks_count(es));
4168         if (err) {
4169                 ext4_msg(sb, KERN_ERR, "filesystem"
4170                          " too large to mount safely on this system");
4171                 if (sizeof(sector_t) < 8)
4172                         ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4173                 goto failed_mount;
4174         }
4175
4176         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4177                 goto cantfind_ext4;
4178
4179         /* check blocks count against device size */
4180         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4181         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4182                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4183                        "exceeds size of device (%llu blocks)",
4184                        ext4_blocks_count(es), blocks_count);
4185                 goto failed_mount;
4186         }
4187
4188         /*
4189          * It makes no sense for the first data block to be beyond the end
4190          * of the filesystem.
4191          */
4192         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4193                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4194                          "block %u is beyond end of filesystem (%llu)",
4195                          le32_to_cpu(es->s_first_data_block),
4196                          ext4_blocks_count(es));
4197                 goto failed_mount;
4198         }
4199         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4200             (sbi->s_cluster_ratio == 1)) {
4201                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4202                          "block is 0 with a 1k block and cluster size");
4203                 goto failed_mount;
4204         }
4205
4206         blocks_count = (ext4_blocks_count(es) -
4207                         le32_to_cpu(es->s_first_data_block) +
4208                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4209         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4210         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4211                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4212                        "(block count %llu, first data block %u, "
4213                        "blocks per group %lu)", sbi->s_groups_count,
4214                        ext4_blocks_count(es),
4215                        le32_to_cpu(es->s_first_data_block),
4216                        EXT4_BLOCKS_PER_GROUP(sb));
4217                 goto failed_mount;
4218         }
4219         sbi->s_groups_count = blocks_count;
4220         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4221                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4222         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4223             le32_to_cpu(es->s_inodes_count)) {
4224                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4225                          le32_to_cpu(es->s_inodes_count),
4226                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4227                 ret = -EINVAL;
4228                 goto failed_mount;
4229         }
4230         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4231                    EXT4_DESC_PER_BLOCK(sb);
4232         if (ext4_has_feature_meta_bg(sb)) {
4233                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4234                         ext4_msg(sb, KERN_WARNING,
4235                                  "first meta block group too large: %u "
4236                                  "(group descriptor block count %u)",
4237                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4238                         goto failed_mount;
4239                 }
4240         }
4241         sbi->s_group_desc = kvmalloc_array(db_count,
4242                                            sizeof(struct buffer_head *),
4243                                            GFP_KERNEL);
4244         if (sbi->s_group_desc == NULL) {
4245                 ext4_msg(sb, KERN_ERR, "not enough memory");
4246                 ret = -ENOMEM;
4247                 goto failed_mount;
4248         }
4249
4250         bgl_lock_init(sbi->s_blockgroup_lock);
4251
4252         /* Pre-read the descriptors into the buffer cache */
4253         for (i = 0; i < db_count; i++) {
4254                 block = descriptor_loc(sb, logical_sb_block, i);
4255                 sb_breadahead(sb, block);
4256         }
4257
4258         for (i = 0; i < db_count; i++) {
4259                 block = descriptor_loc(sb, logical_sb_block, i);
4260                 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4261                 if (!sbi->s_group_desc[i]) {
4262                         ext4_msg(sb, KERN_ERR,
4263                                "can't read group descriptor %d", i);
4264                         db_count = i;
4265                         goto failed_mount2;
4266                 }
4267         }
4268         sbi->s_gdb_count = db_count;
4269         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4270                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4271                 ret = -EFSCORRUPTED;
4272                 goto failed_mount2;
4273         }
4274
4275         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4276
4277         /* Register extent status tree shrinker */
4278         if (ext4_es_register_shrinker(sbi))
4279                 goto failed_mount3;
4280
4281         sbi->s_stripe = ext4_get_stripe_size(sbi);
4282         sbi->s_extent_max_zeroout_kb = 32;
4283
4284         /*
4285          * set up enough so that it can read an inode
4286          */
4287         sb->s_op = &ext4_sops;
4288         sb->s_export_op = &ext4_export_ops;
4289         sb->s_xattr = ext4_xattr_handlers;
4290 #ifdef CONFIG_FS_ENCRYPTION
4291         sb->s_cop = &ext4_cryptops;
4292 #endif
4293 #ifdef CONFIG_QUOTA
4294         sb->dq_op = &ext4_quota_operations;
4295         if (ext4_has_feature_quota(sb))
4296                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4297         else
4298                 sb->s_qcop = &ext4_qctl_operations;
4299         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4300 #endif
4301         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4302
4303         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4304         mutex_init(&sbi->s_orphan_lock);
4305
4306         sb->s_root = NULL;
4307
4308         needs_recovery = (es->s_last_orphan != 0 ||
4309                           ext4_has_feature_journal_needs_recovery(sb));
4310
4311         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4312                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4313                         goto failed_mount3a;
4314
4315         /*
4316          * The first inode we look at is the journal inode.  Don't try
4317          * root first: it may be modified in the journal!
4318          */
4319         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4320                 err = ext4_load_journal(sb, es, journal_devnum);
4321                 if (err)
4322                         goto failed_mount3a;
4323         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4324                    ext4_has_feature_journal_needs_recovery(sb)) {
4325                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4326                        "suppressed and not mounted read-only");
4327                 goto failed_mount_wq;
4328         } else {
4329                 /* Nojournal mode, all journal mount options are illegal */
4330                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4331                         ext4_msg(sb, KERN_ERR, "can't mount with "
4332                                  "journal_checksum, fs mounted w/o journal");
4333                         goto failed_mount_wq;
4334                 }
4335                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4336                         ext4_msg(sb, KERN_ERR, "can't mount with "
4337                                  "journal_async_commit, fs mounted w/o journal");
4338                         goto failed_mount_wq;
4339                 }
4340                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4341                         ext4_msg(sb, KERN_ERR, "can't mount with "
4342                                  "commit=%lu, fs mounted w/o journal",
4343                                  sbi->s_commit_interval / HZ);
4344                         goto failed_mount_wq;
4345                 }
4346                 if (EXT4_MOUNT_DATA_FLAGS &
4347                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4348                         ext4_msg(sb, KERN_ERR, "can't mount with "
4349                                  "data=, fs mounted w/o journal");
4350                         goto failed_mount_wq;
4351                 }
4352                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4353                 clear_opt(sb, JOURNAL_CHECKSUM);
4354                 clear_opt(sb, DATA_FLAGS);
4355                 sbi->s_journal = NULL;
4356                 needs_recovery = 0;
4357                 goto no_journal;
4358         }
4359
4360         if (ext4_has_feature_64bit(sb) &&
4361             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4362                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4363                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4364                 goto failed_mount_wq;
4365         }
4366
4367         if (!set_journal_csum_feature_set(sb)) {
4368                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4369                          "feature set");
4370                 goto failed_mount_wq;
4371         }
4372
4373         /* We have now updated the journal if required, so we can
4374          * validate the data journaling mode. */
4375         switch (test_opt(sb, DATA_FLAGS)) {
4376         case 0:
4377                 /* No mode set, assume a default based on the journal
4378                  * capabilities: ORDERED_DATA if the journal can
4379                  * cope, else JOURNAL_DATA
4380                  */
4381                 if (jbd2_journal_check_available_features
4382                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4383                         set_opt(sb, ORDERED_DATA);
4384                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4385                 } else {
4386                         set_opt(sb, JOURNAL_DATA);
4387                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4388                 }
4389                 break;
4390
4391         case EXT4_MOUNT_ORDERED_DATA:
4392         case EXT4_MOUNT_WRITEBACK_DATA:
4393                 if (!jbd2_journal_check_available_features
4394                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4395                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4396                                "requested data journaling mode");
4397                         goto failed_mount_wq;
4398                 }
4399         default:
4400                 break;
4401         }
4402
4403         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4404             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4405                 ext4_msg(sb, KERN_ERR, "can't mount with "
4406                         "journal_async_commit in data=ordered mode");
4407                 goto failed_mount_wq;
4408         }
4409
4410         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4411
4412         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4413
4414 no_journal:
4415         if (!test_opt(sb, NO_MBCACHE)) {
4416                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4417                 if (!sbi->s_ea_block_cache) {
4418                         ext4_msg(sb, KERN_ERR,
4419                                  "Failed to create ea_block_cache");
4420                         goto failed_mount_wq;
4421                 }
4422
4423                 if (ext4_has_feature_ea_inode(sb)) {
4424                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4425                         if (!sbi->s_ea_inode_cache) {
4426                                 ext4_msg(sb, KERN_ERR,
4427                                          "Failed to create ea_inode_cache");
4428                                 goto failed_mount_wq;
4429                         }
4430                 }
4431         }
4432
4433         if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4434             (blocksize != PAGE_SIZE)) {
4435                 ext4_msg(sb, KERN_ERR,
4436                          "Unsupported blocksize for fs encryption");
4437                 goto failed_mount_wq;
4438         }
4439
4440         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4441             !ext4_has_feature_encrypt(sb)) {
4442                 ext4_set_feature_encrypt(sb);
4443                 ext4_commit_super(sb, 1);
4444         }
4445
4446         /*
4447          * Get the # of file system overhead blocks from the
4448          * superblock if present.
4449          */
4450         if (es->s_overhead_clusters)
4451                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4452         else {
4453                 err = ext4_calculate_overhead(sb);
4454                 if (err)
4455                         goto failed_mount_wq;
4456         }
4457
4458         /*
4459          * The maximum number of concurrent works can be high and
4460          * concurrency isn't really necessary.  Limit it to 1.
4461          */
4462         EXT4_SB(sb)->rsv_conversion_wq =
4463                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4464         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4465                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4466                 ret = -ENOMEM;
4467                 goto failed_mount4;
4468         }
4469
4470         /*
4471          * The jbd2_journal_load will have done any necessary log recovery,
4472          * so we can safely mount the rest of the filesystem now.
4473          */
4474
4475         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4476         if (IS_ERR(root)) {
4477                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4478                 ret = PTR_ERR(root);
4479                 root = NULL;
4480                 goto failed_mount4;
4481         }
4482         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4483                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4484                 iput(root);
4485                 goto failed_mount4;
4486         }
4487
4488 #ifdef CONFIG_UNICODE
4489         if (sbi->s_encoding)
4490                 sb->s_d_op = &ext4_dentry_ops;
4491 #endif
4492
4493         sb->s_root = d_make_root(root);
4494         if (!sb->s_root) {
4495                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4496                 ret = -ENOMEM;
4497                 goto failed_mount4;
4498         }
4499
4500         ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4501         if (ret == -EROFS) {
4502                 sb->s_flags |= SB_RDONLY;
4503                 ret = 0;
4504         } else if (ret)
4505                 goto failed_mount4a;
4506
4507         ext4_clamp_want_extra_isize(sb);
4508
4509         ext4_set_resv_clusters(sb);
4510
4511         err = ext4_setup_system_zone(sb);
4512         if (err) {
4513                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4514                          "zone (%d)", err);
4515                 goto failed_mount4a;
4516         }
4517
4518         ext4_ext_init(sb);
4519         err = ext4_mb_init(sb);
4520         if (err) {
4521                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4522                          err);
4523                 goto failed_mount5;
4524         }
4525
4526         block = ext4_count_free_clusters(sb);
4527         ext4_free_blocks_count_set(sbi->s_es, 
4528                                    EXT4_C2B(sbi, block));
4529         ext4_superblock_csum_set(sb);
4530         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4531                                   GFP_KERNEL);
4532         if (!err) {
4533                 unsigned long freei = ext4_count_free_inodes(sb);
4534                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4535                 ext4_superblock_csum_set(sb);
4536                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4537                                           GFP_KERNEL);
4538         }
4539         if (!err)
4540                 err = percpu_counter_init(&sbi->s_dirs_counter,
4541                                           ext4_count_dirs(sb), GFP_KERNEL);
4542         if (!err)
4543                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4544                                           GFP_KERNEL);
4545         if (!err)
4546                 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4547
4548         if (err) {
4549                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4550                 goto failed_mount6;
4551         }
4552
4553         if (ext4_has_feature_flex_bg(sb))
4554                 if (!ext4_fill_flex_info(sb)) {
4555                         ext4_msg(sb, KERN_ERR,
4556                                "unable to initialize "
4557                                "flex_bg meta info!");
4558                         goto failed_mount6;
4559                 }
4560
4561         err = ext4_register_li_request(sb, first_not_zeroed);
4562         if (err)
4563                 goto failed_mount6;
4564
4565         err = ext4_register_sysfs(sb);
4566         if (err)
4567                 goto failed_mount7;
4568
4569 #ifdef CONFIG_QUOTA
4570         /* Enable quota usage during mount. */
4571         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4572                 err = ext4_enable_quotas(sb);
4573                 if (err)
4574                         goto failed_mount8;
4575         }
4576 #endif  /* CONFIG_QUOTA */
4577
4578         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4579         ext4_orphan_cleanup(sb, es);
4580         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4581         if (needs_recovery) {
4582                 ext4_msg(sb, KERN_INFO, "recovery complete");
4583                 ext4_mark_recovery_complete(sb, es);
4584         }
4585         if (EXT4_SB(sb)->s_journal) {
4586                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4587                         descr = " journalled data mode";
4588                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4589                         descr = " ordered data mode";
4590                 else
4591                         descr = " writeback data mode";
4592         } else
4593                 descr = "out journal";
4594
4595         if (test_opt(sb, DISCARD)) {
4596                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4597                 if (!blk_queue_discard(q))
4598                         ext4_msg(sb, KERN_WARNING,
4599                                  "mounting with \"discard\" option, but "
4600                                  "the device does not support discard");
4601         }
4602
4603         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4604                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4605                          "Opts: %.*s%s%s", descr,
4606                          (int) sizeof(sbi->s_es->s_mount_opts),
4607                          sbi->s_es->s_mount_opts,
4608                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4609
4610         if (es->s_error_count)
4611                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4612
4613         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4614         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4615         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4616         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4617
4618         kfree(orig_data);
4619         return 0;
4620
4621 cantfind_ext4:
4622         if (!silent)
4623                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4624         goto failed_mount;
4625
4626 #ifdef CONFIG_QUOTA
4627 failed_mount8:
4628         ext4_unregister_sysfs(sb);
4629 #endif
4630 failed_mount7:
4631         ext4_unregister_li_request(sb);
4632 failed_mount6:
4633         ext4_mb_release(sb);
4634         if (sbi->s_flex_groups)
4635                 kvfree(sbi->s_flex_groups);
4636         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4637         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4638         percpu_counter_destroy(&sbi->s_dirs_counter);
4639         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4640         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4641 failed_mount5:
4642         ext4_ext_release(sb);
4643         ext4_release_system_zone(sb);
4644 failed_mount4a:
4645         dput(sb->s_root);
4646         sb->s_root = NULL;
4647 failed_mount4:
4648         ext4_msg(sb, KERN_ERR, "mount failed");
4649         if (EXT4_SB(sb)->rsv_conversion_wq)
4650                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4651 failed_mount_wq:
4652         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4653         sbi->s_ea_inode_cache = NULL;
4654
4655         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4656         sbi->s_ea_block_cache = NULL;
4657
4658         if (sbi->s_journal) {
4659                 jbd2_journal_destroy(sbi->s_journal);
4660                 sbi->s_journal = NULL;
4661         }
4662 failed_mount3a:
4663         ext4_es_unregister_shrinker(sbi);
4664 failed_mount3:
4665         del_timer_sync(&sbi->s_err_report);
4666         if (sbi->s_mmp_tsk)
4667                 kthread_stop(sbi->s_mmp_tsk);
4668 failed_mount2:
4669         for (i = 0; i < db_count; i++)
4670                 brelse(sbi->s_group_desc[i]);
4671         kvfree(sbi->s_group_desc);
4672 failed_mount:
4673         if (sbi->s_chksum_driver)
4674                 crypto_free_shash(sbi->s_chksum_driver);
4675
4676 #ifdef CONFIG_UNICODE
4677         utf8_unload(sbi->s_encoding);
4678 #endif
4679
4680 #ifdef CONFIG_QUOTA
4681         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4682                 kfree(sbi->s_qf_names[i]);
4683 #endif
4684         ext4_blkdev_remove(sbi);
4685         brelse(bh);
4686 out_fail:
4687         sb->s_fs_info = NULL;
4688         kfree(sbi->s_blockgroup_lock);
4689 out_free_base:
4690         kfree(sbi);
4691         kfree(orig_data);
4692         fs_put_dax(dax_dev);
4693         return err ? err : ret;
4694 }
4695
4696 /*
4697  * Setup any per-fs journal parameters now.  We'll do this both on
4698  * initial mount, once the journal has been initialised but before we've
4699  * done any recovery; and again on any subsequent remount.
4700  */
4701 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4702 {
4703         struct ext4_sb_info *sbi = EXT4_SB(sb);
4704
4705         journal->j_commit_interval = sbi->s_commit_interval;
4706         journal->j_min_batch_time = sbi->s_min_batch_time;
4707         journal->j_max_batch_time = sbi->s_max_batch_time;
4708
4709         write_lock(&journal->j_state_lock);
4710         if (test_opt(sb, BARRIER))
4711                 journal->j_flags |= JBD2_BARRIER;
4712         else
4713                 journal->j_flags &= ~JBD2_BARRIER;
4714         if (test_opt(sb, DATA_ERR_ABORT))
4715                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4716         else
4717                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4718         write_unlock(&journal->j_state_lock);
4719 }
4720
4721 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4722                                              unsigned int journal_inum)
4723 {
4724         struct inode *journal_inode;
4725
4726         /*
4727          * Test for the existence of a valid inode on disk.  Bad things
4728          * happen if we iget() an unused inode, as the subsequent iput()
4729          * will try to delete it.
4730          */
4731         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4732         if (IS_ERR(journal_inode)) {
4733                 ext4_msg(sb, KERN_ERR, "no journal found");
4734                 return NULL;
4735         }
4736         if (!journal_inode->i_nlink) {
4737                 make_bad_inode(journal_inode);
4738                 iput(journal_inode);
4739                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4740                 return NULL;
4741         }
4742
4743         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4744                   journal_inode, journal_inode->i_size);
4745         if (!S_ISREG(journal_inode->i_mode)) {
4746                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4747                 iput(journal_inode);
4748                 return NULL;
4749         }
4750         return journal_inode;
4751 }
4752
4753 static journal_t *ext4_get_journal(struct super_block *sb,
4754                                    unsigned int journal_inum)
4755 {
4756         struct inode *journal_inode;
4757         journal_t *journal;
4758
4759         BUG_ON(!ext4_has_feature_journal(sb));
4760
4761         journal_inode = ext4_get_journal_inode(sb, journal_inum);
4762         if (!journal_inode)
4763                 return NULL;
4764
4765         journal = jbd2_journal_init_inode(journal_inode);
4766         if (!journal) {
4767                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4768                 iput(journal_inode);
4769                 return NULL;
4770         }
4771         journal->j_private = sb;
4772         ext4_init_journal_params(sb, journal);
4773         return journal;
4774 }
4775
4776 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4777                                        dev_t j_dev)
4778 {
4779         struct buffer_head *bh;
4780         journal_t *journal;
4781         ext4_fsblk_t start;
4782         ext4_fsblk_t len;
4783         int hblock, blocksize;
4784         ext4_fsblk_t sb_block;
4785         unsigned long offset;
4786         struct ext4_super_block *es;
4787         struct block_device *bdev;
4788
4789         BUG_ON(!ext4_has_feature_journal(sb));
4790
4791         bdev = ext4_blkdev_get(j_dev, sb);
4792         if (bdev == NULL)
4793                 return NULL;
4794
4795         blocksize = sb->s_blocksize;
4796         hblock = bdev_logical_block_size(bdev);
4797         if (blocksize < hblock) {
4798                 ext4_msg(sb, KERN_ERR,
4799                         "blocksize too small for journal device");
4800                 goto out_bdev;
4801         }
4802
4803         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4804         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4805         set_blocksize(bdev, blocksize);
4806         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4807                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4808                        "external journal");
4809                 goto out_bdev;
4810         }
4811
4812         es = (struct ext4_super_block *) (bh->b_data + offset);
4813         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4814             !(le32_to_cpu(es->s_feature_incompat) &
4815               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4816                 ext4_msg(sb, KERN_ERR, "external journal has "
4817                                         "bad superblock");
4818                 brelse(bh);
4819                 goto out_bdev;
4820         }
4821
4822         if ((le32_to_cpu(es->s_feature_ro_compat) &
4823              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4824             es->s_checksum != ext4_superblock_csum(sb, es)) {
4825                 ext4_msg(sb, KERN_ERR, "external journal has "
4826                                        "corrupt superblock");
4827                 brelse(bh);
4828                 goto out_bdev;
4829         }
4830
4831         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4832                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4833                 brelse(bh);
4834                 goto out_bdev;
4835         }
4836
4837         len = ext4_blocks_count(es);
4838         start = sb_block + 1;
4839         brelse(bh);     /* we're done with the superblock */
4840
4841         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4842                                         start, len, blocksize);
4843         if (!journal) {
4844                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4845                 goto out_bdev;
4846         }
4847         journal->j_private = sb;
4848         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4849         wait_on_buffer(journal->j_sb_buffer);
4850         if (!buffer_uptodate(journal->j_sb_buffer)) {
4851                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4852                 goto out_journal;
4853         }
4854         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4855                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4856                                         "user (unsupported) - %d",
4857                         be32_to_cpu(journal->j_superblock->s_nr_users));
4858                 goto out_journal;
4859         }
4860         EXT4_SB(sb)->journal_bdev = bdev;
4861         ext4_init_journal_params(sb, journal);
4862         return journal;
4863
4864 out_journal:
4865         jbd2_journal_destroy(journal);
4866 out_bdev:
4867         ext4_blkdev_put(bdev);
4868         return NULL;
4869 }
4870
4871 static int ext4_load_journal(struct super_block *sb,
4872                              struct ext4_super_block *es,
4873                              unsigned long journal_devnum)
4874 {
4875         journal_t *journal;
4876         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4877         dev_t journal_dev;
4878         int err = 0;
4879         int really_read_only;
4880
4881         BUG_ON(!ext4_has_feature_journal(sb));
4882
4883         if (journal_devnum &&
4884             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4885                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4886                         "numbers have changed");
4887                 journal_dev = new_decode_dev(journal_devnum);
4888         } else
4889                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4890
4891         really_read_only = bdev_read_only(sb->s_bdev);
4892
4893         /*
4894          * Are we loading a blank journal or performing recovery after a
4895          * crash?  For recovery, we need to check in advance whether we
4896          * can get read-write access to the device.
4897          */
4898         if (ext4_has_feature_journal_needs_recovery(sb)) {
4899                 if (sb_rdonly(sb)) {
4900                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4901                                         "required on readonly filesystem");
4902                         if (really_read_only) {
4903                                 ext4_msg(sb, KERN_ERR, "write access "
4904                                         "unavailable, cannot proceed "
4905                                         "(try mounting with noload)");
4906                                 return -EROFS;
4907                         }
4908                         ext4_msg(sb, KERN_INFO, "write access will "
4909                                "be enabled during recovery");
4910                 }
4911         }
4912
4913         if (journal_inum && journal_dev) {
4914                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4915                        "and inode journals!");
4916                 return -EINVAL;
4917         }
4918
4919         if (journal_inum) {
4920                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4921                         return -EINVAL;
4922         } else {
4923                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4924                         return -EINVAL;
4925         }
4926
4927         if (!(journal->j_flags & JBD2_BARRIER))
4928                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4929
4930         if (!ext4_has_feature_journal_needs_recovery(sb))
4931                 err = jbd2_journal_wipe(journal, !really_read_only);
4932         if (!err) {
4933                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4934                 if (save)
4935                         memcpy(save, ((char *) es) +
4936                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4937                 err = jbd2_journal_load(journal);
4938                 if (save)
4939                         memcpy(((char *) es) + EXT4_S_ERR_START,
4940                                save, EXT4_S_ERR_LEN);
4941                 kfree(save);
4942         }
4943
4944         if (err) {
4945                 ext4_msg(sb, KERN_ERR, "error loading journal");
4946                 jbd2_journal_destroy(journal);
4947                 return err;
4948         }
4949
4950         EXT4_SB(sb)->s_journal = journal;
4951         ext4_clear_journal_err(sb, es);
4952
4953         if (!really_read_only && journal_devnum &&
4954             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4955                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4956
4957                 /* Make sure we flush the recovery flag to disk. */
4958                 ext4_commit_super(sb, 1);
4959         }
4960
4961         return 0;
4962 }
4963
4964 static int ext4_commit_super(struct super_block *sb, int sync)
4965 {
4966         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4967         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4968         int error = 0;
4969
4970         if (!sbh || block_device_ejected(sb))
4971                 return error;
4972
4973         /*
4974          * The superblock bh should be mapped, but it might not be if the
4975          * device was hot-removed. Not much we can do but fail the I/O.
4976          */
4977         if (!buffer_mapped(sbh))
4978                 return error;
4979
4980         /*
4981          * If the file system is mounted read-only, don't update the
4982          * superblock write time.  This avoids updating the superblock
4983          * write time when we are mounting the root file system
4984          * read/only but we need to replay the journal; at that point,
4985          * for people who are east of GMT and who make their clock
4986          * tick in localtime for Windows bug-for-bug compatibility,
4987          * the clock is set in the future, and this will cause e2fsck
4988          * to complain and force a full file system check.
4989          */
4990         if (!(sb->s_flags & SB_RDONLY))
4991                 ext4_update_tstamp(es, s_wtime);
4992         if (sb->s_bdev->bd_part)
4993                 es->s_kbytes_written =
4994                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4995                             ((part_stat_read(sb->s_bdev->bd_part,
4996                                              sectors[STAT_WRITE]) -
4997                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4998         else
4999                 es->s_kbytes_written =
5000                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5001         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5002                 ext4_free_blocks_count_set(es,
5003                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5004                                 &EXT4_SB(sb)->s_freeclusters_counter)));
5005         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5006                 es->s_free_inodes_count =
5007                         cpu_to_le32(percpu_counter_sum_positive(
5008                                 &EXT4_SB(sb)->s_freeinodes_counter));
5009         BUFFER_TRACE(sbh, "marking dirty");
5010         ext4_superblock_csum_set(sb);
5011         if (sync)
5012                 lock_buffer(sbh);
5013         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5014                 /*
5015                  * Oh, dear.  A previous attempt to write the
5016                  * superblock failed.  This could happen because the
5017                  * USB device was yanked out.  Or it could happen to
5018                  * be a transient write error and maybe the block will
5019                  * be remapped.  Nothing we can do but to retry the
5020                  * write and hope for the best.
5021                  */
5022                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5023                        "superblock detected");
5024                 clear_buffer_write_io_error(sbh);
5025                 set_buffer_uptodate(sbh);
5026         }
5027         mark_buffer_dirty(sbh);
5028         if (sync) {
5029                 unlock_buffer(sbh);
5030                 error = __sync_dirty_buffer(sbh,
5031                         REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5032                 if (buffer_write_io_error(sbh)) {
5033                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
5034                                "superblock");
5035                         clear_buffer_write_io_error(sbh);
5036                         set_buffer_uptodate(sbh);
5037                 }
5038         }
5039         return error;
5040 }
5041
5042 /*
5043  * Have we just finished recovery?  If so, and if we are mounting (or
5044  * remounting) the filesystem readonly, then we will end up with a
5045  * consistent fs on disk.  Record that fact.
5046  */
5047 static void ext4_mark_recovery_complete(struct super_block *sb,
5048                                         struct ext4_super_block *es)
5049 {
5050         journal_t *journal = EXT4_SB(sb)->s_journal;
5051
5052         if (!ext4_has_feature_journal(sb)) {
5053                 BUG_ON(journal != NULL);
5054                 return;
5055         }
5056         jbd2_journal_lock_updates(journal);
5057         if (jbd2_journal_flush(journal) < 0)
5058                 goto out;
5059
5060         if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5061                 ext4_clear_feature_journal_needs_recovery(sb);
5062                 ext4_commit_super(sb, 1);
5063         }
5064
5065 out:
5066         jbd2_journal_unlock_updates(journal);
5067 }
5068
5069 /*
5070  * If we are mounting (or read-write remounting) a filesystem whose journal
5071  * has recorded an error from a previous lifetime, move that error to the
5072  * main filesystem now.
5073  */
5074 static void ext4_clear_journal_err(struct super_block *sb,
5075                                    struct ext4_super_block *es)
5076 {
5077         journal_t *journal;
5078         int j_errno;
5079         const char *errstr;
5080
5081         BUG_ON(!ext4_has_feature_journal(sb));
5082
5083         journal = EXT4_SB(sb)->s_journal;
5084
5085         /*
5086          * Now check for any error status which may have been recorded in the
5087          * journal by a prior ext4_error() or ext4_abort()
5088          */
5089
5090         j_errno = jbd2_journal_errno(journal);
5091         if (j_errno) {
5092                 char nbuf[16];
5093
5094                 errstr = ext4_decode_error(sb, j_errno, nbuf);
5095                 ext4_warning(sb, "Filesystem error recorded "
5096                              "from previous mount: %s", errstr);
5097                 ext4_warning(sb, "Marking fs in need of filesystem check.");
5098
5099                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5100                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5101                 ext4_commit_super(sb, 1);
5102
5103                 jbd2_journal_clear_err(journal);
5104                 jbd2_journal_update_sb_errno(journal);
5105         }
5106 }
5107
5108 /*
5109  * Force the running and committing transactions to commit,
5110  * and wait on the commit.
5111  */
5112 int ext4_force_commit(struct super_block *sb)
5113 {
5114         journal_t *journal;
5115
5116         if (sb_rdonly(sb))
5117                 return 0;
5118
5119         journal = EXT4_SB(sb)->s_journal;
5120         return ext4_journal_force_commit(journal);
5121 }
5122
5123 static int ext4_sync_fs(struct super_block *sb, int wait)
5124 {
5125         int ret = 0;
5126         tid_t target;
5127         bool needs_barrier = false;
5128         struct ext4_sb_info *sbi = EXT4_SB(sb);
5129
5130         if (unlikely(ext4_forced_shutdown(sbi)))
5131                 return 0;
5132
5133         trace_ext4_sync_fs(sb, wait);
5134         flush_workqueue(sbi->rsv_conversion_wq);
5135         /*
5136          * Writeback quota in non-journalled quota case - journalled quota has
5137          * no dirty dquots
5138          */
5139         dquot_writeback_dquots(sb, -1);
5140         /*
5141          * Data writeback is possible w/o journal transaction, so barrier must
5142          * being sent at the end of the function. But we can skip it if
5143          * transaction_commit will do it for us.
5144          */
5145         if (sbi->s_journal) {
5146                 target = jbd2_get_latest_transaction(sbi->s_journal);
5147                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5148                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5149                         needs_barrier = true;
5150
5151                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5152                         if (wait)
5153                                 ret = jbd2_log_wait_commit(sbi->s_journal,
5154                                                            target);
5155                 }
5156         } else if (wait && test_opt(sb, BARRIER))
5157                 needs_barrier = true;
5158         if (needs_barrier) {
5159                 int err;
5160                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5161                 if (!ret)
5162                         ret = err;
5163         }
5164
5165         return ret;
5166 }
5167
5168 /*
5169  * LVM calls this function before a (read-only) snapshot is created.  This
5170  * gives us a chance to flush the journal completely and mark the fs clean.
5171  *
5172  * Note that only this function cannot bring a filesystem to be in a clean
5173  * state independently. It relies on upper layer to stop all data & metadata
5174  * modifications.
5175  */
5176 static int ext4_freeze(struct super_block *sb)
5177 {
5178         int error = 0;
5179         journal_t *journal;
5180
5181         if (sb_rdonly(sb))
5182                 return 0;
5183
5184         journal = EXT4_SB(sb)->s_journal;
5185
5186         if (journal) {
5187                 /* Now we set up the journal barrier. */
5188                 jbd2_journal_lock_updates(journal);
5189
5190                 /*
5191                  * Don't clear the needs_recovery flag if we failed to
5192                  * flush the journal.
5193                  */
5194                 error = jbd2_journal_flush(journal);
5195                 if (error < 0)
5196                         goto out;
5197
5198                 /* Journal blocked and flushed, clear needs_recovery flag. */
5199                 ext4_clear_feature_journal_needs_recovery(sb);
5200         }
5201
5202         error = ext4_commit_super(sb, 1);
5203 out:
5204         if (journal)
5205                 /* we rely on upper layer to stop further updates */
5206                 jbd2_journal_unlock_updates(journal);
5207         return error;
5208 }
5209
5210 /*
5211  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5212  * flag here, even though the filesystem is not technically dirty yet.
5213  */
5214 static int ext4_unfreeze(struct super_block *sb)
5215 {
5216         if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5217                 return 0;
5218
5219         if (EXT4_SB(sb)->s_journal) {
5220                 /* Reset the needs_recovery flag before the fs is unlocked. */
5221                 ext4_set_feature_journal_needs_recovery(sb);
5222         }
5223
5224         ext4_commit_super(sb, 1);
5225         return 0;
5226 }
5227
5228 /*
5229  * Structure to save mount options for ext4_remount's benefit
5230  */
5231 struct ext4_mount_options {
5232         unsigned long s_mount_opt;
5233         unsigned long s_mount_opt2;
5234         kuid_t s_resuid;
5235         kgid_t s_resgid;
5236         unsigned long s_commit_interval;
5237         u32 s_min_batch_time, s_max_batch_time;
5238 #ifdef CONFIG_QUOTA
5239         int s_jquota_fmt;
5240         char *s_qf_names[EXT4_MAXQUOTAS];
5241 #endif
5242 };
5243
5244 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5245 {
5246         struct ext4_super_block *es;
5247         struct ext4_sb_info *sbi = EXT4_SB(sb);
5248         unsigned long old_sb_flags;
5249         struct ext4_mount_options old_opts;
5250         int enable_quota = 0;
5251         ext4_group_t g;
5252         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5253         int err = 0;
5254 #ifdef CONFIG_QUOTA
5255         int i, j;
5256         char *to_free[EXT4_MAXQUOTAS];
5257 #endif
5258         char *orig_data = kstrdup(data, GFP_KERNEL);
5259
5260         if (data && !orig_data)
5261                 return -ENOMEM;
5262
5263         /* Store the original options */
5264         old_sb_flags = sb->s_flags;
5265         old_opts.s_mount_opt = sbi->s_mount_opt;
5266         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5267         old_opts.s_resuid = sbi->s_resuid;
5268         old_opts.s_resgid = sbi->s_resgid;
5269         old_opts.s_commit_interval = sbi->s_commit_interval;
5270         old_opts.s_min_batch_time = sbi->s_min_batch_time;
5271         old_opts.s_max_batch_time = sbi->s_max_batch_time;
5272 #ifdef CONFIG_QUOTA
5273         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5274         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5275                 if (sbi->s_qf_names[i]) {
5276                         char *qf_name = get_qf_name(sb, sbi, i);
5277
5278                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5279                         if (!old_opts.s_qf_names[i]) {
5280                                 for (j = 0; j < i; j++)
5281                                         kfree(old_opts.s_qf_names[j]);
5282                                 kfree(orig_data);
5283                                 return -ENOMEM;
5284                         }
5285                 } else
5286                         old_opts.s_qf_names[i] = NULL;
5287 #endif
5288         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5289                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5290
5291         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5292                 err = -EINVAL;
5293                 goto restore_opts;
5294         }
5295
5296         ext4_clamp_want_extra_isize(sb);
5297
5298         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5299             test_opt(sb, JOURNAL_CHECKSUM)) {
5300                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5301                          "during remount not supported; ignoring");
5302                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5303         }
5304
5305         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5306                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5307                         ext4_msg(sb, KERN_ERR, "can't mount with "
5308                                  "both data=journal and delalloc");
5309                         err = -EINVAL;
5310                         goto restore_opts;
5311                 }
5312                 if (test_opt(sb, DIOREAD_NOLOCK)) {
5313                         ext4_msg(sb, KERN_ERR, "can't mount with "
5314                                  "both data=journal and dioread_nolock");
5315                         err = -EINVAL;
5316                         goto restore_opts;
5317                 }
5318                 if (test_opt(sb, DAX)) {
5319                         ext4_msg(sb, KERN_ERR, "can't mount with "
5320                                  "both data=journal and dax");
5321                         err = -EINVAL;
5322                         goto restore_opts;
5323                 }
5324         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5325                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5326                         ext4_msg(sb, KERN_ERR, "can't mount with "
5327                                 "journal_async_commit in data=ordered mode");
5328                         err = -EINVAL;
5329                         goto restore_opts;
5330                 }
5331         }
5332
5333         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5334                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5335                 err = -EINVAL;
5336                 goto restore_opts;
5337         }
5338
5339         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5340                 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5341                         "dax flag with busy inodes while remounting");
5342                 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5343         }
5344
5345         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5346                 ext4_abort(sb, "Abort forced by user");
5347
5348         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5349                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5350
5351         es = sbi->s_es;
5352
5353         if (sbi->s_journal) {
5354                 ext4_init_journal_params(sb, sbi->s_journal);
5355                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5356         }
5357
5358         if (*flags & SB_LAZYTIME)
5359                 sb->s_flags |= SB_LAZYTIME;
5360
5361         if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5362                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5363                         err = -EROFS;
5364                         goto restore_opts;
5365                 }
5366
5367                 if (*flags & SB_RDONLY) {
5368                         err = sync_filesystem(sb);
5369                         if (err < 0)
5370                                 goto restore_opts;
5371                         err = dquot_suspend(sb, -1);
5372                         if (err < 0)
5373                                 goto restore_opts;
5374
5375                         /*
5376                          * First of all, the unconditional stuff we have to do
5377                          * to disable replay of the journal when we next remount
5378                          */
5379                         sb->s_flags |= SB_RDONLY;
5380
5381                         /*
5382                          * OK, test if we are remounting a valid rw partition
5383                          * readonly, and if so set the rdonly flag and then
5384                          * mark the partition as valid again.
5385                          */
5386                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5387                             (sbi->s_mount_state & EXT4_VALID_FS))
5388                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5389
5390                         if (sbi->s_journal)
5391                                 ext4_mark_recovery_complete(sb, es);
5392                         if (sbi->s_mmp_tsk)
5393                                 kthread_stop(sbi->s_mmp_tsk);
5394                 } else {
5395                         /* Make sure we can mount this feature set readwrite */
5396                         if (ext4_has_feature_readonly(sb) ||
5397                             !ext4_feature_set_ok(sb, 0)) {
5398                                 err = -EROFS;
5399                                 goto restore_opts;
5400                         }
5401                         /*
5402                          * Make sure the group descriptor checksums
5403                          * are sane.  If they aren't, refuse to remount r/w.
5404                          */
5405                         for (g = 0; g < sbi->s_groups_count; g++) {
5406                                 struct ext4_group_desc *gdp =
5407                                         ext4_get_group_desc(sb, g, NULL);
5408
5409                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5410                                         ext4_msg(sb, KERN_ERR,
5411                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5412                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5413                                                le16_to_cpu(gdp->bg_checksum));
5414                                         err = -EFSBADCRC;
5415                                         goto restore_opts;
5416                                 }
5417                         }
5418
5419                         /*
5420                          * If we have an unprocessed orphan list hanging
5421                          * around from a previously readonly bdev mount,
5422                          * require a full umount/remount for now.
5423                          */
5424                         if (es->s_last_orphan) {
5425                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5426                                        "remount RDWR because of unprocessed "
5427                                        "orphan inode list.  Please "
5428                                        "umount/remount instead");
5429                                 err = -EINVAL;
5430                                 goto restore_opts;
5431                         }
5432
5433                         /*
5434                          * Mounting a RDONLY partition read-write, so reread
5435                          * and store the current valid flag.  (It may have
5436                          * been changed by e2fsck since we originally mounted
5437                          * the partition.)
5438                          */
5439                         if (sbi->s_journal)
5440                                 ext4_clear_journal_err(sb, es);
5441                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5442
5443                         err = ext4_setup_super(sb, es, 0);
5444                         if (err)
5445                                 goto restore_opts;
5446
5447                         sb->s_flags &= ~SB_RDONLY;
5448                         if (ext4_has_feature_mmp(sb))
5449                                 if (ext4_multi_mount_protect(sb,
5450                                                 le64_to_cpu(es->s_mmp_block))) {
5451                                         err = -EROFS;
5452                                         goto restore_opts;
5453                                 }
5454                         enable_quota = 1;
5455                 }
5456         }
5457
5458         /*
5459          * Reinitialize lazy itable initialization thread based on
5460          * current settings
5461          */
5462         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5463                 ext4_unregister_li_request(sb);
5464         else {
5465                 ext4_group_t first_not_zeroed;
5466                 first_not_zeroed = ext4_has_uninit_itable(sb);
5467                 ext4_register_li_request(sb, first_not_zeroed);
5468         }
5469
5470         ext4_setup_system_zone(sb);
5471         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5472                 err = ext4_commit_super(sb, 1);
5473                 if (err)
5474                         goto restore_opts;
5475         }
5476
5477 #ifdef CONFIG_QUOTA
5478         /* Release old quota file names */
5479         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5480                 kfree(old_opts.s_qf_names[i]);
5481         if (enable_quota) {
5482                 if (sb_any_quota_suspended(sb))
5483                         dquot_resume(sb, -1);
5484                 else if (ext4_has_feature_quota(sb)) {
5485                         err = ext4_enable_quotas(sb);
5486                         if (err)
5487                                 goto restore_opts;
5488                 }
5489         }
5490 #endif
5491
5492         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5493         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5494         kfree(orig_data);
5495         return 0;
5496
5497 restore_opts:
5498         sb->s_flags = old_sb_flags;
5499         sbi->s_mount_opt = old_opts.s_mount_opt;
5500         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5501         sbi->s_resuid = old_opts.s_resuid;
5502         sbi->s_resgid = old_opts.s_resgid;
5503         sbi->s_commit_interval = old_opts.s_commit_interval;
5504         sbi->s_min_batch_time = old_opts.s_min_batch_time;
5505         sbi->s_max_batch_time = old_opts.s_max_batch_time;
5506 #ifdef CONFIG_QUOTA
5507         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5508         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5509                 to_free[i] = get_qf_name(sb, sbi, i);
5510                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5511         }
5512         synchronize_rcu();
5513         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5514                 kfree(to_free[i]);
5515 #endif
5516         kfree(orig_data);
5517         return err;
5518 }
5519
5520 #ifdef CONFIG_QUOTA
5521 static int ext4_statfs_project(struct super_block *sb,
5522                                kprojid_t projid, struct kstatfs *buf)
5523 {
5524         struct kqid qid;
5525         struct dquot *dquot;
5526         u64 limit;
5527         u64 curblock;
5528
5529         qid = make_kqid_projid(projid);
5530         dquot = dqget(sb, qid);
5531         if (IS_ERR(dquot))
5532                 return PTR_ERR(dquot);
5533         spin_lock(&dquot->dq_dqb_lock);
5534
5535         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5536                  dquot->dq_dqb.dqb_bsoftlimit :
5537                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5538         if (limit && buf->f_blocks > limit) {
5539                 curblock = (dquot->dq_dqb.dqb_curspace +
5540                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5541                 buf->f_blocks = limit;
5542                 buf->f_bfree = buf->f_bavail =
5543                         (buf->f_blocks > curblock) ?
5544                          (buf->f_blocks - curblock) : 0;
5545         }
5546
5547         limit = dquot->dq_dqb.dqb_isoftlimit ?
5548                 dquot->dq_dqb.dqb_isoftlimit :
5549                 dquot->dq_dqb.dqb_ihardlimit;
5550         if (limit && buf->f_files > limit) {
5551                 buf->f_files = limit;
5552                 buf->f_ffree =
5553                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5554                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5555         }
5556
5557         spin_unlock(&dquot->dq_dqb_lock);
5558         dqput(dquot);
5559         return 0;
5560 }
5561 #endif
5562
5563 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5564 {
5565         struct super_block *sb = dentry->d_sb;
5566         struct ext4_sb_info *sbi = EXT4_SB(sb);
5567         struct ext4_super_block *es = sbi->s_es;
5568         ext4_fsblk_t overhead = 0, resv_blocks;
5569         u64 fsid;
5570         s64 bfree;
5571         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5572
5573         if (!test_opt(sb, MINIX_DF))
5574                 overhead = sbi->s_overhead;
5575
5576         buf->f_type = EXT4_SUPER_MAGIC;
5577         buf->f_bsize = sb->s_blocksize;
5578         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5579         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5580                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5581         /* prevent underflow in case that few free space is available */
5582         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5583         buf->f_bavail = buf->f_bfree -
5584                         (ext4_r_blocks_count(es) + resv_blocks);
5585         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5586                 buf->f_bavail = 0;
5587         buf->f_files = le32_to_cpu(es->s_inodes_count);
5588         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5589         buf->f_namelen = EXT4_NAME_LEN;
5590         fsid = le64_to_cpup((void *)es->s_uuid) ^
5591                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5592         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5593         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5594
5595 #ifdef CONFIG_QUOTA
5596         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5597             sb_has_quota_limits_enabled(sb, PRJQUOTA))
5598                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5599 #endif
5600         return 0;
5601 }
5602
5603
5604 #ifdef CONFIG_QUOTA
5605
5606 /*
5607  * Helper functions so that transaction is started before we acquire dqio_sem
5608  * to keep correct lock ordering of transaction > dqio_sem
5609  */
5610 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5611 {
5612         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5613 }
5614
5615 static int ext4_write_dquot(struct dquot *dquot)
5616 {
5617         int ret, err;
5618         handle_t *handle;
5619         struct inode *inode;
5620
5621         inode = dquot_to_inode(dquot);
5622         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5623                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5624         if (IS_ERR(handle))
5625                 return PTR_ERR(handle);
5626         ret = dquot_commit(dquot);
5627         err = ext4_journal_stop(handle);
5628         if (!ret)
5629                 ret = err;
5630         return ret;
5631 }
5632
5633 static int ext4_acquire_dquot(struct dquot *dquot)
5634 {
5635         int ret, err;
5636         handle_t *handle;
5637
5638         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5639                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5640         if (IS_ERR(handle))
5641                 return PTR_ERR(handle);
5642         ret = dquot_acquire(dquot);
5643         err = ext4_journal_stop(handle);
5644         if (!ret)
5645                 ret = err;
5646         return ret;
5647 }
5648
5649 static int ext4_release_dquot(struct dquot *dquot)
5650 {
5651         int ret, err;
5652         handle_t *handle;
5653
5654         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5655                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5656         if (IS_ERR(handle)) {
5657                 /* Release dquot anyway to avoid endless cycle in dqput() */
5658                 dquot_release(dquot);
5659                 return PTR_ERR(handle);
5660         }
5661         ret = dquot_release(dquot);
5662         err = ext4_journal_stop(handle);
5663         if (!ret)
5664                 ret = err;
5665         return ret;
5666 }
5667
5668 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5669 {
5670         struct super_block *sb = dquot->dq_sb;
5671         struct ext4_sb_info *sbi = EXT4_SB(sb);
5672
5673         /* Are we journaling quotas? */
5674         if (ext4_has_feature_quota(sb) ||
5675             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5676                 dquot_mark_dquot_dirty(dquot);
5677                 return ext4_write_dquot(dquot);
5678         } else {
5679                 return dquot_mark_dquot_dirty(dquot);
5680         }
5681 }
5682
5683 static int ext4_write_info(struct super_block *sb, int type)
5684 {
5685         int ret, err;
5686         handle_t *handle;
5687
5688         /* Data block + inode block */
5689         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5690         if (IS_ERR(handle))
5691                 return PTR_ERR(handle);
5692         ret = dquot_commit_info(sb, type);
5693         err = ext4_journal_stop(handle);
5694         if (!ret)
5695                 ret = err;
5696         return ret;
5697 }
5698
5699 /*
5700  * Turn on quotas during mount time - we need to find
5701  * the quota file and such...
5702  */
5703 static int ext4_quota_on_mount(struct super_block *sb, int type)
5704 {
5705         return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5706                                         EXT4_SB(sb)->s_jquota_fmt, type);
5707 }
5708
5709 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5710 {
5711         struct ext4_inode_info *ei = EXT4_I(inode);
5712
5713         /* The first argument of lockdep_set_subclass has to be
5714          * *exactly* the same as the argument to init_rwsem() --- in
5715          * this case, in init_once() --- or lockdep gets unhappy
5716          * because the name of the lock is set using the
5717          * stringification of the argument to init_rwsem().
5718          */
5719         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5720         lockdep_set_subclass(&ei->i_data_sem, subclass);
5721 }
5722
5723 /*
5724  * Standard function to be called on quota_on
5725  */
5726 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5727                          const struct path *path)
5728 {
5729         int err;
5730
5731         if (!test_opt(sb, QUOTA))
5732                 return -EINVAL;
5733
5734         /* Quotafile not on the same filesystem? */
5735         if (path->dentry->d_sb != sb)
5736                 return -EXDEV;
5737         /* Journaling quota? */
5738         if (EXT4_SB(sb)->s_qf_names[type]) {
5739                 /* Quotafile not in fs root? */
5740                 if (path->dentry->d_parent != sb->s_root)
5741                         ext4_msg(sb, KERN_WARNING,
5742                                 "Quota file not on filesystem root. "
5743                                 "Journaled quota will not work");
5744                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5745         } else {
5746                 /*
5747                  * Clear the flag just in case mount options changed since
5748                  * last time.
5749                  */
5750                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5751         }
5752
5753         /*
5754          * When we journal data on quota file, we have to flush journal to see
5755          * all updates to the file when we bypass pagecache...
5756          */
5757         if (EXT4_SB(sb)->s_journal &&
5758             ext4_should_journal_data(d_inode(path->dentry))) {
5759                 /*
5760                  * We don't need to lock updates but journal_flush() could
5761                  * otherwise be livelocked...
5762                  */
5763                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5764                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5765                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5766                 if (err)
5767                         return err;
5768         }
5769
5770         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5771         err = dquot_quota_on(sb, type, format_id, path);
5772         if (err) {
5773                 lockdep_set_quota_inode(path->dentry->d_inode,
5774                                              I_DATA_SEM_NORMAL);
5775         } else {
5776                 struct inode *inode = d_inode(path->dentry);
5777                 handle_t *handle;
5778
5779                 /*
5780                  * Set inode flags to prevent userspace from messing with quota
5781                  * files. If this fails, we return success anyway since quotas
5782                  * are already enabled and this is not a hard failure.
5783                  */
5784                 inode_lock(inode);
5785                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5786                 if (IS_ERR(handle))
5787                         goto unlock_inode;
5788                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5789                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5790                                 S_NOATIME | S_IMMUTABLE);
5791                 ext4_mark_inode_dirty(handle, inode);
5792                 ext4_journal_stop(handle);
5793         unlock_inode:
5794                 inode_unlock(inode);
5795         }
5796         return err;
5797 }
5798
5799 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5800                              unsigned int flags)
5801 {
5802         int err;
5803         struct inode *qf_inode;
5804         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5805                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5806                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5807                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5808         };
5809
5810         BUG_ON(!ext4_has_feature_quota(sb));
5811
5812         if (!qf_inums[type])
5813                 return -EPERM;
5814
5815         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5816         if (IS_ERR(qf_inode)) {
5817                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5818                 return PTR_ERR(qf_inode);
5819         }
5820
5821         /* Don't account quota for quota files to avoid recursion */
5822         qf_inode->i_flags |= S_NOQUOTA;
5823         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5824         err = dquot_enable(qf_inode, type, format_id, flags);
5825         if (err)
5826                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5827         iput(qf_inode);
5828
5829         return err;
5830 }
5831
5832 /* Enable usage tracking for all quota types. */
5833 static int ext4_enable_quotas(struct super_block *sb)
5834 {
5835         int type, err = 0;
5836         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5837                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5838                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5839                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5840         };
5841         bool quota_mopt[EXT4_MAXQUOTAS] = {
5842                 test_opt(sb, USRQUOTA),
5843                 test_opt(sb, GRPQUOTA),
5844                 test_opt(sb, PRJQUOTA),
5845         };
5846
5847         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5848         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5849                 if (qf_inums[type]) {
5850                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5851                                 DQUOT_USAGE_ENABLED |
5852                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5853                         if (err) {
5854                                 ext4_warning(sb,
5855                                         "Failed to enable quota tracking "
5856                                         "(type=%d, err=%d). Please run "
5857                                         "e2fsck to fix.", type, err);
5858                                 for (type--; type >= 0; type--)
5859                                         dquot_quota_off(sb, type);
5860
5861                                 return err;
5862                         }
5863                 }
5864         }
5865         return 0;
5866 }
5867
5868 static int ext4_quota_off(struct super_block *sb, int type)
5869 {
5870         struct inode *inode = sb_dqopt(sb)->files[type];
5871         handle_t *handle;
5872         int err;
5873
5874         /* Force all delayed allocation blocks to be allocated.
5875          * Caller already holds s_umount sem */
5876         if (test_opt(sb, DELALLOC))
5877                 sync_filesystem(sb);
5878
5879         if (!inode || !igrab(inode))
5880                 goto out;
5881
5882         err = dquot_quota_off(sb, type);
5883         if (err || ext4_has_feature_quota(sb))
5884                 goto out_put;
5885
5886         inode_lock(inode);
5887         /*
5888          * Update modification times of quota files when userspace can
5889          * start looking at them. If we fail, we return success anyway since
5890          * this is not a hard failure and quotas are already disabled.
5891          */
5892         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5893         if (IS_ERR(handle))
5894                 goto out_unlock;
5895         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5896         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5897         inode->i_mtime = inode->i_ctime = current_time(inode);
5898         ext4_mark_inode_dirty(handle, inode);
5899         ext4_journal_stop(handle);
5900 out_unlock:
5901         inode_unlock(inode);
5902 out_put:
5903         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5904         iput(inode);
5905         return err;
5906 out:
5907         return dquot_quota_off(sb, type);
5908 }
5909
5910 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5911  * acquiring the locks... As quota files are never truncated and quota code
5912  * itself serializes the operations (and no one else should touch the files)
5913  * we don't have to be afraid of races */
5914 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5915                                size_t len, loff_t off)
5916 {
5917         struct inode *inode = sb_dqopt(sb)->files[type];
5918         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5919         int offset = off & (sb->s_blocksize - 1);
5920         int tocopy;
5921         size_t toread;
5922         struct buffer_head *bh;
5923         loff_t i_size = i_size_read(inode);
5924
5925         if (off > i_size)
5926                 return 0;
5927         if (off+len > i_size)
5928                 len = i_size-off;
5929         toread = len;
5930         while (toread > 0) {
5931                 tocopy = sb->s_blocksize - offset < toread ?
5932                                 sb->s_blocksize - offset : toread;
5933                 bh = ext4_bread(NULL, inode, blk, 0);
5934                 if (IS_ERR(bh))
5935                         return PTR_ERR(bh);
5936                 if (!bh)        /* A hole? */
5937                         memset(data, 0, tocopy);
5938                 else
5939                         memcpy(data, bh->b_data+offset, tocopy);
5940                 brelse(bh);
5941                 offset = 0;
5942                 toread -= tocopy;
5943                 data += tocopy;
5944                 blk++;
5945         }
5946         return len;
5947 }
5948
5949 /* Write to quotafile (we know the transaction is already started and has
5950  * enough credits) */
5951 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5952                                 const char *data, size_t len, loff_t off)
5953 {
5954         struct inode *inode = sb_dqopt(sb)->files[type];
5955         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5956         int err, offset = off & (sb->s_blocksize - 1);
5957         int retries = 0;
5958         struct buffer_head *bh;
5959         handle_t *handle = journal_current_handle();
5960
5961         if (EXT4_SB(sb)->s_journal && !handle) {
5962                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5963                         " cancelled because transaction is not started",
5964                         (unsigned long long)off, (unsigned long long)len);
5965                 return -EIO;
5966         }
5967         /*
5968          * Since we account only one data block in transaction credits,
5969          * then it is impossible to cross a block boundary.
5970          */
5971         if (sb->s_blocksize - offset < len) {
5972                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5973                         " cancelled because not block aligned",
5974                         (unsigned long long)off, (unsigned long long)len);
5975                 return -EIO;
5976         }
5977
5978         do {
5979                 bh = ext4_bread(handle, inode, blk,
5980                                 EXT4_GET_BLOCKS_CREATE |
5981                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5982         } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5983                  ext4_should_retry_alloc(inode->i_sb, &retries));
5984         if (IS_ERR(bh))
5985                 return PTR_ERR(bh);
5986         if (!bh)
5987                 goto out;
5988         BUFFER_TRACE(bh, "get write access");
5989         err = ext4_journal_get_write_access(handle, bh);
5990         if (err) {
5991                 brelse(bh);
5992                 return err;
5993         }
5994         lock_buffer(bh);
5995         memcpy(bh->b_data+offset, data, len);
5996         flush_dcache_page(bh->b_page);
5997         unlock_buffer(bh);
5998         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5999         brelse(bh);
6000 out:
6001         if (inode->i_size < off + len) {
6002                 i_size_write(inode, off + len);
6003                 EXT4_I(inode)->i_disksize = inode->i_size;
6004                 ext4_mark_inode_dirty(handle, inode);
6005         }
6006         return len;
6007 }
6008
6009 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6010 {
6011         const struct quota_format_ops   *ops;
6012
6013         if (!sb_has_quota_loaded(sb, qid->type))
6014                 return -ESRCH;
6015         ops = sb_dqopt(sb)->ops[qid->type];
6016         if (!ops || !ops->get_next_id)
6017                 return -ENOSYS;
6018         return dquot_get_next_id(sb, qid);
6019 }
6020 #endif
6021
6022 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6023                        const char *dev_name, void *data)
6024 {
6025         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6026 }
6027
6028 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6029 static inline void register_as_ext2(void)
6030 {
6031         int err = register_filesystem(&ext2_fs_type);
6032         if (err)
6033                 printk(KERN_WARNING
6034                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6035 }
6036
6037 static inline void unregister_as_ext2(void)
6038 {
6039         unregister_filesystem(&ext2_fs_type);
6040 }
6041
6042 static inline int ext2_feature_set_ok(struct super_block *sb)
6043 {
6044         if (ext4_has_unknown_ext2_incompat_features(sb))
6045                 return 0;
6046         if (sb_rdonly(sb))
6047                 return 1;
6048         if (ext4_has_unknown_ext2_ro_compat_features(sb))
6049                 return 0;
6050         return 1;
6051 }
6052 #else
6053 static inline void register_as_ext2(void) { }
6054 static inline void unregister_as_ext2(void) { }
6055 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6056 #endif
6057
6058 static inline void register_as_ext3(void)
6059 {
6060         int err = register_filesystem(&ext3_fs_type);
6061         if (err)
6062                 printk(KERN_WARNING
6063                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6064 }
6065
6066 static inline void unregister_as_ext3(void)
6067 {
6068         unregister_filesystem(&ext3_fs_type);
6069 }
6070
6071 static inline int ext3_feature_set_ok(struct super_block *sb)
6072 {
6073         if (ext4_has_unknown_ext3_incompat_features(sb))
6074                 return 0;
6075         if (!ext4_has_feature_journal(sb))
6076                 return 0;
6077         if (sb_rdonly(sb))
6078                 return 1;
6079         if (ext4_has_unknown_ext3_ro_compat_features(sb))
6080                 return 0;
6081         return 1;
6082 }
6083
6084 static struct file_system_type ext4_fs_type = {
6085         .owner          = THIS_MODULE,
6086         .name           = "ext4",
6087         .mount          = ext4_mount,
6088         .kill_sb        = kill_block_super,
6089         .fs_flags       = FS_REQUIRES_DEV,
6090 };
6091 MODULE_ALIAS_FS("ext4");
6092
6093 /* Shared across all ext4 file systems */
6094 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6095
6096 static int __init ext4_init_fs(void)
6097 {
6098         int i, err;
6099
6100         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6101         ext4_li_info = NULL;
6102         mutex_init(&ext4_li_mtx);
6103
6104         /* Build-time check for flags consistency */
6105         ext4_check_flag_values();
6106
6107         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6108                 init_waitqueue_head(&ext4__ioend_wq[i]);
6109
6110         err = ext4_init_es();
6111         if (err)
6112                 return err;
6113
6114         err = ext4_init_pending();
6115         if (err)
6116                 goto out6;
6117
6118         err = ext4_init_pageio();
6119         if (err)
6120                 goto out5;
6121
6122         err = ext4_init_system_zone();
6123         if (err)
6124                 goto out4;
6125
6126         err = ext4_init_sysfs();
6127         if (err)
6128                 goto out3;
6129
6130         err = ext4_init_mballoc();
6131         if (err)
6132                 goto out2;
6133         err = init_inodecache();
6134         if (err)
6135                 goto out1;
6136         register_as_ext3();
6137         register_as_ext2();
6138         err = register_filesystem(&ext4_fs_type);
6139         if (err)
6140                 goto out;
6141
6142         return 0;
6143 out:
6144         unregister_as_ext2();
6145         unregister_as_ext3();
6146         destroy_inodecache();
6147 out1:
6148         ext4_exit_mballoc();
6149 out2:
6150         ext4_exit_sysfs();
6151 out3:
6152         ext4_exit_system_zone();
6153 out4:
6154         ext4_exit_pageio();
6155 out5:
6156         ext4_exit_pending();
6157 out6:
6158         ext4_exit_es();
6159
6160         return err;
6161 }
6162
6163 static void __exit ext4_exit_fs(void)
6164 {
6165         ext4_destroy_lazyinit_thread();
6166         unregister_as_ext2();
6167         unregister_as_ext3();
6168         unregister_filesystem(&ext4_fs_type);
6169         destroy_inodecache();
6170         ext4_exit_mballoc();
6171         ext4_exit_sysfs();
6172         ext4_exit_system_zone();
6173         ext4_exit_pageio();
6174         ext4_exit_es();
6175         ext4_exit_pending();
6176 }
6177
6178 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6179 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6180 MODULE_LICENSE("GPL");
6181 MODULE_SOFTDEP("pre: crc32c");
6182 module_init(ext4_init_fs)
6183 module_exit(ext4_exit_fs)