be9a4cba35fd523adce76b3b22a9677fbd86264b
[linux-2.6-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54                                             struct inode *inode,
55                                             struct folio *folio,
56                                             unsigned from, unsigned to);
57
58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59                               struct ext4_inode_info *ei)
60 {
61         __u32 csum;
62         __u16 dummy_csum = 0;
63         int offset = offsetof(struct ext4_inode, i_checksum_lo);
64         unsigned int csum_size = sizeof(dummy_csum);
65
66         csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset);
67         csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size);
68         offset += csum_size;
69         csum = ext4_chksum(csum, (__u8 *)raw + offset,
70                            EXT4_GOOD_OLD_INODE_SIZE - offset);
71
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73                 offset = offsetof(struct ext4_inode, i_checksum_hi);
74                 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE,
75                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
76                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
77                         csum = ext4_chksum(csum, (__u8 *)&dummy_csum,
78                                            csum_size);
79                         offset += csum_size;
80                 }
81                 csum = ext4_chksum(csum, (__u8 *)raw + offset,
82                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
83         }
84
85         return csum;
86 }
87
88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
89                                   struct ext4_inode_info *ei)
90 {
91         __u32 provided, calculated;
92
93         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
94             cpu_to_le32(EXT4_OS_LINUX) ||
95             !ext4_has_feature_metadata_csum(inode->i_sb))
96                 return 1;
97
98         provided = le16_to_cpu(raw->i_checksum_lo);
99         calculated = ext4_inode_csum(inode, raw, ei);
100         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
101             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
102                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
103         else
104                 calculated &= 0xFFFF;
105
106         return provided == calculated;
107 }
108
109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
110                          struct ext4_inode_info *ei)
111 {
112         __u32 csum;
113
114         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
115             cpu_to_le32(EXT4_OS_LINUX) ||
116             !ext4_has_feature_metadata_csum(inode->i_sb))
117                 return;
118
119         csum = ext4_inode_csum(inode, raw, ei);
120         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
121         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
122             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
123                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
124 }
125
126 static inline int ext4_begin_ordered_truncate(struct inode *inode,
127                                               loff_t new_size)
128 {
129         trace_ext4_begin_ordered_truncate(inode, new_size);
130         /*
131          * If jinode is zero, then we never opened the file for
132          * writing, so there's no need to call
133          * jbd2_journal_begin_ordered_truncate() since there's no
134          * outstanding writes we need to flush.
135          */
136         if (!EXT4_I(inode)->jinode)
137                 return 0;
138         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
139                                                    EXT4_I(inode)->jinode,
140                                                    new_size);
141 }
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         dax_break_layout_final(inode);
181
182         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183                 ext4_evict_ea_inode(inode);
184         if (inode->i_nlink) {
185                 truncate_inode_pages_final(&inode->i_data);
186
187                 goto no_delete;
188         }
189
190         if (is_bad_inode(inode))
191                 goto no_delete;
192         dquot_initialize(inode);
193
194         if (ext4_should_order_data(inode))
195                 ext4_begin_ordered_truncate(inode, 0);
196         truncate_inode_pages_final(&inode->i_data);
197
198         /*
199          * For inodes with journalled data, transaction commit could have
200          * dirtied the inode. And for inodes with dioread_nolock, unwritten
201          * extents converting worker could merge extents and also have dirtied
202          * the inode. Flush worker is ignoring it because of I_FREEING flag but
203          * we still need to remove the inode from the writeback lists.
204          */
205         if (!list_empty_careful(&inode->i_io_list))
206                 inode_io_list_del(inode);
207
208         /*
209          * Protect us against freezing - iput() caller didn't have to have any
210          * protection against it. When we are in a running transaction though,
211          * we are already protected against freezing and we cannot grab further
212          * protection due to lock ordering constraints.
213          */
214         if (!ext4_journal_current_handle()) {
215                 sb_start_intwrite(inode->i_sb);
216                 freeze_protected = true;
217         }
218
219         if (!IS_NOQUOTA(inode))
220                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
221
222         /*
223          * Block bitmap, group descriptor, and inode are accounted in both
224          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
225          */
226         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
227                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
228         if (IS_ERR(handle)) {
229                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
230                 /*
231                  * If we're going to skip the normal cleanup, we still need to
232                  * make sure that the in-core orphan linked list is properly
233                  * cleaned up.
234                  */
235                 ext4_orphan_del(NULL, inode);
236                 if (freeze_protected)
237                         sb_end_intwrite(inode->i_sb);
238                 goto no_delete;
239         }
240
241         if (IS_SYNC(inode))
242                 ext4_handle_sync(handle);
243
244         /*
245          * Set inode->i_size to 0 before calling ext4_truncate(). We need
246          * special handling of symlinks here because i_size is used to
247          * determine whether ext4_inode_info->i_data contains symlink data or
248          * block mappings. Setting i_size to 0 will remove its fast symlink
249          * status. Erase i_data so that it becomes a valid empty block map.
250          */
251         if (ext4_inode_is_fast_symlink(inode))
252                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks) {
261                 err = ext4_truncate(inode);
262                 if (err) {
263                         ext4_error_err(inode->i_sb, -err,
264                                        "couldn't truncate inode %lu (err %d)",
265                                        inode->i_ino, err);
266                         goto stop_handle;
267                 }
268         }
269
270         /* Remove xattr references. */
271         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
272                                       extra_credits);
273         if (err) {
274                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
275 stop_handle:
276                 ext4_journal_stop(handle);
277                 ext4_orphan_del(NULL, inode);
278                 if (freeze_protected)
279                         sb_end_intwrite(inode->i_sb);
280                 ext4_xattr_inode_array_free(ea_inode_array);
281                 goto no_delete;
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         if (freeze_protected)
309                 sb_end_intwrite(inode->i_sb);
310         ext4_xattr_inode_array_free(ea_inode_array);
311         return;
312 no_delete:
313         /*
314          * Check out some where else accidentally dirty the evicting inode,
315          * which may probably cause inode use-after-free issues later.
316          */
317         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
318
319         if (!list_empty(&EXT4_I(inode)->i_fc_list))
320                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
321         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
322 }
323
324 #ifdef CONFIG_QUOTA
325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327         return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330
331 /*
332  * Called with i_data_sem down, which is important since we can call
333  * ext4_discard_preallocations() from here.
334  */
335 void ext4_da_update_reserve_space(struct inode *inode,
336                                         int used, int quota_claim)
337 {
338         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339         struct ext4_inode_info *ei = EXT4_I(inode);
340
341         spin_lock(&ei->i_block_reservation_lock);
342         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343         if (unlikely(used > ei->i_reserved_data_blocks)) {
344                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345                          "with only %d reserved data blocks",
346                          __func__, inode->i_ino, used,
347                          ei->i_reserved_data_blocks);
348                 WARN_ON(1);
349                 used = ei->i_reserved_data_blocks;
350         }
351
352         /* Update per-inode reservations */
353         ei->i_reserved_data_blocks -= used;
354         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355
356         spin_unlock(&ei->i_block_reservation_lock);
357
358         /* Update quota subsystem for data blocks */
359         if (quota_claim)
360                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
361         else {
362                 /*
363                  * We did fallocate with an offset that is already delayed
364                  * allocated. So on delayed allocated writeback we should
365                  * not re-claim the quota for fallocated blocks.
366                  */
367                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368         }
369
370         /*
371          * If we have done all the pending block allocations and if
372          * there aren't any writers on the inode, we can discard the
373          * inode's preallocations.
374          */
375         if ((ei->i_reserved_data_blocks == 0) &&
376             !inode_is_open_for_write(inode))
377                 ext4_discard_preallocations(inode);
378 }
379
380 static int __check_block_validity(struct inode *inode, const char *func,
381                                 unsigned int line,
382                                 struct ext4_map_blocks *map)
383 {
384         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
385
386         if (journal && inode == journal->j_inode)
387                 return 0;
388
389         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
390                 ext4_error_inode(inode, func, line, map->m_pblk,
391                                  "lblock %lu mapped to illegal pblock %llu "
392                                  "(length %d)", (unsigned long) map->m_lblk,
393                                  map->m_pblk, map->m_len);
394                 return -EFSCORRUPTED;
395         }
396         return 0;
397 }
398
399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
400                        ext4_lblk_t len)
401 {
402         int ret;
403
404         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
405                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
406
407         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
408         if (ret > 0)
409                 ret = 0;
410
411         return ret;
412 }
413
414 /*
415  * For generic regular files, when updating the extent tree, Ext4 should
416  * hold the i_rwsem and invalidate_lock exclusively. This ensures
417  * exclusion against concurrent page faults, as well as reads and writes.
418  */
419 #ifdef CONFIG_EXT4_DEBUG
420 void ext4_check_map_extents_env(struct inode *inode)
421 {
422         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
423                 return;
424
425         if (!S_ISREG(inode->i_mode) ||
426             IS_NOQUOTA(inode) || IS_VERITY(inode) ||
427             is_special_ino(inode->i_sb, inode->i_ino) ||
428             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) ||
429             ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) ||
430             ext4_verity_in_progress(inode))
431                 return;
432
433         WARN_ON_ONCE(!inode_is_locked(inode) &&
434                      !rwsem_is_locked(&inode->i_mapping->invalidate_lock));
435 }
436 #else
437 void ext4_check_map_extents_env(struct inode *inode) {}
438 #endif
439
440 #define check_block_validity(inode, map)        \
441         __check_block_validity((inode), __func__, __LINE__, (map))
442
443 #ifdef ES_AGGRESSIVE_TEST
444 static void ext4_map_blocks_es_recheck(handle_t *handle,
445                                        struct inode *inode,
446                                        struct ext4_map_blocks *es_map,
447                                        struct ext4_map_blocks *map,
448                                        int flags)
449 {
450         int retval;
451
452         map->m_flags = 0;
453         /*
454          * There is a race window that the result is not the same.
455          * e.g. xfstests #223 when dioread_nolock enables.  The reason
456          * is that we lookup a block mapping in extent status tree with
457          * out taking i_data_sem.  So at the time the unwritten extent
458          * could be converted.
459          */
460         down_read(&EXT4_I(inode)->i_data_sem);
461         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
462                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
463         } else {
464                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
465         }
466         up_read((&EXT4_I(inode)->i_data_sem));
467
468         /*
469          * We don't check m_len because extent will be collpased in status
470          * tree.  So the m_len might not equal.
471          */
472         if (es_map->m_lblk != map->m_lblk ||
473             es_map->m_flags != map->m_flags ||
474             es_map->m_pblk != map->m_pblk) {
475                 printk("ES cache assertion failed for inode: %lu "
476                        "es_cached ex [%d/%d/%llu/%x] != "
477                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
478                        inode->i_ino, es_map->m_lblk, es_map->m_len,
479                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
480                        map->m_len, map->m_pblk, map->m_flags,
481                        retval, flags);
482         }
483 }
484 #endif /* ES_AGGRESSIVE_TEST */
485
486 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle,
487                         struct inode *inode, struct ext4_map_blocks *map,
488                         unsigned int orig_mlen)
489 {
490         struct ext4_map_blocks map2;
491         unsigned int status, status2;
492         int retval;
493
494         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
495                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
496
497         WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF));
498         WARN_ON_ONCE(orig_mlen <= map->m_len);
499
500         /* Prepare map2 for lookup in next leaf block */
501         map2.m_lblk = map->m_lblk + map->m_len;
502         map2.m_len = orig_mlen - map->m_len;
503         map2.m_flags = 0;
504         retval = ext4_ext_map_blocks(handle, inode, &map2, 0);
505
506         if (retval <= 0) {
507                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
508                                       map->m_pblk, status, false);
509                 return map->m_len;
510         }
511
512         if (unlikely(retval != map2.m_len)) {
513                 ext4_warning(inode->i_sb,
514                              "ES len assertion failed for inode "
515                              "%lu: retval %d != map->m_len %d",
516                              inode->i_ino, retval, map2.m_len);
517                 WARN_ON(1);
518         }
519
520         status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ?
521                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
522
523         /*
524          * If map2 is contiguous with map, then let's insert it as a single
525          * extent in es cache and return the combined length of both the maps.
526          */
527         if (map->m_pblk + map->m_len == map2.m_pblk &&
528                         status == status2) {
529                 ext4_es_insert_extent(inode, map->m_lblk,
530                                       map->m_len + map2.m_len, map->m_pblk,
531                                       status, false);
532                 map->m_len += map2.m_len;
533         } else {
534                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
535                                       map->m_pblk, status, false);
536         }
537
538         return map->m_len;
539 }
540
541 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
542                                  struct ext4_map_blocks *map, int flags)
543 {
544         unsigned int status;
545         int retval;
546         unsigned int orig_mlen = map->m_len;
547
548         flags &= EXT4_EX_QUERY_FILTER;
549         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
550                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
551         else
552                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
553
554         if (retval <= 0)
555                 return retval;
556
557         if (unlikely(retval != map->m_len)) {
558                 ext4_warning(inode->i_sb,
559                              "ES len assertion failed for inode "
560                              "%lu: retval %d != map->m_len %d",
561                              inode->i_ino, retval, map->m_len);
562                 WARN_ON(1);
563         }
564
565         /*
566          * No need to query next in leaf:
567          * - if returned extent is not last in leaf or
568          * - if the last in leaf is the full requested range
569          */
570         if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) ||
571                         map->m_len == orig_mlen) {
572                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
575                                       map->m_pblk, status, false);
576                 return retval;
577         }
578
579         return ext4_map_query_blocks_next_in_leaf(handle, inode, map,
580                                                   orig_mlen);
581 }
582
583 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
584                                   struct ext4_map_blocks *map, int flags)
585 {
586         struct extent_status es;
587         unsigned int status;
588         int err, retval = 0;
589
590         /*
591          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
592          * indicates that the blocks and quotas has already been
593          * checked when the data was copied into the page cache.
594          */
595         if (map->m_flags & EXT4_MAP_DELAYED)
596                 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
597
598         /*
599          * Here we clear m_flags because after allocating an new extent,
600          * it will be set again.
601          */
602         map->m_flags &= ~EXT4_MAP_FLAGS;
603
604         /*
605          * We need to check for EXT4 here because migrate could have
606          * changed the inode type in between.
607          */
608         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
609                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
610         } else {
611                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
612
613                 /*
614                  * We allocated new blocks which will result in i_data's
615                  * format changing. Force the migrate to fail by clearing
616                  * migrate flags.
617                  */
618                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
619                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
620         }
621         if (retval <= 0)
622                 return retval;
623
624         if (unlikely(retval != map->m_len)) {
625                 ext4_warning(inode->i_sb,
626                              "ES len assertion failed for inode %lu: "
627                              "retval %d != map->m_len %d",
628                              inode->i_ino, retval, map->m_len);
629                 WARN_ON(1);
630         }
631
632         /*
633          * We have to zeroout blocks before inserting them into extent
634          * status tree. Otherwise someone could look them up there and
635          * use them before they are really zeroed. We also have to
636          * unmap metadata before zeroing as otherwise writeback can
637          * overwrite zeros with stale data from block device.
638          */
639         if (flags & EXT4_GET_BLOCKS_ZERO &&
640             map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
641                 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
642                                          map->m_len);
643                 if (err)
644                         return err;
645         }
646
647         /*
648          * If the extent has been zeroed out, we don't need to update
649          * extent status tree.
650          */
651         if (flags & EXT4_GET_BLOCKS_PRE_IO &&
652             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
653                 if (ext4_es_is_written(&es))
654                         return retval;
655         }
656
657         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658                         EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659         ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
660                               status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
661
662         return retval;
663 }
664
665 /*
666  * The ext4_map_blocks() function tries to look up the requested blocks,
667  * and returns if the blocks are already mapped.
668  *
669  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
670  * and store the allocated blocks in the result buffer head and mark it
671  * mapped.
672  *
673  * If file type is extents based, it will call ext4_ext_map_blocks(),
674  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
675  * based files
676  *
677  * On success, it returns the number of blocks being mapped or allocated.
678  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
679  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
680  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
681  *
682  * It returns 0 if plain look up failed (blocks have not been allocated), in
683  * that case, @map is returned as unmapped but we still do fill map->m_len to
684  * indicate the length of a hole starting at map->m_lblk.
685  *
686  * It returns the error in case of allocation failure.
687  */
688 int ext4_map_blocks(handle_t *handle, struct inode *inode,
689                     struct ext4_map_blocks *map, int flags)
690 {
691         struct extent_status es;
692         int retval;
693         int ret = 0;
694         unsigned int orig_mlen = map->m_len;
695 #ifdef ES_AGGRESSIVE_TEST
696         struct ext4_map_blocks orig_map;
697
698         memcpy(&orig_map, map, sizeof(*map));
699 #endif
700
701         map->m_flags = 0;
702         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
703                   flags, map->m_len, (unsigned long) map->m_lblk);
704
705         /*
706          * ext4_map_blocks returns an int, and m_len is an unsigned int
707          */
708         if (unlikely(map->m_len > INT_MAX))
709                 map->m_len = INT_MAX;
710
711         /* We can handle the block number less than EXT_MAX_BLOCKS */
712         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
713                 return -EFSCORRUPTED;
714
715         /*
716          * Callers from the context of data submission are the only exceptions
717          * for regular files that do not hold the i_rwsem or invalidate_lock.
718          * However, caching unrelated ranges is not permitted.
719          */
720         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721                 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE));
722         else
723                 ext4_check_map_extents_env(inode);
724
725         /* Lookup extent status tree firstly */
726         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
727             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
728                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
729                         map->m_pblk = ext4_es_pblock(&es) +
730                                         map->m_lblk - es.es_lblk;
731                         map->m_flags |= ext4_es_is_written(&es) ?
732                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
733                         retval = es.es_len - (map->m_lblk - es.es_lblk);
734                         if (retval > map->m_len)
735                                 retval = map->m_len;
736                         map->m_len = retval;
737                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
738                         map->m_pblk = 0;
739                         map->m_flags |= ext4_es_is_delayed(&es) ?
740                                         EXT4_MAP_DELAYED : 0;
741                         retval = es.es_len - (map->m_lblk - es.es_lblk);
742                         if (retval > map->m_len)
743                                 retval = map->m_len;
744                         map->m_len = retval;
745                         retval = 0;
746                 } else {
747                         BUG();
748                 }
749
750                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
751                         return retval;
752 #ifdef ES_AGGRESSIVE_TEST
753                 ext4_map_blocks_es_recheck(handle, inode, map,
754                                            &orig_map, flags);
755 #endif
756                 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) ||
757                                 orig_mlen == map->m_len)
758                         goto found;
759
760                 if (flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF)
761                         map->m_len = orig_mlen;
762         }
763         /*
764          * In the query cache no-wait mode, nothing we can do more if we
765          * cannot find extent in the cache.
766          */
767         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
768                 return 0;
769
770         /*
771          * Try to see if we can get the block without requesting a new
772          * file system block.
773          */
774         down_read(&EXT4_I(inode)->i_data_sem);
775         retval = ext4_map_query_blocks(handle, inode, map, flags);
776         up_read((&EXT4_I(inode)->i_data_sem));
777
778 found:
779         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
780                 ret = check_block_validity(inode, map);
781                 if (ret != 0)
782                         return ret;
783         }
784
785         /* If it is only a block(s) look up */
786         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
787                 return retval;
788
789         /*
790          * Returns if the blocks have already allocated
791          *
792          * Note that if blocks have been preallocated
793          * ext4_ext_map_blocks() returns with buffer head unmapped
794          */
795         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
796                 /*
797                  * If we need to convert extent to unwritten
798                  * we continue and do the actual work in
799                  * ext4_ext_map_blocks()
800                  */
801                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
802                         return retval;
803
804
805         ext4_fc_track_inode(handle, inode);
806         /*
807          * New blocks allocate and/or writing to unwritten extent
808          * will possibly result in updating i_data, so we take
809          * the write lock of i_data_sem, and call get_block()
810          * with create == 1 flag.
811          */
812         down_write(&EXT4_I(inode)->i_data_sem);
813         retval = ext4_map_create_blocks(handle, inode, map, flags);
814         up_write((&EXT4_I(inode)->i_data_sem));
815         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
816                 ret = check_block_validity(inode, map);
817                 if (ret != 0)
818                         return ret;
819
820                 /*
821                  * Inodes with freshly allocated blocks where contents will be
822                  * visible after transaction commit must be on transaction's
823                  * ordered data list.
824                  */
825                 if (map->m_flags & EXT4_MAP_NEW &&
826                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
827                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
828                     !ext4_is_quota_file(inode) &&
829                     ext4_should_order_data(inode)) {
830                         loff_t start_byte =
831                                 (loff_t)map->m_lblk << inode->i_blkbits;
832                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
833
834                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
835                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
836                                                 start_byte, length);
837                         else
838                                 ret = ext4_jbd2_inode_add_write(handle, inode,
839                                                 start_byte, length);
840                         if (ret)
841                                 return ret;
842                 }
843         }
844         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
845                                 map->m_flags & EXT4_MAP_MAPPED))
846                 ext4_fc_track_range(handle, inode, map->m_lblk,
847                                         map->m_lblk + map->m_len - 1);
848         if (retval < 0)
849                 ext_debug(inode, "failed with err %d\n", retval);
850         return retval;
851 }
852
853 /*
854  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
855  * we have to be careful as someone else may be manipulating b_state as well.
856  */
857 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
858 {
859         unsigned long old_state;
860         unsigned long new_state;
861
862         flags &= EXT4_MAP_FLAGS;
863
864         /* Dummy buffer_head? Set non-atomically. */
865         if (!bh->b_folio) {
866                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
867                 return;
868         }
869         /*
870          * Someone else may be modifying b_state. Be careful! This is ugly but
871          * once we get rid of using bh as a container for mapping information
872          * to pass to / from get_block functions, this can go away.
873          */
874         old_state = READ_ONCE(bh->b_state);
875         do {
876                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
877         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
878 }
879
880 static int _ext4_get_block(struct inode *inode, sector_t iblock,
881                            struct buffer_head *bh, int flags)
882 {
883         struct ext4_map_blocks map;
884         int ret = 0;
885
886         if (ext4_has_inline_data(inode))
887                 return -ERANGE;
888
889         map.m_lblk = iblock;
890         map.m_len = bh->b_size >> inode->i_blkbits;
891
892         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
893                               flags);
894         if (ret > 0) {
895                 map_bh(bh, inode->i_sb, map.m_pblk);
896                 ext4_update_bh_state(bh, map.m_flags);
897                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
898                 ret = 0;
899         } else if (ret == 0) {
900                 /* hole case, need to fill in bh->b_size */
901                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
902         }
903         return ret;
904 }
905
906 int ext4_get_block(struct inode *inode, sector_t iblock,
907                    struct buffer_head *bh, int create)
908 {
909         return _ext4_get_block(inode, iblock, bh,
910                                create ? EXT4_GET_BLOCKS_CREATE : 0);
911 }
912
913 /*
914  * Get block function used when preparing for buffered write if we require
915  * creating an unwritten extent if blocks haven't been allocated.  The extent
916  * will be converted to written after the IO is complete.
917  */
918 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
919                              struct buffer_head *bh_result, int create)
920 {
921         int ret = 0;
922
923         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
924                    inode->i_ino, create);
925         ret = _ext4_get_block(inode, iblock, bh_result,
926                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
927
928         /*
929          * If the buffer is marked unwritten, mark it as new to make sure it is
930          * zeroed out correctly in case of partial writes. Otherwise, there is
931          * a chance of stale data getting exposed.
932          */
933         if (ret == 0 && buffer_unwritten(bh_result))
934                 set_buffer_new(bh_result);
935
936         return ret;
937 }
938
939 /* Maximum number of blocks we map for direct IO at once. */
940 #define DIO_MAX_BLOCKS 4096
941
942 /*
943  * `handle' can be NULL if create is zero
944  */
945 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
946                                 ext4_lblk_t block, int map_flags)
947 {
948         struct ext4_map_blocks map;
949         struct buffer_head *bh;
950         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
951         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
952         int err;
953
954         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
955                     || handle != NULL || create == 0);
956         ASSERT(create == 0 || !nowait);
957
958         map.m_lblk = block;
959         map.m_len = 1;
960         err = ext4_map_blocks(handle, inode, &map, map_flags);
961
962         if (err == 0)
963                 return create ? ERR_PTR(-ENOSPC) : NULL;
964         if (err < 0)
965                 return ERR_PTR(err);
966
967         if (nowait)
968                 return sb_find_get_block(inode->i_sb, map.m_pblk);
969
970         /*
971          * Since bh could introduce extra ref count such as referred by
972          * journal_head etc. Try to avoid using __GFP_MOVABLE here
973          * as it may fail the migration when journal_head remains.
974          */
975         bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
976                                 inode->i_sb->s_blocksize);
977
978         if (unlikely(!bh))
979                 return ERR_PTR(-ENOMEM);
980         if (map.m_flags & EXT4_MAP_NEW) {
981                 ASSERT(create != 0);
982                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
983                             || (handle != NULL));
984
985                 /*
986                  * Now that we do not always journal data, we should
987                  * keep in mind whether this should always journal the
988                  * new buffer as metadata.  For now, regular file
989                  * writes use ext4_get_block instead, so it's not a
990                  * problem.
991                  */
992                 lock_buffer(bh);
993                 BUFFER_TRACE(bh, "call get_create_access");
994                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
995                                                      EXT4_JTR_NONE);
996                 if (unlikely(err)) {
997                         unlock_buffer(bh);
998                         goto errout;
999                 }
1000                 if (!buffer_uptodate(bh)) {
1001                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1002                         set_buffer_uptodate(bh);
1003                 }
1004                 unlock_buffer(bh);
1005                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1006                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1007                 if (unlikely(err))
1008                         goto errout;
1009         } else
1010                 BUFFER_TRACE(bh, "not a new buffer");
1011         return bh;
1012 errout:
1013         brelse(bh);
1014         return ERR_PTR(err);
1015 }
1016
1017 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1018                                ext4_lblk_t block, int map_flags)
1019 {
1020         struct buffer_head *bh;
1021         int ret;
1022
1023         bh = ext4_getblk(handle, inode, block, map_flags);
1024         if (IS_ERR(bh))
1025                 return bh;
1026         if (!bh || ext4_buffer_uptodate(bh))
1027                 return bh;
1028
1029         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
1030         if (ret) {
1031                 put_bh(bh);
1032                 return ERR_PTR(ret);
1033         }
1034         return bh;
1035 }
1036
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039                      bool wait, struct buffer_head **bhs)
1040 {
1041         int i, err;
1042
1043         for (i = 0; i < bh_count; i++) {
1044                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045                 if (IS_ERR(bhs[i])) {
1046                         err = PTR_ERR(bhs[i]);
1047                         bh_count = i;
1048                         goto out_brelse;
1049                 }
1050         }
1051
1052         for (i = 0; i < bh_count; i++)
1053                 /* Note that NULL bhs[i] is valid because of holes. */
1054                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
1056
1057         if (!wait)
1058                 return 0;
1059
1060         for (i = 0; i < bh_count; i++)
1061                 if (bhs[i])
1062                         wait_on_buffer(bhs[i]);
1063
1064         for (i = 0; i < bh_count; i++) {
1065                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1066                         err = -EIO;
1067                         goto out_brelse;
1068                 }
1069         }
1070         return 0;
1071
1072 out_brelse:
1073         for (i = 0; i < bh_count; i++) {
1074                 brelse(bhs[i]);
1075                 bhs[i] = NULL;
1076         }
1077         return err;
1078 }
1079
1080 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
1081                            struct buffer_head *head,
1082                            unsigned from,
1083                            unsigned to,
1084                            int *partial,
1085                            int (*fn)(handle_t *handle, struct inode *inode,
1086                                      struct buffer_head *bh))
1087 {
1088         struct buffer_head *bh;
1089         unsigned block_start, block_end;
1090         unsigned blocksize = head->b_size;
1091         int err, ret = 0;
1092         struct buffer_head *next;
1093
1094         for (bh = head, block_start = 0;
1095              ret == 0 && (bh != head || !block_start);
1096              block_start = block_end, bh = next) {
1097                 next = bh->b_this_page;
1098                 block_end = block_start + blocksize;
1099                 if (block_end <= from || block_start >= to) {
1100                         if (partial && !buffer_uptodate(bh))
1101                                 *partial = 1;
1102                         continue;
1103                 }
1104                 err = (*fn)(handle, inode, bh);
1105                 if (!ret)
1106                         ret = err;
1107         }
1108         return ret;
1109 }
1110
1111 /*
1112  * Helper for handling dirtying of journalled data. We also mark the folio as
1113  * dirty so that writeback code knows about this page (and inode) contains
1114  * dirty data. ext4_writepages() then commits appropriate transaction to
1115  * make data stable.
1116  */
1117 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1118 {
1119         struct folio *folio = bh->b_folio;
1120         struct inode *inode = folio->mapping->host;
1121
1122         /* only regular files have a_ops */
1123         if (S_ISREG(inode->i_mode))
1124                 folio_mark_dirty(folio);
1125         return ext4_handle_dirty_metadata(handle, NULL, bh);
1126 }
1127
1128 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1129                                 struct buffer_head *bh)
1130 {
1131         if (!buffer_mapped(bh) || buffer_freed(bh))
1132                 return 0;
1133         BUFFER_TRACE(bh, "get write access");
1134         return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1135                                             EXT4_JTR_NONE);
1136 }
1137
1138 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1139                            loff_t pos, unsigned len,
1140                            get_block_t *get_block)
1141 {
1142         unsigned int from = offset_in_folio(folio, pos);
1143         unsigned to = from + len;
1144         struct inode *inode = folio->mapping->host;
1145         unsigned block_start, block_end;
1146         sector_t block;
1147         int err = 0;
1148         unsigned blocksize = inode->i_sb->s_blocksize;
1149         unsigned bbits;
1150         struct buffer_head *bh, *head, *wait[2];
1151         int nr_wait = 0;
1152         int i;
1153         bool should_journal_data = ext4_should_journal_data(inode);
1154
1155         BUG_ON(!folio_test_locked(folio));
1156         BUG_ON(to > folio_size(folio));
1157         BUG_ON(from > to);
1158
1159         head = folio_buffers(folio);
1160         if (!head)
1161                 head = create_empty_buffers(folio, blocksize, 0);
1162         bbits = ilog2(blocksize);
1163         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1164
1165         for (bh = head, block_start = 0; bh != head || !block_start;
1166             block++, block_start = block_end, bh = bh->b_this_page) {
1167                 block_end = block_start + blocksize;
1168                 if (block_end <= from || block_start >= to) {
1169                         if (folio_test_uptodate(folio)) {
1170                                 set_buffer_uptodate(bh);
1171                         }
1172                         continue;
1173                 }
1174                 if (buffer_new(bh))
1175                         clear_buffer_new(bh);
1176                 if (!buffer_mapped(bh)) {
1177                         WARN_ON(bh->b_size != blocksize);
1178                         err = get_block(inode, block, bh, 1);
1179                         if (err)
1180                                 break;
1181                         if (buffer_new(bh)) {
1182                                 /*
1183                                  * We may be zeroing partial buffers or all new
1184                                  * buffers in case of failure. Prepare JBD2 for
1185                                  * that.
1186                                  */
1187                                 if (should_journal_data)
1188                                         do_journal_get_write_access(handle,
1189                                                                     inode, bh);
1190                                 if (folio_test_uptodate(folio)) {
1191                                         /*
1192                                          * Unlike __block_write_begin() we leave
1193                                          * dirtying of new uptodate buffers to
1194                                          * ->write_end() time or
1195                                          * folio_zero_new_buffers().
1196                                          */
1197                                         set_buffer_uptodate(bh);
1198                                         continue;
1199                                 }
1200                                 if (block_end > to || block_start < from)
1201                                         folio_zero_segments(folio, to,
1202                                                             block_end,
1203                                                             block_start, from);
1204                                 continue;
1205                         }
1206                 }
1207                 if (folio_test_uptodate(folio)) {
1208                         set_buffer_uptodate(bh);
1209                         continue;
1210                 }
1211                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1212                     !buffer_unwritten(bh) &&
1213                     (block_start < from || block_end > to)) {
1214                         ext4_read_bh_lock(bh, 0, false);
1215                         wait[nr_wait++] = bh;
1216                 }
1217         }
1218         /*
1219          * If we issued read requests, let them complete.
1220          */
1221         for (i = 0; i < nr_wait; i++) {
1222                 wait_on_buffer(wait[i]);
1223                 if (!buffer_uptodate(wait[i]))
1224                         err = -EIO;
1225         }
1226         if (unlikely(err)) {
1227                 if (should_journal_data)
1228                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1229                                                          from, to);
1230                 else
1231                         folio_zero_new_buffers(folio, from, to);
1232         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1233                 for (i = 0; i < nr_wait; i++) {
1234                         int err2;
1235
1236                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1237                                                 blocksize, bh_offset(wait[i]));
1238                         if (err2) {
1239                                 clear_buffer_uptodate(wait[i]);
1240                                 err = err2;
1241                         }
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /*
1249  * To preserve ordering, it is essential that the hole instantiation and
1250  * the data write be encapsulated in a single transaction.  We cannot
1251  * close off a transaction and start a new one between the ext4_get_block()
1252  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1253  * ext4_write_begin() is the right place.
1254  */
1255 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1256                             loff_t pos, unsigned len,
1257                             struct folio **foliop, void **fsdata)
1258 {
1259         struct inode *inode = mapping->host;
1260         int ret, needed_blocks;
1261         handle_t *handle;
1262         int retries = 0;
1263         struct folio *folio;
1264         pgoff_t index;
1265         unsigned from, to;
1266         fgf_t fgp = FGP_WRITEBEGIN;
1267
1268         ret = ext4_emergency_state(inode->i_sb);
1269         if (unlikely(ret))
1270                 return ret;
1271
1272         trace_ext4_write_begin(inode, pos, len);
1273         /*
1274          * Reserve one block more for addition to orphan list in case
1275          * we allocate blocks but write fails for some reason
1276          */
1277         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278         index = pos >> PAGE_SHIFT;
1279
1280         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1281                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1282                                                     foliop);
1283                 if (ret < 0)
1284                         return ret;
1285                 if (ret == 1)
1286                         return 0;
1287         }
1288
1289         /*
1290          * __filemap_get_folio() can take a long time if the
1291          * system is thrashing due to memory pressure, or if the folio
1292          * is being written back.  So grab it first before we start
1293          * the transaction handle.  This also allows us to allocate
1294          * the folio (if needed) without using GFP_NOFS.
1295          */
1296 retry_grab:
1297         fgp |= fgf_set_order(len);
1298         folio = __filemap_get_folio(mapping, index, fgp,
1299                                     mapping_gfp_mask(mapping));
1300         if (IS_ERR(folio))
1301                 return PTR_ERR(folio);
1302
1303         if (pos + len > folio_pos(folio) + folio_size(folio))
1304                 len = folio_pos(folio) + folio_size(folio) - pos;
1305
1306         from = offset_in_folio(folio, pos);
1307         to = from + len;
1308
1309         /*
1310          * The same as page allocation, we prealloc buffer heads before
1311          * starting the handle.
1312          */
1313         if (!folio_buffers(folio))
1314                 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1315
1316         folio_unlock(folio);
1317
1318 retry_journal:
1319         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1320         if (IS_ERR(handle)) {
1321                 folio_put(folio);
1322                 return PTR_ERR(handle);
1323         }
1324
1325         folio_lock(folio);
1326         if (folio->mapping != mapping) {
1327                 /* The folio got truncated from under us */
1328                 folio_unlock(folio);
1329                 folio_put(folio);
1330                 ext4_journal_stop(handle);
1331                 goto retry_grab;
1332         }
1333         /* In case writeback began while the folio was unlocked */
1334         folio_wait_stable(folio);
1335
1336         if (ext4_should_dioread_nolock(inode))
1337                 ret = ext4_block_write_begin(handle, folio, pos, len,
1338                                              ext4_get_block_unwritten);
1339         else
1340                 ret = ext4_block_write_begin(handle, folio, pos, len,
1341                                              ext4_get_block);
1342         if (!ret && ext4_should_journal_data(inode)) {
1343                 ret = ext4_walk_page_buffers(handle, inode,
1344                                              folio_buffers(folio), from, to,
1345                                              NULL, do_journal_get_write_access);
1346         }
1347
1348         if (ret) {
1349                 bool extended = (pos + len > inode->i_size) &&
1350                                 !ext4_verity_in_progress(inode);
1351
1352                 folio_unlock(folio);
1353                 /*
1354                  * ext4_block_write_begin may have instantiated a few blocks
1355                  * outside i_size.  Trim these off again. Don't need
1356                  * i_size_read because we hold i_rwsem.
1357                  *
1358                  * Add inode to orphan list in case we crash before
1359                  * truncate finishes
1360                  */
1361                 if (extended && ext4_can_truncate(inode))
1362                         ext4_orphan_add(handle, inode);
1363
1364                 ext4_journal_stop(handle);
1365                 if (extended) {
1366                         ext4_truncate_failed_write(inode);
1367                         /*
1368                          * If truncate failed early the inode might
1369                          * still be on the orphan list; we need to
1370                          * make sure the inode is removed from the
1371                          * orphan list in that case.
1372                          */
1373                         if (inode->i_nlink)
1374                                 ext4_orphan_del(NULL, inode);
1375                 }
1376
1377                 if (ret == -ENOSPC &&
1378                     ext4_should_retry_alloc(inode->i_sb, &retries))
1379                         goto retry_journal;
1380                 folio_put(folio);
1381                 return ret;
1382         }
1383         *foliop = folio;
1384         return ret;
1385 }
1386
1387 /* For write_end() in data=journal mode */
1388 static int write_end_fn(handle_t *handle, struct inode *inode,
1389                         struct buffer_head *bh)
1390 {
1391         int ret;
1392         if (!buffer_mapped(bh) || buffer_freed(bh))
1393                 return 0;
1394         set_buffer_uptodate(bh);
1395         ret = ext4_dirty_journalled_data(handle, bh);
1396         clear_buffer_meta(bh);
1397         clear_buffer_prio(bh);
1398         return ret;
1399 }
1400
1401 /*
1402  * We need to pick up the new inode size which generic_commit_write gave us
1403  * `file' can be NULL - eg, when called from page_symlink().
1404  *
1405  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1406  * buffers are managed internally.
1407  */
1408 static int ext4_write_end(struct file *file,
1409                           struct address_space *mapping,
1410                           loff_t pos, unsigned len, unsigned copied,
1411                           struct folio *folio, void *fsdata)
1412 {
1413         handle_t *handle = ext4_journal_current_handle();
1414         struct inode *inode = mapping->host;
1415         loff_t old_size = inode->i_size;
1416         int ret = 0, ret2;
1417         int i_size_changed = 0;
1418         bool verity = ext4_verity_in_progress(inode);
1419
1420         trace_ext4_write_end(inode, pos, len, copied);
1421
1422         if (ext4_has_inline_data(inode) &&
1423             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1424                 return ext4_write_inline_data_end(inode, pos, len, copied,
1425                                                   folio);
1426
1427         copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1428         /*
1429          * it's important to update i_size while still holding folio lock:
1430          * page writeout could otherwise come in and zero beyond i_size.
1431          *
1432          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1433          * blocks are being written past EOF, so skip the i_size update.
1434          */
1435         if (!verity)
1436                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1437         folio_unlock(folio);
1438         folio_put(folio);
1439
1440         if (old_size < pos && !verity) {
1441                 pagecache_isize_extended(inode, old_size, pos);
1442                 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1443         }
1444         /*
1445          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1446          * makes the holding time of folio lock longer. Second, it forces lock
1447          * ordering of folio lock and transaction start for journaling
1448          * filesystems.
1449          */
1450         if (i_size_changed)
1451                 ret = ext4_mark_inode_dirty(handle, inode);
1452
1453         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1454                 /* if we have allocated more blocks and copied
1455                  * less. We will have blocks allocated outside
1456                  * inode->i_size. So truncate them
1457                  */
1458                 ext4_orphan_add(handle, inode);
1459
1460         ret2 = ext4_journal_stop(handle);
1461         if (!ret)
1462                 ret = ret2;
1463
1464         if (pos + len > inode->i_size && !verity) {
1465                 ext4_truncate_failed_write(inode);
1466                 /*
1467                  * If truncate failed early the inode might still be
1468                  * on the orphan list; we need to make sure the inode
1469                  * is removed from the orphan list in that case.
1470                  */
1471                 if (inode->i_nlink)
1472                         ext4_orphan_del(NULL, inode);
1473         }
1474
1475         return ret ? ret : copied;
1476 }
1477
1478 /*
1479  * This is a private version of folio_zero_new_buffers() which doesn't
1480  * set the buffer to be dirty, since in data=journalled mode we need
1481  * to call ext4_dirty_journalled_data() instead.
1482  */
1483 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1484                                             struct inode *inode,
1485                                             struct folio *folio,
1486                                             unsigned from, unsigned to)
1487 {
1488         unsigned int block_start = 0, block_end;
1489         struct buffer_head *head, *bh;
1490
1491         bh = head = folio_buffers(folio);
1492         do {
1493                 block_end = block_start + bh->b_size;
1494                 if (buffer_new(bh)) {
1495                         if (block_end > from && block_start < to) {
1496                                 if (!folio_test_uptodate(folio)) {
1497                                         unsigned start, size;
1498
1499                                         start = max(from, block_start);
1500                                         size = min(to, block_end) - start;
1501
1502                                         folio_zero_range(folio, start, size);
1503                                 }
1504                                 clear_buffer_new(bh);
1505                                 write_end_fn(handle, inode, bh);
1506                         }
1507                 }
1508                 block_start = block_end;
1509                 bh = bh->b_this_page;
1510         } while (bh != head);
1511 }
1512
1513 static int ext4_journalled_write_end(struct file *file,
1514                                      struct address_space *mapping,
1515                                      loff_t pos, unsigned len, unsigned copied,
1516                                      struct folio *folio, void *fsdata)
1517 {
1518         handle_t *handle = ext4_journal_current_handle();
1519         struct inode *inode = mapping->host;
1520         loff_t old_size = inode->i_size;
1521         int ret = 0, ret2;
1522         int partial = 0;
1523         unsigned from, to;
1524         int size_changed = 0;
1525         bool verity = ext4_verity_in_progress(inode);
1526
1527         trace_ext4_journalled_write_end(inode, pos, len, copied);
1528         from = pos & (PAGE_SIZE - 1);
1529         to = from + len;
1530
1531         BUG_ON(!ext4_handle_valid(handle));
1532
1533         if (ext4_has_inline_data(inode))
1534                 return ext4_write_inline_data_end(inode, pos, len, copied,
1535                                                   folio);
1536
1537         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1538                 copied = 0;
1539                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1540                                                  from, to);
1541         } else {
1542                 if (unlikely(copied < len))
1543                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1544                                                          from + copied, to);
1545                 ret = ext4_walk_page_buffers(handle, inode,
1546                                              folio_buffers(folio),
1547                                              from, from + copied, &partial,
1548                                              write_end_fn);
1549                 if (!partial)
1550                         folio_mark_uptodate(folio);
1551         }
1552         if (!verity)
1553                 size_changed = ext4_update_inode_size(inode, pos + copied);
1554         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1555         folio_unlock(folio);
1556         folio_put(folio);
1557
1558         if (old_size < pos && !verity) {
1559                 pagecache_isize_extended(inode, old_size, pos);
1560                 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1561         }
1562
1563         if (size_changed) {
1564                 ret2 = ext4_mark_inode_dirty(handle, inode);
1565                 if (!ret)
1566                         ret = ret2;
1567         }
1568
1569         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1570                 /* if we have allocated more blocks and copied
1571                  * less. We will have blocks allocated outside
1572                  * inode->i_size. So truncate them
1573                  */
1574                 ext4_orphan_add(handle, inode);
1575
1576         ret2 = ext4_journal_stop(handle);
1577         if (!ret)
1578                 ret = ret2;
1579         if (pos + len > inode->i_size && !verity) {
1580                 ext4_truncate_failed_write(inode);
1581                 /*
1582                  * If truncate failed early the inode might still be
1583                  * on the orphan list; we need to make sure the inode
1584                  * is removed from the orphan list in that case.
1585                  */
1586                 if (inode->i_nlink)
1587                         ext4_orphan_del(NULL, inode);
1588         }
1589
1590         return ret ? ret : copied;
1591 }
1592
1593 /*
1594  * Reserve space for 'nr_resv' clusters
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1597 {
1598         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599         struct ext4_inode_info *ei = EXT4_I(inode);
1600         int ret;
1601
1602         /*
1603          * We will charge metadata quota at writeout time; this saves
1604          * us from metadata over-estimation, though we may go over by
1605          * a small amount in the end.  Here we just reserve for data.
1606          */
1607         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1608         if (ret)
1609                 return ret;
1610
1611         spin_lock(&ei->i_block_reservation_lock);
1612         if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1613                 spin_unlock(&ei->i_block_reservation_lock);
1614                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1615                 return -ENOSPC;
1616         }
1617         ei->i_reserved_data_blocks += nr_resv;
1618         trace_ext4_da_reserve_space(inode, nr_resv);
1619         spin_unlock(&ei->i_block_reservation_lock);
1620
1621         return 0;       /* success */
1622 }
1623
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627         struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629         if (!to_free)
1630                 return;         /* Nothing to release, exit */
1631
1632         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633
1634         trace_ext4_da_release_space(inode, to_free);
1635         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636                 /*
1637                  * if there aren't enough reserved blocks, then the
1638                  * counter is messed up somewhere.  Since this
1639                  * function is called from invalidate page, it's
1640                  * harmless to return without any action.
1641                  */
1642                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643                          "ino %lu, to_free %d with only %d reserved "
1644                          "data blocks", inode->i_ino, to_free,
1645                          ei->i_reserved_data_blocks);
1646                 WARN_ON(1);
1647                 to_free = ei->i_reserved_data_blocks;
1648         }
1649         ei->i_reserved_data_blocks -= to_free;
1650
1651         /* update fs dirty data blocks counter */
1652         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653
1654         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658
1659 /*
1660  * Delayed allocation stuff
1661  */
1662
1663 struct mpage_da_data {
1664         /* These are input fields for ext4_do_writepages() */
1665         struct inode *inode;
1666         struct writeback_control *wbc;
1667         unsigned int can_map:1; /* Can writepages call map blocks? */
1668
1669         /* These are internal state of ext4_do_writepages() */
1670         pgoff_t first_page;     /* The first page to write */
1671         pgoff_t next_page;      /* Current page to examine */
1672         pgoff_t last_page;      /* Last page to examine */
1673         /*
1674          * Extent to map - this can be after first_page because that can be
1675          * fully mapped. We somewhat abuse m_flags to store whether the extent
1676          * is delalloc or unwritten.
1677          */
1678         struct ext4_map_blocks map;
1679         struct ext4_io_submit io_submit;        /* IO submission data */
1680         unsigned int do_map:1;
1681         unsigned int scanned_until_end:1;
1682         unsigned int journalled_more_data:1;
1683 };
1684
1685 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1686                                        bool invalidate)
1687 {
1688         unsigned nr, i;
1689         pgoff_t index, end;
1690         struct folio_batch fbatch;
1691         struct inode *inode = mpd->inode;
1692         struct address_space *mapping = inode->i_mapping;
1693
1694         /* This is necessary when next_page == 0. */
1695         if (mpd->first_page >= mpd->next_page)
1696                 return;
1697
1698         mpd->scanned_until_end = 0;
1699         index = mpd->first_page;
1700         end   = mpd->next_page - 1;
1701         if (invalidate) {
1702                 ext4_lblk_t start, last;
1703                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1704                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1705
1706                 /*
1707                  * avoid racing with extent status tree scans made by
1708                  * ext4_insert_delayed_block()
1709                  */
1710                 down_write(&EXT4_I(inode)->i_data_sem);
1711                 ext4_es_remove_extent(inode, start, last - start + 1);
1712                 up_write(&EXT4_I(inode)->i_data_sem);
1713         }
1714
1715         folio_batch_init(&fbatch);
1716         while (index <= end) {
1717                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1718                 if (nr == 0)
1719                         break;
1720                 for (i = 0; i < nr; i++) {
1721                         struct folio *folio = fbatch.folios[i];
1722
1723                         if (folio->index < mpd->first_page)
1724                                 continue;
1725                         if (folio_next_index(folio) - 1 > end)
1726                                 continue;
1727                         BUG_ON(!folio_test_locked(folio));
1728                         BUG_ON(folio_test_writeback(folio));
1729                         if (invalidate) {
1730                                 if (folio_mapped(folio))
1731                                         folio_clear_dirty_for_io(folio);
1732                                 block_invalidate_folio(folio, 0,
1733                                                 folio_size(folio));
1734                                 folio_clear_uptodate(folio);
1735                         }
1736                         folio_unlock(folio);
1737                 }
1738                 folio_batch_release(&fbatch);
1739         }
1740 }
1741
1742 static void ext4_print_free_blocks(struct inode *inode)
1743 {
1744         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1745         struct super_block *sb = inode->i_sb;
1746         struct ext4_inode_info *ei = EXT4_I(inode);
1747
1748         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1749                EXT4_C2B(EXT4_SB(inode->i_sb),
1750                         ext4_count_free_clusters(sb)));
1751         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1752         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1753                (long long) EXT4_C2B(EXT4_SB(sb),
1754                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1755         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1756                (long long) EXT4_C2B(EXT4_SB(sb),
1757                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1758         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1759         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1760                  ei->i_reserved_data_blocks);
1761         return;
1762 }
1763
1764 /*
1765  * Check whether the cluster containing lblk has been allocated or has
1766  * delalloc reservation.
1767  *
1768  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1769  * reservation, 2 if it's already been allocated, negative error code on
1770  * failure.
1771  */
1772 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1773 {
1774         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1775         int ret;
1776
1777         /* Has delalloc reservation? */
1778         if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1779                 return 1;
1780
1781         /* Already been allocated? */
1782         if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1783                 return 2;
1784         ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1785         if (ret < 0)
1786                 return ret;
1787         if (ret > 0)
1788                 return 2;
1789
1790         return 0;
1791 }
1792
1793 /*
1794  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1795  *                              status tree, incrementing the reserved
1796  *                              cluster/block count or making pending
1797  *                              reservations where needed
1798  *
1799  * @inode - file containing the newly added block
1800  * @lblk - start logical block to be added
1801  * @len - length of blocks to be added
1802  *
1803  * Returns 0 on success, negative error code on failure.
1804  */
1805 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1806                                       ext4_lblk_t len)
1807 {
1808         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1809         int ret;
1810         bool lclu_allocated = false;
1811         bool end_allocated = false;
1812         ext4_lblk_t resv_clu;
1813         ext4_lblk_t end = lblk + len - 1;
1814
1815         /*
1816          * If the cluster containing lblk or end is shared with a delayed,
1817          * written, or unwritten extent in a bigalloc file system, it's
1818          * already been accounted for and does not need to be reserved.
1819          * A pending reservation must be made for the cluster if it's
1820          * shared with a written or unwritten extent and doesn't already
1821          * have one.  Written and unwritten extents can be purged from the
1822          * extents status tree if the system is under memory pressure, so
1823          * it's necessary to examine the extent tree if a search of the
1824          * extents status tree doesn't get a match.
1825          */
1826         if (sbi->s_cluster_ratio == 1) {
1827                 ret = ext4_da_reserve_space(inode, len);
1828                 if (ret != 0)   /* ENOSPC */
1829                         return ret;
1830         } else {   /* bigalloc */
1831                 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1832
1833                 ret = ext4_clu_alloc_state(inode, lblk);
1834                 if (ret < 0)
1835                         return ret;
1836                 if (ret > 0) {
1837                         resv_clu--;
1838                         lclu_allocated = (ret == 2);
1839                 }
1840
1841                 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1842                         ret = ext4_clu_alloc_state(inode, end);
1843                         if (ret < 0)
1844                                 return ret;
1845                         if (ret > 0) {
1846                                 resv_clu--;
1847                                 end_allocated = (ret == 2);
1848                         }
1849                 }
1850
1851                 if (resv_clu) {
1852                         ret = ext4_da_reserve_space(inode, resv_clu);
1853                         if (ret != 0)   /* ENOSPC */
1854                                 return ret;
1855                 }
1856         }
1857
1858         ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1859                                       end_allocated);
1860         return 0;
1861 }
1862
1863 /*
1864  * Looks up the requested blocks and sets the delalloc extent map.
1865  * First try to look up for the extent entry that contains the requested
1866  * blocks in the extent status tree without i_data_sem, then try to look
1867  * up for the ondisk extent mapping with i_data_sem in read mode,
1868  * finally hold i_data_sem in write mode, looks up again and add a
1869  * delalloc extent entry if it still couldn't find any extent. Pass out
1870  * the mapped extent through @map and return 0 on success.
1871  */
1872 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1873 {
1874         struct extent_status es;
1875         int retval;
1876 #ifdef ES_AGGRESSIVE_TEST
1877         struct ext4_map_blocks orig_map;
1878
1879         memcpy(&orig_map, map, sizeof(*map));
1880 #endif
1881
1882         map->m_flags = 0;
1883         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1884                   (unsigned long) map->m_lblk);
1885
1886         ext4_check_map_extents_env(inode);
1887
1888         /* Lookup extent status tree firstly */
1889         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1890                 map->m_len = min_t(unsigned int, map->m_len,
1891                                    es.es_len - (map->m_lblk - es.es_lblk));
1892
1893                 if (ext4_es_is_hole(&es))
1894                         goto add_delayed;
1895
1896 found:
1897                 /*
1898                  * Delayed extent could be allocated by fallocate.
1899                  * So we need to check it.
1900                  */
1901                 if (ext4_es_is_delayed(&es)) {
1902                         map->m_flags |= EXT4_MAP_DELAYED;
1903                         return 0;
1904                 }
1905
1906                 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1907                 if (ext4_es_is_written(&es))
1908                         map->m_flags |= EXT4_MAP_MAPPED;
1909                 else if (ext4_es_is_unwritten(&es))
1910                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1911                 else
1912                         BUG();
1913
1914 #ifdef ES_AGGRESSIVE_TEST
1915                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1916 #endif
1917                 return 0;
1918         }
1919
1920         /*
1921          * Try to see if we can get the block without requesting a new
1922          * file system block.
1923          */
1924         down_read(&EXT4_I(inode)->i_data_sem);
1925         if (ext4_has_inline_data(inode))
1926                 retval = 0;
1927         else
1928                 retval = ext4_map_query_blocks(NULL, inode, map, 0);
1929         up_read(&EXT4_I(inode)->i_data_sem);
1930         if (retval)
1931                 return retval < 0 ? retval : 0;
1932
1933 add_delayed:
1934         down_write(&EXT4_I(inode)->i_data_sem);
1935         /*
1936          * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1937          * and fallocate path (no folio lock) can race. Make sure we
1938          * lookup the extent status tree here again while i_data_sem
1939          * is held in write mode, before inserting a new da entry in
1940          * the extent status tree.
1941          */
1942         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1943                 map->m_len = min_t(unsigned int, map->m_len,
1944                                    es.es_len - (map->m_lblk - es.es_lblk));
1945
1946                 if (!ext4_es_is_hole(&es)) {
1947                         up_write(&EXT4_I(inode)->i_data_sem);
1948                         goto found;
1949                 }
1950         } else if (!ext4_has_inline_data(inode)) {
1951                 retval = ext4_map_query_blocks(NULL, inode, map, 0);
1952                 if (retval) {
1953                         up_write(&EXT4_I(inode)->i_data_sem);
1954                         return retval < 0 ? retval : 0;
1955                 }
1956         }
1957
1958         map->m_flags |= EXT4_MAP_DELAYED;
1959         retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1960         up_write(&EXT4_I(inode)->i_data_sem);
1961
1962         return retval;
1963 }
1964
1965 /*
1966  * This is a special get_block_t callback which is used by
1967  * ext4_da_write_begin().  It will either return mapped block or
1968  * reserve space for a single block.
1969  *
1970  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1971  * We also have b_blocknr = -1 and b_bdev initialized properly
1972  *
1973  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1974  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1975  * initialized properly.
1976  */
1977 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1978                            struct buffer_head *bh, int create)
1979 {
1980         struct ext4_map_blocks map;
1981         sector_t invalid_block = ~((sector_t) 0xffff);
1982         int ret = 0;
1983
1984         BUG_ON(create == 0);
1985         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1986
1987         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1988                 invalid_block = ~0;
1989
1990         map.m_lblk = iblock;
1991         map.m_len = 1;
1992
1993         /*
1994          * first, we need to know whether the block is allocated already
1995          * preallocated blocks are unmapped but should treated
1996          * the same as allocated blocks.
1997          */
1998         ret = ext4_da_map_blocks(inode, &map);
1999         if (ret < 0)
2000                 return ret;
2001
2002         if (map.m_flags & EXT4_MAP_DELAYED) {
2003                 map_bh(bh, inode->i_sb, invalid_block);
2004                 set_buffer_new(bh);
2005                 set_buffer_delay(bh);
2006                 return 0;
2007         }
2008
2009         map_bh(bh, inode->i_sb, map.m_pblk);
2010         ext4_update_bh_state(bh, map.m_flags);
2011
2012         if (buffer_unwritten(bh)) {
2013                 /* A delayed write to unwritten bh should be marked
2014                  * new and mapped.  Mapped ensures that we don't do
2015                  * get_block multiple times when we write to the same
2016                  * offset and new ensures that we do proper zero out
2017                  * for partial write.
2018                  */
2019                 set_buffer_new(bh);
2020                 set_buffer_mapped(bh);
2021         }
2022         return 0;
2023 }
2024
2025 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
2026 {
2027         mpd->first_page += folio_nr_pages(folio);
2028         folio_unlock(folio);
2029 }
2030
2031 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
2032 {
2033         size_t len;
2034         loff_t size;
2035         int err;
2036
2037         BUG_ON(folio->index != mpd->first_page);
2038         folio_clear_dirty_for_io(folio);
2039         /*
2040          * We have to be very careful here!  Nothing protects writeback path
2041          * against i_size changes and the page can be writeably mapped into
2042          * page tables. So an application can be growing i_size and writing
2043          * data through mmap while writeback runs. folio_clear_dirty_for_io()
2044          * write-protects our page in page tables and the page cannot get
2045          * written to again until we release folio lock. So only after
2046          * folio_clear_dirty_for_io() we are safe to sample i_size for
2047          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
2048          * on the barrier provided by folio_test_clear_dirty() in
2049          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
2050          * after page tables are updated.
2051          */
2052         size = i_size_read(mpd->inode);
2053         len = folio_size(folio);
2054         if (folio_pos(folio) + len > size &&
2055             !ext4_verity_in_progress(mpd->inode))
2056                 len = size & (len - 1);
2057         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
2058         if (!err)
2059                 mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2060
2061         return err;
2062 }
2063
2064 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2065
2066 /*
2067  * mballoc gives us at most this number of blocks...
2068  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2069  * The rest of mballoc seems to handle chunks up to full group size.
2070  */
2071 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2072
2073 /*
2074  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2075  *
2076  * @mpd - extent of blocks
2077  * @lblk - logical number of the block in the file
2078  * @bh - buffer head we want to add to the extent
2079  *
2080  * The function is used to collect contig. blocks in the same state. If the
2081  * buffer doesn't require mapping for writeback and we haven't started the
2082  * extent of buffers to map yet, the function returns 'true' immediately - the
2083  * caller can write the buffer right away. Otherwise the function returns true
2084  * if the block has been added to the extent, false if the block couldn't be
2085  * added.
2086  */
2087 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2088                                    struct buffer_head *bh)
2089 {
2090         struct ext4_map_blocks *map = &mpd->map;
2091
2092         /* Buffer that doesn't need mapping for writeback? */
2093         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2094             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2095                 /* So far no extent to map => we write the buffer right away */
2096                 if (map->m_len == 0)
2097                         return true;
2098                 return false;
2099         }
2100
2101         /* First block in the extent? */
2102         if (map->m_len == 0) {
2103                 /* We cannot map unless handle is started... */
2104                 if (!mpd->do_map)
2105                         return false;
2106                 map->m_lblk = lblk;
2107                 map->m_len = 1;
2108                 map->m_flags = bh->b_state & BH_FLAGS;
2109                 return true;
2110         }
2111
2112         /* Don't go larger than mballoc is willing to allocate */
2113         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2114                 return false;
2115
2116         /* Can we merge the block to our big extent? */
2117         if (lblk == map->m_lblk + map->m_len &&
2118             (bh->b_state & BH_FLAGS) == map->m_flags) {
2119                 map->m_len++;
2120                 return true;
2121         }
2122         return false;
2123 }
2124
2125 /*
2126  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2127  *
2128  * @mpd - extent of blocks for mapping
2129  * @head - the first buffer in the page
2130  * @bh - buffer we should start processing from
2131  * @lblk - logical number of the block in the file corresponding to @bh
2132  *
2133  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2134  * the page for IO if all buffers in this page were mapped and there's no
2135  * accumulated extent of buffers to map or add buffers in the page to the
2136  * extent of buffers to map. The function returns 1 if the caller can continue
2137  * by processing the next page, 0 if it should stop adding buffers to the
2138  * extent to map because we cannot extend it anymore. It can also return value
2139  * < 0 in case of error during IO submission.
2140  */
2141 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2142                                    struct buffer_head *head,
2143                                    struct buffer_head *bh,
2144                                    ext4_lblk_t lblk)
2145 {
2146         struct inode *inode = mpd->inode;
2147         int err;
2148         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2149                                                         >> inode->i_blkbits;
2150
2151         if (ext4_verity_in_progress(inode))
2152                 blocks = EXT_MAX_BLOCKS;
2153
2154         do {
2155                 BUG_ON(buffer_locked(bh));
2156
2157                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2158                         /* Found extent to map? */
2159                         if (mpd->map.m_len)
2160                                 return 0;
2161                         /* Buffer needs mapping and handle is not started? */
2162                         if (!mpd->do_map)
2163                                 return 0;
2164                         /* Everything mapped so far and we hit EOF */
2165                         break;
2166                 }
2167         } while (lblk++, (bh = bh->b_this_page) != head);
2168         /* So far everything mapped? Submit the page for IO. */
2169         if (mpd->map.m_len == 0) {
2170                 err = mpage_submit_folio(mpd, head->b_folio);
2171                 if (err < 0)
2172                         return err;
2173                 mpage_folio_done(mpd, head->b_folio);
2174         }
2175         if (lblk >= blocks) {
2176                 mpd->scanned_until_end = 1;
2177                 return 0;
2178         }
2179         return 1;
2180 }
2181
2182 /*
2183  * mpage_process_folio - update folio buffers corresponding to changed extent
2184  *                       and may submit fully mapped page for IO
2185  * @mpd: description of extent to map, on return next extent to map
2186  * @folio: Contains these buffers.
2187  * @m_lblk: logical block mapping.
2188  * @m_pblk: corresponding physical mapping.
2189  * @map_bh: determines on return whether this page requires any further
2190  *                mapping or not.
2191  *
2192  * Scan given folio buffers corresponding to changed extent and update buffer
2193  * state according to new extent state.
2194  * We map delalloc buffers to their physical location, clear unwritten bits.
2195  * If the given folio is not fully mapped, we update @mpd to the next extent in
2196  * the given folio that needs mapping & return @map_bh as true.
2197  */
2198 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2199                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2200                               bool *map_bh)
2201 {
2202         struct buffer_head *head, *bh;
2203         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2204         ext4_lblk_t lblk = *m_lblk;
2205         ext4_fsblk_t pblock = *m_pblk;
2206         int err = 0;
2207         int blkbits = mpd->inode->i_blkbits;
2208         ssize_t io_end_size = 0;
2209         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2210
2211         bh = head = folio_buffers(folio);
2212         do {
2213                 if (lblk < mpd->map.m_lblk)
2214                         continue;
2215                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2216                         /*
2217                          * Buffer after end of mapped extent.
2218                          * Find next buffer in the folio to map.
2219                          */
2220                         mpd->map.m_len = 0;
2221                         mpd->map.m_flags = 0;
2222                         io_end_vec->size += io_end_size;
2223
2224                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2225                         if (err > 0)
2226                                 err = 0;
2227                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2228                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2229                                 if (IS_ERR(io_end_vec)) {
2230                                         err = PTR_ERR(io_end_vec);
2231                                         goto out;
2232                                 }
2233                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2234                         }
2235                         *map_bh = true;
2236                         goto out;
2237                 }
2238                 if (buffer_delay(bh)) {
2239                         clear_buffer_delay(bh);
2240                         bh->b_blocknr = pblock++;
2241                 }
2242                 clear_buffer_unwritten(bh);
2243                 io_end_size += (1 << blkbits);
2244         } while (lblk++, (bh = bh->b_this_page) != head);
2245
2246         io_end_vec->size += io_end_size;
2247         *map_bh = false;
2248 out:
2249         *m_lblk = lblk;
2250         *m_pblk = pblock;
2251         return err;
2252 }
2253
2254 /*
2255  * mpage_map_buffers - update buffers corresponding to changed extent and
2256  *                     submit fully mapped pages for IO
2257  *
2258  * @mpd - description of extent to map, on return next extent to map
2259  *
2260  * Scan buffers corresponding to changed extent (we expect corresponding pages
2261  * to be already locked) and update buffer state according to new extent state.
2262  * We map delalloc buffers to their physical location, clear unwritten bits,
2263  * and mark buffers as uninit when we perform writes to unwritten extents
2264  * and do extent conversion after IO is finished. If the last page is not fully
2265  * mapped, we update @map to the next extent in the last page that needs
2266  * mapping. Otherwise we submit the page for IO.
2267  */
2268 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2269 {
2270         struct folio_batch fbatch;
2271         unsigned nr, i;
2272         struct inode *inode = mpd->inode;
2273         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2274         pgoff_t start, end;
2275         ext4_lblk_t lblk;
2276         ext4_fsblk_t pblock;
2277         int err;
2278         bool map_bh = false;
2279
2280         start = mpd->map.m_lblk >> bpp_bits;
2281         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2282         pblock = mpd->map.m_pblk;
2283
2284         folio_batch_init(&fbatch);
2285         while (start <= end) {
2286                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2287                 if (nr == 0)
2288                         break;
2289                 for (i = 0; i < nr; i++) {
2290                         struct folio *folio = fbatch.folios[i];
2291
2292                         lblk = folio->index << bpp_bits;
2293                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2294                                                  &map_bh);
2295                         /*
2296                          * If map_bh is true, means page may require further bh
2297                          * mapping, or maybe the page was submitted for IO.
2298                          * So we return to call further extent mapping.
2299                          */
2300                         if (err < 0 || map_bh)
2301                                 goto out;
2302                         /* Page fully mapped - let IO run! */
2303                         err = mpage_submit_folio(mpd, folio);
2304                         if (err < 0)
2305                                 goto out;
2306                         mpage_folio_done(mpd, folio);
2307                 }
2308                 folio_batch_release(&fbatch);
2309         }
2310         /* Extent fully mapped and matches with page boundary. We are done. */
2311         mpd->map.m_len = 0;
2312         mpd->map.m_flags = 0;
2313         return 0;
2314 out:
2315         folio_batch_release(&fbatch);
2316         return err;
2317 }
2318
2319 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2320 {
2321         struct inode *inode = mpd->inode;
2322         struct ext4_map_blocks *map = &mpd->map;
2323         int get_blocks_flags;
2324         int err, dioread_nolock;
2325
2326         trace_ext4_da_write_pages_extent(inode, map);
2327         /*
2328          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2329          * to convert an unwritten extent to be initialized (in the case
2330          * where we have written into one or more preallocated blocks).  It is
2331          * possible that we're going to need more metadata blocks than
2332          * previously reserved. However we must not fail because we're in
2333          * writeback and there is nothing we can do about it so it might result
2334          * in data loss.  So use reserved blocks to allocate metadata if
2335          * possible. In addition, do not cache any unrelated extents, as it
2336          * only holds the folio lock but does not hold the i_rwsem or
2337          * invalidate_lock, which could corrupt the extent status tree.
2338          */
2339         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2340                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2341                            EXT4_GET_BLOCKS_IO_SUBMIT |
2342                            EXT4_EX_NOCACHE;
2343
2344         dioread_nolock = ext4_should_dioread_nolock(inode);
2345         if (dioread_nolock)
2346                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2347
2348         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2349         if (err < 0)
2350                 return err;
2351         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2352                 if (!mpd->io_submit.io_end->handle &&
2353                     ext4_handle_valid(handle)) {
2354                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2355                         handle->h_rsv_handle = NULL;
2356                 }
2357                 ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2358         }
2359
2360         BUG_ON(map->m_len == 0);
2361         return 0;
2362 }
2363
2364 /*
2365  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2366  *                               mpd->len and submit pages underlying it for IO
2367  *
2368  * @handle - handle for journal operations
2369  * @mpd - extent to map
2370  * @give_up_on_write - we set this to true iff there is a fatal error and there
2371  *                     is no hope of writing the data. The caller should discard
2372  *                     dirty pages to avoid infinite loops.
2373  *
2374  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2375  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2376  * them to initialized or split the described range from larger unwritten
2377  * extent. Note that we need not map all the described range since allocation
2378  * can return less blocks or the range is covered by more unwritten extents. We
2379  * cannot map more because we are limited by reserved transaction credits. On
2380  * the other hand we always make sure that the last touched page is fully
2381  * mapped so that it can be written out (and thus forward progress is
2382  * guaranteed). After mapping we submit all mapped pages for IO.
2383  */
2384 static int mpage_map_and_submit_extent(handle_t *handle,
2385                                        struct mpage_da_data *mpd,
2386                                        bool *give_up_on_write)
2387 {
2388         struct inode *inode = mpd->inode;
2389         struct ext4_map_blocks *map = &mpd->map;
2390         int err;
2391         loff_t disksize;
2392         int progress = 0;
2393         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2394         struct ext4_io_end_vec *io_end_vec;
2395
2396         io_end_vec = ext4_alloc_io_end_vec(io_end);
2397         if (IS_ERR(io_end_vec))
2398                 return PTR_ERR(io_end_vec);
2399         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2400         do {
2401                 err = mpage_map_one_extent(handle, mpd);
2402                 if (err < 0) {
2403                         struct super_block *sb = inode->i_sb;
2404
2405                         if (ext4_emergency_state(sb))
2406                                 goto invalidate_dirty_pages;
2407                         /*
2408                          * Let the uper layers retry transient errors.
2409                          * In the case of ENOSPC, if ext4_count_free_blocks()
2410                          * is non-zero, a commit should free up blocks.
2411                          */
2412                         if ((err == -ENOMEM) ||
2413                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2414                                 if (progress)
2415                                         goto update_disksize;
2416                                 return err;
2417                         }
2418                         ext4_msg(sb, KERN_CRIT,
2419                                  "Delayed block allocation failed for "
2420                                  "inode %lu at logical offset %llu with"
2421                                  " max blocks %u with error %d",
2422                                  inode->i_ino,
2423                                  (unsigned long long)map->m_lblk,
2424                                  (unsigned)map->m_len, -err);
2425                         ext4_msg(sb, KERN_CRIT,
2426                                  "This should not happen!! Data will "
2427                                  "be lost\n");
2428                         if (err == -ENOSPC)
2429                                 ext4_print_free_blocks(inode);
2430                 invalidate_dirty_pages:
2431                         *give_up_on_write = true;
2432                         return err;
2433                 }
2434                 progress = 1;
2435                 /*
2436                  * Update buffer state, submit mapped pages, and get us new
2437                  * extent to map
2438                  */
2439                 err = mpage_map_and_submit_buffers(mpd);
2440                 if (err < 0)
2441                         goto update_disksize;
2442         } while (map->m_len);
2443
2444 update_disksize:
2445         /*
2446          * Update on-disk size after IO is submitted.  Races with
2447          * truncate are avoided by checking i_size under i_data_sem.
2448          */
2449         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2450         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2451                 int err2;
2452                 loff_t i_size;
2453
2454                 down_write(&EXT4_I(inode)->i_data_sem);
2455                 i_size = i_size_read(inode);
2456                 if (disksize > i_size)
2457                         disksize = i_size;
2458                 if (disksize > EXT4_I(inode)->i_disksize)
2459                         EXT4_I(inode)->i_disksize = disksize;
2460                 up_write(&EXT4_I(inode)->i_data_sem);
2461                 err2 = ext4_mark_inode_dirty(handle, inode);
2462                 if (err2) {
2463                         ext4_error_err(inode->i_sb, -err2,
2464                                        "Failed to mark inode %lu dirty",
2465                                        inode->i_ino);
2466                 }
2467                 if (!err)
2468                         err = err2;
2469         }
2470         return err;
2471 }
2472
2473 /*
2474  * Calculate the total number of credits to reserve for one writepages
2475  * iteration. This is called from ext4_writepages(). We map an extent of
2476  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2477  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2478  * bpp - 1 blocks in bpp different extents.
2479  */
2480 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2481 {
2482         int bpp = ext4_journal_blocks_per_folio(inode);
2483
2484         return ext4_meta_trans_blocks(inode,
2485                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2486 }
2487
2488 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2489                                      size_t len)
2490 {
2491         struct buffer_head *page_bufs = folio_buffers(folio);
2492         struct inode *inode = folio->mapping->host;
2493         int ret, err;
2494
2495         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2496                                      NULL, do_journal_get_write_access);
2497         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2498                                      NULL, write_end_fn);
2499         if (ret == 0)
2500                 ret = err;
2501         err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2502         if (ret == 0)
2503                 ret = err;
2504         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2505
2506         return ret;
2507 }
2508
2509 static int mpage_journal_page_buffers(handle_t *handle,
2510                                       struct mpage_da_data *mpd,
2511                                       struct folio *folio)
2512 {
2513         struct inode *inode = mpd->inode;
2514         loff_t size = i_size_read(inode);
2515         size_t len = folio_size(folio);
2516
2517         folio_clear_checked(folio);
2518         mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2519
2520         if (folio_pos(folio) + len > size &&
2521             !ext4_verity_in_progress(inode))
2522                 len = size & (len - 1);
2523
2524         return ext4_journal_folio_buffers(handle, folio, len);
2525 }
2526
2527 /*
2528  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2529  *                               needing mapping, submit mapped pages
2530  *
2531  * @mpd - where to look for pages
2532  *
2533  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2534  * IO immediately. If we cannot map blocks, we submit just already mapped
2535  * buffers in the page for IO and keep page dirty. When we can map blocks and
2536  * we find a page which isn't mapped we start accumulating extent of buffers
2537  * underlying these pages that needs mapping (formed by either delayed or
2538  * unwritten buffers). We also lock the pages containing these buffers. The
2539  * extent found is returned in @mpd structure (starting at mpd->lblk with
2540  * length mpd->len blocks).
2541  *
2542  * Note that this function can attach bios to one io_end structure which are
2543  * neither logically nor physically contiguous. Although it may seem as an
2544  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2545  * case as we need to track IO to all buffers underlying a page in one io_end.
2546  */
2547 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2548 {
2549         struct address_space *mapping = mpd->inode->i_mapping;
2550         struct folio_batch fbatch;
2551         unsigned int nr_folios;
2552         pgoff_t index = mpd->first_page;
2553         pgoff_t end = mpd->last_page;
2554         xa_mark_t tag;
2555         int i, err = 0;
2556         int blkbits = mpd->inode->i_blkbits;
2557         ext4_lblk_t lblk;
2558         struct buffer_head *head;
2559         handle_t *handle = NULL;
2560         int bpp = ext4_journal_blocks_per_folio(mpd->inode);
2561
2562         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2563                 tag = PAGECACHE_TAG_TOWRITE;
2564         else
2565                 tag = PAGECACHE_TAG_DIRTY;
2566
2567         mpd->map.m_len = 0;
2568         mpd->next_page = index;
2569         if (ext4_should_journal_data(mpd->inode)) {
2570                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2571                                             bpp);
2572                 if (IS_ERR(handle))
2573                         return PTR_ERR(handle);
2574         }
2575         folio_batch_init(&fbatch);
2576         while (index <= end) {
2577                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2578                                 tag, &fbatch);
2579                 if (nr_folios == 0)
2580                         break;
2581
2582                 for (i = 0; i < nr_folios; i++) {
2583                         struct folio *folio = fbatch.folios[i];
2584
2585                         /*
2586                          * Accumulated enough dirty pages? This doesn't apply
2587                          * to WB_SYNC_ALL mode. For integrity sync we have to
2588                          * keep going because someone may be concurrently
2589                          * dirtying pages, and we might have synced a lot of
2590                          * newly appeared dirty pages, but have not synced all
2591                          * of the old dirty pages.
2592                          */
2593                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2594                             mpd->wbc->nr_to_write <=
2595                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2596                                 goto out;
2597
2598                         /* If we can't merge this page, we are done. */
2599                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2600                                 goto out;
2601
2602                         if (handle) {
2603                                 err = ext4_journal_ensure_credits(handle, bpp,
2604                                                                   0);
2605                                 if (err < 0)
2606                                         goto out;
2607                         }
2608
2609                         folio_lock(folio);
2610                         /*
2611                          * If the page is no longer dirty, or its mapping no
2612                          * longer corresponds to inode we are writing (which
2613                          * means it has been truncated or invalidated), or the
2614                          * page is already under writeback and we are not doing
2615                          * a data integrity writeback, skip the page
2616                          */
2617                         if (!folio_test_dirty(folio) ||
2618                             (folio_test_writeback(folio) &&
2619                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2620                             unlikely(folio->mapping != mapping)) {
2621                                 folio_unlock(folio);
2622                                 continue;
2623                         }
2624
2625                         folio_wait_writeback(folio);
2626                         BUG_ON(folio_test_writeback(folio));
2627
2628                         /*
2629                          * Should never happen but for buggy code in
2630                          * other subsystems that call
2631                          * set_page_dirty() without properly warning
2632                          * the file system first.  See [1] for more
2633                          * information.
2634                          *
2635                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2636                          */
2637                         if (!folio_buffers(folio)) {
2638                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2639                                 folio_clear_dirty(folio);
2640                                 folio_unlock(folio);
2641                                 continue;
2642                         }
2643
2644                         if (mpd->map.m_len == 0)
2645                                 mpd->first_page = folio->index;
2646                         mpd->next_page = folio_next_index(folio);
2647                         /*
2648                          * Writeout when we cannot modify metadata is simple.
2649                          * Just submit the page. For data=journal mode we
2650                          * first handle writeout of the page for checkpoint and
2651                          * only after that handle delayed page dirtying. This
2652                          * makes sure current data is checkpointed to the final
2653                          * location before possibly journalling it again which
2654                          * is desirable when the page is frequently dirtied
2655                          * through a pin.
2656                          */
2657                         if (!mpd->can_map) {
2658                                 err = mpage_submit_folio(mpd, folio);
2659                                 if (err < 0)
2660                                         goto out;
2661                                 /* Pending dirtying of journalled data? */
2662                                 if (folio_test_checked(folio)) {
2663                                         err = mpage_journal_page_buffers(handle,
2664                                                 mpd, folio);
2665                                         if (err < 0)
2666                                                 goto out;
2667                                         mpd->journalled_more_data = 1;
2668                                 }
2669                                 mpage_folio_done(mpd, folio);
2670                         } else {
2671                                 /* Add all dirty buffers to mpd */
2672                                 lblk = ((ext4_lblk_t)folio->index) <<
2673                                         (PAGE_SHIFT - blkbits);
2674                                 head = folio_buffers(folio);
2675                                 err = mpage_process_page_bufs(mpd, head, head,
2676                                                 lblk);
2677                                 if (err <= 0)
2678                                         goto out;
2679                                 err = 0;
2680                         }
2681                 }
2682                 folio_batch_release(&fbatch);
2683                 cond_resched();
2684         }
2685         mpd->scanned_until_end = 1;
2686         if (handle)
2687                 ext4_journal_stop(handle);
2688         return 0;
2689 out:
2690         folio_batch_release(&fbatch);
2691         if (handle)
2692                 ext4_journal_stop(handle);
2693         return err;
2694 }
2695
2696 static int ext4_do_writepages(struct mpage_da_data *mpd)
2697 {
2698         struct writeback_control *wbc = mpd->wbc;
2699         pgoff_t writeback_index = 0;
2700         long nr_to_write = wbc->nr_to_write;
2701         int range_whole = 0;
2702         int cycled = 1;
2703         handle_t *handle = NULL;
2704         struct inode *inode = mpd->inode;
2705         struct address_space *mapping = inode->i_mapping;
2706         int needed_blocks, rsv_blocks = 0, ret = 0;
2707         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2708         struct blk_plug plug;
2709         bool give_up_on_write = false;
2710
2711         trace_ext4_writepages(inode, wbc);
2712
2713         /*
2714          * No pages to write? This is mainly a kludge to avoid starting
2715          * a transaction for special inodes like journal inode on last iput()
2716          * because that could violate lock ordering on umount
2717          */
2718         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2719                 goto out_writepages;
2720
2721         /*
2722          * If the filesystem has aborted, it is read-only, so return
2723          * right away instead of dumping stack traces later on that
2724          * will obscure the real source of the problem.  We test
2725          * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2726          * the latter could be true if the filesystem is mounted
2727          * read-only, and in that case, ext4_writepages should
2728          * *never* be called, so if that ever happens, we would want
2729          * the stack trace.
2730          */
2731         ret = ext4_emergency_state(mapping->host->i_sb);
2732         if (unlikely(ret))
2733                 goto out_writepages;
2734
2735         /*
2736          * If we have inline data and arrive here, it means that
2737          * we will soon create the block for the 1st page, so
2738          * we'd better clear the inline data here.
2739          */
2740         if (ext4_has_inline_data(inode)) {
2741                 /* Just inode will be modified... */
2742                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2743                 if (IS_ERR(handle)) {
2744                         ret = PTR_ERR(handle);
2745                         goto out_writepages;
2746                 }
2747                 BUG_ON(ext4_test_inode_state(inode,
2748                                 EXT4_STATE_MAY_INLINE_DATA));
2749                 ext4_destroy_inline_data(handle, inode);
2750                 ext4_journal_stop(handle);
2751         }
2752
2753         /*
2754          * data=journal mode does not do delalloc so we just need to writeout /
2755          * journal already mapped buffers. On the other hand we need to commit
2756          * transaction to make data stable. We expect all the data to be
2757          * already in the journal (the only exception are DMA pinned pages
2758          * dirtied behind our back) so we commit transaction here and run the
2759          * writeback loop to checkpoint them. The checkpointing is not actually
2760          * necessary to make data persistent *but* quite a few places (extent
2761          * shifting operations, fsverity, ...) depend on being able to drop
2762          * pagecache pages after calling filemap_write_and_wait() and for that
2763          * checkpointing needs to happen.
2764          */
2765         if (ext4_should_journal_data(inode)) {
2766                 mpd->can_map = 0;
2767                 if (wbc->sync_mode == WB_SYNC_ALL)
2768                         ext4_fc_commit(sbi->s_journal,
2769                                        EXT4_I(inode)->i_datasync_tid);
2770         }
2771         mpd->journalled_more_data = 0;
2772
2773         if (ext4_should_dioread_nolock(inode)) {
2774                 /*
2775                  * We may need to convert up to one extent per block in
2776                  * the page and we may dirty the inode.
2777                  */
2778                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2779                                                 PAGE_SIZE >> inode->i_blkbits);
2780         }
2781
2782         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2783                 range_whole = 1;
2784
2785         if (wbc->range_cyclic) {
2786                 writeback_index = mapping->writeback_index;
2787                 if (writeback_index)
2788                         cycled = 0;
2789                 mpd->first_page = writeback_index;
2790                 mpd->last_page = -1;
2791         } else {
2792                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2793                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2794         }
2795
2796         ext4_io_submit_init(&mpd->io_submit, wbc);
2797 retry:
2798         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2799                 tag_pages_for_writeback(mapping, mpd->first_page,
2800                                         mpd->last_page);
2801         blk_start_plug(&plug);
2802
2803         /*
2804          * First writeback pages that don't need mapping - we can avoid
2805          * starting a transaction unnecessarily and also avoid being blocked
2806          * in the block layer on device congestion while having transaction
2807          * started.
2808          */
2809         mpd->do_map = 0;
2810         mpd->scanned_until_end = 0;
2811         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2812         if (!mpd->io_submit.io_end) {
2813                 ret = -ENOMEM;
2814                 goto unplug;
2815         }
2816         ret = mpage_prepare_extent_to_map(mpd);
2817         /* Unlock pages we didn't use */
2818         mpage_release_unused_pages(mpd, false);
2819         /* Submit prepared bio */
2820         ext4_io_submit(&mpd->io_submit);
2821         ext4_put_io_end_defer(mpd->io_submit.io_end);
2822         mpd->io_submit.io_end = NULL;
2823         if (ret < 0)
2824                 goto unplug;
2825
2826         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2827                 /* For each extent of pages we use new io_end */
2828                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2829                 if (!mpd->io_submit.io_end) {
2830                         ret = -ENOMEM;
2831                         break;
2832                 }
2833
2834                 WARN_ON_ONCE(!mpd->can_map);
2835                 /*
2836                  * We have two constraints: We find one extent to map and we
2837                  * must always write out whole page (makes a difference when
2838                  * blocksize < pagesize) so that we don't block on IO when we
2839                  * try to write out the rest of the page. Journalled mode is
2840                  * not supported by delalloc.
2841                  */
2842                 BUG_ON(ext4_should_journal_data(inode));
2843                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2844
2845                 /* start a new transaction */
2846                 handle = ext4_journal_start_with_reserve(inode,
2847                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2848                 if (IS_ERR(handle)) {
2849                         ret = PTR_ERR(handle);
2850                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2851                                "%ld pages, ino %lu; err %d", __func__,
2852                                 wbc->nr_to_write, inode->i_ino, ret);
2853                         /* Release allocated io_end */
2854                         ext4_put_io_end(mpd->io_submit.io_end);
2855                         mpd->io_submit.io_end = NULL;
2856                         break;
2857                 }
2858                 mpd->do_map = 1;
2859
2860                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2861                 ret = mpage_prepare_extent_to_map(mpd);
2862                 if (!ret && mpd->map.m_len)
2863                         ret = mpage_map_and_submit_extent(handle, mpd,
2864                                         &give_up_on_write);
2865                 /*
2866                  * Caution: If the handle is synchronous,
2867                  * ext4_journal_stop() can wait for transaction commit
2868                  * to finish which may depend on writeback of pages to
2869                  * complete or on page lock to be released.  In that
2870                  * case, we have to wait until after we have
2871                  * submitted all the IO, released page locks we hold,
2872                  * and dropped io_end reference (for extent conversion
2873                  * to be able to complete) before stopping the handle.
2874                  */
2875                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2876                         ext4_journal_stop(handle);
2877                         handle = NULL;
2878                         mpd->do_map = 0;
2879                 }
2880                 /* Unlock pages we didn't use */
2881                 mpage_release_unused_pages(mpd, give_up_on_write);
2882                 /* Submit prepared bio */
2883                 ext4_io_submit(&mpd->io_submit);
2884
2885                 /*
2886                  * Drop our io_end reference we got from init. We have
2887                  * to be careful and use deferred io_end finishing if
2888                  * we are still holding the transaction as we can
2889                  * release the last reference to io_end which may end
2890                  * up doing unwritten extent conversion.
2891                  */
2892                 if (handle) {
2893                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2894                         ext4_journal_stop(handle);
2895                 } else
2896                         ext4_put_io_end(mpd->io_submit.io_end);
2897                 mpd->io_submit.io_end = NULL;
2898
2899                 if (ret == -ENOSPC && sbi->s_journal) {
2900                         /*
2901                          * Commit the transaction which would
2902                          * free blocks released in the transaction
2903                          * and try again
2904                          */
2905                         jbd2_journal_force_commit_nested(sbi->s_journal);
2906                         ret = 0;
2907                         continue;
2908                 }
2909                 /* Fatal error - ENOMEM, EIO... */
2910                 if (ret)
2911                         break;
2912         }
2913 unplug:
2914         blk_finish_plug(&plug);
2915         if (!ret && !cycled && wbc->nr_to_write > 0) {
2916                 cycled = 1;
2917                 mpd->last_page = writeback_index - 1;
2918                 mpd->first_page = 0;
2919                 goto retry;
2920         }
2921
2922         /* Update index */
2923         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2924                 /*
2925                  * Set the writeback_index so that range_cyclic
2926                  * mode will write it back later
2927                  */
2928                 mapping->writeback_index = mpd->first_page;
2929
2930 out_writepages:
2931         trace_ext4_writepages_result(inode, wbc, ret,
2932                                      nr_to_write - wbc->nr_to_write);
2933         return ret;
2934 }
2935
2936 static int ext4_writepages(struct address_space *mapping,
2937                            struct writeback_control *wbc)
2938 {
2939         struct super_block *sb = mapping->host->i_sb;
2940         struct mpage_da_data mpd = {
2941                 .inode = mapping->host,
2942                 .wbc = wbc,
2943                 .can_map = 1,
2944         };
2945         int ret;
2946         int alloc_ctx;
2947
2948         ret = ext4_emergency_state(sb);
2949         if (unlikely(ret))
2950                 return ret;
2951
2952         alloc_ctx = ext4_writepages_down_read(sb);
2953         ret = ext4_do_writepages(&mpd);
2954         /*
2955          * For data=journal writeback we could have come across pages marked
2956          * for delayed dirtying (PageChecked) which were just added to the
2957          * running transaction. Try once more to get them to stable storage.
2958          */
2959         if (!ret && mpd.journalled_more_data)
2960                 ret = ext4_do_writepages(&mpd);
2961         ext4_writepages_up_read(sb, alloc_ctx);
2962
2963         return ret;
2964 }
2965
2966 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2967 {
2968         struct writeback_control wbc = {
2969                 .sync_mode = WB_SYNC_ALL,
2970                 .nr_to_write = LONG_MAX,
2971                 .range_start = jinode->i_dirty_start,
2972                 .range_end = jinode->i_dirty_end,
2973         };
2974         struct mpage_da_data mpd = {
2975                 .inode = jinode->i_vfs_inode,
2976                 .wbc = &wbc,
2977                 .can_map = 0,
2978         };
2979         return ext4_do_writepages(&mpd);
2980 }
2981
2982 static int ext4_dax_writepages(struct address_space *mapping,
2983                                struct writeback_control *wbc)
2984 {
2985         int ret;
2986         long nr_to_write = wbc->nr_to_write;
2987         struct inode *inode = mapping->host;
2988         int alloc_ctx;
2989
2990         ret = ext4_emergency_state(inode->i_sb);
2991         if (unlikely(ret))
2992                 return ret;
2993
2994         alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2995         trace_ext4_writepages(inode, wbc);
2996
2997         ret = dax_writeback_mapping_range(mapping,
2998                                           EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2999         trace_ext4_writepages_result(inode, wbc, ret,
3000                                      nr_to_write - wbc->nr_to_write);
3001         ext4_writepages_up_read(inode->i_sb, alloc_ctx);
3002         return ret;
3003 }
3004
3005 static int ext4_nonda_switch(struct super_block *sb)
3006 {
3007         s64 free_clusters, dirty_clusters;
3008         struct ext4_sb_info *sbi = EXT4_SB(sb);
3009
3010         /*
3011          * switch to non delalloc mode if we are running low
3012          * on free block. The free block accounting via percpu
3013          * counters can get slightly wrong with percpu_counter_batch getting
3014          * accumulated on each CPU without updating global counters
3015          * Delalloc need an accurate free block accounting. So switch
3016          * to non delalloc when we are near to error range.
3017          */
3018         free_clusters =
3019                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3020         dirty_clusters =
3021                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3022         /*
3023          * Start pushing delalloc when 1/2 of free blocks are dirty.
3024          */
3025         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3026                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3027
3028         if (2 * free_clusters < 3 * dirty_clusters ||
3029             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3030                 /*
3031                  * free block count is less than 150% of dirty blocks
3032                  * or free blocks is less than watermark
3033                  */
3034                 return 1;
3035         }
3036         return 0;
3037 }
3038
3039 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3040                                loff_t pos, unsigned len,
3041                                struct folio **foliop, void **fsdata)
3042 {
3043         int ret, retries = 0;
3044         struct folio *folio;
3045         pgoff_t index;
3046         struct inode *inode = mapping->host;
3047         fgf_t fgp = FGP_WRITEBEGIN;
3048
3049         ret = ext4_emergency_state(inode->i_sb);
3050         if (unlikely(ret))
3051                 return ret;
3052
3053         index = pos >> PAGE_SHIFT;
3054
3055         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3056                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3057                 return ext4_write_begin(file, mapping, pos,
3058                                         len, foliop, fsdata);
3059         }
3060         *fsdata = (void *)0;
3061         trace_ext4_da_write_begin(inode, pos, len);
3062
3063         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3064                 ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
3065                                                      foliop, fsdata, true);
3066                 if (ret < 0)
3067                         return ret;
3068                 if (ret == 1)
3069                         return 0;
3070         }
3071
3072 retry:
3073         fgp |= fgf_set_order(len);
3074         folio = __filemap_get_folio(mapping, index, fgp,
3075                                     mapping_gfp_mask(mapping));
3076         if (IS_ERR(folio))
3077                 return PTR_ERR(folio);
3078
3079         if (pos + len > folio_pos(folio) + folio_size(folio))
3080                 len = folio_pos(folio) + folio_size(folio) - pos;
3081
3082         ret = ext4_block_write_begin(NULL, folio, pos, len,
3083                                      ext4_da_get_block_prep);
3084         if (ret < 0) {
3085                 folio_unlock(folio);
3086                 folio_put(folio);
3087                 /*
3088                  * block_write_begin may have instantiated a few blocks
3089                  * outside i_size.  Trim these off again. Don't need
3090                  * i_size_read because we hold inode lock.
3091                  */
3092                 if (pos + len > inode->i_size)
3093                         ext4_truncate_failed_write(inode);
3094
3095                 if (ret == -ENOSPC &&
3096                     ext4_should_retry_alloc(inode->i_sb, &retries))
3097                         goto retry;
3098                 return ret;
3099         }
3100
3101         *foliop = folio;
3102         return ret;
3103 }
3104
3105 /*
3106  * Check if we should update i_disksize
3107  * when write to the end of file but not require block allocation
3108  */
3109 static int ext4_da_should_update_i_disksize(struct folio *folio,
3110                                             unsigned long offset)
3111 {
3112         struct buffer_head *bh;
3113         struct inode *inode = folio->mapping->host;
3114         unsigned int idx;
3115         int i;
3116
3117         bh = folio_buffers(folio);
3118         idx = offset >> inode->i_blkbits;
3119
3120         for (i = 0; i < idx; i++)
3121                 bh = bh->b_this_page;
3122
3123         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124                 return 0;
3125         return 1;
3126 }
3127
3128 static int ext4_da_do_write_end(struct address_space *mapping,
3129                         loff_t pos, unsigned len, unsigned copied,
3130                         struct folio *folio)
3131 {
3132         struct inode *inode = mapping->host;
3133         loff_t old_size = inode->i_size;
3134         bool disksize_changed = false;
3135         loff_t new_i_size, zero_len = 0;
3136         handle_t *handle;
3137
3138         if (unlikely(!folio_buffers(folio))) {
3139                 folio_unlock(folio);
3140                 folio_put(folio);
3141                 return -EIO;
3142         }
3143         /*
3144          * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3145          * flag, which all that's needed to trigger page writeback.
3146          */
3147         copied = block_write_end(NULL, mapping, pos, len, copied,
3148                         folio, NULL);
3149         new_i_size = pos + copied;
3150
3151         /*
3152          * It's important to update i_size while still holding folio lock,
3153          * because folio writeout could otherwise come in and zero beyond
3154          * i_size.
3155          *
3156          * Since we are holding inode lock, we are sure i_disksize <=
3157          * i_size. We also know that if i_disksize < i_size, there are
3158          * delalloc writes pending in the range up to i_size. If the end of
3159          * the current write is <= i_size, there's no need to touch
3160          * i_disksize since writeback will push i_disksize up to i_size
3161          * eventually. If the end of the current write is > i_size and
3162          * inside an allocated block which ext4_da_should_update_i_disksize()
3163          * checked, we need to update i_disksize here as certain
3164          * ext4_writepages() paths not allocating blocks and update i_disksize.
3165          */
3166         if (new_i_size > inode->i_size) {
3167                 unsigned long end;
3168
3169                 i_size_write(inode, new_i_size);
3170                 end = offset_in_folio(folio, new_i_size - 1);
3171                 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3172                         ext4_update_i_disksize(inode, new_i_size);
3173                         disksize_changed = true;
3174                 }
3175         }
3176
3177         folio_unlock(folio);
3178         folio_put(folio);
3179
3180         if (pos > old_size) {
3181                 pagecache_isize_extended(inode, old_size, pos);
3182                 zero_len = pos - old_size;
3183         }
3184
3185         if (!disksize_changed && !zero_len)
3186                 return copied;
3187
3188         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3189         if (IS_ERR(handle))
3190                 return PTR_ERR(handle);
3191         if (zero_len)
3192                 ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3193         ext4_mark_inode_dirty(handle, inode);
3194         ext4_journal_stop(handle);
3195
3196         return copied;
3197 }
3198
3199 static int ext4_da_write_end(struct file *file,
3200                              struct address_space *mapping,
3201                              loff_t pos, unsigned len, unsigned copied,
3202                              struct folio *folio, void *fsdata)
3203 {
3204         struct inode *inode = mapping->host;
3205         int write_mode = (int)(unsigned long)fsdata;
3206
3207         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3208                 return ext4_write_end(file, mapping, pos,
3209                                       len, copied, folio, fsdata);
3210
3211         trace_ext4_da_write_end(inode, pos, len, copied);
3212
3213         if (write_mode != CONVERT_INLINE_DATA &&
3214             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3215             ext4_has_inline_data(inode))
3216                 return ext4_write_inline_data_end(inode, pos, len, copied,
3217                                                   folio);
3218
3219         if (unlikely(copied < len) && !folio_test_uptodate(folio))
3220                 copied = 0;
3221
3222         return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3223 }
3224
3225 /*
3226  * Force all delayed allocation blocks to be allocated for a given inode.
3227  */
3228 int ext4_alloc_da_blocks(struct inode *inode)
3229 {
3230         trace_ext4_alloc_da_blocks(inode);
3231
3232         if (!EXT4_I(inode)->i_reserved_data_blocks)
3233                 return 0;
3234
3235         /*
3236          * We do something simple for now.  The filemap_flush() will
3237          * also start triggering a write of the data blocks, which is
3238          * not strictly speaking necessary (and for users of
3239          * laptop_mode, not even desirable).  However, to do otherwise
3240          * would require replicating code paths in:
3241          *
3242          * ext4_writepages() ->
3243          *    write_cache_pages() ---> (via passed in callback function)
3244          *        __mpage_da_writepage() -->
3245          *           mpage_add_bh_to_extent()
3246          *           mpage_da_map_blocks()
3247          *
3248          * The problem is that write_cache_pages(), located in
3249          * mm/page-writeback.c, marks pages clean in preparation for
3250          * doing I/O, which is not desirable if we're not planning on
3251          * doing I/O at all.
3252          *
3253          * We could call write_cache_pages(), and then redirty all of
3254          * the pages by calling redirty_page_for_writepage() but that
3255          * would be ugly in the extreme.  So instead we would need to
3256          * replicate parts of the code in the above functions,
3257          * simplifying them because we wouldn't actually intend to
3258          * write out the pages, but rather only collect contiguous
3259          * logical block extents, call the multi-block allocator, and
3260          * then update the buffer heads with the block allocations.
3261          *
3262          * For now, though, we'll cheat by calling filemap_flush(),
3263          * which will map the blocks, and start the I/O, but not
3264          * actually wait for the I/O to complete.
3265          */
3266         return filemap_flush(inode->i_mapping);
3267 }
3268
3269 /*
3270  * bmap() is special.  It gets used by applications such as lilo and by
3271  * the swapper to find the on-disk block of a specific piece of data.
3272  *
3273  * Naturally, this is dangerous if the block concerned is still in the
3274  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3275  * filesystem and enables swap, then they may get a nasty shock when the
3276  * data getting swapped to that swapfile suddenly gets overwritten by
3277  * the original zero's written out previously to the journal and
3278  * awaiting writeback in the kernel's buffer cache.
3279  *
3280  * So, if we see any bmap calls here on a modified, data-journaled file,
3281  * take extra steps to flush any blocks which might be in the cache.
3282  */
3283 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3284 {
3285         struct inode *inode = mapping->host;
3286         sector_t ret = 0;
3287
3288         inode_lock_shared(inode);
3289         /*
3290          * We can get here for an inline file via the FIBMAP ioctl
3291          */
3292         if (ext4_has_inline_data(inode))
3293                 goto out;
3294
3295         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3296             (test_opt(inode->i_sb, DELALLOC) ||
3297              ext4_should_journal_data(inode))) {
3298                 /*
3299                  * With delalloc or journalled data we want to sync the file so
3300                  * that we can make sure we allocate blocks for file and data
3301                  * is in place for the user to see it
3302                  */
3303                 filemap_write_and_wait(mapping);
3304         }
3305
3306         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3307
3308 out:
3309         inode_unlock_shared(inode);
3310         return ret;
3311 }
3312
3313 static int ext4_read_folio(struct file *file, struct folio *folio)
3314 {
3315         int ret = -EAGAIN;
3316         struct inode *inode = folio->mapping->host;
3317
3318         trace_ext4_read_folio(inode, folio);
3319
3320         if (ext4_has_inline_data(inode))
3321                 ret = ext4_readpage_inline(inode, folio);
3322
3323         if (ret == -EAGAIN)
3324                 return ext4_mpage_readpages(inode, NULL, folio);
3325
3326         return ret;
3327 }
3328
3329 static void ext4_readahead(struct readahead_control *rac)
3330 {
3331         struct inode *inode = rac->mapping->host;
3332
3333         /* If the file has inline data, no need to do readahead. */
3334         if (ext4_has_inline_data(inode))
3335                 return;
3336
3337         ext4_mpage_readpages(inode, rac, NULL);
3338 }
3339
3340 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3341                                 size_t length)
3342 {
3343         trace_ext4_invalidate_folio(folio, offset, length);
3344
3345         /* No journalling happens on data buffers when this function is used */
3346         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3347
3348         block_invalidate_folio(folio, offset, length);
3349 }
3350
3351 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3352                                             size_t offset, size_t length)
3353 {
3354         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3355
3356         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3357
3358         /*
3359          * If it's a full truncate we just forget about the pending dirtying
3360          */
3361         if (offset == 0 && length == folio_size(folio))
3362                 folio_clear_checked(folio);
3363
3364         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3365 }
3366
3367 /* Wrapper for aops... */
3368 static void ext4_journalled_invalidate_folio(struct folio *folio,
3369                                            size_t offset,
3370                                            size_t length)
3371 {
3372         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3373 }
3374
3375 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3376 {
3377         struct inode *inode = folio->mapping->host;
3378         journal_t *journal = EXT4_JOURNAL(inode);
3379
3380         trace_ext4_release_folio(inode, folio);
3381
3382         /* Page has dirty journalled data -> cannot release */
3383         if (folio_test_checked(folio))
3384                 return false;
3385         if (journal)
3386                 return jbd2_journal_try_to_free_buffers(journal, folio);
3387         else
3388                 return try_to_free_buffers(folio);
3389 }
3390
3391 static bool ext4_inode_datasync_dirty(struct inode *inode)
3392 {
3393         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3394
3395         if (journal) {
3396                 if (jbd2_transaction_committed(journal,
3397                         EXT4_I(inode)->i_datasync_tid))
3398                         return false;
3399                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3400                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3401                 return true;
3402         }
3403
3404         /* Any metadata buffers to write? */
3405         if (!list_empty(&inode->i_mapping->i_private_list))
3406                 return true;
3407         return inode->i_state & I_DIRTY_DATASYNC;
3408 }
3409
3410 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3411                            struct ext4_map_blocks *map, loff_t offset,
3412                            loff_t length, unsigned int flags)
3413 {
3414         u8 blkbits = inode->i_blkbits;
3415
3416         /*
3417          * Writes that span EOF might trigger an I/O size update on completion,
3418          * so consider them to be dirty for the purpose of O_DSYNC, even if
3419          * there is no other metadata changes being made or are pending.
3420          */
3421         iomap->flags = 0;
3422         if (ext4_inode_datasync_dirty(inode) ||
3423             offset + length > i_size_read(inode))
3424                 iomap->flags |= IOMAP_F_DIRTY;
3425
3426         if (map->m_flags & EXT4_MAP_NEW)
3427                 iomap->flags |= IOMAP_F_NEW;
3428
3429         /* HW-offload atomics are always used */
3430         if (flags & IOMAP_ATOMIC)
3431                 iomap->flags |= IOMAP_F_ATOMIC_BIO;
3432
3433         if (flags & IOMAP_DAX)
3434                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3435         else
3436                 iomap->bdev = inode->i_sb->s_bdev;
3437         iomap->offset = (u64) map->m_lblk << blkbits;
3438         iomap->length = (u64) map->m_len << blkbits;
3439
3440         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3441             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3442                 iomap->flags |= IOMAP_F_MERGED;
3443
3444         /*
3445          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3446          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3447          * set. In order for any allocated unwritten extents to be converted
3448          * into written extents correctly within the ->end_io() handler, we
3449          * need to ensure that the iomap->type is set appropriately. Hence, the
3450          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3451          * been set first.
3452          */
3453         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3454                 iomap->type = IOMAP_UNWRITTEN;
3455                 iomap->addr = (u64) map->m_pblk << blkbits;
3456                 if (flags & IOMAP_DAX)
3457                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3458         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3459                 iomap->type = IOMAP_MAPPED;
3460                 iomap->addr = (u64) map->m_pblk << blkbits;
3461                 if (flags & IOMAP_DAX)
3462                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3463         } else if (map->m_flags & EXT4_MAP_DELAYED) {
3464                 iomap->type = IOMAP_DELALLOC;
3465                 iomap->addr = IOMAP_NULL_ADDR;
3466         } else {
3467                 iomap->type = IOMAP_HOLE;
3468                 iomap->addr = IOMAP_NULL_ADDR;
3469         }
3470 }
3471
3472 static int ext4_map_blocks_atomic_write_slow(handle_t *handle,
3473                         struct inode *inode, struct ext4_map_blocks *map)
3474 {
3475         ext4_lblk_t m_lblk = map->m_lblk;
3476         unsigned int m_len = map->m_len;
3477         unsigned int mapped_len = 0, m_flags = 0;
3478         ext4_fsblk_t next_pblk;
3479         bool check_next_pblk = false;
3480         int ret = 0;
3481
3482         WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb));
3483
3484         /*
3485          * This is a slow path in case of mixed mapping. We use
3486          * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single
3487          * contiguous mapped mapping. This will ensure any unwritten or hole
3488          * regions within the requested range is zeroed out and we return
3489          * a single contiguous mapped extent.
3490          */
3491         m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3492
3493         do {
3494                 ret = ext4_map_blocks(handle, inode, map, m_flags);
3495                 if (ret < 0 && ret != -ENOSPC)
3496                         goto out_err;
3497                 /*
3498                  * This should never happen, but let's return an error code to
3499                  * avoid an infinite loop in here.
3500                  */
3501                 if (ret == 0) {
3502                         ret = -EFSCORRUPTED;
3503                         ext4_warning_inode(inode,
3504                                 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d",
3505                                 m_flags, ret);
3506                         goto out_err;
3507                 }
3508                 /*
3509                  * With bigalloc we should never get ENOSPC nor discontiguous
3510                  * physical extents.
3511                  */
3512                 if ((check_next_pblk && next_pblk != map->m_pblk) ||
3513                                 ret == -ENOSPC) {
3514                         ext4_warning_inode(inode,
3515                                 "Non-contiguous allocation detected: expected %llu, got %llu, "
3516                                 "or ext4_map_blocks() returned out of space ret: %d",
3517                                 next_pblk, map->m_pblk, ret);
3518                         ret = -EFSCORRUPTED;
3519                         goto out_err;
3520                 }
3521                 next_pblk = map->m_pblk + map->m_len;
3522                 check_next_pblk = true;
3523
3524                 mapped_len += map->m_len;
3525                 map->m_lblk += map->m_len;
3526                 map->m_len = m_len - mapped_len;
3527         } while (mapped_len < m_len);
3528
3529         /*
3530          * We might have done some work in above loop, so we need to query the
3531          * start of the physical extent, based on the origin m_lblk and m_len.
3532          * Let's also ensure we were able to allocate the required range for
3533          * mixed mapping case.
3534          */
3535         map->m_lblk = m_lblk;
3536         map->m_len = m_len;
3537         map->m_flags = 0;
3538
3539         ret = ext4_map_blocks(handle, inode, map,
3540                               EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF);
3541         if (ret != m_len) {
3542                 ext4_warning_inode(inode,
3543                         "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n",
3544                         m_lblk, m_len, ret);
3545                 ret = -EINVAL;
3546         }
3547         return ret;
3548
3549 out_err:
3550         /* reset map before returning an error */
3551         map->m_lblk = m_lblk;
3552         map->m_len = m_len;
3553         map->m_flags = 0;
3554         return ret;
3555 }
3556
3557 /*
3558  * ext4_map_blocks_atomic: Helper routine to ensure the entire requested
3559  * range in @map [lblk, lblk + len) is one single contiguous extent with no
3560  * mixed mappings.
3561  *
3562  * We first use m_flags passed to us by our caller (ext4_iomap_alloc()).
3563  * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying
3564  * physical extent for the requested range does not have a single contiguous
3565  * mapping type i.e. (Hole, Mapped, or Unwritten) throughout.
3566  * In that case we will loop over the requested range to allocate and zero out
3567  * the unwritten / holes in between, to get a single mapped extent from
3568  * [m_lblk, m_lblk +  m_len). Note that this is only possible because we know
3569  * this can be called only with bigalloc enabled filesystem where the underlying
3570  * cluster is already allocated. This avoids allocating discontiguous extents
3571  * in the slow path due to multiple calls to ext4_map_blocks().
3572  * The slow path is mostly non-performance critical path, so it should be ok to
3573  * loop using ext4_map_blocks() with appropriate flags to allocate & zero the
3574  * underlying short holes/unwritten extents within the requested range.
3575  */
3576 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode,
3577                                 struct ext4_map_blocks *map, int m_flags,
3578                                 bool *force_commit)
3579 {
3580         ext4_lblk_t m_lblk = map->m_lblk;
3581         unsigned int m_len = map->m_len;
3582         int ret = 0;
3583
3584         WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb));
3585
3586         ret = ext4_map_blocks(handle, inode, map, m_flags);
3587         if (ret < 0 || ret == m_len)
3588                 goto out;
3589         /*
3590          * This is a mixed mapping case where we were not able to allocate
3591          * a single contiguous extent. In that case let's reset requested
3592          * mapping and call the slow path.
3593          */
3594         map->m_lblk = m_lblk;
3595         map->m_len = m_len;
3596         map->m_flags = 0;
3597
3598         /*
3599          * slow path means we have mixed mapping, that means we will need
3600          * to force txn commit.
3601          */
3602         *force_commit = true;
3603         return ext4_map_blocks_atomic_write_slow(handle, inode, map);
3604 out:
3605         return ret;
3606 }
3607
3608 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3609                             unsigned int flags)
3610 {
3611         handle_t *handle;
3612         u8 blkbits = inode->i_blkbits;
3613         int ret, dio_credits, m_flags = 0, retries = 0;
3614         bool force_commit = false;
3615
3616         /*
3617          * Trim the mapping request to the maximum value that we can map at
3618          * once for direct I/O.
3619          */
3620         if (map->m_len > DIO_MAX_BLOCKS)
3621                 map->m_len = DIO_MAX_BLOCKS;
3622
3623         /*
3624          * journal credits estimation for atomic writes. We call
3625          * ext4_map_blocks(), to find if there could be a mixed mapping. If yes,
3626          * then let's assume the no. of pextents required can be m_len i.e.
3627          * every alternate block can be unwritten and hole.
3628          */
3629         if (flags & IOMAP_ATOMIC) {
3630                 unsigned int orig_mlen = map->m_len;
3631
3632                 ret = ext4_map_blocks(NULL, inode, map, 0);
3633                 if (ret < 0)
3634                         return ret;
3635                 if (map->m_len < orig_mlen) {
3636                         map->m_len = orig_mlen;
3637                         dio_credits = ext4_meta_trans_blocks(inode, orig_mlen,
3638                                                              map->m_len);
3639                 } else {
3640                         dio_credits = ext4_chunk_trans_blocks(inode,
3641                                                               map->m_len);
3642                 }
3643         } else {
3644                 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3645         }
3646
3647 retry:
3648         /*
3649          * Either we allocate blocks and then don't get an unwritten extent, so
3650          * in that case we have reserved enough credits. Or, the blocks are
3651          * already allocated and unwritten. In that case, the extent conversion
3652          * fits into the credits as well.
3653          */
3654         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3655         if (IS_ERR(handle))
3656                 return PTR_ERR(handle);
3657
3658         /*
3659          * DAX and direct I/O are the only two operations that are currently
3660          * supported with IOMAP_WRITE.
3661          */
3662         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3663         if (flags & IOMAP_DAX)
3664                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3665         /*
3666          * We use i_size instead of i_disksize here because delalloc writeback
3667          * can complete at any point during the I/O and subsequently push the
3668          * i_disksize out to i_size. This could be beyond where direct I/O is
3669          * happening and thus expose allocated blocks to direct I/O reads.
3670          */
3671         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3672                 m_flags = EXT4_GET_BLOCKS_CREATE;
3673         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3674                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3675
3676         if (flags & IOMAP_ATOMIC)
3677                 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags,
3678                                                    &force_commit);
3679         else
3680                 ret = ext4_map_blocks(handle, inode, map, m_flags);
3681
3682         /*
3683          * We cannot fill holes in indirect tree based inodes as that could
3684          * expose stale data in the case of a crash. Use the magic error code
3685          * to fallback to buffered I/O.
3686          */
3687         if (!m_flags && !ret)
3688                 ret = -ENOTBLK;
3689
3690         ext4_journal_stop(handle);
3691         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3692                 goto retry;
3693
3694         /*
3695          * Force commit the current transaction if the allocation spans a mixed
3696          * mapping range. This ensures any pending metadata updates (like
3697          * unwritten to written extents conversion) in this range are in
3698          * consistent state with the file data blocks, before performing the
3699          * actual write I/O. If the commit fails, the whole I/O must be aborted
3700          * to prevent any possible torn writes.
3701          */
3702         if (ret > 0 && force_commit) {
3703                 int ret2;
3704
3705                 ret2 = ext4_force_commit(inode->i_sb);
3706                 if (ret2)
3707                         return ret2;
3708         }
3709
3710         return ret;
3711 }
3712
3713
3714 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3715                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3716 {
3717         int ret;
3718         struct ext4_map_blocks map;
3719         u8 blkbits = inode->i_blkbits;
3720         unsigned int orig_mlen;
3721
3722         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3723                 return -EINVAL;
3724
3725         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3726                 return -ERANGE;
3727
3728         /*
3729          * Calculate the first and last logical blocks respectively.
3730          */
3731         map.m_lblk = offset >> blkbits;
3732         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3733                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3734         orig_mlen = map.m_len;
3735
3736         if (flags & IOMAP_WRITE) {
3737                 /*
3738                  * We check here if the blocks are already allocated, then we
3739                  * don't need to start a journal txn and we can directly return
3740                  * the mapping information. This could boost performance
3741                  * especially in multi-threaded overwrite requests.
3742                  */
3743                 if (offset + length <= i_size_read(inode)) {
3744                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3745                         /*
3746                          * For atomic writes the entire requested length should
3747                          * be mapped.
3748                          */
3749                         if (map.m_flags & EXT4_MAP_MAPPED) {
3750                                 if ((!(flags & IOMAP_ATOMIC) && ret > 0) ||
3751                                    (flags & IOMAP_ATOMIC && ret >= orig_mlen))
3752                                         goto out;
3753                         }
3754                         map.m_len = orig_mlen;
3755                 }
3756                 ret = ext4_iomap_alloc(inode, &map, flags);
3757         } else {
3758                 /*
3759                  * This can be called for overwrites path from
3760                  * ext4_iomap_overwrite_begin().
3761                  */
3762                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3763         }
3764
3765         if (ret < 0)
3766                 return ret;
3767 out:
3768         /*
3769          * When inline encryption is enabled, sometimes I/O to an encrypted file
3770          * has to be broken up to guarantee DUN contiguity.  Handle this by
3771          * limiting the length of the mapping returned.
3772          */
3773         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3774
3775         /*
3776          * Before returning to iomap, let's ensure the allocated mapping
3777          * covers the entire requested length for atomic writes.
3778          */
3779         if (flags & IOMAP_ATOMIC) {
3780                 if (map.m_len < (length >> blkbits)) {
3781                         WARN_ON_ONCE(1);
3782                         return -EINVAL;
3783                 }
3784         }
3785         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3786
3787         return 0;
3788 }
3789
3790 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3791                 loff_t length, unsigned flags, struct iomap *iomap,
3792                 struct iomap *srcmap)
3793 {
3794         int ret;
3795
3796         /*
3797          * Even for writes we don't need to allocate blocks, so just pretend
3798          * we are reading to save overhead of starting a transaction.
3799          */
3800         flags &= ~IOMAP_WRITE;
3801         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3802         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3803         return ret;
3804 }
3805
3806 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3807 {
3808         /* must be a directio to fall back to buffered */
3809         if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3810                     (IOMAP_WRITE | IOMAP_DIRECT))
3811                 return false;
3812
3813         /* atomic writes are all-or-nothing */
3814         if (flags & IOMAP_ATOMIC)
3815                 return false;
3816
3817         /* can only try again if we wrote nothing */
3818         return written == 0;
3819 }
3820
3821 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3822                           ssize_t written, unsigned flags, struct iomap *iomap)
3823 {
3824         /*
3825          * Check to see whether an error occurred while writing out the data to
3826          * the allocated blocks. If so, return the magic error code for
3827          * non-atomic write so that we fallback to buffered I/O and attempt to
3828          * complete the remainder of the I/O.
3829          * For non-atomic writes, any blocks that may have been
3830          * allocated in preparation for the direct I/O will be reused during
3831          * buffered I/O. For atomic write, we never fallback to buffered-io.
3832          */
3833         if (ext4_want_directio_fallback(flags, written))
3834                 return -ENOTBLK;
3835
3836         return 0;
3837 }
3838
3839 const struct iomap_ops ext4_iomap_ops = {
3840         .iomap_begin            = ext4_iomap_begin,
3841         .iomap_end              = ext4_iomap_end,
3842 };
3843
3844 const struct iomap_ops ext4_iomap_overwrite_ops = {
3845         .iomap_begin            = ext4_iomap_overwrite_begin,
3846         .iomap_end              = ext4_iomap_end,
3847 };
3848
3849 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3850                                    loff_t length, unsigned int flags,
3851                                    struct iomap *iomap, struct iomap *srcmap)
3852 {
3853         int ret;
3854         struct ext4_map_blocks map;
3855         u8 blkbits = inode->i_blkbits;
3856
3857         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3858                 return -EINVAL;
3859
3860         if (ext4_has_inline_data(inode)) {
3861                 ret = ext4_inline_data_iomap(inode, iomap);
3862                 if (ret != -EAGAIN) {
3863                         if (ret == 0 && offset >= iomap->length)
3864                                 ret = -ENOENT;
3865                         return ret;
3866                 }
3867         }
3868
3869         /*
3870          * Calculate the first and last logical block respectively.
3871          */
3872         map.m_lblk = offset >> blkbits;
3873         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3874                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3875
3876         /*
3877          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3878          * So handle it here itself instead of querying ext4_map_blocks().
3879          * Since ext4_map_blocks() will warn about it and will return
3880          * -EIO error.
3881          */
3882         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884
3885                 if (offset >= sbi->s_bitmap_maxbytes) {
3886                         map.m_flags = 0;
3887                         goto set_iomap;
3888                 }
3889         }
3890
3891         ret = ext4_map_blocks(NULL, inode, &map, 0);
3892         if (ret < 0)
3893                 return ret;
3894 set_iomap:
3895         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3896
3897         return 0;
3898 }
3899
3900 const struct iomap_ops ext4_iomap_report_ops = {
3901         .iomap_begin = ext4_iomap_begin_report,
3902 };
3903
3904 /*
3905  * For data=journal mode, folio should be marked dirty only when it was
3906  * writeably mapped. When that happens, it was already attached to the
3907  * transaction and marked as jbddirty (we take care of this in
3908  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3909  * so we should have nothing to do here, except for the case when someone
3910  * had the page pinned and dirtied the page through this pin (e.g. by doing
3911  * direct IO to it). In that case we'd need to attach buffers here to the
3912  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3913  * folio and leave attached buffers clean, because the buffers' dirty state is
3914  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3915  * the journalling code will explode.  So what we do is to mark the folio
3916  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3917  * to the transaction appropriately.
3918  */
3919 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3920                 struct folio *folio)
3921 {
3922         WARN_ON_ONCE(!folio_buffers(folio));
3923         if (folio_maybe_dma_pinned(folio))
3924                 folio_set_checked(folio);
3925         return filemap_dirty_folio(mapping, folio);
3926 }
3927
3928 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3929 {
3930         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3931         WARN_ON_ONCE(!folio_buffers(folio));
3932         return block_dirty_folio(mapping, folio);
3933 }
3934
3935 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3936                                     struct file *file, sector_t *span)
3937 {
3938         return iomap_swapfile_activate(sis, file, span,
3939                                        &ext4_iomap_report_ops);
3940 }
3941
3942 static const struct address_space_operations ext4_aops = {
3943         .read_folio             = ext4_read_folio,
3944         .readahead              = ext4_readahead,
3945         .writepages             = ext4_writepages,
3946         .write_begin            = ext4_write_begin,
3947         .write_end              = ext4_write_end,
3948         .dirty_folio            = ext4_dirty_folio,
3949         .bmap                   = ext4_bmap,
3950         .invalidate_folio       = ext4_invalidate_folio,
3951         .release_folio          = ext4_release_folio,
3952         .migrate_folio          = buffer_migrate_folio,
3953         .is_partially_uptodate  = block_is_partially_uptodate,
3954         .error_remove_folio     = generic_error_remove_folio,
3955         .swap_activate          = ext4_iomap_swap_activate,
3956 };
3957
3958 static const struct address_space_operations ext4_journalled_aops = {
3959         .read_folio             = ext4_read_folio,
3960         .readahead              = ext4_readahead,
3961         .writepages             = ext4_writepages,
3962         .write_begin            = ext4_write_begin,
3963         .write_end              = ext4_journalled_write_end,
3964         .dirty_folio            = ext4_journalled_dirty_folio,
3965         .bmap                   = ext4_bmap,
3966         .invalidate_folio       = ext4_journalled_invalidate_folio,
3967         .release_folio          = ext4_release_folio,
3968         .migrate_folio          = buffer_migrate_folio_norefs,
3969         .is_partially_uptodate  = block_is_partially_uptodate,
3970         .error_remove_folio     = generic_error_remove_folio,
3971         .swap_activate          = ext4_iomap_swap_activate,
3972 };
3973
3974 static const struct address_space_operations ext4_da_aops = {
3975         .read_folio             = ext4_read_folio,
3976         .readahead              = ext4_readahead,
3977         .writepages             = ext4_writepages,
3978         .write_begin            = ext4_da_write_begin,
3979         .write_end              = ext4_da_write_end,
3980         .dirty_folio            = ext4_dirty_folio,
3981         .bmap                   = ext4_bmap,
3982         .invalidate_folio       = ext4_invalidate_folio,
3983         .release_folio          = ext4_release_folio,
3984         .migrate_folio          = buffer_migrate_folio,
3985         .is_partially_uptodate  = block_is_partially_uptodate,
3986         .error_remove_folio     = generic_error_remove_folio,
3987         .swap_activate          = ext4_iomap_swap_activate,
3988 };
3989
3990 static const struct address_space_operations ext4_dax_aops = {
3991         .writepages             = ext4_dax_writepages,
3992         .dirty_folio            = noop_dirty_folio,
3993         .bmap                   = ext4_bmap,
3994         .swap_activate          = ext4_iomap_swap_activate,
3995 };
3996
3997 void ext4_set_aops(struct inode *inode)
3998 {
3999         switch (ext4_inode_journal_mode(inode)) {
4000         case EXT4_INODE_ORDERED_DATA_MODE:
4001         case EXT4_INODE_WRITEBACK_DATA_MODE:
4002                 break;
4003         case EXT4_INODE_JOURNAL_DATA_MODE:
4004                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4005                 return;
4006         default:
4007                 BUG();
4008         }
4009         if (IS_DAX(inode))
4010                 inode->i_mapping->a_ops = &ext4_dax_aops;
4011         else if (test_opt(inode->i_sb, DELALLOC))
4012                 inode->i_mapping->a_ops = &ext4_da_aops;
4013         else
4014                 inode->i_mapping->a_ops = &ext4_aops;
4015 }
4016
4017 /*
4018  * Here we can't skip an unwritten buffer even though it usually reads zero
4019  * because it might have data in pagecache (eg, if called from ext4_zero_range,
4020  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
4021  * racing writeback can come later and flush the stale pagecache to disk.
4022  */
4023 static int __ext4_block_zero_page_range(handle_t *handle,
4024                 struct address_space *mapping, loff_t from, loff_t length)
4025 {
4026         unsigned int offset, blocksize, pos;
4027         ext4_lblk_t iblock;
4028         struct inode *inode = mapping->host;
4029         struct buffer_head *bh;
4030         struct folio *folio;
4031         int err = 0;
4032
4033         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
4034                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
4035                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
4036         if (IS_ERR(folio))
4037                 return PTR_ERR(folio);
4038
4039         blocksize = inode->i_sb->s_blocksize;
4040
4041         iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4042
4043         bh = folio_buffers(folio);
4044         if (!bh)
4045                 bh = create_empty_buffers(folio, blocksize, 0);
4046
4047         /* Find the buffer that contains "offset" */
4048         offset = offset_in_folio(folio, from);
4049         pos = blocksize;
4050         while (offset >= pos) {
4051                 bh = bh->b_this_page;
4052                 iblock++;
4053                 pos += blocksize;
4054         }
4055         if (buffer_freed(bh)) {
4056                 BUFFER_TRACE(bh, "freed: skip");
4057                 goto unlock;
4058         }
4059         if (!buffer_mapped(bh)) {
4060                 BUFFER_TRACE(bh, "unmapped");
4061                 ext4_get_block(inode, iblock, bh, 0);
4062                 /* unmapped? It's a hole - nothing to do */
4063                 if (!buffer_mapped(bh)) {
4064                         BUFFER_TRACE(bh, "still unmapped");
4065                         goto unlock;
4066                 }
4067         }
4068
4069         /* Ok, it's mapped. Make sure it's up-to-date */
4070         if (folio_test_uptodate(folio))
4071                 set_buffer_uptodate(bh);
4072
4073         if (!buffer_uptodate(bh)) {
4074                 err = ext4_read_bh_lock(bh, 0, true);
4075                 if (err)
4076                         goto unlock;
4077                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4078                         /* We expect the key to be set. */
4079                         BUG_ON(!fscrypt_has_encryption_key(inode));
4080                         err = fscrypt_decrypt_pagecache_blocks(folio,
4081                                                                blocksize,
4082                                                                bh_offset(bh));
4083                         if (err) {
4084                                 clear_buffer_uptodate(bh);
4085                                 goto unlock;
4086                         }
4087                 }
4088         }
4089         if (ext4_should_journal_data(inode)) {
4090                 BUFFER_TRACE(bh, "get write access");
4091                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
4092                                                     EXT4_JTR_NONE);
4093                 if (err)
4094                         goto unlock;
4095         }
4096         folio_zero_range(folio, offset, length);
4097         BUFFER_TRACE(bh, "zeroed end of block");
4098
4099         if (ext4_should_journal_data(inode)) {
4100                 err = ext4_dirty_journalled_data(handle, bh);
4101         } else {
4102                 err = 0;
4103                 mark_buffer_dirty(bh);
4104                 if (ext4_should_order_data(inode))
4105                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4106                                         length);
4107         }
4108
4109 unlock:
4110         folio_unlock(folio);
4111         folio_put(folio);
4112         return err;
4113 }
4114
4115 /*
4116  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4117  * starting from file offset 'from'.  The range to be zero'd must
4118  * be contained with in one block.  If the specified range exceeds
4119  * the end of the block it will be shortened to end of the block
4120  * that corresponds to 'from'
4121  */
4122 static int ext4_block_zero_page_range(handle_t *handle,
4123                 struct address_space *mapping, loff_t from, loff_t length)
4124 {
4125         struct inode *inode = mapping->host;
4126         unsigned offset = from & (PAGE_SIZE-1);
4127         unsigned blocksize = inode->i_sb->s_blocksize;
4128         unsigned max = blocksize - (offset & (blocksize - 1));
4129
4130         /*
4131          * correct length if it does not fall between
4132          * 'from' and the end of the block
4133          */
4134         if (length > max || length < 0)
4135                 length = max;
4136
4137         if (IS_DAX(inode)) {
4138                 return dax_zero_range(inode, from, length, NULL,
4139                                       &ext4_iomap_ops);
4140         }
4141         return __ext4_block_zero_page_range(handle, mapping, from, length);
4142 }
4143
4144 /*
4145  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4146  * up to the end of the block which corresponds to `from'.
4147  * This required during truncate. We need to physically zero the tail end
4148  * of that block so it doesn't yield old data if the file is later grown.
4149  */
4150 static int ext4_block_truncate_page(handle_t *handle,
4151                 struct address_space *mapping, loff_t from)
4152 {
4153         unsigned offset = from & (PAGE_SIZE-1);
4154         unsigned length;
4155         unsigned blocksize;
4156         struct inode *inode = mapping->host;
4157
4158         /* If we are processing an encrypted inode during orphan list handling */
4159         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4160                 return 0;
4161
4162         blocksize = inode->i_sb->s_blocksize;
4163         length = blocksize - (offset & (blocksize - 1));
4164
4165         return ext4_block_zero_page_range(handle, mapping, from, length);
4166 }
4167
4168 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4169                              loff_t lstart, loff_t length)
4170 {
4171         struct super_block *sb = inode->i_sb;
4172         struct address_space *mapping = inode->i_mapping;
4173         unsigned partial_start, partial_end;
4174         ext4_fsblk_t start, end;
4175         loff_t byte_end = (lstart + length - 1);
4176         int err = 0;
4177
4178         partial_start = lstart & (sb->s_blocksize - 1);
4179         partial_end = byte_end & (sb->s_blocksize - 1);
4180
4181         start = lstart >> sb->s_blocksize_bits;
4182         end = byte_end >> sb->s_blocksize_bits;
4183
4184         /* Handle partial zero within the single block */
4185         if (start == end &&
4186             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4187                 err = ext4_block_zero_page_range(handle, mapping,
4188                                                  lstart, length);
4189                 return err;
4190         }
4191         /* Handle partial zero out on the start of the range */
4192         if (partial_start) {
4193                 err = ext4_block_zero_page_range(handle, mapping,
4194                                                  lstart, sb->s_blocksize);
4195                 if (err)
4196                         return err;
4197         }
4198         /* Handle partial zero out on the end of the range */
4199         if (partial_end != sb->s_blocksize - 1)
4200                 err = ext4_block_zero_page_range(handle, mapping,
4201                                                  byte_end - partial_end,
4202                                                  partial_end + 1);
4203         return err;
4204 }
4205
4206 int ext4_can_truncate(struct inode *inode)
4207 {
4208         if (S_ISREG(inode->i_mode))
4209                 return 1;
4210         if (S_ISDIR(inode->i_mode))
4211                 return 1;
4212         if (S_ISLNK(inode->i_mode))
4213                 return !ext4_inode_is_fast_symlink(inode);
4214         return 0;
4215 }
4216
4217 /*
4218  * We have to make sure i_disksize gets properly updated before we truncate
4219  * page cache due to hole punching or zero range. Otherwise i_disksize update
4220  * can get lost as it may have been postponed to submission of writeback but
4221  * that will never happen after we truncate page cache.
4222  */
4223 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4224                                       loff_t len)
4225 {
4226         handle_t *handle;
4227         int ret;
4228
4229         loff_t size = i_size_read(inode);
4230
4231         WARN_ON(!inode_is_locked(inode));
4232         if (offset > size || offset + len < size)
4233                 return 0;
4234
4235         if (EXT4_I(inode)->i_disksize >= size)
4236                 return 0;
4237
4238         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4239         if (IS_ERR(handle))
4240                 return PTR_ERR(handle);
4241         ext4_update_i_disksize(inode, size);
4242         ret = ext4_mark_inode_dirty(handle, inode);
4243         ext4_journal_stop(handle);
4244
4245         return ret;
4246 }
4247
4248 static inline void ext4_truncate_folio(struct inode *inode,
4249                                        loff_t start, loff_t end)
4250 {
4251         unsigned long blocksize = i_blocksize(inode);
4252         struct folio *folio;
4253
4254         /* Nothing to be done if no complete block needs to be truncated. */
4255         if (round_up(start, blocksize) >= round_down(end, blocksize))
4256                 return;
4257
4258         folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
4259         if (IS_ERR(folio))
4260                 return;
4261
4262         if (folio_mkclean(folio))
4263                 folio_mark_dirty(folio);
4264         folio_unlock(folio);
4265         folio_put(folio);
4266 }
4267
4268 int ext4_truncate_page_cache_block_range(struct inode *inode,
4269                                          loff_t start, loff_t end)
4270 {
4271         unsigned long blocksize = i_blocksize(inode);
4272         int ret;
4273
4274         /*
4275          * For journalled data we need to write (and checkpoint) pages
4276          * before discarding page cache to avoid inconsitent data on disk
4277          * in case of crash before freeing or unwritten converting trans
4278          * is committed.
4279          */
4280         if (ext4_should_journal_data(inode)) {
4281                 ret = filemap_write_and_wait_range(inode->i_mapping, start,
4282                                                    end - 1);
4283                 if (ret)
4284                         return ret;
4285                 goto truncate_pagecache;
4286         }
4287
4288         /*
4289          * If the block size is less than the page size, the file's mapped
4290          * blocks within one page could be freed or converted to unwritten.
4291          * So it's necessary to remove writable userspace mappings, and then
4292          * ext4_page_mkwrite() can be called during subsequent write access
4293          * to these partial folios.
4294          */
4295         if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
4296             blocksize < PAGE_SIZE && start < inode->i_size) {
4297                 loff_t page_boundary = round_up(start, PAGE_SIZE);
4298
4299                 ext4_truncate_folio(inode, start, min(page_boundary, end));
4300                 if (end > page_boundary)
4301                         ext4_truncate_folio(inode,
4302                                             round_down(end, PAGE_SIZE), end);
4303         }
4304
4305 truncate_pagecache:
4306         truncate_pagecache_range(inode, start, end - 1);
4307         return 0;
4308 }
4309
4310 static void ext4_wait_dax_page(struct inode *inode)
4311 {
4312         filemap_invalidate_unlock(inode->i_mapping);
4313         schedule();
4314         filemap_invalidate_lock(inode->i_mapping);
4315 }
4316
4317 int ext4_break_layouts(struct inode *inode)
4318 {
4319         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4320                 return -EINVAL;
4321
4322         return dax_break_layout_inode(inode, ext4_wait_dax_page);
4323 }
4324
4325 /*
4326  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4327  * associated with the given offset and length
4328  *
4329  * @inode:  File inode
4330  * @offset: The offset where the hole will begin
4331  * @len:    The length of the hole
4332  *
4333  * Returns: 0 on success or negative on failure
4334  */
4335
4336 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4337 {
4338         struct inode *inode = file_inode(file);
4339         struct super_block *sb = inode->i_sb;
4340         ext4_lblk_t start_lblk, end_lblk;
4341         loff_t max_end = sb->s_maxbytes;
4342         loff_t end = offset + length;
4343         handle_t *handle;
4344         unsigned int credits;
4345         int ret;
4346
4347         trace_ext4_punch_hole(inode, offset, length, 0);
4348         WARN_ON_ONCE(!inode_is_locked(inode));
4349
4350         /*
4351          * For indirect-block based inodes, make sure that the hole within
4352          * one block before last range.
4353          */
4354         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4355                 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4356
4357         /* No need to punch hole beyond i_size */
4358         if (offset >= inode->i_size || offset >= max_end)
4359                 return 0;
4360
4361         /*
4362          * If the hole extends beyond i_size, set the hole to end after
4363          * the page that contains i_size.
4364          */
4365         if (end > inode->i_size)
4366                 end = round_up(inode->i_size, PAGE_SIZE);
4367         if (end > max_end)
4368                 end = max_end;
4369         length = end - offset;
4370
4371         /*
4372          * Attach jinode to inode for jbd2 if we do any zeroing of partial
4373          * block.
4374          */
4375         if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4376                 ret = ext4_inode_attach_jinode(inode);
4377                 if (ret < 0)
4378                         return ret;
4379         }
4380
4381
4382         ret = ext4_update_disksize_before_punch(inode, offset, length);
4383         if (ret)
4384                 return ret;
4385
4386         /* Now release the pages and zero block aligned part of pages*/
4387         ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4388         if (ret)
4389                 return ret;
4390
4391         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4392                 credits = ext4_writepage_trans_blocks(inode);
4393         else
4394                 credits = ext4_blocks_for_truncate(inode);
4395         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4396         if (IS_ERR(handle)) {
4397                 ret = PTR_ERR(handle);
4398                 ext4_std_error(sb, ret);
4399                 return ret;
4400         }
4401
4402         ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4403         if (ret)
4404                 goto out_handle;
4405
4406         /* If there are blocks to remove, do it */
4407         start_lblk = EXT4_B_TO_LBLK(inode, offset);
4408         end_lblk = end >> inode->i_blkbits;
4409
4410         if (end_lblk > start_lblk) {
4411                 ext4_lblk_t hole_len = end_lblk - start_lblk;
4412
4413                 ext4_fc_track_inode(handle, inode);
4414                 ext4_check_map_extents_env(inode);
4415                 down_write(&EXT4_I(inode)->i_data_sem);
4416                 ext4_discard_preallocations(inode);
4417
4418                 ext4_es_remove_extent(inode, start_lblk, hole_len);
4419
4420                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4421                         ret = ext4_ext_remove_space(inode, start_lblk,
4422                                                     end_lblk - 1);
4423                 else
4424                         ret = ext4_ind_remove_space(handle, inode, start_lblk,
4425                                                     end_lblk);
4426                 if (ret) {
4427                         up_write(&EXT4_I(inode)->i_data_sem);
4428                         goto out_handle;
4429                 }
4430
4431                 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4432                                       EXTENT_STATUS_HOLE, 0);
4433                 up_write(&EXT4_I(inode)->i_data_sem);
4434         }
4435         ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4436
4437         ret = ext4_mark_inode_dirty(handle, inode);
4438         if (unlikely(ret))
4439                 goto out_handle;
4440
4441         ext4_update_inode_fsync_trans(handle, inode, 1);
4442         if (IS_SYNC(inode))
4443                 ext4_handle_sync(handle);
4444 out_handle:
4445         ext4_journal_stop(handle);
4446         return ret;
4447 }
4448
4449 int ext4_inode_attach_jinode(struct inode *inode)
4450 {
4451         struct ext4_inode_info *ei = EXT4_I(inode);
4452         struct jbd2_inode *jinode;
4453
4454         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4455                 return 0;
4456
4457         jinode = jbd2_alloc_inode(GFP_KERNEL);
4458         spin_lock(&inode->i_lock);
4459         if (!ei->jinode) {
4460                 if (!jinode) {
4461                         spin_unlock(&inode->i_lock);
4462                         return -ENOMEM;
4463                 }
4464                 ei->jinode = jinode;
4465                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4466                 jinode = NULL;
4467         }
4468         spin_unlock(&inode->i_lock);
4469         if (unlikely(jinode != NULL))
4470                 jbd2_free_inode(jinode);
4471         return 0;
4472 }
4473
4474 /*
4475  * ext4_truncate()
4476  *
4477  * We block out ext4_get_block() block instantiations across the entire
4478  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4479  * simultaneously on behalf of the same inode.
4480  *
4481  * As we work through the truncate and commit bits of it to the journal there
4482  * is one core, guiding principle: the file's tree must always be consistent on
4483  * disk.  We must be able to restart the truncate after a crash.
4484  *
4485  * The file's tree may be transiently inconsistent in memory (although it
4486  * probably isn't), but whenever we close off and commit a journal transaction,
4487  * the contents of (the filesystem + the journal) must be consistent and
4488  * restartable.  It's pretty simple, really: bottom up, right to left (although
4489  * left-to-right works OK too).
4490  *
4491  * Note that at recovery time, journal replay occurs *before* the restart of
4492  * truncate against the orphan inode list.
4493  *
4494  * The committed inode has the new, desired i_size (which is the same as
4495  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4496  * that this inode's truncate did not complete and it will again call
4497  * ext4_truncate() to have another go.  So there will be instantiated blocks
4498  * to the right of the truncation point in a crashed ext4 filesystem.  But
4499  * that's fine - as long as they are linked from the inode, the post-crash
4500  * ext4_truncate() run will find them and release them.
4501  */
4502 int ext4_truncate(struct inode *inode)
4503 {
4504         struct ext4_inode_info *ei = EXT4_I(inode);
4505         unsigned int credits;
4506         int err = 0, err2;
4507         handle_t *handle;
4508         struct address_space *mapping = inode->i_mapping;
4509
4510         /*
4511          * There is a possibility that we're either freeing the inode
4512          * or it's a completely new inode. In those cases we might not
4513          * have i_rwsem locked because it's not necessary.
4514          */
4515         if (!(inode->i_state & (I_NEW|I_FREEING)))
4516                 WARN_ON(!inode_is_locked(inode));
4517         trace_ext4_truncate_enter(inode);
4518
4519         if (!ext4_can_truncate(inode))
4520                 goto out_trace;
4521
4522         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4523                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4524
4525         if (ext4_has_inline_data(inode)) {
4526                 int has_inline = 1;
4527
4528                 err = ext4_inline_data_truncate(inode, &has_inline);
4529                 if (err || has_inline)
4530                         goto out_trace;
4531         }
4532
4533         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4534         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4535                 err = ext4_inode_attach_jinode(inode);
4536                 if (err)
4537                         goto out_trace;
4538         }
4539
4540         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4541                 credits = ext4_writepage_trans_blocks(inode);
4542         else
4543                 credits = ext4_blocks_for_truncate(inode);
4544
4545         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4546         if (IS_ERR(handle)) {
4547                 err = PTR_ERR(handle);
4548                 goto out_trace;
4549         }
4550
4551         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4552                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4553
4554         /*
4555          * We add the inode to the orphan list, so that if this
4556          * truncate spans multiple transactions, and we crash, we will
4557          * resume the truncate when the filesystem recovers.  It also
4558          * marks the inode dirty, to catch the new size.
4559          *
4560          * Implication: the file must always be in a sane, consistent
4561          * truncatable state while each transaction commits.
4562          */
4563         err = ext4_orphan_add(handle, inode);
4564         if (err)
4565                 goto out_stop;
4566
4567         ext4_fc_track_inode(handle, inode);
4568         ext4_check_map_extents_env(inode);
4569
4570         down_write(&EXT4_I(inode)->i_data_sem);
4571         ext4_discard_preallocations(inode);
4572
4573         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4574                 err = ext4_ext_truncate(handle, inode);
4575         else
4576                 ext4_ind_truncate(handle, inode);
4577
4578         up_write(&ei->i_data_sem);
4579         if (err)
4580                 goto out_stop;
4581
4582         if (IS_SYNC(inode))
4583                 ext4_handle_sync(handle);
4584
4585 out_stop:
4586         /*
4587          * If this was a simple ftruncate() and the file will remain alive,
4588          * then we need to clear up the orphan record which we created above.
4589          * However, if this was a real unlink then we were called by
4590          * ext4_evict_inode(), and we allow that function to clean up the
4591          * orphan info for us.
4592          */
4593         if (inode->i_nlink)
4594                 ext4_orphan_del(handle, inode);
4595
4596         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4597         err2 = ext4_mark_inode_dirty(handle, inode);
4598         if (unlikely(err2 && !err))
4599                 err = err2;
4600         ext4_journal_stop(handle);
4601
4602 out_trace:
4603         trace_ext4_truncate_exit(inode);
4604         return err;
4605 }
4606
4607 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4608 {
4609         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4610                 return inode_peek_iversion_raw(inode);
4611         else
4612                 return inode_peek_iversion(inode);
4613 }
4614
4615 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4616                                  struct ext4_inode_info *ei)
4617 {
4618         struct inode *inode = &(ei->vfs_inode);
4619         u64 i_blocks = READ_ONCE(inode->i_blocks);
4620         struct super_block *sb = inode->i_sb;
4621
4622         if (i_blocks <= ~0U) {
4623                 /*
4624                  * i_blocks can be represented in a 32 bit variable
4625                  * as multiple of 512 bytes
4626                  */
4627                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4628                 raw_inode->i_blocks_high = 0;
4629                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4630                 return 0;
4631         }
4632
4633         /*
4634          * This should never happen since sb->s_maxbytes should not have
4635          * allowed this, sb->s_maxbytes was set according to the huge_file
4636          * feature in ext4_fill_super().
4637          */
4638         if (!ext4_has_feature_huge_file(sb))
4639                 return -EFSCORRUPTED;
4640
4641         if (i_blocks <= 0xffffffffffffULL) {
4642                 /*
4643                  * i_blocks can be represented in a 48 bit variable
4644                  * as multiple of 512 bytes
4645                  */
4646                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4647                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4648                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4649         } else {
4650                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4651                 /* i_block is stored in file system block size */
4652                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4653                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4654                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4655         }
4656         return 0;
4657 }
4658
4659 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4660 {
4661         struct ext4_inode_info *ei = EXT4_I(inode);
4662         uid_t i_uid;
4663         gid_t i_gid;
4664         projid_t i_projid;
4665         int block;
4666         int err;
4667
4668         err = ext4_inode_blocks_set(raw_inode, ei);
4669
4670         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4671         i_uid = i_uid_read(inode);
4672         i_gid = i_gid_read(inode);
4673         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4674         if (!(test_opt(inode->i_sb, NO_UID32))) {
4675                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4676                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4677                 /*
4678                  * Fix up interoperability with old kernels. Otherwise,
4679                  * old inodes get re-used with the upper 16 bits of the
4680                  * uid/gid intact.
4681                  */
4682                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4683                         raw_inode->i_uid_high = 0;
4684                         raw_inode->i_gid_high = 0;
4685                 } else {
4686                         raw_inode->i_uid_high =
4687                                 cpu_to_le16(high_16_bits(i_uid));
4688                         raw_inode->i_gid_high =
4689                                 cpu_to_le16(high_16_bits(i_gid));
4690                 }
4691         } else {
4692                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4693                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4694                 raw_inode->i_uid_high = 0;
4695                 raw_inode->i_gid_high = 0;
4696         }
4697         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4698
4699         EXT4_INODE_SET_CTIME(inode, raw_inode);
4700         EXT4_INODE_SET_MTIME(inode, raw_inode);
4701         EXT4_INODE_SET_ATIME(inode, raw_inode);
4702         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4703
4704         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4705         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4706         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4707                 raw_inode->i_file_acl_high =
4708                         cpu_to_le16(ei->i_file_acl >> 32);
4709         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4710         ext4_isize_set(raw_inode, ei->i_disksize);
4711
4712         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4713         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4714                 if (old_valid_dev(inode->i_rdev)) {
4715                         raw_inode->i_block[0] =
4716                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4717                         raw_inode->i_block[1] = 0;
4718                 } else {
4719                         raw_inode->i_block[0] = 0;
4720                         raw_inode->i_block[1] =
4721                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4722                         raw_inode->i_block[2] = 0;
4723                 }
4724         } else if (!ext4_has_inline_data(inode)) {
4725                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4726                         raw_inode->i_block[block] = ei->i_data[block];
4727         }
4728
4729         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4730                 u64 ivers = ext4_inode_peek_iversion(inode);
4731
4732                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4733                 if (ei->i_extra_isize) {
4734                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4735                                 raw_inode->i_version_hi =
4736                                         cpu_to_le32(ivers >> 32);
4737                         raw_inode->i_extra_isize =
4738                                 cpu_to_le16(ei->i_extra_isize);
4739                 }
4740         }
4741
4742         if (i_projid != EXT4_DEF_PROJID &&
4743             !ext4_has_feature_project(inode->i_sb))
4744                 err = err ?: -EFSCORRUPTED;
4745
4746         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4747             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4748                 raw_inode->i_projid = cpu_to_le32(i_projid);
4749
4750         ext4_inode_csum_set(inode, raw_inode, ei);
4751         return err;
4752 }
4753
4754 /*
4755  * ext4_get_inode_loc returns with an extra refcount against the inode's
4756  * underlying buffer_head on success. If we pass 'inode' and it does not
4757  * have in-inode xattr, we have all inode data in memory that is needed
4758  * to recreate the on-disk version of this inode.
4759  */
4760 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4761                                 struct inode *inode, struct ext4_iloc *iloc,
4762                                 ext4_fsblk_t *ret_block)
4763 {
4764         struct ext4_group_desc  *gdp;
4765         struct buffer_head      *bh;
4766         ext4_fsblk_t            block;
4767         struct blk_plug         plug;
4768         int                     inodes_per_block, inode_offset;
4769
4770         iloc->bh = NULL;
4771         if (ino < EXT4_ROOT_INO ||
4772             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4773                 return -EFSCORRUPTED;
4774
4775         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4776         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4777         if (!gdp)
4778                 return -EIO;
4779
4780         /*
4781          * Figure out the offset within the block group inode table
4782          */
4783         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4784         inode_offset = ((ino - 1) %
4785                         EXT4_INODES_PER_GROUP(sb));
4786         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4787
4788         block = ext4_inode_table(sb, gdp);
4789         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4790             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4791                 ext4_error(sb, "Invalid inode table block %llu in "
4792                            "block_group %u", block, iloc->block_group);
4793                 return -EFSCORRUPTED;
4794         }
4795         block += (inode_offset / inodes_per_block);
4796
4797         bh = sb_getblk(sb, block);
4798         if (unlikely(!bh))
4799                 return -ENOMEM;
4800         if (ext4_buffer_uptodate(bh))
4801                 goto has_buffer;
4802
4803         lock_buffer(bh);
4804         if (ext4_buffer_uptodate(bh)) {
4805                 /* Someone brought it uptodate while we waited */
4806                 unlock_buffer(bh);
4807                 goto has_buffer;
4808         }
4809
4810         /*
4811          * If we have all information of the inode in memory and this
4812          * is the only valid inode in the block, we need not read the
4813          * block.
4814          */
4815         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4816                 struct buffer_head *bitmap_bh;
4817                 int i, start;
4818
4819                 start = inode_offset & ~(inodes_per_block - 1);
4820
4821                 /* Is the inode bitmap in cache? */
4822                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4823                 if (unlikely(!bitmap_bh))
4824                         goto make_io;
4825
4826                 /*
4827                  * If the inode bitmap isn't in cache then the
4828                  * optimisation may end up performing two reads instead
4829                  * of one, so skip it.
4830                  */
4831                 if (!buffer_uptodate(bitmap_bh)) {
4832                         brelse(bitmap_bh);
4833                         goto make_io;
4834                 }
4835                 for (i = start; i < start + inodes_per_block; i++) {
4836                         if (i == inode_offset)
4837                                 continue;
4838                         if (ext4_test_bit(i, bitmap_bh->b_data))
4839                                 break;
4840                 }
4841                 brelse(bitmap_bh);
4842                 if (i == start + inodes_per_block) {
4843                         struct ext4_inode *raw_inode =
4844                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4845
4846                         /* all other inodes are free, so skip I/O */
4847                         memset(bh->b_data, 0, bh->b_size);
4848                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4849                                 ext4_fill_raw_inode(inode, raw_inode);
4850                         set_buffer_uptodate(bh);
4851                         unlock_buffer(bh);
4852                         goto has_buffer;
4853                 }
4854         }
4855
4856 make_io:
4857         /*
4858          * If we need to do any I/O, try to pre-readahead extra
4859          * blocks from the inode table.
4860          */
4861         blk_start_plug(&plug);
4862         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4863                 ext4_fsblk_t b, end, table;
4864                 unsigned num;
4865                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4866
4867                 table = ext4_inode_table(sb, gdp);
4868                 /* s_inode_readahead_blks is always a power of 2 */
4869                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4870                 if (table > b)
4871                         b = table;
4872                 end = b + ra_blks;
4873                 num = EXT4_INODES_PER_GROUP(sb);
4874                 if (ext4_has_group_desc_csum(sb))
4875                         num -= ext4_itable_unused_count(sb, gdp);
4876                 table += num / inodes_per_block;
4877                 if (end > table)
4878                         end = table;
4879                 while (b <= end)
4880                         ext4_sb_breadahead_unmovable(sb, b++);
4881         }
4882
4883         /*
4884          * There are other valid inodes in the buffer, this inode
4885          * has in-inode xattrs, or we don't have this inode in memory.
4886          * Read the block from disk.
4887          */
4888         trace_ext4_load_inode(sb, ino);
4889         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4890                             ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4891         blk_finish_plug(&plug);
4892         wait_on_buffer(bh);
4893         if (!buffer_uptodate(bh)) {
4894                 if (ret_block)
4895                         *ret_block = block;
4896                 brelse(bh);
4897                 return -EIO;
4898         }
4899 has_buffer:
4900         iloc->bh = bh;
4901         return 0;
4902 }
4903
4904 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4905                                         struct ext4_iloc *iloc)
4906 {
4907         ext4_fsblk_t err_blk = 0;
4908         int ret;
4909
4910         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4911                                         &err_blk);
4912
4913         if (ret == -EIO)
4914                 ext4_error_inode_block(inode, err_blk, EIO,
4915                                         "unable to read itable block");
4916
4917         return ret;
4918 }
4919
4920 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4921 {
4922         ext4_fsblk_t err_blk = 0;
4923         int ret;
4924
4925         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4926                                         &err_blk);
4927
4928         if (ret == -EIO)
4929                 ext4_error_inode_block(inode, err_blk, EIO,
4930                                         "unable to read itable block");
4931
4932         return ret;
4933 }
4934
4935
4936 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4937                           struct ext4_iloc *iloc)
4938 {
4939         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4940 }
4941
4942 static bool ext4_should_enable_dax(struct inode *inode)
4943 {
4944         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4945
4946         if (test_opt2(inode->i_sb, DAX_NEVER))
4947                 return false;
4948         if (!S_ISREG(inode->i_mode))
4949                 return false;
4950         if (ext4_should_journal_data(inode))
4951                 return false;
4952         if (ext4_has_inline_data(inode))
4953                 return false;
4954         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4955                 return false;
4956         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4957                 return false;
4958         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4959                 return false;
4960         if (test_opt(inode->i_sb, DAX_ALWAYS))
4961                 return true;
4962
4963         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4964 }
4965
4966 void ext4_set_inode_flags(struct inode *inode, bool init)
4967 {
4968         unsigned int flags = EXT4_I(inode)->i_flags;
4969         unsigned int new_fl = 0;
4970
4971         WARN_ON_ONCE(IS_DAX(inode) && init);
4972
4973         if (flags & EXT4_SYNC_FL)
4974                 new_fl |= S_SYNC;
4975         if (flags & EXT4_APPEND_FL)
4976                 new_fl |= S_APPEND;
4977         if (flags & EXT4_IMMUTABLE_FL)
4978                 new_fl |= S_IMMUTABLE;
4979         if (flags & EXT4_NOATIME_FL)
4980                 new_fl |= S_NOATIME;
4981         if (flags & EXT4_DIRSYNC_FL)
4982                 new_fl |= S_DIRSYNC;
4983
4984         /* Because of the way inode_set_flags() works we must preserve S_DAX
4985          * here if already set. */
4986         new_fl |= (inode->i_flags & S_DAX);
4987         if (init && ext4_should_enable_dax(inode))
4988                 new_fl |= S_DAX;
4989
4990         if (flags & EXT4_ENCRYPT_FL)
4991                 new_fl |= S_ENCRYPTED;
4992         if (flags & EXT4_CASEFOLD_FL)
4993                 new_fl |= S_CASEFOLD;
4994         if (flags & EXT4_VERITY_FL)
4995                 new_fl |= S_VERITY;
4996         inode_set_flags(inode, new_fl,
4997                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4998                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4999 }
5000
5001 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5002                                   struct ext4_inode_info *ei)
5003 {
5004         blkcnt_t i_blocks ;
5005         struct inode *inode = &(ei->vfs_inode);
5006         struct super_block *sb = inode->i_sb;
5007
5008         if (ext4_has_feature_huge_file(sb)) {
5009                 /* we are using combined 48 bit field */
5010                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5011                                         le32_to_cpu(raw_inode->i_blocks_lo);
5012                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5013                         /* i_blocks represent file system block size */
5014                         return i_blocks  << (inode->i_blkbits - 9);
5015                 } else {
5016                         return i_blocks;
5017                 }
5018         } else {
5019                 return le32_to_cpu(raw_inode->i_blocks_lo);
5020         }
5021 }
5022
5023 static inline int ext4_iget_extra_inode(struct inode *inode,
5024                                          struct ext4_inode *raw_inode,
5025                                          struct ext4_inode_info *ei)
5026 {
5027         __le32 *magic = (void *)raw_inode +
5028                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
5029
5030         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
5031             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
5032                 int err;
5033
5034                 err = xattr_check_inode(inode, IHDR(inode, raw_inode),
5035                                         ITAIL(inode, raw_inode));
5036                 if (err)
5037                         return err;
5038
5039                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5040                 err = ext4_find_inline_data_nolock(inode);
5041                 if (!err && ext4_has_inline_data(inode))
5042                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
5043                 return err;
5044         } else
5045                 EXT4_I(inode)->i_inline_off = 0;
5046         return 0;
5047 }
5048
5049 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
5050 {
5051         if (!ext4_has_feature_project(inode->i_sb))
5052                 return -EOPNOTSUPP;
5053         *projid = EXT4_I(inode)->i_projid;
5054         return 0;
5055 }
5056
5057 /*
5058  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
5059  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
5060  * set.
5061  */
5062 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
5063 {
5064         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5065                 inode_set_iversion_raw(inode, val);
5066         else
5067                 inode_set_iversion_queried(inode, val);
5068 }
5069
5070 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
5071                             const char *function, unsigned int line)
5072 {
5073         const char *err_str;
5074
5075         if (flags & EXT4_IGET_EA_INODE) {
5076                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5077                         err_str = "missing EA_INODE flag";
5078                         goto error;
5079                 }
5080                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5081                     EXT4_I(inode)->i_file_acl) {
5082                         err_str = "ea_inode with extended attributes";
5083                         goto error;
5084                 }
5085         } else {
5086                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5087                         /*
5088                          * open_by_handle_at() could provide an old inode number
5089                          * that has since been reused for an ea_inode; this does
5090                          * not indicate filesystem corruption
5091                          */
5092                         if (flags & EXT4_IGET_HANDLE)
5093                                 return -ESTALE;
5094                         err_str = "unexpected EA_INODE flag";
5095                         goto error;
5096                 }
5097         }
5098         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5099                 err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
5100                 goto error;
5101         }
5102         return 0;
5103
5104 error:
5105         ext4_error_inode(inode, function, line, 0, "%s", err_str);
5106         return -EFSCORRUPTED;
5107 }
5108
5109 bool ext4_should_enable_large_folio(struct inode *inode)
5110 {
5111         struct super_block *sb = inode->i_sb;
5112
5113         if (!S_ISREG(inode->i_mode))
5114                 return false;
5115         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
5116             ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA))
5117                 return false;
5118         if (ext4_has_feature_verity(sb))
5119                 return false;
5120         if (ext4_has_feature_encrypt(sb))
5121                 return false;
5122
5123         return true;
5124 }
5125
5126 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
5127                           ext4_iget_flags flags, const char *function,
5128                           unsigned int line)
5129 {
5130         struct ext4_iloc iloc;
5131         struct ext4_inode *raw_inode;
5132         struct ext4_inode_info *ei;
5133         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5134         struct inode *inode;
5135         journal_t *journal = EXT4_SB(sb)->s_journal;
5136         long ret;
5137         loff_t size;
5138         int block;
5139         uid_t i_uid;
5140         gid_t i_gid;
5141         projid_t i_projid;
5142
5143         if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) ||
5144             (ino < EXT4_ROOT_INO) ||
5145             (ino > le32_to_cpu(es->s_inodes_count))) {
5146                 if (flags & EXT4_IGET_HANDLE)
5147                         return ERR_PTR(-ESTALE);
5148                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
5149                              "inode #%lu: comm %s: iget: illegal inode #",
5150                              ino, current->comm);
5151                 return ERR_PTR(-EFSCORRUPTED);
5152         }
5153
5154         inode = iget_locked(sb, ino);
5155         if (!inode)
5156                 return ERR_PTR(-ENOMEM);
5157         if (!(inode->i_state & I_NEW)) {
5158                 ret = check_igot_inode(inode, flags, function, line);
5159                 if (ret) {
5160                         iput(inode);
5161                         return ERR_PTR(ret);
5162                 }
5163                 return inode;
5164         }
5165
5166         ei = EXT4_I(inode);
5167         iloc.bh = NULL;
5168
5169         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
5170         if (ret < 0)
5171                 goto bad_inode;
5172         raw_inode = ext4_raw_inode(&iloc);
5173
5174         if ((flags & EXT4_IGET_HANDLE) &&
5175             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5176                 ret = -ESTALE;
5177                 goto bad_inode;
5178         }
5179
5180         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5181                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5182                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5183                         EXT4_INODE_SIZE(inode->i_sb) ||
5184                     (ei->i_extra_isize & 3)) {
5185                         ext4_error_inode(inode, function, line, 0,
5186                                          "iget: bad extra_isize %u "
5187                                          "(inode size %u)",
5188                                          ei->i_extra_isize,
5189                                          EXT4_INODE_SIZE(inode->i_sb));
5190                         ret = -EFSCORRUPTED;
5191                         goto bad_inode;
5192                 }
5193         } else
5194                 ei->i_extra_isize = 0;
5195
5196         /* Precompute checksum seed for inode metadata */
5197         if (ext4_has_feature_metadata_csum(sb)) {
5198                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5199                 __u32 csum;
5200                 __le32 inum = cpu_to_le32(inode->i_ino);
5201                 __le32 gen = raw_inode->i_generation;
5202                 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
5203                                    sizeof(inum));
5204                 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
5205         }
5206
5207         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
5208             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
5209              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
5210                 ext4_error_inode_err(inode, function, line, 0,
5211                                 EFSBADCRC, "iget: checksum invalid");
5212                 ret = -EFSBADCRC;
5213                 goto bad_inode;
5214         }
5215
5216         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5217         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5218         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5219         if (ext4_has_feature_project(sb) &&
5220             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5221             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5222                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5223         else
5224                 i_projid = EXT4_DEF_PROJID;
5225
5226         if (!(test_opt(inode->i_sb, NO_UID32))) {
5227                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5228                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5229         }
5230         i_uid_write(inode, i_uid);
5231         i_gid_write(inode, i_gid);
5232         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5233         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5234
5235         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
5236         ei->i_inline_off = 0;
5237         ei->i_dir_start_lookup = 0;
5238         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5239         /* We now have enough fields to check if the inode was active or not.
5240          * This is needed because nfsd might try to access dead inodes
5241          * the test is that same one that e2fsck uses
5242          * NeilBrown 1999oct15
5243          */
5244         if (inode->i_nlink == 0) {
5245                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5246                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5247                     ino != EXT4_BOOT_LOADER_INO) {
5248                         /* this inode is deleted or unallocated */
5249                         if (flags & EXT4_IGET_SPECIAL) {
5250                                 ext4_error_inode(inode, function, line, 0,
5251                                                  "iget: special inode unallocated");
5252                                 ret = -EFSCORRUPTED;
5253                         } else
5254                                 ret = -ESTALE;
5255                         goto bad_inode;
5256                 }
5257                 /* The only unlinked inodes we let through here have
5258                  * valid i_mode and are being read by the orphan
5259                  * recovery code: that's fine, we're about to complete
5260                  * the process of deleting those.
5261                  * OR it is the EXT4_BOOT_LOADER_INO which is
5262                  * not initialized on a new filesystem. */
5263         }
5264         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5265         ext4_set_inode_flags(inode, true);
5266         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5267         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5268         if (ext4_has_feature_64bit(sb))
5269                 ei->i_file_acl |=
5270                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5271         inode->i_size = ext4_isize(sb, raw_inode);
5272         size = i_size_read(inode);
5273         if (size < 0 || size > ext4_get_maxbytes(inode)) {
5274                 ext4_error_inode(inode, function, line, 0,
5275                                  "iget: bad i_size value: %lld", size);
5276                 ret = -EFSCORRUPTED;
5277                 goto bad_inode;
5278         }
5279         /*
5280          * If dir_index is not enabled but there's dir with INDEX flag set,
5281          * we'd normally treat htree data as empty space. But with metadata
5282          * checksumming that corrupts checksums so forbid that.
5283          */
5284         if (!ext4_has_feature_dir_index(sb) &&
5285             ext4_has_feature_metadata_csum(sb) &&
5286             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5287                 ext4_error_inode(inode, function, line, 0,
5288                          "iget: Dir with htree data on filesystem without dir_index feature.");
5289                 ret = -EFSCORRUPTED;
5290                 goto bad_inode;
5291         }
5292         ei->i_disksize = inode->i_size;
5293 #ifdef CONFIG_QUOTA
5294         ei->i_reserved_quota = 0;
5295 #endif
5296         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5297         ei->i_block_group = iloc.block_group;
5298         ei->i_last_alloc_group = ~0;
5299         /*
5300          * NOTE! The in-memory inode i_data array is in little-endian order
5301          * even on big-endian machines: we do NOT byteswap the block numbers!
5302          */
5303         for (block = 0; block < EXT4_N_BLOCKS; block++)
5304                 ei->i_data[block] = raw_inode->i_block[block];
5305         INIT_LIST_HEAD(&ei->i_orphan);
5306         ext4_fc_init_inode(&ei->vfs_inode);
5307
5308         /*
5309          * Set transaction id's of transactions that have to be committed
5310          * to finish f[data]sync. We set them to currently running transaction
5311          * as we cannot be sure that the inode or some of its metadata isn't
5312          * part of the transaction - the inode could have been reclaimed and
5313          * now it is reread from disk.
5314          */
5315         if (journal) {
5316                 transaction_t *transaction;
5317                 tid_t tid;
5318
5319                 read_lock(&journal->j_state_lock);
5320                 if (journal->j_running_transaction)
5321                         transaction = journal->j_running_transaction;
5322                 else
5323                         transaction = journal->j_committing_transaction;
5324                 if (transaction)
5325                         tid = transaction->t_tid;
5326                 else
5327                         tid = journal->j_commit_sequence;
5328                 read_unlock(&journal->j_state_lock);
5329                 ei->i_sync_tid = tid;
5330                 ei->i_datasync_tid = tid;
5331         }
5332
5333         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5334                 if (ei->i_extra_isize == 0) {
5335                         /* The extra space is currently unused. Use it. */
5336                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5337                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5338                                             EXT4_GOOD_OLD_INODE_SIZE;
5339                 } else {
5340                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5341                         if (ret)
5342                                 goto bad_inode;
5343                 }
5344         }
5345
5346         EXT4_INODE_GET_CTIME(inode, raw_inode);
5347         EXT4_INODE_GET_ATIME(inode, raw_inode);
5348         EXT4_INODE_GET_MTIME(inode, raw_inode);
5349         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5350
5351         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5352                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5353
5354                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5355                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5356                                 ivers |=
5357                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5358                 }
5359                 ext4_inode_set_iversion_queried(inode, ivers);
5360         }
5361
5362         ret = 0;
5363         if (ei->i_file_acl &&
5364             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5365                 ext4_error_inode(inode, function, line, 0,
5366                                  "iget: bad extended attribute block %llu",
5367                                  ei->i_file_acl);
5368                 ret = -EFSCORRUPTED;
5369                 goto bad_inode;
5370         } else if (!ext4_has_inline_data(inode)) {
5371                 /* validate the block references in the inode */
5372                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5373                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5374                         (S_ISLNK(inode->i_mode) &&
5375                         !ext4_inode_is_fast_symlink(inode)))) {
5376                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5377                                 ret = ext4_ext_check_inode(inode);
5378                         else
5379                                 ret = ext4_ind_check_inode(inode);
5380                 }
5381         }
5382         if (ret)
5383                 goto bad_inode;
5384
5385         if (S_ISREG(inode->i_mode)) {
5386                 inode->i_op = &ext4_file_inode_operations;
5387                 inode->i_fop = &ext4_file_operations;
5388                 ext4_set_aops(inode);
5389         } else if (S_ISDIR(inode->i_mode)) {
5390                 inode->i_op = &ext4_dir_inode_operations;
5391                 inode->i_fop = &ext4_dir_operations;
5392         } else if (S_ISLNK(inode->i_mode)) {
5393                 /* VFS does not allow setting these so must be corruption */
5394                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5395                         ext4_error_inode(inode, function, line, 0,
5396                                          "iget: immutable or append flags "
5397                                          "not allowed on symlinks");
5398                         ret = -EFSCORRUPTED;
5399                         goto bad_inode;
5400                 }
5401                 if (IS_ENCRYPTED(inode)) {
5402                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5403                 } else if (ext4_inode_is_fast_symlink(inode)) {
5404                         inode->i_op = &ext4_fast_symlink_inode_operations;
5405                         if (inode->i_size == 0 ||
5406                             inode->i_size >= sizeof(ei->i_data) ||
5407                             strnlen((char *)ei->i_data, inode->i_size + 1) !=
5408                                                                 inode->i_size) {
5409                                 ext4_error_inode(inode, function, line, 0,
5410                                         "invalid fast symlink length %llu",
5411                                          (unsigned long long)inode->i_size);
5412                                 ret = -EFSCORRUPTED;
5413                                 goto bad_inode;
5414                         }
5415                         inode_set_cached_link(inode, (char *)ei->i_data,
5416                                               inode->i_size);
5417                 } else {
5418                         inode->i_op = &ext4_symlink_inode_operations;
5419                 }
5420         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5421               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5422                 inode->i_op = &ext4_special_inode_operations;
5423                 if (raw_inode->i_block[0])
5424                         init_special_inode(inode, inode->i_mode,
5425                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5426                 else
5427                         init_special_inode(inode, inode->i_mode,
5428                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5429         } else if (ino == EXT4_BOOT_LOADER_INO) {
5430                 make_bad_inode(inode);
5431         } else {
5432                 ret = -EFSCORRUPTED;
5433                 ext4_error_inode(inode, function, line, 0,
5434                                  "iget: bogus i_mode (%o)", inode->i_mode);
5435                 goto bad_inode;
5436         }
5437         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5438                 ext4_error_inode(inode, function, line, 0,
5439                                  "casefold flag without casefold feature");
5440                 ret = -EFSCORRUPTED;
5441                 goto bad_inode;
5442         }
5443         if (ext4_should_enable_large_folio(inode))
5444                 mapping_set_large_folios(inode->i_mapping);
5445
5446         ret = check_igot_inode(inode, flags, function, line);
5447         /*
5448          * -ESTALE here means there is nothing inherently wrong with the inode,
5449          * it's just not an inode we can return for an fhandle lookup.
5450          */
5451         if (ret == -ESTALE) {
5452                 brelse(iloc.bh);
5453                 unlock_new_inode(inode);
5454                 iput(inode);
5455                 return ERR_PTR(-ESTALE);
5456         }
5457         if (ret)
5458                 goto bad_inode;
5459         brelse(iloc.bh);
5460
5461         unlock_new_inode(inode);
5462         return inode;
5463
5464 bad_inode:
5465         brelse(iloc.bh);
5466         iget_failed(inode);
5467         return ERR_PTR(ret);
5468 }
5469
5470 static void __ext4_update_other_inode_time(struct super_block *sb,
5471                                            unsigned long orig_ino,
5472                                            unsigned long ino,
5473                                            struct ext4_inode *raw_inode)
5474 {
5475         struct inode *inode;
5476
5477         inode = find_inode_by_ino_rcu(sb, ino);
5478         if (!inode)
5479                 return;
5480
5481         if (!inode_is_dirtytime_only(inode))
5482                 return;
5483
5484         spin_lock(&inode->i_lock);
5485         if (inode_is_dirtytime_only(inode)) {
5486                 struct ext4_inode_info  *ei = EXT4_I(inode);
5487
5488                 inode->i_state &= ~I_DIRTY_TIME;
5489                 spin_unlock(&inode->i_lock);
5490
5491                 spin_lock(&ei->i_raw_lock);
5492                 EXT4_INODE_SET_CTIME(inode, raw_inode);
5493                 EXT4_INODE_SET_MTIME(inode, raw_inode);
5494                 EXT4_INODE_SET_ATIME(inode, raw_inode);
5495                 ext4_inode_csum_set(inode, raw_inode, ei);
5496                 spin_unlock(&ei->i_raw_lock);
5497                 trace_ext4_other_inode_update_time(inode, orig_ino);
5498                 return;
5499         }
5500         spin_unlock(&inode->i_lock);
5501 }
5502
5503 /*
5504  * Opportunistically update the other time fields for other inodes in
5505  * the same inode table block.
5506  */
5507 static void ext4_update_other_inodes_time(struct super_block *sb,
5508                                           unsigned long orig_ino, char *buf)
5509 {
5510         unsigned long ino;
5511         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5512         int inode_size = EXT4_INODE_SIZE(sb);
5513
5514         /*
5515          * Calculate the first inode in the inode table block.  Inode
5516          * numbers are one-based.  That is, the first inode in a block
5517          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5518          */
5519         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5520         rcu_read_lock();
5521         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5522                 if (ino == orig_ino)
5523                         continue;
5524                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5525                                                (struct ext4_inode *)buf);
5526         }
5527         rcu_read_unlock();
5528 }
5529
5530 /*
5531  * Post the struct inode info into an on-disk inode location in the
5532  * buffer-cache.  This gobbles the caller's reference to the
5533  * buffer_head in the inode location struct.
5534  *
5535  * The caller must have write access to iloc->bh.
5536  */
5537 static int ext4_do_update_inode(handle_t *handle,
5538                                 struct inode *inode,
5539                                 struct ext4_iloc *iloc)
5540 {
5541         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5542         struct ext4_inode_info *ei = EXT4_I(inode);
5543         struct buffer_head *bh = iloc->bh;
5544         struct super_block *sb = inode->i_sb;
5545         int err;
5546         int need_datasync = 0, set_large_file = 0;
5547
5548         spin_lock(&ei->i_raw_lock);
5549
5550         /*
5551          * For fields not tracked in the in-memory inode, initialise them
5552          * to zero for new inodes.
5553          */
5554         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5555                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5556
5557         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5558                 need_datasync = 1;
5559         if (ei->i_disksize > 0x7fffffffULL) {
5560                 if (!ext4_has_feature_large_file(sb) ||
5561                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5562                         set_large_file = 1;
5563         }
5564
5565         err = ext4_fill_raw_inode(inode, raw_inode);
5566         spin_unlock(&ei->i_raw_lock);
5567         if (err) {
5568                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5569                 goto out_brelse;
5570         }
5571
5572         if (inode->i_sb->s_flags & SB_LAZYTIME)
5573                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5574                                               bh->b_data);
5575
5576         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5577         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5578         if (err)
5579                 goto out_error;
5580         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5581         if (set_large_file) {
5582                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5583                 err = ext4_journal_get_write_access(handle, sb,
5584                                                     EXT4_SB(sb)->s_sbh,
5585                                                     EXT4_JTR_NONE);
5586                 if (err)
5587                         goto out_error;
5588                 lock_buffer(EXT4_SB(sb)->s_sbh);
5589                 ext4_set_feature_large_file(sb);
5590                 ext4_superblock_csum_set(sb);
5591                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5592                 ext4_handle_sync(handle);
5593                 err = ext4_handle_dirty_metadata(handle, NULL,
5594                                                  EXT4_SB(sb)->s_sbh);
5595         }
5596         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5597 out_error:
5598         ext4_std_error(inode->i_sb, err);
5599 out_brelse:
5600         brelse(bh);
5601         return err;
5602 }
5603
5604 /*
5605  * ext4_write_inode()
5606  *
5607  * We are called from a few places:
5608  *
5609  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5610  *   Here, there will be no transaction running. We wait for any running
5611  *   transaction to commit.
5612  *
5613  * - Within flush work (sys_sync(), kupdate and such).
5614  *   We wait on commit, if told to.
5615  *
5616  * - Within iput_final() -> write_inode_now()
5617  *   We wait on commit, if told to.
5618  *
5619  * In all cases it is actually safe for us to return without doing anything,
5620  * because the inode has been copied into a raw inode buffer in
5621  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5622  * writeback.
5623  *
5624  * Note that we are absolutely dependent upon all inode dirtiers doing the
5625  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5626  * which we are interested.
5627  *
5628  * It would be a bug for them to not do this.  The code:
5629  *
5630  *      mark_inode_dirty(inode)
5631  *      stuff();
5632  *      inode->i_size = expr;
5633  *
5634  * is in error because write_inode() could occur while `stuff()' is running,
5635  * and the new i_size will be lost.  Plus the inode will no longer be on the
5636  * superblock's dirty inode list.
5637  */
5638 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5639 {
5640         int err;
5641
5642         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5643                 return 0;
5644
5645         err = ext4_emergency_state(inode->i_sb);
5646         if (unlikely(err))
5647                 return err;
5648
5649         if (EXT4_SB(inode->i_sb)->s_journal) {
5650                 if (ext4_journal_current_handle()) {
5651                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5652                         dump_stack();
5653                         return -EIO;
5654                 }
5655
5656                 /*
5657                  * No need to force transaction in WB_SYNC_NONE mode. Also
5658                  * ext4_sync_fs() will force the commit after everything is
5659                  * written.
5660                  */
5661                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5662                         return 0;
5663
5664                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5665                                                 EXT4_I(inode)->i_sync_tid);
5666         } else {
5667                 struct ext4_iloc iloc;
5668
5669                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5670                 if (err)
5671                         return err;
5672                 /*
5673                  * sync(2) will flush the whole buffer cache. No need to do
5674                  * it here separately for each inode.
5675                  */
5676                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5677                         sync_dirty_buffer(iloc.bh);
5678                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5679                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5680                                                "IO error syncing inode");
5681                         err = -EIO;
5682                 }
5683                 brelse(iloc.bh);
5684         }
5685         return err;
5686 }
5687
5688 /*
5689  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5690  * buffers that are attached to a folio straddling i_size and are undergoing
5691  * commit. In that case we have to wait for commit to finish and try again.
5692  */
5693 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5694 {
5695         unsigned offset;
5696         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5697         tid_t commit_tid;
5698         int ret;
5699         bool has_transaction;
5700
5701         offset = inode->i_size & (PAGE_SIZE - 1);
5702         /*
5703          * If the folio is fully truncated, we don't need to wait for any commit
5704          * (and we even should not as __ext4_journalled_invalidate_folio() may
5705          * strip all buffers from the folio but keep the folio dirty which can then
5706          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5707          * buffers). Also we don't need to wait for any commit if all buffers in
5708          * the folio remain valid. This is most beneficial for the common case of
5709          * blocksize == PAGESIZE.
5710          */
5711         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5712                 return;
5713         while (1) {
5714                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5715                                       inode->i_size >> PAGE_SHIFT);
5716                 if (IS_ERR(folio))
5717                         return;
5718                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5719                                                 folio_size(folio) - offset);
5720                 folio_unlock(folio);
5721                 folio_put(folio);
5722                 if (ret != -EBUSY)
5723                         return;
5724                 has_transaction = false;
5725                 read_lock(&journal->j_state_lock);
5726                 if (journal->j_committing_transaction) {
5727                         commit_tid = journal->j_committing_transaction->t_tid;
5728                         has_transaction = true;
5729                 }
5730                 read_unlock(&journal->j_state_lock);
5731                 if (has_transaction)
5732                         jbd2_log_wait_commit(journal, commit_tid);
5733         }
5734 }
5735
5736 /*
5737  * ext4_setattr()
5738  *
5739  * Called from notify_change.
5740  *
5741  * We want to trap VFS attempts to truncate the file as soon as
5742  * possible.  In particular, we want to make sure that when the VFS
5743  * shrinks i_size, we put the inode on the orphan list and modify
5744  * i_disksize immediately, so that during the subsequent flushing of
5745  * dirty pages and freeing of disk blocks, we can guarantee that any
5746  * commit will leave the blocks being flushed in an unused state on
5747  * disk.  (On recovery, the inode will get truncated and the blocks will
5748  * be freed, so we have a strong guarantee that no future commit will
5749  * leave these blocks visible to the user.)
5750  *
5751  * Another thing we have to assure is that if we are in ordered mode
5752  * and inode is still attached to the committing transaction, we must
5753  * we start writeout of all the dirty pages which are being truncated.
5754  * This way we are sure that all the data written in the previous
5755  * transaction are already on disk (truncate waits for pages under
5756  * writeback).
5757  *
5758  * Called with inode->i_rwsem down.
5759  */
5760 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5761                  struct iattr *attr)
5762 {
5763         struct inode *inode = d_inode(dentry);
5764         int error, rc = 0;
5765         int orphan = 0;
5766         const unsigned int ia_valid = attr->ia_valid;
5767         bool inc_ivers = true;
5768
5769         error = ext4_emergency_state(inode->i_sb);
5770         if (unlikely(error))
5771                 return error;
5772
5773         if (unlikely(IS_IMMUTABLE(inode)))
5774                 return -EPERM;
5775
5776         if (unlikely(IS_APPEND(inode) &&
5777                      (ia_valid & (ATTR_MODE | ATTR_UID |
5778                                   ATTR_GID | ATTR_TIMES_SET))))
5779                 return -EPERM;
5780
5781         error = setattr_prepare(idmap, dentry, attr);
5782         if (error)
5783                 return error;
5784
5785         error = fscrypt_prepare_setattr(dentry, attr);
5786         if (error)
5787                 return error;
5788
5789         error = fsverity_prepare_setattr(dentry, attr);
5790         if (error)
5791                 return error;
5792
5793         if (is_quota_modification(idmap, inode, attr)) {
5794                 error = dquot_initialize(inode);
5795                 if (error)
5796                         return error;
5797         }
5798
5799         if (i_uid_needs_update(idmap, attr, inode) ||
5800             i_gid_needs_update(idmap, attr, inode)) {
5801                 handle_t *handle;
5802
5803                 /* (user+group)*(old+new) structure, inode write (sb,
5804                  * inode block, ? - but truncate inode update has it) */
5805                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5806                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5807                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5808                 if (IS_ERR(handle)) {
5809                         error = PTR_ERR(handle);
5810                         goto err_out;
5811                 }
5812
5813                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5814                  * counts xattr inode references.
5815                  */
5816                 down_read(&EXT4_I(inode)->xattr_sem);
5817                 error = dquot_transfer(idmap, inode, attr);
5818                 up_read(&EXT4_I(inode)->xattr_sem);
5819
5820                 if (error) {
5821                         ext4_journal_stop(handle);
5822                         return error;
5823                 }
5824                 /* Update corresponding info in inode so that everything is in
5825                  * one transaction */
5826                 i_uid_update(idmap, attr, inode);
5827                 i_gid_update(idmap, attr, inode);
5828                 error = ext4_mark_inode_dirty(handle, inode);
5829                 ext4_journal_stop(handle);
5830                 if (unlikely(error)) {
5831                         return error;
5832                 }
5833         }
5834
5835         if (attr->ia_valid & ATTR_SIZE) {
5836                 handle_t *handle;
5837                 loff_t oldsize = inode->i_size;
5838                 loff_t old_disksize;
5839                 int shrink = (attr->ia_size < inode->i_size);
5840
5841                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5842                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5843
5844                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5845                                 return -EFBIG;
5846                         }
5847                 }
5848                 if (!S_ISREG(inode->i_mode)) {
5849                         return -EINVAL;
5850                 }
5851
5852                 if (attr->ia_size == inode->i_size)
5853                         inc_ivers = false;
5854
5855                 if (shrink) {
5856                         if (ext4_should_order_data(inode)) {
5857                                 error = ext4_begin_ordered_truncate(inode,
5858                                                             attr->ia_size);
5859                                 if (error)
5860                                         goto err_out;
5861                         }
5862                         /*
5863                          * Blocks are going to be removed from the inode. Wait
5864                          * for dio in flight.
5865                          */
5866                         inode_dio_wait(inode);
5867                 }
5868
5869                 filemap_invalidate_lock(inode->i_mapping);
5870
5871                 rc = ext4_break_layouts(inode);
5872                 if (rc) {
5873                         filemap_invalidate_unlock(inode->i_mapping);
5874                         goto err_out;
5875                 }
5876
5877                 if (attr->ia_size != inode->i_size) {
5878                         /* attach jbd2 jinode for EOF folio tail zeroing */
5879                         if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5880                             oldsize & (inode->i_sb->s_blocksize - 1)) {
5881                                 error = ext4_inode_attach_jinode(inode);
5882                                 if (error)
5883                                         goto out_mmap_sem;
5884                         }
5885
5886                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5887                         if (IS_ERR(handle)) {
5888                                 error = PTR_ERR(handle);
5889                                 goto out_mmap_sem;
5890                         }
5891                         if (ext4_handle_valid(handle) && shrink) {
5892                                 error = ext4_orphan_add(handle, inode);
5893                                 orphan = 1;
5894                         }
5895                         /*
5896                          * Update c/mtime and tail zero the EOF folio on
5897                          * truncate up. ext4_truncate() handles the shrink case
5898                          * below.
5899                          */
5900                         if (!shrink) {
5901                                 inode_set_mtime_to_ts(inode,
5902                                                       inode_set_ctime_current(inode));
5903                                 if (oldsize & (inode->i_sb->s_blocksize - 1))
5904                                         ext4_block_truncate_page(handle,
5905                                                         inode->i_mapping, oldsize);
5906                         }
5907
5908                         if (shrink)
5909                                 ext4_fc_track_range(handle, inode,
5910                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5911                                         inode->i_sb->s_blocksize_bits,
5912                                         EXT_MAX_BLOCKS - 1);
5913                         else
5914                                 ext4_fc_track_range(
5915                                         handle, inode,
5916                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5917                                         inode->i_sb->s_blocksize_bits,
5918                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5919                                         inode->i_sb->s_blocksize_bits);
5920
5921                         down_write(&EXT4_I(inode)->i_data_sem);
5922                         old_disksize = EXT4_I(inode)->i_disksize;
5923                         EXT4_I(inode)->i_disksize = attr->ia_size;
5924
5925                         /*
5926                          * We have to update i_size under i_data_sem together
5927                          * with i_disksize to avoid races with writeback code
5928                          * running ext4_wb_update_i_disksize().
5929                          */
5930                         if (!error)
5931                                 i_size_write(inode, attr->ia_size);
5932                         else
5933                                 EXT4_I(inode)->i_disksize = old_disksize;
5934                         up_write(&EXT4_I(inode)->i_data_sem);
5935                         rc = ext4_mark_inode_dirty(handle, inode);
5936                         if (!error)
5937                                 error = rc;
5938                         ext4_journal_stop(handle);
5939                         if (error)
5940                                 goto out_mmap_sem;
5941                         if (!shrink) {
5942                                 pagecache_isize_extended(inode, oldsize,
5943                                                          inode->i_size);
5944                         } else if (ext4_should_journal_data(inode)) {
5945                                 ext4_wait_for_tail_page_commit(inode);
5946                         }
5947                 }
5948
5949                 /*
5950                  * Truncate pagecache after we've waited for commit
5951                  * in data=journal mode to make pages freeable.
5952                  */
5953                 truncate_pagecache(inode, inode->i_size);
5954                 /*
5955                  * Call ext4_truncate() even if i_size didn't change to
5956                  * truncate possible preallocated blocks.
5957                  */
5958                 if (attr->ia_size <= oldsize) {
5959                         rc = ext4_truncate(inode);
5960                         if (rc)
5961                                 error = rc;
5962                 }
5963 out_mmap_sem:
5964                 filemap_invalidate_unlock(inode->i_mapping);
5965         }
5966
5967         if (!error) {
5968                 if (inc_ivers)
5969                         inode_inc_iversion(inode);
5970                 setattr_copy(idmap, inode, attr);
5971                 mark_inode_dirty(inode);
5972         }
5973
5974         /*
5975          * If the call to ext4_truncate failed to get a transaction handle at
5976          * all, we need to clean up the in-core orphan list manually.
5977          */
5978         if (orphan && inode->i_nlink)
5979                 ext4_orphan_del(NULL, inode);
5980
5981         if (!error && (ia_valid & ATTR_MODE))
5982                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5983
5984 err_out:
5985         if  (error)
5986                 ext4_std_error(inode->i_sb, error);
5987         if (!error)
5988                 error = rc;
5989         return error;
5990 }
5991
5992 u32 ext4_dio_alignment(struct inode *inode)
5993 {
5994         if (fsverity_active(inode))
5995                 return 0;
5996         if (ext4_should_journal_data(inode))
5997                 return 0;
5998         if (ext4_has_inline_data(inode))
5999                 return 0;
6000         if (IS_ENCRYPTED(inode)) {
6001                 if (!fscrypt_dio_supported(inode))
6002                         return 0;
6003                 return i_blocksize(inode);
6004         }
6005         return 1; /* use the iomap defaults */
6006 }
6007
6008 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
6009                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
6010 {
6011         struct inode *inode = d_inode(path->dentry);
6012         struct ext4_inode *raw_inode;
6013         struct ext4_inode_info *ei = EXT4_I(inode);
6014         unsigned int flags;
6015
6016         if ((request_mask & STATX_BTIME) &&
6017             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
6018                 stat->result_mask |= STATX_BTIME;
6019                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
6020                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
6021         }
6022
6023         /*
6024          * Return the DIO alignment restrictions if requested.  We only return
6025          * this information when requested, since on encrypted files it might
6026          * take a fair bit of work to get if the file wasn't opened recently.
6027          */
6028         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
6029                 u32 dio_align = ext4_dio_alignment(inode);
6030
6031                 stat->result_mask |= STATX_DIOALIGN;
6032                 if (dio_align == 1) {
6033                         struct block_device *bdev = inode->i_sb->s_bdev;
6034
6035                         /* iomap defaults */
6036                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
6037                         stat->dio_offset_align = bdev_logical_block_size(bdev);
6038                 } else {
6039                         stat->dio_mem_align = dio_align;
6040                         stat->dio_offset_align = dio_align;
6041                 }
6042         }
6043
6044         if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
6045                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6046                 unsigned int awu_min = 0, awu_max = 0;
6047
6048                 if (ext4_inode_can_atomic_write(inode)) {
6049                         awu_min = sbi->s_awu_min;
6050                         awu_max = sbi->s_awu_max;
6051                 }
6052
6053                 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0);
6054         }
6055
6056         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
6057         if (flags & EXT4_APPEND_FL)
6058                 stat->attributes |= STATX_ATTR_APPEND;
6059         if (flags & EXT4_COMPR_FL)
6060                 stat->attributes |= STATX_ATTR_COMPRESSED;
6061         if (flags & EXT4_ENCRYPT_FL)
6062                 stat->attributes |= STATX_ATTR_ENCRYPTED;
6063         if (flags & EXT4_IMMUTABLE_FL)
6064                 stat->attributes |= STATX_ATTR_IMMUTABLE;
6065         if (flags & EXT4_NODUMP_FL)
6066                 stat->attributes |= STATX_ATTR_NODUMP;
6067         if (flags & EXT4_VERITY_FL)
6068                 stat->attributes |= STATX_ATTR_VERITY;
6069
6070         stat->attributes_mask |= (STATX_ATTR_APPEND |
6071                                   STATX_ATTR_COMPRESSED |
6072                                   STATX_ATTR_ENCRYPTED |
6073                                   STATX_ATTR_IMMUTABLE |
6074                                   STATX_ATTR_NODUMP |
6075                                   STATX_ATTR_VERITY);
6076
6077         generic_fillattr(idmap, request_mask, inode, stat);
6078         return 0;
6079 }
6080
6081 int ext4_file_getattr(struct mnt_idmap *idmap,
6082                       const struct path *path, struct kstat *stat,
6083                       u32 request_mask, unsigned int query_flags)
6084 {
6085         struct inode *inode = d_inode(path->dentry);
6086         u64 delalloc_blocks;
6087
6088         ext4_getattr(idmap, path, stat, request_mask, query_flags);
6089
6090         /*
6091          * If there is inline data in the inode, the inode will normally not
6092          * have data blocks allocated (it may have an external xattr block).
6093          * Report at least one sector for such files, so tools like tar, rsync,
6094          * others don't incorrectly think the file is completely sparse.
6095          */
6096         if (unlikely(ext4_has_inline_data(inode)))
6097                 stat->blocks += (stat->size + 511) >> 9;
6098
6099         /*
6100          * We can't update i_blocks if the block allocation is delayed
6101          * otherwise in the case of system crash before the real block
6102          * allocation is done, we will have i_blocks inconsistent with
6103          * on-disk file blocks.
6104          * We always keep i_blocks updated together with real
6105          * allocation. But to not confuse with user, stat
6106          * will return the blocks that include the delayed allocation
6107          * blocks for this file.
6108          */
6109         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
6110                                    EXT4_I(inode)->i_reserved_data_blocks);
6111         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
6112         return 0;
6113 }
6114
6115 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
6116                                    int pextents)
6117 {
6118         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
6119                 return ext4_ind_trans_blocks(inode, lblocks);
6120         return ext4_ext_index_trans_blocks(inode, pextents);
6121 }
6122
6123 /*
6124  * Account for index blocks, block groups bitmaps and block group
6125  * descriptor blocks if modify datablocks and index blocks
6126  * worse case, the indexs blocks spread over different block groups
6127  *
6128  * If datablocks are discontiguous, they are possible to spread over
6129  * different block groups too. If they are contiguous, with flexbg,
6130  * they could still across block group boundary.
6131  *
6132  * Also account for superblock, inode, quota and xattr blocks
6133  */
6134 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents)
6135 {
6136         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
6137         int gdpblocks;
6138         int idxblocks;
6139         int ret;
6140
6141         /*
6142          * How many index and lead blocks need to touch to map @lblocks
6143          * logical blocks to @pextents physical extents?
6144          */
6145         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
6146
6147         /*
6148          * Now let's see how many group bitmaps and group descriptors need
6149          * to account
6150          */
6151         groups = idxblocks;
6152         gdpblocks = groups;
6153         if (groups > ngroups)
6154                 groups = ngroups;
6155         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6156                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6157
6158         /* bitmaps and block group descriptor blocks */
6159         ret = idxblocks + groups + gdpblocks;
6160
6161         /* Blocks for super block, inode, quota and xattr blocks */
6162         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6163
6164         return ret;
6165 }
6166
6167 /*
6168  * Calculate the total number of credits to reserve to fit
6169  * the modification of a single pages into a single transaction,
6170  * which may include multiple chunks of block allocations.
6171  *
6172  * This could be called via ext4_write_begin()
6173  *
6174  * We need to consider the worse case, when
6175  * one new block per extent.
6176  */
6177 int ext4_writepage_trans_blocks(struct inode *inode)
6178 {
6179         int bpp = ext4_journal_blocks_per_folio(inode);
6180         int ret;
6181
6182         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
6183
6184         /* Account for data blocks for journalled mode */
6185         if (ext4_should_journal_data(inode))
6186                 ret += bpp;
6187         return ret;
6188 }
6189
6190 /*
6191  * Calculate the journal credits for a chunk of data modification.
6192  *
6193  * This is called from DIO, fallocate or whoever calling
6194  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6195  *
6196  * journal buffers for data blocks are not included here, as DIO
6197  * and fallocate do no need to journal data buffers.
6198  */
6199 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6200 {
6201         return ext4_meta_trans_blocks(inode, nrblocks, 1);
6202 }
6203
6204 /*
6205  * The caller must have previously called ext4_reserve_inode_write().
6206  * Give this, we know that the caller already has write access to iloc->bh.
6207  */
6208 int ext4_mark_iloc_dirty(handle_t *handle,
6209                          struct inode *inode, struct ext4_iloc *iloc)
6210 {
6211         int err = 0;
6212
6213         err = ext4_emergency_state(inode->i_sb);
6214         if (unlikely(err)) {
6215                 put_bh(iloc->bh);
6216                 return err;
6217         }
6218         ext4_fc_track_inode(handle, inode);
6219
6220         /* the do_update_inode consumes one bh->b_count */
6221         get_bh(iloc->bh);
6222
6223         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6224         err = ext4_do_update_inode(handle, inode, iloc);
6225         put_bh(iloc->bh);
6226         return err;
6227 }
6228
6229 /*
6230  * On success, We end up with an outstanding reference count against
6231  * iloc->bh.  This _must_ be cleaned up later.
6232  */
6233
6234 int
6235 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6236                          struct ext4_iloc *iloc)
6237 {
6238         int err;
6239
6240         err = ext4_emergency_state(inode->i_sb);
6241         if (unlikely(err))
6242                 return err;
6243
6244         err = ext4_get_inode_loc(inode, iloc);
6245         if (!err) {
6246                 BUFFER_TRACE(iloc->bh, "get_write_access");
6247                 err = ext4_journal_get_write_access(handle, inode->i_sb,
6248                                                     iloc->bh, EXT4_JTR_NONE);
6249                 if (err) {
6250                         brelse(iloc->bh);
6251                         iloc->bh = NULL;
6252                 }
6253                 ext4_fc_track_inode(handle, inode);
6254         }
6255         ext4_std_error(inode->i_sb, err);
6256         return err;
6257 }
6258
6259 static int __ext4_expand_extra_isize(struct inode *inode,
6260                                      unsigned int new_extra_isize,
6261                                      struct ext4_iloc *iloc,
6262                                      handle_t *handle, int *no_expand)
6263 {
6264         struct ext4_inode *raw_inode;
6265         struct ext4_xattr_ibody_header *header;
6266         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6267         struct ext4_inode_info *ei = EXT4_I(inode);
6268         int error;
6269
6270         /* this was checked at iget time, but double check for good measure */
6271         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6272             (ei->i_extra_isize & 3)) {
6273                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6274                                  ei->i_extra_isize,
6275                                  EXT4_INODE_SIZE(inode->i_sb));
6276                 return -EFSCORRUPTED;
6277         }
6278         if ((new_extra_isize < ei->i_extra_isize) ||
6279             (new_extra_isize < 4) ||
6280             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6281                 return -EINVAL; /* Should never happen */
6282
6283         raw_inode = ext4_raw_inode(iloc);
6284
6285         header = IHDR(inode, raw_inode);
6286
6287         /* No extended attributes present */
6288         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6289             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6290                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6291                        EXT4_I(inode)->i_extra_isize, 0,
6292                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
6293                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
6294                 return 0;
6295         }
6296
6297         /*
6298          * We may need to allocate external xattr block so we need quotas
6299          * initialized. Here we can be called with various locks held so we
6300          * cannot affort to initialize quotas ourselves. So just bail.
6301          */
6302         if (dquot_initialize_needed(inode))
6303                 return -EAGAIN;
6304
6305         /* try to expand with EAs present */
6306         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6307                                            raw_inode, handle);
6308         if (error) {
6309                 /*
6310                  * Inode size expansion failed; don't try again
6311                  */
6312                 *no_expand = 1;
6313         }
6314
6315         return error;
6316 }
6317
6318 /*
6319  * Expand an inode by new_extra_isize bytes.
6320  * Returns 0 on success or negative error number on failure.
6321  */
6322 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6323                                           unsigned int new_extra_isize,
6324                                           struct ext4_iloc iloc,
6325                                           handle_t *handle)
6326 {
6327         int no_expand;
6328         int error;
6329
6330         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6331                 return -EOVERFLOW;
6332
6333         /*
6334          * In nojournal mode, we can immediately attempt to expand
6335          * the inode.  When journaled, we first need to obtain extra
6336          * buffer credits since we may write into the EA block
6337          * with this same handle. If journal_extend fails, then it will
6338          * only result in a minor loss of functionality for that inode.
6339          * If this is felt to be critical, then e2fsck should be run to
6340          * force a large enough s_min_extra_isize.
6341          */
6342         if (ext4_journal_extend(handle,
6343                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
6344                 return -ENOSPC;
6345
6346         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6347                 return -EBUSY;
6348
6349         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6350                                           handle, &no_expand);
6351         ext4_write_unlock_xattr(inode, &no_expand);
6352
6353         return error;
6354 }
6355
6356 int ext4_expand_extra_isize(struct inode *inode,
6357                             unsigned int new_extra_isize,
6358                             struct ext4_iloc *iloc)
6359 {
6360         handle_t *handle;
6361         int no_expand;
6362         int error, rc;
6363
6364         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6365                 brelse(iloc->bh);
6366                 return -EOVERFLOW;
6367         }
6368
6369         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6370                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6371         if (IS_ERR(handle)) {
6372                 error = PTR_ERR(handle);
6373                 brelse(iloc->bh);
6374                 return error;
6375         }
6376
6377         ext4_write_lock_xattr(inode, &no_expand);
6378
6379         BUFFER_TRACE(iloc->bh, "get_write_access");
6380         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6381                                               EXT4_JTR_NONE);
6382         if (error) {
6383                 brelse(iloc->bh);
6384                 goto out_unlock;
6385         }
6386
6387         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6388                                           handle, &no_expand);
6389
6390         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6391         if (!error)
6392                 error = rc;
6393
6394 out_unlock:
6395         ext4_write_unlock_xattr(inode, &no_expand);
6396         ext4_journal_stop(handle);
6397         return error;
6398 }
6399
6400 /*
6401  * What we do here is to mark the in-core inode as clean with respect to inode
6402  * dirtiness (it may still be data-dirty).
6403  * This means that the in-core inode may be reaped by prune_icache
6404  * without having to perform any I/O.  This is a very good thing,
6405  * because *any* task may call prune_icache - even ones which
6406  * have a transaction open against a different journal.
6407  *
6408  * Is this cheating?  Not really.  Sure, we haven't written the
6409  * inode out, but prune_icache isn't a user-visible syncing function.
6410  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6411  * we start and wait on commits.
6412  */
6413 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6414                                 const char *func, unsigned int line)
6415 {
6416         struct ext4_iloc iloc;
6417         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6418         int err;
6419
6420         might_sleep();
6421         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6422         err = ext4_reserve_inode_write(handle, inode, &iloc);
6423         if (err)
6424                 goto out;
6425
6426         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6427                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6428                                                iloc, handle);
6429
6430         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6431 out:
6432         if (unlikely(err))
6433                 ext4_error_inode_err(inode, func, line, 0, err,
6434                                         "mark_inode_dirty error");
6435         return err;
6436 }
6437
6438 /*
6439  * ext4_dirty_inode() is called from __mark_inode_dirty()
6440  *
6441  * We're really interested in the case where a file is being extended.
6442  * i_size has been changed by generic_commit_write() and we thus need
6443  * to include the updated inode in the current transaction.
6444  *
6445  * Also, dquot_alloc_block() will always dirty the inode when blocks
6446  * are allocated to the file.
6447  *
6448  * If the inode is marked synchronous, we don't honour that here - doing
6449  * so would cause a commit on atime updates, which we don't bother doing.
6450  * We handle synchronous inodes at the highest possible level.
6451  */
6452 void ext4_dirty_inode(struct inode *inode, int flags)
6453 {
6454         handle_t *handle;
6455
6456         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6457         if (IS_ERR(handle))
6458                 return;
6459         ext4_mark_inode_dirty(handle, inode);
6460         ext4_journal_stop(handle);
6461 }
6462
6463 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6464 {
6465         journal_t *journal;
6466         handle_t *handle;
6467         int err;
6468         int alloc_ctx;
6469
6470         /*
6471          * We have to be very careful here: changing a data block's
6472          * journaling status dynamically is dangerous.  If we write a
6473          * data block to the journal, change the status and then delete
6474          * that block, we risk forgetting to revoke the old log record
6475          * from the journal and so a subsequent replay can corrupt data.
6476          * So, first we make sure that the journal is empty and that
6477          * nobody is changing anything.
6478          */
6479
6480         journal = EXT4_JOURNAL(inode);
6481         if (!journal)
6482                 return 0;
6483         if (is_journal_aborted(journal))
6484                 return -EROFS;
6485
6486         /* Wait for all existing dio workers */
6487         inode_dio_wait(inode);
6488
6489         /*
6490          * Before flushing the journal and switching inode's aops, we have
6491          * to flush all dirty data the inode has. There can be outstanding
6492          * delayed allocations, there can be unwritten extents created by
6493          * fallocate or buffered writes in dioread_nolock mode covered by
6494          * dirty data which can be converted only after flushing the dirty
6495          * data (and journalled aops don't know how to handle these cases).
6496          */
6497         if (val) {
6498                 filemap_invalidate_lock(inode->i_mapping);
6499                 err = filemap_write_and_wait(inode->i_mapping);
6500                 if (err < 0) {
6501                         filemap_invalidate_unlock(inode->i_mapping);
6502                         return err;
6503                 }
6504         }
6505
6506         alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6507         jbd2_journal_lock_updates(journal);
6508
6509         /*
6510          * OK, there are no updates running now, and all cached data is
6511          * synced to disk.  We are now in a completely consistent state
6512          * which doesn't have anything in the journal, and we know that
6513          * no filesystem updates are running, so it is safe to modify
6514          * the inode's in-core data-journaling state flag now.
6515          */
6516
6517         if (val)
6518                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6519         else {
6520                 err = jbd2_journal_flush(journal, 0);
6521                 if (err < 0) {
6522                         jbd2_journal_unlock_updates(journal);
6523                         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6524                         return err;
6525                 }
6526                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6527         }
6528         ext4_set_aops(inode);
6529
6530         jbd2_journal_unlock_updates(journal);
6531         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6532
6533         if (val)
6534                 filemap_invalidate_unlock(inode->i_mapping);
6535
6536         /* Finally we can mark the inode as dirty. */
6537
6538         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6539         if (IS_ERR(handle))
6540                 return PTR_ERR(handle);
6541
6542         ext4_fc_mark_ineligible(inode->i_sb,
6543                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6544         err = ext4_mark_inode_dirty(handle, inode);
6545         ext4_handle_sync(handle);
6546         ext4_journal_stop(handle);
6547         ext4_std_error(inode->i_sb, err);
6548
6549         return err;
6550 }
6551
6552 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6553                             struct buffer_head *bh)
6554 {
6555         return !buffer_mapped(bh);
6556 }
6557
6558 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6559 {
6560         struct vm_area_struct *vma = vmf->vma;
6561         struct folio *folio = page_folio(vmf->page);
6562         loff_t size;
6563         unsigned long len;
6564         int err;
6565         vm_fault_t ret;
6566         struct file *file = vma->vm_file;
6567         struct inode *inode = file_inode(file);
6568         struct address_space *mapping = inode->i_mapping;
6569         handle_t *handle;
6570         get_block_t *get_block;
6571         int retries = 0;
6572
6573         if (unlikely(IS_IMMUTABLE(inode)))
6574                 return VM_FAULT_SIGBUS;
6575
6576         sb_start_pagefault(inode->i_sb);
6577         file_update_time(vma->vm_file);
6578
6579         filemap_invalidate_lock_shared(mapping);
6580
6581         err = ext4_convert_inline_data(inode);
6582         if (err)
6583                 goto out_ret;
6584
6585         /*
6586          * On data journalling we skip straight to the transaction handle:
6587          * there's no delalloc; page truncated will be checked later; the
6588          * early return w/ all buffers mapped (calculates size/len) can't
6589          * be used; and there's no dioread_nolock, so only ext4_get_block.
6590          */
6591         if (ext4_should_journal_data(inode))
6592                 goto retry_alloc;
6593
6594         /* Delalloc case is easy... */
6595         if (test_opt(inode->i_sb, DELALLOC) &&
6596             !ext4_nonda_switch(inode->i_sb)) {
6597                 do {
6598                         err = block_page_mkwrite(vma, vmf,
6599                                                    ext4_da_get_block_prep);
6600                 } while (err == -ENOSPC &&
6601                        ext4_should_retry_alloc(inode->i_sb, &retries));
6602                 goto out_ret;
6603         }
6604
6605         folio_lock(folio);
6606         size = i_size_read(inode);
6607         /* Page got truncated from under us? */
6608         if (folio->mapping != mapping || folio_pos(folio) > size) {
6609                 folio_unlock(folio);
6610                 ret = VM_FAULT_NOPAGE;
6611                 goto out;
6612         }
6613
6614         len = folio_size(folio);
6615         if (folio_pos(folio) + len > size)
6616                 len = size - folio_pos(folio);
6617         /*
6618          * Return if we have all the buffers mapped. This avoids the need to do
6619          * journal_start/journal_stop which can block and take a long time
6620          *
6621          * This cannot be done for data journalling, as we have to add the
6622          * inode to the transaction's list to writeprotect pages on commit.
6623          */
6624         if (folio_buffers(folio)) {
6625                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6626                                             0, len, NULL,
6627                                             ext4_bh_unmapped)) {
6628                         /* Wait so that we don't change page under IO */
6629                         folio_wait_stable(folio);
6630                         ret = VM_FAULT_LOCKED;
6631                         goto out;
6632                 }
6633         }
6634         folio_unlock(folio);
6635         /* OK, we need to fill the hole... */
6636         if (ext4_should_dioread_nolock(inode))
6637                 get_block = ext4_get_block_unwritten;
6638         else
6639                 get_block = ext4_get_block;
6640 retry_alloc:
6641         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6642                                     ext4_writepage_trans_blocks(inode));
6643         if (IS_ERR(handle)) {
6644                 ret = VM_FAULT_SIGBUS;
6645                 goto out;
6646         }
6647         /*
6648          * Data journalling can't use block_page_mkwrite() because it
6649          * will set_buffer_dirty() before do_journal_get_write_access()
6650          * thus might hit warning messages for dirty metadata buffers.
6651          */
6652         if (!ext4_should_journal_data(inode)) {
6653                 err = block_page_mkwrite(vma, vmf, get_block);
6654         } else {
6655                 folio_lock(folio);
6656                 size = i_size_read(inode);
6657                 /* Page got truncated from under us? */
6658                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6659                         ret = VM_FAULT_NOPAGE;
6660                         goto out_error;
6661                 }
6662
6663                 len = folio_size(folio);
6664                 if (folio_pos(folio) + len > size)
6665                         len = size - folio_pos(folio);
6666
6667                 err = ext4_block_write_begin(handle, folio, 0, len,
6668                                              ext4_get_block);
6669                 if (!err) {
6670                         ret = VM_FAULT_SIGBUS;
6671                         if (ext4_journal_folio_buffers(handle, folio, len))
6672                                 goto out_error;
6673                 } else {
6674                         folio_unlock(folio);
6675                 }
6676         }
6677         ext4_journal_stop(handle);
6678         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6679                 goto retry_alloc;
6680 out_ret:
6681         ret = vmf_fs_error(err);
6682 out:
6683         filemap_invalidate_unlock_shared(mapping);
6684         sb_end_pagefault(inode->i_sb);
6685         return ret;
6686 out_error:
6687         folio_unlock(folio);
6688         ext4_journal_stop(handle);
6689         goto out;
6690 }