ext4: only set S_DAX if DAX is really supported
[linux-2.6-block.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75                                            EXT4_INODE_SIZE(inode->i_sb) -
76                                            offset);
77                 }
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks) {
265                 err = ext4_truncate(inode);
266                 if (err) {
267                         ext4_error(inode->i_sb,
268                                    "couldn't truncate inode %lu (err %d)",
269                                    inode->i_ino, err);
270                         goto stop_handle;
271                 }
272         }
273
274         /*
275          * ext4_ext_truncate() doesn't reserve any slop when it
276          * restarts journal transactions; therefore there may not be
277          * enough credits left in the handle to remove the inode from
278          * the orphan list and set the dtime field.
279          */
280         if (!ext4_handle_has_enough_credits(handle, 3)) {
281                 err = ext4_journal_extend(handle, 3);
282                 if (err > 0)
283                         err = ext4_journal_restart(handle, 3);
284                 if (err != 0) {
285                         ext4_warning(inode->i_sb,
286                                      "couldn't extend journal (err %d)", err);
287                 stop_handle:
288                         ext4_journal_stop(handle);
289                         ext4_orphan_del(NULL, inode);
290                         sb_end_intwrite(inode->i_sb);
291                         goto no_delete;
292                 }
293         }
294
295         /*
296          * Kill off the orphan record which ext4_truncate created.
297          * AKPM: I think this can be inside the above `if'.
298          * Note that ext4_orphan_del() has to be able to cope with the
299          * deletion of a non-existent orphan - this is because we don't
300          * know if ext4_truncate() actually created an orphan record.
301          * (Well, we could do this if we need to, but heck - it works)
302          */
303         ext4_orphan_del(handle, inode);
304         EXT4_I(inode)->i_dtime  = get_seconds();
305
306         /*
307          * One subtle ordering requirement: if anything has gone wrong
308          * (transaction abort, IO errors, whatever), then we can still
309          * do these next steps (the fs will already have been marked as
310          * having errors), but we can't free the inode if the mark_dirty
311          * fails.
312          */
313         if (ext4_mark_inode_dirty(handle, inode))
314                 /* If that failed, just do the required in-core inode clear. */
315                 ext4_clear_inode(inode);
316         else
317                 ext4_free_inode(handle, inode);
318         ext4_journal_stop(handle);
319         sb_end_intwrite(inode->i_sb);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             (atomic_read(&inode->i_writecount) == 0))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386                                    map->m_len)) {
387                 ext4_error_inode(inode, func, line, map->m_pblk,
388                                  "lblock %lu mapped to illegal pblock "
389                                  "(length %d)", (unsigned long) map->m_lblk,
390                                  map->m_len);
391                 return -EFSCORRUPTED;
392         }
393         return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397                        ext4_lblk_t len)
398 {
399         int ret;
400
401         if (ext4_encrypted_inode(inode))
402                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405         if (ret > 0)
406                 ret = 0;
407
408         return ret;
409 }
410
411 #define check_block_validity(inode, map)        \
412         __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416                                        struct inode *inode,
417                                        struct ext4_map_blocks *es_map,
418                                        struct ext4_map_blocks *map,
419                                        int flags)
420 {
421         int retval;
422
423         map->m_flags = 0;
424         /*
425          * There is a race window that the result is not the same.
426          * e.g. xfstests #223 when dioread_nolock enables.  The reason
427          * is that we lookup a block mapping in extent status tree with
428          * out taking i_data_sem.  So at the time the unwritten extent
429          * could be converted.
430          */
431         down_read(&EXT4_I(inode)->i_data_sem);
432         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434                                              EXT4_GET_BLOCKS_KEEP_SIZE);
435         } else {
436                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437                                              EXT4_GET_BLOCKS_KEEP_SIZE);
438         }
439         up_read((&EXT4_I(inode)->i_data_sem));
440
441         /*
442          * We don't check m_len because extent will be collpased in status
443          * tree.  So the m_len might not equal.
444          */
445         if (es_map->m_lblk != map->m_lblk ||
446             es_map->m_flags != map->m_flags ||
447             es_map->m_pblk != map->m_pblk) {
448                 printk("ES cache assertion failed for inode: %lu "
449                        "es_cached ex [%d/%d/%llu/%x] != "
450                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451                        inode->i_ino, es_map->m_lblk, es_map->m_len,
452                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
453                        map->m_len, map->m_pblk, map->m_flags,
454                        retval, flags);
455         }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482                     struct ext4_map_blocks *map, int flags)
483 {
484         struct extent_status es;
485         int retval;
486         int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488         struct ext4_map_blocks orig_map;
489
490         memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493         map->m_flags = 0;
494         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
496                   (unsigned long) map->m_lblk);
497
498         /*
499          * ext4_map_blocks returns an int, and m_len is an unsigned int
500          */
501         if (unlikely(map->m_len > INT_MAX))
502                 map->m_len = INT_MAX;
503
504         /* We can handle the block number less than EXT_MAX_BLOCKS */
505         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506                 return -EFSCORRUPTED;
507
508         /* Lookup extent status tree firstly */
509         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511                         map->m_pblk = ext4_es_pblock(&es) +
512                                         map->m_lblk - es.es_lblk;
513                         map->m_flags |= ext4_es_is_written(&es) ?
514                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515                         retval = es.es_len - (map->m_lblk - es.es_lblk);
516                         if (retval > map->m_len)
517                                 retval = map->m_len;
518                         map->m_len = retval;
519                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520                         map->m_pblk = 0;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                         retval = 0;
526                 } else {
527                         BUG_ON(1);
528                 }
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535
536         /*
537          * Try to see if we can get the block without requesting a new
538          * file system block.
539          */
540         down_read(&EXT4_I(inode)->i_data_sem);
541         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543                                              EXT4_GET_BLOCKS_KEEP_SIZE);
544         } else {
545                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546                                              EXT4_GET_BLOCKS_KEEP_SIZE);
547         }
548         if (retval > 0) {
549                 unsigned int status;
550
551                 if (unlikely(retval != map->m_len)) {
552                         ext4_warning(inode->i_sb,
553                                      "ES len assertion failed for inode "
554                                      "%lu: retval %d != map->m_len %d",
555                                      inode->i_ino, retval, map->m_len);
556                         WARN_ON(1);
557                 }
558
559                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562                     !(status & EXTENT_STATUS_WRITTEN) &&
563                     ext4_find_delalloc_range(inode, map->m_lblk,
564                                              map->m_lblk + map->m_len - 1))
565                         status |= EXTENT_STATUS_DELAYED;
566                 ret = ext4_es_insert_extent(inode, map->m_lblk,
567                                             map->m_len, map->m_pblk, status);
568                 if (ret < 0)
569                         retval = ret;
570         }
571         up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579
580         /* If it is only a block(s) look up */
581         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582                 return retval;
583
584         /*
585          * Returns if the blocks have already allocated
586          *
587          * Note that if blocks have been preallocated
588          * ext4_ext_get_block() returns the create = 0
589          * with buffer head unmapped.
590          */
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592                 /*
593                  * If we need to convert extent to unwritten
594                  * we continue and do the actual work in
595                  * ext4_ext_map_blocks()
596                  */
597                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598                         return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to unwritten extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_block()
610          * with create == 1 flag.
611          */
612         down_write(&EXT4_I(inode)->i_data_sem);
613
614         /*
615          * We need to check for EXT4 here because migrate
616          * could have changed the inode type in between
617          */
618         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620         } else {
621                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624                         /*
625                          * We allocated new blocks which will result in
626                          * i_data's format changing.  Force the migrate
627                          * to fail by clearing migrate flags
628                          */
629                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630                 }
631
632                 /*
633                  * Update reserved blocks/metadata blocks after successful
634                  * block allocation which had been deferred till now. We don't
635                  * support fallocate for non extent files. So we can update
636                  * reserve space here.
637                  */
638                 if ((retval > 0) &&
639                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640                         ext4_da_update_reserve_space(inode, retval, 1);
641         }
642
643         if (retval > 0) {
644                 unsigned int status;
645
646                 if (unlikely(retval != map->m_len)) {
647                         ext4_warning(inode->i_sb,
648                                      "ES len assertion failed for inode "
649                                      "%lu: retval %d != map->m_len %d",
650                                      inode->i_ino, retval, map->m_len);
651                         WARN_ON(1);
652                 }
653
654                 /*
655                  * We have to zeroout blocks before inserting them into extent
656                  * status tree. Otherwise someone could look them up there and
657                  * use them before they are really zeroed. We also have to
658                  * unmap metadata before zeroing as otherwise writeback can
659                  * overwrite zeros with stale data from block device.
660                  */
661                 if (flags & EXT4_GET_BLOCKS_ZERO &&
662                     map->m_flags & EXT4_MAP_MAPPED &&
663                     map->m_flags & EXT4_MAP_NEW) {
664                         ext4_lblk_t i;
665
666                         for (i = 0; i < map->m_len; i++) {
667                                 unmap_underlying_metadata(inode->i_sb->s_bdev,
668                                                           map->m_pblk + i);
669                         }
670                         ret = ext4_issue_zeroout(inode, map->m_lblk,
671                                                  map->m_pblk, map->m_len);
672                         if (ret) {
673                                 retval = ret;
674                                 goto out_sem;
675                         }
676                 }
677
678                 /*
679                  * If the extent has been zeroed out, we don't need to update
680                  * extent status tree.
681                  */
682                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
684                         if (ext4_es_is_written(&es))
685                                 goto out_sem;
686                 }
687                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690                     !(status & EXTENT_STATUS_WRITTEN) &&
691                     ext4_find_delalloc_range(inode, map->m_lblk,
692                                              map->m_lblk + map->m_len - 1))
693                         status |= EXTENT_STATUS_DELAYED;
694                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695                                             map->m_pblk, status);
696                 if (ret < 0) {
697                         retval = ret;
698                         goto out_sem;
699                 }
700         }
701
702 out_sem:
703         up_write((&EXT4_I(inode)->i_data_sem));
704         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705                 ret = check_block_validity(inode, map);
706                 if (ret != 0)
707                         return ret;
708
709                 /*
710                  * Inodes with freshly allocated blocks where contents will be
711                  * visible after transaction commit must be on transaction's
712                  * ordered data list.
713                  */
714                 if (map->m_flags & EXT4_MAP_NEW &&
715                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
717                     !IS_NOQUOTA(inode) &&
718                     ext4_should_order_data(inode)) {
719                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
721                         else
722                                 ret = ext4_jbd2_inode_add_write(handle, inode);
723                         if (ret)
724                                 return ret;
725                 }
726         }
727         return retval;
728 }
729
730 /*
731  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
732  * we have to be careful as someone else may be manipulating b_state as well.
733  */
734 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
735 {
736         unsigned long old_state;
737         unsigned long new_state;
738
739         flags &= EXT4_MAP_FLAGS;
740
741         /* Dummy buffer_head? Set non-atomically. */
742         if (!bh->b_page) {
743                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
744                 return;
745         }
746         /*
747          * Someone else may be modifying b_state. Be careful! This is ugly but
748          * once we get rid of using bh as a container for mapping information
749          * to pass to / from get_block functions, this can go away.
750          */
751         do {
752                 old_state = READ_ONCE(bh->b_state);
753                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
754         } while (unlikely(
755                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
756 }
757
758 static int _ext4_get_block(struct inode *inode, sector_t iblock,
759                            struct buffer_head *bh, int flags)
760 {
761         struct ext4_map_blocks map;
762         int ret = 0;
763
764         if (ext4_has_inline_data(inode))
765                 return -ERANGE;
766
767         map.m_lblk = iblock;
768         map.m_len = bh->b_size >> inode->i_blkbits;
769
770         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
771                               flags);
772         if (ret > 0) {
773                 map_bh(bh, inode->i_sb, map.m_pblk);
774                 ext4_update_bh_state(bh, map.m_flags);
775                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776                 ret = 0;
777         } else if (ret == 0) {
778                 /* hole case, need to fill in bh->b_size */
779                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780         }
781         return ret;
782 }
783
784 int ext4_get_block(struct inode *inode, sector_t iblock,
785                    struct buffer_head *bh, int create)
786 {
787         return _ext4_get_block(inode, iblock, bh,
788                                create ? EXT4_GET_BLOCKS_CREATE : 0);
789 }
790
791 /*
792  * Get block function used when preparing for buffered write if we require
793  * creating an unwritten extent if blocks haven't been allocated.  The extent
794  * will be converted to written after the IO is complete.
795  */
796 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
797                              struct buffer_head *bh_result, int create)
798 {
799         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
800                    inode->i_ino, create);
801         return _ext4_get_block(inode, iblock, bh_result,
802                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
803 }
804
805 /* Maximum number of blocks we map for direct IO at once. */
806 #define DIO_MAX_BLOCKS 4096
807
808 /*
809  * Get blocks function for the cases that need to start a transaction -
810  * generally difference cases of direct IO and DAX IO. It also handles retries
811  * in case of ENOSPC.
812  */
813 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
814                                 struct buffer_head *bh_result, int flags)
815 {
816         int dio_credits;
817         handle_t *handle;
818         int retries = 0;
819         int ret;
820
821         /* Trim mapping request to maximum we can map at once for DIO */
822         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
823                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
824         dio_credits = ext4_chunk_trans_blocks(inode,
825                                       bh_result->b_size >> inode->i_blkbits);
826 retry:
827         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
828         if (IS_ERR(handle))
829                 return PTR_ERR(handle);
830
831         ret = _ext4_get_block(inode, iblock, bh_result, flags);
832         ext4_journal_stop(handle);
833
834         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
835                 goto retry;
836         return ret;
837 }
838
839 /* Get block function for DIO reads and writes to inodes without extents */
840 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
841                        struct buffer_head *bh, int create)
842 {
843         /* We don't expect handle for direct IO */
844         WARN_ON_ONCE(ext4_journal_current_handle());
845
846         if (!create)
847                 return _ext4_get_block(inode, iblock, bh, 0);
848         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
849 }
850
851 /*
852  * Get block function for AIO DIO writes when we create unwritten extent if
853  * blocks are not allocated yet. The extent will be converted to written
854  * after IO is complete.
855  */
856 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
857                 sector_t iblock, struct buffer_head *bh_result, int create)
858 {
859         int ret;
860
861         /* We don't expect handle for direct IO */
862         WARN_ON_ONCE(ext4_journal_current_handle());
863
864         ret = ext4_get_block_trans(inode, iblock, bh_result,
865                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
866
867         /*
868          * When doing DIO using unwritten extents, we need io_end to convert
869          * unwritten extents to written on IO completion. We allocate io_end
870          * once we spot unwritten extent and store it in b_private. Generic
871          * DIO code keeps b_private set and furthermore passes the value to
872          * our completion callback in 'private' argument.
873          */
874         if (!ret && buffer_unwritten(bh_result)) {
875                 if (!bh_result->b_private) {
876                         ext4_io_end_t *io_end;
877
878                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
879                         if (!io_end)
880                                 return -ENOMEM;
881                         bh_result->b_private = io_end;
882                         ext4_set_io_unwritten_flag(inode, io_end);
883                 }
884                 set_buffer_defer_completion(bh_result);
885         }
886
887         return ret;
888 }
889
890 /*
891  * Get block function for non-AIO DIO writes when we create unwritten extent if
892  * blocks are not allocated yet. The extent will be converted to written
893  * after IO is complete from ext4_ext_direct_IO() function.
894  */
895 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
896                 sector_t iblock, struct buffer_head *bh_result, int create)
897 {
898         int ret;
899
900         /* We don't expect handle for direct IO */
901         WARN_ON_ONCE(ext4_journal_current_handle());
902
903         ret = ext4_get_block_trans(inode, iblock, bh_result,
904                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
905
906         /*
907          * Mark inode as having pending DIO writes to unwritten extents.
908          * ext4_ext_direct_IO() checks this flag and converts extents to
909          * written.
910          */
911         if (!ret && buffer_unwritten(bh_result))
912                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
913
914         return ret;
915 }
916
917 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
918                    struct buffer_head *bh_result, int create)
919 {
920         int ret;
921
922         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
923                    inode->i_ino, create);
924         /* We don't expect handle for direct IO */
925         WARN_ON_ONCE(ext4_journal_current_handle());
926
927         ret = _ext4_get_block(inode, iblock, bh_result, 0);
928         /*
929          * Blocks should have been preallocated! ext4_file_write_iter() checks
930          * that.
931          */
932         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
933
934         return ret;
935 }
936
937
938 /*
939  * `handle' can be NULL if create is zero
940  */
941 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
942                                 ext4_lblk_t block, int map_flags)
943 {
944         struct ext4_map_blocks map;
945         struct buffer_head *bh;
946         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
947         int err;
948
949         J_ASSERT(handle != NULL || create == 0);
950
951         map.m_lblk = block;
952         map.m_len = 1;
953         err = ext4_map_blocks(handle, inode, &map, map_flags);
954
955         if (err == 0)
956                 return create ? ERR_PTR(-ENOSPC) : NULL;
957         if (err < 0)
958                 return ERR_PTR(err);
959
960         bh = sb_getblk(inode->i_sb, map.m_pblk);
961         if (unlikely(!bh))
962                 return ERR_PTR(-ENOMEM);
963         if (map.m_flags & EXT4_MAP_NEW) {
964                 J_ASSERT(create != 0);
965                 J_ASSERT(handle != NULL);
966
967                 /*
968                  * Now that we do not always journal data, we should
969                  * keep in mind whether this should always journal the
970                  * new buffer as metadata.  For now, regular file
971                  * writes use ext4_get_block instead, so it's not a
972                  * problem.
973                  */
974                 lock_buffer(bh);
975                 BUFFER_TRACE(bh, "call get_create_access");
976                 err = ext4_journal_get_create_access(handle, bh);
977                 if (unlikely(err)) {
978                         unlock_buffer(bh);
979                         goto errout;
980                 }
981                 if (!buffer_uptodate(bh)) {
982                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
983                         set_buffer_uptodate(bh);
984                 }
985                 unlock_buffer(bh);
986                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
987                 err = ext4_handle_dirty_metadata(handle, inode, bh);
988                 if (unlikely(err))
989                         goto errout;
990         } else
991                 BUFFER_TRACE(bh, "not a new buffer");
992         return bh;
993 errout:
994         brelse(bh);
995         return ERR_PTR(err);
996 }
997
998 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
999                                ext4_lblk_t block, int map_flags)
1000 {
1001         struct buffer_head *bh;
1002
1003         bh = ext4_getblk(handle, inode, block, map_flags);
1004         if (IS_ERR(bh))
1005                 return bh;
1006         if (!bh || buffer_uptodate(bh))
1007                 return bh;
1008         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1009         wait_on_buffer(bh);
1010         if (buffer_uptodate(bh))
1011                 return bh;
1012         put_bh(bh);
1013         return ERR_PTR(-EIO);
1014 }
1015
1016 int ext4_walk_page_buffers(handle_t *handle,
1017                            struct buffer_head *head,
1018                            unsigned from,
1019                            unsigned to,
1020                            int *partial,
1021                            int (*fn)(handle_t *handle,
1022                                      struct buffer_head *bh))
1023 {
1024         struct buffer_head *bh;
1025         unsigned block_start, block_end;
1026         unsigned blocksize = head->b_size;
1027         int err, ret = 0;
1028         struct buffer_head *next;
1029
1030         for (bh = head, block_start = 0;
1031              ret == 0 && (bh != head || !block_start);
1032              block_start = block_end, bh = next) {
1033                 next = bh->b_this_page;
1034                 block_end = block_start + blocksize;
1035                 if (block_end <= from || block_start >= to) {
1036                         if (partial && !buffer_uptodate(bh))
1037                                 *partial = 1;
1038                         continue;
1039                 }
1040                 err = (*fn)(handle, bh);
1041                 if (!ret)
1042                         ret = err;
1043         }
1044         return ret;
1045 }
1046
1047 /*
1048  * To preserve ordering, it is essential that the hole instantiation and
1049  * the data write be encapsulated in a single transaction.  We cannot
1050  * close off a transaction and start a new one between the ext4_get_block()
1051  * and the commit_write().  So doing the jbd2_journal_start at the start of
1052  * prepare_write() is the right place.
1053  *
1054  * Also, this function can nest inside ext4_writepage().  In that case, we
1055  * *know* that ext4_writepage() has generated enough buffer credits to do the
1056  * whole page.  So we won't block on the journal in that case, which is good,
1057  * because the caller may be PF_MEMALLOC.
1058  *
1059  * By accident, ext4 can be reentered when a transaction is open via
1060  * quota file writes.  If we were to commit the transaction while thus
1061  * reentered, there can be a deadlock - we would be holding a quota
1062  * lock, and the commit would never complete if another thread had a
1063  * transaction open and was blocking on the quota lock - a ranking
1064  * violation.
1065  *
1066  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1067  * will _not_ run commit under these circumstances because handle->h_ref
1068  * is elevated.  We'll still have enough credits for the tiny quotafile
1069  * write.
1070  */
1071 int do_journal_get_write_access(handle_t *handle,
1072                                 struct buffer_head *bh)
1073 {
1074         int dirty = buffer_dirty(bh);
1075         int ret;
1076
1077         if (!buffer_mapped(bh) || buffer_freed(bh))
1078                 return 0;
1079         /*
1080          * __block_write_begin() could have dirtied some buffers. Clean
1081          * the dirty bit as jbd2_journal_get_write_access() could complain
1082          * otherwise about fs integrity issues. Setting of the dirty bit
1083          * by __block_write_begin() isn't a real problem here as we clear
1084          * the bit before releasing a page lock and thus writeback cannot
1085          * ever write the buffer.
1086          */
1087         if (dirty)
1088                 clear_buffer_dirty(bh);
1089         BUFFER_TRACE(bh, "get write access");
1090         ret = ext4_journal_get_write_access(handle, bh);
1091         if (!ret && dirty)
1092                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093         return ret;
1094 }
1095
1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1097 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1098                                   get_block_t *get_block)
1099 {
1100         unsigned from = pos & (PAGE_SIZE - 1);
1101         unsigned to = from + len;
1102         struct inode *inode = page->mapping->host;
1103         unsigned block_start, block_end;
1104         sector_t block;
1105         int err = 0;
1106         unsigned blocksize = inode->i_sb->s_blocksize;
1107         unsigned bbits;
1108         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1109         bool decrypt = false;
1110
1111         BUG_ON(!PageLocked(page));
1112         BUG_ON(from > PAGE_SIZE);
1113         BUG_ON(to > PAGE_SIZE);
1114         BUG_ON(from > to);
1115
1116         if (!page_has_buffers(page))
1117                 create_empty_buffers(page, blocksize, 0);
1118         head = page_buffers(page);
1119         bbits = ilog2(blocksize);
1120         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1121
1122         for (bh = head, block_start = 0; bh != head || !block_start;
1123             block++, block_start = block_end, bh = bh->b_this_page) {
1124                 block_end = block_start + blocksize;
1125                 if (block_end <= from || block_start >= to) {
1126                         if (PageUptodate(page)) {
1127                                 if (!buffer_uptodate(bh))
1128                                         set_buffer_uptodate(bh);
1129                         }
1130                         continue;
1131                 }
1132                 if (buffer_new(bh))
1133                         clear_buffer_new(bh);
1134                 if (!buffer_mapped(bh)) {
1135                         WARN_ON(bh->b_size != blocksize);
1136                         err = get_block(inode, block, bh, 1);
1137                         if (err)
1138                                 break;
1139                         if (buffer_new(bh)) {
1140                                 unmap_underlying_metadata(bh->b_bdev,
1141                                                           bh->b_blocknr);
1142                                 if (PageUptodate(page)) {
1143                                         clear_buffer_new(bh);
1144                                         set_buffer_uptodate(bh);
1145                                         mark_buffer_dirty(bh);
1146                                         continue;
1147                                 }
1148                                 if (block_end > to || block_start < from)
1149                                         zero_user_segments(page, to, block_end,
1150                                                            block_start, from);
1151                                 continue;
1152                         }
1153                 }
1154                 if (PageUptodate(page)) {
1155                         if (!buffer_uptodate(bh))
1156                                 set_buffer_uptodate(bh);
1157                         continue;
1158                 }
1159                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1160                     !buffer_unwritten(bh) &&
1161                     (block_start < from || block_end > to)) {
1162                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1163                         *wait_bh++ = bh;
1164                         decrypt = ext4_encrypted_inode(inode) &&
1165                                 S_ISREG(inode->i_mode);
1166                 }
1167         }
1168         /*
1169          * If we issued read requests, let them complete.
1170          */
1171         while (wait_bh > wait) {
1172                 wait_on_buffer(*--wait_bh);
1173                 if (!buffer_uptodate(*wait_bh))
1174                         err = -EIO;
1175         }
1176         if (unlikely(err))
1177                 page_zero_new_buffers(page, from, to);
1178         else if (decrypt)
1179                 err = fscrypt_decrypt_page(page->mapping->host, page,
1180                                 PAGE_SIZE, 0, page->index);
1181         return err;
1182 }
1183 #endif
1184
1185 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1186                             loff_t pos, unsigned len, unsigned flags,
1187                             struct page **pagep, void **fsdata)
1188 {
1189         struct inode *inode = mapping->host;
1190         int ret, needed_blocks;
1191         handle_t *handle;
1192         int retries = 0;
1193         struct page *page;
1194         pgoff_t index;
1195         unsigned from, to;
1196
1197         trace_ext4_write_begin(inode, pos, len, flags);
1198         /*
1199          * Reserve one block more for addition to orphan list in case
1200          * we allocate blocks but write fails for some reason
1201          */
1202         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1203         index = pos >> PAGE_SHIFT;
1204         from = pos & (PAGE_SIZE - 1);
1205         to = from + len;
1206
1207         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1208                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1209                                                     flags, pagep);
1210                 if (ret < 0)
1211                         return ret;
1212                 if (ret == 1)
1213                         return 0;
1214         }
1215
1216         /*
1217          * grab_cache_page_write_begin() can take a long time if the
1218          * system is thrashing due to memory pressure, or if the page
1219          * is being written back.  So grab it first before we start
1220          * the transaction handle.  This also allows us to allocate
1221          * the page (if needed) without using GFP_NOFS.
1222          */
1223 retry_grab:
1224         page = grab_cache_page_write_begin(mapping, index, flags);
1225         if (!page)
1226                 return -ENOMEM;
1227         unlock_page(page);
1228
1229 retry_journal:
1230         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1231         if (IS_ERR(handle)) {
1232                 put_page(page);
1233                 return PTR_ERR(handle);
1234         }
1235
1236         lock_page(page);
1237         if (page->mapping != mapping) {
1238                 /* The page got truncated from under us */
1239                 unlock_page(page);
1240                 put_page(page);
1241                 ext4_journal_stop(handle);
1242                 goto retry_grab;
1243         }
1244         /* In case writeback began while the page was unlocked */
1245         wait_for_stable_page(page);
1246
1247 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1248         if (ext4_should_dioread_nolock(inode))
1249                 ret = ext4_block_write_begin(page, pos, len,
1250                                              ext4_get_block_unwritten);
1251         else
1252                 ret = ext4_block_write_begin(page, pos, len,
1253                                              ext4_get_block);
1254 #else
1255         if (ext4_should_dioread_nolock(inode))
1256                 ret = __block_write_begin(page, pos, len,
1257                                           ext4_get_block_unwritten);
1258         else
1259                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1260 #endif
1261         if (!ret && ext4_should_journal_data(inode)) {
1262                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1263                                              from, to, NULL,
1264                                              do_journal_get_write_access);
1265         }
1266
1267         if (ret) {
1268                 unlock_page(page);
1269                 /*
1270                  * __block_write_begin may have instantiated a few blocks
1271                  * outside i_size.  Trim these off again. Don't need
1272                  * i_size_read because we hold i_mutex.
1273                  *
1274                  * Add inode to orphan list in case we crash before
1275                  * truncate finishes
1276                  */
1277                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1278                         ext4_orphan_add(handle, inode);
1279
1280                 ext4_journal_stop(handle);
1281                 if (pos + len > inode->i_size) {
1282                         ext4_truncate_failed_write(inode);
1283                         /*
1284                          * If truncate failed early the inode might
1285                          * still be on the orphan list; we need to
1286                          * make sure the inode is removed from the
1287                          * orphan list in that case.
1288                          */
1289                         if (inode->i_nlink)
1290                                 ext4_orphan_del(NULL, inode);
1291                 }
1292
1293                 if (ret == -ENOSPC &&
1294                     ext4_should_retry_alloc(inode->i_sb, &retries))
1295                         goto retry_journal;
1296                 put_page(page);
1297                 return ret;
1298         }
1299         *pagep = page;
1300         return ret;
1301 }
1302
1303 /* For write_end() in data=journal mode */
1304 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1305 {
1306         int ret;
1307         if (!buffer_mapped(bh) || buffer_freed(bh))
1308                 return 0;
1309         set_buffer_uptodate(bh);
1310         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1311         clear_buffer_meta(bh);
1312         clear_buffer_prio(bh);
1313         return ret;
1314 }
1315
1316 /*
1317  * We need to pick up the new inode size which generic_commit_write gave us
1318  * `file' can be NULL - eg, when called from page_symlink().
1319  *
1320  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1321  * buffers are managed internally.
1322  */
1323 static int ext4_write_end(struct file *file,
1324                           struct address_space *mapping,
1325                           loff_t pos, unsigned len, unsigned copied,
1326                           struct page *page, void *fsdata)
1327 {
1328         handle_t *handle = ext4_journal_current_handle();
1329         struct inode *inode = mapping->host;
1330         loff_t old_size = inode->i_size;
1331         int ret = 0, ret2;
1332         int i_size_changed = 0;
1333
1334         trace_ext4_write_end(inode, pos, len, copied);
1335         if (ext4_has_inline_data(inode)) {
1336                 ret = ext4_write_inline_data_end(inode, pos, len,
1337                                                  copied, page);
1338                 if (ret < 0)
1339                         goto errout;
1340                 copied = ret;
1341         } else
1342                 copied = block_write_end(file, mapping, pos,
1343                                          len, copied, page, fsdata);
1344         /*
1345          * it's important to update i_size while still holding page lock:
1346          * page writeout could otherwise come in and zero beyond i_size.
1347          */
1348         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1349         unlock_page(page);
1350         put_page(page);
1351
1352         if (old_size < pos)
1353                 pagecache_isize_extended(inode, old_size, pos);
1354         /*
1355          * Don't mark the inode dirty under page lock. First, it unnecessarily
1356          * makes the holding time of page lock longer. Second, it forces lock
1357          * ordering of page lock and transaction start for journaling
1358          * filesystems.
1359          */
1360         if (i_size_changed)
1361                 ext4_mark_inode_dirty(handle, inode);
1362
1363         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1364                 /* if we have allocated more blocks and copied
1365                  * less. We will have blocks allocated outside
1366                  * inode->i_size. So truncate them
1367                  */
1368                 ext4_orphan_add(handle, inode);
1369 errout:
1370         ret2 = ext4_journal_stop(handle);
1371         if (!ret)
1372                 ret = ret2;
1373
1374         if (pos + len > inode->i_size) {
1375                 ext4_truncate_failed_write(inode);
1376                 /*
1377                  * If truncate failed early the inode might still be
1378                  * on the orphan list; we need to make sure the inode
1379                  * is removed from the orphan list in that case.
1380                  */
1381                 if (inode->i_nlink)
1382                         ext4_orphan_del(NULL, inode);
1383         }
1384
1385         return ret ? ret : copied;
1386 }
1387
1388 /*
1389  * This is a private version of page_zero_new_buffers() which doesn't
1390  * set the buffer to be dirty, since in data=journalled mode we need
1391  * to call ext4_handle_dirty_metadata() instead.
1392  */
1393 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1394 {
1395         unsigned int block_start = 0, block_end;
1396         struct buffer_head *head, *bh;
1397
1398         bh = head = page_buffers(page);
1399         do {
1400                 block_end = block_start + bh->b_size;
1401                 if (buffer_new(bh)) {
1402                         if (block_end > from && block_start < to) {
1403                                 if (!PageUptodate(page)) {
1404                                         unsigned start, size;
1405
1406                                         start = max(from, block_start);
1407                                         size = min(to, block_end) - start;
1408
1409                                         zero_user(page, start, size);
1410                                         set_buffer_uptodate(bh);
1411                                 }
1412                                 clear_buffer_new(bh);
1413                         }
1414                 }
1415                 block_start = block_end;
1416                 bh = bh->b_this_page;
1417         } while (bh != head);
1418 }
1419
1420 static int ext4_journalled_write_end(struct file *file,
1421                                      struct address_space *mapping,
1422                                      loff_t pos, unsigned len, unsigned copied,
1423                                      struct page *page, void *fsdata)
1424 {
1425         handle_t *handle = ext4_journal_current_handle();
1426         struct inode *inode = mapping->host;
1427         loff_t old_size = inode->i_size;
1428         int ret = 0, ret2;
1429         int partial = 0;
1430         unsigned from, to;
1431         int size_changed = 0;
1432
1433         trace_ext4_journalled_write_end(inode, pos, len, copied);
1434         from = pos & (PAGE_SIZE - 1);
1435         to = from + len;
1436
1437         BUG_ON(!ext4_handle_valid(handle));
1438
1439         if (ext4_has_inline_data(inode))
1440                 copied = ext4_write_inline_data_end(inode, pos, len,
1441                                                     copied, page);
1442         else {
1443                 if (copied < len) {
1444                         if (!PageUptodate(page))
1445                                 copied = 0;
1446                         zero_new_buffers(page, from+copied, to);
1447                 }
1448
1449                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1450                                              to, &partial, write_end_fn);
1451                 if (!partial)
1452                         SetPageUptodate(page);
1453         }
1454         size_changed = ext4_update_inode_size(inode, pos + copied);
1455         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1456         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1457         unlock_page(page);
1458         put_page(page);
1459
1460         if (old_size < pos)
1461                 pagecache_isize_extended(inode, old_size, pos);
1462
1463         if (size_changed) {
1464                 ret2 = ext4_mark_inode_dirty(handle, inode);
1465                 if (!ret)
1466                         ret = ret2;
1467         }
1468
1469         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1470                 /* if we have allocated more blocks and copied
1471                  * less. We will have blocks allocated outside
1472                  * inode->i_size. So truncate them
1473                  */
1474                 ext4_orphan_add(handle, inode);
1475
1476         ret2 = ext4_journal_stop(handle);
1477         if (!ret)
1478                 ret = ret2;
1479         if (pos + len > inode->i_size) {
1480                 ext4_truncate_failed_write(inode);
1481                 /*
1482                  * If truncate failed early the inode might still be
1483                  * on the orphan list; we need to make sure the inode
1484                  * is removed from the orphan list in that case.
1485                  */
1486                 if (inode->i_nlink)
1487                         ext4_orphan_del(NULL, inode);
1488         }
1489
1490         return ret ? ret : copied;
1491 }
1492
1493 /*
1494  * Reserve space for a single cluster
1495  */
1496 static int ext4_da_reserve_space(struct inode *inode)
1497 {
1498         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1499         struct ext4_inode_info *ei = EXT4_I(inode);
1500         int ret;
1501
1502         /*
1503          * We will charge metadata quota at writeout time; this saves
1504          * us from metadata over-estimation, though we may go over by
1505          * a small amount in the end.  Here we just reserve for data.
1506          */
1507         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1508         if (ret)
1509                 return ret;
1510
1511         spin_lock(&ei->i_block_reservation_lock);
1512         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1513                 spin_unlock(&ei->i_block_reservation_lock);
1514                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1515                 return -ENOSPC;
1516         }
1517         ei->i_reserved_data_blocks++;
1518         trace_ext4_da_reserve_space(inode);
1519         spin_unlock(&ei->i_block_reservation_lock);
1520
1521         return 0;       /* success */
1522 }
1523
1524 static void ext4_da_release_space(struct inode *inode, int to_free)
1525 {
1526         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527         struct ext4_inode_info *ei = EXT4_I(inode);
1528
1529         if (!to_free)
1530                 return;         /* Nothing to release, exit */
1531
1532         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533
1534         trace_ext4_da_release_space(inode, to_free);
1535         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1536                 /*
1537                  * if there aren't enough reserved blocks, then the
1538                  * counter is messed up somewhere.  Since this
1539                  * function is called from invalidate page, it's
1540                  * harmless to return without any action.
1541                  */
1542                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1543                          "ino %lu, to_free %d with only %d reserved "
1544                          "data blocks", inode->i_ino, to_free,
1545                          ei->i_reserved_data_blocks);
1546                 WARN_ON(1);
1547                 to_free = ei->i_reserved_data_blocks;
1548         }
1549         ei->i_reserved_data_blocks -= to_free;
1550
1551         /* update fs dirty data blocks counter */
1552         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1553
1554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555
1556         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1557 }
1558
1559 static void ext4_da_page_release_reservation(struct page *page,
1560                                              unsigned int offset,
1561                                              unsigned int length)
1562 {
1563         int to_release = 0, contiguous_blks = 0;
1564         struct buffer_head *head, *bh;
1565         unsigned int curr_off = 0;
1566         struct inode *inode = page->mapping->host;
1567         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1568         unsigned int stop = offset + length;
1569         int num_clusters;
1570         ext4_fsblk_t lblk;
1571
1572         BUG_ON(stop > PAGE_SIZE || stop < length);
1573
1574         head = page_buffers(page);
1575         bh = head;
1576         do {
1577                 unsigned int next_off = curr_off + bh->b_size;
1578
1579                 if (next_off > stop)
1580                         break;
1581
1582                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1583                         to_release++;
1584                         contiguous_blks++;
1585                         clear_buffer_delay(bh);
1586                 } else if (contiguous_blks) {
1587                         lblk = page->index <<
1588                                (PAGE_SHIFT - inode->i_blkbits);
1589                         lblk += (curr_off >> inode->i_blkbits) -
1590                                 contiguous_blks;
1591                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1592                         contiguous_blks = 0;
1593                 }
1594                 curr_off = next_off;
1595         } while ((bh = bh->b_this_page) != head);
1596
1597         if (contiguous_blks) {
1598                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1599                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1600                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1601         }
1602
1603         /* If we have released all the blocks belonging to a cluster, then we
1604          * need to release the reserved space for that cluster. */
1605         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1606         while (num_clusters > 0) {
1607                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1608                         ((num_clusters - 1) << sbi->s_cluster_bits);
1609                 if (sbi->s_cluster_ratio == 1 ||
1610                     !ext4_find_delalloc_cluster(inode, lblk))
1611                         ext4_da_release_space(inode, 1);
1612
1613                 num_clusters--;
1614         }
1615 }
1616
1617 /*
1618  * Delayed allocation stuff
1619  */
1620
1621 struct mpage_da_data {
1622         struct inode *inode;
1623         struct writeback_control *wbc;
1624
1625         pgoff_t first_page;     /* The first page to write */
1626         pgoff_t next_page;      /* Current page to examine */
1627         pgoff_t last_page;      /* Last page to examine */
1628         /*
1629          * Extent to map - this can be after first_page because that can be
1630          * fully mapped. We somewhat abuse m_flags to store whether the extent
1631          * is delalloc or unwritten.
1632          */
1633         struct ext4_map_blocks map;
1634         struct ext4_io_submit io_submit;        /* IO submission data */
1635 };
1636
1637 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1638                                        bool invalidate)
1639 {
1640         int nr_pages, i;
1641         pgoff_t index, end;
1642         struct pagevec pvec;
1643         struct inode *inode = mpd->inode;
1644         struct address_space *mapping = inode->i_mapping;
1645
1646         /* This is necessary when next_page == 0. */
1647         if (mpd->first_page >= mpd->next_page)
1648                 return;
1649
1650         index = mpd->first_page;
1651         end   = mpd->next_page - 1;
1652         if (invalidate) {
1653                 ext4_lblk_t start, last;
1654                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1655                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1656                 ext4_es_remove_extent(inode, start, last - start + 1);
1657         }
1658
1659         pagevec_init(&pvec, 0);
1660         while (index <= end) {
1661                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1662                 if (nr_pages == 0)
1663                         break;
1664                 for (i = 0; i < nr_pages; i++) {
1665                         struct page *page = pvec.pages[i];
1666                         if (page->index > end)
1667                                 break;
1668                         BUG_ON(!PageLocked(page));
1669                         BUG_ON(PageWriteback(page));
1670                         if (invalidate) {
1671                                 if (page_mapped(page))
1672                                         clear_page_dirty_for_io(page);
1673                                 block_invalidatepage(page, 0, PAGE_SIZE);
1674                                 ClearPageUptodate(page);
1675                         }
1676                         unlock_page(page);
1677                 }
1678                 index = pvec.pages[nr_pages - 1]->index + 1;
1679                 pagevec_release(&pvec);
1680         }
1681 }
1682
1683 static void ext4_print_free_blocks(struct inode *inode)
1684 {
1685         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686         struct super_block *sb = inode->i_sb;
1687         struct ext4_inode_info *ei = EXT4_I(inode);
1688
1689         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1690                EXT4_C2B(EXT4_SB(inode->i_sb),
1691                         ext4_count_free_clusters(sb)));
1692         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1693         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1694                (long long) EXT4_C2B(EXT4_SB(sb),
1695                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1696         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1697                (long long) EXT4_C2B(EXT4_SB(sb),
1698                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1699         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1700         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1701                  ei->i_reserved_data_blocks);
1702         return;
1703 }
1704
1705 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1706 {
1707         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1708 }
1709
1710 /*
1711  * This function is grabs code from the very beginning of
1712  * ext4_map_blocks, but assumes that the caller is from delayed write
1713  * time. This function looks up the requested blocks and sets the
1714  * buffer delay bit under the protection of i_data_sem.
1715  */
1716 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1717                               struct ext4_map_blocks *map,
1718                               struct buffer_head *bh)
1719 {
1720         struct extent_status es;
1721         int retval;
1722         sector_t invalid_block = ~((sector_t) 0xffff);
1723 #ifdef ES_AGGRESSIVE_TEST
1724         struct ext4_map_blocks orig_map;
1725
1726         memcpy(&orig_map, map, sizeof(*map));
1727 #endif
1728
1729         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1730                 invalid_block = ~0;
1731
1732         map->m_flags = 0;
1733         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1734                   "logical block %lu\n", inode->i_ino, map->m_len,
1735                   (unsigned long) map->m_lblk);
1736
1737         /* Lookup extent status tree firstly */
1738         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1739                 if (ext4_es_is_hole(&es)) {
1740                         retval = 0;
1741                         down_read(&EXT4_I(inode)->i_data_sem);
1742                         goto add_delayed;
1743                 }
1744
1745                 /*
1746                  * Delayed extent could be allocated by fallocate.
1747                  * So we need to check it.
1748                  */
1749                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1750                         map_bh(bh, inode->i_sb, invalid_block);
1751                         set_buffer_new(bh);
1752                         set_buffer_delay(bh);
1753                         return 0;
1754                 }
1755
1756                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1757                 retval = es.es_len - (iblock - es.es_lblk);
1758                 if (retval > map->m_len)
1759                         retval = map->m_len;
1760                 map->m_len = retval;
1761                 if (ext4_es_is_written(&es))
1762                         map->m_flags |= EXT4_MAP_MAPPED;
1763                 else if (ext4_es_is_unwritten(&es))
1764                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1765                 else
1766                         BUG_ON(1);
1767
1768 #ifdef ES_AGGRESSIVE_TEST
1769                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1770 #endif
1771                 return retval;
1772         }
1773
1774         /*
1775          * Try to see if we can get the block without requesting a new
1776          * file system block.
1777          */
1778         down_read(&EXT4_I(inode)->i_data_sem);
1779         if (ext4_has_inline_data(inode))
1780                 retval = 0;
1781         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1782                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1783         else
1784                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1785
1786 add_delayed:
1787         if (retval == 0) {
1788                 int ret;
1789                 /*
1790                  * XXX: __block_prepare_write() unmaps passed block,
1791                  * is it OK?
1792                  */
1793                 /*
1794                  * If the block was allocated from previously allocated cluster,
1795                  * then we don't need to reserve it again. However we still need
1796                  * to reserve metadata for every block we're going to write.
1797                  */
1798                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1799                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1800                         ret = ext4_da_reserve_space(inode);
1801                         if (ret) {
1802                                 /* not enough space to reserve */
1803                                 retval = ret;
1804                                 goto out_unlock;
1805                         }
1806                 }
1807
1808                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1809                                             ~0, EXTENT_STATUS_DELAYED);
1810                 if (ret) {
1811                         retval = ret;
1812                         goto out_unlock;
1813                 }
1814
1815                 map_bh(bh, inode->i_sb, invalid_block);
1816                 set_buffer_new(bh);
1817                 set_buffer_delay(bh);
1818         } else if (retval > 0) {
1819                 int ret;
1820                 unsigned int status;
1821
1822                 if (unlikely(retval != map->m_len)) {
1823                         ext4_warning(inode->i_sb,
1824                                      "ES len assertion failed for inode "
1825                                      "%lu: retval %d != map->m_len %d",
1826                                      inode->i_ino, retval, map->m_len);
1827                         WARN_ON(1);
1828                 }
1829
1830                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1831                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1832                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1833                                             map->m_pblk, status);
1834                 if (ret != 0)
1835                         retval = ret;
1836         }
1837
1838 out_unlock:
1839         up_read((&EXT4_I(inode)->i_data_sem));
1840
1841         return retval;
1842 }
1843
1844 /*
1845  * This is a special get_block_t callback which is used by
1846  * ext4_da_write_begin().  It will either return mapped block or
1847  * reserve space for a single block.
1848  *
1849  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850  * We also have b_blocknr = -1 and b_bdev initialized properly
1851  *
1852  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854  * initialized properly.
1855  */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857                            struct buffer_head *bh, int create)
1858 {
1859         struct ext4_map_blocks map;
1860         int ret = 0;
1861
1862         BUG_ON(create == 0);
1863         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865         map.m_lblk = iblock;
1866         map.m_len = 1;
1867
1868         /*
1869          * first, we need to know whether the block is allocated already
1870          * preallocated blocks are unmapped but should treated
1871          * the same as allocated blocks.
1872          */
1873         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874         if (ret <= 0)
1875                 return ret;
1876
1877         map_bh(bh, inode->i_sb, map.m_pblk);
1878         ext4_update_bh_state(bh, map.m_flags);
1879
1880         if (buffer_unwritten(bh)) {
1881                 /* A delayed write to unwritten bh should be marked
1882                  * new and mapped.  Mapped ensures that we don't do
1883                  * get_block multiple times when we write to the same
1884                  * offset and new ensures that we do proper zero out
1885                  * for partial write.
1886                  */
1887                 set_buffer_new(bh);
1888                 set_buffer_mapped(bh);
1889         }
1890         return 0;
1891 }
1892
1893 static int bget_one(handle_t *handle, struct buffer_head *bh)
1894 {
1895         get_bh(bh);
1896         return 0;
1897 }
1898
1899 static int bput_one(handle_t *handle, struct buffer_head *bh)
1900 {
1901         put_bh(bh);
1902         return 0;
1903 }
1904
1905 static int __ext4_journalled_writepage(struct page *page,
1906                                        unsigned int len)
1907 {
1908         struct address_space *mapping = page->mapping;
1909         struct inode *inode = mapping->host;
1910         struct buffer_head *page_bufs = NULL;
1911         handle_t *handle = NULL;
1912         int ret = 0, err = 0;
1913         int inline_data = ext4_has_inline_data(inode);
1914         struct buffer_head *inode_bh = NULL;
1915
1916         ClearPageChecked(page);
1917
1918         if (inline_data) {
1919                 BUG_ON(page->index != 0);
1920                 BUG_ON(len > ext4_get_max_inline_size(inode));
1921                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1922                 if (inode_bh == NULL)
1923                         goto out;
1924         } else {
1925                 page_bufs = page_buffers(page);
1926                 if (!page_bufs) {
1927                         BUG();
1928                         goto out;
1929                 }
1930                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1931                                        NULL, bget_one);
1932         }
1933         /*
1934          * We need to release the page lock before we start the
1935          * journal, so grab a reference so the page won't disappear
1936          * out from under us.
1937          */
1938         get_page(page);
1939         unlock_page(page);
1940
1941         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1942                                     ext4_writepage_trans_blocks(inode));
1943         if (IS_ERR(handle)) {
1944                 ret = PTR_ERR(handle);
1945                 put_page(page);
1946                 goto out_no_pagelock;
1947         }
1948         BUG_ON(!ext4_handle_valid(handle));
1949
1950         lock_page(page);
1951         put_page(page);
1952         if (page->mapping != mapping) {
1953                 /* The page got truncated from under us */
1954                 ext4_journal_stop(handle);
1955                 ret = 0;
1956                 goto out;
1957         }
1958
1959         if (inline_data) {
1960                 BUFFER_TRACE(inode_bh, "get write access");
1961                 ret = ext4_journal_get_write_access(handle, inode_bh);
1962
1963                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1964
1965         } else {
1966                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1967                                              do_journal_get_write_access);
1968
1969                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1970                                              write_end_fn);
1971         }
1972         if (ret == 0)
1973                 ret = err;
1974         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1975         err = ext4_journal_stop(handle);
1976         if (!ret)
1977                 ret = err;
1978
1979         if (!ext4_has_inline_data(inode))
1980                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1981                                        NULL, bput_one);
1982         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1983 out:
1984         unlock_page(page);
1985 out_no_pagelock:
1986         brelse(inode_bh);
1987         return ret;
1988 }
1989
1990 /*
1991  * Note that we don't need to start a transaction unless we're journaling data
1992  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1993  * need to file the inode to the transaction's list in ordered mode because if
1994  * we are writing back data added by write(), the inode is already there and if
1995  * we are writing back data modified via mmap(), no one guarantees in which
1996  * transaction the data will hit the disk. In case we are journaling data, we
1997  * cannot start transaction directly because transaction start ranks above page
1998  * lock so we have to do some magic.
1999  *
2000  * This function can get called via...
2001  *   - ext4_writepages after taking page lock (have journal handle)
2002  *   - journal_submit_inode_data_buffers (no journal handle)
2003  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2004  *   - grab_page_cache when doing write_begin (have journal handle)
2005  *
2006  * We don't do any block allocation in this function. If we have page with
2007  * multiple blocks we need to write those buffer_heads that are mapped. This
2008  * is important for mmaped based write. So if we do with blocksize 1K
2009  * truncate(f, 1024);
2010  * a = mmap(f, 0, 4096);
2011  * a[0] = 'a';
2012  * truncate(f, 4096);
2013  * we have in the page first buffer_head mapped via page_mkwrite call back
2014  * but other buffer_heads would be unmapped but dirty (dirty done via the
2015  * do_wp_page). So writepage should write the first block. If we modify
2016  * the mmap area beyond 1024 we will again get a page_fault and the
2017  * page_mkwrite callback will do the block allocation and mark the
2018  * buffer_heads mapped.
2019  *
2020  * We redirty the page if we have any buffer_heads that is either delay or
2021  * unwritten in the page.
2022  *
2023  * We can get recursively called as show below.
2024  *
2025  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2026  *              ext4_writepage()
2027  *
2028  * But since we don't do any block allocation we should not deadlock.
2029  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2030  */
2031 static int ext4_writepage(struct page *page,
2032                           struct writeback_control *wbc)
2033 {
2034         int ret = 0;
2035         loff_t size;
2036         unsigned int len;
2037         struct buffer_head *page_bufs = NULL;
2038         struct inode *inode = page->mapping->host;
2039         struct ext4_io_submit io_submit;
2040         bool keep_towrite = false;
2041
2042         trace_ext4_writepage(page);
2043         size = i_size_read(inode);
2044         if (page->index == size >> PAGE_SHIFT)
2045                 len = size & ~PAGE_MASK;
2046         else
2047                 len = PAGE_SIZE;
2048
2049         page_bufs = page_buffers(page);
2050         /*
2051          * We cannot do block allocation or other extent handling in this
2052          * function. If there are buffers needing that, we have to redirty
2053          * the page. But we may reach here when we do a journal commit via
2054          * journal_submit_inode_data_buffers() and in that case we must write
2055          * allocated buffers to achieve data=ordered mode guarantees.
2056          *
2057          * Also, if there is only one buffer per page (the fs block
2058          * size == the page size), if one buffer needs block
2059          * allocation or needs to modify the extent tree to clear the
2060          * unwritten flag, we know that the page can't be written at
2061          * all, so we might as well refuse the write immediately.
2062          * Unfortunately if the block size != page size, we can't as
2063          * easily detect this case using ext4_walk_page_buffers(), but
2064          * for the extremely common case, this is an optimization that
2065          * skips a useless round trip through ext4_bio_write_page().
2066          */
2067         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068                                    ext4_bh_delay_or_unwritten)) {
2069                 redirty_page_for_writepage(wbc, page);
2070                 if ((current->flags & PF_MEMALLOC) ||
2071                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2072                         /*
2073                          * For memory cleaning there's no point in writing only
2074                          * some buffers. So just bail out. Warn if we came here
2075                          * from direct reclaim.
2076                          */
2077                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078                                                         == PF_MEMALLOC);
2079                         unlock_page(page);
2080                         return 0;
2081                 }
2082                 keep_towrite = true;
2083         }
2084
2085         if (PageChecked(page) && ext4_should_journal_data(inode))
2086                 /*
2087                  * It's mmapped pagecache.  Add buffers and journal it.  There
2088                  * doesn't seem much point in redirtying the page here.
2089                  */
2090                 return __ext4_journalled_writepage(page, len);
2091
2092         ext4_io_submit_init(&io_submit, wbc);
2093         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094         if (!io_submit.io_end) {
2095                 redirty_page_for_writepage(wbc, page);
2096                 unlock_page(page);
2097                 return -ENOMEM;
2098         }
2099         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2100         ext4_io_submit(&io_submit);
2101         /* Drop io_end reference we got from init */
2102         ext4_put_io_end_defer(io_submit.io_end);
2103         return ret;
2104 }
2105
2106 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107 {
2108         int len;
2109         loff_t size = i_size_read(mpd->inode);
2110         int err;
2111
2112         BUG_ON(page->index != mpd->first_page);
2113         if (page->index == size >> PAGE_SHIFT)
2114                 len = size & ~PAGE_MASK;
2115         else
2116                 len = PAGE_SIZE;
2117         clear_page_dirty_for_io(page);
2118         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2119         if (!err)
2120                 mpd->wbc->nr_to_write--;
2121         mpd->first_page++;
2122
2123         return err;
2124 }
2125
2126 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2127
2128 /*
2129  * mballoc gives us at most this number of blocks...
2130  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2131  * The rest of mballoc seems to handle chunks up to full group size.
2132  */
2133 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2134
2135 /*
2136  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2137  *
2138  * @mpd - extent of blocks
2139  * @lblk - logical number of the block in the file
2140  * @bh - buffer head we want to add to the extent
2141  *
2142  * The function is used to collect contig. blocks in the same state. If the
2143  * buffer doesn't require mapping for writeback and we haven't started the
2144  * extent of buffers to map yet, the function returns 'true' immediately - the
2145  * caller can write the buffer right away. Otherwise the function returns true
2146  * if the block has been added to the extent, false if the block couldn't be
2147  * added.
2148  */
2149 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2150                                    struct buffer_head *bh)
2151 {
2152         struct ext4_map_blocks *map = &mpd->map;
2153
2154         /* Buffer that doesn't need mapping for writeback? */
2155         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2156             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2157                 /* So far no extent to map => we write the buffer right away */
2158                 if (map->m_len == 0)
2159                         return true;
2160                 return false;
2161         }
2162
2163         /* First block in the extent? */
2164         if (map->m_len == 0) {
2165                 map->m_lblk = lblk;
2166                 map->m_len = 1;
2167                 map->m_flags = bh->b_state & BH_FLAGS;
2168                 return true;
2169         }
2170
2171         /* Don't go larger than mballoc is willing to allocate */
2172         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2173                 return false;
2174
2175         /* Can we merge the block to our big extent? */
2176         if (lblk == map->m_lblk + map->m_len &&
2177             (bh->b_state & BH_FLAGS) == map->m_flags) {
2178                 map->m_len++;
2179                 return true;
2180         }
2181         return false;
2182 }
2183
2184 /*
2185  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2186  *
2187  * @mpd - extent of blocks for mapping
2188  * @head - the first buffer in the page
2189  * @bh - buffer we should start processing from
2190  * @lblk - logical number of the block in the file corresponding to @bh
2191  *
2192  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2193  * the page for IO if all buffers in this page were mapped and there's no
2194  * accumulated extent of buffers to map or add buffers in the page to the
2195  * extent of buffers to map. The function returns 1 if the caller can continue
2196  * by processing the next page, 0 if it should stop adding buffers to the
2197  * extent to map because we cannot extend it anymore. It can also return value
2198  * < 0 in case of error during IO submission.
2199  */
2200 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2201                                    struct buffer_head *head,
2202                                    struct buffer_head *bh,
2203                                    ext4_lblk_t lblk)
2204 {
2205         struct inode *inode = mpd->inode;
2206         int err;
2207         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2208                                                         >> inode->i_blkbits;
2209
2210         do {
2211                 BUG_ON(buffer_locked(bh));
2212
2213                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2214                         /* Found extent to map? */
2215                         if (mpd->map.m_len)
2216                                 return 0;
2217                         /* Everything mapped so far and we hit EOF */
2218                         break;
2219                 }
2220         } while (lblk++, (bh = bh->b_this_page) != head);
2221         /* So far everything mapped? Submit the page for IO. */
2222         if (mpd->map.m_len == 0) {
2223                 err = mpage_submit_page(mpd, head->b_page);
2224                 if (err < 0)
2225                         return err;
2226         }
2227         return lblk < blocks;
2228 }
2229
2230 /*
2231  * mpage_map_buffers - update buffers corresponding to changed extent and
2232  *                     submit fully mapped pages for IO
2233  *
2234  * @mpd - description of extent to map, on return next extent to map
2235  *
2236  * Scan buffers corresponding to changed extent (we expect corresponding pages
2237  * to be already locked) and update buffer state according to new extent state.
2238  * We map delalloc buffers to their physical location, clear unwritten bits,
2239  * and mark buffers as uninit when we perform writes to unwritten extents
2240  * and do extent conversion after IO is finished. If the last page is not fully
2241  * mapped, we update @map to the next extent in the last page that needs
2242  * mapping. Otherwise we submit the page for IO.
2243  */
2244 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2245 {
2246         struct pagevec pvec;
2247         int nr_pages, i;
2248         struct inode *inode = mpd->inode;
2249         struct buffer_head *head, *bh;
2250         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2251         pgoff_t start, end;
2252         ext4_lblk_t lblk;
2253         sector_t pblock;
2254         int err;
2255
2256         start = mpd->map.m_lblk >> bpp_bits;
2257         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2258         lblk = start << bpp_bits;
2259         pblock = mpd->map.m_pblk;
2260
2261         pagevec_init(&pvec, 0);
2262         while (start <= end) {
2263                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2264                                           PAGEVEC_SIZE);
2265                 if (nr_pages == 0)
2266                         break;
2267                 for (i = 0; i < nr_pages; i++) {
2268                         struct page *page = pvec.pages[i];
2269
2270                         if (page->index > end)
2271                                 break;
2272                         /* Up to 'end' pages must be contiguous */
2273                         BUG_ON(page->index != start);
2274                         bh = head = page_buffers(page);
2275                         do {
2276                                 if (lblk < mpd->map.m_lblk)
2277                                         continue;
2278                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2279                                         /*
2280                                          * Buffer after end of mapped extent.
2281                                          * Find next buffer in the page to map.
2282                                          */
2283                                         mpd->map.m_len = 0;
2284                                         mpd->map.m_flags = 0;
2285                                         /*
2286                                          * FIXME: If dioread_nolock supports
2287                                          * blocksize < pagesize, we need to make
2288                                          * sure we add size mapped so far to
2289                                          * io_end->size as the following call
2290                                          * can submit the page for IO.
2291                                          */
2292                                         err = mpage_process_page_bufs(mpd, head,
2293                                                                       bh, lblk);
2294                                         pagevec_release(&pvec);
2295                                         if (err > 0)
2296                                                 err = 0;
2297                                         return err;
2298                                 }
2299                                 if (buffer_delay(bh)) {
2300                                         clear_buffer_delay(bh);
2301                                         bh->b_blocknr = pblock++;
2302                                 }
2303                                 clear_buffer_unwritten(bh);
2304                         } while (lblk++, (bh = bh->b_this_page) != head);
2305
2306                         /*
2307                          * FIXME: This is going to break if dioread_nolock
2308                          * supports blocksize < pagesize as we will try to
2309                          * convert potentially unmapped parts of inode.
2310                          */
2311                         mpd->io_submit.io_end->size += PAGE_SIZE;
2312                         /* Page fully mapped - let IO run! */
2313                         err = mpage_submit_page(mpd, page);
2314                         if (err < 0) {
2315                                 pagevec_release(&pvec);
2316                                 return err;
2317                         }
2318                         start++;
2319                 }
2320                 pagevec_release(&pvec);
2321         }
2322         /* Extent fully mapped and matches with page boundary. We are done. */
2323         mpd->map.m_len = 0;
2324         mpd->map.m_flags = 0;
2325         return 0;
2326 }
2327
2328 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2329 {
2330         struct inode *inode = mpd->inode;
2331         struct ext4_map_blocks *map = &mpd->map;
2332         int get_blocks_flags;
2333         int err, dioread_nolock;
2334
2335         trace_ext4_da_write_pages_extent(inode, map);
2336         /*
2337          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2338          * to convert an unwritten extent to be initialized (in the case
2339          * where we have written into one or more preallocated blocks).  It is
2340          * possible that we're going to need more metadata blocks than
2341          * previously reserved. However we must not fail because we're in
2342          * writeback and there is nothing we can do about it so it might result
2343          * in data loss.  So use reserved blocks to allocate metadata if
2344          * possible.
2345          *
2346          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2347          * the blocks in question are delalloc blocks.  This indicates
2348          * that the blocks and quotas has already been checked when
2349          * the data was copied into the page cache.
2350          */
2351         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2352                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2353                            EXT4_GET_BLOCKS_IO_SUBMIT;
2354         dioread_nolock = ext4_should_dioread_nolock(inode);
2355         if (dioread_nolock)
2356                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2357         if (map->m_flags & (1 << BH_Delay))
2358                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2359
2360         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2361         if (err < 0)
2362                 return err;
2363         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2364                 if (!mpd->io_submit.io_end->handle &&
2365                     ext4_handle_valid(handle)) {
2366                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2367                         handle->h_rsv_handle = NULL;
2368                 }
2369                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2370         }
2371
2372         BUG_ON(map->m_len == 0);
2373         if (map->m_flags & EXT4_MAP_NEW) {
2374                 struct block_device *bdev = inode->i_sb->s_bdev;
2375                 int i;
2376
2377                 for (i = 0; i < map->m_len; i++)
2378                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2379         }
2380         return 0;
2381 }
2382
2383 /*
2384  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2385  *                               mpd->len and submit pages underlying it for IO
2386  *
2387  * @handle - handle for journal operations
2388  * @mpd - extent to map
2389  * @give_up_on_write - we set this to true iff there is a fatal error and there
2390  *                     is no hope of writing the data. The caller should discard
2391  *                     dirty pages to avoid infinite loops.
2392  *
2393  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2394  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2395  * them to initialized or split the described range from larger unwritten
2396  * extent. Note that we need not map all the described range since allocation
2397  * can return less blocks or the range is covered by more unwritten extents. We
2398  * cannot map more because we are limited by reserved transaction credits. On
2399  * the other hand we always make sure that the last touched page is fully
2400  * mapped so that it can be written out (and thus forward progress is
2401  * guaranteed). After mapping we submit all mapped pages for IO.
2402  */
2403 static int mpage_map_and_submit_extent(handle_t *handle,
2404                                        struct mpage_da_data *mpd,
2405                                        bool *give_up_on_write)
2406 {
2407         struct inode *inode = mpd->inode;
2408         struct ext4_map_blocks *map = &mpd->map;
2409         int err;
2410         loff_t disksize;
2411         int progress = 0;
2412
2413         mpd->io_submit.io_end->offset =
2414                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2415         do {
2416                 err = mpage_map_one_extent(handle, mpd);
2417                 if (err < 0) {
2418                         struct super_block *sb = inode->i_sb;
2419
2420                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2421                                 goto invalidate_dirty_pages;
2422                         /*
2423                          * Let the uper layers retry transient errors.
2424                          * In the case of ENOSPC, if ext4_count_free_blocks()
2425                          * is non-zero, a commit should free up blocks.
2426                          */
2427                         if ((err == -ENOMEM) ||
2428                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2429                                 if (progress)
2430                                         goto update_disksize;
2431                                 return err;
2432                         }
2433                         ext4_msg(sb, KERN_CRIT,
2434                                  "Delayed block allocation failed for "
2435                                  "inode %lu at logical offset %llu with"
2436                                  " max blocks %u with error %d",
2437                                  inode->i_ino,
2438                                  (unsigned long long)map->m_lblk,
2439                                  (unsigned)map->m_len, -err);
2440                         ext4_msg(sb, KERN_CRIT,
2441                                  "This should not happen!! Data will "
2442                                  "be lost\n");
2443                         if (err == -ENOSPC)
2444                                 ext4_print_free_blocks(inode);
2445                 invalidate_dirty_pages:
2446                         *give_up_on_write = true;
2447                         return err;
2448                 }
2449                 progress = 1;
2450                 /*
2451                  * Update buffer state, submit mapped pages, and get us new
2452                  * extent to map
2453                  */
2454                 err = mpage_map_and_submit_buffers(mpd);
2455                 if (err < 0)
2456                         goto update_disksize;
2457         } while (map->m_len);
2458
2459 update_disksize:
2460         /*
2461          * Update on-disk size after IO is submitted.  Races with
2462          * truncate are avoided by checking i_size under i_data_sem.
2463          */
2464         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2465         if (disksize > EXT4_I(inode)->i_disksize) {
2466                 int err2;
2467                 loff_t i_size;
2468
2469                 down_write(&EXT4_I(inode)->i_data_sem);
2470                 i_size = i_size_read(inode);
2471                 if (disksize > i_size)
2472                         disksize = i_size;
2473                 if (disksize > EXT4_I(inode)->i_disksize)
2474                         EXT4_I(inode)->i_disksize = disksize;
2475                 err2 = ext4_mark_inode_dirty(handle, inode);
2476                 up_write(&EXT4_I(inode)->i_data_sem);
2477                 if (err2)
2478                         ext4_error(inode->i_sb,
2479                                    "Failed to mark inode %lu dirty",
2480                                    inode->i_ino);
2481                 if (!err)
2482                         err = err2;
2483         }
2484         return err;
2485 }
2486
2487 /*
2488  * Calculate the total number of credits to reserve for one writepages
2489  * iteration. This is called from ext4_writepages(). We map an extent of
2490  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2491  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2492  * bpp - 1 blocks in bpp different extents.
2493  */
2494 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2495 {
2496         int bpp = ext4_journal_blocks_per_page(inode);
2497
2498         return ext4_meta_trans_blocks(inode,
2499                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2500 }
2501
2502 /*
2503  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2504  *                               and underlying extent to map
2505  *
2506  * @mpd - where to look for pages
2507  *
2508  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2509  * IO immediately. When we find a page which isn't mapped we start accumulating
2510  * extent of buffers underlying these pages that needs mapping (formed by
2511  * either delayed or unwritten buffers). We also lock the pages containing
2512  * these buffers. The extent found is returned in @mpd structure (starting at
2513  * mpd->lblk with length mpd->len blocks).
2514  *
2515  * Note that this function can attach bios to one io_end structure which are
2516  * neither logically nor physically contiguous. Although it may seem as an
2517  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2518  * case as we need to track IO to all buffers underlying a page in one io_end.
2519  */
2520 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2521 {
2522         struct address_space *mapping = mpd->inode->i_mapping;
2523         struct pagevec pvec;
2524         unsigned int nr_pages;
2525         long left = mpd->wbc->nr_to_write;
2526         pgoff_t index = mpd->first_page;
2527         pgoff_t end = mpd->last_page;
2528         int tag;
2529         int i, err = 0;
2530         int blkbits = mpd->inode->i_blkbits;
2531         ext4_lblk_t lblk;
2532         struct buffer_head *head;
2533
2534         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2535                 tag = PAGECACHE_TAG_TOWRITE;
2536         else
2537                 tag = PAGECACHE_TAG_DIRTY;
2538
2539         pagevec_init(&pvec, 0);
2540         mpd->map.m_len = 0;
2541         mpd->next_page = index;
2542         while (index <= end) {
2543                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2544                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2545                 if (nr_pages == 0)
2546                         goto out;
2547
2548                 for (i = 0; i < nr_pages; i++) {
2549                         struct page *page = pvec.pages[i];
2550
2551                         /*
2552                          * At this point, the page may be truncated or
2553                          * invalidated (changing page->mapping to NULL), or
2554                          * even swizzled back from swapper_space to tmpfs file
2555                          * mapping. However, page->index will not change
2556                          * because we have a reference on the page.
2557                          */
2558                         if (page->index > end)
2559                                 goto out;
2560
2561                         /*
2562                          * Accumulated enough dirty pages? This doesn't apply
2563                          * to WB_SYNC_ALL mode. For integrity sync we have to
2564                          * keep going because someone may be concurrently
2565                          * dirtying pages, and we might have synced a lot of
2566                          * newly appeared dirty pages, but have not synced all
2567                          * of the old dirty pages.
2568                          */
2569                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2570                                 goto out;
2571
2572                         /* If we can't merge this page, we are done. */
2573                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2574                                 goto out;
2575
2576                         lock_page(page);
2577                         /*
2578                          * If the page is no longer dirty, or its mapping no
2579                          * longer corresponds to inode we are writing (which
2580                          * means it has been truncated or invalidated), or the
2581                          * page is already under writeback and we are not doing
2582                          * a data integrity writeback, skip the page
2583                          */
2584                         if (!PageDirty(page) ||
2585                             (PageWriteback(page) &&
2586                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2587                             unlikely(page->mapping != mapping)) {
2588                                 unlock_page(page);
2589                                 continue;
2590                         }
2591
2592                         wait_on_page_writeback(page);
2593                         BUG_ON(PageWriteback(page));
2594
2595                         if (mpd->map.m_len == 0)
2596                                 mpd->first_page = page->index;
2597                         mpd->next_page = page->index + 1;
2598                         /* Add all dirty buffers to mpd */
2599                         lblk = ((ext4_lblk_t)page->index) <<
2600                                 (PAGE_SHIFT - blkbits);
2601                         head = page_buffers(page);
2602                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2603                         if (err <= 0)
2604                                 goto out;
2605                         err = 0;
2606                         left--;
2607                 }
2608                 pagevec_release(&pvec);
2609                 cond_resched();
2610         }
2611         return 0;
2612 out:
2613         pagevec_release(&pvec);
2614         return err;
2615 }
2616
2617 static int __writepage(struct page *page, struct writeback_control *wbc,
2618                        void *data)
2619 {
2620         struct address_space *mapping = data;
2621         int ret = ext4_writepage(page, wbc);
2622         mapping_set_error(mapping, ret);
2623         return ret;
2624 }
2625
2626 static int ext4_writepages(struct address_space *mapping,
2627                            struct writeback_control *wbc)
2628 {
2629         pgoff_t writeback_index = 0;
2630         long nr_to_write = wbc->nr_to_write;
2631         int range_whole = 0;
2632         int cycled = 1;
2633         handle_t *handle = NULL;
2634         struct mpage_da_data mpd;
2635         struct inode *inode = mapping->host;
2636         int needed_blocks, rsv_blocks = 0, ret = 0;
2637         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2638         bool done;
2639         struct blk_plug plug;
2640         bool give_up_on_write = false;
2641
2642         percpu_down_read(&sbi->s_journal_flag_rwsem);
2643         trace_ext4_writepages(inode, wbc);
2644
2645         if (dax_mapping(mapping)) {
2646                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2647                                                   wbc);
2648                 goto out_writepages;
2649         }
2650
2651         /*
2652          * No pages to write? This is mainly a kludge to avoid starting
2653          * a transaction for special inodes like journal inode on last iput()
2654          * because that could violate lock ordering on umount
2655          */
2656         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2657                 goto out_writepages;
2658
2659         if (ext4_should_journal_data(inode)) {
2660                 struct blk_plug plug;
2661
2662                 blk_start_plug(&plug);
2663                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2664                 blk_finish_plug(&plug);
2665                 goto out_writepages;
2666         }
2667
2668         /*
2669          * If the filesystem has aborted, it is read-only, so return
2670          * right away instead of dumping stack traces later on that
2671          * will obscure the real source of the problem.  We test
2672          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2673          * the latter could be true if the filesystem is mounted
2674          * read-only, and in that case, ext4_writepages should
2675          * *never* be called, so if that ever happens, we would want
2676          * the stack trace.
2677          */
2678         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2679                 ret = -EROFS;
2680                 goto out_writepages;
2681         }
2682
2683         if (ext4_should_dioread_nolock(inode)) {
2684                 /*
2685                  * We may need to convert up to one extent per block in
2686                  * the page and we may dirty the inode.
2687                  */
2688                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2689         }
2690
2691         /*
2692          * If we have inline data and arrive here, it means that
2693          * we will soon create the block for the 1st page, so
2694          * we'd better clear the inline data here.
2695          */
2696         if (ext4_has_inline_data(inode)) {
2697                 /* Just inode will be modified... */
2698                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2699                 if (IS_ERR(handle)) {
2700                         ret = PTR_ERR(handle);
2701                         goto out_writepages;
2702                 }
2703                 BUG_ON(ext4_test_inode_state(inode,
2704                                 EXT4_STATE_MAY_INLINE_DATA));
2705                 ext4_destroy_inline_data(handle, inode);
2706                 ext4_journal_stop(handle);
2707         }
2708
2709         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2710                 range_whole = 1;
2711
2712         if (wbc->range_cyclic) {
2713                 writeback_index = mapping->writeback_index;
2714                 if (writeback_index)
2715                         cycled = 0;
2716                 mpd.first_page = writeback_index;
2717                 mpd.last_page = -1;
2718         } else {
2719                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2720                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2721         }
2722
2723         mpd.inode = inode;
2724         mpd.wbc = wbc;
2725         ext4_io_submit_init(&mpd.io_submit, wbc);
2726 retry:
2727         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2728                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2729         done = false;
2730         blk_start_plug(&plug);
2731         while (!done && mpd.first_page <= mpd.last_page) {
2732                 /* For each extent of pages we use new io_end */
2733                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2734                 if (!mpd.io_submit.io_end) {
2735                         ret = -ENOMEM;
2736                         break;
2737                 }
2738
2739                 /*
2740                  * We have two constraints: We find one extent to map and we
2741                  * must always write out whole page (makes a difference when
2742                  * blocksize < pagesize) so that we don't block on IO when we
2743                  * try to write out the rest of the page. Journalled mode is
2744                  * not supported by delalloc.
2745                  */
2746                 BUG_ON(ext4_should_journal_data(inode));
2747                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2748
2749                 /* start a new transaction */
2750                 handle = ext4_journal_start_with_reserve(inode,
2751                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2752                 if (IS_ERR(handle)) {
2753                         ret = PTR_ERR(handle);
2754                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2755                                "%ld pages, ino %lu; err %d", __func__,
2756                                 wbc->nr_to_write, inode->i_ino, ret);
2757                         /* Release allocated io_end */
2758                         ext4_put_io_end(mpd.io_submit.io_end);
2759                         break;
2760                 }
2761
2762                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2763                 ret = mpage_prepare_extent_to_map(&mpd);
2764                 if (!ret) {
2765                         if (mpd.map.m_len)
2766                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2767                                         &give_up_on_write);
2768                         else {
2769                                 /*
2770                                  * We scanned the whole range (or exhausted
2771                                  * nr_to_write), submitted what was mapped and
2772                                  * didn't find anything needing mapping. We are
2773                                  * done.
2774                                  */
2775                                 done = true;
2776                         }
2777                 }
2778                 /*
2779                  * Caution: If the handle is synchronous,
2780                  * ext4_journal_stop() can wait for transaction commit
2781                  * to finish which may depend on writeback of pages to
2782                  * complete or on page lock to be released.  In that
2783                  * case, we have to wait until after after we have
2784                  * submitted all the IO, released page locks we hold,
2785                  * and dropped io_end reference (for extent conversion
2786                  * to be able to complete) before stopping the handle.
2787                  */
2788                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2789                         ext4_journal_stop(handle);
2790                         handle = NULL;
2791                 }
2792                 /* Submit prepared bio */
2793                 ext4_io_submit(&mpd.io_submit);
2794                 /* Unlock pages we didn't use */
2795                 mpage_release_unused_pages(&mpd, give_up_on_write);
2796                 /*
2797                  * Drop our io_end reference we got from init. We have
2798                  * to be careful and use deferred io_end finishing if
2799                  * we are still holding the transaction as we can
2800                  * release the last reference to io_end which may end
2801                  * up doing unwritten extent conversion.
2802                  */
2803                 if (handle) {
2804                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2805                         ext4_journal_stop(handle);
2806                 } else
2807                         ext4_put_io_end(mpd.io_submit.io_end);
2808
2809                 if (ret == -ENOSPC && sbi->s_journal) {
2810                         /*
2811                          * Commit the transaction which would
2812                          * free blocks released in the transaction
2813                          * and try again
2814                          */
2815                         jbd2_journal_force_commit_nested(sbi->s_journal);
2816                         ret = 0;
2817                         continue;
2818                 }
2819                 /* Fatal error - ENOMEM, EIO... */
2820                 if (ret)
2821                         break;
2822         }
2823         blk_finish_plug(&plug);
2824         if (!ret && !cycled && wbc->nr_to_write > 0) {
2825                 cycled = 1;
2826                 mpd.last_page = writeback_index - 1;
2827                 mpd.first_page = 0;
2828                 goto retry;
2829         }
2830
2831         /* Update index */
2832         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2833                 /*
2834                  * Set the writeback_index so that range_cyclic
2835                  * mode will write it back later
2836                  */
2837                 mapping->writeback_index = mpd.first_page;
2838
2839 out_writepages:
2840         trace_ext4_writepages_result(inode, wbc, ret,
2841                                      nr_to_write - wbc->nr_to_write);
2842         percpu_up_read(&sbi->s_journal_flag_rwsem);
2843         return ret;
2844 }
2845
2846 static int ext4_nonda_switch(struct super_block *sb)
2847 {
2848         s64 free_clusters, dirty_clusters;
2849         struct ext4_sb_info *sbi = EXT4_SB(sb);
2850
2851         /*
2852          * switch to non delalloc mode if we are running low
2853          * on free block. The free block accounting via percpu
2854          * counters can get slightly wrong with percpu_counter_batch getting
2855          * accumulated on each CPU without updating global counters
2856          * Delalloc need an accurate free block accounting. So switch
2857          * to non delalloc when we are near to error range.
2858          */
2859         free_clusters =
2860                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2861         dirty_clusters =
2862                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2863         /*
2864          * Start pushing delalloc when 1/2 of free blocks are dirty.
2865          */
2866         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2867                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2868
2869         if (2 * free_clusters < 3 * dirty_clusters ||
2870             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2871                 /*
2872                  * free block count is less than 150% of dirty blocks
2873                  * or free blocks is less than watermark
2874                  */
2875                 return 1;
2876         }
2877         return 0;
2878 }
2879
2880 /* We always reserve for an inode update; the superblock could be there too */
2881 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2882 {
2883         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2884                 return 1;
2885
2886         if (pos + len <= 0x7fffffffULL)
2887                 return 1;
2888
2889         /* We might need to update the superblock to set LARGE_FILE */
2890         return 2;
2891 }
2892
2893 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2894                                loff_t pos, unsigned len, unsigned flags,
2895                                struct page **pagep, void **fsdata)
2896 {
2897         int ret, retries = 0;
2898         struct page *page;
2899         pgoff_t index;
2900         struct inode *inode = mapping->host;
2901         handle_t *handle;
2902
2903         index = pos >> PAGE_SHIFT;
2904
2905         if (ext4_nonda_switch(inode->i_sb)) {
2906                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2907                 return ext4_write_begin(file, mapping, pos,
2908                                         len, flags, pagep, fsdata);
2909         }
2910         *fsdata = (void *)0;
2911         trace_ext4_da_write_begin(inode, pos, len, flags);
2912
2913         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2914                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2915                                                       pos, len, flags,
2916                                                       pagep, fsdata);
2917                 if (ret < 0)
2918                         return ret;
2919                 if (ret == 1)
2920                         return 0;
2921         }
2922
2923         /*
2924          * grab_cache_page_write_begin() can take a long time if the
2925          * system is thrashing due to memory pressure, or if the page
2926          * is being written back.  So grab it first before we start
2927          * the transaction handle.  This also allows us to allocate
2928          * the page (if needed) without using GFP_NOFS.
2929          */
2930 retry_grab:
2931         page = grab_cache_page_write_begin(mapping, index, flags);
2932         if (!page)
2933                 return -ENOMEM;
2934         unlock_page(page);
2935
2936         /*
2937          * With delayed allocation, we don't log the i_disksize update
2938          * if there is delayed block allocation. But we still need
2939          * to journalling the i_disksize update if writes to the end
2940          * of file which has an already mapped buffer.
2941          */
2942 retry_journal:
2943         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2944                                 ext4_da_write_credits(inode, pos, len));
2945         if (IS_ERR(handle)) {
2946                 put_page(page);
2947                 return PTR_ERR(handle);
2948         }
2949
2950         lock_page(page);
2951         if (page->mapping != mapping) {
2952                 /* The page got truncated from under us */
2953                 unlock_page(page);
2954                 put_page(page);
2955                 ext4_journal_stop(handle);
2956                 goto retry_grab;
2957         }
2958         /* In case writeback began while the page was unlocked */
2959         wait_for_stable_page(page);
2960
2961 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2962         ret = ext4_block_write_begin(page, pos, len,
2963                                      ext4_da_get_block_prep);
2964 #else
2965         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2966 #endif
2967         if (ret < 0) {
2968                 unlock_page(page);
2969                 ext4_journal_stop(handle);
2970                 /*
2971                  * block_write_begin may have instantiated a few blocks
2972                  * outside i_size.  Trim these off again. Don't need
2973                  * i_size_read because we hold i_mutex.
2974                  */
2975                 if (pos + len > inode->i_size)
2976                         ext4_truncate_failed_write(inode);
2977
2978                 if (ret == -ENOSPC &&
2979                     ext4_should_retry_alloc(inode->i_sb, &retries))
2980                         goto retry_journal;
2981
2982                 put_page(page);
2983                 return ret;
2984         }
2985
2986         *pagep = page;
2987         return ret;
2988 }
2989
2990 /*
2991  * Check if we should update i_disksize
2992  * when write to the end of file but not require block allocation
2993  */
2994 static int ext4_da_should_update_i_disksize(struct page *page,
2995                                             unsigned long offset)
2996 {
2997         struct buffer_head *bh;
2998         struct inode *inode = page->mapping->host;
2999         unsigned int idx;
3000         int i;
3001
3002         bh = page_buffers(page);
3003         idx = offset >> inode->i_blkbits;
3004
3005         for (i = 0; i < idx; i++)
3006                 bh = bh->b_this_page;
3007
3008         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3009                 return 0;
3010         return 1;
3011 }
3012
3013 static int ext4_da_write_end(struct file *file,
3014                              struct address_space *mapping,
3015                              loff_t pos, unsigned len, unsigned copied,
3016                              struct page *page, void *fsdata)
3017 {
3018         struct inode *inode = mapping->host;
3019         int ret = 0, ret2;
3020         handle_t *handle = ext4_journal_current_handle();
3021         loff_t new_i_size;
3022         unsigned long start, end;
3023         int write_mode = (int)(unsigned long)fsdata;
3024
3025         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3026                 return ext4_write_end(file, mapping, pos,
3027                                       len, copied, page, fsdata);
3028
3029         trace_ext4_da_write_end(inode, pos, len, copied);
3030         start = pos & (PAGE_SIZE - 1);
3031         end = start + copied - 1;
3032
3033         /*
3034          * generic_write_end() will run mark_inode_dirty() if i_size
3035          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3036          * into that.
3037          */
3038         new_i_size = pos + copied;
3039         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3040                 if (ext4_has_inline_data(inode) ||
3041                     ext4_da_should_update_i_disksize(page, end)) {
3042                         ext4_update_i_disksize(inode, new_i_size);
3043                         /* We need to mark inode dirty even if
3044                          * new_i_size is less that inode->i_size
3045                          * bu greater than i_disksize.(hint delalloc)
3046                          */
3047                         ext4_mark_inode_dirty(handle, inode);
3048                 }
3049         }
3050
3051         if (write_mode != CONVERT_INLINE_DATA &&
3052             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3053             ext4_has_inline_data(inode))
3054                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3055                                                      page);
3056         else
3057                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3058                                                         page, fsdata);
3059
3060         copied = ret2;
3061         if (ret2 < 0)
3062                 ret = ret2;
3063         ret2 = ext4_journal_stop(handle);
3064         if (!ret)
3065                 ret = ret2;
3066
3067         return ret ? ret : copied;
3068 }
3069
3070 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3071                                    unsigned int length)
3072 {
3073         /*
3074          * Drop reserved blocks
3075          */
3076         BUG_ON(!PageLocked(page));
3077         if (!page_has_buffers(page))
3078                 goto out;
3079
3080         ext4_da_page_release_reservation(page, offset, length);
3081
3082 out:
3083         ext4_invalidatepage(page, offset, length);
3084
3085         return;
3086 }
3087
3088 /*
3089  * Force all delayed allocation blocks to be allocated for a given inode.
3090  */
3091 int ext4_alloc_da_blocks(struct inode *inode)
3092 {
3093         trace_ext4_alloc_da_blocks(inode);
3094
3095         if (!EXT4_I(inode)->i_reserved_data_blocks)
3096                 return 0;
3097
3098         /*
3099          * We do something simple for now.  The filemap_flush() will
3100          * also start triggering a write of the data blocks, which is
3101          * not strictly speaking necessary (and for users of
3102          * laptop_mode, not even desirable).  However, to do otherwise
3103          * would require replicating code paths in:
3104          *
3105          * ext4_writepages() ->
3106          *    write_cache_pages() ---> (via passed in callback function)
3107          *        __mpage_da_writepage() -->
3108          *           mpage_add_bh_to_extent()
3109          *           mpage_da_map_blocks()
3110          *
3111          * The problem is that write_cache_pages(), located in
3112          * mm/page-writeback.c, marks pages clean in preparation for
3113          * doing I/O, which is not desirable if we're not planning on
3114          * doing I/O at all.
3115          *
3116          * We could call write_cache_pages(), and then redirty all of
3117          * the pages by calling redirty_page_for_writepage() but that
3118          * would be ugly in the extreme.  So instead we would need to
3119          * replicate parts of the code in the above functions,
3120          * simplifying them because we wouldn't actually intend to
3121          * write out the pages, but rather only collect contiguous
3122          * logical block extents, call the multi-block allocator, and
3123          * then update the buffer heads with the block allocations.
3124          *
3125          * For now, though, we'll cheat by calling filemap_flush(),
3126          * which will map the blocks, and start the I/O, but not
3127          * actually wait for the I/O to complete.
3128          */
3129         return filemap_flush(inode->i_mapping);
3130 }
3131
3132 /*
3133  * bmap() is special.  It gets used by applications such as lilo and by
3134  * the swapper to find the on-disk block of a specific piece of data.
3135  *
3136  * Naturally, this is dangerous if the block concerned is still in the
3137  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3138  * filesystem and enables swap, then they may get a nasty shock when the
3139  * data getting swapped to that swapfile suddenly gets overwritten by
3140  * the original zero's written out previously to the journal and
3141  * awaiting writeback in the kernel's buffer cache.
3142  *
3143  * So, if we see any bmap calls here on a modified, data-journaled file,
3144  * take extra steps to flush any blocks which might be in the cache.
3145  */
3146 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3147 {
3148         struct inode *inode = mapping->host;
3149         journal_t *journal;
3150         int err;
3151
3152         /*
3153          * We can get here for an inline file via the FIBMAP ioctl
3154          */
3155         if (ext4_has_inline_data(inode))
3156                 return 0;
3157
3158         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3159                         test_opt(inode->i_sb, DELALLOC)) {
3160                 /*
3161                  * With delalloc we want to sync the file
3162                  * so that we can make sure we allocate
3163                  * blocks for file
3164                  */
3165                 filemap_write_and_wait(mapping);
3166         }
3167
3168         if (EXT4_JOURNAL(inode) &&
3169             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3170                 /*
3171                  * This is a REALLY heavyweight approach, but the use of
3172                  * bmap on dirty files is expected to be extremely rare:
3173                  * only if we run lilo or swapon on a freshly made file
3174                  * do we expect this to happen.
3175                  *
3176                  * (bmap requires CAP_SYS_RAWIO so this does not
3177                  * represent an unprivileged user DOS attack --- we'd be
3178                  * in trouble if mortal users could trigger this path at
3179                  * will.)
3180                  *
3181                  * NB. EXT4_STATE_JDATA is not set on files other than
3182                  * regular files.  If somebody wants to bmap a directory
3183                  * or symlink and gets confused because the buffer
3184                  * hasn't yet been flushed to disk, they deserve
3185                  * everything they get.
3186                  */
3187
3188                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3189                 journal = EXT4_JOURNAL(inode);
3190                 jbd2_journal_lock_updates(journal);
3191                 err = jbd2_journal_flush(journal);
3192                 jbd2_journal_unlock_updates(journal);
3193
3194                 if (err)
3195                         return 0;
3196         }
3197
3198         return generic_block_bmap(mapping, block, ext4_get_block);
3199 }
3200
3201 static int ext4_readpage(struct file *file, struct page *page)
3202 {
3203         int ret = -EAGAIN;
3204         struct inode *inode = page->mapping->host;
3205
3206         trace_ext4_readpage(page);
3207
3208         if (ext4_has_inline_data(inode))
3209                 ret = ext4_readpage_inline(inode, page);
3210
3211         if (ret == -EAGAIN)
3212                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3213
3214         return ret;
3215 }
3216
3217 static int
3218 ext4_readpages(struct file *file, struct address_space *mapping,
3219                 struct list_head *pages, unsigned nr_pages)
3220 {
3221         struct inode *inode = mapping->host;
3222
3223         /* If the file has inline data, no need to do readpages. */
3224         if (ext4_has_inline_data(inode))
3225                 return 0;
3226
3227         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3228 }
3229
3230 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3231                                 unsigned int length)
3232 {
3233         trace_ext4_invalidatepage(page, offset, length);
3234
3235         /* No journalling happens on data buffers when this function is used */
3236         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3237
3238         block_invalidatepage(page, offset, length);
3239 }
3240
3241 static int __ext4_journalled_invalidatepage(struct page *page,
3242                                             unsigned int offset,
3243                                             unsigned int length)
3244 {
3245         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3246
3247         trace_ext4_journalled_invalidatepage(page, offset, length);
3248
3249         /*
3250          * If it's a full truncate we just forget about the pending dirtying
3251          */
3252         if (offset == 0 && length == PAGE_SIZE)
3253                 ClearPageChecked(page);
3254
3255         return jbd2_journal_invalidatepage(journal, page, offset, length);
3256 }
3257
3258 /* Wrapper for aops... */
3259 static void ext4_journalled_invalidatepage(struct page *page,
3260                                            unsigned int offset,
3261                                            unsigned int length)
3262 {
3263         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3264 }
3265
3266 static int ext4_releasepage(struct page *page, gfp_t wait)
3267 {
3268         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269
3270         trace_ext4_releasepage(page);
3271
3272         /* Page has dirty journalled data -> cannot release */
3273         if (PageChecked(page))
3274                 return 0;
3275         if (journal)
3276                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3277         else
3278                 return try_to_free_buffers(page);
3279 }
3280
3281 #ifdef CONFIG_FS_DAX
3282 /*
3283  * Get block function for DAX IO and mmap faults. It takes care of converting
3284  * unwritten extents to written ones and initializes new / converted blocks
3285  * to zeros.
3286  */
3287 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3288                        struct buffer_head *bh_result, int create)
3289 {
3290         int ret;
3291
3292         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3293         if (!create)
3294                 return _ext4_get_block(inode, iblock, bh_result, 0);
3295
3296         ret = ext4_get_block_trans(inode, iblock, bh_result,
3297                                    EXT4_GET_BLOCKS_PRE_IO |
3298                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3299         if (ret < 0)
3300                 return ret;
3301
3302         if (buffer_unwritten(bh_result)) {
3303                 /*
3304                  * We are protected by i_mmap_sem or i_mutex so we know block
3305                  * cannot go away from under us even though we dropped
3306                  * i_data_sem. Convert extent to written and write zeros there.
3307                  */
3308                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3309                                            EXT4_GET_BLOCKS_CONVERT |
3310                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3311                 if (ret < 0)
3312                         return ret;
3313         }
3314         /*
3315          * At least for now we have to clear BH_New so that DAX code
3316          * doesn't attempt to zero blocks again in a racy way.
3317          */
3318         clear_buffer_new(bh_result);
3319         return 0;
3320 }
3321 #else
3322 /* Just define empty function, it will never get called. */
3323 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3324                        struct buffer_head *bh_result, int create)
3325 {
3326         BUG();
3327         return 0;
3328 }
3329 #endif
3330
3331 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3332                             ssize_t size, void *private)
3333 {
3334         ext4_io_end_t *io_end = private;
3335
3336         /* if not async direct IO just return */
3337         if (!io_end)
3338                 return 0;
3339
3340         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3341                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3342                   io_end, io_end->inode->i_ino, iocb, offset, size);
3343
3344         /*
3345          * Error during AIO DIO. We cannot convert unwritten extents as the
3346          * data was not written. Just clear the unwritten flag and drop io_end.
3347          */
3348         if (size <= 0) {
3349                 ext4_clear_io_unwritten_flag(io_end);
3350                 size = 0;
3351         }
3352         io_end->offset = offset;
3353         io_end->size = size;
3354         ext4_put_io_end(io_end);
3355
3356         return 0;
3357 }
3358
3359 /*
3360  * Handling of direct IO writes.
3361  *
3362  * For ext4 extent files, ext4 will do direct-io write even to holes,
3363  * preallocated extents, and those write extend the file, no need to
3364  * fall back to buffered IO.
3365  *
3366  * For holes, we fallocate those blocks, mark them as unwritten
3367  * If those blocks were preallocated, we mark sure they are split, but
3368  * still keep the range to write as unwritten.
3369  *
3370  * The unwritten extents will be converted to written when DIO is completed.
3371  * For async direct IO, since the IO may still pending when return, we
3372  * set up an end_io call back function, which will do the conversion
3373  * when async direct IO completed.
3374  *
3375  * If the O_DIRECT write will extend the file then add this inode to the
3376  * orphan list.  So recovery will truncate it back to the original size
3377  * if the machine crashes during the write.
3378  *
3379  */
3380 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3381 {
3382         struct file *file = iocb->ki_filp;
3383         struct inode *inode = file->f_mapping->host;
3384         struct ext4_inode_info *ei = EXT4_I(inode);
3385         ssize_t ret;
3386         loff_t offset = iocb->ki_pos;
3387         size_t count = iov_iter_count(iter);
3388         int overwrite = 0;
3389         get_block_t *get_block_func = NULL;
3390         int dio_flags = 0;
3391         loff_t final_size = offset + count;
3392         int orphan = 0;
3393         handle_t *handle;
3394
3395         if (final_size > inode->i_size) {
3396                 /* Credits for sb + inode write */
3397                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3398                 if (IS_ERR(handle)) {
3399                         ret = PTR_ERR(handle);
3400                         goto out;
3401                 }
3402                 ret = ext4_orphan_add(handle, inode);
3403                 if (ret) {
3404                         ext4_journal_stop(handle);
3405                         goto out;
3406                 }
3407                 orphan = 1;
3408                 ei->i_disksize = inode->i_size;
3409                 ext4_journal_stop(handle);
3410         }
3411
3412         BUG_ON(iocb->private == NULL);
3413
3414         /*
3415          * Make all waiters for direct IO properly wait also for extent
3416          * conversion. This also disallows race between truncate() and
3417          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3418          */
3419         inode_dio_begin(inode);
3420
3421         /* If we do a overwrite dio, i_mutex locking can be released */
3422         overwrite = *((int *)iocb->private);
3423
3424         if (overwrite)
3425                 inode_unlock(inode);
3426
3427         /*
3428          * For extent mapped files we could direct write to holes and fallocate.
3429          *
3430          * Allocated blocks to fill the hole are marked as unwritten to prevent
3431          * parallel buffered read to expose the stale data before DIO complete
3432          * the data IO.
3433          *
3434          * As to previously fallocated extents, ext4 get_block will just simply
3435          * mark the buffer mapped but still keep the extents unwritten.
3436          *
3437          * For non AIO case, we will convert those unwritten extents to written
3438          * after return back from blockdev_direct_IO. That way we save us from
3439          * allocating io_end structure and also the overhead of offloading
3440          * the extent convertion to a workqueue.
3441          *
3442          * For async DIO, the conversion needs to be deferred when the
3443          * IO is completed. The ext4 end_io callback function will be
3444          * called to take care of the conversion work.  Here for async
3445          * case, we allocate an io_end structure to hook to the iocb.
3446          */
3447         iocb->private = NULL;
3448         if (overwrite)
3449                 get_block_func = ext4_dio_get_block_overwrite;
3450         else if (IS_DAX(inode)) {
3451                 /*
3452                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3453                  * writes need zeroing either because they can race with page
3454                  * faults or because they use partial blocks.
3455                  */
3456                 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3457                     ext4_aligned_io(inode, offset, count))
3458                         get_block_func = ext4_dio_get_block;
3459                 else
3460                         get_block_func = ext4_dax_get_block;
3461                 dio_flags = DIO_LOCKING;
3462         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3463                    round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3464                 get_block_func = ext4_dio_get_block;
3465                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3466         } else if (is_sync_kiocb(iocb)) {
3467                 get_block_func = ext4_dio_get_block_unwritten_sync;
3468                 dio_flags = DIO_LOCKING;
3469         } else {
3470                 get_block_func = ext4_dio_get_block_unwritten_async;
3471                 dio_flags = DIO_LOCKING;
3472         }
3473 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3474         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3475 #endif
3476         if (IS_DAX(inode)) {
3477                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3478                                 ext4_end_io_dio, dio_flags);
3479         } else
3480                 ret = __blockdev_direct_IO(iocb, inode,
3481                                            inode->i_sb->s_bdev, iter,
3482                                            get_block_func,
3483                                            ext4_end_io_dio, NULL, dio_flags);
3484
3485         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3486                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3487                 int err;
3488                 /*
3489                  * for non AIO case, since the IO is already
3490                  * completed, we could do the conversion right here
3491                  */
3492                 err = ext4_convert_unwritten_extents(NULL, inode,
3493                                                      offset, ret);
3494                 if (err < 0)
3495                         ret = err;
3496                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3497         }
3498
3499         inode_dio_end(inode);
3500         /* take i_mutex locking again if we do a ovewrite dio */
3501         if (overwrite)
3502                 inode_lock(inode);
3503
3504         if (ret < 0 && final_size > inode->i_size)
3505                 ext4_truncate_failed_write(inode);
3506
3507         /* Handle extending of i_size after direct IO write */
3508         if (orphan) {
3509                 int err;
3510
3511                 /* Credits for sb + inode write */
3512                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3513                 if (IS_ERR(handle)) {
3514                         /* This is really bad luck. We've written the data
3515                          * but cannot extend i_size. Bail out and pretend
3516                          * the write failed... */
3517                         ret = PTR_ERR(handle);
3518                         if (inode->i_nlink)
3519                                 ext4_orphan_del(NULL, inode);
3520
3521                         goto out;
3522                 }
3523                 if (inode->i_nlink)
3524                         ext4_orphan_del(handle, inode);
3525                 if (ret > 0) {
3526                         loff_t end = offset + ret;
3527                         if (end > inode->i_size) {
3528                                 ei->i_disksize = end;
3529                                 i_size_write(inode, end);
3530                                 /*
3531                                  * We're going to return a positive `ret'
3532                                  * here due to non-zero-length I/O, so there's
3533                                  * no way of reporting error returns from
3534                                  * ext4_mark_inode_dirty() to userspace.  So
3535                                  * ignore it.
3536                                  */
3537                                 ext4_mark_inode_dirty(handle, inode);
3538                         }
3539                 }
3540                 err = ext4_journal_stop(handle);
3541                 if (ret == 0)
3542                         ret = err;
3543         }
3544 out:
3545         return ret;
3546 }
3547
3548 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3549 {
3550         struct address_space *mapping = iocb->ki_filp->f_mapping;
3551         struct inode *inode = mapping->host;
3552         ssize_t ret;
3553
3554         /*
3555          * Shared inode_lock is enough for us - it protects against concurrent
3556          * writes & truncates and since we take care of writing back page cache,
3557          * we are protected against page writeback as well.
3558          */
3559         inode_lock_shared(inode);
3560         if (IS_DAX(inode)) {
3561                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3562         } else {
3563                 size_t count = iov_iter_count(iter);
3564
3565                 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3566                                                    iocb->ki_pos + count);
3567                 if (ret)
3568                         goto out_unlock;
3569                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3570                                            iter, ext4_dio_get_block,
3571                                            NULL, NULL, 0);
3572         }
3573 out_unlock:
3574         inode_unlock_shared(inode);
3575         return ret;
3576 }
3577
3578 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3579 {
3580         struct file *file = iocb->ki_filp;
3581         struct inode *inode = file->f_mapping->host;
3582         size_t count = iov_iter_count(iter);
3583         loff_t offset = iocb->ki_pos;
3584         ssize_t ret;
3585
3586 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3587         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3588                 return 0;
3589 #endif
3590
3591         /*
3592          * If we are doing data journalling we don't support O_DIRECT
3593          */
3594         if (ext4_should_journal_data(inode))
3595                 return 0;
3596
3597         /* Let buffer I/O handle the inline data case. */
3598         if (ext4_has_inline_data(inode))
3599                 return 0;
3600
3601         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3602         if (iov_iter_rw(iter) == READ)
3603                 ret = ext4_direct_IO_read(iocb, iter);
3604         else
3605                 ret = ext4_direct_IO_write(iocb, iter);
3606         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3607         return ret;
3608 }
3609
3610 /*
3611  * Pages can be marked dirty completely asynchronously from ext4's journalling
3612  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3613  * much here because ->set_page_dirty is called under VFS locks.  The page is
3614  * not necessarily locked.
3615  *
3616  * We cannot just dirty the page and leave attached buffers clean, because the
3617  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3618  * or jbddirty because all the journalling code will explode.
3619  *
3620  * So what we do is to mark the page "pending dirty" and next time writepage
3621  * is called, propagate that into the buffers appropriately.
3622  */
3623 static int ext4_journalled_set_page_dirty(struct page *page)
3624 {
3625         SetPageChecked(page);
3626         return __set_page_dirty_nobuffers(page);
3627 }
3628
3629 static const struct address_space_operations ext4_aops = {
3630         .readpage               = ext4_readpage,
3631         .readpages              = ext4_readpages,
3632         .writepage              = ext4_writepage,
3633         .writepages             = ext4_writepages,
3634         .write_begin            = ext4_write_begin,
3635         .write_end              = ext4_write_end,
3636         .bmap                   = ext4_bmap,
3637         .invalidatepage         = ext4_invalidatepage,
3638         .releasepage            = ext4_releasepage,
3639         .direct_IO              = ext4_direct_IO,
3640         .migratepage            = buffer_migrate_page,
3641         .is_partially_uptodate  = block_is_partially_uptodate,
3642         .error_remove_page      = generic_error_remove_page,
3643 };
3644
3645 static const struct address_space_operations ext4_journalled_aops = {
3646         .readpage               = ext4_readpage,
3647         .readpages              = ext4_readpages,
3648         .writepage              = ext4_writepage,
3649         .writepages             = ext4_writepages,
3650         .write_begin            = ext4_write_begin,
3651         .write_end              = ext4_journalled_write_end,
3652         .set_page_dirty         = ext4_journalled_set_page_dirty,
3653         .bmap                   = ext4_bmap,
3654         .invalidatepage         = ext4_journalled_invalidatepage,
3655         .releasepage            = ext4_releasepage,
3656         .direct_IO              = ext4_direct_IO,
3657         .is_partially_uptodate  = block_is_partially_uptodate,
3658         .error_remove_page      = generic_error_remove_page,
3659 };
3660
3661 static const struct address_space_operations ext4_da_aops = {
3662         .readpage               = ext4_readpage,
3663         .readpages              = ext4_readpages,
3664         .writepage              = ext4_writepage,
3665         .writepages             = ext4_writepages,
3666         .write_begin            = ext4_da_write_begin,
3667         .write_end              = ext4_da_write_end,
3668         .bmap                   = ext4_bmap,
3669         .invalidatepage         = ext4_da_invalidatepage,
3670         .releasepage            = ext4_releasepage,
3671         .direct_IO              = ext4_direct_IO,
3672         .migratepage            = buffer_migrate_page,
3673         .is_partially_uptodate  = block_is_partially_uptodate,
3674         .error_remove_page      = generic_error_remove_page,
3675 };
3676
3677 void ext4_set_aops(struct inode *inode)
3678 {
3679         switch (ext4_inode_journal_mode(inode)) {
3680         case EXT4_INODE_ORDERED_DATA_MODE:
3681         case EXT4_INODE_WRITEBACK_DATA_MODE:
3682                 break;
3683         case EXT4_INODE_JOURNAL_DATA_MODE:
3684                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3685                 return;
3686         default:
3687                 BUG();
3688         }
3689         if (test_opt(inode->i_sb, DELALLOC))
3690                 inode->i_mapping->a_ops = &ext4_da_aops;
3691         else
3692                 inode->i_mapping->a_ops = &ext4_aops;
3693 }
3694
3695 static int __ext4_block_zero_page_range(handle_t *handle,
3696                 struct address_space *mapping, loff_t from, loff_t length)
3697 {
3698         ext4_fsblk_t index = from >> PAGE_SHIFT;
3699         unsigned offset = from & (PAGE_SIZE-1);
3700         unsigned blocksize, pos;
3701         ext4_lblk_t iblock;
3702         struct inode *inode = mapping->host;
3703         struct buffer_head *bh;
3704         struct page *page;
3705         int err = 0;
3706
3707         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3708                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3709         if (!page)
3710                 return -ENOMEM;
3711
3712         blocksize = inode->i_sb->s_blocksize;
3713
3714         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3715
3716         if (!page_has_buffers(page))
3717                 create_empty_buffers(page, blocksize, 0);
3718
3719         /* Find the buffer that contains "offset" */
3720         bh = page_buffers(page);
3721         pos = blocksize;
3722         while (offset >= pos) {
3723                 bh = bh->b_this_page;
3724                 iblock++;
3725                 pos += blocksize;
3726         }
3727         if (buffer_freed(bh)) {
3728                 BUFFER_TRACE(bh, "freed: skip");
3729                 goto unlock;
3730         }
3731         if (!buffer_mapped(bh)) {
3732                 BUFFER_TRACE(bh, "unmapped");
3733                 ext4_get_block(inode, iblock, bh, 0);
3734                 /* unmapped? It's a hole - nothing to do */
3735                 if (!buffer_mapped(bh)) {
3736                         BUFFER_TRACE(bh, "still unmapped");
3737                         goto unlock;
3738                 }
3739         }
3740
3741         /* Ok, it's mapped. Make sure it's up-to-date */
3742         if (PageUptodate(page))
3743                 set_buffer_uptodate(bh);
3744
3745         if (!buffer_uptodate(bh)) {
3746                 err = -EIO;
3747                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3748                 wait_on_buffer(bh);
3749                 /* Uhhuh. Read error. Complain and punt. */
3750                 if (!buffer_uptodate(bh))
3751                         goto unlock;
3752                 if (S_ISREG(inode->i_mode) &&
3753                     ext4_encrypted_inode(inode)) {
3754                         /* We expect the key to be set. */
3755                         BUG_ON(!fscrypt_has_encryption_key(inode));
3756                         BUG_ON(blocksize != PAGE_SIZE);
3757                         BUG_ON(!PageLocked(page));
3758                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3759                                                 page, PAGE_SIZE, 0, page->index));
3760                 }
3761         }
3762         if (ext4_should_journal_data(inode)) {
3763                 BUFFER_TRACE(bh, "get write access");
3764                 err = ext4_journal_get_write_access(handle, bh);
3765                 if (err)
3766                         goto unlock;
3767         }
3768         zero_user(page, offset, length);
3769         BUFFER_TRACE(bh, "zeroed end of block");
3770
3771         if (ext4_should_journal_data(inode)) {
3772                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3773         } else {
3774                 err = 0;
3775                 mark_buffer_dirty(bh);
3776                 if (ext4_should_order_data(inode))
3777                         err = ext4_jbd2_inode_add_write(handle, inode);
3778         }
3779
3780 unlock:
3781         unlock_page(page);
3782         put_page(page);
3783         return err;
3784 }
3785
3786 /*
3787  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3788  * starting from file offset 'from'.  The range to be zero'd must
3789  * be contained with in one block.  If the specified range exceeds
3790  * the end of the block it will be shortened to end of the block
3791  * that cooresponds to 'from'
3792  */
3793 static int ext4_block_zero_page_range(handle_t *handle,
3794                 struct address_space *mapping, loff_t from, loff_t length)
3795 {
3796         struct inode *inode = mapping->host;
3797         unsigned offset = from & (PAGE_SIZE-1);
3798         unsigned blocksize = inode->i_sb->s_blocksize;
3799         unsigned max = blocksize - (offset & (blocksize - 1));
3800
3801         /*
3802          * correct length if it does not fall between
3803          * 'from' and the end of the block
3804          */
3805         if (length > max || length < 0)
3806                 length = max;
3807
3808         if (IS_DAX(inode))
3809                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3810         return __ext4_block_zero_page_range(handle, mapping, from, length);
3811 }
3812
3813 /*
3814  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3815  * up to the end of the block which corresponds to `from'.
3816  * This required during truncate. We need to physically zero the tail end
3817  * of that block so it doesn't yield old data if the file is later grown.
3818  */
3819 static int ext4_block_truncate_page(handle_t *handle,
3820                 struct address_space *mapping, loff_t from)
3821 {
3822         unsigned offset = from & (PAGE_SIZE-1);
3823         unsigned length;
3824         unsigned blocksize;
3825         struct inode *inode = mapping->host;
3826
3827         blocksize = inode->i_sb->s_blocksize;
3828         length = blocksize - (offset & (blocksize - 1));
3829
3830         return ext4_block_zero_page_range(handle, mapping, from, length);
3831 }
3832
3833 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3834                              loff_t lstart, loff_t length)
3835 {
3836         struct super_block *sb = inode->i_sb;
3837         struct address_space *mapping = inode->i_mapping;
3838         unsigned partial_start, partial_end;
3839         ext4_fsblk_t start, end;
3840         loff_t byte_end = (lstart + length - 1);
3841         int err = 0;
3842
3843         partial_start = lstart & (sb->s_blocksize - 1);
3844         partial_end = byte_end & (sb->s_blocksize - 1);
3845
3846         start = lstart >> sb->s_blocksize_bits;
3847         end = byte_end >> sb->s_blocksize_bits;
3848
3849         /* Handle partial zero within the single block */
3850         if (start == end &&
3851             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3852                 err = ext4_block_zero_page_range(handle, mapping,
3853                                                  lstart, length);
3854                 return err;
3855         }
3856         /* Handle partial zero out on the start of the range */
3857         if (partial_start) {
3858                 err = ext4_block_zero_page_range(handle, mapping,
3859                                                  lstart, sb->s_blocksize);
3860                 if (err)
3861                         return err;
3862         }
3863         /* Handle partial zero out on the end of the range */
3864         if (partial_end != sb->s_blocksize - 1)
3865                 err = ext4_block_zero_page_range(handle, mapping,
3866                                                  byte_end - partial_end,
3867                                                  partial_end + 1);
3868         return err;
3869 }
3870
3871 int ext4_can_truncate(struct inode *inode)
3872 {
3873         if (S_ISREG(inode->i_mode))
3874                 return 1;
3875         if (S_ISDIR(inode->i_mode))
3876                 return 1;
3877         if (S_ISLNK(inode->i_mode))
3878                 return !ext4_inode_is_fast_symlink(inode);
3879         return 0;
3880 }
3881
3882 /*
3883  * We have to make sure i_disksize gets properly updated before we truncate
3884  * page cache due to hole punching or zero range. Otherwise i_disksize update
3885  * can get lost as it may have been postponed to submission of writeback but
3886  * that will never happen after we truncate page cache.
3887  */
3888 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3889                                       loff_t len)
3890 {
3891         handle_t *handle;
3892         loff_t size = i_size_read(inode);
3893
3894         WARN_ON(!inode_is_locked(inode));
3895         if (offset > size || offset + len < size)
3896                 return 0;
3897
3898         if (EXT4_I(inode)->i_disksize >= size)
3899                 return 0;
3900
3901         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3902         if (IS_ERR(handle))
3903                 return PTR_ERR(handle);
3904         ext4_update_i_disksize(inode, size);
3905         ext4_mark_inode_dirty(handle, inode);
3906         ext4_journal_stop(handle);
3907
3908         return 0;
3909 }
3910
3911 /*
3912  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3913  * associated with the given offset and length
3914  *
3915  * @inode:  File inode
3916  * @offset: The offset where the hole will begin
3917  * @len:    The length of the hole
3918  *
3919  * Returns: 0 on success or negative on failure
3920  */
3921
3922 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3923 {
3924         struct super_block *sb = inode->i_sb;
3925         ext4_lblk_t first_block, stop_block;
3926         struct address_space *mapping = inode->i_mapping;
3927         loff_t first_block_offset, last_block_offset;
3928         handle_t *handle;
3929         unsigned int credits;
3930         int ret = 0;
3931
3932         if (!S_ISREG(inode->i_mode))
3933                 return -EOPNOTSUPP;
3934
3935         trace_ext4_punch_hole(inode, offset, length, 0);
3936
3937         /*
3938          * Write out all dirty pages to avoid race conditions
3939          * Then release them.
3940          */
3941         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3942                 ret = filemap_write_and_wait_range(mapping, offset,
3943                                                    offset + length - 1);
3944                 if (ret)
3945                         return ret;
3946         }
3947
3948         inode_lock(inode);
3949
3950         /* No need to punch hole beyond i_size */
3951         if (offset >= inode->i_size)
3952                 goto out_mutex;
3953
3954         /*
3955          * If the hole extends beyond i_size, set the hole
3956          * to end after the page that contains i_size
3957          */
3958         if (offset + length > inode->i_size) {
3959                 length = inode->i_size +
3960                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3961                    offset;
3962         }
3963
3964         if (offset & (sb->s_blocksize - 1) ||
3965             (offset + length) & (sb->s_blocksize - 1)) {
3966                 /*
3967                  * Attach jinode to inode for jbd2 if we do any zeroing of
3968                  * partial block
3969                  */
3970                 ret = ext4_inode_attach_jinode(inode);
3971                 if (ret < 0)
3972                         goto out_mutex;
3973
3974         }
3975
3976         /* Wait all existing dio workers, newcomers will block on i_mutex */
3977         ext4_inode_block_unlocked_dio(inode);
3978         inode_dio_wait(inode);
3979
3980         /*
3981          * Prevent page faults from reinstantiating pages we have released from
3982          * page cache.
3983          */
3984         down_write(&EXT4_I(inode)->i_mmap_sem);
3985         first_block_offset = round_up(offset, sb->s_blocksize);
3986         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3987
3988         /* Now release the pages and zero block aligned part of pages*/
3989         if (last_block_offset > first_block_offset) {
3990                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3991                 if (ret)
3992                         goto out_dio;
3993                 truncate_pagecache_range(inode, first_block_offset,
3994                                          last_block_offset);
3995         }
3996
3997         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3998                 credits = ext4_writepage_trans_blocks(inode);
3999         else
4000                 credits = ext4_blocks_for_truncate(inode);
4001         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4002         if (IS_ERR(handle)) {
4003                 ret = PTR_ERR(handle);
4004                 ext4_std_error(sb, ret);
4005                 goto out_dio;
4006         }
4007
4008         ret = ext4_zero_partial_blocks(handle, inode, offset,
4009                                        length);
4010         if (ret)
4011                 goto out_stop;
4012
4013         first_block = (offset + sb->s_blocksize - 1) >>
4014                 EXT4_BLOCK_SIZE_BITS(sb);
4015         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4016
4017         /* If there are no blocks to remove, return now */
4018         if (first_block >= stop_block)
4019                 goto out_stop;
4020
4021         down_write(&EXT4_I(inode)->i_data_sem);
4022         ext4_discard_preallocations(inode);
4023
4024         ret = ext4_es_remove_extent(inode, first_block,
4025                                     stop_block - first_block);
4026         if (ret) {
4027                 up_write(&EXT4_I(inode)->i_data_sem);
4028                 goto out_stop;
4029         }
4030
4031         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4032                 ret = ext4_ext_remove_space(inode, first_block,
4033                                             stop_block - 1);
4034         else
4035                 ret = ext4_ind_remove_space(handle, inode, first_block,
4036                                             stop_block);
4037
4038         up_write(&EXT4_I(inode)->i_data_sem);
4039         if (IS_SYNC(inode))
4040                 ext4_handle_sync(handle);
4041
4042         inode->i_mtime = inode->i_ctime = current_time(inode);
4043         ext4_mark_inode_dirty(handle, inode);
4044 out_stop:
4045         ext4_journal_stop(handle);
4046 out_dio:
4047         up_write(&EXT4_I(inode)->i_mmap_sem);
4048         ext4_inode_resume_unlocked_dio(inode);
4049 out_mutex:
4050         inode_unlock(inode);
4051         return ret;
4052 }
4053
4054 int ext4_inode_attach_jinode(struct inode *inode)
4055 {
4056         struct ext4_inode_info *ei = EXT4_I(inode);
4057         struct jbd2_inode *jinode;
4058
4059         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4060                 return 0;
4061
4062         jinode = jbd2_alloc_inode(GFP_KERNEL);
4063         spin_lock(&inode->i_lock);
4064         if (!ei->jinode) {
4065                 if (!jinode) {
4066                         spin_unlock(&inode->i_lock);
4067                         return -ENOMEM;
4068                 }
4069                 ei->jinode = jinode;
4070                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4071                 jinode = NULL;
4072         }
4073         spin_unlock(&inode->i_lock);
4074         if (unlikely(jinode != NULL))
4075                 jbd2_free_inode(jinode);
4076         return 0;
4077 }
4078
4079 /*
4080  * ext4_truncate()
4081  *
4082  * We block out ext4_get_block() block instantiations across the entire
4083  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4084  * simultaneously on behalf of the same inode.
4085  *
4086  * As we work through the truncate and commit bits of it to the journal there
4087  * is one core, guiding principle: the file's tree must always be consistent on
4088  * disk.  We must be able to restart the truncate after a crash.
4089  *
4090  * The file's tree may be transiently inconsistent in memory (although it
4091  * probably isn't), but whenever we close off and commit a journal transaction,
4092  * the contents of (the filesystem + the journal) must be consistent and
4093  * restartable.  It's pretty simple, really: bottom up, right to left (although
4094  * left-to-right works OK too).
4095  *
4096  * Note that at recovery time, journal replay occurs *before* the restart of
4097  * truncate against the orphan inode list.
4098  *
4099  * The committed inode has the new, desired i_size (which is the same as
4100  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4101  * that this inode's truncate did not complete and it will again call
4102  * ext4_truncate() to have another go.  So there will be instantiated blocks
4103  * to the right of the truncation point in a crashed ext4 filesystem.  But
4104  * that's fine - as long as they are linked from the inode, the post-crash
4105  * ext4_truncate() run will find them and release them.
4106  */
4107 int ext4_truncate(struct inode *inode)
4108 {
4109         struct ext4_inode_info *ei = EXT4_I(inode);
4110         unsigned int credits;
4111         int err = 0;
4112         handle_t *handle;
4113         struct address_space *mapping = inode->i_mapping;
4114
4115         /*
4116          * There is a possibility that we're either freeing the inode
4117          * or it's a completely new inode. In those cases we might not
4118          * have i_mutex locked because it's not necessary.
4119          */
4120         if (!(inode->i_state & (I_NEW|I_FREEING)))
4121                 WARN_ON(!inode_is_locked(inode));
4122         trace_ext4_truncate_enter(inode);
4123
4124         if (!ext4_can_truncate(inode))
4125                 return 0;
4126
4127         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4128
4129         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4130                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4131
4132         if (ext4_has_inline_data(inode)) {
4133                 int has_inline = 1;
4134
4135                 ext4_inline_data_truncate(inode, &has_inline);
4136                 if (has_inline)
4137                         return 0;
4138         }
4139
4140         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4141         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4142                 if (ext4_inode_attach_jinode(inode) < 0)
4143                         return 0;
4144         }
4145
4146         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4147                 credits = ext4_writepage_trans_blocks(inode);
4148         else
4149                 credits = ext4_blocks_for_truncate(inode);
4150
4151         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4152         if (IS_ERR(handle))
4153                 return PTR_ERR(handle);
4154
4155         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4156                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4157
4158         /*
4159          * We add the inode to the orphan list, so that if this
4160          * truncate spans multiple transactions, and we crash, we will
4161          * resume the truncate when the filesystem recovers.  It also
4162          * marks the inode dirty, to catch the new size.
4163          *
4164          * Implication: the file must always be in a sane, consistent
4165          * truncatable state while each transaction commits.
4166          */
4167         err = ext4_orphan_add(handle, inode);
4168         if (err)
4169                 goto out_stop;
4170
4171         down_write(&EXT4_I(inode)->i_data_sem);
4172
4173         ext4_discard_preallocations(inode);
4174
4175         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4176                 err = ext4_ext_truncate(handle, inode);
4177         else
4178                 ext4_ind_truncate(handle, inode);
4179
4180         up_write(&ei->i_data_sem);
4181         if (err)
4182                 goto out_stop;
4183
4184         if (IS_SYNC(inode))
4185                 ext4_handle_sync(handle);
4186
4187 out_stop:
4188         /*
4189          * If this was a simple ftruncate() and the file will remain alive,
4190          * then we need to clear up the orphan record which we created above.
4191          * However, if this was a real unlink then we were called by
4192          * ext4_evict_inode(), and we allow that function to clean up the
4193          * orphan info for us.
4194          */
4195         if (inode->i_nlink)
4196                 ext4_orphan_del(handle, inode);
4197
4198         inode->i_mtime = inode->i_ctime = current_time(inode);
4199         ext4_mark_inode_dirty(handle, inode);
4200         ext4_journal_stop(handle);
4201
4202         trace_ext4_truncate_exit(inode);
4203         return err;
4204 }
4205
4206 /*
4207  * ext4_get_inode_loc returns with an extra refcount against the inode's
4208  * underlying buffer_head on success. If 'in_mem' is true, we have all
4209  * data in memory that is needed to recreate the on-disk version of this
4210  * inode.
4211  */
4212 static int __ext4_get_inode_loc(struct inode *inode,
4213                                 struct ext4_iloc *iloc, int in_mem)
4214 {
4215         struct ext4_group_desc  *gdp;
4216         struct buffer_head      *bh;
4217         struct super_block      *sb = inode->i_sb;
4218         ext4_fsblk_t            block;
4219         int                     inodes_per_block, inode_offset;
4220
4221         iloc->bh = NULL;
4222         if (!ext4_valid_inum(sb, inode->i_ino))
4223                 return -EFSCORRUPTED;
4224
4225         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4226         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4227         if (!gdp)
4228                 return -EIO;
4229
4230         /*
4231          * Figure out the offset within the block group inode table
4232          */
4233         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4234         inode_offset = ((inode->i_ino - 1) %
4235                         EXT4_INODES_PER_GROUP(sb));
4236         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4237         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4238
4239         bh = sb_getblk(sb, block);
4240         if (unlikely(!bh))
4241                 return -ENOMEM;
4242         if (!buffer_uptodate(bh)) {
4243                 lock_buffer(bh);
4244
4245                 /*
4246                  * If the buffer has the write error flag, we have failed
4247                  * to write out another inode in the same block.  In this
4248                  * case, we don't have to read the block because we may
4249                  * read the old inode data successfully.
4250                  */
4251                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4252                         set_buffer_uptodate(bh);
4253
4254                 if (buffer_uptodate(bh)) {
4255                         /* someone brought it uptodate while we waited */
4256                         unlock_buffer(bh);
4257                         goto has_buffer;
4258                 }
4259
4260                 /*
4261                  * If we have all information of the inode in memory and this
4262                  * is the only valid inode in the block, we need not read the
4263                  * block.
4264                  */
4265                 if (in_mem) {
4266                         struct buffer_head *bitmap_bh;
4267                         int i, start;
4268
4269                         start = inode_offset & ~(inodes_per_block - 1);
4270
4271                         /* Is the inode bitmap in cache? */
4272                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4273                         if (unlikely(!bitmap_bh))
4274                                 goto make_io;
4275
4276                         /*
4277                          * If the inode bitmap isn't in cache then the
4278                          * optimisation may end up performing two reads instead
4279                          * of one, so skip it.
4280                          */
4281                         if (!buffer_uptodate(bitmap_bh)) {
4282                                 brelse(bitmap_bh);
4283                                 goto make_io;
4284                         }
4285                         for (i = start; i < start + inodes_per_block; i++) {
4286                                 if (i == inode_offset)
4287                                         continue;
4288                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4289                                         break;
4290                         }
4291                         brelse(bitmap_bh);
4292                         if (i == start + inodes_per_block) {
4293                                 /* all other inodes are free, so skip I/O */
4294                                 memset(bh->b_data, 0, bh->b_size);
4295                                 set_buffer_uptodate(bh);
4296                                 unlock_buffer(bh);
4297                                 goto has_buffer;
4298                         }
4299                 }
4300
4301 make_io:
4302                 /*
4303                  * If we need to do any I/O, try to pre-readahead extra
4304                  * blocks from the inode table.
4305                  */
4306                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4307                         ext4_fsblk_t b, end, table;
4308                         unsigned num;
4309                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4310
4311                         table = ext4_inode_table(sb, gdp);
4312                         /* s_inode_readahead_blks is always a power of 2 */
4313                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4314                         if (table > b)
4315                                 b = table;
4316                         end = b + ra_blks;
4317                         num = EXT4_INODES_PER_GROUP(sb);
4318                         if (ext4_has_group_desc_csum(sb))
4319                                 num -= ext4_itable_unused_count(sb, gdp);
4320                         table += num / inodes_per_block;
4321                         if (end > table)
4322                                 end = table;
4323                         while (b <= end)
4324                                 sb_breadahead(sb, b++);
4325                 }
4326
4327                 /*
4328                  * There are other valid inodes in the buffer, this inode
4329                  * has in-inode xattrs, or we don't have this inode in memory.
4330                  * Read the block from disk.
4331                  */
4332                 trace_ext4_load_inode(inode);
4333                 get_bh(bh);
4334                 bh->b_end_io = end_buffer_read_sync;
4335                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4336                 wait_on_buffer(bh);
4337                 if (!buffer_uptodate(bh)) {
4338                         EXT4_ERROR_INODE_BLOCK(inode, block,
4339                                                "unable to read itable block");
4340                         brelse(bh);
4341                         return -EIO;
4342                 }
4343         }
4344 has_buffer:
4345         iloc->bh = bh;
4346         return 0;
4347 }
4348
4349 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4350 {
4351         /* We have all inode data except xattrs in memory here. */
4352         return __ext4_get_inode_loc(inode, iloc,
4353                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4354 }
4355
4356 void ext4_set_inode_flags(struct inode *inode)
4357 {
4358         unsigned int flags = EXT4_I(inode)->i_flags;
4359         unsigned int new_fl = 0;
4360
4361         if (flags & EXT4_SYNC_FL)
4362                 new_fl |= S_SYNC;
4363         if (flags & EXT4_APPEND_FL)
4364                 new_fl |= S_APPEND;
4365         if (flags & EXT4_IMMUTABLE_FL)
4366                 new_fl |= S_IMMUTABLE;
4367         if (flags & EXT4_NOATIME_FL)
4368                 new_fl |= S_NOATIME;
4369         if (flags & EXT4_DIRSYNC_FL)
4370                 new_fl |= S_DIRSYNC;
4371         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4372             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4373             !ext4_encrypted_inode(inode))
4374                 new_fl |= S_DAX;
4375         inode_set_flags(inode, new_fl,
4376                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4377 }
4378
4379 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4380 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4381 {
4382         unsigned int vfs_fl;
4383         unsigned long old_fl, new_fl;
4384
4385         do {
4386                 vfs_fl = ei->vfs_inode.i_flags;
4387                 old_fl = ei->i_flags;
4388                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4389                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4390                                 EXT4_DIRSYNC_FL);
4391                 if (vfs_fl & S_SYNC)
4392                         new_fl |= EXT4_SYNC_FL;
4393                 if (vfs_fl & S_APPEND)
4394                         new_fl |= EXT4_APPEND_FL;
4395                 if (vfs_fl & S_IMMUTABLE)
4396                         new_fl |= EXT4_IMMUTABLE_FL;
4397                 if (vfs_fl & S_NOATIME)
4398                         new_fl |= EXT4_NOATIME_FL;
4399                 if (vfs_fl & S_DIRSYNC)
4400                         new_fl |= EXT4_DIRSYNC_FL;
4401         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4402 }
4403
4404 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4405                                   struct ext4_inode_info *ei)
4406 {
4407         blkcnt_t i_blocks ;
4408         struct inode *inode = &(ei->vfs_inode);
4409         struct super_block *sb = inode->i_sb;
4410
4411         if (ext4_has_feature_huge_file(sb)) {
4412                 /* we are using combined 48 bit field */
4413                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4414                                         le32_to_cpu(raw_inode->i_blocks_lo);
4415                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4416                         /* i_blocks represent file system block size */
4417                         return i_blocks  << (inode->i_blkbits - 9);
4418                 } else {
4419                         return i_blocks;
4420                 }
4421         } else {
4422                 return le32_to_cpu(raw_inode->i_blocks_lo);
4423         }
4424 }
4425
4426 static inline void ext4_iget_extra_inode(struct inode *inode,
4427                                          struct ext4_inode *raw_inode,
4428                                          struct ext4_inode_info *ei)
4429 {
4430         __le32 *magic = (void *)raw_inode +
4431                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4432         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4433                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4434                 ext4_find_inline_data_nolock(inode);
4435         } else
4436                 EXT4_I(inode)->i_inline_off = 0;
4437 }
4438
4439 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4440 {
4441         if (!ext4_has_feature_project(inode->i_sb))
4442                 return -EOPNOTSUPP;
4443         *projid = EXT4_I(inode)->i_projid;
4444         return 0;
4445 }
4446
4447 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4448 {
4449         struct ext4_iloc iloc;
4450         struct ext4_inode *raw_inode;
4451         struct ext4_inode_info *ei;
4452         struct inode *inode;
4453         journal_t *journal = EXT4_SB(sb)->s_journal;
4454         long ret;
4455         int block;
4456         uid_t i_uid;
4457         gid_t i_gid;
4458         projid_t i_projid;
4459
4460         inode = iget_locked(sb, ino);
4461         if (!inode)
4462                 return ERR_PTR(-ENOMEM);
4463         if (!(inode->i_state & I_NEW))
4464                 return inode;
4465
4466         ei = EXT4_I(inode);
4467         iloc.bh = NULL;
4468
4469         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4470         if (ret < 0)
4471                 goto bad_inode;
4472         raw_inode = ext4_raw_inode(&iloc);
4473
4474         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4475                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4476                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4477                     EXT4_INODE_SIZE(inode->i_sb)) {
4478                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4479                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4480                                 EXT4_INODE_SIZE(inode->i_sb));
4481                         ret = -EFSCORRUPTED;
4482                         goto bad_inode;
4483                 }
4484         } else
4485                 ei->i_extra_isize = 0;
4486
4487         /* Precompute checksum seed for inode metadata */
4488         if (ext4_has_metadata_csum(sb)) {
4489                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4490                 __u32 csum;
4491                 __le32 inum = cpu_to_le32(inode->i_ino);
4492                 __le32 gen = raw_inode->i_generation;
4493                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4494                                    sizeof(inum));
4495                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4496                                               sizeof(gen));
4497         }
4498
4499         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4500                 EXT4_ERROR_INODE(inode, "checksum invalid");
4501                 ret = -EFSBADCRC;
4502                 goto bad_inode;
4503         }
4504
4505         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4506         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4507         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4508         if (ext4_has_feature_project(sb) &&
4509             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4510             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4511                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4512         else
4513                 i_projid = EXT4_DEF_PROJID;
4514
4515         if (!(test_opt(inode->i_sb, NO_UID32))) {
4516                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4517                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4518         }
4519         i_uid_write(inode, i_uid);
4520         i_gid_write(inode, i_gid);
4521         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4522         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4523
4524         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4525         ei->i_inline_off = 0;
4526         ei->i_dir_start_lookup = 0;
4527         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4528         /* We now have enough fields to check if the inode was active or not.
4529          * This is needed because nfsd might try to access dead inodes
4530          * the test is that same one that e2fsck uses
4531          * NeilBrown 1999oct15
4532          */
4533         if (inode->i_nlink == 0) {
4534                 if ((inode->i_mode == 0 ||
4535                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4536                     ino != EXT4_BOOT_LOADER_INO) {
4537                         /* this inode is deleted */
4538                         ret = -ESTALE;
4539                         goto bad_inode;
4540                 }
4541                 /* The only unlinked inodes we let through here have
4542                  * valid i_mode and are being read by the orphan
4543                  * recovery code: that's fine, we're about to complete
4544                  * the process of deleting those.
4545                  * OR it is the EXT4_BOOT_LOADER_INO which is
4546                  * not initialized on a new filesystem. */
4547         }
4548         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4549         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4550         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4551         if (ext4_has_feature_64bit(sb))
4552                 ei->i_file_acl |=
4553                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4554         inode->i_size = ext4_isize(raw_inode);
4555         ei->i_disksize = inode->i_size;
4556 #ifdef CONFIG_QUOTA
4557         ei->i_reserved_quota = 0;
4558 #endif
4559         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4560         ei->i_block_group = iloc.block_group;
4561         ei->i_last_alloc_group = ~0;
4562         /*
4563          * NOTE! The in-memory inode i_data array is in little-endian order
4564          * even on big-endian machines: we do NOT byteswap the block numbers!
4565          */
4566         for (block = 0; block < EXT4_N_BLOCKS; block++)
4567                 ei->i_data[block] = raw_inode->i_block[block];
4568         INIT_LIST_HEAD(&ei->i_orphan);
4569
4570         /*
4571          * Set transaction id's of transactions that have to be committed
4572          * to finish f[data]sync. We set them to currently running transaction
4573          * as we cannot be sure that the inode or some of its metadata isn't
4574          * part of the transaction - the inode could have been reclaimed and
4575          * now it is reread from disk.
4576          */
4577         if (journal) {
4578                 transaction_t *transaction;
4579                 tid_t tid;
4580
4581                 read_lock(&journal->j_state_lock);
4582                 if (journal->j_running_transaction)
4583                         transaction = journal->j_running_transaction;
4584                 else
4585                         transaction = journal->j_committing_transaction;
4586                 if (transaction)
4587                         tid = transaction->t_tid;
4588                 else
4589                         tid = journal->j_commit_sequence;
4590                 read_unlock(&journal->j_state_lock);
4591                 ei->i_sync_tid = tid;
4592                 ei->i_datasync_tid = tid;
4593         }
4594
4595         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4596                 if (ei->i_extra_isize == 0) {
4597                         /* The extra space is currently unused. Use it. */
4598                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4599                                             EXT4_GOOD_OLD_INODE_SIZE;
4600                 } else {
4601                         ext4_iget_extra_inode(inode, raw_inode, ei);
4602                 }
4603         }
4604
4605         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4606         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4607         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4608         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4609
4610         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4611                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4612                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4613                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4614                                 inode->i_version |=
4615                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4616                 }
4617         }
4618
4619         ret = 0;
4620         if (ei->i_file_acl &&
4621             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4622                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4623                                  ei->i_file_acl);
4624                 ret = -EFSCORRUPTED;
4625                 goto bad_inode;
4626         } else if (!ext4_has_inline_data(inode)) {
4627                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4628                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4629                             (S_ISLNK(inode->i_mode) &&
4630                              !ext4_inode_is_fast_symlink(inode))))
4631                                 /* Validate extent which is part of inode */
4632                                 ret = ext4_ext_check_inode(inode);
4633                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4634                            (S_ISLNK(inode->i_mode) &&
4635                             !ext4_inode_is_fast_symlink(inode))) {
4636                         /* Validate block references which are part of inode */
4637                         ret = ext4_ind_check_inode(inode);
4638                 }
4639         }
4640         if (ret)
4641                 goto bad_inode;
4642
4643         if (S_ISREG(inode->i_mode)) {
4644                 inode->i_op = &ext4_file_inode_operations;
4645                 inode->i_fop = &ext4_file_operations;
4646                 ext4_set_aops(inode);
4647         } else if (S_ISDIR(inode->i_mode)) {
4648                 inode->i_op = &ext4_dir_inode_operations;
4649                 inode->i_fop = &ext4_dir_operations;
4650         } else if (S_ISLNK(inode->i_mode)) {
4651                 if (ext4_encrypted_inode(inode)) {
4652                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4653                         ext4_set_aops(inode);
4654                 } else if (ext4_inode_is_fast_symlink(inode)) {
4655                         inode->i_link = (char *)ei->i_data;
4656                         inode->i_op = &ext4_fast_symlink_inode_operations;
4657                         nd_terminate_link(ei->i_data, inode->i_size,
4658                                 sizeof(ei->i_data) - 1);
4659                 } else {
4660                         inode->i_op = &ext4_symlink_inode_operations;
4661                         ext4_set_aops(inode);
4662                 }
4663                 inode_nohighmem(inode);
4664         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4665               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4666                 inode->i_op = &ext4_special_inode_operations;
4667                 if (raw_inode->i_block[0])
4668                         init_special_inode(inode, inode->i_mode,
4669                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4670                 else
4671                         init_special_inode(inode, inode->i_mode,
4672                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4673         } else if (ino == EXT4_BOOT_LOADER_INO) {
4674                 make_bad_inode(inode);
4675         } else {
4676                 ret = -EFSCORRUPTED;
4677                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4678                 goto bad_inode;
4679         }
4680         brelse(iloc.bh);
4681         ext4_set_inode_flags(inode);
4682         unlock_new_inode(inode);
4683         return inode;
4684
4685 bad_inode:
4686         brelse(iloc.bh);
4687         iget_failed(inode);
4688         return ERR_PTR(ret);
4689 }
4690
4691 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4692 {
4693         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4694                 return ERR_PTR(-EFSCORRUPTED);
4695         return ext4_iget(sb, ino);
4696 }
4697
4698 static int ext4_inode_blocks_set(handle_t *handle,
4699                                 struct ext4_inode *raw_inode,
4700                                 struct ext4_inode_info *ei)
4701 {
4702         struct inode *inode = &(ei->vfs_inode);
4703         u64 i_blocks = inode->i_blocks;
4704         struct super_block *sb = inode->i_sb;
4705
4706         if (i_blocks <= ~0U) {
4707                 /*
4708                  * i_blocks can be represented in a 32 bit variable
4709                  * as multiple of 512 bytes
4710                  */
4711                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4712                 raw_inode->i_blocks_high = 0;
4713                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4714                 return 0;
4715         }
4716         if (!ext4_has_feature_huge_file(sb))
4717                 return -EFBIG;
4718
4719         if (i_blocks <= 0xffffffffffffULL) {
4720                 /*
4721                  * i_blocks can be represented in a 48 bit variable
4722                  * as multiple of 512 bytes
4723                  */
4724                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4725                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4726                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4727         } else {
4728                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4729                 /* i_block is stored in file system block size */
4730                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4731                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4732                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4733         }
4734         return 0;
4735 }
4736
4737 struct other_inode {
4738         unsigned long           orig_ino;
4739         struct ext4_inode       *raw_inode;
4740 };
4741
4742 static int other_inode_match(struct inode * inode, unsigned long ino,
4743                              void *data)
4744 {
4745         struct other_inode *oi = (struct other_inode *) data;
4746
4747         if ((inode->i_ino != ino) ||
4748             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4749                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4750             ((inode->i_state & I_DIRTY_TIME) == 0))
4751                 return 0;
4752         spin_lock(&inode->i_lock);
4753         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4754                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4755             (inode->i_state & I_DIRTY_TIME)) {
4756                 struct ext4_inode_info  *ei = EXT4_I(inode);
4757
4758                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4759                 spin_unlock(&inode->i_lock);
4760
4761                 spin_lock(&ei->i_raw_lock);
4762                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4763                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4764                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4765                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4766                 spin_unlock(&ei->i_raw_lock);
4767                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4768                 return -1;
4769         }
4770         spin_unlock(&inode->i_lock);
4771         return -1;
4772 }
4773
4774 /*
4775  * Opportunistically update the other time fields for other inodes in
4776  * the same inode table block.
4777  */
4778 static void ext4_update_other_inodes_time(struct super_block *sb,
4779                                           unsigned long orig_ino, char *buf)
4780 {
4781         struct other_inode oi;
4782         unsigned long ino;
4783         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4784         int inode_size = EXT4_INODE_SIZE(sb);
4785
4786         oi.orig_ino = orig_ino;
4787         /*
4788          * Calculate the first inode in the inode table block.  Inode
4789          * numbers are one-based.  That is, the first inode in a block
4790          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4791          */
4792         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4793         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4794                 if (ino == orig_ino)
4795                         continue;
4796                 oi.raw_inode = (struct ext4_inode *) buf;
4797                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4798         }
4799 }
4800
4801 /*
4802  * Post the struct inode info into an on-disk inode location in the
4803  * buffer-cache.  This gobbles the caller's reference to the
4804  * buffer_head in the inode location struct.
4805  *
4806  * The caller must have write access to iloc->bh.
4807  */
4808 static int ext4_do_update_inode(handle_t *handle,
4809                                 struct inode *inode,
4810                                 struct ext4_iloc *iloc)
4811 {
4812         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4813         struct ext4_inode_info *ei = EXT4_I(inode);
4814         struct buffer_head *bh = iloc->bh;
4815         struct super_block *sb = inode->i_sb;
4816         int err = 0, rc, block;
4817         int need_datasync = 0, set_large_file = 0;
4818         uid_t i_uid;
4819         gid_t i_gid;
4820         projid_t i_projid;
4821
4822         spin_lock(&ei->i_raw_lock);
4823
4824         /* For fields not tracked in the in-memory inode,
4825          * initialise them to zero for new inodes. */
4826         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4827                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4828
4829         ext4_get_inode_flags(ei);
4830         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4831         i_uid = i_uid_read(inode);
4832         i_gid = i_gid_read(inode);
4833         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4834         if (!(test_opt(inode->i_sb, NO_UID32))) {
4835                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4836                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4837 /*
4838  * Fix up interoperability with old kernels. Otherwise, old inodes get
4839  * re-used with the upper 16 bits of the uid/gid intact
4840  */
4841                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4842                         raw_inode->i_uid_high = 0;
4843                         raw_inode->i_gid_high = 0;
4844                 } else {
4845                         raw_inode->i_uid_high =
4846                                 cpu_to_le16(high_16_bits(i_uid));
4847                         raw_inode->i_gid_high =
4848                                 cpu_to_le16(high_16_bits(i_gid));
4849                 }
4850         } else {
4851                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4852                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4853                 raw_inode->i_uid_high = 0;
4854                 raw_inode->i_gid_high = 0;
4855         }
4856         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4857
4858         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4859         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4860         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4861         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4862
4863         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4864         if (err) {
4865                 spin_unlock(&ei->i_raw_lock);
4866                 goto out_brelse;
4867         }
4868         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4869         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4870         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4871                 raw_inode->i_file_acl_high =
4872                         cpu_to_le16(ei->i_file_acl >> 32);
4873         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4874         if (ei->i_disksize != ext4_isize(raw_inode)) {
4875                 ext4_isize_set(raw_inode, ei->i_disksize);
4876                 need_datasync = 1;
4877         }
4878         if (ei->i_disksize > 0x7fffffffULL) {
4879                 if (!ext4_has_feature_large_file(sb) ||
4880                                 EXT4_SB(sb)->s_es->s_rev_level ==
4881                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4882                         set_large_file = 1;
4883         }
4884         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4885         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4886                 if (old_valid_dev(inode->i_rdev)) {
4887                         raw_inode->i_block[0] =
4888                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4889                         raw_inode->i_block[1] = 0;
4890                 } else {
4891                         raw_inode->i_block[0] = 0;
4892                         raw_inode->i_block[1] =
4893                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4894                         raw_inode->i_block[2] = 0;
4895                 }
4896         } else if (!ext4_has_inline_data(inode)) {
4897                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4898                         raw_inode->i_block[block] = ei->i_data[block];
4899         }
4900
4901         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4902                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4903                 if (ei->i_extra_isize) {
4904                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4905                                 raw_inode->i_version_hi =
4906                                         cpu_to_le32(inode->i_version >> 32);
4907                         raw_inode->i_extra_isize =
4908                                 cpu_to_le16(ei->i_extra_isize);
4909                 }
4910         }
4911
4912         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4913                i_projid != EXT4_DEF_PROJID);
4914
4915         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4916             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4917                 raw_inode->i_projid = cpu_to_le32(i_projid);
4918
4919         ext4_inode_csum_set(inode, raw_inode, ei);
4920         spin_unlock(&ei->i_raw_lock);
4921         if (inode->i_sb->s_flags & MS_LAZYTIME)
4922                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4923                                               bh->b_data);
4924
4925         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4926         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4927         if (!err)
4928                 err = rc;
4929         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4930         if (set_large_file) {
4931                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4932                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4933                 if (err)
4934                         goto out_brelse;
4935                 ext4_update_dynamic_rev(sb);
4936                 ext4_set_feature_large_file(sb);
4937                 ext4_handle_sync(handle);
4938                 err = ext4_handle_dirty_super(handle, sb);
4939         }
4940         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4941 out_brelse:
4942         brelse(bh);
4943         ext4_std_error(inode->i_sb, err);
4944         return err;
4945 }
4946
4947 /*
4948  * ext4_write_inode()
4949  *
4950  * We are called from a few places:
4951  *
4952  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4953  *   Here, there will be no transaction running. We wait for any running
4954  *   transaction to commit.
4955  *
4956  * - Within flush work (sys_sync(), kupdate and such).
4957  *   We wait on commit, if told to.
4958  *
4959  * - Within iput_final() -> write_inode_now()
4960  *   We wait on commit, if told to.
4961  *
4962  * In all cases it is actually safe for us to return without doing anything,
4963  * because the inode has been copied into a raw inode buffer in
4964  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4965  * writeback.
4966  *
4967  * Note that we are absolutely dependent upon all inode dirtiers doing the
4968  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4969  * which we are interested.
4970  *
4971  * It would be a bug for them to not do this.  The code:
4972  *
4973  *      mark_inode_dirty(inode)
4974  *      stuff();
4975  *      inode->i_size = expr;
4976  *
4977  * is in error because write_inode() could occur while `stuff()' is running,
4978  * and the new i_size will be lost.  Plus the inode will no longer be on the
4979  * superblock's dirty inode list.
4980  */
4981 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4982 {
4983         int err;
4984
4985         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4986                 return 0;
4987
4988         if (EXT4_SB(inode->i_sb)->s_journal) {
4989                 if (ext4_journal_current_handle()) {
4990                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4991                         dump_stack();
4992                         return -EIO;
4993                 }
4994
4995                 /*
4996                  * No need to force transaction in WB_SYNC_NONE mode. Also
4997                  * ext4_sync_fs() will force the commit after everything is
4998                  * written.
4999                  */
5000                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5001                         return 0;
5002
5003                 err = ext4_force_commit(inode->i_sb);
5004         } else {
5005                 struct ext4_iloc iloc;
5006
5007                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5008                 if (err)
5009                         return err;
5010                 /*
5011                  * sync(2) will flush the whole buffer cache. No need to do
5012                  * it here separately for each inode.
5013                  */
5014                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5015                         sync_dirty_buffer(iloc.bh);
5016                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5017                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5018                                          "IO error syncing inode");
5019                         err = -EIO;
5020                 }
5021                 brelse(iloc.bh);
5022         }
5023         return err;
5024 }
5025
5026 /*
5027  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5028  * buffers that are attached to a page stradding i_size and are undergoing
5029  * commit. In that case we have to wait for commit to finish and try again.
5030  */
5031 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5032 {
5033         struct page *page;
5034         unsigned offset;
5035         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5036         tid_t commit_tid = 0;
5037         int ret;
5038
5039         offset = inode->i_size & (PAGE_SIZE - 1);
5040         /*
5041          * All buffers in the last page remain valid? Then there's nothing to
5042          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5043          * blocksize case
5044          */
5045         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5046                 return;
5047         while (1) {
5048                 page = find_lock_page(inode->i_mapping,
5049                                       inode->i_size >> PAGE_SHIFT);
5050                 if (!page)
5051                         return;
5052                 ret = __ext4_journalled_invalidatepage(page, offset,
5053                                                 PAGE_SIZE - offset);
5054                 unlock_page(page);
5055                 put_page(page);
5056                 if (ret != -EBUSY)
5057                         return;
5058                 commit_tid = 0;
5059                 read_lock(&journal->j_state_lock);
5060                 if (journal->j_committing_transaction)
5061                         commit_tid = journal->j_committing_transaction->t_tid;
5062                 read_unlock(&journal->j_state_lock);
5063                 if (commit_tid)
5064                         jbd2_log_wait_commit(journal, commit_tid);
5065         }
5066 }
5067
5068 /*
5069  * ext4_setattr()
5070  *
5071  * Called from notify_change.
5072  *
5073  * We want to trap VFS attempts to truncate the file as soon as
5074  * possible.  In particular, we want to make sure that when the VFS
5075  * shrinks i_size, we put the inode on the orphan list and modify
5076  * i_disksize immediately, so that during the subsequent flushing of
5077  * dirty pages and freeing of disk blocks, we can guarantee that any
5078  * commit will leave the blocks being flushed in an unused state on
5079  * disk.  (On recovery, the inode will get truncated and the blocks will
5080  * be freed, so we have a strong guarantee that no future commit will
5081  * leave these blocks visible to the user.)
5082  *
5083  * Another thing we have to assure is that if we are in ordered mode
5084  * and inode is still attached to the committing transaction, we must
5085  * we start writeout of all the dirty pages which are being truncated.
5086  * This way we are sure that all the data written in the previous
5087  * transaction are already on disk (truncate waits for pages under
5088  * writeback).
5089  *
5090  * Called with inode->i_mutex down.
5091  */
5092 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5093 {
5094         struct inode *inode = d_inode(dentry);
5095         int error, rc = 0;
5096         int orphan = 0;
5097         const unsigned int ia_valid = attr->ia_valid;
5098
5099         error = setattr_prepare(dentry, attr);
5100         if (error)
5101                 return error;
5102
5103         if (is_quota_modification(inode, attr)) {
5104                 error = dquot_initialize(inode);
5105                 if (error)
5106                         return error;
5107         }
5108         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5109             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5110                 handle_t *handle;
5111
5112                 /* (user+group)*(old+new) structure, inode write (sb,
5113                  * inode block, ? - but truncate inode update has it) */
5114                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5115                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5116                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5117                 if (IS_ERR(handle)) {
5118                         error = PTR_ERR(handle);
5119                         goto err_out;
5120                 }
5121                 error = dquot_transfer(inode, attr);
5122                 if (error) {
5123                         ext4_journal_stop(handle);
5124                         return error;
5125                 }
5126                 /* Update corresponding info in inode so that everything is in
5127                  * one transaction */
5128                 if (attr->ia_valid & ATTR_UID)
5129                         inode->i_uid = attr->ia_uid;
5130                 if (attr->ia_valid & ATTR_GID)
5131                         inode->i_gid = attr->ia_gid;
5132                 error = ext4_mark_inode_dirty(handle, inode);
5133                 ext4_journal_stop(handle);
5134         }
5135
5136         if (attr->ia_valid & ATTR_SIZE) {
5137                 handle_t *handle;
5138                 loff_t oldsize = inode->i_size;
5139                 int shrink = (attr->ia_size <= inode->i_size);
5140
5141                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5142                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5143
5144                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5145                                 return -EFBIG;
5146                 }
5147                 if (!S_ISREG(inode->i_mode))
5148                         return -EINVAL;
5149
5150                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5151                         inode_inc_iversion(inode);
5152
5153                 if (ext4_should_order_data(inode) &&
5154                     (attr->ia_size < inode->i_size)) {
5155                         error = ext4_begin_ordered_truncate(inode,
5156                                                             attr->ia_size);
5157                         if (error)
5158                                 goto err_out;
5159                 }
5160                 if (attr->ia_size != inode->i_size) {
5161                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5162                         if (IS_ERR(handle)) {
5163                                 error = PTR_ERR(handle);
5164                                 goto err_out;
5165                         }
5166                         if (ext4_handle_valid(handle) && shrink) {
5167                                 error = ext4_orphan_add(handle, inode);
5168                                 orphan = 1;
5169                         }
5170                         /*
5171                          * Update c/mtime on truncate up, ext4_truncate() will
5172                          * update c/mtime in shrink case below
5173                          */
5174                         if (!shrink) {
5175                                 inode->i_mtime = current_time(inode);
5176                                 inode->i_ctime = inode->i_mtime;
5177                         }
5178                         down_write(&EXT4_I(inode)->i_data_sem);
5179                         EXT4_I(inode)->i_disksize = attr->ia_size;
5180                         rc = ext4_mark_inode_dirty(handle, inode);
5181                         if (!error)
5182                                 error = rc;
5183                         /*
5184                          * We have to update i_size under i_data_sem together
5185                          * with i_disksize to avoid races with writeback code
5186                          * running ext4_wb_update_i_disksize().
5187                          */
5188                         if (!error)
5189                                 i_size_write(inode, attr->ia_size);
5190                         up_write(&EXT4_I(inode)->i_data_sem);
5191                         ext4_journal_stop(handle);
5192                         if (error) {
5193                                 if (orphan)
5194                                         ext4_orphan_del(NULL, inode);
5195                                 goto err_out;
5196                         }
5197                 }
5198                 if (!shrink)
5199                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5200
5201                 /*
5202                  * Blocks are going to be removed from the inode. Wait
5203                  * for dio in flight.  Temporarily disable
5204                  * dioread_nolock to prevent livelock.
5205                  */
5206                 if (orphan) {
5207                         if (!ext4_should_journal_data(inode)) {
5208                                 ext4_inode_block_unlocked_dio(inode);
5209                                 inode_dio_wait(inode);
5210                                 ext4_inode_resume_unlocked_dio(inode);
5211                         } else
5212                                 ext4_wait_for_tail_page_commit(inode);
5213                 }
5214                 down_write(&EXT4_I(inode)->i_mmap_sem);
5215                 /*
5216                  * Truncate pagecache after we've waited for commit
5217                  * in data=journal mode to make pages freeable.
5218                  */
5219                 truncate_pagecache(inode, inode->i_size);
5220                 if (shrink) {
5221                         rc = ext4_truncate(inode);
5222                         if (rc)
5223                                 error = rc;
5224                 }
5225                 up_write(&EXT4_I(inode)->i_mmap_sem);
5226         }
5227
5228         if (!error) {
5229                 setattr_copy(inode, attr);
5230                 mark_inode_dirty(inode);
5231         }
5232
5233         /*
5234          * If the call to ext4_truncate failed to get a transaction handle at
5235          * all, we need to clean up the in-core orphan list manually.
5236          */
5237         if (orphan && inode->i_nlink)
5238                 ext4_orphan_del(NULL, inode);
5239
5240         if (!error && (ia_valid & ATTR_MODE))
5241                 rc = posix_acl_chmod(inode, inode->i_mode);
5242
5243 err_out:
5244         ext4_std_error(inode->i_sb, error);
5245         if (!error)
5246                 error = rc;
5247         return error;
5248 }
5249
5250 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5251                  struct kstat *stat)
5252 {
5253         struct inode *inode;
5254         unsigned long long delalloc_blocks;
5255
5256         inode = d_inode(dentry);
5257         generic_fillattr(inode, stat);
5258
5259         /*
5260          * If there is inline data in the inode, the inode will normally not
5261          * have data blocks allocated (it may have an external xattr block).
5262          * Report at least one sector for such files, so tools like tar, rsync,
5263          * others doen't incorrectly think the file is completely sparse.
5264          */
5265         if (unlikely(ext4_has_inline_data(inode)))
5266                 stat->blocks += (stat->size + 511) >> 9;
5267
5268         /*
5269          * We can't update i_blocks if the block allocation is delayed
5270          * otherwise in the case of system crash before the real block
5271          * allocation is done, we will have i_blocks inconsistent with
5272          * on-disk file blocks.
5273          * We always keep i_blocks updated together with real
5274          * allocation. But to not confuse with user, stat
5275          * will return the blocks that include the delayed allocation
5276          * blocks for this file.
5277          */
5278         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5279                                    EXT4_I(inode)->i_reserved_data_blocks);
5280         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5281         return 0;
5282 }
5283
5284 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5285                                    int pextents)
5286 {
5287         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5288                 return ext4_ind_trans_blocks(inode, lblocks);
5289         return ext4_ext_index_trans_blocks(inode, pextents);
5290 }
5291
5292 /*
5293  * Account for index blocks, block groups bitmaps and block group
5294  * descriptor blocks if modify datablocks and index blocks
5295  * worse case, the indexs blocks spread over different block groups
5296  *
5297  * If datablocks are discontiguous, they are possible to spread over
5298  * different block groups too. If they are contiguous, with flexbg,
5299  * they could still across block group boundary.
5300  *
5301  * Also account for superblock, inode, quota and xattr blocks
5302  */
5303 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5304                                   int pextents)
5305 {
5306         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5307         int gdpblocks;
5308         int idxblocks;
5309         int ret = 0;
5310
5311         /*
5312          * How many index blocks need to touch to map @lblocks logical blocks
5313          * to @pextents physical extents?
5314          */
5315         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5316
5317         ret = idxblocks;
5318
5319         /*
5320          * Now let's see how many group bitmaps and group descriptors need
5321          * to account
5322          */
5323         groups = idxblocks + pextents;
5324         gdpblocks = groups;
5325         if (groups > ngroups)
5326                 groups = ngroups;
5327         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5328                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5329
5330         /* bitmaps and block group descriptor blocks */
5331         ret += groups + gdpblocks;
5332
5333         /* Blocks for super block, inode, quota and xattr blocks */
5334         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5335
5336         return ret;
5337 }
5338
5339 /*
5340  * Calculate the total number of credits to reserve to fit
5341  * the modification of a single pages into a single transaction,
5342  * which may include multiple chunks of block allocations.
5343  *
5344  * This could be called via ext4_write_begin()
5345  *
5346  * We need to consider the worse case, when
5347  * one new block per extent.
5348  */
5349 int ext4_writepage_trans_blocks(struct inode *inode)
5350 {
5351         int bpp = ext4_journal_blocks_per_page(inode);
5352         int ret;
5353
5354         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5355
5356         /* Account for data blocks for journalled mode */
5357         if (ext4_should_journal_data(inode))
5358                 ret += bpp;
5359         return ret;
5360 }
5361
5362 /*
5363  * Calculate the journal credits for a chunk of data modification.
5364  *
5365  * This is called from DIO, fallocate or whoever calling
5366  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5367  *
5368  * journal buffers for data blocks are not included here, as DIO
5369  * and fallocate do no need to journal data buffers.
5370  */
5371 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5372 {
5373         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5374 }
5375
5376 /*
5377  * The caller must have previously called ext4_reserve_inode_write().
5378  * Give this, we know that the caller already has write access to iloc->bh.
5379  */
5380 int ext4_mark_iloc_dirty(handle_t *handle,
5381                          struct inode *inode, struct ext4_iloc *iloc)
5382 {
5383         int err = 0;
5384
5385         if (IS_I_VERSION(inode))
5386                 inode_inc_iversion(inode);
5387
5388         /* the do_update_inode consumes one bh->b_count */
5389         get_bh(iloc->bh);
5390
5391         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5392         err = ext4_do_update_inode(handle, inode, iloc);
5393         put_bh(iloc->bh);
5394         return err;
5395 }
5396
5397 /*
5398  * On success, We end up with an outstanding reference count against
5399  * iloc->bh.  This _must_ be cleaned up later.
5400  */
5401
5402 int
5403 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5404                          struct ext4_iloc *iloc)
5405 {
5406         int err;
5407
5408         err = ext4_get_inode_loc(inode, iloc);
5409         if (!err) {
5410                 BUFFER_TRACE(iloc->bh, "get_write_access");
5411                 err = ext4_journal_get_write_access(handle, iloc->bh);
5412                 if (err) {
5413                         brelse(iloc->bh);
5414                         iloc->bh = NULL;
5415                 }
5416         }
5417         ext4_std_error(inode->i_sb, err);
5418         return err;
5419 }
5420
5421 /*
5422  * Expand an inode by new_extra_isize bytes.
5423  * Returns 0 on success or negative error number on failure.
5424  */
5425 static int ext4_expand_extra_isize(struct inode *inode,
5426                                    unsigned int new_extra_isize,
5427                                    struct ext4_iloc iloc,
5428                                    handle_t *handle)
5429 {
5430         struct ext4_inode *raw_inode;
5431         struct ext4_xattr_ibody_header *header;
5432
5433         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5434                 return 0;
5435
5436         raw_inode = ext4_raw_inode(&iloc);
5437
5438         header = IHDR(inode, raw_inode);
5439
5440         /* No extended attributes present */
5441         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5442             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5443                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5444                         new_extra_isize);
5445                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5446                 return 0;
5447         }
5448
5449         /* try to expand with EAs present */
5450         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5451                                           raw_inode, handle);
5452 }
5453
5454 /*
5455  * What we do here is to mark the in-core inode as clean with respect to inode
5456  * dirtiness (it may still be data-dirty).
5457  * This means that the in-core inode may be reaped by prune_icache
5458  * without having to perform any I/O.  This is a very good thing,
5459  * because *any* task may call prune_icache - even ones which
5460  * have a transaction open against a different journal.
5461  *
5462  * Is this cheating?  Not really.  Sure, we haven't written the
5463  * inode out, but prune_icache isn't a user-visible syncing function.
5464  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5465  * we start and wait on commits.
5466  */
5467 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5468 {
5469         struct ext4_iloc iloc;
5470         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5471         static unsigned int mnt_count;
5472         int err, ret;
5473
5474         might_sleep();
5475         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5476         err = ext4_reserve_inode_write(handle, inode, &iloc);
5477         if (err)
5478                 return err;
5479         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5480             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5481                 /*
5482                  * In nojournal mode, we can immediately attempt to expand
5483                  * the inode.  When journaled, we first need to obtain extra
5484                  * buffer credits since we may write into the EA block
5485                  * with this same handle. If journal_extend fails, then it will
5486                  * only result in a minor loss of functionality for that inode.
5487                  * If this is felt to be critical, then e2fsck should be run to
5488                  * force a large enough s_min_extra_isize.
5489                  */
5490                 if (!ext4_handle_valid(handle) ||
5491                     jbd2_journal_extend(handle,
5492                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5493                         ret = ext4_expand_extra_isize(inode,
5494                                                       sbi->s_want_extra_isize,
5495                                                       iloc, handle);
5496                         if (ret) {
5497                                 if (mnt_count !=
5498                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5499                                         ext4_warning(inode->i_sb,
5500                                         "Unable to expand inode %lu. Delete"
5501                                         " some EAs or run e2fsck.",
5502                                         inode->i_ino);
5503                                         mnt_count =
5504                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5505                                 }
5506                         }
5507                 }
5508         }
5509         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5510 }
5511
5512 /*
5513  * ext4_dirty_inode() is called from __mark_inode_dirty()
5514  *
5515  * We're really interested in the case where a file is being extended.
5516  * i_size has been changed by generic_commit_write() and we thus need
5517  * to include the updated inode in the current transaction.
5518  *
5519  * Also, dquot_alloc_block() will always dirty the inode when blocks
5520  * are allocated to the file.
5521  *
5522  * If the inode is marked synchronous, we don't honour that here - doing
5523  * so would cause a commit on atime updates, which we don't bother doing.
5524  * We handle synchronous inodes at the highest possible level.
5525  *
5526  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5527  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5528  * to copy into the on-disk inode structure are the timestamp files.
5529  */
5530 void ext4_dirty_inode(struct inode *inode, int flags)
5531 {
5532         handle_t *handle;
5533
5534         if (flags == I_DIRTY_TIME)
5535                 return;
5536         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5537         if (IS_ERR(handle))
5538                 goto out;
5539
5540         ext4_mark_inode_dirty(handle, inode);
5541
5542         ext4_journal_stop(handle);
5543 out:
5544         return;
5545 }
5546
5547 #if 0
5548 /*
5549  * Bind an inode's backing buffer_head into this transaction, to prevent
5550  * it from being flushed to disk early.  Unlike
5551  * ext4_reserve_inode_write, this leaves behind no bh reference and
5552  * returns no iloc structure, so the caller needs to repeat the iloc
5553  * lookup to mark the inode dirty later.
5554  */
5555 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5556 {
5557         struct ext4_iloc iloc;
5558
5559         int err = 0;
5560         if (handle) {
5561                 err = ext4_get_inode_loc(inode, &iloc);
5562                 if (!err) {
5563                         BUFFER_TRACE(iloc.bh, "get_write_access");
5564                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5565                         if (!err)
5566                                 err = ext4_handle_dirty_metadata(handle,
5567                                                                  NULL,
5568                                                                  iloc.bh);
5569                         brelse(iloc.bh);
5570                 }
5571         }
5572         ext4_std_error(inode->i_sb, err);
5573         return err;
5574 }
5575 #endif
5576
5577 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5578 {
5579         journal_t *journal;
5580         handle_t *handle;
5581         int err;
5582         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5583
5584         /*
5585          * We have to be very careful here: changing a data block's
5586          * journaling status dynamically is dangerous.  If we write a
5587          * data block to the journal, change the status and then delete
5588          * that block, we risk forgetting to revoke the old log record
5589          * from the journal and so a subsequent replay can corrupt data.
5590          * So, first we make sure that the journal is empty and that
5591          * nobody is changing anything.
5592          */
5593
5594         journal = EXT4_JOURNAL(inode);
5595         if (!journal)
5596                 return 0;
5597         if (is_journal_aborted(journal))
5598                 return -EROFS;
5599
5600         /* Wait for all existing dio workers */
5601         ext4_inode_block_unlocked_dio(inode);
5602         inode_dio_wait(inode);
5603
5604         /*
5605          * Before flushing the journal and switching inode's aops, we have
5606          * to flush all dirty data the inode has. There can be outstanding
5607          * delayed allocations, there can be unwritten extents created by
5608          * fallocate or buffered writes in dioread_nolock mode covered by
5609          * dirty data which can be converted only after flushing the dirty
5610          * data (and journalled aops don't know how to handle these cases).
5611          */
5612         if (val) {
5613                 down_write(&EXT4_I(inode)->i_mmap_sem);
5614                 err = filemap_write_and_wait(inode->i_mapping);
5615                 if (err < 0) {
5616                         up_write(&EXT4_I(inode)->i_mmap_sem);
5617                         ext4_inode_resume_unlocked_dio(inode);
5618                         return err;
5619                 }
5620         }
5621
5622         percpu_down_write(&sbi->s_journal_flag_rwsem);
5623         jbd2_journal_lock_updates(journal);
5624
5625         /*
5626          * OK, there are no updates running now, and all cached data is
5627          * synced to disk.  We are now in a completely consistent state
5628          * which doesn't have anything in the journal, and we know that
5629          * no filesystem updates are running, so it is safe to modify
5630          * the inode's in-core data-journaling state flag now.
5631          */
5632
5633         if (val)
5634                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5635         else {
5636                 err = jbd2_journal_flush(journal);
5637                 if (err < 0) {
5638                         jbd2_journal_unlock_updates(journal);
5639                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5640                         ext4_inode_resume_unlocked_dio(inode);
5641                         return err;
5642                 }
5643                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5644         }
5645         ext4_set_aops(inode);
5646         /*
5647          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5648          * E.g. S_DAX may get cleared / set.
5649          */
5650         ext4_set_inode_flags(inode);
5651
5652         jbd2_journal_unlock_updates(journal);
5653         percpu_up_write(&sbi->s_journal_flag_rwsem);
5654
5655         if (val)
5656                 up_write(&EXT4_I(inode)->i_mmap_sem);
5657         ext4_inode_resume_unlocked_dio(inode);
5658
5659         /* Finally we can mark the inode as dirty. */
5660
5661         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5662         if (IS_ERR(handle))
5663                 return PTR_ERR(handle);
5664
5665         err = ext4_mark_inode_dirty(handle, inode);
5666         ext4_handle_sync(handle);
5667         ext4_journal_stop(handle);
5668         ext4_std_error(inode->i_sb, err);
5669
5670         return err;
5671 }
5672
5673 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5674 {
5675         return !buffer_mapped(bh);
5676 }
5677
5678 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5679 {
5680         struct page *page = vmf->page;
5681         loff_t size;
5682         unsigned long len;
5683         int ret;
5684         struct file *file = vma->vm_file;
5685         struct inode *inode = file_inode(file);
5686         struct address_space *mapping = inode->i_mapping;
5687         handle_t *handle;
5688         get_block_t *get_block;
5689         int retries = 0;
5690
5691         sb_start_pagefault(inode->i_sb);
5692         file_update_time(vma->vm_file);
5693
5694         down_read(&EXT4_I(inode)->i_mmap_sem);
5695         /* Delalloc case is easy... */
5696         if (test_opt(inode->i_sb, DELALLOC) &&
5697             !ext4_should_journal_data(inode) &&
5698             !ext4_nonda_switch(inode->i_sb)) {
5699                 do {
5700                         ret = block_page_mkwrite(vma, vmf,
5701                                                    ext4_da_get_block_prep);
5702                 } while (ret == -ENOSPC &&
5703                        ext4_should_retry_alloc(inode->i_sb, &retries));
5704                 goto out_ret;
5705         }
5706
5707         lock_page(page);
5708         size = i_size_read(inode);
5709         /* Page got truncated from under us? */
5710         if (page->mapping != mapping || page_offset(page) > size) {
5711                 unlock_page(page);
5712                 ret = VM_FAULT_NOPAGE;
5713                 goto out;
5714         }
5715
5716         if (page->index == size >> PAGE_SHIFT)
5717                 len = size & ~PAGE_MASK;
5718         else
5719                 len = PAGE_SIZE;
5720         /*
5721          * Return if we have all the buffers mapped. This avoids the need to do
5722          * journal_start/journal_stop which can block and take a long time
5723          */
5724         if (page_has_buffers(page)) {
5725                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5726                                             0, len, NULL,
5727                                             ext4_bh_unmapped)) {
5728                         /* Wait so that we don't change page under IO */
5729                         wait_for_stable_page(page);
5730                         ret = VM_FAULT_LOCKED;
5731                         goto out;
5732                 }
5733         }
5734         unlock_page(page);
5735         /* OK, we need to fill the hole... */
5736         if (ext4_should_dioread_nolock(inode))
5737                 get_block = ext4_get_block_unwritten;
5738         else
5739                 get_block = ext4_get_block;
5740 retry_alloc:
5741         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5742                                     ext4_writepage_trans_blocks(inode));
5743         if (IS_ERR(handle)) {
5744                 ret = VM_FAULT_SIGBUS;
5745                 goto out;
5746         }
5747         ret = block_page_mkwrite(vma, vmf, get_block);
5748         if (!ret && ext4_should_journal_data(inode)) {
5749                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5750                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5751                         unlock_page(page);
5752                         ret = VM_FAULT_SIGBUS;
5753                         ext4_journal_stop(handle);
5754                         goto out;
5755                 }
5756                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5757         }
5758         ext4_journal_stop(handle);
5759         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5760                 goto retry_alloc;
5761 out_ret:
5762         ret = block_page_mkwrite_return(ret);
5763 out:
5764         up_read(&EXT4_I(inode)->i_mmap_sem);
5765         sb_end_pagefault(inode->i_sb);
5766         return ret;
5767 }
5768
5769 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5770 {
5771         struct inode *inode = file_inode(vma->vm_file);
5772         int err;
5773
5774         down_read(&EXT4_I(inode)->i_mmap_sem);
5775         err = filemap_fault(vma, vmf);
5776         up_read(&EXT4_I(inode)->i_mmap_sem);
5777
5778         return err;
5779 }
5780
5781 /*
5782  * Find the first extent at or after @lblk in an inode that is not a hole.
5783  * Search for @map_len blocks at most. The extent is returned in @result.
5784  *
5785  * The function returns 1 if we found an extent. The function returns 0 in
5786  * case there is no extent at or after @lblk and in that case also sets
5787  * @result->es_len to 0. In case of error, the error code is returned.
5788  */
5789 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5790                          unsigned int map_len, struct extent_status *result)
5791 {
5792         struct ext4_map_blocks map;
5793         struct extent_status es = {};
5794         int ret;
5795
5796         map.m_lblk = lblk;
5797         map.m_len = map_len;
5798
5799         /*
5800          * For non-extent based files this loop may iterate several times since
5801          * we do not determine full hole size.
5802          */
5803         while (map.m_len > 0) {
5804                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5805                 if (ret < 0)
5806                         return ret;
5807                 /* There's extent covering m_lblk? Just return it. */
5808                 if (ret > 0) {
5809                         int status;
5810
5811                         ext4_es_store_pblock(result, map.m_pblk);
5812                         result->es_lblk = map.m_lblk;
5813                         result->es_len = map.m_len;
5814                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5815                                 status = EXTENT_STATUS_UNWRITTEN;
5816                         else
5817                                 status = EXTENT_STATUS_WRITTEN;
5818                         ext4_es_store_status(result, status);
5819                         return 1;
5820                 }
5821                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5822                                                   map.m_lblk + map.m_len - 1,
5823                                                   &es);
5824                 /* Is delalloc data before next block in extent tree? */
5825                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5826                         ext4_lblk_t offset = 0;
5827
5828                         if (es.es_lblk < lblk)
5829                                 offset = lblk - es.es_lblk;
5830                         result->es_lblk = es.es_lblk + offset;
5831                         ext4_es_store_pblock(result,
5832                                              ext4_es_pblock(&es) + offset);
5833                         result->es_len = es.es_len - offset;
5834                         ext4_es_store_status(result, ext4_es_status(&es));
5835
5836                         return 1;
5837                 }
5838                 /* There's a hole at m_lblk, advance us after it */
5839                 map.m_lblk += map.m_len;
5840                 map_len -= map.m_len;
5841                 map.m_len = map_len;
5842                 cond_resched();
5843         }
5844         result->es_len = 0;
5845         return 0;
5846 }