ext4: fix reservation overflow in ext4_da_write_begin
[linux-2.6-block.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         if (ext4_has_inline_data(inode))
152                 return 0;
153
154         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (ext4_should_journal_data(inode) &&
213                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214                     inode->i_ino != EXT4_JOURNAL_INO) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_complete_transaction(journal, commit_tid);
219                         filemap_write_and_wait(&inode->i_data);
220                 }
221                 truncate_inode_pages_final(&inode->i_data);
222
223                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
236
237         /*
238          * Protect us against freezing - iput() caller didn't have to have any
239          * protection against it
240          */
241         sb_start_intwrite(inode->i_sb);
242         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
243                                     ext4_blocks_for_truncate(inode)+3);
244         if (IS_ERR(handle)) {
245                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
246                 /*
247                  * If we're going to skip the normal cleanup, we still need to
248                  * make sure that the in-core orphan linked list is properly
249                  * cleaned up.
250                  */
251                 ext4_orphan_del(NULL, inode);
252                 sb_end_intwrite(inode->i_sb);
253                 goto no_delete;
254         }
255
256         if (IS_SYNC(inode))
257                 ext4_handle_sync(handle);
258         inode->i_size = 0;
259         err = ext4_mark_inode_dirty(handle, inode);
260         if (err) {
261                 ext4_warning(inode->i_sb,
262                              "couldn't mark inode dirty (err %d)", err);
263                 goto stop_handle;
264         }
265         if (inode->i_blocks)
266                 ext4_truncate(inode);
267
268         /*
269          * ext4_ext_truncate() doesn't reserve any slop when it
270          * restarts journal transactions; therefore there may not be
271          * enough credits left in the handle to remove the inode from
272          * the orphan list and set the dtime field.
273          */
274         if (!ext4_handle_has_enough_credits(handle, 3)) {
275                 err = ext4_journal_extend(handle, 3);
276                 if (err > 0)
277                         err = ext4_journal_restart(handle, 3);
278                 if (err != 0) {
279                         ext4_warning(inode->i_sb,
280                                      "couldn't extend journal (err %d)", err);
281                 stop_handle:
282                         ext4_journal_stop(handle);
283                         ext4_orphan_del(NULL, inode);
284                         sb_end_intwrite(inode->i_sb);
285                         goto no_delete;
286                 }
287         }
288
289         /*
290          * Kill off the orphan record which ext4_truncate created.
291          * AKPM: I think this can be inside the above `if'.
292          * Note that ext4_orphan_del() has to be able to cope with the
293          * deletion of a non-existent orphan - this is because we don't
294          * know if ext4_truncate() actually created an orphan record.
295          * (Well, we could do this if we need to, but heck - it works)
296          */
297         ext4_orphan_del(handle, inode);
298         EXT4_I(inode)->i_dtime  = get_seconds();
299
300         /*
301          * One subtle ordering requirement: if anything has gone wrong
302          * (transaction abort, IO errors, whatever), then we can still
303          * do these next steps (the fs will already have been marked as
304          * having errors), but we can't free the inode if the mark_dirty
305          * fails.
306          */
307         if (ext4_mark_inode_dirty(handle, inode))
308                 /* If that failed, just do the required in-core inode clear. */
309                 ext4_clear_inode(inode);
310         else
311                 ext4_free_inode(handle, inode);
312         ext4_journal_stop(handle);
313         sb_end_intwrite(inode->i_sb);
314         return;
315 no_delete:
316         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
317 }
318
319 #ifdef CONFIG_QUOTA
320 qsize_t *ext4_get_reserved_space(struct inode *inode)
321 {
322         return &EXT4_I(inode)->i_reserved_quota;
323 }
324 #endif
325
326 /*
327  * Called with i_data_sem down, which is important since we can call
328  * ext4_discard_preallocations() from here.
329  */
330 void ext4_da_update_reserve_space(struct inode *inode,
331                                         int used, int quota_claim)
332 {
333         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
334         struct ext4_inode_info *ei = EXT4_I(inode);
335
336         spin_lock(&ei->i_block_reservation_lock);
337         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
338         if (unlikely(used > ei->i_reserved_data_blocks)) {
339                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
340                          "with only %d reserved data blocks",
341                          __func__, inode->i_ino, used,
342                          ei->i_reserved_data_blocks);
343                 WARN_ON(1);
344                 used = ei->i_reserved_data_blocks;
345         }
346
347         /* Update per-inode reservations */
348         ei->i_reserved_data_blocks -= used;
349         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
350
351         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
352
353         /* Update quota subsystem for data blocks */
354         if (quota_claim)
355                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
356         else {
357                 /*
358                  * We did fallocate with an offset that is already delayed
359                  * allocated. So on delayed allocated writeback we should
360                  * not re-claim the quota for fallocated blocks.
361                  */
362                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
363         }
364
365         /*
366          * If we have done all the pending block allocations and if
367          * there aren't any writers on the inode, we can discard the
368          * inode's preallocations.
369          */
370         if ((ei->i_reserved_data_blocks == 0) &&
371             (atomic_read(&inode->i_writecount) == 0))
372                 ext4_discard_preallocations(inode);
373 }
374
375 static int __check_block_validity(struct inode *inode, const char *func,
376                                 unsigned int line,
377                                 struct ext4_map_blocks *map)
378 {
379         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
380                                    map->m_len)) {
381                 ext4_error_inode(inode, func, line, map->m_pblk,
382                                  "lblock %lu mapped to illegal pblock "
383                                  "(length %d)", (unsigned long) map->m_lblk,
384                                  map->m_len);
385                 return -EIO;
386         }
387         return 0;
388 }
389
390 #define check_block_validity(inode, map)        \
391         __check_block_validity((inode), __func__, __LINE__, (map))
392
393 #ifdef ES_AGGRESSIVE_TEST
394 static void ext4_map_blocks_es_recheck(handle_t *handle,
395                                        struct inode *inode,
396                                        struct ext4_map_blocks *es_map,
397                                        struct ext4_map_blocks *map,
398                                        int flags)
399 {
400         int retval;
401
402         map->m_flags = 0;
403         /*
404          * There is a race window that the result is not the same.
405          * e.g. xfstests #223 when dioread_nolock enables.  The reason
406          * is that we lookup a block mapping in extent status tree with
407          * out taking i_data_sem.  So at the time the unwritten extent
408          * could be converted.
409          */
410         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
411                 down_read(&EXT4_I(inode)->i_data_sem);
412         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
413                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
414                                              EXT4_GET_BLOCKS_KEEP_SIZE);
415         } else {
416                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
417                                              EXT4_GET_BLOCKS_KEEP_SIZE);
418         }
419         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
420                 up_read((&EXT4_I(inode)->i_data_sem));
421         /*
422          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
423          * because it shouldn't be marked in es_map->m_flags.
424          */
425         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
426
427         /*
428          * We don't check m_len because extent will be collpased in status
429          * tree.  So the m_len might not equal.
430          */
431         if (es_map->m_lblk != map->m_lblk ||
432             es_map->m_flags != map->m_flags ||
433             es_map->m_pblk != map->m_pblk) {
434                 printk("ES cache assertion failed for inode: %lu "
435                        "es_cached ex [%d/%d/%llu/%x] != "
436                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
437                        inode->i_ino, es_map->m_lblk, es_map->m_len,
438                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
439                        map->m_len, map->m_pblk, map->m_flags,
440                        retval, flags);
441         }
442 }
443 #endif /* ES_AGGRESSIVE_TEST */
444
445 /*
446  * The ext4_map_blocks() function tries to look up the requested blocks,
447  * and returns if the blocks are already mapped.
448  *
449  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450  * and store the allocated blocks in the result buffer head and mark it
451  * mapped.
452  *
453  * If file type is extents based, it will call ext4_ext_map_blocks(),
454  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455  * based files
456  *
457  * On success, it returns the number of blocks being mapped or allocated.
458  * if create==0 and the blocks are pre-allocated and unwritten block,
459  * the result buffer head is unmapped. If the create ==1, it will make sure
460  * the buffer head is mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, buffer head is unmapped
464  *
465  * It returns the error in case of allocation failure.
466  */
467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468                     struct ext4_map_blocks *map, int flags)
469 {
470         struct extent_status es;
471         int retval;
472         int ret = 0;
473 #ifdef ES_AGGRESSIVE_TEST
474         struct ext4_map_blocks orig_map;
475
476         memcpy(&orig_map, map, sizeof(*map));
477 #endif
478
479         map->m_flags = 0;
480         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
481                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
482                   (unsigned long) map->m_lblk);
483
484         /*
485          * ext4_map_blocks returns an int, and m_len is an unsigned int
486          */
487         if (unlikely(map->m_len > INT_MAX))
488                 map->m_len = INT_MAX;
489
490         /* We can handle the block number less than EXT_MAX_BLOCKS */
491         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
492                 return -EIO;
493
494         /* Lookup extent status tree firstly */
495         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
496                 ext4_es_lru_add(inode);
497                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498                         map->m_pblk = ext4_es_pblock(&es) +
499                                         map->m_lblk - es.es_lblk;
500                         map->m_flags |= ext4_es_is_written(&es) ?
501                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502                         retval = es.es_len - (map->m_lblk - es.es_lblk);
503                         if (retval > map->m_len)
504                                 retval = map->m_len;
505                         map->m_len = retval;
506                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507                         retval = 0;
508                 } else {
509                         BUG_ON(1);
510                 }
511 #ifdef ES_AGGRESSIVE_TEST
512                 ext4_map_blocks_es_recheck(handle, inode, map,
513                                            &orig_map, flags);
514 #endif
515                 goto found;
516         }
517
518         /*
519          * Try to see if we can get the block without requesting a new
520          * file system block.
521          */
522         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
523                 down_read(&EXT4_I(inode)->i_data_sem);
524         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
525                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
526                                              EXT4_GET_BLOCKS_KEEP_SIZE);
527         } else {
528                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
529                                              EXT4_GET_BLOCKS_KEEP_SIZE);
530         }
531         if (retval > 0) {
532                 unsigned int status;
533
534                 if (unlikely(retval != map->m_len)) {
535                         ext4_warning(inode->i_sb,
536                                      "ES len assertion failed for inode "
537                                      "%lu: retval %d != map->m_len %d",
538                                      inode->i_ino, retval, map->m_len);
539                         WARN_ON(1);
540                 }
541
542                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
543                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
544                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
545                     ext4_find_delalloc_range(inode, map->m_lblk,
546                                              map->m_lblk + map->m_len - 1))
547                         status |= EXTENT_STATUS_DELAYED;
548                 ret = ext4_es_insert_extent(inode, map->m_lblk,
549                                             map->m_len, map->m_pblk, status);
550                 if (ret < 0)
551                         retval = ret;
552         }
553         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
554                 up_read((&EXT4_I(inode)->i_data_sem));
555
556 found:
557         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558                 ret = check_block_validity(inode, map);
559                 if (ret != 0)
560                         return ret;
561         }
562
563         /* If it is only a block(s) look up */
564         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565                 return retval;
566
567         /*
568          * Returns if the blocks have already allocated
569          *
570          * Note that if blocks have been preallocated
571          * ext4_ext_get_block() returns the create = 0
572          * with buffer head unmapped.
573          */
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
575                 /*
576                  * If we need to convert extent to unwritten
577                  * we continue and do the actual work in
578                  * ext4_ext_map_blocks()
579                  */
580                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
581                         return retval;
582
583         /*
584          * Here we clear m_flags because after allocating an new extent,
585          * it will be set again.
586          */
587         map->m_flags &= ~EXT4_MAP_FLAGS;
588
589         /*
590          * New blocks allocate and/or writing to unwritten extent
591          * will possibly result in updating i_data, so we take
592          * the write lock of i_data_sem, and call get_block()
593          * with create == 1 flag.
594          */
595         down_write(&EXT4_I(inode)->i_data_sem);
596
597         /*
598          * We need to check for EXT4 here because migrate
599          * could have changed the inode type in between
600          */
601         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
602                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
603         } else {
604                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
605
606                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
607                         /*
608                          * We allocated new blocks which will result in
609                          * i_data's format changing.  Force the migrate
610                          * to fail by clearing migrate flags
611                          */
612                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
613                 }
614
615                 /*
616                  * Update reserved blocks/metadata blocks after successful
617                  * block allocation which had been deferred till now. We don't
618                  * support fallocate for non extent files. So we can update
619                  * reserve space here.
620                  */
621                 if ((retval > 0) &&
622                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
623                         ext4_da_update_reserve_space(inode, retval, 1);
624         }
625
626         if (retval > 0) {
627                 unsigned int status;
628
629                 if (unlikely(retval != map->m_len)) {
630                         ext4_warning(inode->i_sb,
631                                      "ES len assertion failed for inode "
632                                      "%lu: retval %d != map->m_len %d",
633                                      inode->i_ino, retval, map->m_len);
634                         WARN_ON(1);
635                 }
636
637                 /*
638                  * If the extent has been zeroed out, we don't need to update
639                  * extent status tree.
640                  */
641                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
642                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
643                         if (ext4_es_is_written(&es))
644                                 goto has_zeroout;
645                 }
646                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649                     ext4_find_delalloc_range(inode, map->m_lblk,
650                                              map->m_lblk + map->m_len - 1))
651                         status |= EXTENT_STATUS_DELAYED;
652                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
653                                             map->m_pblk, status);
654                 if (ret < 0)
655                         retval = ret;
656         }
657
658 has_zeroout:
659         up_write((&EXT4_I(inode)->i_data_sem));
660         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
661                 ret = check_block_validity(inode, map);
662                 if (ret != 0)
663                         return ret;
664         }
665         return retval;
666 }
667
668 /* Maximum number of blocks we map for direct IO at once. */
669 #define DIO_MAX_BLOCKS 4096
670
671 static int _ext4_get_block(struct inode *inode, sector_t iblock,
672                            struct buffer_head *bh, int flags)
673 {
674         handle_t *handle = ext4_journal_current_handle();
675         struct ext4_map_blocks map;
676         int ret = 0, started = 0;
677         int dio_credits;
678
679         if (ext4_has_inline_data(inode))
680                 return -ERANGE;
681
682         map.m_lblk = iblock;
683         map.m_len = bh->b_size >> inode->i_blkbits;
684
685         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
686                 /* Direct IO write... */
687                 if (map.m_len > DIO_MAX_BLOCKS)
688                         map.m_len = DIO_MAX_BLOCKS;
689                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
690                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
691                                             dio_credits);
692                 if (IS_ERR(handle)) {
693                         ret = PTR_ERR(handle);
694                         return ret;
695                 }
696                 started = 1;
697         }
698
699         ret = ext4_map_blocks(handle, inode, &map, flags);
700         if (ret > 0) {
701                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
702
703                 map_bh(bh, inode->i_sb, map.m_pblk);
704                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
705                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
706                         set_buffer_defer_completion(bh);
707                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
708                 ret = 0;
709         }
710         if (started)
711                 ext4_journal_stop(handle);
712         return ret;
713 }
714
715 int ext4_get_block(struct inode *inode, sector_t iblock,
716                    struct buffer_head *bh, int create)
717 {
718         return _ext4_get_block(inode, iblock, bh,
719                                create ? EXT4_GET_BLOCKS_CREATE : 0);
720 }
721
722 /*
723  * `handle' can be NULL if create is zero
724  */
725 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
726                                 ext4_lblk_t block, int create)
727 {
728         struct ext4_map_blocks map;
729         struct buffer_head *bh;
730         int err;
731
732         J_ASSERT(handle != NULL || create == 0);
733
734         map.m_lblk = block;
735         map.m_len = 1;
736         err = ext4_map_blocks(handle, inode, &map,
737                               create ? EXT4_GET_BLOCKS_CREATE : 0);
738
739         if (err == 0)
740                 return create ? ERR_PTR(-ENOSPC) : NULL;
741         if (err < 0)
742                 return ERR_PTR(err);
743
744         bh = sb_getblk(inode->i_sb, map.m_pblk);
745         if (unlikely(!bh))
746                 return ERR_PTR(-ENOMEM);
747         if (map.m_flags & EXT4_MAP_NEW) {
748                 J_ASSERT(create != 0);
749                 J_ASSERT(handle != NULL);
750
751                 /*
752                  * Now that we do not always journal data, we should
753                  * keep in mind whether this should always journal the
754                  * new buffer as metadata.  For now, regular file
755                  * writes use ext4_get_block instead, so it's not a
756                  * problem.
757                  */
758                 lock_buffer(bh);
759                 BUFFER_TRACE(bh, "call get_create_access");
760                 err = ext4_journal_get_create_access(handle, bh);
761                 if (unlikely(err)) {
762                         unlock_buffer(bh);
763                         goto errout;
764                 }
765                 if (!buffer_uptodate(bh)) {
766                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
767                         set_buffer_uptodate(bh);
768                 }
769                 unlock_buffer(bh);
770                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
771                 err = ext4_handle_dirty_metadata(handle, inode, bh);
772                 if (unlikely(err))
773                         goto errout;
774         } else
775                 BUFFER_TRACE(bh, "not a new buffer");
776         return bh;
777 errout:
778         brelse(bh);
779         return ERR_PTR(err);
780 }
781
782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
783                                ext4_lblk_t block, int create)
784 {
785         struct buffer_head *bh;
786
787         bh = ext4_getblk(handle, inode, block, create);
788         if (IS_ERR(bh))
789                 return bh;
790         if (!bh || buffer_uptodate(bh))
791                 return bh;
792         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793         wait_on_buffer(bh);
794         if (buffer_uptodate(bh))
795                 return bh;
796         put_bh(bh);
797         return ERR_PTR(-EIO);
798 }
799
800 int ext4_walk_page_buffers(handle_t *handle,
801                            struct buffer_head *head,
802                            unsigned from,
803                            unsigned to,
804                            int *partial,
805                            int (*fn)(handle_t *handle,
806                                      struct buffer_head *bh))
807 {
808         struct buffer_head *bh;
809         unsigned block_start, block_end;
810         unsigned blocksize = head->b_size;
811         int err, ret = 0;
812         struct buffer_head *next;
813
814         for (bh = head, block_start = 0;
815              ret == 0 && (bh != head || !block_start);
816              block_start = block_end, bh = next) {
817                 next = bh->b_this_page;
818                 block_end = block_start + blocksize;
819                 if (block_end <= from || block_start >= to) {
820                         if (partial && !buffer_uptodate(bh))
821                                 *partial = 1;
822                         continue;
823                 }
824                 err = (*fn)(handle, bh);
825                 if (!ret)
826                         ret = err;
827         }
828         return ret;
829 }
830
831 /*
832  * To preserve ordering, it is essential that the hole instantiation and
833  * the data write be encapsulated in a single transaction.  We cannot
834  * close off a transaction and start a new one between the ext4_get_block()
835  * and the commit_write().  So doing the jbd2_journal_start at the start of
836  * prepare_write() is the right place.
837  *
838  * Also, this function can nest inside ext4_writepage().  In that case, we
839  * *know* that ext4_writepage() has generated enough buffer credits to do the
840  * whole page.  So we won't block on the journal in that case, which is good,
841  * because the caller may be PF_MEMALLOC.
842  *
843  * By accident, ext4 can be reentered when a transaction is open via
844  * quota file writes.  If we were to commit the transaction while thus
845  * reentered, there can be a deadlock - we would be holding a quota
846  * lock, and the commit would never complete if another thread had a
847  * transaction open and was blocking on the quota lock - a ranking
848  * violation.
849  *
850  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
851  * will _not_ run commit under these circumstances because handle->h_ref
852  * is elevated.  We'll still have enough credits for the tiny quotafile
853  * write.
854  */
855 int do_journal_get_write_access(handle_t *handle,
856                                 struct buffer_head *bh)
857 {
858         int dirty = buffer_dirty(bh);
859         int ret;
860
861         if (!buffer_mapped(bh) || buffer_freed(bh))
862                 return 0;
863         /*
864          * __block_write_begin() could have dirtied some buffers. Clean
865          * the dirty bit as jbd2_journal_get_write_access() could complain
866          * otherwise about fs integrity issues. Setting of the dirty bit
867          * by __block_write_begin() isn't a real problem here as we clear
868          * the bit before releasing a page lock and thus writeback cannot
869          * ever write the buffer.
870          */
871         if (dirty)
872                 clear_buffer_dirty(bh);
873         BUFFER_TRACE(bh, "get write access");
874         ret = ext4_journal_get_write_access(handle, bh);
875         if (!ret && dirty)
876                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
877         return ret;
878 }
879
880 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
881                    struct buffer_head *bh_result, int create);
882 static int ext4_write_begin(struct file *file, struct address_space *mapping,
883                             loff_t pos, unsigned len, unsigned flags,
884                             struct page **pagep, void **fsdata)
885 {
886         struct inode *inode = mapping->host;
887         int ret, needed_blocks;
888         handle_t *handle;
889         int retries = 0;
890         struct page *page;
891         pgoff_t index;
892         unsigned from, to;
893
894         trace_ext4_write_begin(inode, pos, len, flags);
895         /*
896          * Reserve one block more for addition to orphan list in case
897          * we allocate blocks but write fails for some reason
898          */
899         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
900         index = pos >> PAGE_CACHE_SHIFT;
901         from = pos & (PAGE_CACHE_SIZE - 1);
902         to = from + len;
903
904         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
905                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
906                                                     flags, pagep);
907                 if (ret < 0)
908                         return ret;
909                 if (ret == 1)
910                         return 0;
911         }
912
913         /*
914          * grab_cache_page_write_begin() can take a long time if the
915          * system is thrashing due to memory pressure, or if the page
916          * is being written back.  So grab it first before we start
917          * the transaction handle.  This also allows us to allocate
918          * the page (if needed) without using GFP_NOFS.
919          */
920 retry_grab:
921         page = grab_cache_page_write_begin(mapping, index, flags);
922         if (!page)
923                 return -ENOMEM;
924         unlock_page(page);
925
926 retry_journal:
927         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
928         if (IS_ERR(handle)) {
929                 page_cache_release(page);
930                 return PTR_ERR(handle);
931         }
932
933         lock_page(page);
934         if (page->mapping != mapping) {
935                 /* The page got truncated from under us */
936                 unlock_page(page);
937                 page_cache_release(page);
938                 ext4_journal_stop(handle);
939                 goto retry_grab;
940         }
941         /* In case writeback began while the page was unlocked */
942         wait_for_stable_page(page);
943
944         if (ext4_should_dioread_nolock(inode))
945                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
946         else
947                 ret = __block_write_begin(page, pos, len, ext4_get_block);
948
949         if (!ret && ext4_should_journal_data(inode)) {
950                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
951                                              from, to, NULL,
952                                              do_journal_get_write_access);
953         }
954
955         if (ret) {
956                 unlock_page(page);
957                 /*
958                  * __block_write_begin may have instantiated a few blocks
959                  * outside i_size.  Trim these off again. Don't need
960                  * i_size_read because we hold i_mutex.
961                  *
962                  * Add inode to orphan list in case we crash before
963                  * truncate finishes
964                  */
965                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
966                         ext4_orphan_add(handle, inode);
967
968                 ext4_journal_stop(handle);
969                 if (pos + len > inode->i_size) {
970                         ext4_truncate_failed_write(inode);
971                         /*
972                          * If truncate failed early the inode might
973                          * still be on the orphan list; we need to
974                          * make sure the inode is removed from the
975                          * orphan list in that case.
976                          */
977                         if (inode->i_nlink)
978                                 ext4_orphan_del(NULL, inode);
979                 }
980
981                 if (ret == -ENOSPC &&
982                     ext4_should_retry_alloc(inode->i_sb, &retries))
983                         goto retry_journal;
984                 page_cache_release(page);
985                 return ret;
986         }
987         *pagep = page;
988         return ret;
989 }
990
991 /* For write_end() in data=journal mode */
992 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
993 {
994         int ret;
995         if (!buffer_mapped(bh) || buffer_freed(bh))
996                 return 0;
997         set_buffer_uptodate(bh);
998         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
999         clear_buffer_meta(bh);
1000         clear_buffer_prio(bh);
1001         return ret;
1002 }
1003
1004 /*
1005  * We need to pick up the new inode size which generic_commit_write gave us
1006  * `file' can be NULL - eg, when called from page_symlink().
1007  *
1008  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1009  * buffers are managed internally.
1010  */
1011 static int ext4_write_end(struct file *file,
1012                           struct address_space *mapping,
1013                           loff_t pos, unsigned len, unsigned copied,
1014                           struct page *page, void *fsdata)
1015 {
1016         handle_t *handle = ext4_journal_current_handle();
1017         struct inode *inode = mapping->host;
1018         int ret = 0, ret2;
1019         int i_size_changed = 0;
1020
1021         trace_ext4_write_end(inode, pos, len, copied);
1022         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1023                 ret = ext4_jbd2_file_inode(handle, inode);
1024                 if (ret) {
1025                         unlock_page(page);
1026                         page_cache_release(page);
1027                         goto errout;
1028                 }
1029         }
1030
1031         if (ext4_has_inline_data(inode)) {
1032                 ret = ext4_write_inline_data_end(inode, pos, len,
1033                                                  copied, page);
1034                 if (ret < 0)
1035                         goto errout;
1036                 copied = ret;
1037         } else
1038                 copied = block_write_end(file, mapping, pos,
1039                                          len, copied, page, fsdata);
1040         /*
1041          * it's important to update i_size while still holding page lock:
1042          * page writeout could otherwise come in and zero beyond i_size.
1043          */
1044         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1045         unlock_page(page);
1046         page_cache_release(page);
1047
1048         /*
1049          * Don't mark the inode dirty under page lock. First, it unnecessarily
1050          * makes the holding time of page lock longer. Second, it forces lock
1051          * ordering of page lock and transaction start for journaling
1052          * filesystems.
1053          */
1054         if (i_size_changed)
1055                 ext4_mark_inode_dirty(handle, inode);
1056
1057         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1058                 /* if we have allocated more blocks and copied
1059                  * less. We will have blocks allocated outside
1060                  * inode->i_size. So truncate them
1061                  */
1062                 ext4_orphan_add(handle, inode);
1063 errout:
1064         ret2 = ext4_journal_stop(handle);
1065         if (!ret)
1066                 ret = ret2;
1067
1068         if (pos + len > inode->i_size) {
1069                 ext4_truncate_failed_write(inode);
1070                 /*
1071                  * If truncate failed early the inode might still be
1072                  * on the orphan list; we need to make sure the inode
1073                  * is removed from the orphan list in that case.
1074                  */
1075                 if (inode->i_nlink)
1076                         ext4_orphan_del(NULL, inode);
1077         }
1078
1079         return ret ? ret : copied;
1080 }
1081
1082 static int ext4_journalled_write_end(struct file *file,
1083                                      struct address_space *mapping,
1084                                      loff_t pos, unsigned len, unsigned copied,
1085                                      struct page *page, void *fsdata)
1086 {
1087         handle_t *handle = ext4_journal_current_handle();
1088         struct inode *inode = mapping->host;
1089         int ret = 0, ret2;
1090         int partial = 0;
1091         unsigned from, to;
1092         int size_changed = 0;
1093
1094         trace_ext4_journalled_write_end(inode, pos, len, copied);
1095         from = pos & (PAGE_CACHE_SIZE - 1);
1096         to = from + len;
1097
1098         BUG_ON(!ext4_handle_valid(handle));
1099
1100         if (ext4_has_inline_data(inode))
1101                 copied = ext4_write_inline_data_end(inode, pos, len,
1102                                                     copied, page);
1103         else {
1104                 if (copied < len) {
1105                         if (!PageUptodate(page))
1106                                 copied = 0;
1107                         page_zero_new_buffers(page, from+copied, to);
1108                 }
1109
1110                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1111                                              to, &partial, write_end_fn);
1112                 if (!partial)
1113                         SetPageUptodate(page);
1114         }
1115         size_changed = ext4_update_inode_size(inode, pos + copied);
1116         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1117         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1118         unlock_page(page);
1119         page_cache_release(page);
1120
1121         if (size_changed) {
1122                 ret2 = ext4_mark_inode_dirty(handle, inode);
1123                 if (!ret)
1124                         ret = ret2;
1125         }
1126
1127         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1128                 /* if we have allocated more blocks and copied
1129                  * less. We will have blocks allocated outside
1130                  * inode->i_size. So truncate them
1131                  */
1132                 ext4_orphan_add(handle, inode);
1133
1134         ret2 = ext4_journal_stop(handle);
1135         if (!ret)
1136                 ret = ret2;
1137         if (pos + len > inode->i_size) {
1138                 ext4_truncate_failed_write(inode);
1139                 /*
1140                  * If truncate failed early the inode might still be
1141                  * on the orphan list; we need to make sure the inode
1142                  * is removed from the orphan list in that case.
1143                  */
1144                 if (inode->i_nlink)
1145                         ext4_orphan_del(NULL, inode);
1146         }
1147
1148         return ret ? ret : copied;
1149 }
1150
1151 /*
1152  * Reserve a single cluster located at lblock
1153  */
1154 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1155 {
1156         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1157         struct ext4_inode_info *ei = EXT4_I(inode);
1158         unsigned int md_needed;
1159         int ret;
1160
1161         /*
1162          * We will charge metadata quota at writeout time; this saves
1163          * us from metadata over-estimation, though we may go over by
1164          * a small amount in the end.  Here we just reserve for data.
1165          */
1166         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1167         if (ret)
1168                 return ret;
1169
1170         /*
1171          * recalculate the amount of metadata blocks to reserve
1172          * in order to allocate nrblocks
1173          * worse case is one extent per block
1174          */
1175         spin_lock(&ei->i_block_reservation_lock);
1176         /*
1177          * ext4_calc_metadata_amount() has side effects, which we have
1178          * to be prepared undo if we fail to claim space.
1179          */
1180         md_needed = 0;
1181         trace_ext4_da_reserve_space(inode, 0);
1182
1183         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1184                 spin_unlock(&ei->i_block_reservation_lock);
1185                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1186                 return -ENOSPC;
1187         }
1188         ei->i_reserved_data_blocks++;
1189         spin_unlock(&ei->i_block_reservation_lock);
1190
1191         return 0;       /* success */
1192 }
1193
1194 static void ext4_da_release_space(struct inode *inode, int to_free)
1195 {
1196         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197         struct ext4_inode_info *ei = EXT4_I(inode);
1198
1199         if (!to_free)
1200                 return;         /* Nothing to release, exit */
1201
1202         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1203
1204         trace_ext4_da_release_space(inode, to_free);
1205         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1206                 /*
1207                  * if there aren't enough reserved blocks, then the
1208                  * counter is messed up somewhere.  Since this
1209                  * function is called from invalidate page, it's
1210                  * harmless to return without any action.
1211                  */
1212                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1213                          "ino %lu, to_free %d with only %d reserved "
1214                          "data blocks", inode->i_ino, to_free,
1215                          ei->i_reserved_data_blocks);
1216                 WARN_ON(1);
1217                 to_free = ei->i_reserved_data_blocks;
1218         }
1219         ei->i_reserved_data_blocks -= to_free;
1220
1221         /* update fs dirty data blocks counter */
1222         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1223
1224         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1225
1226         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1227 }
1228
1229 static void ext4_da_page_release_reservation(struct page *page,
1230                                              unsigned int offset,
1231                                              unsigned int length)
1232 {
1233         int to_release = 0;
1234         struct buffer_head *head, *bh;
1235         unsigned int curr_off = 0;
1236         struct inode *inode = page->mapping->host;
1237         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1238         unsigned int stop = offset + length;
1239         int num_clusters;
1240         ext4_fsblk_t lblk;
1241
1242         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1243
1244         head = page_buffers(page);
1245         bh = head;
1246         do {
1247                 unsigned int next_off = curr_off + bh->b_size;
1248
1249                 if (next_off > stop)
1250                         break;
1251
1252                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1253                         to_release++;
1254                         clear_buffer_delay(bh);
1255                 }
1256                 curr_off = next_off;
1257         } while ((bh = bh->b_this_page) != head);
1258
1259         if (to_release) {
1260                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1261                 ext4_es_remove_extent(inode, lblk, to_release);
1262         }
1263
1264         /* If we have released all the blocks belonging to a cluster, then we
1265          * need to release the reserved space for that cluster. */
1266         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1267         while (num_clusters > 0) {
1268                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1269                         ((num_clusters - 1) << sbi->s_cluster_bits);
1270                 if (sbi->s_cluster_ratio == 1 ||
1271                     !ext4_find_delalloc_cluster(inode, lblk))
1272                         ext4_da_release_space(inode, 1);
1273
1274                 num_clusters--;
1275         }
1276 }
1277
1278 /*
1279  * Delayed allocation stuff
1280  */
1281
1282 struct mpage_da_data {
1283         struct inode *inode;
1284         struct writeback_control *wbc;
1285
1286         pgoff_t first_page;     /* The first page to write */
1287         pgoff_t next_page;      /* Current page to examine */
1288         pgoff_t last_page;      /* Last page to examine */
1289         /*
1290          * Extent to map - this can be after first_page because that can be
1291          * fully mapped. We somewhat abuse m_flags to store whether the extent
1292          * is delalloc or unwritten.
1293          */
1294         struct ext4_map_blocks map;
1295         struct ext4_io_submit io_submit;        /* IO submission data */
1296 };
1297
1298 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1299                                        bool invalidate)
1300 {
1301         int nr_pages, i;
1302         pgoff_t index, end;
1303         struct pagevec pvec;
1304         struct inode *inode = mpd->inode;
1305         struct address_space *mapping = inode->i_mapping;
1306
1307         /* This is necessary when next_page == 0. */
1308         if (mpd->first_page >= mpd->next_page)
1309                 return;
1310
1311         index = mpd->first_page;
1312         end   = mpd->next_page - 1;
1313         if (invalidate) {
1314                 ext4_lblk_t start, last;
1315                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1316                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1317                 ext4_es_remove_extent(inode, start, last - start + 1);
1318         }
1319
1320         pagevec_init(&pvec, 0);
1321         while (index <= end) {
1322                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1323                 if (nr_pages == 0)
1324                         break;
1325                 for (i = 0; i < nr_pages; i++) {
1326                         struct page *page = pvec.pages[i];
1327                         if (page->index > end)
1328                                 break;
1329                         BUG_ON(!PageLocked(page));
1330                         BUG_ON(PageWriteback(page));
1331                         if (invalidate) {
1332                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1333                                 ClearPageUptodate(page);
1334                         }
1335                         unlock_page(page);
1336                 }
1337                 index = pvec.pages[nr_pages - 1]->index + 1;
1338                 pagevec_release(&pvec);
1339         }
1340 }
1341
1342 static void ext4_print_free_blocks(struct inode *inode)
1343 {
1344         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1345         struct super_block *sb = inode->i_sb;
1346         struct ext4_inode_info *ei = EXT4_I(inode);
1347
1348         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1349                EXT4_C2B(EXT4_SB(inode->i_sb),
1350                         ext4_count_free_clusters(sb)));
1351         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1352         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1353                (long long) EXT4_C2B(EXT4_SB(sb),
1354                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1355         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1356                (long long) EXT4_C2B(EXT4_SB(sb),
1357                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1358         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1359         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1360                  ei->i_reserved_data_blocks);
1361         return;
1362 }
1363
1364 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1365 {
1366         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1367 }
1368
1369 /*
1370  * This function is grabs code from the very beginning of
1371  * ext4_map_blocks, but assumes that the caller is from delayed write
1372  * time. This function looks up the requested blocks and sets the
1373  * buffer delay bit under the protection of i_data_sem.
1374  */
1375 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1376                               struct ext4_map_blocks *map,
1377                               struct buffer_head *bh)
1378 {
1379         struct extent_status es;
1380         int retval;
1381         sector_t invalid_block = ~((sector_t) 0xffff);
1382 #ifdef ES_AGGRESSIVE_TEST
1383         struct ext4_map_blocks orig_map;
1384
1385         memcpy(&orig_map, map, sizeof(*map));
1386 #endif
1387
1388         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1389                 invalid_block = ~0;
1390
1391         map->m_flags = 0;
1392         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1393                   "logical block %lu\n", inode->i_ino, map->m_len,
1394                   (unsigned long) map->m_lblk);
1395
1396         /* Lookup extent status tree firstly */
1397         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1398                 ext4_es_lru_add(inode);
1399                 if (ext4_es_is_hole(&es)) {
1400                         retval = 0;
1401                         down_read(&EXT4_I(inode)->i_data_sem);
1402                         goto add_delayed;
1403                 }
1404
1405                 /*
1406                  * Delayed extent could be allocated by fallocate.
1407                  * So we need to check it.
1408                  */
1409                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1410                         map_bh(bh, inode->i_sb, invalid_block);
1411                         set_buffer_new(bh);
1412                         set_buffer_delay(bh);
1413                         return 0;
1414                 }
1415
1416                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1417                 retval = es.es_len - (iblock - es.es_lblk);
1418                 if (retval > map->m_len)
1419                         retval = map->m_len;
1420                 map->m_len = retval;
1421                 if (ext4_es_is_written(&es))
1422                         map->m_flags |= EXT4_MAP_MAPPED;
1423                 else if (ext4_es_is_unwritten(&es))
1424                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1425                 else
1426                         BUG_ON(1);
1427
1428 #ifdef ES_AGGRESSIVE_TEST
1429                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1430 #endif
1431                 return retval;
1432         }
1433
1434         /*
1435          * Try to see if we can get the block without requesting a new
1436          * file system block.
1437          */
1438         down_read(&EXT4_I(inode)->i_data_sem);
1439         if (ext4_has_inline_data(inode)) {
1440                 /*
1441                  * We will soon create blocks for this page, and let
1442                  * us pretend as if the blocks aren't allocated yet.
1443                  * In case of clusters, we have to handle the work
1444                  * of mapping from cluster so that the reserved space
1445                  * is calculated properly.
1446                  */
1447                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1448                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1449                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1450                 retval = 0;
1451         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1452                 retval = ext4_ext_map_blocks(NULL, inode, map,
1453                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1454         else
1455                 retval = ext4_ind_map_blocks(NULL, inode, map,
1456                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1457
1458 add_delayed:
1459         if (retval == 0) {
1460                 int ret;
1461                 /*
1462                  * XXX: __block_prepare_write() unmaps passed block,
1463                  * is it OK?
1464                  */
1465                 /*
1466                  * If the block was allocated from previously allocated cluster,
1467                  * then we don't need to reserve it again. However we still need
1468                  * to reserve metadata for every block we're going to write.
1469                  */
1470                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1471                         ret = ext4_da_reserve_space(inode, iblock);
1472                         if (ret) {
1473                                 /* not enough space to reserve */
1474                                 retval = ret;
1475                                 goto out_unlock;
1476                         }
1477                 }
1478
1479                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1480                                             ~0, EXTENT_STATUS_DELAYED);
1481                 if (ret) {
1482                         retval = ret;
1483                         goto out_unlock;
1484                 }
1485
1486                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1487                  * and it should not appear on the bh->b_state.
1488                  */
1489                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1490
1491                 map_bh(bh, inode->i_sb, invalid_block);
1492                 set_buffer_new(bh);
1493                 set_buffer_delay(bh);
1494         } else if (retval > 0) {
1495                 int ret;
1496                 unsigned int status;
1497
1498                 if (unlikely(retval != map->m_len)) {
1499                         ext4_warning(inode->i_sb,
1500                                      "ES len assertion failed for inode "
1501                                      "%lu: retval %d != map->m_len %d",
1502                                      inode->i_ino, retval, map->m_len);
1503                         WARN_ON(1);
1504                 }
1505
1506                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1507                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1508                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1509                                             map->m_pblk, status);
1510                 if (ret != 0)
1511                         retval = ret;
1512         }
1513
1514 out_unlock:
1515         up_read((&EXT4_I(inode)->i_data_sem));
1516
1517         return retval;
1518 }
1519
1520 /*
1521  * This is a special get_block_t callback which is used by
1522  * ext4_da_write_begin().  It will either return mapped block or
1523  * reserve space for a single block.
1524  *
1525  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1526  * We also have b_blocknr = -1 and b_bdev initialized properly
1527  *
1528  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1529  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1530  * initialized properly.
1531  */
1532 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1533                            struct buffer_head *bh, int create)
1534 {
1535         struct ext4_map_blocks map;
1536         int ret = 0;
1537
1538         BUG_ON(create == 0);
1539         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1540
1541         map.m_lblk = iblock;
1542         map.m_len = 1;
1543
1544         /*
1545          * first, we need to know whether the block is allocated already
1546          * preallocated blocks are unmapped but should treated
1547          * the same as allocated blocks.
1548          */
1549         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1550         if (ret <= 0)
1551                 return ret;
1552
1553         map_bh(bh, inode->i_sb, map.m_pblk);
1554         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1555
1556         if (buffer_unwritten(bh)) {
1557                 /* A delayed write to unwritten bh should be marked
1558                  * new and mapped.  Mapped ensures that we don't do
1559                  * get_block multiple times when we write to the same
1560                  * offset and new ensures that we do proper zero out
1561                  * for partial write.
1562                  */
1563                 set_buffer_new(bh);
1564                 set_buffer_mapped(bh);
1565         }
1566         return 0;
1567 }
1568
1569 static int bget_one(handle_t *handle, struct buffer_head *bh)
1570 {
1571         get_bh(bh);
1572         return 0;
1573 }
1574
1575 static int bput_one(handle_t *handle, struct buffer_head *bh)
1576 {
1577         put_bh(bh);
1578         return 0;
1579 }
1580
1581 static int __ext4_journalled_writepage(struct page *page,
1582                                        unsigned int len)
1583 {
1584         struct address_space *mapping = page->mapping;
1585         struct inode *inode = mapping->host;
1586         struct buffer_head *page_bufs = NULL;
1587         handle_t *handle = NULL;
1588         int ret = 0, err = 0;
1589         int inline_data = ext4_has_inline_data(inode);
1590         struct buffer_head *inode_bh = NULL;
1591
1592         ClearPageChecked(page);
1593
1594         if (inline_data) {
1595                 BUG_ON(page->index != 0);
1596                 BUG_ON(len > ext4_get_max_inline_size(inode));
1597                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1598                 if (inode_bh == NULL)
1599                         goto out;
1600         } else {
1601                 page_bufs = page_buffers(page);
1602                 if (!page_bufs) {
1603                         BUG();
1604                         goto out;
1605                 }
1606                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1607                                        NULL, bget_one);
1608         }
1609         /* As soon as we unlock the page, it can go away, but we have
1610          * references to buffers so we are safe */
1611         unlock_page(page);
1612
1613         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1614                                     ext4_writepage_trans_blocks(inode));
1615         if (IS_ERR(handle)) {
1616                 ret = PTR_ERR(handle);
1617                 goto out;
1618         }
1619
1620         BUG_ON(!ext4_handle_valid(handle));
1621
1622         if (inline_data) {
1623                 BUFFER_TRACE(inode_bh, "get write access");
1624                 ret = ext4_journal_get_write_access(handle, inode_bh);
1625
1626                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1627
1628         } else {
1629                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1630                                              do_journal_get_write_access);
1631
1632                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1633                                              write_end_fn);
1634         }
1635         if (ret == 0)
1636                 ret = err;
1637         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1638         err = ext4_journal_stop(handle);
1639         if (!ret)
1640                 ret = err;
1641
1642         if (!ext4_has_inline_data(inode))
1643                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1644                                        NULL, bput_one);
1645         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1646 out:
1647         brelse(inode_bh);
1648         return ret;
1649 }
1650
1651 /*
1652  * Note that we don't need to start a transaction unless we're journaling data
1653  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1654  * need to file the inode to the transaction's list in ordered mode because if
1655  * we are writing back data added by write(), the inode is already there and if
1656  * we are writing back data modified via mmap(), no one guarantees in which
1657  * transaction the data will hit the disk. In case we are journaling data, we
1658  * cannot start transaction directly because transaction start ranks above page
1659  * lock so we have to do some magic.
1660  *
1661  * This function can get called via...
1662  *   - ext4_writepages after taking page lock (have journal handle)
1663  *   - journal_submit_inode_data_buffers (no journal handle)
1664  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1665  *   - grab_page_cache when doing write_begin (have journal handle)
1666  *
1667  * We don't do any block allocation in this function. If we have page with
1668  * multiple blocks we need to write those buffer_heads that are mapped. This
1669  * is important for mmaped based write. So if we do with blocksize 1K
1670  * truncate(f, 1024);
1671  * a = mmap(f, 0, 4096);
1672  * a[0] = 'a';
1673  * truncate(f, 4096);
1674  * we have in the page first buffer_head mapped via page_mkwrite call back
1675  * but other buffer_heads would be unmapped but dirty (dirty done via the
1676  * do_wp_page). So writepage should write the first block. If we modify
1677  * the mmap area beyond 1024 we will again get a page_fault and the
1678  * page_mkwrite callback will do the block allocation and mark the
1679  * buffer_heads mapped.
1680  *
1681  * We redirty the page if we have any buffer_heads that is either delay or
1682  * unwritten in the page.
1683  *
1684  * We can get recursively called as show below.
1685  *
1686  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1687  *              ext4_writepage()
1688  *
1689  * But since we don't do any block allocation we should not deadlock.
1690  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1691  */
1692 static int ext4_writepage(struct page *page,
1693                           struct writeback_control *wbc)
1694 {
1695         int ret = 0;
1696         loff_t size;
1697         unsigned int len;
1698         struct buffer_head *page_bufs = NULL;
1699         struct inode *inode = page->mapping->host;
1700         struct ext4_io_submit io_submit;
1701         bool keep_towrite = false;
1702
1703         trace_ext4_writepage(page);
1704         size = i_size_read(inode);
1705         if (page->index == size >> PAGE_CACHE_SHIFT)
1706                 len = size & ~PAGE_CACHE_MASK;
1707         else
1708                 len = PAGE_CACHE_SIZE;
1709
1710         page_bufs = page_buffers(page);
1711         /*
1712          * We cannot do block allocation or other extent handling in this
1713          * function. If there are buffers needing that, we have to redirty
1714          * the page. But we may reach here when we do a journal commit via
1715          * journal_submit_inode_data_buffers() and in that case we must write
1716          * allocated buffers to achieve data=ordered mode guarantees.
1717          */
1718         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1719                                    ext4_bh_delay_or_unwritten)) {
1720                 redirty_page_for_writepage(wbc, page);
1721                 if (current->flags & PF_MEMALLOC) {
1722                         /*
1723                          * For memory cleaning there's no point in writing only
1724                          * some buffers. So just bail out. Warn if we came here
1725                          * from direct reclaim.
1726                          */
1727                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1728                                                         == PF_MEMALLOC);
1729                         unlock_page(page);
1730                         return 0;
1731                 }
1732                 keep_towrite = true;
1733         }
1734
1735         if (PageChecked(page) && ext4_should_journal_data(inode))
1736                 /*
1737                  * It's mmapped pagecache.  Add buffers and journal it.  There
1738                  * doesn't seem much point in redirtying the page here.
1739                  */
1740                 return __ext4_journalled_writepage(page, len);
1741
1742         ext4_io_submit_init(&io_submit, wbc);
1743         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1744         if (!io_submit.io_end) {
1745                 redirty_page_for_writepage(wbc, page);
1746                 unlock_page(page);
1747                 return -ENOMEM;
1748         }
1749         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1750         ext4_io_submit(&io_submit);
1751         /* Drop io_end reference we got from init */
1752         ext4_put_io_end_defer(io_submit.io_end);
1753         return ret;
1754 }
1755
1756 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1757 {
1758         int len;
1759         loff_t size = i_size_read(mpd->inode);
1760         int err;
1761
1762         BUG_ON(page->index != mpd->first_page);
1763         if (page->index == size >> PAGE_CACHE_SHIFT)
1764                 len = size & ~PAGE_CACHE_MASK;
1765         else
1766                 len = PAGE_CACHE_SIZE;
1767         clear_page_dirty_for_io(page);
1768         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1769         if (!err)
1770                 mpd->wbc->nr_to_write--;
1771         mpd->first_page++;
1772
1773         return err;
1774 }
1775
1776 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1777
1778 /*
1779  * mballoc gives us at most this number of blocks...
1780  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1781  * The rest of mballoc seems to handle chunks up to full group size.
1782  */
1783 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1784
1785 /*
1786  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1787  *
1788  * @mpd - extent of blocks
1789  * @lblk - logical number of the block in the file
1790  * @bh - buffer head we want to add to the extent
1791  *
1792  * The function is used to collect contig. blocks in the same state. If the
1793  * buffer doesn't require mapping for writeback and we haven't started the
1794  * extent of buffers to map yet, the function returns 'true' immediately - the
1795  * caller can write the buffer right away. Otherwise the function returns true
1796  * if the block has been added to the extent, false if the block couldn't be
1797  * added.
1798  */
1799 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1800                                    struct buffer_head *bh)
1801 {
1802         struct ext4_map_blocks *map = &mpd->map;
1803
1804         /* Buffer that doesn't need mapping for writeback? */
1805         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1806             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1807                 /* So far no extent to map => we write the buffer right away */
1808                 if (map->m_len == 0)
1809                         return true;
1810                 return false;
1811         }
1812
1813         /* First block in the extent? */
1814         if (map->m_len == 0) {
1815                 map->m_lblk = lblk;
1816                 map->m_len = 1;
1817                 map->m_flags = bh->b_state & BH_FLAGS;
1818                 return true;
1819         }
1820
1821         /* Don't go larger than mballoc is willing to allocate */
1822         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1823                 return false;
1824
1825         /* Can we merge the block to our big extent? */
1826         if (lblk == map->m_lblk + map->m_len &&
1827             (bh->b_state & BH_FLAGS) == map->m_flags) {
1828                 map->m_len++;
1829                 return true;
1830         }
1831         return false;
1832 }
1833
1834 /*
1835  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1836  *
1837  * @mpd - extent of blocks for mapping
1838  * @head - the first buffer in the page
1839  * @bh - buffer we should start processing from
1840  * @lblk - logical number of the block in the file corresponding to @bh
1841  *
1842  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1843  * the page for IO if all buffers in this page were mapped and there's no
1844  * accumulated extent of buffers to map or add buffers in the page to the
1845  * extent of buffers to map. The function returns 1 if the caller can continue
1846  * by processing the next page, 0 if it should stop adding buffers to the
1847  * extent to map because we cannot extend it anymore. It can also return value
1848  * < 0 in case of error during IO submission.
1849  */
1850 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1851                                    struct buffer_head *head,
1852                                    struct buffer_head *bh,
1853                                    ext4_lblk_t lblk)
1854 {
1855         struct inode *inode = mpd->inode;
1856         int err;
1857         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1858                                                         >> inode->i_blkbits;
1859
1860         do {
1861                 BUG_ON(buffer_locked(bh));
1862
1863                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1864                         /* Found extent to map? */
1865                         if (mpd->map.m_len)
1866                                 return 0;
1867                         /* Everything mapped so far and we hit EOF */
1868                         break;
1869                 }
1870         } while (lblk++, (bh = bh->b_this_page) != head);
1871         /* So far everything mapped? Submit the page for IO. */
1872         if (mpd->map.m_len == 0) {
1873                 err = mpage_submit_page(mpd, head->b_page);
1874                 if (err < 0)
1875                         return err;
1876         }
1877         return lblk < blocks;
1878 }
1879
1880 /*
1881  * mpage_map_buffers - update buffers corresponding to changed extent and
1882  *                     submit fully mapped pages for IO
1883  *
1884  * @mpd - description of extent to map, on return next extent to map
1885  *
1886  * Scan buffers corresponding to changed extent (we expect corresponding pages
1887  * to be already locked) and update buffer state according to new extent state.
1888  * We map delalloc buffers to their physical location, clear unwritten bits,
1889  * and mark buffers as uninit when we perform writes to unwritten extents
1890  * and do extent conversion after IO is finished. If the last page is not fully
1891  * mapped, we update @map to the next extent in the last page that needs
1892  * mapping. Otherwise we submit the page for IO.
1893  */
1894 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1895 {
1896         struct pagevec pvec;
1897         int nr_pages, i;
1898         struct inode *inode = mpd->inode;
1899         struct buffer_head *head, *bh;
1900         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1901         pgoff_t start, end;
1902         ext4_lblk_t lblk;
1903         sector_t pblock;
1904         int err;
1905
1906         start = mpd->map.m_lblk >> bpp_bits;
1907         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1908         lblk = start << bpp_bits;
1909         pblock = mpd->map.m_pblk;
1910
1911         pagevec_init(&pvec, 0);
1912         while (start <= end) {
1913                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1914                                           PAGEVEC_SIZE);
1915                 if (nr_pages == 0)
1916                         break;
1917                 for (i = 0; i < nr_pages; i++) {
1918                         struct page *page = pvec.pages[i];
1919
1920                         if (page->index > end)
1921                                 break;
1922                         /* Up to 'end' pages must be contiguous */
1923                         BUG_ON(page->index != start);
1924                         bh = head = page_buffers(page);
1925                         do {
1926                                 if (lblk < mpd->map.m_lblk)
1927                                         continue;
1928                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1929                                         /*
1930                                          * Buffer after end of mapped extent.
1931                                          * Find next buffer in the page to map.
1932                                          */
1933                                         mpd->map.m_len = 0;
1934                                         mpd->map.m_flags = 0;
1935                                         /*
1936                                          * FIXME: If dioread_nolock supports
1937                                          * blocksize < pagesize, we need to make
1938                                          * sure we add size mapped so far to
1939                                          * io_end->size as the following call
1940                                          * can submit the page for IO.
1941                                          */
1942                                         err = mpage_process_page_bufs(mpd, head,
1943                                                                       bh, lblk);
1944                                         pagevec_release(&pvec);
1945                                         if (err > 0)
1946                                                 err = 0;
1947                                         return err;
1948                                 }
1949                                 if (buffer_delay(bh)) {
1950                                         clear_buffer_delay(bh);
1951                                         bh->b_blocknr = pblock++;
1952                                 }
1953                                 clear_buffer_unwritten(bh);
1954                         } while (lblk++, (bh = bh->b_this_page) != head);
1955
1956                         /*
1957                          * FIXME: This is going to break if dioread_nolock
1958                          * supports blocksize < pagesize as we will try to
1959                          * convert potentially unmapped parts of inode.
1960                          */
1961                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1962                         /* Page fully mapped - let IO run! */
1963                         err = mpage_submit_page(mpd, page);
1964                         if (err < 0) {
1965                                 pagevec_release(&pvec);
1966                                 return err;
1967                         }
1968                         start++;
1969                 }
1970                 pagevec_release(&pvec);
1971         }
1972         /* Extent fully mapped and matches with page boundary. We are done. */
1973         mpd->map.m_len = 0;
1974         mpd->map.m_flags = 0;
1975         return 0;
1976 }
1977
1978 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1979 {
1980         struct inode *inode = mpd->inode;
1981         struct ext4_map_blocks *map = &mpd->map;
1982         int get_blocks_flags;
1983         int err, dioread_nolock;
1984
1985         trace_ext4_da_write_pages_extent(inode, map);
1986         /*
1987          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1988          * to convert an unwritten extent to be initialized (in the case
1989          * where we have written into one or more preallocated blocks).  It is
1990          * possible that we're going to need more metadata blocks than
1991          * previously reserved. However we must not fail because we're in
1992          * writeback and there is nothing we can do about it so it might result
1993          * in data loss.  So use reserved blocks to allocate metadata if
1994          * possible.
1995          *
1996          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1997          * the blocks in question are delalloc blocks.  This indicates
1998          * that the blocks and quotas has already been checked when
1999          * the data was copied into the page cache.
2000          */
2001         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2002                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2003         dioread_nolock = ext4_should_dioread_nolock(inode);
2004         if (dioread_nolock)
2005                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2006         if (map->m_flags & (1 << BH_Delay))
2007                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2008
2009         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2010         if (err < 0)
2011                 return err;
2012         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2013                 if (!mpd->io_submit.io_end->handle &&
2014                     ext4_handle_valid(handle)) {
2015                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2016                         handle->h_rsv_handle = NULL;
2017                 }
2018                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2019         }
2020
2021         BUG_ON(map->m_len == 0);
2022         if (map->m_flags & EXT4_MAP_NEW) {
2023                 struct block_device *bdev = inode->i_sb->s_bdev;
2024                 int i;
2025
2026                 for (i = 0; i < map->m_len; i++)
2027                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2028         }
2029         return 0;
2030 }
2031
2032 /*
2033  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2034  *                               mpd->len and submit pages underlying it for IO
2035  *
2036  * @handle - handle for journal operations
2037  * @mpd - extent to map
2038  * @give_up_on_write - we set this to true iff there is a fatal error and there
2039  *                     is no hope of writing the data. The caller should discard
2040  *                     dirty pages to avoid infinite loops.
2041  *
2042  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2043  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2044  * them to initialized or split the described range from larger unwritten
2045  * extent. Note that we need not map all the described range since allocation
2046  * can return less blocks or the range is covered by more unwritten extents. We
2047  * cannot map more because we are limited by reserved transaction credits. On
2048  * the other hand we always make sure that the last touched page is fully
2049  * mapped so that it can be written out (and thus forward progress is
2050  * guaranteed). After mapping we submit all mapped pages for IO.
2051  */
2052 static int mpage_map_and_submit_extent(handle_t *handle,
2053                                        struct mpage_da_data *mpd,
2054                                        bool *give_up_on_write)
2055 {
2056         struct inode *inode = mpd->inode;
2057         struct ext4_map_blocks *map = &mpd->map;
2058         int err;
2059         loff_t disksize;
2060         int progress = 0;
2061
2062         mpd->io_submit.io_end->offset =
2063                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2064         do {
2065                 err = mpage_map_one_extent(handle, mpd);
2066                 if (err < 0) {
2067                         struct super_block *sb = inode->i_sb;
2068
2069                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2070                                 goto invalidate_dirty_pages;
2071                         /*
2072                          * Let the uper layers retry transient errors.
2073                          * In the case of ENOSPC, if ext4_count_free_blocks()
2074                          * is non-zero, a commit should free up blocks.
2075                          */
2076                         if ((err == -ENOMEM) ||
2077                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2078                                 if (progress)
2079                                         goto update_disksize;
2080                                 return err;
2081                         }
2082                         ext4_msg(sb, KERN_CRIT,
2083                                  "Delayed block allocation failed for "
2084                                  "inode %lu at logical offset %llu with"
2085                                  " max blocks %u with error %d",
2086                                  inode->i_ino,
2087                                  (unsigned long long)map->m_lblk,
2088                                  (unsigned)map->m_len, -err);
2089                         ext4_msg(sb, KERN_CRIT,
2090                                  "This should not happen!! Data will "
2091                                  "be lost\n");
2092                         if (err == -ENOSPC)
2093                                 ext4_print_free_blocks(inode);
2094                 invalidate_dirty_pages:
2095                         *give_up_on_write = true;
2096                         return err;
2097                 }
2098                 progress = 1;
2099                 /*
2100                  * Update buffer state, submit mapped pages, and get us new
2101                  * extent to map
2102                  */
2103                 err = mpage_map_and_submit_buffers(mpd);
2104                 if (err < 0)
2105                         goto update_disksize;
2106         } while (map->m_len);
2107
2108 update_disksize:
2109         /*
2110          * Update on-disk size after IO is submitted.  Races with
2111          * truncate are avoided by checking i_size under i_data_sem.
2112          */
2113         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2114         if (disksize > EXT4_I(inode)->i_disksize) {
2115                 int err2;
2116                 loff_t i_size;
2117
2118                 down_write(&EXT4_I(inode)->i_data_sem);
2119                 i_size = i_size_read(inode);
2120                 if (disksize > i_size)
2121                         disksize = i_size;
2122                 if (disksize > EXT4_I(inode)->i_disksize)
2123                         EXT4_I(inode)->i_disksize = disksize;
2124                 err2 = ext4_mark_inode_dirty(handle, inode);
2125                 up_write(&EXT4_I(inode)->i_data_sem);
2126                 if (err2)
2127                         ext4_error(inode->i_sb,
2128                                    "Failed to mark inode %lu dirty",
2129                                    inode->i_ino);
2130                 if (!err)
2131                         err = err2;
2132         }
2133         return err;
2134 }
2135
2136 /*
2137  * Calculate the total number of credits to reserve for one writepages
2138  * iteration. This is called from ext4_writepages(). We map an extent of
2139  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2140  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2141  * bpp - 1 blocks in bpp different extents.
2142  */
2143 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2144 {
2145         int bpp = ext4_journal_blocks_per_page(inode);
2146
2147         return ext4_meta_trans_blocks(inode,
2148                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2149 }
2150
2151 /*
2152  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2153  *                               and underlying extent to map
2154  *
2155  * @mpd - where to look for pages
2156  *
2157  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2158  * IO immediately. When we find a page which isn't mapped we start accumulating
2159  * extent of buffers underlying these pages that needs mapping (formed by
2160  * either delayed or unwritten buffers). We also lock the pages containing
2161  * these buffers. The extent found is returned in @mpd structure (starting at
2162  * mpd->lblk with length mpd->len blocks).
2163  *
2164  * Note that this function can attach bios to one io_end structure which are
2165  * neither logically nor physically contiguous. Although it may seem as an
2166  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2167  * case as we need to track IO to all buffers underlying a page in one io_end.
2168  */
2169 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2170 {
2171         struct address_space *mapping = mpd->inode->i_mapping;
2172         struct pagevec pvec;
2173         unsigned int nr_pages;
2174         long left = mpd->wbc->nr_to_write;
2175         pgoff_t index = mpd->first_page;
2176         pgoff_t end = mpd->last_page;
2177         int tag;
2178         int i, err = 0;
2179         int blkbits = mpd->inode->i_blkbits;
2180         ext4_lblk_t lblk;
2181         struct buffer_head *head;
2182
2183         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2184                 tag = PAGECACHE_TAG_TOWRITE;
2185         else
2186                 tag = PAGECACHE_TAG_DIRTY;
2187
2188         pagevec_init(&pvec, 0);
2189         mpd->map.m_len = 0;
2190         mpd->next_page = index;
2191         while (index <= end) {
2192                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2193                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2194                 if (nr_pages == 0)
2195                         goto out;
2196
2197                 for (i = 0; i < nr_pages; i++) {
2198                         struct page *page = pvec.pages[i];
2199
2200                         /*
2201                          * At this point, the page may be truncated or
2202                          * invalidated (changing page->mapping to NULL), or
2203                          * even swizzled back from swapper_space to tmpfs file
2204                          * mapping. However, page->index will not change
2205                          * because we have a reference on the page.
2206                          */
2207                         if (page->index > end)
2208                                 goto out;
2209
2210                         /*
2211                          * Accumulated enough dirty pages? This doesn't apply
2212                          * to WB_SYNC_ALL mode. For integrity sync we have to
2213                          * keep going because someone may be concurrently
2214                          * dirtying pages, and we might have synced a lot of
2215                          * newly appeared dirty pages, but have not synced all
2216                          * of the old dirty pages.
2217                          */
2218                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2219                                 goto out;
2220
2221                         /* If we can't merge this page, we are done. */
2222                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2223                                 goto out;
2224
2225                         lock_page(page);
2226                         /*
2227                          * If the page is no longer dirty, or its mapping no
2228                          * longer corresponds to inode we are writing (which
2229                          * means it has been truncated or invalidated), or the
2230                          * page is already under writeback and we are not doing
2231                          * a data integrity writeback, skip the page
2232                          */
2233                         if (!PageDirty(page) ||
2234                             (PageWriteback(page) &&
2235                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2236                             unlikely(page->mapping != mapping)) {
2237                                 unlock_page(page);
2238                                 continue;
2239                         }
2240
2241                         wait_on_page_writeback(page);
2242                         BUG_ON(PageWriteback(page));
2243
2244                         if (mpd->map.m_len == 0)
2245                                 mpd->first_page = page->index;
2246                         mpd->next_page = page->index + 1;
2247                         /* Add all dirty buffers to mpd */
2248                         lblk = ((ext4_lblk_t)page->index) <<
2249                                 (PAGE_CACHE_SHIFT - blkbits);
2250                         head = page_buffers(page);
2251                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2252                         if (err <= 0)
2253                                 goto out;
2254                         err = 0;
2255                         left--;
2256                 }
2257                 pagevec_release(&pvec);
2258                 cond_resched();
2259         }
2260         return 0;
2261 out:
2262         pagevec_release(&pvec);
2263         return err;
2264 }
2265
2266 static int __writepage(struct page *page, struct writeback_control *wbc,
2267                        void *data)
2268 {
2269         struct address_space *mapping = data;
2270         int ret = ext4_writepage(page, wbc);
2271         mapping_set_error(mapping, ret);
2272         return ret;
2273 }
2274
2275 static int ext4_writepages(struct address_space *mapping,
2276                            struct writeback_control *wbc)
2277 {
2278         pgoff_t writeback_index = 0;
2279         long nr_to_write = wbc->nr_to_write;
2280         int range_whole = 0;
2281         int cycled = 1;
2282         handle_t *handle = NULL;
2283         struct mpage_da_data mpd;
2284         struct inode *inode = mapping->host;
2285         int needed_blocks, rsv_blocks = 0, ret = 0;
2286         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2287         bool done;
2288         struct blk_plug plug;
2289         bool give_up_on_write = false;
2290
2291         trace_ext4_writepages(inode, wbc);
2292
2293         /*
2294          * No pages to write? This is mainly a kludge to avoid starting
2295          * a transaction for special inodes like journal inode on last iput()
2296          * because that could violate lock ordering on umount
2297          */
2298         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2299                 goto out_writepages;
2300
2301         if (ext4_should_journal_data(inode)) {
2302                 struct blk_plug plug;
2303
2304                 blk_start_plug(&plug);
2305                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2306                 blk_finish_plug(&plug);
2307                 goto out_writepages;
2308         }
2309
2310         /*
2311          * If the filesystem has aborted, it is read-only, so return
2312          * right away instead of dumping stack traces later on that
2313          * will obscure the real source of the problem.  We test
2314          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2315          * the latter could be true if the filesystem is mounted
2316          * read-only, and in that case, ext4_writepages should
2317          * *never* be called, so if that ever happens, we would want
2318          * the stack trace.
2319          */
2320         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2321                 ret = -EROFS;
2322                 goto out_writepages;
2323         }
2324
2325         if (ext4_should_dioread_nolock(inode)) {
2326                 /*
2327                  * We may need to convert up to one extent per block in
2328                  * the page and we may dirty the inode.
2329                  */
2330                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2331         }
2332
2333         /*
2334          * If we have inline data and arrive here, it means that
2335          * we will soon create the block for the 1st page, so
2336          * we'd better clear the inline data here.
2337          */
2338         if (ext4_has_inline_data(inode)) {
2339                 /* Just inode will be modified... */
2340                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2341                 if (IS_ERR(handle)) {
2342                         ret = PTR_ERR(handle);
2343                         goto out_writepages;
2344                 }
2345                 BUG_ON(ext4_test_inode_state(inode,
2346                                 EXT4_STATE_MAY_INLINE_DATA));
2347                 ext4_destroy_inline_data(handle, inode);
2348                 ext4_journal_stop(handle);
2349         }
2350
2351         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2352                 range_whole = 1;
2353
2354         if (wbc->range_cyclic) {
2355                 writeback_index = mapping->writeback_index;
2356                 if (writeback_index)
2357                         cycled = 0;
2358                 mpd.first_page = writeback_index;
2359                 mpd.last_page = -1;
2360         } else {
2361                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2362                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2363         }
2364
2365         mpd.inode = inode;
2366         mpd.wbc = wbc;
2367         ext4_io_submit_init(&mpd.io_submit, wbc);
2368 retry:
2369         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2370                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2371         done = false;
2372         blk_start_plug(&plug);
2373         while (!done && mpd.first_page <= mpd.last_page) {
2374                 /* For each extent of pages we use new io_end */
2375                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2376                 if (!mpd.io_submit.io_end) {
2377                         ret = -ENOMEM;
2378                         break;
2379                 }
2380
2381                 /*
2382                  * We have two constraints: We find one extent to map and we
2383                  * must always write out whole page (makes a difference when
2384                  * blocksize < pagesize) so that we don't block on IO when we
2385                  * try to write out the rest of the page. Journalled mode is
2386                  * not supported by delalloc.
2387                  */
2388                 BUG_ON(ext4_should_journal_data(inode));
2389                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2390
2391                 /* start a new transaction */
2392                 handle = ext4_journal_start_with_reserve(inode,
2393                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2394                 if (IS_ERR(handle)) {
2395                         ret = PTR_ERR(handle);
2396                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2397                                "%ld pages, ino %lu; err %d", __func__,
2398                                 wbc->nr_to_write, inode->i_ino, ret);
2399                         /* Release allocated io_end */
2400                         ext4_put_io_end(mpd.io_submit.io_end);
2401                         break;
2402                 }
2403
2404                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2405                 ret = mpage_prepare_extent_to_map(&mpd);
2406                 if (!ret) {
2407                         if (mpd.map.m_len)
2408                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2409                                         &give_up_on_write);
2410                         else {
2411                                 /*
2412                                  * We scanned the whole range (or exhausted
2413                                  * nr_to_write), submitted what was mapped and
2414                                  * didn't find anything needing mapping. We are
2415                                  * done.
2416                                  */
2417                                 done = true;
2418                         }
2419                 }
2420                 ext4_journal_stop(handle);
2421                 /* Submit prepared bio */
2422                 ext4_io_submit(&mpd.io_submit);
2423                 /* Unlock pages we didn't use */
2424                 mpage_release_unused_pages(&mpd, give_up_on_write);
2425                 /* Drop our io_end reference we got from init */
2426                 ext4_put_io_end(mpd.io_submit.io_end);
2427
2428                 if (ret == -ENOSPC && sbi->s_journal) {
2429                         /*
2430                          * Commit the transaction which would
2431                          * free blocks released in the transaction
2432                          * and try again
2433                          */
2434                         jbd2_journal_force_commit_nested(sbi->s_journal);
2435                         ret = 0;
2436                         continue;
2437                 }
2438                 /* Fatal error - ENOMEM, EIO... */
2439                 if (ret)
2440                         break;
2441         }
2442         blk_finish_plug(&plug);
2443         if (!ret && !cycled && wbc->nr_to_write > 0) {
2444                 cycled = 1;
2445                 mpd.last_page = writeback_index - 1;
2446                 mpd.first_page = 0;
2447                 goto retry;
2448         }
2449
2450         /* Update index */
2451         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2452                 /*
2453                  * Set the writeback_index so that range_cyclic
2454                  * mode will write it back later
2455                  */
2456                 mapping->writeback_index = mpd.first_page;
2457
2458 out_writepages:
2459         trace_ext4_writepages_result(inode, wbc, ret,
2460                                      nr_to_write - wbc->nr_to_write);
2461         return ret;
2462 }
2463
2464 static int ext4_nonda_switch(struct super_block *sb)
2465 {
2466         s64 free_clusters, dirty_clusters;
2467         struct ext4_sb_info *sbi = EXT4_SB(sb);
2468
2469         /*
2470          * switch to non delalloc mode if we are running low
2471          * on free block. The free block accounting via percpu
2472          * counters can get slightly wrong with percpu_counter_batch getting
2473          * accumulated on each CPU without updating global counters
2474          * Delalloc need an accurate free block accounting. So switch
2475          * to non delalloc when we are near to error range.
2476          */
2477         free_clusters =
2478                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2479         dirty_clusters =
2480                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2481         /*
2482          * Start pushing delalloc when 1/2 of free blocks are dirty.
2483          */
2484         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2485                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2486
2487         if (2 * free_clusters < 3 * dirty_clusters ||
2488             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2489                 /*
2490                  * free block count is less than 150% of dirty blocks
2491                  * or free blocks is less than watermark
2492                  */
2493                 return 1;
2494         }
2495         return 0;
2496 }
2497
2498 /* We always reserve for an inode update; the superblock could be there too */
2499 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2500 {
2501         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2502                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2503                 return 1;
2504
2505         if (pos + len <= 0x7fffffffULL)
2506                 return 1;
2507
2508         /* We might need to update the superblock to set LARGE_FILE */
2509         return 2;
2510 }
2511
2512 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2513                                loff_t pos, unsigned len, unsigned flags,
2514                                struct page **pagep, void **fsdata)
2515 {
2516         int ret, retries = 0;
2517         struct page *page;
2518         pgoff_t index;
2519         struct inode *inode = mapping->host;
2520         handle_t *handle;
2521
2522         index = pos >> PAGE_CACHE_SHIFT;
2523
2524         if (ext4_nonda_switch(inode->i_sb)) {
2525                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2526                 return ext4_write_begin(file, mapping, pos,
2527                                         len, flags, pagep, fsdata);
2528         }
2529         *fsdata = (void *)0;
2530         trace_ext4_da_write_begin(inode, pos, len, flags);
2531
2532         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2533                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2534                                                       pos, len, flags,
2535                                                       pagep, fsdata);
2536                 if (ret < 0)
2537                         return ret;
2538                 if (ret == 1)
2539                         return 0;
2540         }
2541
2542         /*
2543          * grab_cache_page_write_begin() can take a long time if the
2544          * system is thrashing due to memory pressure, or if the page
2545          * is being written back.  So grab it first before we start
2546          * the transaction handle.  This also allows us to allocate
2547          * the page (if needed) without using GFP_NOFS.
2548          */
2549 retry_grab:
2550         page = grab_cache_page_write_begin(mapping, index, flags);
2551         if (!page)
2552                 return -ENOMEM;
2553         unlock_page(page);
2554
2555         /*
2556          * With delayed allocation, we don't log the i_disksize update
2557          * if there is delayed block allocation. But we still need
2558          * to journalling the i_disksize update if writes to the end
2559          * of file which has an already mapped buffer.
2560          */
2561 retry_journal:
2562         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2563                                 ext4_da_write_credits(inode, pos, len));
2564         if (IS_ERR(handle)) {
2565                 page_cache_release(page);
2566                 return PTR_ERR(handle);
2567         }
2568
2569         lock_page(page);
2570         if (page->mapping != mapping) {
2571                 /* The page got truncated from under us */
2572                 unlock_page(page);
2573                 page_cache_release(page);
2574                 ext4_journal_stop(handle);
2575                 goto retry_grab;
2576         }
2577         /* In case writeback began while the page was unlocked */
2578         wait_for_stable_page(page);
2579
2580         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2581         if (ret < 0) {
2582                 unlock_page(page);
2583                 ext4_journal_stop(handle);
2584                 /*
2585                  * block_write_begin may have instantiated a few blocks
2586                  * outside i_size.  Trim these off again. Don't need
2587                  * i_size_read because we hold i_mutex.
2588                  */
2589                 if (pos + len > inode->i_size)
2590                         ext4_truncate_failed_write(inode);
2591
2592                 if (ret == -ENOSPC &&
2593                     ext4_should_retry_alloc(inode->i_sb, &retries))
2594                         goto retry_journal;
2595
2596                 page_cache_release(page);
2597                 return ret;
2598         }
2599
2600         *pagep = page;
2601         return ret;
2602 }
2603
2604 /*
2605  * Check if we should update i_disksize
2606  * when write to the end of file but not require block allocation
2607  */
2608 static int ext4_da_should_update_i_disksize(struct page *page,
2609                                             unsigned long offset)
2610 {
2611         struct buffer_head *bh;
2612         struct inode *inode = page->mapping->host;
2613         unsigned int idx;
2614         int i;
2615
2616         bh = page_buffers(page);
2617         idx = offset >> inode->i_blkbits;
2618
2619         for (i = 0; i < idx; i++)
2620                 bh = bh->b_this_page;
2621
2622         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2623                 return 0;
2624         return 1;
2625 }
2626
2627 static int ext4_da_write_end(struct file *file,
2628                              struct address_space *mapping,
2629                              loff_t pos, unsigned len, unsigned copied,
2630                              struct page *page, void *fsdata)
2631 {
2632         struct inode *inode = mapping->host;
2633         int ret = 0, ret2;
2634         handle_t *handle = ext4_journal_current_handle();
2635         loff_t new_i_size;
2636         unsigned long start, end;
2637         int write_mode = (int)(unsigned long)fsdata;
2638
2639         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2640                 return ext4_write_end(file, mapping, pos,
2641                                       len, copied, page, fsdata);
2642
2643         trace_ext4_da_write_end(inode, pos, len, copied);
2644         start = pos & (PAGE_CACHE_SIZE - 1);
2645         end = start + copied - 1;
2646
2647         /*
2648          * generic_write_end() will run mark_inode_dirty() if i_size
2649          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2650          * into that.
2651          */
2652         new_i_size = pos + copied;
2653         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2654                 if (ext4_has_inline_data(inode) ||
2655                     ext4_da_should_update_i_disksize(page, end)) {
2656                         ext4_update_i_disksize(inode, new_i_size);
2657                         /* We need to mark inode dirty even if
2658                          * new_i_size is less that inode->i_size
2659                          * bu greater than i_disksize.(hint delalloc)
2660                          */
2661                         ext4_mark_inode_dirty(handle, inode);
2662                 }
2663         }
2664
2665         if (write_mode != CONVERT_INLINE_DATA &&
2666             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2667             ext4_has_inline_data(inode))
2668                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2669                                                      page);
2670         else
2671                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2672                                                         page, fsdata);
2673
2674         copied = ret2;
2675         if (ret2 < 0)
2676                 ret = ret2;
2677         ret2 = ext4_journal_stop(handle);
2678         if (!ret)
2679                 ret = ret2;
2680
2681         return ret ? ret : copied;
2682 }
2683
2684 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2685                                    unsigned int length)
2686 {
2687         /*
2688          * Drop reserved blocks
2689          */
2690         BUG_ON(!PageLocked(page));
2691         if (!page_has_buffers(page))
2692                 goto out;
2693
2694         ext4_da_page_release_reservation(page, offset, length);
2695
2696 out:
2697         ext4_invalidatepage(page, offset, length);
2698
2699         return;
2700 }
2701
2702 /*
2703  * Force all delayed allocation blocks to be allocated for a given inode.
2704  */
2705 int ext4_alloc_da_blocks(struct inode *inode)
2706 {
2707         trace_ext4_alloc_da_blocks(inode);
2708
2709         if (!EXT4_I(inode)->i_reserved_data_blocks)
2710                 return 0;
2711
2712         /*
2713          * We do something simple for now.  The filemap_flush() will
2714          * also start triggering a write of the data blocks, which is
2715          * not strictly speaking necessary (and for users of
2716          * laptop_mode, not even desirable).  However, to do otherwise
2717          * would require replicating code paths in:
2718          *
2719          * ext4_writepages() ->
2720          *    write_cache_pages() ---> (via passed in callback function)
2721          *        __mpage_da_writepage() -->
2722          *           mpage_add_bh_to_extent()
2723          *           mpage_da_map_blocks()
2724          *
2725          * The problem is that write_cache_pages(), located in
2726          * mm/page-writeback.c, marks pages clean in preparation for
2727          * doing I/O, which is not desirable if we're not planning on
2728          * doing I/O at all.
2729          *
2730          * We could call write_cache_pages(), and then redirty all of
2731          * the pages by calling redirty_page_for_writepage() but that
2732          * would be ugly in the extreme.  So instead we would need to
2733          * replicate parts of the code in the above functions,
2734          * simplifying them because we wouldn't actually intend to
2735          * write out the pages, but rather only collect contiguous
2736          * logical block extents, call the multi-block allocator, and
2737          * then update the buffer heads with the block allocations.
2738          *
2739          * For now, though, we'll cheat by calling filemap_flush(),
2740          * which will map the blocks, and start the I/O, but not
2741          * actually wait for the I/O to complete.
2742          */
2743         return filemap_flush(inode->i_mapping);
2744 }
2745
2746 /*
2747  * bmap() is special.  It gets used by applications such as lilo and by
2748  * the swapper to find the on-disk block of a specific piece of data.
2749  *
2750  * Naturally, this is dangerous if the block concerned is still in the
2751  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2752  * filesystem and enables swap, then they may get a nasty shock when the
2753  * data getting swapped to that swapfile suddenly gets overwritten by
2754  * the original zero's written out previously to the journal and
2755  * awaiting writeback in the kernel's buffer cache.
2756  *
2757  * So, if we see any bmap calls here on a modified, data-journaled file,
2758  * take extra steps to flush any blocks which might be in the cache.
2759  */
2760 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2761 {
2762         struct inode *inode = mapping->host;
2763         journal_t *journal;
2764         int err;
2765
2766         /*
2767          * We can get here for an inline file via the FIBMAP ioctl
2768          */
2769         if (ext4_has_inline_data(inode))
2770                 return 0;
2771
2772         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2773                         test_opt(inode->i_sb, DELALLOC)) {
2774                 /*
2775                  * With delalloc we want to sync the file
2776                  * so that we can make sure we allocate
2777                  * blocks for file
2778                  */
2779                 filemap_write_and_wait(mapping);
2780         }
2781
2782         if (EXT4_JOURNAL(inode) &&
2783             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2784                 /*
2785                  * This is a REALLY heavyweight approach, but the use of
2786                  * bmap on dirty files is expected to be extremely rare:
2787                  * only if we run lilo or swapon on a freshly made file
2788                  * do we expect this to happen.
2789                  *
2790                  * (bmap requires CAP_SYS_RAWIO so this does not
2791                  * represent an unprivileged user DOS attack --- we'd be
2792                  * in trouble if mortal users could trigger this path at
2793                  * will.)
2794                  *
2795                  * NB. EXT4_STATE_JDATA is not set on files other than
2796                  * regular files.  If somebody wants to bmap a directory
2797                  * or symlink and gets confused because the buffer
2798                  * hasn't yet been flushed to disk, they deserve
2799                  * everything they get.
2800                  */
2801
2802                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2803                 journal = EXT4_JOURNAL(inode);
2804                 jbd2_journal_lock_updates(journal);
2805                 err = jbd2_journal_flush(journal);
2806                 jbd2_journal_unlock_updates(journal);
2807
2808                 if (err)
2809                         return 0;
2810         }
2811
2812         return generic_block_bmap(mapping, block, ext4_get_block);
2813 }
2814
2815 static int ext4_readpage(struct file *file, struct page *page)
2816 {
2817         int ret = -EAGAIN;
2818         struct inode *inode = page->mapping->host;
2819
2820         trace_ext4_readpage(page);
2821
2822         if (ext4_has_inline_data(inode))
2823                 ret = ext4_readpage_inline(inode, page);
2824
2825         if (ret == -EAGAIN)
2826                 return mpage_readpage(page, ext4_get_block);
2827
2828         return ret;
2829 }
2830
2831 static int
2832 ext4_readpages(struct file *file, struct address_space *mapping,
2833                 struct list_head *pages, unsigned nr_pages)
2834 {
2835         struct inode *inode = mapping->host;
2836
2837         /* If the file has inline data, no need to do readpages. */
2838         if (ext4_has_inline_data(inode))
2839                 return 0;
2840
2841         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2842 }
2843
2844 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2845                                 unsigned int length)
2846 {
2847         trace_ext4_invalidatepage(page, offset, length);
2848
2849         /* No journalling happens on data buffers when this function is used */
2850         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2851
2852         block_invalidatepage(page, offset, length);
2853 }
2854
2855 static int __ext4_journalled_invalidatepage(struct page *page,
2856                                             unsigned int offset,
2857                                             unsigned int length)
2858 {
2859         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2860
2861         trace_ext4_journalled_invalidatepage(page, offset, length);
2862
2863         /*
2864          * If it's a full truncate we just forget about the pending dirtying
2865          */
2866         if (offset == 0 && length == PAGE_CACHE_SIZE)
2867                 ClearPageChecked(page);
2868
2869         return jbd2_journal_invalidatepage(journal, page, offset, length);
2870 }
2871
2872 /* Wrapper for aops... */
2873 static void ext4_journalled_invalidatepage(struct page *page,
2874                                            unsigned int offset,
2875                                            unsigned int length)
2876 {
2877         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2878 }
2879
2880 static int ext4_releasepage(struct page *page, gfp_t wait)
2881 {
2882         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2883
2884         trace_ext4_releasepage(page);
2885
2886         /* Page has dirty journalled data -> cannot release */
2887         if (PageChecked(page))
2888                 return 0;
2889         if (journal)
2890                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2891         else
2892                 return try_to_free_buffers(page);
2893 }
2894
2895 /*
2896  * ext4_get_block used when preparing for a DIO write or buffer write.
2897  * We allocate an uinitialized extent if blocks haven't been allocated.
2898  * The extent will be converted to initialized after the IO is complete.
2899  */
2900 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2901                    struct buffer_head *bh_result, int create)
2902 {
2903         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2904                    inode->i_ino, create);
2905         return _ext4_get_block(inode, iblock, bh_result,
2906                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2907 }
2908
2909 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2910                    struct buffer_head *bh_result, int create)
2911 {
2912         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2913                    inode->i_ino, create);
2914         return _ext4_get_block(inode, iblock, bh_result,
2915                                EXT4_GET_BLOCKS_NO_LOCK);
2916 }
2917
2918 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2919                             ssize_t size, void *private)
2920 {
2921         ext4_io_end_t *io_end = iocb->private;
2922
2923         /* if not async direct IO just return */
2924         if (!io_end)
2925                 return;
2926
2927         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2928                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2929                   iocb->private, io_end->inode->i_ino, iocb, offset,
2930                   size);
2931
2932         iocb->private = NULL;
2933         io_end->offset = offset;
2934         io_end->size = size;
2935         ext4_put_io_end(io_end);
2936 }
2937
2938 /*
2939  * For ext4 extent files, ext4 will do direct-io write to holes,
2940  * preallocated extents, and those write extend the file, no need to
2941  * fall back to buffered IO.
2942  *
2943  * For holes, we fallocate those blocks, mark them as unwritten
2944  * If those blocks were preallocated, we mark sure they are split, but
2945  * still keep the range to write as unwritten.
2946  *
2947  * The unwritten extents will be converted to written when DIO is completed.
2948  * For async direct IO, since the IO may still pending when return, we
2949  * set up an end_io call back function, which will do the conversion
2950  * when async direct IO completed.
2951  *
2952  * If the O_DIRECT write will extend the file then add this inode to the
2953  * orphan list.  So recovery will truncate it back to the original size
2954  * if the machine crashes during the write.
2955  *
2956  */
2957 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2958                               struct iov_iter *iter, loff_t offset)
2959 {
2960         struct file *file = iocb->ki_filp;
2961         struct inode *inode = file->f_mapping->host;
2962         ssize_t ret;
2963         size_t count = iov_iter_count(iter);
2964         int overwrite = 0;
2965         get_block_t *get_block_func = NULL;
2966         int dio_flags = 0;
2967         loff_t final_size = offset + count;
2968         ext4_io_end_t *io_end = NULL;
2969
2970         /* Use the old path for reads and writes beyond i_size. */
2971         if (rw != WRITE || final_size > inode->i_size)
2972                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2973
2974         BUG_ON(iocb->private == NULL);
2975
2976         /*
2977          * Make all waiters for direct IO properly wait also for extent
2978          * conversion. This also disallows race between truncate() and
2979          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2980          */
2981         if (rw == WRITE)
2982                 atomic_inc(&inode->i_dio_count);
2983
2984         /* If we do a overwrite dio, i_mutex locking can be released */
2985         overwrite = *((int *)iocb->private);
2986
2987         if (overwrite) {
2988                 down_read(&EXT4_I(inode)->i_data_sem);
2989                 mutex_unlock(&inode->i_mutex);
2990         }
2991
2992         /*
2993          * We could direct write to holes and fallocate.
2994          *
2995          * Allocated blocks to fill the hole are marked as
2996          * unwritten to prevent parallel buffered read to expose
2997          * the stale data before DIO complete the data IO.
2998          *
2999          * As to previously fallocated extents, ext4 get_block will
3000          * just simply mark the buffer mapped but still keep the
3001          * extents unwritten.
3002          *
3003          * For non AIO case, we will convert those unwritten extents
3004          * to written after return back from blockdev_direct_IO.
3005          *
3006          * For async DIO, the conversion needs to be deferred when the
3007          * IO is completed. The ext4 end_io callback function will be
3008          * called to take care of the conversion work.  Here for async
3009          * case, we allocate an io_end structure to hook to the iocb.
3010          */
3011         iocb->private = NULL;
3012         ext4_inode_aio_set(inode, NULL);
3013         if (!is_sync_kiocb(iocb)) {
3014                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3015                 if (!io_end) {
3016                         ret = -ENOMEM;
3017                         goto retake_lock;
3018                 }
3019                 /*
3020                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3021                  */
3022                 iocb->private = ext4_get_io_end(io_end);
3023                 /*
3024                  * we save the io structure for current async direct
3025                  * IO, so that later ext4_map_blocks() could flag the
3026                  * io structure whether there is a unwritten extents
3027                  * needs to be converted when IO is completed.
3028                  */
3029                 ext4_inode_aio_set(inode, io_end);
3030         }
3031
3032         if (overwrite) {
3033                 get_block_func = ext4_get_block_write_nolock;
3034         } else {
3035                 get_block_func = ext4_get_block_write;
3036                 dio_flags = DIO_LOCKING;
3037         }
3038         ret = __blockdev_direct_IO(rw, iocb, inode,
3039                                    inode->i_sb->s_bdev, iter,
3040                                    offset,
3041                                    get_block_func,
3042                                    ext4_end_io_dio,
3043                                    NULL,
3044                                    dio_flags);
3045
3046         /*
3047          * Put our reference to io_end. This can free the io_end structure e.g.
3048          * in sync IO case or in case of error. It can even perform extent
3049          * conversion if all bios we submitted finished before we got here.
3050          * Note that in that case iocb->private can be already set to NULL
3051          * here.
3052          */
3053         if (io_end) {
3054                 ext4_inode_aio_set(inode, NULL);
3055                 ext4_put_io_end(io_end);
3056                 /*
3057                  * When no IO was submitted ext4_end_io_dio() was not
3058                  * called so we have to put iocb's reference.
3059                  */
3060                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3061                         WARN_ON(iocb->private != io_end);
3062                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3063                         ext4_put_io_end(io_end);
3064                         iocb->private = NULL;
3065                 }
3066         }
3067         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3068                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3069                 int err;
3070                 /*
3071                  * for non AIO case, since the IO is already
3072                  * completed, we could do the conversion right here
3073                  */
3074                 err = ext4_convert_unwritten_extents(NULL, inode,
3075                                                      offset, ret);
3076                 if (err < 0)
3077                         ret = err;
3078                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079         }
3080
3081 retake_lock:
3082         if (rw == WRITE)
3083                 inode_dio_done(inode);
3084         /* take i_mutex locking again if we do a ovewrite dio */
3085         if (overwrite) {
3086                 up_read(&EXT4_I(inode)->i_data_sem);
3087                 mutex_lock(&inode->i_mutex);
3088         }
3089
3090         return ret;
3091 }
3092
3093 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3094                               struct iov_iter *iter, loff_t offset)
3095 {
3096         struct file *file = iocb->ki_filp;
3097         struct inode *inode = file->f_mapping->host;
3098         size_t count = iov_iter_count(iter);
3099         ssize_t ret;
3100
3101         /*
3102          * If we are doing data journalling we don't support O_DIRECT
3103          */
3104         if (ext4_should_journal_data(inode))
3105                 return 0;
3106
3107         /* Let buffer I/O handle the inline data case. */
3108         if (ext4_has_inline_data(inode))
3109                 return 0;
3110
3111         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3112         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3113                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3114         else
3115                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3116         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3117         return ret;
3118 }
3119
3120 /*
3121  * Pages can be marked dirty completely asynchronously from ext4's journalling
3122  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3123  * much here because ->set_page_dirty is called under VFS locks.  The page is
3124  * not necessarily locked.
3125  *
3126  * We cannot just dirty the page and leave attached buffers clean, because the
3127  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3128  * or jbddirty because all the journalling code will explode.
3129  *
3130  * So what we do is to mark the page "pending dirty" and next time writepage
3131  * is called, propagate that into the buffers appropriately.
3132  */
3133 static int ext4_journalled_set_page_dirty(struct page *page)
3134 {
3135         SetPageChecked(page);
3136         return __set_page_dirty_nobuffers(page);
3137 }
3138
3139 static const struct address_space_operations ext4_aops = {
3140         .readpage               = ext4_readpage,
3141         .readpages              = ext4_readpages,
3142         .writepage              = ext4_writepage,
3143         .writepages             = ext4_writepages,
3144         .write_begin            = ext4_write_begin,
3145         .write_end              = ext4_write_end,
3146         .bmap                   = ext4_bmap,
3147         .invalidatepage         = ext4_invalidatepage,
3148         .releasepage            = ext4_releasepage,
3149         .direct_IO              = ext4_direct_IO,
3150         .migratepage            = buffer_migrate_page,
3151         .is_partially_uptodate  = block_is_partially_uptodate,
3152         .error_remove_page      = generic_error_remove_page,
3153 };
3154
3155 static const struct address_space_operations ext4_journalled_aops = {
3156         .readpage               = ext4_readpage,
3157         .readpages              = ext4_readpages,
3158         .writepage              = ext4_writepage,
3159         .writepages             = ext4_writepages,
3160         .write_begin            = ext4_write_begin,
3161         .write_end              = ext4_journalled_write_end,
3162         .set_page_dirty         = ext4_journalled_set_page_dirty,
3163         .bmap                   = ext4_bmap,
3164         .invalidatepage         = ext4_journalled_invalidatepage,
3165         .releasepage            = ext4_releasepage,
3166         .direct_IO              = ext4_direct_IO,
3167         .is_partially_uptodate  = block_is_partially_uptodate,
3168         .error_remove_page      = generic_error_remove_page,
3169 };
3170
3171 static const struct address_space_operations ext4_da_aops = {
3172         .readpage               = ext4_readpage,
3173         .readpages              = ext4_readpages,
3174         .writepage              = ext4_writepage,
3175         .writepages             = ext4_writepages,
3176         .write_begin            = ext4_da_write_begin,
3177         .write_end              = ext4_da_write_end,
3178         .bmap                   = ext4_bmap,
3179         .invalidatepage         = ext4_da_invalidatepage,
3180         .releasepage            = ext4_releasepage,
3181         .direct_IO              = ext4_direct_IO,
3182         .migratepage            = buffer_migrate_page,
3183         .is_partially_uptodate  = block_is_partially_uptodate,
3184         .error_remove_page      = generic_error_remove_page,
3185 };
3186
3187 void ext4_set_aops(struct inode *inode)
3188 {
3189         switch (ext4_inode_journal_mode(inode)) {
3190         case EXT4_INODE_ORDERED_DATA_MODE:
3191                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3192                 break;
3193         case EXT4_INODE_WRITEBACK_DATA_MODE:
3194                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3195                 break;
3196         case EXT4_INODE_JOURNAL_DATA_MODE:
3197                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3198                 return;
3199         default:
3200                 BUG();
3201         }
3202         if (test_opt(inode->i_sb, DELALLOC))
3203                 inode->i_mapping->a_ops = &ext4_da_aops;
3204         else
3205                 inode->i_mapping->a_ops = &ext4_aops;
3206 }
3207
3208 /*
3209  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3210  * starting from file offset 'from'.  The range to be zero'd must
3211  * be contained with in one block.  If the specified range exceeds
3212  * the end of the block it will be shortened to end of the block
3213  * that cooresponds to 'from'
3214  */
3215 static int ext4_block_zero_page_range(handle_t *handle,
3216                 struct address_space *mapping, loff_t from, loff_t length)
3217 {
3218         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3219         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3220         unsigned blocksize, max, pos;
3221         ext4_lblk_t iblock;
3222         struct inode *inode = mapping->host;
3223         struct buffer_head *bh;
3224         struct page *page;
3225         int err = 0;
3226
3227         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3228                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3229         if (!page)
3230                 return -ENOMEM;
3231
3232         blocksize = inode->i_sb->s_blocksize;
3233         max = blocksize - (offset & (blocksize - 1));
3234
3235         /*
3236          * correct length if it does not fall between
3237          * 'from' and the end of the block
3238          */
3239         if (length > max || length < 0)
3240                 length = max;
3241
3242         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3243
3244         if (!page_has_buffers(page))
3245                 create_empty_buffers(page, blocksize, 0);
3246
3247         /* Find the buffer that contains "offset" */
3248         bh = page_buffers(page);
3249         pos = blocksize;
3250         while (offset >= pos) {
3251                 bh = bh->b_this_page;
3252                 iblock++;
3253                 pos += blocksize;
3254         }
3255         if (buffer_freed(bh)) {
3256                 BUFFER_TRACE(bh, "freed: skip");
3257                 goto unlock;
3258         }
3259         if (!buffer_mapped(bh)) {
3260                 BUFFER_TRACE(bh, "unmapped");
3261                 ext4_get_block(inode, iblock, bh, 0);
3262                 /* unmapped? It's a hole - nothing to do */
3263                 if (!buffer_mapped(bh)) {
3264                         BUFFER_TRACE(bh, "still unmapped");
3265                         goto unlock;
3266                 }
3267         }
3268
3269         /* Ok, it's mapped. Make sure it's up-to-date */
3270         if (PageUptodate(page))
3271                 set_buffer_uptodate(bh);
3272
3273         if (!buffer_uptodate(bh)) {
3274                 err = -EIO;
3275                 ll_rw_block(READ, 1, &bh);
3276                 wait_on_buffer(bh);
3277                 /* Uhhuh. Read error. Complain and punt. */
3278                 if (!buffer_uptodate(bh))
3279                         goto unlock;
3280         }
3281         if (ext4_should_journal_data(inode)) {
3282                 BUFFER_TRACE(bh, "get write access");
3283                 err = ext4_journal_get_write_access(handle, bh);
3284                 if (err)
3285                         goto unlock;
3286         }
3287         zero_user(page, offset, length);
3288         BUFFER_TRACE(bh, "zeroed end of block");
3289
3290         if (ext4_should_journal_data(inode)) {
3291                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3292         } else {
3293                 err = 0;
3294                 mark_buffer_dirty(bh);
3295                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3296                         err = ext4_jbd2_file_inode(handle, inode);
3297         }
3298
3299 unlock:
3300         unlock_page(page);
3301         page_cache_release(page);
3302         return err;
3303 }
3304
3305 /*
3306  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3307  * up to the end of the block which corresponds to `from'.
3308  * This required during truncate. We need to physically zero the tail end
3309  * of that block so it doesn't yield old data if the file is later grown.
3310  */
3311 static int ext4_block_truncate_page(handle_t *handle,
3312                 struct address_space *mapping, loff_t from)
3313 {
3314         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3315         unsigned length;
3316         unsigned blocksize;
3317         struct inode *inode = mapping->host;
3318
3319         blocksize = inode->i_sb->s_blocksize;
3320         length = blocksize - (offset & (blocksize - 1));
3321
3322         return ext4_block_zero_page_range(handle, mapping, from, length);
3323 }
3324
3325 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3326                              loff_t lstart, loff_t length)
3327 {
3328         struct super_block *sb = inode->i_sb;
3329         struct address_space *mapping = inode->i_mapping;
3330         unsigned partial_start, partial_end;
3331         ext4_fsblk_t start, end;
3332         loff_t byte_end = (lstart + length - 1);
3333         int err = 0;
3334
3335         partial_start = lstart & (sb->s_blocksize - 1);
3336         partial_end = byte_end & (sb->s_blocksize - 1);
3337
3338         start = lstart >> sb->s_blocksize_bits;
3339         end = byte_end >> sb->s_blocksize_bits;
3340
3341         /* Handle partial zero within the single block */
3342         if (start == end &&
3343             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3344                 err = ext4_block_zero_page_range(handle, mapping,
3345                                                  lstart, length);
3346                 return err;
3347         }
3348         /* Handle partial zero out on the start of the range */
3349         if (partial_start) {
3350                 err = ext4_block_zero_page_range(handle, mapping,
3351                                                  lstart, sb->s_blocksize);
3352                 if (err)
3353                         return err;
3354         }
3355         /* Handle partial zero out on the end of the range */
3356         if (partial_end != sb->s_blocksize - 1)
3357                 err = ext4_block_zero_page_range(handle, mapping,
3358                                                  byte_end - partial_end,
3359                                                  partial_end + 1);
3360         return err;
3361 }
3362
3363 int ext4_can_truncate(struct inode *inode)
3364 {
3365         if (S_ISREG(inode->i_mode))
3366                 return 1;
3367         if (S_ISDIR(inode->i_mode))
3368                 return 1;
3369         if (S_ISLNK(inode->i_mode))
3370                 return !ext4_inode_is_fast_symlink(inode);
3371         return 0;
3372 }
3373
3374 /*
3375  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3376  * associated with the given offset and length
3377  *
3378  * @inode:  File inode
3379  * @offset: The offset where the hole will begin
3380  * @len:    The length of the hole
3381  *
3382  * Returns: 0 on success or negative on failure
3383  */
3384
3385 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3386 {
3387         struct super_block *sb = inode->i_sb;
3388         ext4_lblk_t first_block, stop_block;
3389         struct address_space *mapping = inode->i_mapping;
3390         loff_t first_block_offset, last_block_offset;
3391         handle_t *handle;
3392         unsigned int credits;
3393         int ret = 0;
3394
3395         if (!S_ISREG(inode->i_mode))
3396                 return -EOPNOTSUPP;
3397
3398         trace_ext4_punch_hole(inode, offset, length, 0);
3399
3400         /*
3401          * Write out all dirty pages to avoid race conditions
3402          * Then release them.
3403          */
3404         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3405                 ret = filemap_write_and_wait_range(mapping, offset,
3406                                                    offset + length - 1);
3407                 if (ret)
3408                         return ret;
3409         }
3410
3411         mutex_lock(&inode->i_mutex);
3412
3413         /* No need to punch hole beyond i_size */
3414         if (offset >= inode->i_size)
3415                 goto out_mutex;
3416
3417         /*
3418          * If the hole extends beyond i_size, set the hole
3419          * to end after the page that contains i_size
3420          */
3421         if (offset + length > inode->i_size) {
3422                 length = inode->i_size +
3423                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3424                    offset;
3425         }
3426
3427         if (offset & (sb->s_blocksize - 1) ||
3428             (offset + length) & (sb->s_blocksize - 1)) {
3429                 /*
3430                  * Attach jinode to inode for jbd2 if we do any zeroing of
3431                  * partial block
3432                  */
3433                 ret = ext4_inode_attach_jinode(inode);
3434                 if (ret < 0)
3435                         goto out_mutex;
3436
3437         }
3438
3439         first_block_offset = round_up(offset, sb->s_blocksize);
3440         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3441
3442         /* Now release the pages and zero block aligned part of pages*/
3443         if (last_block_offset > first_block_offset)
3444                 truncate_pagecache_range(inode, first_block_offset,
3445                                          last_block_offset);
3446
3447         /* Wait all existing dio workers, newcomers will block on i_mutex */
3448         ext4_inode_block_unlocked_dio(inode);
3449         inode_dio_wait(inode);
3450
3451         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3452                 credits = ext4_writepage_trans_blocks(inode);
3453         else
3454                 credits = ext4_blocks_for_truncate(inode);
3455         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3456         if (IS_ERR(handle)) {
3457                 ret = PTR_ERR(handle);
3458                 ext4_std_error(sb, ret);
3459                 goto out_dio;
3460         }
3461
3462         ret = ext4_zero_partial_blocks(handle, inode, offset,
3463                                        length);
3464         if (ret)
3465                 goto out_stop;
3466
3467         first_block = (offset + sb->s_blocksize - 1) >>
3468                 EXT4_BLOCK_SIZE_BITS(sb);
3469         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3470
3471         /* If there are no blocks to remove, return now */
3472         if (first_block >= stop_block)
3473                 goto out_stop;
3474
3475         down_write(&EXT4_I(inode)->i_data_sem);
3476         ext4_discard_preallocations(inode);
3477
3478         ret = ext4_es_remove_extent(inode, first_block,
3479                                     stop_block - first_block);
3480         if (ret) {
3481                 up_write(&EXT4_I(inode)->i_data_sem);
3482                 goto out_stop;
3483         }
3484
3485         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3486                 ret = ext4_ext_remove_space(inode, first_block,
3487                                             stop_block - 1);
3488         else
3489                 ret = ext4_ind_remove_space(handle, inode, first_block,
3490                                             stop_block);
3491
3492         up_write(&EXT4_I(inode)->i_data_sem);
3493         if (IS_SYNC(inode))
3494                 ext4_handle_sync(handle);
3495
3496         /* Now release the pages again to reduce race window */
3497         if (last_block_offset > first_block_offset)
3498                 truncate_pagecache_range(inode, first_block_offset,
3499                                          last_block_offset);
3500
3501         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3502         ext4_mark_inode_dirty(handle, inode);
3503 out_stop:
3504         ext4_journal_stop(handle);
3505 out_dio:
3506         ext4_inode_resume_unlocked_dio(inode);
3507 out_mutex:
3508         mutex_unlock(&inode->i_mutex);
3509         return ret;
3510 }
3511
3512 int ext4_inode_attach_jinode(struct inode *inode)
3513 {
3514         struct ext4_inode_info *ei = EXT4_I(inode);
3515         struct jbd2_inode *jinode;
3516
3517         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3518                 return 0;
3519
3520         jinode = jbd2_alloc_inode(GFP_KERNEL);
3521         spin_lock(&inode->i_lock);
3522         if (!ei->jinode) {
3523                 if (!jinode) {
3524                         spin_unlock(&inode->i_lock);
3525                         return -ENOMEM;
3526                 }
3527                 ei->jinode = jinode;
3528                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3529                 jinode = NULL;
3530         }
3531         spin_unlock(&inode->i_lock);
3532         if (unlikely(jinode != NULL))
3533                 jbd2_free_inode(jinode);
3534         return 0;
3535 }
3536
3537 /*
3538  * ext4_truncate()
3539  *
3540  * We block out ext4_get_block() block instantiations across the entire
3541  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3542  * simultaneously on behalf of the same inode.
3543  *
3544  * As we work through the truncate and commit bits of it to the journal there
3545  * is one core, guiding principle: the file's tree must always be consistent on
3546  * disk.  We must be able to restart the truncate after a crash.
3547  *
3548  * The file's tree may be transiently inconsistent in memory (although it
3549  * probably isn't), but whenever we close off and commit a journal transaction,
3550  * the contents of (the filesystem + the journal) must be consistent and
3551  * restartable.  It's pretty simple, really: bottom up, right to left (although
3552  * left-to-right works OK too).
3553  *
3554  * Note that at recovery time, journal replay occurs *before* the restart of
3555  * truncate against the orphan inode list.
3556  *
3557  * The committed inode has the new, desired i_size (which is the same as
3558  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3559  * that this inode's truncate did not complete and it will again call
3560  * ext4_truncate() to have another go.  So there will be instantiated blocks
3561  * to the right of the truncation point in a crashed ext4 filesystem.  But
3562  * that's fine - as long as they are linked from the inode, the post-crash
3563  * ext4_truncate() run will find them and release them.
3564  */
3565 void ext4_truncate(struct inode *inode)
3566 {
3567         struct ext4_inode_info *ei = EXT4_I(inode);
3568         unsigned int credits;
3569         handle_t *handle;
3570         struct address_space *mapping = inode->i_mapping;
3571
3572         /*
3573          * There is a possibility that we're either freeing the inode
3574          * or it's a completely new inode. In those cases we might not
3575          * have i_mutex locked because it's not necessary.
3576          */
3577         if (!(inode->i_state & (I_NEW|I_FREEING)))
3578                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3579         trace_ext4_truncate_enter(inode);
3580
3581         if (!ext4_can_truncate(inode))
3582                 return;
3583
3584         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3585
3586         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3587                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3588
3589         if (ext4_has_inline_data(inode)) {
3590                 int has_inline = 1;
3591
3592                 ext4_inline_data_truncate(inode, &has_inline);
3593                 if (has_inline)
3594                         return;
3595         }
3596
3597         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3598         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3599                 if (ext4_inode_attach_jinode(inode) < 0)
3600                         return;
3601         }
3602
3603         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3604                 credits = ext4_writepage_trans_blocks(inode);
3605         else
3606                 credits = ext4_blocks_for_truncate(inode);
3607
3608         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3609         if (IS_ERR(handle)) {
3610                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3611                 return;
3612         }
3613
3614         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3615                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3616
3617         /*
3618          * We add the inode to the orphan list, so that if this
3619          * truncate spans multiple transactions, and we crash, we will
3620          * resume the truncate when the filesystem recovers.  It also
3621          * marks the inode dirty, to catch the new size.
3622          *
3623          * Implication: the file must always be in a sane, consistent
3624          * truncatable state while each transaction commits.
3625          */
3626         if (ext4_orphan_add(handle, inode))
3627                 goto out_stop;
3628
3629         down_write(&EXT4_I(inode)->i_data_sem);
3630
3631         ext4_discard_preallocations(inode);
3632
3633         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3634                 ext4_ext_truncate(handle, inode);
3635         else
3636                 ext4_ind_truncate(handle, inode);
3637
3638         up_write(&ei->i_data_sem);
3639
3640         if (IS_SYNC(inode))
3641                 ext4_handle_sync(handle);
3642
3643 out_stop:
3644         /*
3645          * If this was a simple ftruncate() and the file will remain alive,
3646          * then we need to clear up the orphan record which we created above.
3647          * However, if this was a real unlink then we were called by
3648          * ext4_delete_inode(), and we allow that function to clean up the
3649          * orphan info for us.
3650          */
3651         if (inode->i_nlink)
3652                 ext4_orphan_del(handle, inode);
3653
3654         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3655         ext4_mark_inode_dirty(handle, inode);
3656         ext4_journal_stop(handle);
3657
3658         trace_ext4_truncate_exit(inode);
3659 }
3660
3661 /*
3662  * ext4_get_inode_loc returns with an extra refcount against the inode's
3663  * underlying buffer_head on success. If 'in_mem' is true, we have all
3664  * data in memory that is needed to recreate the on-disk version of this
3665  * inode.
3666  */
3667 static int __ext4_get_inode_loc(struct inode *inode,
3668                                 struct ext4_iloc *iloc, int in_mem)
3669 {
3670         struct ext4_group_desc  *gdp;
3671         struct buffer_head      *bh;
3672         struct super_block      *sb = inode->i_sb;
3673         ext4_fsblk_t            block;
3674         int                     inodes_per_block, inode_offset;
3675
3676         iloc->bh = NULL;
3677         if (!ext4_valid_inum(sb, inode->i_ino))
3678                 return -EIO;
3679
3680         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3681         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3682         if (!gdp)
3683                 return -EIO;
3684
3685         /*
3686          * Figure out the offset within the block group inode table
3687          */
3688         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3689         inode_offset = ((inode->i_ino - 1) %
3690                         EXT4_INODES_PER_GROUP(sb));
3691         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3692         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3693
3694         bh = sb_getblk(sb, block);
3695         if (unlikely(!bh))
3696                 return -ENOMEM;
3697         if (!buffer_uptodate(bh)) {
3698                 lock_buffer(bh);
3699
3700                 /*
3701                  * If the buffer has the write error flag, we have failed
3702                  * to write out another inode in the same block.  In this
3703                  * case, we don't have to read the block because we may
3704                  * read the old inode data successfully.
3705                  */
3706                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3707                         set_buffer_uptodate(bh);
3708
3709                 if (buffer_uptodate(bh)) {
3710                         /* someone brought it uptodate while we waited */
3711                         unlock_buffer(bh);
3712                         goto has_buffer;
3713                 }
3714
3715                 /*
3716                  * If we have all information of the inode in memory and this
3717                  * is the only valid inode in the block, we need not read the
3718                  * block.
3719                  */
3720                 if (in_mem) {
3721                         struct buffer_head *bitmap_bh;
3722                         int i, start;
3723
3724                         start = inode_offset & ~(inodes_per_block - 1);
3725
3726                         /* Is the inode bitmap in cache? */
3727                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3728                         if (unlikely(!bitmap_bh))
3729                                 goto make_io;
3730
3731                         /*
3732                          * If the inode bitmap isn't in cache then the
3733                          * optimisation may end up performing two reads instead
3734                          * of one, so skip it.
3735                          */
3736                         if (!buffer_uptodate(bitmap_bh)) {
3737                                 brelse(bitmap_bh);
3738                                 goto make_io;
3739                         }
3740                         for (i = start; i < start + inodes_per_block; i++) {
3741                                 if (i == inode_offset)
3742                                         continue;
3743                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3744                                         break;
3745                         }
3746                         brelse(bitmap_bh);
3747                         if (i == start + inodes_per_block) {
3748                                 /* all other inodes are free, so skip I/O */
3749                                 memset(bh->b_data, 0, bh->b_size);
3750                                 set_buffer_uptodate(bh);
3751                                 unlock_buffer(bh);
3752                                 goto has_buffer;
3753                         }
3754                 }
3755
3756 make_io:
3757                 /*
3758                  * If we need to do any I/O, try to pre-readahead extra
3759                  * blocks from the inode table.
3760                  */
3761                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3762                         ext4_fsblk_t b, end, table;
3763                         unsigned num;
3764                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3765
3766                         table = ext4_inode_table(sb, gdp);
3767                         /* s_inode_readahead_blks is always a power of 2 */
3768                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3769                         if (table > b)
3770                                 b = table;
3771                         end = b + ra_blks;
3772                         num = EXT4_INODES_PER_GROUP(sb);
3773                         if (ext4_has_group_desc_csum(sb))
3774                                 num -= ext4_itable_unused_count(sb, gdp);
3775                         table += num / inodes_per_block;
3776                         if (end > table)
3777                                 end = table;
3778                         while (b <= end)
3779                                 sb_breadahead(sb, b++);
3780                 }
3781
3782                 /*
3783                  * There are other valid inodes in the buffer, this inode
3784                  * has in-inode xattrs, or we don't have this inode in memory.
3785                  * Read the block from disk.
3786                  */
3787                 trace_ext4_load_inode(inode);
3788                 get_bh(bh);
3789                 bh->b_end_io = end_buffer_read_sync;
3790                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3791                 wait_on_buffer(bh);
3792                 if (!buffer_uptodate(bh)) {
3793                         EXT4_ERROR_INODE_BLOCK(inode, block,
3794                                                "unable to read itable block");
3795                         brelse(bh);
3796                         return -EIO;
3797                 }
3798         }
3799 has_buffer:
3800         iloc->bh = bh;
3801         return 0;
3802 }
3803
3804 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3805 {
3806         /* We have all inode data except xattrs in memory here. */
3807         return __ext4_get_inode_loc(inode, iloc,
3808                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3809 }
3810
3811 void ext4_set_inode_flags(struct inode *inode)
3812 {
3813         unsigned int flags = EXT4_I(inode)->i_flags;
3814         unsigned int new_fl = 0;
3815
3816         if (flags & EXT4_SYNC_FL)
3817                 new_fl |= S_SYNC;
3818         if (flags & EXT4_APPEND_FL)
3819                 new_fl |= S_APPEND;
3820         if (flags & EXT4_IMMUTABLE_FL)
3821                 new_fl |= S_IMMUTABLE;
3822         if (flags & EXT4_NOATIME_FL)
3823                 new_fl |= S_NOATIME;
3824         if (flags & EXT4_DIRSYNC_FL)
3825                 new_fl |= S_DIRSYNC;
3826         inode_set_flags(inode, new_fl,
3827                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3828 }
3829
3830 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3831 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3832 {
3833         unsigned int vfs_fl;
3834         unsigned long old_fl, new_fl;
3835
3836         do {
3837                 vfs_fl = ei->vfs_inode.i_flags;
3838                 old_fl = ei->i_flags;
3839                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3840                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3841                                 EXT4_DIRSYNC_FL);
3842                 if (vfs_fl & S_SYNC)
3843                         new_fl |= EXT4_SYNC_FL;
3844                 if (vfs_fl & S_APPEND)
3845                         new_fl |= EXT4_APPEND_FL;
3846                 if (vfs_fl & S_IMMUTABLE)
3847                         new_fl |= EXT4_IMMUTABLE_FL;
3848                 if (vfs_fl & S_NOATIME)
3849                         new_fl |= EXT4_NOATIME_FL;
3850                 if (vfs_fl & S_DIRSYNC)
3851                         new_fl |= EXT4_DIRSYNC_FL;
3852         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3853 }
3854
3855 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3856                                   struct ext4_inode_info *ei)
3857 {
3858         blkcnt_t i_blocks ;
3859         struct inode *inode = &(ei->vfs_inode);
3860         struct super_block *sb = inode->i_sb;
3861
3862         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3863                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3864                 /* we are using combined 48 bit field */
3865                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3866                                         le32_to_cpu(raw_inode->i_blocks_lo);
3867                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3868                         /* i_blocks represent file system block size */
3869                         return i_blocks  << (inode->i_blkbits - 9);
3870                 } else {
3871                         return i_blocks;
3872                 }
3873         } else {
3874                 return le32_to_cpu(raw_inode->i_blocks_lo);
3875         }
3876 }
3877
3878 static inline void ext4_iget_extra_inode(struct inode *inode,
3879                                          struct ext4_inode *raw_inode,
3880                                          struct ext4_inode_info *ei)
3881 {
3882         __le32 *magic = (void *)raw_inode +
3883                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3884         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3885                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3886                 ext4_find_inline_data_nolock(inode);
3887         } else
3888                 EXT4_I(inode)->i_inline_off = 0;
3889 }
3890
3891 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3892 {
3893         struct ext4_iloc iloc;
3894         struct ext4_inode *raw_inode;
3895         struct ext4_inode_info *ei;
3896         struct inode *inode;
3897         journal_t *journal = EXT4_SB(sb)->s_journal;
3898         long ret;
3899         int block;
3900         uid_t i_uid;
3901         gid_t i_gid;
3902
3903         inode = iget_locked(sb, ino);
3904         if (!inode)
3905                 return ERR_PTR(-ENOMEM);
3906         if (!(inode->i_state & I_NEW))
3907                 return inode;
3908
3909         ei = EXT4_I(inode);
3910         iloc.bh = NULL;
3911
3912         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3913         if (ret < 0)
3914                 goto bad_inode;
3915         raw_inode = ext4_raw_inode(&iloc);
3916
3917         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3918                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3919                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3920                     EXT4_INODE_SIZE(inode->i_sb)) {
3921                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3922                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3923                                 EXT4_INODE_SIZE(inode->i_sb));
3924                         ret = -EIO;
3925                         goto bad_inode;
3926                 }
3927         } else
3928                 ei->i_extra_isize = 0;
3929
3930         /* Precompute checksum seed for inode metadata */
3931         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3932                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3933                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3934                 __u32 csum;
3935                 __le32 inum = cpu_to_le32(inode->i_ino);
3936                 __le32 gen = raw_inode->i_generation;
3937                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3938                                    sizeof(inum));
3939                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3940                                               sizeof(gen));
3941         }
3942
3943         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3944                 EXT4_ERROR_INODE(inode, "checksum invalid");
3945                 ret = -EIO;
3946                 goto bad_inode;
3947         }
3948
3949         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3950         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3951         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3952         if (!(test_opt(inode->i_sb, NO_UID32))) {
3953                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3954                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3955         }
3956         i_uid_write(inode, i_uid);
3957         i_gid_write(inode, i_gid);
3958         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3959
3960         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3961         ei->i_inline_off = 0;
3962         ei->i_dir_start_lookup = 0;
3963         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3964         /* We now have enough fields to check if the inode was active or not.
3965          * This is needed because nfsd might try to access dead inodes
3966          * the test is that same one that e2fsck uses
3967          * NeilBrown 1999oct15
3968          */
3969         if (inode->i_nlink == 0) {
3970                 if ((inode->i_mode == 0 ||
3971                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3972                     ino != EXT4_BOOT_LOADER_INO) {
3973                         /* this inode is deleted */
3974                         ret = -ESTALE;
3975                         goto bad_inode;
3976                 }
3977                 /* The only unlinked inodes we let through here have
3978                  * valid i_mode and are being read by the orphan
3979                  * recovery code: that's fine, we're about to complete
3980                  * the process of deleting those.
3981                  * OR it is the EXT4_BOOT_LOADER_INO which is
3982                  * not initialized on a new filesystem. */
3983         }
3984         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3985         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3986         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3987         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3988                 ei->i_file_acl |=
3989                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3990         inode->i_size = ext4_isize(raw_inode);
3991         ei->i_disksize = inode->i_size;
3992 #ifdef CONFIG_QUOTA
3993         ei->i_reserved_quota = 0;
3994 #endif
3995         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3996         ei->i_block_group = iloc.block_group;
3997         ei->i_last_alloc_group = ~0;
3998         /*
3999          * NOTE! The in-memory inode i_data array is in little-endian order
4000          * even on big-endian machines: we do NOT byteswap the block numbers!
4001          */
4002         for (block = 0; block < EXT4_N_BLOCKS; block++)
4003                 ei->i_data[block] = raw_inode->i_block[block];
4004         INIT_LIST_HEAD(&ei->i_orphan);
4005
4006         /*
4007          * Set transaction id's of transactions that have to be committed
4008          * to finish f[data]sync. We set them to currently running transaction
4009          * as we cannot be sure that the inode or some of its metadata isn't
4010          * part of the transaction - the inode could have been reclaimed and
4011          * now it is reread from disk.
4012          */
4013         if (journal) {
4014                 transaction_t *transaction;
4015                 tid_t tid;
4016
4017                 read_lock(&journal->j_state_lock);
4018                 if (journal->j_running_transaction)
4019                         transaction = journal->j_running_transaction;
4020                 else
4021                         transaction = journal->j_committing_transaction;
4022                 if (transaction)
4023                         tid = transaction->t_tid;
4024                 else
4025                         tid = journal->j_commit_sequence;
4026                 read_unlock(&journal->j_state_lock);
4027                 ei->i_sync_tid = tid;
4028                 ei->i_datasync_tid = tid;
4029         }
4030
4031         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4032                 if (ei->i_extra_isize == 0) {
4033                         /* The extra space is currently unused. Use it. */
4034                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4035                                             EXT4_GOOD_OLD_INODE_SIZE;
4036                 } else {
4037                         ext4_iget_extra_inode(inode, raw_inode, ei);
4038                 }
4039         }
4040
4041         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4042         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4043         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4044         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4045
4046         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4047                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4048                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4049                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4050                                 inode->i_version |=
4051                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4052                 }
4053         }
4054
4055         ret = 0;
4056         if (ei->i_file_acl &&
4057             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4058                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4059                                  ei->i_file_acl);
4060                 ret = -EIO;
4061                 goto bad_inode;
4062         } else if (!ext4_has_inline_data(inode)) {
4063                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4064                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4065                             (S_ISLNK(inode->i_mode) &&
4066                              !ext4_inode_is_fast_symlink(inode))))
4067                                 /* Validate extent which is part of inode */
4068                                 ret = ext4_ext_check_inode(inode);
4069                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4070                            (S_ISLNK(inode->i_mode) &&
4071                             !ext4_inode_is_fast_symlink(inode))) {
4072                         /* Validate block references which are part of inode */
4073                         ret = ext4_ind_check_inode(inode);
4074                 }
4075         }
4076         if (ret)
4077                 goto bad_inode;
4078
4079         if (S_ISREG(inode->i_mode)) {
4080                 inode->i_op = &ext4_file_inode_operations;
4081                 inode->i_fop = &ext4_file_operations;
4082                 ext4_set_aops(inode);
4083         } else if (S_ISDIR(inode->i_mode)) {
4084                 inode->i_op = &ext4_dir_inode_operations;
4085                 inode->i_fop = &ext4_dir_operations;
4086         } else if (S_ISLNK(inode->i_mode)) {
4087                 if (ext4_inode_is_fast_symlink(inode)) {
4088                         inode->i_op = &ext4_fast_symlink_inode_operations;
4089                         nd_terminate_link(ei->i_data, inode->i_size,
4090                                 sizeof(ei->i_data) - 1);
4091                 } else {
4092                         inode->i_op = &ext4_symlink_inode_operations;
4093                         ext4_set_aops(inode);
4094                 }
4095         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4096               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4097                 inode->i_op = &ext4_special_inode_operations;
4098                 if (raw_inode->i_block[0])
4099                         init_special_inode(inode, inode->i_mode,
4100                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4101                 else
4102                         init_special_inode(inode, inode->i_mode,
4103                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4104         } else if (ino == EXT4_BOOT_LOADER_INO) {
4105                 make_bad_inode(inode);
4106         } else {
4107                 ret = -EIO;
4108                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4109                 goto bad_inode;
4110         }
4111         brelse(iloc.bh);
4112         ext4_set_inode_flags(inode);
4113         unlock_new_inode(inode);
4114         return inode;
4115
4116 bad_inode:
4117         brelse(iloc.bh);
4118         iget_failed(inode);
4119         return ERR_PTR(ret);
4120 }
4121
4122 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4123 {
4124         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4125                 return ERR_PTR(-EIO);
4126         return ext4_iget(sb, ino);
4127 }
4128
4129 static int ext4_inode_blocks_set(handle_t *handle,
4130                                 struct ext4_inode *raw_inode,
4131                                 struct ext4_inode_info *ei)
4132 {
4133         struct inode *inode = &(ei->vfs_inode);
4134         u64 i_blocks = inode->i_blocks;
4135         struct super_block *sb = inode->i_sb;
4136
4137         if (i_blocks <= ~0U) {
4138                 /*
4139                  * i_blocks can be represented in a 32 bit variable
4140                  * as multiple of 512 bytes
4141                  */
4142                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4143                 raw_inode->i_blocks_high = 0;
4144                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4145                 return 0;
4146         }
4147         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4148                 return -EFBIG;
4149
4150         if (i_blocks <= 0xffffffffffffULL) {
4151                 /*
4152                  * i_blocks can be represented in a 48 bit variable
4153                  * as multiple of 512 bytes
4154                  */
4155                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4156                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4157                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4158         } else {
4159                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4160                 /* i_block is stored in file system block size */
4161                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4162                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4163                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4164         }
4165         return 0;
4166 }
4167
4168 /*
4169  * Post the struct inode info into an on-disk inode location in the
4170  * buffer-cache.  This gobbles the caller's reference to the
4171  * buffer_head in the inode location struct.
4172  *
4173  * The caller must have write access to iloc->bh.
4174  */
4175 static int ext4_do_update_inode(handle_t *handle,
4176                                 struct inode *inode,
4177                                 struct ext4_iloc *iloc)
4178 {
4179         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4180         struct ext4_inode_info *ei = EXT4_I(inode);
4181         struct buffer_head *bh = iloc->bh;
4182         struct super_block *sb = inode->i_sb;
4183         int err = 0, rc, block;
4184         int need_datasync = 0, set_large_file = 0;
4185         uid_t i_uid;
4186         gid_t i_gid;
4187
4188         spin_lock(&ei->i_raw_lock);
4189
4190         /* For fields not tracked in the in-memory inode,
4191          * initialise them to zero for new inodes. */
4192         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4193                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4194
4195         ext4_get_inode_flags(ei);
4196         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4197         i_uid = i_uid_read(inode);
4198         i_gid = i_gid_read(inode);
4199         if (!(test_opt(inode->i_sb, NO_UID32))) {
4200                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4201                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4202 /*
4203  * Fix up interoperability with old kernels. Otherwise, old inodes get
4204  * re-used with the upper 16 bits of the uid/gid intact
4205  */
4206                 if (!ei->i_dtime) {
4207                         raw_inode->i_uid_high =
4208                                 cpu_to_le16(high_16_bits(i_uid));
4209                         raw_inode->i_gid_high =
4210                                 cpu_to_le16(high_16_bits(i_gid));
4211                 } else {
4212                         raw_inode->i_uid_high = 0;
4213                         raw_inode->i_gid_high = 0;
4214                 }
4215         } else {
4216                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4217                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4218                 raw_inode->i_uid_high = 0;
4219                 raw_inode->i_gid_high = 0;
4220         }
4221         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4222
4223         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4224         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4225         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4226         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4227
4228         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4229         if (err) {
4230                 spin_unlock(&ei->i_raw_lock);
4231                 goto out_brelse;
4232         }
4233         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4234         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4235         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4236                 raw_inode->i_file_acl_high =
4237                         cpu_to_le16(ei->i_file_acl >> 32);
4238         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4239         if (ei->i_disksize != ext4_isize(raw_inode)) {
4240                 ext4_isize_set(raw_inode, ei->i_disksize);
4241                 need_datasync = 1;
4242         }
4243         if (ei->i_disksize > 0x7fffffffULL) {
4244                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4246                                 EXT4_SB(sb)->s_es->s_rev_level ==
4247                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4248                         set_large_file = 1;
4249         }
4250         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4251         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4252                 if (old_valid_dev(inode->i_rdev)) {
4253                         raw_inode->i_block[0] =
4254                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4255                         raw_inode->i_block[1] = 0;
4256                 } else {
4257                         raw_inode->i_block[0] = 0;
4258                         raw_inode->i_block[1] =
4259                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4260                         raw_inode->i_block[2] = 0;
4261                 }
4262         } else if (!ext4_has_inline_data(inode)) {
4263                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4264                         raw_inode->i_block[block] = ei->i_data[block];
4265         }
4266
4267         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4268                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4269                 if (ei->i_extra_isize) {
4270                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4271                                 raw_inode->i_version_hi =
4272                                         cpu_to_le32(inode->i_version >> 32);
4273                         raw_inode->i_extra_isize =
4274                                 cpu_to_le16(ei->i_extra_isize);
4275                 }
4276         }
4277
4278         ext4_inode_csum_set(inode, raw_inode, ei);
4279
4280         spin_unlock(&ei->i_raw_lock);
4281
4282         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4283         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4284         if (!err)
4285                 err = rc;
4286         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4287         if (set_large_file) {
4288                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4289                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4290                 if (err)
4291                         goto out_brelse;
4292                 ext4_update_dynamic_rev(sb);
4293                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4294                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4295                 ext4_handle_sync(handle);
4296                 err = ext4_handle_dirty_super(handle, sb);
4297         }
4298         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4299 out_brelse:
4300         brelse(bh);
4301         ext4_std_error(inode->i_sb, err);
4302         return err;
4303 }
4304
4305 /*
4306  * ext4_write_inode()
4307  *
4308  * We are called from a few places:
4309  *
4310  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4311  *   Here, there will be no transaction running. We wait for any running
4312  *   transaction to commit.
4313  *
4314  * - Within flush work (sys_sync(), kupdate and such).
4315  *   We wait on commit, if told to.
4316  *
4317  * - Within iput_final() -> write_inode_now()
4318  *   We wait on commit, if told to.
4319  *
4320  * In all cases it is actually safe for us to return without doing anything,
4321  * because the inode has been copied into a raw inode buffer in
4322  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4323  * writeback.
4324  *
4325  * Note that we are absolutely dependent upon all inode dirtiers doing the
4326  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4327  * which we are interested.
4328  *
4329  * It would be a bug for them to not do this.  The code:
4330  *
4331  *      mark_inode_dirty(inode)
4332  *      stuff();
4333  *      inode->i_size = expr;
4334  *
4335  * is in error because write_inode() could occur while `stuff()' is running,
4336  * and the new i_size will be lost.  Plus the inode will no longer be on the
4337  * superblock's dirty inode list.
4338  */
4339 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4340 {
4341         int err;
4342
4343         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4344                 return 0;
4345
4346         if (EXT4_SB(inode->i_sb)->s_journal) {
4347                 if (ext4_journal_current_handle()) {
4348                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4349                         dump_stack();
4350                         return -EIO;
4351                 }
4352
4353                 /*
4354                  * No need to force transaction in WB_SYNC_NONE mode. Also
4355                  * ext4_sync_fs() will force the commit after everything is
4356                  * written.
4357                  */
4358                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4359                         return 0;
4360
4361                 err = ext4_force_commit(inode->i_sb);
4362         } else {
4363                 struct ext4_iloc iloc;
4364
4365                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4366                 if (err)
4367                         return err;
4368                 /*
4369                  * sync(2) will flush the whole buffer cache. No need to do
4370                  * it here separately for each inode.
4371                  */
4372                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4373                         sync_dirty_buffer(iloc.bh);
4374                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4375                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376                                          "IO error syncing inode");
4377                         err = -EIO;
4378                 }
4379                 brelse(iloc.bh);
4380         }
4381         return err;
4382 }
4383
4384 /*
4385  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386  * buffers that are attached to a page stradding i_size and are undergoing
4387  * commit. In that case we have to wait for commit to finish and try again.
4388  */
4389 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390 {
4391         struct page *page;
4392         unsigned offset;
4393         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394         tid_t commit_tid = 0;
4395         int ret;
4396
4397         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398         /*
4399          * All buffers in the last page remain valid? Then there's nothing to
4400          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401          * blocksize case
4402          */
4403         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404                 return;
4405         while (1) {
4406                 page = find_lock_page(inode->i_mapping,
4407                                       inode->i_size >> PAGE_CACHE_SHIFT);
4408                 if (!page)
4409                         return;
4410                 ret = __ext4_journalled_invalidatepage(page, offset,
4411                                                 PAGE_CACHE_SIZE - offset);
4412                 unlock_page(page);
4413                 page_cache_release(page);
4414                 if (ret != -EBUSY)
4415                         return;
4416                 commit_tid = 0;
4417                 read_lock(&journal->j_state_lock);
4418                 if (journal->j_committing_transaction)
4419                         commit_tid = journal->j_committing_transaction->t_tid;
4420                 read_unlock(&journal->j_state_lock);
4421                 if (commit_tid)
4422                         jbd2_log_wait_commit(journal, commit_tid);
4423         }
4424 }
4425
4426 /*
4427  * ext4_setattr()
4428  *
4429  * Called from notify_change.
4430  *
4431  * We want to trap VFS attempts to truncate the file as soon as
4432  * possible.  In particular, we want to make sure that when the VFS
4433  * shrinks i_size, we put the inode on the orphan list and modify
4434  * i_disksize immediately, so that during the subsequent flushing of
4435  * dirty pages and freeing of disk blocks, we can guarantee that any
4436  * commit will leave the blocks being flushed in an unused state on
4437  * disk.  (On recovery, the inode will get truncated and the blocks will
4438  * be freed, so we have a strong guarantee that no future commit will
4439  * leave these blocks visible to the user.)
4440  *
4441  * Another thing we have to assure is that if we are in ordered mode
4442  * and inode is still attached to the committing transaction, we must
4443  * we start writeout of all the dirty pages which are being truncated.
4444  * This way we are sure that all the data written in the previous
4445  * transaction are already on disk (truncate waits for pages under
4446  * writeback).
4447  *
4448  * Called with inode->i_mutex down.
4449  */
4450 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4451 {
4452         struct inode *inode = dentry->d_inode;
4453         int error, rc = 0;
4454         int orphan = 0;
4455         const unsigned int ia_valid = attr->ia_valid;
4456
4457         error = inode_change_ok(inode, attr);
4458         if (error)
4459                 return error;
4460
4461         if (is_quota_modification(inode, attr))
4462                 dquot_initialize(inode);
4463         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4465                 handle_t *handle;
4466
4467                 /* (user+group)*(old+new) structure, inode write (sb,
4468                  * inode block, ? - but truncate inode update has it) */
4469                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4472                 if (IS_ERR(handle)) {
4473                         error = PTR_ERR(handle);
4474                         goto err_out;
4475                 }
4476                 error = dquot_transfer(inode, attr);
4477                 if (error) {
4478                         ext4_journal_stop(handle);
4479                         return error;
4480                 }
4481                 /* Update corresponding info in inode so that everything is in
4482                  * one transaction */
4483                 if (attr->ia_valid & ATTR_UID)
4484                         inode->i_uid = attr->ia_uid;
4485                 if (attr->ia_valid & ATTR_GID)
4486                         inode->i_gid = attr->ia_gid;
4487                 error = ext4_mark_inode_dirty(handle, inode);
4488                 ext4_journal_stop(handle);
4489         }
4490
4491         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4492                 handle_t *handle;
4493
4494                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4495                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4496
4497                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4498                                 return -EFBIG;
4499                 }
4500
4501                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4502                         inode_inc_iversion(inode);
4503
4504                 if (S_ISREG(inode->i_mode) &&
4505                     (attr->ia_size < inode->i_size)) {
4506                         if (ext4_should_order_data(inode)) {
4507                                 error = ext4_begin_ordered_truncate(inode,
4508                                                             attr->ia_size);
4509                                 if (error)
4510                                         goto err_out;
4511                         }
4512                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4513                         if (IS_ERR(handle)) {
4514                                 error = PTR_ERR(handle);
4515                                 goto err_out;
4516                         }
4517                         if (ext4_handle_valid(handle)) {
4518                                 error = ext4_orphan_add(handle, inode);
4519                                 orphan = 1;
4520                         }
4521                         down_write(&EXT4_I(inode)->i_data_sem);
4522                         EXT4_I(inode)->i_disksize = attr->ia_size;
4523                         rc = ext4_mark_inode_dirty(handle, inode);
4524                         if (!error)
4525                                 error = rc;
4526                         /*
4527                          * We have to update i_size under i_data_sem together
4528                          * with i_disksize to avoid races with writeback code
4529                          * running ext4_wb_update_i_disksize().
4530                          */
4531                         if (!error)
4532                                 i_size_write(inode, attr->ia_size);
4533                         up_write(&EXT4_I(inode)->i_data_sem);
4534                         ext4_journal_stop(handle);
4535                         if (error) {
4536                                 ext4_orphan_del(NULL, inode);
4537                                 goto err_out;
4538                         }
4539                 } else {
4540                         loff_t oldsize = inode->i_size;
4541
4542                         i_size_write(inode, attr->ia_size);
4543                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4544                 }
4545
4546                 /*
4547                  * Blocks are going to be removed from the inode. Wait
4548                  * for dio in flight.  Temporarily disable
4549                  * dioread_nolock to prevent livelock.
4550                  */
4551                 if (orphan) {
4552                         if (!ext4_should_journal_data(inode)) {
4553                                 ext4_inode_block_unlocked_dio(inode);
4554                                 inode_dio_wait(inode);
4555                                 ext4_inode_resume_unlocked_dio(inode);
4556                         } else
4557                                 ext4_wait_for_tail_page_commit(inode);
4558                 }
4559                 /*
4560                  * Truncate pagecache after we've waited for commit
4561                  * in data=journal mode to make pages freeable.
4562                  */
4563                         truncate_pagecache(inode, inode->i_size);
4564         }
4565         /*
4566          * We want to call ext4_truncate() even if attr->ia_size ==
4567          * inode->i_size for cases like truncation of fallocated space
4568          */
4569         if (attr->ia_valid & ATTR_SIZE)
4570                 ext4_truncate(inode);
4571
4572         if (!rc) {
4573                 setattr_copy(inode, attr);
4574                 mark_inode_dirty(inode);
4575         }
4576
4577         /*
4578          * If the call to ext4_truncate failed to get a transaction handle at
4579          * all, we need to clean up the in-core orphan list manually.
4580          */
4581         if (orphan && inode->i_nlink)
4582                 ext4_orphan_del(NULL, inode);
4583
4584         if (!rc && (ia_valid & ATTR_MODE))
4585                 rc = posix_acl_chmod(inode, inode->i_mode);
4586
4587 err_out:
4588         ext4_std_error(inode->i_sb, error);
4589         if (!error)
4590                 error = rc;
4591         return error;
4592 }
4593
4594 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4595                  struct kstat *stat)
4596 {
4597         struct inode *inode;
4598         unsigned long long delalloc_blocks;
4599
4600         inode = dentry->d_inode;
4601         generic_fillattr(inode, stat);
4602
4603         /*
4604          * If there is inline data in the inode, the inode will normally not
4605          * have data blocks allocated (it may have an external xattr block).
4606          * Report at least one sector for such files, so tools like tar, rsync,
4607          * others doen't incorrectly think the file is completely sparse.
4608          */
4609         if (unlikely(ext4_has_inline_data(inode)))
4610                 stat->blocks += (stat->size + 511) >> 9;
4611
4612         /*
4613          * We can't update i_blocks if the block allocation is delayed
4614          * otherwise in the case of system crash before the real block
4615          * allocation is done, we will have i_blocks inconsistent with
4616          * on-disk file blocks.
4617          * We always keep i_blocks updated together with real
4618          * allocation. But to not confuse with user, stat
4619          * will return the blocks that include the delayed allocation
4620          * blocks for this file.
4621          */
4622         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4623                                    EXT4_I(inode)->i_reserved_data_blocks);
4624         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4625         return 0;
4626 }
4627
4628 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4629                                    int pextents)
4630 {
4631         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4632                 return ext4_ind_trans_blocks(inode, lblocks);
4633         return ext4_ext_index_trans_blocks(inode, pextents);
4634 }
4635
4636 /*
4637  * Account for index blocks, block groups bitmaps and block group
4638  * descriptor blocks if modify datablocks and index blocks
4639  * worse case, the indexs blocks spread over different block groups
4640  *
4641  * If datablocks are discontiguous, they are possible to spread over
4642  * different block groups too. If they are contiguous, with flexbg,
4643  * they could still across block group boundary.
4644  *
4645  * Also account for superblock, inode, quota and xattr blocks
4646  */
4647 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4648                                   int pextents)
4649 {
4650         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4651         int gdpblocks;
4652         int idxblocks;
4653         int ret = 0;
4654
4655         /*
4656          * How many index blocks need to touch to map @lblocks logical blocks
4657          * to @pextents physical extents?
4658          */
4659         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4660
4661         ret = idxblocks;
4662
4663         /*
4664          * Now let's see how many group bitmaps and group descriptors need
4665          * to account
4666          */
4667         groups = idxblocks + pextents;
4668         gdpblocks = groups;
4669         if (groups > ngroups)
4670                 groups = ngroups;
4671         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4672                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4673
4674         /* bitmaps and block group descriptor blocks */
4675         ret += groups + gdpblocks;
4676
4677         /* Blocks for super block, inode, quota and xattr blocks */
4678         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4679
4680         return ret;
4681 }
4682
4683 /*
4684  * Calculate the total number of credits to reserve to fit
4685  * the modification of a single pages into a single transaction,
4686  * which may include multiple chunks of block allocations.
4687  *
4688  * This could be called via ext4_write_begin()
4689  *
4690  * We need to consider the worse case, when
4691  * one new block per extent.
4692  */
4693 int ext4_writepage_trans_blocks(struct inode *inode)
4694 {
4695         int bpp = ext4_journal_blocks_per_page(inode);
4696         int ret;
4697
4698         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4699
4700         /* Account for data blocks for journalled mode */
4701         if (ext4_should_journal_data(inode))
4702                 ret += bpp;
4703         return ret;
4704 }
4705
4706 /*
4707  * Calculate the journal credits for a chunk of data modification.
4708  *
4709  * This is called from DIO, fallocate or whoever calling
4710  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4711  *
4712  * journal buffers for data blocks are not included here, as DIO
4713  * and fallocate do no need to journal data buffers.
4714  */
4715 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4716 {
4717         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4718 }
4719
4720 /*
4721  * The caller must have previously called ext4_reserve_inode_write().
4722  * Give this, we know that the caller already has write access to iloc->bh.
4723  */
4724 int ext4_mark_iloc_dirty(handle_t *handle,
4725                          struct inode *inode, struct ext4_iloc *iloc)
4726 {
4727         int err = 0;
4728
4729         if (IS_I_VERSION(inode))
4730                 inode_inc_iversion(inode);
4731
4732         /* the do_update_inode consumes one bh->b_count */
4733         get_bh(iloc->bh);
4734
4735         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4736         err = ext4_do_update_inode(handle, inode, iloc);
4737         put_bh(iloc->bh);
4738         return err;
4739 }
4740
4741 /*
4742  * On success, We end up with an outstanding reference count against
4743  * iloc->bh.  This _must_ be cleaned up later.
4744  */
4745
4746 int
4747 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4748                          struct ext4_iloc *iloc)
4749 {
4750         int err;
4751
4752         err = ext4_get_inode_loc(inode, iloc);
4753         if (!err) {
4754                 BUFFER_TRACE(iloc->bh, "get_write_access");
4755                 err = ext4_journal_get_write_access(handle, iloc->bh);
4756                 if (err) {
4757                         brelse(iloc->bh);
4758                         iloc->bh = NULL;
4759                 }
4760         }
4761         ext4_std_error(inode->i_sb, err);
4762         return err;
4763 }
4764
4765 /*
4766  * Expand an inode by new_extra_isize bytes.
4767  * Returns 0 on success or negative error number on failure.
4768  */
4769 static int ext4_expand_extra_isize(struct inode *inode,
4770                                    unsigned int new_extra_isize,
4771                                    struct ext4_iloc iloc,
4772                                    handle_t *handle)
4773 {
4774         struct ext4_inode *raw_inode;
4775         struct ext4_xattr_ibody_header *header;
4776
4777         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4778                 return 0;
4779
4780         raw_inode = ext4_raw_inode(&iloc);
4781
4782         header = IHDR(inode, raw_inode);
4783
4784         /* No extended attributes present */
4785         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4786             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4787                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4788                         new_extra_isize);
4789                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4790                 return 0;
4791         }
4792
4793         /* try to expand with EAs present */
4794         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4795                                           raw_inode, handle);
4796 }
4797
4798 /*
4799  * What we do here is to mark the in-core inode as clean with respect to inode
4800  * dirtiness (it may still be data-dirty).
4801  * This means that the in-core inode may be reaped by prune_icache
4802  * without having to perform any I/O.  This is a very good thing,
4803  * because *any* task may call prune_icache - even ones which
4804  * have a transaction open against a different journal.
4805  *
4806  * Is this cheating?  Not really.  Sure, we haven't written the
4807  * inode out, but prune_icache isn't a user-visible syncing function.
4808  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4809  * we start and wait on commits.
4810  */
4811 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4812 {
4813         struct ext4_iloc iloc;
4814         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4815         static unsigned int mnt_count;
4816         int err, ret;
4817
4818         might_sleep();
4819         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4820         err = ext4_reserve_inode_write(handle, inode, &iloc);
4821         if (ext4_handle_valid(handle) &&
4822             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4823             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4824                 /*
4825                  * We need extra buffer credits since we may write into EA block
4826                  * with this same handle. If journal_extend fails, then it will
4827                  * only result in a minor loss of functionality for that inode.
4828                  * If this is felt to be critical, then e2fsck should be run to
4829                  * force a large enough s_min_extra_isize.
4830                  */
4831                 if ((jbd2_journal_extend(handle,
4832                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4833                         ret = ext4_expand_extra_isize(inode,
4834                                                       sbi->s_want_extra_isize,
4835                                                       iloc, handle);
4836                         if (ret) {
4837                                 ext4_set_inode_state(inode,
4838                                                      EXT4_STATE_NO_EXPAND);
4839                                 if (mnt_count !=
4840                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4841                                         ext4_warning(inode->i_sb,
4842                                         "Unable to expand inode %lu. Delete"
4843                                         " some EAs or run e2fsck.",
4844                                         inode->i_ino);
4845                                         mnt_count =
4846                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4847                                 }
4848                         }
4849                 }
4850         }
4851         if (!err)
4852                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4853         return err;
4854 }
4855
4856 /*
4857  * ext4_dirty_inode() is called from __mark_inode_dirty()
4858  *
4859  * We're really interested in the case where a file is being extended.
4860  * i_size has been changed by generic_commit_write() and we thus need
4861  * to include the updated inode in the current transaction.
4862  *
4863  * Also, dquot_alloc_block() will always dirty the inode when blocks
4864  * are allocated to the file.
4865  *
4866  * If the inode is marked synchronous, we don't honour that here - doing
4867  * so would cause a commit on atime updates, which we don't bother doing.
4868  * We handle synchronous inodes at the highest possible level.
4869  */
4870 void ext4_dirty_inode(struct inode *inode, int flags)
4871 {
4872         handle_t *handle;
4873
4874         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4875         if (IS_ERR(handle))
4876                 goto out;
4877
4878         ext4_mark_inode_dirty(handle, inode);
4879
4880         ext4_journal_stop(handle);
4881 out:
4882         return;
4883 }
4884
4885 #if 0
4886 /*
4887  * Bind an inode's backing buffer_head into this transaction, to prevent
4888  * it from being flushed to disk early.  Unlike
4889  * ext4_reserve_inode_write, this leaves behind no bh reference and
4890  * returns no iloc structure, so the caller needs to repeat the iloc
4891  * lookup to mark the inode dirty later.
4892  */
4893 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4894 {
4895         struct ext4_iloc iloc;
4896
4897         int err = 0;
4898         if (handle) {
4899                 err = ext4_get_inode_loc(inode, &iloc);
4900                 if (!err) {
4901                         BUFFER_TRACE(iloc.bh, "get_write_access");
4902                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4903                         if (!err)
4904                                 err = ext4_handle_dirty_metadata(handle,
4905                                                                  NULL,
4906                                                                  iloc.bh);
4907                         brelse(iloc.bh);
4908                 }
4909         }
4910         ext4_std_error(inode->i_sb, err);
4911         return err;
4912 }
4913 #endif
4914
4915 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4916 {
4917         journal_t *journal;
4918         handle_t *handle;
4919         int err;
4920
4921         /*
4922          * We have to be very careful here: changing a data block's
4923          * journaling status dynamically is dangerous.  If we write a
4924          * data block to the journal, change the status and then delete
4925          * that block, we risk forgetting to revoke the old log record
4926          * from the journal and so a subsequent replay can corrupt data.
4927          * So, first we make sure that the journal is empty and that
4928          * nobody is changing anything.
4929          */
4930
4931         journal = EXT4_JOURNAL(inode);
4932         if (!journal)
4933                 return 0;
4934         if (is_journal_aborted(journal))
4935                 return -EROFS;
4936         /* We have to allocate physical blocks for delalloc blocks
4937          * before flushing journal. otherwise delalloc blocks can not
4938          * be allocated any more. even more truncate on delalloc blocks
4939          * could trigger BUG by flushing delalloc blocks in journal.
4940          * There is no delalloc block in non-journal data mode.
4941          */
4942         if (val && test_opt(inode->i_sb, DELALLOC)) {
4943                 err = ext4_alloc_da_blocks(inode);
4944                 if (err < 0)
4945                         return err;
4946         }
4947
4948         /* Wait for all existing dio workers */
4949         ext4_inode_block_unlocked_dio(inode);
4950         inode_dio_wait(inode);
4951
4952         jbd2_journal_lock_updates(journal);
4953
4954         /*
4955          * OK, there are no updates running now, and all cached data is
4956          * synced to disk.  We are now in a completely consistent state
4957          * which doesn't have anything in the journal, and we know that
4958          * no filesystem updates are running, so it is safe to modify
4959          * the inode's in-core data-journaling state flag now.
4960          */
4961
4962         if (val)
4963                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4964         else {
4965                 jbd2_journal_flush(journal);
4966                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4967         }
4968         ext4_set_aops(inode);
4969
4970         jbd2_journal_unlock_updates(journal);
4971         ext4_inode_resume_unlocked_dio(inode);
4972
4973         /* Finally we can mark the inode as dirty. */
4974
4975         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4976         if (IS_ERR(handle))
4977                 return PTR_ERR(handle);
4978
4979         err = ext4_mark_inode_dirty(handle, inode);
4980         ext4_handle_sync(handle);
4981         ext4_journal_stop(handle);
4982         ext4_std_error(inode->i_sb, err);
4983
4984         return err;
4985 }
4986
4987 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4988 {
4989         return !buffer_mapped(bh);
4990 }
4991
4992 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4993 {
4994         struct page *page = vmf->page;
4995         loff_t size;
4996         unsigned long len;
4997         int ret;
4998         struct file *file = vma->vm_file;
4999         struct inode *inode = file_inode(file);
5000         struct address_space *mapping = inode->i_mapping;
5001         handle_t *handle;
5002         get_block_t *get_block;
5003         int retries = 0;
5004
5005         sb_start_pagefault(inode->i_sb);
5006         file_update_time(vma->vm_file);
5007         /* Delalloc case is easy... */
5008         if (test_opt(inode->i_sb, DELALLOC) &&
5009             !ext4_should_journal_data(inode) &&
5010             !ext4_nonda_switch(inode->i_sb)) {
5011                 do {
5012                         ret = __block_page_mkwrite(vma, vmf,
5013                                                    ext4_da_get_block_prep);
5014                 } while (ret == -ENOSPC &&
5015                        ext4_should_retry_alloc(inode->i_sb, &retries));
5016                 goto out_ret;
5017         }
5018
5019         lock_page(page);
5020         size = i_size_read(inode);
5021         /* Page got truncated from under us? */
5022         if (page->mapping != mapping || page_offset(page) > size) {
5023                 unlock_page(page);
5024                 ret = VM_FAULT_NOPAGE;
5025                 goto out;
5026         }
5027
5028         if (page->index == size >> PAGE_CACHE_SHIFT)
5029                 len = size & ~PAGE_CACHE_MASK;
5030         else
5031                 len = PAGE_CACHE_SIZE;
5032         /*
5033          * Return if we have all the buffers mapped. This avoids the need to do
5034          * journal_start/journal_stop which can block and take a long time
5035          */
5036         if (page_has_buffers(page)) {
5037                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5038                                             0, len, NULL,
5039                                             ext4_bh_unmapped)) {
5040                         /* Wait so that we don't change page under IO */
5041                         wait_for_stable_page(page);
5042                         ret = VM_FAULT_LOCKED;
5043                         goto out;
5044                 }
5045         }
5046         unlock_page(page);
5047         /* OK, we need to fill the hole... */
5048         if (ext4_should_dioread_nolock(inode))
5049                 get_block = ext4_get_block_write;
5050         else
5051                 get_block = ext4_get_block;
5052 retry_alloc:
5053         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5054                                     ext4_writepage_trans_blocks(inode));
5055         if (IS_ERR(handle)) {
5056                 ret = VM_FAULT_SIGBUS;
5057                 goto out;
5058         }
5059         ret = __block_page_mkwrite(vma, vmf, get_block);
5060         if (!ret && ext4_should_journal_data(inode)) {
5061                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5062                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5063                         unlock_page(page);
5064                         ret = VM_FAULT_SIGBUS;
5065                         ext4_journal_stop(handle);
5066                         goto out;
5067                 }
5068                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5069         }
5070         ext4_journal_stop(handle);
5071         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5072                 goto retry_alloc;
5073 out_ret:
5074         ret = block_page_mkwrite_return(ret);
5075 out:
5076         sb_end_pagefault(inode->i_sb);
5077         return ret;
5078 }