ext4: Always use ext4_bio_write_page() for writeout
[linux-block.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         ext4_ioend_wait(inode);
191
192         if (inode->i_nlink) {
193                 /*
194                  * When journalling data dirty buffers are tracked only in the
195                  * journal. So although mm thinks everything is clean and
196                  * ready for reaping the inode might still have some pages to
197                  * write in the running transaction or waiting to be
198                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
199                  * (via truncate_inode_pages()) to discard these buffers can
200                  * cause data loss. Also even if we did not discard these
201                  * buffers, we would have no way to find them after the inode
202                  * is reaped and thus user could see stale data if he tries to
203                  * read them before the transaction is checkpointed. So be
204                  * careful and force everything to disk here... We use
205                  * ei->i_datasync_tid to store the newest transaction
206                  * containing inode's data.
207                  *
208                  * Note that directories do not have this problem because they
209                  * don't use page cache.
210                  */
211                 if (ext4_should_journal_data(inode) &&
212                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
213                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216                         jbd2_log_start_commit(journal, commit_tid);
217                         jbd2_log_wait_commit(journal, commit_tid);
218                         filemap_write_and_wait(&inode->i_data);
219                 }
220                 truncate_inode_pages(&inode->i_data, 0);
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages(&inode->i_data, 0);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
357                          "with only %d reserved metadata blocks\n", __func__,
358                          inode->i_ino, ei->i_allocated_meta_blocks,
359                          ei->i_reserved_meta_blocks);
360                 WARN_ON(1);
361                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
362         }
363
364         /* Update per-inode reservations */
365         ei->i_reserved_data_blocks -= used;
366         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
367         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
368                            used + ei->i_allocated_meta_blocks);
369         ei->i_allocated_meta_blocks = 0;
370
371         if (ei->i_reserved_data_blocks == 0) {
372                 /*
373                  * We can release all of the reserved metadata blocks
374                  * only when we have written all of the delayed
375                  * allocation blocks.
376                  */
377                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
378                                    ei->i_reserved_meta_blocks);
379                 ei->i_reserved_meta_blocks = 0;
380                 ei->i_da_metadata_calc_len = 0;
381         }
382         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
383
384         /* Update quota subsystem for data blocks */
385         if (quota_claim)
386                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
387         else {
388                 /*
389                  * We did fallocate with an offset that is already delayed
390                  * allocated. So on delayed allocated writeback we should
391                  * not re-claim the quota for fallocated blocks.
392                  */
393                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
394         }
395
396         /*
397          * If we have done all the pending block allocations and if
398          * there aren't any writers on the inode, we can discard the
399          * inode's preallocations.
400          */
401         if ((ei->i_reserved_data_blocks == 0) &&
402             (atomic_read(&inode->i_writecount) == 0))
403                 ext4_discard_preallocations(inode);
404 }
405
406 static int __check_block_validity(struct inode *inode, const char *func,
407                                 unsigned int line,
408                                 struct ext4_map_blocks *map)
409 {
410         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
411                                    map->m_len)) {
412                 ext4_error_inode(inode, func, line, map->m_pblk,
413                                  "lblock %lu mapped to illegal pblock "
414                                  "(length %d)", (unsigned long) map->m_lblk,
415                                  map->m_len);
416                 return -EIO;
417         }
418         return 0;
419 }
420
421 #define check_block_validity(inode, map)        \
422         __check_block_validity((inode), __func__, __LINE__, (map))
423
424 /*
425  * Return the number of contiguous dirty pages in a given inode
426  * starting at page frame idx.
427  */
428 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
429                                     unsigned int max_pages)
430 {
431         struct address_space *mapping = inode->i_mapping;
432         pgoff_t index;
433         struct pagevec pvec;
434         pgoff_t num = 0;
435         int i, nr_pages, done = 0;
436
437         if (max_pages == 0)
438                 return 0;
439         pagevec_init(&pvec, 0);
440         while (!done) {
441                 index = idx;
442                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
443                                               PAGECACHE_TAG_DIRTY,
444                                               (pgoff_t)PAGEVEC_SIZE);
445                 if (nr_pages == 0)
446                         break;
447                 for (i = 0; i < nr_pages; i++) {
448                         struct page *page = pvec.pages[i];
449                         struct buffer_head *bh, *head;
450
451                         lock_page(page);
452                         if (unlikely(page->mapping != mapping) ||
453                             !PageDirty(page) ||
454                             PageWriteback(page) ||
455                             page->index != idx) {
456                                 done = 1;
457                                 unlock_page(page);
458                                 break;
459                         }
460                         if (page_has_buffers(page)) {
461                                 bh = head = page_buffers(page);
462                                 do {
463                                         if (!buffer_delay(bh) &&
464                                             !buffer_unwritten(bh))
465                                                 done = 1;
466                                         bh = bh->b_this_page;
467                                 } while (!done && (bh != head));
468                         }
469                         unlock_page(page);
470                         if (done)
471                                 break;
472                         idx++;
473                         num++;
474                         if (num >= max_pages) {
475                                 done = 1;
476                                 break;
477                         }
478                 }
479                 pagevec_release(&pvec);
480         }
481         return num;
482 }
483
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocate.
497  * if create==0 and the blocks are pre-allocated and uninitialized block,
498  * the result buffer head is unmapped. If the create ==1, it will make sure
499  * the buffer head is mapped.
500  *
501  * It returns 0 if plain look up failed (blocks have not been allocated), in
502  * that case, buffer head is unmapped
503  *
504  * It returns the error in case of allocation failure.
505  */
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507                     struct ext4_map_blocks *map, int flags)
508 {
509         int retval;
510
511         map->m_flags = 0;
512         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
513                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
514                   (unsigned long) map->m_lblk);
515         /*
516          * Try to see if we can get the block without requesting a new
517          * file system block.
518          */
519         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
520                 down_read((&EXT4_I(inode)->i_data_sem));
521         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
522                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
523                                              EXT4_GET_BLOCKS_KEEP_SIZE);
524         } else {
525                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
526                                              EXT4_GET_BLOCKS_KEEP_SIZE);
527         }
528         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
529                 up_read((&EXT4_I(inode)->i_data_sem));
530
531         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
532                 int ret;
533                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
534                         /* delayed alloc may be allocated by fallocate and
535                          * coverted to initialized by directIO.
536                          * we need to handle delayed extent here.
537                          */
538                         down_write((&EXT4_I(inode)->i_data_sem));
539                         goto delayed_mapped;
540                 }
541                 ret = check_block_validity(inode, map);
542                 if (ret != 0)
543                         return ret;
544         }
545
546         /* If it is only a block(s) look up */
547         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
548                 return retval;
549
550         /*
551          * Returns if the blocks have already allocated
552          *
553          * Note that if blocks have been preallocated
554          * ext4_ext_get_block() returns the create = 0
555          * with buffer head unmapped.
556          */
557         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
558                 return retval;
559
560         /*
561          * When we call get_blocks without the create flag, the
562          * BH_Unwritten flag could have gotten set if the blocks
563          * requested were part of a uninitialized extent.  We need to
564          * clear this flag now that we are committed to convert all or
565          * part of the uninitialized extent to be an initialized
566          * extent.  This is because we need to avoid the combination
567          * of BH_Unwritten and BH_Mapped flags being simultaneously
568          * set on the buffer_head.
569          */
570         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
571
572         /*
573          * New blocks allocate and/or writing to uninitialized extent
574          * will possibly result in updating i_data, so we take
575          * the write lock of i_data_sem, and call get_blocks()
576          * with create == 1 flag.
577          */
578         down_write((&EXT4_I(inode)->i_data_sem));
579
580         /*
581          * if the caller is from delayed allocation writeout path
582          * we have already reserved fs blocks for allocation
583          * let the underlying get_block() function know to
584          * avoid double accounting
585          */
586         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
587                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
588         /*
589          * We need to check for EXT4 here because migrate
590          * could have changed the inode type in between
591          */
592         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594         } else {
595                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598                         /*
599                          * We allocated new blocks which will result in
600                          * i_data's format changing.  Force the migrate
601                          * to fail by clearing migrate flags
602                          */
603                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604                 }
605
606                 /*
607                  * Update reserved blocks/metadata blocks after successful
608                  * block allocation which had been deferred till now. We don't
609                  * support fallocate for non extent files. So we can update
610                  * reserve space here.
611                  */
612                 if ((retval > 0) &&
613                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614                         ext4_da_update_reserve_space(inode, retval, 1);
615         }
616         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
617                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
618
619                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
620                         int ret;
621 delayed_mapped:
622                         /* delayed allocation blocks has been allocated */
623                         ret = ext4_es_remove_extent(inode, map->m_lblk,
624                                                     map->m_len);
625                         if (ret < 0)
626                                 retval = ret;
627                 }
628         }
629
630         up_write((&EXT4_I(inode)->i_data_sem));
631         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
632                 int ret = check_block_validity(inode, map);
633                 if (ret != 0)
634                         return ret;
635         }
636         return retval;
637 }
638
639 /* Maximum number of blocks we map for direct IO at once. */
640 #define DIO_MAX_BLOCKS 4096
641
642 static int _ext4_get_block(struct inode *inode, sector_t iblock,
643                            struct buffer_head *bh, int flags)
644 {
645         handle_t *handle = ext4_journal_current_handle();
646         struct ext4_map_blocks map;
647         int ret = 0, started = 0;
648         int dio_credits;
649
650         if (ext4_has_inline_data(inode))
651                 return -ERANGE;
652
653         map.m_lblk = iblock;
654         map.m_len = bh->b_size >> inode->i_blkbits;
655
656         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
657                 /* Direct IO write... */
658                 if (map.m_len > DIO_MAX_BLOCKS)
659                         map.m_len = DIO_MAX_BLOCKS;
660                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
661                 handle = ext4_journal_start(inode, dio_credits);
662                 if (IS_ERR(handle)) {
663                         ret = PTR_ERR(handle);
664                         return ret;
665                 }
666                 started = 1;
667         }
668
669         ret = ext4_map_blocks(handle, inode, &map, flags);
670         if (ret > 0) {
671                 map_bh(bh, inode->i_sb, map.m_pblk);
672                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
673                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
674                 ret = 0;
675         }
676         if (started)
677                 ext4_journal_stop(handle);
678         return ret;
679 }
680
681 int ext4_get_block(struct inode *inode, sector_t iblock,
682                    struct buffer_head *bh, int create)
683 {
684         return _ext4_get_block(inode, iblock, bh,
685                                create ? EXT4_GET_BLOCKS_CREATE : 0);
686 }
687
688 /*
689  * `handle' can be NULL if create is zero
690  */
691 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
692                                 ext4_lblk_t block, int create, int *errp)
693 {
694         struct ext4_map_blocks map;
695         struct buffer_head *bh;
696         int fatal = 0, err;
697
698         J_ASSERT(handle != NULL || create == 0);
699
700         map.m_lblk = block;
701         map.m_len = 1;
702         err = ext4_map_blocks(handle, inode, &map,
703                               create ? EXT4_GET_BLOCKS_CREATE : 0);
704
705         /* ensure we send some value back into *errp */
706         *errp = 0;
707
708         if (err < 0)
709                 *errp = err;
710         if (err <= 0)
711                 return NULL;
712
713         bh = sb_getblk(inode->i_sb, map.m_pblk);
714         if (unlikely(!bh)) {
715                 *errp = -ENOMEM;
716                 return NULL;
717         }
718         if (map.m_flags & EXT4_MAP_NEW) {
719                 J_ASSERT(create != 0);
720                 J_ASSERT(handle != NULL);
721
722                 /*
723                  * Now that we do not always journal data, we should
724                  * keep in mind whether this should always journal the
725                  * new buffer as metadata.  For now, regular file
726                  * writes use ext4_get_block instead, so it's not a
727                  * problem.
728                  */
729                 lock_buffer(bh);
730                 BUFFER_TRACE(bh, "call get_create_access");
731                 fatal = ext4_journal_get_create_access(handle, bh);
732                 if (!fatal && !buffer_uptodate(bh)) {
733                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
734                         set_buffer_uptodate(bh);
735                 }
736                 unlock_buffer(bh);
737                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
738                 err = ext4_handle_dirty_metadata(handle, inode, bh);
739                 if (!fatal)
740                         fatal = err;
741         } else {
742                 BUFFER_TRACE(bh, "not a new buffer");
743         }
744         if (fatal) {
745                 *errp = fatal;
746                 brelse(bh);
747                 bh = NULL;
748         }
749         return bh;
750 }
751
752 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
753                                ext4_lblk_t block, int create, int *err)
754 {
755         struct buffer_head *bh;
756
757         bh = ext4_getblk(handle, inode, block, create, err);
758         if (!bh)
759                 return bh;
760         if (buffer_uptodate(bh))
761                 return bh;
762         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
763         wait_on_buffer(bh);
764         if (buffer_uptodate(bh))
765                 return bh;
766         put_bh(bh);
767         *err = -EIO;
768         return NULL;
769 }
770
771 int ext4_walk_page_buffers(handle_t *handle,
772                            struct buffer_head *head,
773                            unsigned from,
774                            unsigned to,
775                            int *partial,
776                            int (*fn)(handle_t *handle,
777                                      struct buffer_head *bh))
778 {
779         struct buffer_head *bh;
780         unsigned block_start, block_end;
781         unsigned blocksize = head->b_size;
782         int err, ret = 0;
783         struct buffer_head *next;
784
785         for (bh = head, block_start = 0;
786              ret == 0 && (bh != head || !block_start);
787              block_start = block_end, bh = next) {
788                 next = bh->b_this_page;
789                 block_end = block_start + blocksize;
790                 if (block_end <= from || block_start >= to) {
791                         if (partial && !buffer_uptodate(bh))
792                                 *partial = 1;
793                         continue;
794                 }
795                 err = (*fn)(handle, bh);
796                 if (!ret)
797                         ret = err;
798         }
799         return ret;
800 }
801
802 /*
803  * To preserve ordering, it is essential that the hole instantiation and
804  * the data write be encapsulated in a single transaction.  We cannot
805  * close off a transaction and start a new one between the ext4_get_block()
806  * and the commit_write().  So doing the jbd2_journal_start at the start of
807  * prepare_write() is the right place.
808  *
809  * Also, this function can nest inside ext4_writepage().  In that case, we
810  * *know* that ext4_writepage() has generated enough buffer credits to do the
811  * whole page.  So we won't block on the journal in that case, which is good,
812  * because the caller may be PF_MEMALLOC.
813  *
814  * By accident, ext4 can be reentered when a transaction is open via
815  * quota file writes.  If we were to commit the transaction while thus
816  * reentered, there can be a deadlock - we would be holding a quota
817  * lock, and the commit would never complete if another thread had a
818  * transaction open and was blocking on the quota lock - a ranking
819  * violation.
820  *
821  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
822  * will _not_ run commit under these circumstances because handle->h_ref
823  * is elevated.  We'll still have enough credits for the tiny quotafile
824  * write.
825  */
826 int do_journal_get_write_access(handle_t *handle,
827                                 struct buffer_head *bh)
828 {
829         int dirty = buffer_dirty(bh);
830         int ret;
831
832         if (!buffer_mapped(bh) || buffer_freed(bh))
833                 return 0;
834         /*
835          * __block_write_begin() could have dirtied some buffers. Clean
836          * the dirty bit as jbd2_journal_get_write_access() could complain
837          * otherwise about fs integrity issues. Setting of the dirty bit
838          * by __block_write_begin() isn't a real problem here as we clear
839          * the bit before releasing a page lock and thus writeback cannot
840          * ever write the buffer.
841          */
842         if (dirty)
843                 clear_buffer_dirty(bh);
844         ret = ext4_journal_get_write_access(handle, bh);
845         if (!ret && dirty)
846                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
847         return ret;
848 }
849
850 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
851                    struct buffer_head *bh_result, int create);
852 static int ext4_write_begin(struct file *file, struct address_space *mapping,
853                             loff_t pos, unsigned len, unsigned flags,
854                             struct page **pagep, void **fsdata)
855 {
856         struct inode *inode = mapping->host;
857         int ret, needed_blocks;
858         handle_t *handle;
859         int retries = 0;
860         struct page *page;
861         pgoff_t index;
862         unsigned from, to;
863
864         trace_ext4_write_begin(inode, pos, len, flags);
865         /*
866          * Reserve one block more for addition to orphan list in case
867          * we allocate blocks but write fails for some reason
868          */
869         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
870         index = pos >> PAGE_CACHE_SHIFT;
871         from = pos & (PAGE_CACHE_SIZE - 1);
872         to = from + len;
873
874         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
875                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
876                                                     flags, pagep);
877                 if (ret < 0)
878                         goto out;
879                 if (ret == 1) {
880                         ret = 0;
881                         goto out;
882                 }
883         }
884
885 retry:
886         handle = ext4_journal_start(inode, needed_blocks);
887         if (IS_ERR(handle)) {
888                 ret = PTR_ERR(handle);
889                 goto out;
890         }
891
892         /* We cannot recurse into the filesystem as the transaction is already
893          * started */
894         flags |= AOP_FLAG_NOFS;
895
896         page = grab_cache_page_write_begin(mapping, index, flags);
897         if (!page) {
898                 ext4_journal_stop(handle);
899                 ret = -ENOMEM;
900                 goto out;
901         }
902
903         *pagep = page;
904
905         if (ext4_should_dioread_nolock(inode))
906                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
907         else
908                 ret = __block_write_begin(page, pos, len, ext4_get_block);
909
910         if (!ret && ext4_should_journal_data(inode)) {
911                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
912                                              from, to, NULL,
913                                              do_journal_get_write_access);
914         }
915
916         if (ret) {
917                 unlock_page(page);
918                 page_cache_release(page);
919                 /*
920                  * __block_write_begin may have instantiated a few blocks
921                  * outside i_size.  Trim these off again. Don't need
922                  * i_size_read because we hold i_mutex.
923                  *
924                  * Add inode to orphan list in case we crash before
925                  * truncate finishes
926                  */
927                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
928                         ext4_orphan_add(handle, inode);
929
930                 ext4_journal_stop(handle);
931                 if (pos + len > inode->i_size) {
932                         ext4_truncate_failed_write(inode);
933                         /*
934                          * If truncate failed early the inode might
935                          * still be on the orphan list; we need to
936                          * make sure the inode is removed from the
937                          * orphan list in that case.
938                          */
939                         if (inode->i_nlink)
940                                 ext4_orphan_del(NULL, inode);
941                 }
942         }
943
944         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
945                 goto retry;
946 out:
947         return ret;
948 }
949
950 /* For write_end() in data=journal mode */
951 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
952 {
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         set_buffer_uptodate(bh);
956         return ext4_handle_dirty_metadata(handle, NULL, bh);
957 }
958
959 static int ext4_generic_write_end(struct file *file,
960                                   struct address_space *mapping,
961                                   loff_t pos, unsigned len, unsigned copied,
962                                   struct page *page, void *fsdata)
963 {
964         int i_size_changed = 0;
965         struct inode *inode = mapping->host;
966         handle_t *handle = ext4_journal_current_handle();
967
968         if (ext4_has_inline_data(inode))
969                 copied = ext4_write_inline_data_end(inode, pos, len,
970                                                     copied, page);
971         else
972                 copied = block_write_end(file, mapping, pos,
973                                          len, copied, page, fsdata);
974
975         /*
976          * No need to use i_size_read() here, the i_size
977          * cannot change under us because we hold i_mutex.
978          *
979          * But it's important to update i_size while still holding page lock:
980          * page writeout could otherwise come in and zero beyond i_size.
981          */
982         if (pos + copied > inode->i_size) {
983                 i_size_write(inode, pos + copied);
984                 i_size_changed = 1;
985         }
986
987         if (pos + copied >  EXT4_I(inode)->i_disksize) {
988                 /* We need to mark inode dirty even if
989                  * new_i_size is less that inode->i_size
990                  * bu greater than i_disksize.(hint delalloc)
991                  */
992                 ext4_update_i_disksize(inode, (pos + copied));
993                 i_size_changed = 1;
994         }
995         unlock_page(page);
996         page_cache_release(page);
997
998         /*
999          * Don't mark the inode dirty under page lock. First, it unnecessarily
1000          * makes the holding time of page lock longer. Second, it forces lock
1001          * ordering of page lock and transaction start for journaling
1002          * filesystems.
1003          */
1004         if (i_size_changed)
1005                 ext4_mark_inode_dirty(handle, inode);
1006
1007         return copied;
1008 }
1009
1010 /*
1011  * We need to pick up the new inode size which generic_commit_write gave us
1012  * `file' can be NULL - eg, when called from page_symlink().
1013  *
1014  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1015  * buffers are managed internally.
1016  */
1017 static int ext4_ordered_write_end(struct file *file,
1018                                   struct address_space *mapping,
1019                                   loff_t pos, unsigned len, unsigned copied,
1020                                   struct page *page, void *fsdata)
1021 {
1022         handle_t *handle = ext4_journal_current_handle();
1023         struct inode *inode = mapping->host;
1024         int ret = 0, ret2;
1025
1026         trace_ext4_ordered_write_end(inode, pos, len, copied);
1027         ret = ext4_jbd2_file_inode(handle, inode);
1028
1029         if (ret == 0) {
1030                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1031                                                         page, fsdata);
1032                 copied = ret2;
1033                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1034                         /* if we have allocated more blocks and copied
1035                          * less. We will have blocks allocated outside
1036                          * inode->i_size. So truncate them
1037                          */
1038                         ext4_orphan_add(handle, inode);
1039                 if (ret2 < 0)
1040                         ret = ret2;
1041         } else {
1042                 unlock_page(page);
1043                 page_cache_release(page);
1044         }
1045
1046         ret2 = ext4_journal_stop(handle);
1047         if (!ret)
1048                 ret = ret2;
1049
1050         if (pos + len > inode->i_size) {
1051                 ext4_truncate_failed_write(inode);
1052                 /*
1053                  * If truncate failed early the inode might still be
1054                  * on the orphan list; we need to make sure the inode
1055                  * is removed from the orphan list in that case.
1056                  */
1057                 if (inode->i_nlink)
1058                         ext4_orphan_del(NULL, inode);
1059         }
1060
1061
1062         return ret ? ret : copied;
1063 }
1064
1065 static int ext4_writeback_write_end(struct file *file,
1066                                     struct address_space *mapping,
1067                                     loff_t pos, unsigned len, unsigned copied,
1068                                     struct page *page, void *fsdata)
1069 {
1070         handle_t *handle = ext4_journal_current_handle();
1071         struct inode *inode = mapping->host;
1072         int ret = 0, ret2;
1073
1074         trace_ext4_writeback_write_end(inode, pos, len, copied);
1075         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1076                                                         page, fsdata);
1077         copied = ret2;
1078         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1079                 /* if we have allocated more blocks and copied
1080                  * less. We will have blocks allocated outside
1081                  * inode->i_size. So truncate them
1082                  */
1083                 ext4_orphan_add(handle, inode);
1084
1085         if (ret2 < 0)
1086                 ret = ret2;
1087
1088         ret2 = ext4_journal_stop(handle);
1089         if (!ret)
1090                 ret = ret2;
1091
1092         if (pos + len > inode->i_size) {
1093                 ext4_truncate_failed_write(inode);
1094                 /*
1095                  * If truncate failed early the inode might still be
1096                  * on the orphan list; we need to make sure the inode
1097                  * is removed from the orphan list in that case.
1098                  */
1099                 if (inode->i_nlink)
1100                         ext4_orphan_del(NULL, inode);
1101         }
1102
1103         return ret ? ret : copied;
1104 }
1105
1106 static int ext4_journalled_write_end(struct file *file,
1107                                      struct address_space *mapping,
1108                                      loff_t pos, unsigned len, unsigned copied,
1109                                      struct page *page, void *fsdata)
1110 {
1111         handle_t *handle = ext4_journal_current_handle();
1112         struct inode *inode = mapping->host;
1113         int ret = 0, ret2;
1114         int partial = 0;
1115         unsigned from, to;
1116         loff_t new_i_size;
1117
1118         trace_ext4_journalled_write_end(inode, pos, len, copied);
1119         from = pos & (PAGE_CACHE_SIZE - 1);
1120         to = from + len;
1121
1122         BUG_ON(!ext4_handle_valid(handle));
1123
1124         if (ext4_has_inline_data(inode))
1125                 copied = ext4_write_inline_data_end(inode, pos, len,
1126                                                     copied, page);
1127         else {
1128                 if (copied < len) {
1129                         if (!PageUptodate(page))
1130                                 copied = 0;
1131                         page_zero_new_buffers(page, from+copied, to);
1132                 }
1133
1134                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1135                                              to, &partial, write_end_fn);
1136                 if (!partial)
1137                         SetPageUptodate(page);
1138         }
1139         new_i_size = pos + copied;
1140         if (new_i_size > inode->i_size)
1141                 i_size_write(inode, pos+copied);
1142         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1143         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1144         if (new_i_size > EXT4_I(inode)->i_disksize) {
1145                 ext4_update_i_disksize(inode, new_i_size);
1146                 ret2 = ext4_mark_inode_dirty(handle, inode);
1147                 if (!ret)
1148                         ret = ret2;
1149         }
1150
1151         unlock_page(page);
1152         page_cache_release(page);
1153         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1154                 /* if we have allocated more blocks and copied
1155                  * less. We will have blocks allocated outside
1156                  * inode->i_size. So truncate them
1157                  */
1158                 ext4_orphan_add(handle, inode);
1159
1160         ret2 = ext4_journal_stop(handle);
1161         if (!ret)
1162                 ret = ret2;
1163         if (pos + len > inode->i_size) {
1164                 ext4_truncate_failed_write(inode);
1165                 /*
1166                  * If truncate failed early the inode might still be
1167                  * on the orphan list; we need to make sure the inode
1168                  * is removed from the orphan list in that case.
1169                  */
1170                 if (inode->i_nlink)
1171                         ext4_orphan_del(NULL, inode);
1172         }
1173
1174         return ret ? ret : copied;
1175 }
1176
1177 /*
1178  * Reserve a single cluster located at lblock
1179  */
1180 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1181 {
1182         int retries = 0;
1183         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1184         struct ext4_inode_info *ei = EXT4_I(inode);
1185         unsigned int md_needed;
1186         int ret;
1187         ext4_lblk_t save_last_lblock;
1188         int save_len;
1189
1190         /*
1191          * We will charge metadata quota at writeout time; this saves
1192          * us from metadata over-estimation, though we may go over by
1193          * a small amount in the end.  Here we just reserve for data.
1194          */
1195         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1196         if (ret)
1197                 return ret;
1198
1199         /*
1200          * recalculate the amount of metadata blocks to reserve
1201          * in order to allocate nrblocks
1202          * worse case is one extent per block
1203          */
1204 repeat:
1205         spin_lock(&ei->i_block_reservation_lock);
1206         /*
1207          * ext4_calc_metadata_amount() has side effects, which we have
1208          * to be prepared undo if we fail to claim space.
1209          */
1210         save_len = ei->i_da_metadata_calc_len;
1211         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1212         md_needed = EXT4_NUM_B2C(sbi,
1213                                  ext4_calc_metadata_amount(inode, lblock));
1214         trace_ext4_da_reserve_space(inode, md_needed);
1215
1216         /*
1217          * We do still charge estimated metadata to the sb though;
1218          * we cannot afford to run out of free blocks.
1219          */
1220         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1221                 ei->i_da_metadata_calc_len = save_len;
1222                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1223                 spin_unlock(&ei->i_block_reservation_lock);
1224                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1225                         yield();
1226                         goto repeat;
1227                 }
1228                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1229                 return -ENOSPC;
1230         }
1231         ei->i_reserved_data_blocks++;
1232         ei->i_reserved_meta_blocks += md_needed;
1233         spin_unlock(&ei->i_block_reservation_lock);
1234
1235         return 0;       /* success */
1236 }
1237
1238 static void ext4_da_release_space(struct inode *inode, int to_free)
1239 {
1240         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1241         struct ext4_inode_info *ei = EXT4_I(inode);
1242
1243         if (!to_free)
1244                 return;         /* Nothing to release, exit */
1245
1246         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1247
1248         trace_ext4_da_release_space(inode, to_free);
1249         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1250                 /*
1251                  * if there aren't enough reserved blocks, then the
1252                  * counter is messed up somewhere.  Since this
1253                  * function is called from invalidate page, it's
1254                  * harmless to return without any action.
1255                  */
1256                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1257                          "ino %lu, to_free %d with only %d reserved "
1258                          "data blocks", inode->i_ino, to_free,
1259                          ei->i_reserved_data_blocks);
1260                 WARN_ON(1);
1261                 to_free = ei->i_reserved_data_blocks;
1262         }
1263         ei->i_reserved_data_blocks -= to_free;
1264
1265         if (ei->i_reserved_data_blocks == 0) {
1266                 /*
1267                  * We can release all of the reserved metadata blocks
1268                  * only when we have written all of the delayed
1269                  * allocation blocks.
1270                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1271                  * i_reserved_data_blocks, etc. refer to number of clusters.
1272                  */
1273                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1274                                    ei->i_reserved_meta_blocks);
1275                 ei->i_reserved_meta_blocks = 0;
1276                 ei->i_da_metadata_calc_len = 0;
1277         }
1278
1279         /* update fs dirty data blocks counter */
1280         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1281
1282         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1283
1284         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1285 }
1286
1287 static void ext4_da_page_release_reservation(struct page *page,
1288                                              unsigned long offset)
1289 {
1290         int to_release = 0;
1291         struct buffer_head *head, *bh;
1292         unsigned int curr_off = 0;
1293         struct inode *inode = page->mapping->host;
1294         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1295         int num_clusters;
1296         ext4_fsblk_t lblk;
1297
1298         head = page_buffers(page);
1299         bh = head;
1300         do {
1301                 unsigned int next_off = curr_off + bh->b_size;
1302
1303                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1304                         to_release++;
1305                         clear_buffer_delay(bh);
1306                 }
1307                 curr_off = next_off;
1308         } while ((bh = bh->b_this_page) != head);
1309
1310         if (to_release) {
1311                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1312                 ext4_es_remove_extent(inode, lblk, to_release);
1313         }
1314
1315         /* If we have released all the blocks belonging to a cluster, then we
1316          * need to release the reserved space for that cluster. */
1317         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1318         while (num_clusters > 0) {
1319                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1320                         ((num_clusters - 1) << sbi->s_cluster_bits);
1321                 if (sbi->s_cluster_ratio == 1 ||
1322                     !ext4_find_delalloc_cluster(inode, lblk))
1323                         ext4_da_release_space(inode, 1);
1324
1325                 num_clusters--;
1326         }
1327 }
1328
1329 /*
1330  * Delayed allocation stuff
1331  */
1332
1333 /*
1334  * mpage_da_submit_io - walks through extent of pages and try to write
1335  * them with writepage() call back
1336  *
1337  * @mpd->inode: inode
1338  * @mpd->first_page: first page of the extent
1339  * @mpd->next_page: page after the last page of the extent
1340  *
1341  * By the time mpage_da_submit_io() is called we expect all blocks
1342  * to be allocated. this may be wrong if allocation failed.
1343  *
1344  * As pages are already locked by write_cache_pages(), we can't use it
1345  */
1346 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1347                               struct ext4_map_blocks *map)
1348 {
1349         struct pagevec pvec;
1350         unsigned long index, end;
1351         int ret = 0, err, nr_pages, i;
1352         struct inode *inode = mpd->inode;
1353         struct address_space *mapping = inode->i_mapping;
1354         loff_t size = i_size_read(inode);
1355         unsigned int len, block_start;
1356         struct buffer_head *bh, *page_bufs = NULL;
1357         int journal_data = ext4_should_journal_data(inode);
1358         sector_t pblock = 0, cur_logical = 0;
1359         struct ext4_io_submit io_submit;
1360
1361         BUG_ON(mpd->next_page <= mpd->first_page);
1362         memset(&io_submit, 0, sizeof(io_submit));
1363         /*
1364          * We need to start from the first_page to the next_page - 1
1365          * to make sure we also write the mapped dirty buffer_heads.
1366          * If we look at mpd->b_blocknr we would only be looking
1367          * at the currently mapped buffer_heads.
1368          */
1369         index = mpd->first_page;
1370         end = mpd->next_page - 1;
1371
1372         pagevec_init(&pvec, 0);
1373         while (index <= end) {
1374                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1375                 if (nr_pages == 0)
1376                         break;
1377                 for (i = 0; i < nr_pages; i++) {
1378                         int commit_write = 0, skip_page = 0;
1379                         struct page *page = pvec.pages[i];
1380
1381                         index = page->index;
1382                         if (index > end)
1383                                 break;
1384
1385                         if (index == size >> PAGE_CACHE_SHIFT)
1386                                 len = size & ~PAGE_CACHE_MASK;
1387                         else
1388                                 len = PAGE_CACHE_SIZE;
1389                         if (map) {
1390                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1391                                                         inode->i_blkbits);
1392                                 pblock = map->m_pblk + (cur_logical -
1393                                                         map->m_lblk);
1394                         }
1395                         index++;
1396
1397                         BUG_ON(!PageLocked(page));
1398                         BUG_ON(PageWriteback(page));
1399
1400                         /*
1401                          * If the page does not have buffers (for
1402                          * whatever reason), try to create them using
1403                          * __block_write_begin.  If this fails,
1404                          * skip the page and move on.
1405                          */
1406                         if (!page_has_buffers(page)) {
1407                                 if (__block_write_begin(page, 0, len,
1408                                                 noalloc_get_block_write)) {
1409                                 skip_page:
1410                                         unlock_page(page);
1411                                         continue;
1412                                 }
1413                                 commit_write = 1;
1414                         }
1415
1416                         bh = page_bufs = page_buffers(page);
1417                         block_start = 0;
1418                         do {
1419                                 if (!bh)
1420                                         goto skip_page;
1421                                 if (map && (cur_logical >= map->m_lblk) &&
1422                                     (cur_logical <= (map->m_lblk +
1423                                                      (map->m_len - 1)))) {
1424                                         if (buffer_delay(bh)) {
1425                                                 clear_buffer_delay(bh);
1426                                                 bh->b_blocknr = pblock;
1427                                         }
1428                                         if (buffer_unwritten(bh) ||
1429                                             buffer_mapped(bh))
1430                                                 BUG_ON(bh->b_blocknr != pblock);
1431                                         if (map->m_flags & EXT4_MAP_UNINIT)
1432                                                 set_buffer_uninit(bh);
1433                                         clear_buffer_unwritten(bh);
1434                                 }
1435
1436                                 /*
1437                                  * skip page if block allocation undone and
1438                                  * block is dirty
1439                                  */
1440                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1441                                         skip_page = 1;
1442                                 bh = bh->b_this_page;
1443                                 block_start += bh->b_size;
1444                                 cur_logical++;
1445                                 pblock++;
1446                         } while (bh != page_bufs);
1447
1448                         if (skip_page)
1449                                 goto skip_page;
1450
1451                         if (commit_write)
1452                                 /* mark the buffer_heads as dirty & uptodate */
1453                                 block_commit_write(page, 0, len);
1454
1455                         clear_page_dirty_for_io(page);
1456                         /*
1457                          * Delalloc doesn't support data journalling,
1458                          * but eventually maybe we'll lift this
1459                          * restriction.
1460                          */
1461                         if (unlikely(journal_data && PageChecked(page)))
1462                                 err = __ext4_journalled_writepage(page, len);
1463                         else
1464                                 err = ext4_bio_write_page(&io_submit, page,
1465                                                           len, mpd->wbc);
1466                         if (!err)
1467                                 mpd->pages_written++;
1468                         /*
1469                          * In error case, we have to continue because
1470                          * remaining pages are still locked
1471                          */
1472                         if (ret == 0)
1473                                 ret = err;
1474                 }
1475                 pagevec_release(&pvec);
1476         }
1477         ext4_io_submit(&io_submit);
1478         return ret;
1479 }
1480
1481 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1482 {
1483         int nr_pages, i;
1484         pgoff_t index, end;
1485         struct pagevec pvec;
1486         struct inode *inode = mpd->inode;
1487         struct address_space *mapping = inode->i_mapping;
1488         ext4_lblk_t start, last;
1489
1490         index = mpd->first_page;
1491         end   = mpd->next_page - 1;
1492
1493         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1494         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495         ext4_es_remove_extent(inode, start, last - start + 1);
1496
1497         pagevec_init(&pvec, 0);
1498         while (index <= end) {
1499                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1500                 if (nr_pages == 0)
1501                         break;
1502                 for (i = 0; i < nr_pages; i++) {
1503                         struct page *page = pvec.pages[i];
1504                         if (page->index > end)
1505                                 break;
1506                         BUG_ON(!PageLocked(page));
1507                         BUG_ON(PageWriteback(page));
1508                         block_invalidatepage(page, 0);
1509                         ClearPageUptodate(page);
1510                         unlock_page(page);
1511                 }
1512                 index = pvec.pages[nr_pages - 1]->index + 1;
1513                 pagevec_release(&pvec);
1514         }
1515         return;
1516 }
1517
1518 static void ext4_print_free_blocks(struct inode *inode)
1519 {
1520         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1521         struct super_block *sb = inode->i_sb;
1522
1523         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1524                EXT4_C2B(EXT4_SB(inode->i_sb),
1525                         ext4_count_free_clusters(inode->i_sb)));
1526         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1527         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1528                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1529                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1530         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1531                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1532                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1533         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1534         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1535                  EXT4_I(inode)->i_reserved_data_blocks);
1536         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1537                EXT4_I(inode)->i_reserved_meta_blocks);
1538         return;
1539 }
1540
1541 /*
1542  * mpage_da_map_and_submit - go through given space, map them
1543  *       if necessary, and then submit them for I/O
1544  *
1545  * @mpd - bh describing space
1546  *
1547  * The function skips space we know is already mapped to disk blocks.
1548  *
1549  */
1550 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1551 {
1552         int err, blks, get_blocks_flags;
1553         struct ext4_map_blocks map, *mapp = NULL;
1554         sector_t next = mpd->b_blocknr;
1555         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1556         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1557         handle_t *handle = NULL;
1558
1559         /*
1560          * If the blocks are mapped already, or we couldn't accumulate
1561          * any blocks, then proceed immediately to the submission stage.
1562          */
1563         if ((mpd->b_size == 0) ||
1564             ((mpd->b_state  & (1 << BH_Mapped)) &&
1565              !(mpd->b_state & (1 << BH_Delay)) &&
1566              !(mpd->b_state & (1 << BH_Unwritten))))
1567                 goto submit_io;
1568
1569         handle = ext4_journal_current_handle();
1570         BUG_ON(!handle);
1571
1572         /*
1573          * Call ext4_map_blocks() to allocate any delayed allocation
1574          * blocks, or to convert an uninitialized extent to be
1575          * initialized (in the case where we have written into
1576          * one or more preallocated blocks).
1577          *
1578          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1579          * indicate that we are on the delayed allocation path.  This
1580          * affects functions in many different parts of the allocation
1581          * call path.  This flag exists primarily because we don't
1582          * want to change *many* call functions, so ext4_map_blocks()
1583          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1584          * inode's allocation semaphore is taken.
1585          *
1586          * If the blocks in questions were delalloc blocks, set
1587          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1588          * variables are updated after the blocks have been allocated.
1589          */
1590         map.m_lblk = next;
1591         map.m_len = max_blocks;
1592         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1593         if (ext4_should_dioread_nolock(mpd->inode))
1594                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1595         if (mpd->b_state & (1 << BH_Delay))
1596                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1597
1598         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1599         if (blks < 0) {
1600                 struct super_block *sb = mpd->inode->i_sb;
1601
1602                 err = blks;
1603                 /*
1604                  * If get block returns EAGAIN or ENOSPC and there
1605                  * appears to be free blocks we will just let
1606                  * mpage_da_submit_io() unlock all of the pages.
1607                  */
1608                 if (err == -EAGAIN)
1609                         goto submit_io;
1610
1611                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1612                         mpd->retval = err;
1613                         goto submit_io;
1614                 }
1615
1616                 /*
1617                  * get block failure will cause us to loop in
1618                  * writepages, because a_ops->writepage won't be able
1619                  * to make progress. The page will be redirtied by
1620                  * writepage and writepages will again try to write
1621                  * the same.
1622                  */
1623                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1624                         ext4_msg(sb, KERN_CRIT,
1625                                  "delayed block allocation failed for inode %lu "
1626                                  "at logical offset %llu with max blocks %zd "
1627                                  "with error %d", mpd->inode->i_ino,
1628                                  (unsigned long long) next,
1629                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1630                         ext4_msg(sb, KERN_CRIT,
1631                                 "This should not happen!! Data will be lost\n");
1632                         if (err == -ENOSPC)
1633                                 ext4_print_free_blocks(mpd->inode);
1634                 }
1635                 /* invalidate all the pages */
1636                 ext4_da_block_invalidatepages(mpd);
1637
1638                 /* Mark this page range as having been completed */
1639                 mpd->io_done = 1;
1640                 return;
1641         }
1642         BUG_ON(blks == 0);
1643
1644         mapp = &map;
1645         if (map.m_flags & EXT4_MAP_NEW) {
1646                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1647                 int i;
1648
1649                 for (i = 0; i < map.m_len; i++)
1650                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1651         }
1652
1653         /*
1654          * Update on-disk size along with block allocation.
1655          */
1656         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1657         if (disksize > i_size_read(mpd->inode))
1658                 disksize = i_size_read(mpd->inode);
1659         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1660                 ext4_update_i_disksize(mpd->inode, disksize);
1661                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1662                 if (err)
1663                         ext4_error(mpd->inode->i_sb,
1664                                    "Failed to mark inode %lu dirty",
1665                                    mpd->inode->i_ino);
1666         }
1667
1668 submit_io:
1669         mpage_da_submit_io(mpd, mapp);
1670         mpd->io_done = 1;
1671 }
1672
1673 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1674                 (1 << BH_Delay) | (1 << BH_Unwritten))
1675
1676 /*
1677  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1678  *
1679  * @mpd->lbh - extent of blocks
1680  * @logical - logical number of the block in the file
1681  * @bh - bh of the block (used to access block's state)
1682  *
1683  * the function is used to collect contig. blocks in same state
1684  */
1685 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1686                                    sector_t logical, size_t b_size,
1687                                    unsigned long b_state)
1688 {
1689         sector_t next;
1690         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1691
1692         /*
1693          * XXX Don't go larger than mballoc is willing to allocate
1694          * This is a stopgap solution.  We eventually need to fold
1695          * mpage_da_submit_io() into this function and then call
1696          * ext4_map_blocks() multiple times in a loop
1697          */
1698         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1699                 goto flush_it;
1700
1701         /* check if thereserved journal credits might overflow */
1702         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1703                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1704                         /*
1705                          * With non-extent format we are limited by the journal
1706                          * credit available.  Total credit needed to insert
1707                          * nrblocks contiguous blocks is dependent on the
1708                          * nrblocks.  So limit nrblocks.
1709                          */
1710                         goto flush_it;
1711                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1712                                 EXT4_MAX_TRANS_DATA) {
1713                         /*
1714                          * Adding the new buffer_head would make it cross the
1715                          * allowed limit for which we have journal credit
1716                          * reserved. So limit the new bh->b_size
1717                          */
1718                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1719                                                 mpd->inode->i_blkbits;
1720                         /* we will do mpage_da_submit_io in the next loop */
1721                 }
1722         }
1723         /*
1724          * First block in the extent
1725          */
1726         if (mpd->b_size == 0) {
1727                 mpd->b_blocknr = logical;
1728                 mpd->b_size = b_size;
1729                 mpd->b_state = b_state & BH_FLAGS;
1730                 return;
1731         }
1732
1733         next = mpd->b_blocknr + nrblocks;
1734         /*
1735          * Can we merge the block to our big extent?
1736          */
1737         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1738                 mpd->b_size += b_size;
1739                 return;
1740         }
1741
1742 flush_it:
1743         /*
1744          * We couldn't merge the block to our extent, so we
1745          * need to flush current  extent and start new one
1746          */
1747         mpage_da_map_and_submit(mpd);
1748         return;
1749 }
1750
1751 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1752 {
1753         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1754 }
1755
1756 /*
1757  * This function is grabs code from the very beginning of
1758  * ext4_map_blocks, but assumes that the caller is from delayed write
1759  * time. This function looks up the requested blocks and sets the
1760  * buffer delay bit under the protection of i_data_sem.
1761  */
1762 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1763                               struct ext4_map_blocks *map,
1764                               struct buffer_head *bh)
1765 {
1766         int retval;
1767         sector_t invalid_block = ~((sector_t) 0xffff);
1768
1769         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1770                 invalid_block = ~0;
1771
1772         map->m_flags = 0;
1773         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1774                   "logical block %lu\n", inode->i_ino, map->m_len,
1775                   (unsigned long) map->m_lblk);
1776         /*
1777          * Try to see if we can get the block without requesting a new
1778          * file system block.
1779          */
1780         down_read((&EXT4_I(inode)->i_data_sem));
1781         if (ext4_has_inline_data(inode)) {
1782                 /*
1783                  * We will soon create blocks for this page, and let
1784                  * us pretend as if the blocks aren't allocated yet.
1785                  * In case of clusters, we have to handle the work
1786                  * of mapping from cluster so that the reserved space
1787                  * is calculated properly.
1788                  */
1789                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1790                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1791                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1792                 retval = 0;
1793         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795         else
1796                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797
1798         if (retval == 0) {
1799                 /*
1800                  * XXX: __block_prepare_write() unmaps passed block,
1801                  * is it OK?
1802                  */
1803                 /* If the block was allocated from previously allocated cluster,
1804                  * then we dont need to reserve it again. */
1805                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1806                         retval = ext4_da_reserve_space(inode, iblock);
1807                         if (retval)
1808                                 /* not enough space to reserve */
1809                                 goto out_unlock;
1810                 }
1811
1812                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1813                 if (retval)
1814                         goto out_unlock;
1815
1816                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1817                  * and it should not appear on the bh->b_state.
1818                  */
1819                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1820
1821                 map_bh(bh, inode->i_sb, invalid_block);
1822                 set_buffer_new(bh);
1823                 set_buffer_delay(bh);
1824         }
1825
1826 out_unlock:
1827         up_read((&EXT4_I(inode)->i_data_sem));
1828
1829         return retval;
1830 }
1831
1832 /*
1833  * This is a special get_blocks_t callback which is used by
1834  * ext4_da_write_begin().  It will either return mapped block or
1835  * reserve space for a single block.
1836  *
1837  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1838  * We also have b_blocknr = -1 and b_bdev initialized properly
1839  *
1840  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1841  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1842  * initialized properly.
1843  */
1844 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1845                            struct buffer_head *bh, int create)
1846 {
1847         struct ext4_map_blocks map;
1848         int ret = 0;
1849
1850         BUG_ON(create == 0);
1851         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1852
1853         map.m_lblk = iblock;
1854         map.m_len = 1;
1855
1856         /*
1857          * first, we need to know whether the block is allocated already
1858          * preallocated blocks are unmapped but should treated
1859          * the same as allocated blocks.
1860          */
1861         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1862         if (ret <= 0)
1863                 return ret;
1864
1865         map_bh(bh, inode->i_sb, map.m_pblk);
1866         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1867
1868         if (buffer_unwritten(bh)) {
1869                 /* A delayed write to unwritten bh should be marked
1870                  * new and mapped.  Mapped ensures that we don't do
1871                  * get_block multiple times when we write to the same
1872                  * offset and new ensures that we do proper zero out
1873                  * for partial write.
1874                  */
1875                 set_buffer_new(bh);
1876                 set_buffer_mapped(bh);
1877         }
1878         return 0;
1879 }
1880
1881 /*
1882  * This function is used as a standard get_block_t calback function when there
1883  * is no desire to allocate any blocks.  It is used as a callback function for
1884  * block_write_begin().  These functions should only try to map a single block
1885  * at a time.
1886  *
1887  * Since this function doesn't do block allocations even if the caller
1888  * requests it by passing in create=1, it is critically important that
1889  * any caller checks to make sure that any buffer heads are returned
1890  * by this function are either all already mapped or marked for
1891  * delayed allocation before calling ext4_bio_write_page().  Otherwise,
1892  * b_blocknr could be left unitialized, and the page write functions will
1893  * be taken by surprise.
1894  */
1895 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1896                                    struct buffer_head *bh_result, int create)
1897 {
1898         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1899         return _ext4_get_block(inode, iblock, bh_result, 0);
1900 }
1901
1902 static int bget_one(handle_t *handle, struct buffer_head *bh)
1903 {
1904         get_bh(bh);
1905         return 0;
1906 }
1907
1908 static int bput_one(handle_t *handle, struct buffer_head *bh)
1909 {
1910         put_bh(bh);
1911         return 0;
1912 }
1913
1914 static int __ext4_journalled_writepage(struct page *page,
1915                                        unsigned int len)
1916 {
1917         struct address_space *mapping = page->mapping;
1918         struct inode *inode = mapping->host;
1919         struct buffer_head *page_bufs = NULL;
1920         handle_t *handle = NULL;
1921         int ret = 0, err = 0;
1922         int inline_data = ext4_has_inline_data(inode);
1923         struct buffer_head *inode_bh = NULL;
1924
1925         ClearPageChecked(page);
1926
1927         if (inline_data) {
1928                 BUG_ON(page->index != 0);
1929                 BUG_ON(len > ext4_get_max_inline_size(inode));
1930                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1931                 if (inode_bh == NULL)
1932                         goto out;
1933         } else {
1934                 page_bufs = page_buffers(page);
1935                 if (!page_bufs) {
1936                         BUG();
1937                         goto out;
1938                 }
1939                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1940                                        NULL, bget_one);
1941         }
1942         /* As soon as we unlock the page, it can go away, but we have
1943          * references to buffers so we are safe */
1944         unlock_page(page);
1945
1946         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1947         if (IS_ERR(handle)) {
1948                 ret = PTR_ERR(handle);
1949                 goto out;
1950         }
1951
1952         BUG_ON(!ext4_handle_valid(handle));
1953
1954         if (inline_data) {
1955                 ret = ext4_journal_get_write_access(handle, inode_bh);
1956
1957                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1958
1959         } else {
1960                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1961                                              do_journal_get_write_access);
1962
1963                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1964                                              write_end_fn);
1965         }
1966         if (ret == 0)
1967                 ret = err;
1968         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1969         err = ext4_journal_stop(handle);
1970         if (!ret)
1971                 ret = err;
1972
1973         if (!ext4_has_inline_data(inode))
1974                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1975                                        NULL, bput_one);
1976         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1977 out:
1978         brelse(inode_bh);
1979         return ret;
1980 }
1981
1982 /*
1983  * Note that we don't need to start a transaction unless we're journaling data
1984  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1985  * need to file the inode to the transaction's list in ordered mode because if
1986  * we are writing back data added by write(), the inode is already there and if
1987  * we are writing back data modified via mmap(), no one guarantees in which
1988  * transaction the data will hit the disk. In case we are journaling data, we
1989  * cannot start transaction directly because transaction start ranks above page
1990  * lock so we have to do some magic.
1991  *
1992  * This function can get called via...
1993  *   - ext4_da_writepages after taking page lock (have journal handle)
1994  *   - journal_submit_inode_data_buffers (no journal handle)
1995  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1996  *   - grab_page_cache when doing write_begin (have journal handle)
1997  *
1998  * We don't do any block allocation in this function. If we have page with
1999  * multiple blocks we need to write those buffer_heads that are mapped. This
2000  * is important for mmaped based write. So if we do with blocksize 1K
2001  * truncate(f, 1024);
2002  * a = mmap(f, 0, 4096);
2003  * a[0] = 'a';
2004  * truncate(f, 4096);
2005  * we have in the page first buffer_head mapped via page_mkwrite call back
2006  * but other buffer_heads would be unmapped but dirty (dirty done via the
2007  * do_wp_page). So writepage should write the first block. If we modify
2008  * the mmap area beyond 1024 we will again get a page_fault and the
2009  * page_mkwrite callback will do the block allocation and mark the
2010  * buffer_heads mapped.
2011  *
2012  * We redirty the page if we have any buffer_heads that is either delay or
2013  * unwritten in the page.
2014  *
2015  * We can get recursively called as show below.
2016  *
2017  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2018  *              ext4_writepage()
2019  *
2020  * But since we don't do any block allocation we should not deadlock.
2021  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2022  */
2023 static int ext4_writepage(struct page *page,
2024                           struct writeback_control *wbc)
2025 {
2026         int ret = 0, commit_write = 0;
2027         loff_t size;
2028         unsigned int len;
2029         struct buffer_head *page_bufs = NULL;
2030         struct inode *inode = page->mapping->host;
2031         struct ext4_io_submit io_submit;
2032
2033         trace_ext4_writepage(page);
2034         size = i_size_read(inode);
2035         if (page->index == size >> PAGE_CACHE_SHIFT)
2036                 len = size & ~PAGE_CACHE_MASK;
2037         else
2038                 len = PAGE_CACHE_SIZE;
2039
2040         /*
2041          * If the page does not have buffers (for whatever reason),
2042          * try to create them using __block_write_begin.  If this
2043          * fails, redirty the page and move on.
2044          */
2045         if (!page_has_buffers(page)) {
2046                 if (__block_write_begin(page, 0, len,
2047                                         noalloc_get_block_write)) {
2048                 redirty_page:
2049                         redirty_page_for_writepage(wbc, page);
2050                         unlock_page(page);
2051                         return 0;
2052                 }
2053                 commit_write = 1;
2054         }
2055         page_bufs = page_buffers(page);
2056         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2057                                    ext4_bh_delay_or_unwritten)) {
2058                 /*
2059                  * We don't want to do block allocation, so redirty
2060                  * the page and return.  We may reach here when we do
2061                  * a journal commit via journal_submit_inode_data_buffers.
2062                  * We can also reach here via shrink_page_list but it
2063                  * should never be for direct reclaim so warn if that
2064                  * happens
2065                  */
2066                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2067                                                                 PF_MEMALLOC);
2068                 goto redirty_page;
2069         }
2070         if (commit_write)
2071                 /* now mark the buffer_heads as dirty and uptodate */
2072                 block_commit_write(page, 0, len);
2073
2074         if (PageChecked(page) && ext4_should_journal_data(inode))
2075                 /*
2076                  * It's mmapped pagecache.  Add buffers and journal it.  There
2077                  * doesn't seem much point in redirtying the page here.
2078                  */
2079                 return __ext4_journalled_writepage(page, len);
2080
2081         memset(&io_submit, 0, sizeof(io_submit));
2082         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2083         ext4_io_submit(&io_submit);
2084         return ret;
2085 }
2086
2087 /*
2088  * This is called via ext4_da_writepages() to
2089  * calculate the total number of credits to reserve to fit
2090  * a single extent allocation into a single transaction,
2091  * ext4_da_writpeages() will loop calling this before
2092  * the block allocation.
2093  */
2094
2095 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2096 {
2097         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2098
2099         /*
2100          * With non-extent format the journal credit needed to
2101          * insert nrblocks contiguous block is dependent on
2102          * number of contiguous block. So we will limit
2103          * number of contiguous block to a sane value
2104          */
2105         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2106             (max_blocks > EXT4_MAX_TRANS_DATA))
2107                 max_blocks = EXT4_MAX_TRANS_DATA;
2108
2109         return ext4_chunk_trans_blocks(inode, max_blocks);
2110 }
2111
2112 /*
2113  * write_cache_pages_da - walk the list of dirty pages of the given
2114  * address space and accumulate pages that need writing, and call
2115  * mpage_da_map_and_submit to map a single contiguous memory region
2116  * and then write them.
2117  */
2118 static int write_cache_pages_da(handle_t *handle,
2119                                 struct address_space *mapping,
2120                                 struct writeback_control *wbc,
2121                                 struct mpage_da_data *mpd,
2122                                 pgoff_t *done_index)
2123 {
2124         struct buffer_head      *bh, *head;
2125         struct inode            *inode = mapping->host;
2126         struct pagevec          pvec;
2127         unsigned int            nr_pages;
2128         sector_t                logical;
2129         pgoff_t                 index, end;
2130         long                    nr_to_write = wbc->nr_to_write;
2131         int                     i, tag, ret = 0;
2132
2133         memset(mpd, 0, sizeof(struct mpage_da_data));
2134         mpd->wbc = wbc;
2135         mpd->inode = inode;
2136         pagevec_init(&pvec, 0);
2137         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2138         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2139
2140         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2141                 tag = PAGECACHE_TAG_TOWRITE;
2142         else
2143                 tag = PAGECACHE_TAG_DIRTY;
2144
2145         *done_index = index;
2146         while (index <= end) {
2147                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2148                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2149                 if (nr_pages == 0)
2150                         return 0;
2151
2152                 for (i = 0; i < nr_pages; i++) {
2153                         struct page *page = pvec.pages[i];
2154
2155                         /*
2156                          * At this point, the page may be truncated or
2157                          * invalidated (changing page->mapping to NULL), or
2158                          * even swizzled back from swapper_space to tmpfs file
2159                          * mapping. However, page->index will not change
2160                          * because we have a reference on the page.
2161                          */
2162                         if (page->index > end)
2163                                 goto out;
2164
2165                         *done_index = page->index + 1;
2166
2167                         /*
2168                          * If we can't merge this page, and we have
2169                          * accumulated an contiguous region, write it
2170                          */
2171                         if ((mpd->next_page != page->index) &&
2172                             (mpd->next_page != mpd->first_page)) {
2173                                 mpage_da_map_and_submit(mpd);
2174                                 goto ret_extent_tail;
2175                         }
2176
2177                         lock_page(page);
2178
2179                         /*
2180                          * If the page is no longer dirty, or its
2181                          * mapping no longer corresponds to inode we
2182                          * are writing (which means it has been
2183                          * truncated or invalidated), or the page is
2184                          * already under writeback and we are not
2185                          * doing a data integrity writeback, skip the page
2186                          */
2187                         if (!PageDirty(page) ||
2188                             (PageWriteback(page) &&
2189                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2190                             unlikely(page->mapping != mapping)) {
2191                                 unlock_page(page);
2192                                 continue;
2193                         }
2194
2195                         wait_on_page_writeback(page);
2196                         BUG_ON(PageWriteback(page));
2197
2198                         /*
2199                          * If we have inline data and arrive here, it means that
2200                          * we will soon create the block for the 1st page, so
2201                          * we'd better clear the inline data here.
2202                          */
2203                         if (ext4_has_inline_data(inode)) {
2204                                 BUG_ON(ext4_test_inode_state(inode,
2205                                                 EXT4_STATE_MAY_INLINE_DATA));
2206                                 ext4_destroy_inline_data(handle, inode);
2207                         }
2208
2209                         if (mpd->next_page != page->index)
2210                                 mpd->first_page = page->index;
2211                         mpd->next_page = page->index + 1;
2212                         logical = (sector_t) page->index <<
2213                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2214
2215                         if (!page_has_buffers(page)) {
2216                                 mpage_add_bh_to_extent(mpd, logical,
2217                                                        PAGE_CACHE_SIZE,
2218                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2219                                 if (mpd->io_done)
2220                                         goto ret_extent_tail;
2221                         } else {
2222                                 /*
2223                                  * Page with regular buffer heads,
2224                                  * just add all dirty ones
2225                                  */
2226                                 head = page_buffers(page);
2227                                 bh = head;
2228                                 do {
2229                                         BUG_ON(buffer_locked(bh));
2230                                         /*
2231                                          * We need to try to allocate
2232                                          * unmapped blocks in the same page.
2233                                          * Otherwise we won't make progress
2234                                          * with the page in ext4_writepage
2235                                          */
2236                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2237                                                 mpage_add_bh_to_extent(mpd, logical,
2238                                                                        bh->b_size,
2239                                                                        bh->b_state);
2240                                                 if (mpd->io_done)
2241                                                         goto ret_extent_tail;
2242                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2243                                                 /*
2244                                                  * mapped dirty buffer. We need
2245                                                  * to update the b_state
2246                                                  * because we look at b_state
2247                                                  * in mpage_da_map_blocks.  We
2248                                                  * don't update b_size because
2249                                                  * if we find an unmapped
2250                                                  * buffer_head later we need to
2251                                                  * use the b_state flag of that
2252                                                  * buffer_head.
2253                                                  */
2254                                                 if (mpd->b_size == 0)
2255                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2256                                         }
2257                                         logical++;
2258                                 } while ((bh = bh->b_this_page) != head);
2259                         }
2260
2261                         if (nr_to_write > 0) {
2262                                 nr_to_write--;
2263                                 if (nr_to_write == 0 &&
2264                                     wbc->sync_mode == WB_SYNC_NONE)
2265                                         /*
2266                                          * We stop writing back only if we are
2267                                          * not doing integrity sync. In case of
2268                                          * integrity sync we have to keep going
2269                                          * because someone may be concurrently
2270                                          * dirtying pages, and we might have
2271                                          * synced a lot of newly appeared dirty
2272                                          * pages, but have not synced all of the
2273                                          * old dirty pages.
2274                                          */
2275                                         goto out;
2276                         }
2277                 }
2278                 pagevec_release(&pvec);
2279                 cond_resched();
2280         }
2281         return 0;
2282 ret_extent_tail:
2283         ret = MPAGE_DA_EXTENT_TAIL;
2284 out:
2285         pagevec_release(&pvec);
2286         cond_resched();
2287         return ret;
2288 }
2289
2290
2291 static int ext4_da_writepages(struct address_space *mapping,
2292                               struct writeback_control *wbc)
2293 {
2294         pgoff_t index;
2295         int range_whole = 0;
2296         handle_t *handle = NULL;
2297         struct mpage_da_data mpd;
2298         struct inode *inode = mapping->host;
2299         int pages_written = 0;
2300         unsigned int max_pages;
2301         int range_cyclic, cycled = 1, io_done = 0;
2302         int needed_blocks, ret = 0;
2303         long desired_nr_to_write, nr_to_writebump = 0;
2304         loff_t range_start = wbc->range_start;
2305         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2306         pgoff_t done_index = 0;
2307         pgoff_t end;
2308         struct blk_plug plug;
2309
2310         trace_ext4_da_writepages(inode, wbc);
2311
2312         /*
2313          * No pages to write? This is mainly a kludge to avoid starting
2314          * a transaction for special inodes like journal inode on last iput()
2315          * because that could violate lock ordering on umount
2316          */
2317         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2318                 return 0;
2319
2320         /*
2321          * If the filesystem has aborted, it is read-only, so return
2322          * right away instead of dumping stack traces later on that
2323          * will obscure the real source of the problem.  We test
2324          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2325          * the latter could be true if the filesystem is mounted
2326          * read-only, and in that case, ext4_da_writepages should
2327          * *never* be called, so if that ever happens, we would want
2328          * the stack trace.
2329          */
2330         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2331                 return -EROFS;
2332
2333         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2334                 range_whole = 1;
2335
2336         range_cyclic = wbc->range_cyclic;
2337         if (wbc->range_cyclic) {
2338                 index = mapping->writeback_index;
2339                 if (index)
2340                         cycled = 0;
2341                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2342                 wbc->range_end  = LLONG_MAX;
2343                 wbc->range_cyclic = 0;
2344                 end = -1;
2345         } else {
2346                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2347                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2348         }
2349
2350         /*
2351          * This works around two forms of stupidity.  The first is in
2352          * the writeback code, which caps the maximum number of pages
2353          * written to be 1024 pages.  This is wrong on multiple
2354          * levels; different architectues have a different page size,
2355          * which changes the maximum amount of data which gets
2356          * written.  Secondly, 4 megabytes is way too small.  XFS
2357          * forces this value to be 16 megabytes by multiplying
2358          * nr_to_write parameter by four, and then relies on its
2359          * allocator to allocate larger extents to make them
2360          * contiguous.  Unfortunately this brings us to the second
2361          * stupidity, which is that ext4's mballoc code only allocates
2362          * at most 2048 blocks.  So we force contiguous writes up to
2363          * the number of dirty blocks in the inode, or
2364          * sbi->max_writeback_mb_bump whichever is smaller.
2365          */
2366         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2367         if (!range_cyclic && range_whole) {
2368                 if (wbc->nr_to_write == LONG_MAX)
2369                         desired_nr_to_write = wbc->nr_to_write;
2370                 else
2371                         desired_nr_to_write = wbc->nr_to_write * 8;
2372         } else
2373                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2374                                                            max_pages);
2375         if (desired_nr_to_write > max_pages)
2376                 desired_nr_to_write = max_pages;
2377
2378         if (wbc->nr_to_write < desired_nr_to_write) {
2379                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2380                 wbc->nr_to_write = desired_nr_to_write;
2381         }
2382
2383 retry:
2384         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2385                 tag_pages_for_writeback(mapping, index, end);
2386
2387         blk_start_plug(&plug);
2388         while (!ret && wbc->nr_to_write > 0) {
2389
2390                 /*
2391                  * we  insert one extent at a time. So we need
2392                  * credit needed for single extent allocation.
2393                  * journalled mode is currently not supported
2394                  * by delalloc
2395                  */
2396                 BUG_ON(ext4_should_journal_data(inode));
2397                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2398
2399                 /* start a new transaction*/
2400                 handle = ext4_journal_start(inode, needed_blocks);
2401                 if (IS_ERR(handle)) {
2402                         ret = PTR_ERR(handle);
2403                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2404                                "%ld pages, ino %lu; err %d", __func__,
2405                                 wbc->nr_to_write, inode->i_ino, ret);
2406                         blk_finish_plug(&plug);
2407                         goto out_writepages;
2408                 }
2409
2410                 /*
2411                  * Now call write_cache_pages_da() to find the next
2412                  * contiguous region of logical blocks that need
2413                  * blocks to be allocated by ext4 and submit them.
2414                  */
2415                 ret = write_cache_pages_da(handle, mapping,
2416                                            wbc, &mpd, &done_index);
2417                 /*
2418                  * If we have a contiguous extent of pages and we
2419                  * haven't done the I/O yet, map the blocks and submit
2420                  * them for I/O.
2421                  */
2422                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2423                         mpage_da_map_and_submit(&mpd);
2424                         ret = MPAGE_DA_EXTENT_TAIL;
2425                 }
2426                 trace_ext4_da_write_pages(inode, &mpd);
2427                 wbc->nr_to_write -= mpd.pages_written;
2428
2429                 ext4_journal_stop(handle);
2430
2431                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2432                         /* commit the transaction which would
2433                          * free blocks released in the transaction
2434                          * and try again
2435                          */
2436                         jbd2_journal_force_commit_nested(sbi->s_journal);
2437                         ret = 0;
2438                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2439                         /*
2440                          * Got one extent now try with rest of the pages.
2441                          * If mpd.retval is set -EIO, journal is aborted.
2442                          * So we don't need to write any more.
2443                          */
2444                         pages_written += mpd.pages_written;
2445                         ret = mpd.retval;
2446                         io_done = 1;
2447                 } else if (wbc->nr_to_write)
2448                         /*
2449                          * There is no more writeout needed
2450                          * or we requested for a noblocking writeout
2451                          * and we found the device congested
2452                          */
2453                         break;
2454         }
2455         blk_finish_plug(&plug);
2456         if (!io_done && !cycled) {
2457                 cycled = 1;
2458                 index = 0;
2459                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2460                 wbc->range_end  = mapping->writeback_index - 1;
2461                 goto retry;
2462         }
2463
2464         /* Update index */
2465         wbc->range_cyclic = range_cyclic;
2466         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2467                 /*
2468                  * set the writeback_index so that range_cyclic
2469                  * mode will write it back later
2470                  */
2471                 mapping->writeback_index = done_index;
2472
2473 out_writepages:
2474         wbc->nr_to_write -= nr_to_writebump;
2475         wbc->range_start = range_start;
2476         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2477         return ret;
2478 }
2479
2480 static int ext4_nonda_switch(struct super_block *sb)
2481 {
2482         s64 free_blocks, dirty_blocks;
2483         struct ext4_sb_info *sbi = EXT4_SB(sb);
2484
2485         /*
2486          * switch to non delalloc mode if we are running low
2487          * on free block. The free block accounting via percpu
2488          * counters can get slightly wrong with percpu_counter_batch getting
2489          * accumulated on each CPU without updating global counters
2490          * Delalloc need an accurate free block accounting. So switch
2491          * to non delalloc when we are near to error range.
2492          */
2493         free_blocks  = EXT4_C2B(sbi,
2494                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2495         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2496         /*
2497          * Start pushing delalloc when 1/2 of free blocks are dirty.
2498          */
2499         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2500             !writeback_in_progress(sb->s_bdi) &&
2501             down_read_trylock(&sb->s_umount)) {
2502                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2503                 up_read(&sb->s_umount);
2504         }
2505
2506         if (2 * free_blocks < 3 * dirty_blocks ||
2507                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2508                 /*
2509                  * free block count is less than 150% of dirty blocks
2510                  * or free blocks is less than watermark
2511                  */
2512                 return 1;
2513         }
2514         return 0;
2515 }
2516
2517 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2518                                loff_t pos, unsigned len, unsigned flags,
2519                                struct page **pagep, void **fsdata)
2520 {
2521         int ret, retries = 0;
2522         struct page *page;
2523         pgoff_t index;
2524         struct inode *inode = mapping->host;
2525         handle_t *handle;
2526
2527         index = pos >> PAGE_CACHE_SHIFT;
2528
2529         if (ext4_nonda_switch(inode->i_sb)) {
2530                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2531                 return ext4_write_begin(file, mapping, pos,
2532                                         len, flags, pagep, fsdata);
2533         }
2534         *fsdata = (void *)0;
2535         trace_ext4_da_write_begin(inode, pos, len, flags);
2536
2537         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2538                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2539                                                       pos, len, flags,
2540                                                       pagep, fsdata);
2541                 if (ret < 0)
2542                         goto out;
2543                 if (ret == 1) {
2544                         ret = 0;
2545                         goto out;
2546                 }
2547         }
2548
2549 retry:
2550         /*
2551          * With delayed allocation, we don't log the i_disksize update
2552          * if there is delayed block allocation. But we still need
2553          * to journalling the i_disksize update if writes to the end
2554          * of file which has an already mapped buffer.
2555          */
2556         handle = ext4_journal_start(inode, 1);
2557         if (IS_ERR(handle)) {
2558                 ret = PTR_ERR(handle);
2559                 goto out;
2560         }
2561         /* We cannot recurse into the filesystem as the transaction is already
2562          * started */
2563         flags |= AOP_FLAG_NOFS;
2564
2565         page = grab_cache_page_write_begin(mapping, index, flags);
2566         if (!page) {
2567                 ext4_journal_stop(handle);
2568                 ret = -ENOMEM;
2569                 goto out;
2570         }
2571         *pagep = page;
2572
2573         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2574         if (ret < 0) {
2575                 unlock_page(page);
2576                 ext4_journal_stop(handle);
2577                 page_cache_release(page);
2578                 /*
2579                  * block_write_begin may have instantiated a few blocks
2580                  * outside i_size.  Trim these off again. Don't need
2581                  * i_size_read because we hold i_mutex.
2582                  */
2583                 if (pos + len > inode->i_size)
2584                         ext4_truncate_failed_write(inode);
2585         }
2586
2587         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2588                 goto retry;
2589 out:
2590         return ret;
2591 }
2592
2593 /*
2594  * Check if we should update i_disksize
2595  * when write to the end of file but not require block allocation
2596  */
2597 static int ext4_da_should_update_i_disksize(struct page *page,
2598                                             unsigned long offset)
2599 {
2600         struct buffer_head *bh;
2601         struct inode *inode = page->mapping->host;
2602         unsigned int idx;
2603         int i;
2604
2605         bh = page_buffers(page);
2606         idx = offset >> inode->i_blkbits;
2607
2608         for (i = 0; i < idx; i++)
2609                 bh = bh->b_this_page;
2610
2611         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2612                 return 0;
2613         return 1;
2614 }
2615
2616 static int ext4_da_write_end(struct file *file,
2617                              struct address_space *mapping,
2618                              loff_t pos, unsigned len, unsigned copied,
2619                              struct page *page, void *fsdata)
2620 {
2621         struct inode *inode = mapping->host;
2622         int ret = 0, ret2;
2623         handle_t *handle = ext4_journal_current_handle();
2624         loff_t new_i_size;
2625         unsigned long start, end;
2626         int write_mode = (int)(unsigned long)fsdata;
2627
2628         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2629                 switch (ext4_inode_journal_mode(inode)) {
2630                 case EXT4_INODE_ORDERED_DATA_MODE:
2631                         return ext4_ordered_write_end(file, mapping, pos,
2632                                         len, copied, page, fsdata);
2633                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2634                         return ext4_writeback_write_end(file, mapping, pos,
2635                                         len, copied, page, fsdata);
2636                 default:
2637                         BUG();
2638                 }
2639         }
2640
2641         trace_ext4_da_write_end(inode, pos, len, copied);
2642         start = pos & (PAGE_CACHE_SIZE - 1);
2643         end = start + copied - 1;
2644
2645         /*
2646          * generic_write_end() will run mark_inode_dirty() if i_size
2647          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2648          * into that.
2649          */
2650         new_i_size = pos + copied;
2651         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652                 if (ext4_has_inline_data(inode) ||
2653                     ext4_da_should_update_i_disksize(page, end)) {
2654                         down_write(&EXT4_I(inode)->i_data_sem);
2655                         if (new_i_size > EXT4_I(inode)->i_disksize)
2656                                 EXT4_I(inode)->i_disksize = new_i_size;
2657                         up_write(&EXT4_I(inode)->i_data_sem);
2658                         /* We need to mark inode dirty even if
2659                          * new_i_size is less that inode->i_size
2660                          * bu greater than i_disksize.(hint delalloc)
2661                          */
2662                         ext4_mark_inode_dirty(handle, inode);
2663                 }
2664         }
2665
2666         if (write_mode != CONVERT_INLINE_DATA &&
2667             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2668             ext4_has_inline_data(inode))
2669                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2670                                                      page);
2671         else
2672                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2673                                                         page, fsdata);
2674
2675         copied = ret2;
2676         if (ret2 < 0)
2677                 ret = ret2;
2678         ret2 = ext4_journal_stop(handle);
2679         if (!ret)
2680                 ret = ret2;
2681
2682         return ret ? ret : copied;
2683 }
2684
2685 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2686 {
2687         /*
2688          * Drop reserved blocks
2689          */
2690         BUG_ON(!PageLocked(page));
2691         if (!page_has_buffers(page))
2692                 goto out;
2693
2694         ext4_da_page_release_reservation(page, offset);
2695
2696 out:
2697         ext4_invalidatepage(page, offset);
2698
2699         return;
2700 }
2701
2702 /*
2703  * Force all delayed allocation blocks to be allocated for a given inode.
2704  */
2705 int ext4_alloc_da_blocks(struct inode *inode)
2706 {
2707         trace_ext4_alloc_da_blocks(inode);
2708
2709         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2710             !EXT4_I(inode)->i_reserved_meta_blocks)
2711                 return 0;
2712
2713         /*
2714          * We do something simple for now.  The filemap_flush() will
2715          * also start triggering a write of the data blocks, which is
2716          * not strictly speaking necessary (and for users of
2717          * laptop_mode, not even desirable).  However, to do otherwise
2718          * would require replicating code paths in:
2719          *
2720          * ext4_da_writepages() ->
2721          *    write_cache_pages() ---> (via passed in callback function)
2722          *        __mpage_da_writepage() -->
2723          *           mpage_add_bh_to_extent()
2724          *           mpage_da_map_blocks()
2725          *
2726          * The problem is that write_cache_pages(), located in
2727          * mm/page-writeback.c, marks pages clean in preparation for
2728          * doing I/O, which is not desirable if we're not planning on
2729          * doing I/O at all.
2730          *
2731          * We could call write_cache_pages(), and then redirty all of
2732          * the pages by calling redirty_page_for_writepage() but that
2733          * would be ugly in the extreme.  So instead we would need to
2734          * replicate parts of the code in the above functions,
2735          * simplifying them because we wouldn't actually intend to
2736          * write out the pages, but rather only collect contiguous
2737          * logical block extents, call the multi-block allocator, and
2738          * then update the buffer heads with the block allocations.
2739          *
2740          * For now, though, we'll cheat by calling filemap_flush(),
2741          * which will map the blocks, and start the I/O, but not
2742          * actually wait for the I/O to complete.
2743          */
2744         return filemap_flush(inode->i_mapping);
2745 }
2746
2747 /*
2748  * bmap() is special.  It gets used by applications such as lilo and by
2749  * the swapper to find the on-disk block of a specific piece of data.
2750  *
2751  * Naturally, this is dangerous if the block concerned is still in the
2752  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2753  * filesystem and enables swap, then they may get a nasty shock when the
2754  * data getting swapped to that swapfile suddenly gets overwritten by
2755  * the original zero's written out previously to the journal and
2756  * awaiting writeback in the kernel's buffer cache.
2757  *
2758  * So, if we see any bmap calls here on a modified, data-journaled file,
2759  * take extra steps to flush any blocks which might be in the cache.
2760  */
2761 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2762 {
2763         struct inode *inode = mapping->host;
2764         journal_t *journal;
2765         int err;
2766
2767         /*
2768          * We can get here for an inline file via the FIBMAP ioctl
2769          */
2770         if (ext4_has_inline_data(inode))
2771                 return 0;
2772
2773         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2774                         test_opt(inode->i_sb, DELALLOC)) {
2775                 /*
2776                  * With delalloc we want to sync the file
2777                  * so that we can make sure we allocate
2778                  * blocks for file
2779                  */
2780                 filemap_write_and_wait(mapping);
2781         }
2782
2783         if (EXT4_JOURNAL(inode) &&
2784             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2785                 /*
2786                  * This is a REALLY heavyweight approach, but the use of
2787                  * bmap on dirty files is expected to be extremely rare:
2788                  * only if we run lilo or swapon on a freshly made file
2789                  * do we expect this to happen.
2790                  *
2791                  * (bmap requires CAP_SYS_RAWIO so this does not
2792                  * represent an unprivileged user DOS attack --- we'd be
2793                  * in trouble if mortal users could trigger this path at
2794                  * will.)
2795                  *
2796                  * NB. EXT4_STATE_JDATA is not set on files other than
2797                  * regular files.  If somebody wants to bmap a directory
2798                  * or symlink and gets confused because the buffer
2799                  * hasn't yet been flushed to disk, they deserve
2800                  * everything they get.
2801                  */
2802
2803                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2804                 journal = EXT4_JOURNAL(inode);
2805                 jbd2_journal_lock_updates(journal);
2806                 err = jbd2_journal_flush(journal);
2807                 jbd2_journal_unlock_updates(journal);
2808
2809                 if (err)
2810                         return 0;
2811         }
2812
2813         return generic_block_bmap(mapping, block, ext4_get_block);
2814 }
2815
2816 static int ext4_readpage(struct file *file, struct page *page)
2817 {
2818         int ret = -EAGAIN;
2819         struct inode *inode = page->mapping->host;
2820
2821         trace_ext4_readpage(page);
2822
2823         if (ext4_has_inline_data(inode))
2824                 ret = ext4_readpage_inline(inode, page);
2825
2826         if (ret == -EAGAIN)
2827                 return mpage_readpage(page, ext4_get_block);
2828
2829         return ret;
2830 }
2831
2832 static int
2833 ext4_readpages(struct file *file, struct address_space *mapping,
2834                 struct list_head *pages, unsigned nr_pages)
2835 {
2836         struct inode *inode = mapping->host;
2837
2838         /* If the file has inline data, no need to do readpages. */
2839         if (ext4_has_inline_data(inode))
2840                 return 0;
2841
2842         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2843 }
2844
2845 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2846 {
2847         trace_ext4_invalidatepage(page, offset);
2848
2849         /* No journalling happens on data buffers when this function is used */
2850         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2851
2852         block_invalidatepage(page, offset);
2853 }
2854
2855 static int __ext4_journalled_invalidatepage(struct page *page,
2856                                             unsigned long offset)
2857 {
2858         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2859
2860         trace_ext4_journalled_invalidatepage(page, offset);
2861
2862         /*
2863          * If it's a full truncate we just forget about the pending dirtying
2864          */
2865         if (offset == 0)
2866                 ClearPageChecked(page);
2867
2868         return jbd2_journal_invalidatepage(journal, page, offset);
2869 }
2870
2871 /* Wrapper for aops... */
2872 static void ext4_journalled_invalidatepage(struct page *page,
2873                                            unsigned long offset)
2874 {
2875         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2876 }
2877
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881
2882         trace_ext4_releasepage(page);
2883
2884         WARN_ON(PageChecked(page));
2885         if (!page_has_buffers(page))
2886                 return 0;
2887         if (journal)
2888                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889         else
2890                 return try_to_free_buffers(page);
2891 }
2892
2893 /*
2894  * ext4_get_block used when preparing for a DIO write or buffer write.
2895  * We allocate an uinitialized extent if blocks haven't been allocated.
2896  * The extent will be converted to initialized after the IO is complete.
2897  */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899                    struct buffer_head *bh_result, int create)
2900 {
2901         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902                    inode->i_ino, create);
2903         return _ext4_get_block(inode, iblock, bh_result,
2904                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908                    struct buffer_head *bh_result, int create)
2909 {
2910         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911                    inode->i_ino, create);
2912         return _ext4_get_block(inode, iblock, bh_result,
2913                                EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917                             ssize_t size, void *private, int ret,
2918                             bool is_async)
2919 {
2920         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2921         ext4_io_end_t *io_end = iocb->private;
2922
2923         /* if not async direct IO or dio with 0 bytes write, just return */
2924         if (!io_end || !size)
2925                 goto out;
2926
2927         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2928                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2929                   iocb->private, io_end->inode->i_ino, iocb, offset,
2930                   size);
2931
2932         iocb->private = NULL;
2933
2934         /* if not aio dio with unwritten extents, just free io and return */
2935         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2936                 ext4_free_io_end(io_end);
2937 out:
2938                 if (is_async)
2939                         aio_complete(iocb, ret, 0);
2940                 inode_dio_done(inode);
2941                 return;
2942         }
2943
2944         io_end->offset = offset;
2945         io_end->size = size;
2946         if (is_async) {
2947                 io_end->iocb = iocb;
2948                 io_end->result = ret;
2949         }
2950
2951         ext4_add_complete_io(io_end);
2952 }
2953
2954 /*
2955  * For ext4 extent files, ext4 will do direct-io write to holes,
2956  * preallocated extents, and those write extend the file, no need to
2957  * fall back to buffered IO.
2958  *
2959  * For holes, we fallocate those blocks, mark them as uninitialized
2960  * If those blocks were preallocated, we mark sure they are split, but
2961  * still keep the range to write as uninitialized.
2962  *
2963  * The unwritten extents will be converted to written when DIO is completed.
2964  * For async direct IO, since the IO may still pending when return, we
2965  * set up an end_io call back function, which will do the conversion
2966  * when async direct IO completed.
2967  *
2968  * If the O_DIRECT write will extend the file then add this inode to the
2969  * orphan list.  So recovery will truncate it back to the original size
2970  * if the machine crashes during the write.
2971  *
2972  */
2973 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2974                               const struct iovec *iov, loff_t offset,
2975                               unsigned long nr_segs)
2976 {
2977         struct file *file = iocb->ki_filp;
2978         struct inode *inode = file->f_mapping->host;
2979         ssize_t ret;
2980         size_t count = iov_length(iov, nr_segs);
2981         int overwrite = 0;
2982         get_block_t *get_block_func = NULL;
2983         int dio_flags = 0;
2984         loff_t final_size = offset + count;
2985
2986         /* Use the old path for reads and writes beyond i_size. */
2987         if (rw != WRITE || final_size > inode->i_size)
2988                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2989
2990         BUG_ON(iocb->private == NULL);
2991
2992         /* If we do a overwrite dio, i_mutex locking can be released */
2993         overwrite = *((int *)iocb->private);
2994
2995         if (overwrite) {
2996                 atomic_inc(&inode->i_dio_count);
2997                 down_read(&EXT4_I(inode)->i_data_sem);
2998                 mutex_unlock(&inode->i_mutex);
2999         }
3000
3001         /*
3002          * We could direct write to holes and fallocate.
3003          *
3004          * Allocated blocks to fill the hole are marked as
3005          * uninitialized to prevent parallel buffered read to expose
3006          * the stale data before DIO complete the data IO.
3007          *
3008          * As to previously fallocated extents, ext4 get_block will
3009          * just simply mark the buffer mapped but still keep the
3010          * extents uninitialized.
3011          *
3012          * For non AIO case, we will convert those unwritten extents
3013          * to written after return back from blockdev_direct_IO.
3014          *
3015          * For async DIO, the conversion needs to be deferred when the
3016          * IO is completed. The ext4 end_io callback function will be
3017          * called to take care of the conversion work.  Here for async
3018          * case, we allocate an io_end structure to hook to the iocb.
3019          */
3020         iocb->private = NULL;
3021         ext4_inode_aio_set(inode, NULL);
3022         if (!is_sync_kiocb(iocb)) {
3023                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3024                 if (!io_end) {
3025                         ret = -ENOMEM;
3026                         goto retake_lock;
3027                 }
3028                 io_end->flag |= EXT4_IO_END_DIRECT;
3029                 iocb->private = io_end;
3030                 /*
3031                  * we save the io structure for current async direct
3032                  * IO, so that later ext4_map_blocks() could flag the
3033                  * io structure whether there is a unwritten extents
3034                  * needs to be converted when IO is completed.
3035                  */
3036                 ext4_inode_aio_set(inode, io_end);
3037         }
3038
3039         if (overwrite) {
3040                 get_block_func = ext4_get_block_write_nolock;
3041         } else {
3042                 get_block_func = ext4_get_block_write;
3043                 dio_flags = DIO_LOCKING;
3044         }
3045         ret = __blockdev_direct_IO(rw, iocb, inode,
3046                                    inode->i_sb->s_bdev, iov,
3047                                    offset, nr_segs,
3048                                    get_block_func,
3049                                    ext4_end_io_dio,
3050                                    NULL,
3051                                    dio_flags);
3052
3053         if (iocb->private)
3054                 ext4_inode_aio_set(inode, NULL);
3055         /*
3056          * The io_end structure takes a reference to the inode, that
3057          * structure needs to be destroyed and the reference to the
3058          * inode need to be dropped, when IO is complete, even with 0
3059          * byte write, or failed.
3060          *
3061          * In the successful AIO DIO case, the io_end structure will
3062          * be destroyed and the reference to the inode will be dropped
3063          * after the end_io call back function is called.
3064          *
3065          * In the case there is 0 byte write, or error case, since VFS
3066          * direct IO won't invoke the end_io call back function, we
3067          * need to free the end_io structure here.
3068          */
3069         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3070                 ext4_free_io_end(iocb->private);
3071                 iocb->private = NULL;
3072         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3073                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3074                 int err;
3075                 /*
3076                  * for non AIO case, since the IO is already
3077                  * completed, we could do the conversion right here
3078                  */
3079                 err = ext4_convert_unwritten_extents(inode,
3080                                                      offset, ret);
3081                 if (err < 0)
3082                         ret = err;
3083                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3084         }
3085
3086 retake_lock:
3087         /* take i_mutex locking again if we do a ovewrite dio */
3088         if (overwrite) {
3089                 inode_dio_done(inode);
3090                 up_read(&EXT4_I(inode)->i_data_sem);
3091                 mutex_lock(&inode->i_mutex);
3092         }
3093
3094         return ret;
3095 }
3096
3097 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3098                               const struct iovec *iov, loff_t offset,
3099                               unsigned long nr_segs)
3100 {
3101         struct file *file = iocb->ki_filp;
3102         struct inode *inode = file->f_mapping->host;
3103         ssize_t ret;
3104
3105         /*
3106          * If we are doing data journalling we don't support O_DIRECT
3107          */
3108         if (ext4_should_journal_data(inode))
3109                 return 0;
3110
3111         /* Let buffer I/O handle the inline data case. */
3112         if (ext4_has_inline_data(inode))
3113                 return 0;
3114
3115         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3116         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3117                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3118         else
3119                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3120         trace_ext4_direct_IO_exit(inode, offset,
3121                                 iov_length(iov, nr_segs), rw, ret);
3122         return ret;
3123 }
3124
3125 /*
3126  * Pages can be marked dirty completely asynchronously from ext4's journalling
3127  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3128  * much here because ->set_page_dirty is called under VFS locks.  The page is
3129  * not necessarily locked.
3130  *
3131  * We cannot just dirty the page and leave attached buffers clean, because the
3132  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3133  * or jbddirty because all the journalling code will explode.
3134  *
3135  * So what we do is to mark the page "pending dirty" and next time writepage
3136  * is called, propagate that into the buffers appropriately.
3137  */
3138 static int ext4_journalled_set_page_dirty(struct page *page)
3139 {
3140         SetPageChecked(page);
3141         return __set_page_dirty_nobuffers(page);
3142 }
3143
3144 static const struct address_space_operations ext4_ordered_aops = {
3145         .readpage               = ext4_readpage,
3146         .readpages              = ext4_readpages,
3147         .writepage              = ext4_writepage,
3148         .write_begin            = ext4_write_begin,
3149         .write_end              = ext4_ordered_write_end,
3150         .bmap                   = ext4_bmap,
3151         .invalidatepage         = ext4_invalidatepage,
3152         .releasepage            = ext4_releasepage,
3153         .direct_IO              = ext4_direct_IO,
3154         .migratepage            = buffer_migrate_page,
3155         .is_partially_uptodate  = block_is_partially_uptodate,
3156         .error_remove_page      = generic_error_remove_page,
3157 };
3158
3159 static const struct address_space_operations ext4_writeback_aops = {
3160         .readpage               = ext4_readpage,
3161         .readpages              = ext4_readpages,
3162         .writepage              = ext4_writepage,
3163         .write_begin            = ext4_write_begin,
3164         .write_end              = ext4_writeback_write_end,
3165         .bmap                   = ext4_bmap,
3166         .invalidatepage         = ext4_invalidatepage,
3167         .releasepage            = ext4_releasepage,
3168         .direct_IO              = ext4_direct_IO,
3169         .migratepage            = buffer_migrate_page,
3170         .is_partially_uptodate  = block_is_partially_uptodate,
3171         .error_remove_page      = generic_error_remove_page,
3172 };
3173
3174 static const struct address_space_operations ext4_journalled_aops = {
3175         .readpage               = ext4_readpage,
3176         .readpages              = ext4_readpages,
3177         .writepage              = ext4_writepage,
3178         .write_begin            = ext4_write_begin,
3179         .write_end              = ext4_journalled_write_end,
3180         .set_page_dirty         = ext4_journalled_set_page_dirty,
3181         .bmap                   = ext4_bmap,
3182         .invalidatepage         = ext4_journalled_invalidatepage,
3183         .releasepage            = ext4_releasepage,
3184         .direct_IO              = ext4_direct_IO,
3185         .is_partially_uptodate  = block_is_partially_uptodate,
3186         .error_remove_page      = generic_error_remove_page,
3187 };
3188
3189 static const struct address_space_operations ext4_da_aops = {
3190         .readpage               = ext4_readpage,
3191         .readpages              = ext4_readpages,
3192         .writepage              = ext4_writepage,
3193         .writepages             = ext4_da_writepages,
3194         .write_begin            = ext4_da_write_begin,
3195         .write_end              = ext4_da_write_end,
3196         .bmap                   = ext4_bmap,
3197         .invalidatepage         = ext4_da_invalidatepage,
3198         .releasepage            = ext4_releasepage,
3199         .direct_IO              = ext4_direct_IO,
3200         .migratepage            = buffer_migrate_page,
3201         .is_partially_uptodate  = block_is_partially_uptodate,
3202         .error_remove_page      = generic_error_remove_page,
3203 };
3204
3205 void ext4_set_aops(struct inode *inode)
3206 {
3207         switch (ext4_inode_journal_mode(inode)) {
3208         case EXT4_INODE_ORDERED_DATA_MODE:
3209                 if (test_opt(inode->i_sb, DELALLOC))
3210                         inode->i_mapping->a_ops = &ext4_da_aops;
3211                 else
3212                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3213                 break;
3214         case EXT4_INODE_WRITEBACK_DATA_MODE:
3215                 if (test_opt(inode->i_sb, DELALLOC))
3216                         inode->i_mapping->a_ops = &ext4_da_aops;
3217                 else
3218                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3219                 break;
3220         case EXT4_INODE_JOURNAL_DATA_MODE:
3221                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3222                 break;
3223         default:
3224                 BUG();
3225         }
3226 }
3227
3228
3229 /*
3230  * ext4_discard_partial_page_buffers()
3231  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3232  * This function finds and locks the page containing the offset
3233  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3234  * Calling functions that already have the page locked should call
3235  * ext4_discard_partial_page_buffers_no_lock directly.
3236  */
3237 int ext4_discard_partial_page_buffers(handle_t *handle,
3238                 struct address_space *mapping, loff_t from,
3239                 loff_t length, int flags)
3240 {
3241         struct inode *inode = mapping->host;
3242         struct page *page;
3243         int err = 0;
3244
3245         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3246                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3247         if (!page)
3248                 return -ENOMEM;
3249
3250         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3251                 from, length, flags);
3252
3253         unlock_page(page);
3254         page_cache_release(page);
3255         return err;
3256 }
3257
3258 /*
3259  * ext4_discard_partial_page_buffers_no_lock()
3260  * Zeros a page range of length 'length' starting from offset 'from'.
3261  * Buffer heads that correspond to the block aligned regions of the
3262  * zeroed range will be unmapped.  Unblock aligned regions
3263  * will have the corresponding buffer head mapped if needed so that
3264  * that region of the page can be updated with the partial zero out.
3265  *
3266  * This function assumes that the page has already been  locked.  The
3267  * The range to be discarded must be contained with in the given page.
3268  * If the specified range exceeds the end of the page it will be shortened
3269  * to the end of the page that corresponds to 'from'.  This function is
3270  * appropriate for updating a page and it buffer heads to be unmapped and
3271  * zeroed for blocks that have been either released, or are going to be
3272  * released.
3273  *
3274  * handle: The journal handle
3275  * inode:  The files inode
3276  * page:   A locked page that contains the offset "from"
3277  * from:   The starting byte offset (from the beginning of the file)
3278  *         to begin discarding
3279  * len:    The length of bytes to discard
3280  * flags:  Optional flags that may be used:
3281  *
3282  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3283  *         Only zero the regions of the page whose buffer heads
3284  *         have already been unmapped.  This flag is appropriate
3285  *         for updating the contents of a page whose blocks may
3286  *         have already been released, and we only want to zero
3287  *         out the regions that correspond to those released blocks.
3288  *
3289  * Returns zero on success or negative on failure.
3290  */
3291 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3292                 struct inode *inode, struct page *page, loff_t from,
3293                 loff_t length, int flags)
3294 {
3295         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3296         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3297         unsigned int blocksize, max, pos;
3298         ext4_lblk_t iblock;
3299         struct buffer_head *bh;
3300         int err = 0;
3301
3302         blocksize = inode->i_sb->s_blocksize;
3303         max = PAGE_CACHE_SIZE - offset;
3304
3305         if (index != page->index)
3306                 return -EINVAL;
3307
3308         /*
3309          * correct length if it does not fall between
3310          * 'from' and the end of the page
3311          */
3312         if (length > max || length < 0)
3313                 length = max;
3314
3315         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3316
3317         if (!page_has_buffers(page))
3318                 create_empty_buffers(page, blocksize, 0);
3319
3320         /* Find the buffer that contains "offset" */
3321         bh = page_buffers(page);
3322         pos = blocksize;
3323         while (offset >= pos) {
3324                 bh = bh->b_this_page;
3325                 iblock++;
3326                 pos += blocksize;
3327         }
3328
3329         pos = offset;
3330         while (pos < offset + length) {
3331                 unsigned int end_of_block, range_to_discard;
3332
3333                 err = 0;
3334
3335                 /* The length of space left to zero and unmap */
3336                 range_to_discard = offset + length - pos;
3337
3338                 /* The length of space until the end of the block */
3339                 end_of_block = blocksize - (pos & (blocksize-1));
3340
3341                 /*
3342                  * Do not unmap or zero past end of block
3343                  * for this buffer head
3344                  */
3345                 if (range_to_discard > end_of_block)
3346                         range_to_discard = end_of_block;
3347
3348
3349                 /*
3350                  * Skip this buffer head if we are only zeroing unampped
3351                  * regions of the page
3352                  */
3353                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3354                         buffer_mapped(bh))
3355                                 goto next;
3356
3357                 /* If the range is block aligned, unmap */
3358                 if (range_to_discard == blocksize) {
3359                         clear_buffer_dirty(bh);
3360                         bh->b_bdev = NULL;
3361                         clear_buffer_mapped(bh);
3362                         clear_buffer_req(bh);
3363                         clear_buffer_new(bh);
3364                         clear_buffer_delay(bh);
3365                         clear_buffer_unwritten(bh);
3366                         clear_buffer_uptodate(bh);
3367                         zero_user(page, pos, range_to_discard);
3368                         BUFFER_TRACE(bh, "Buffer discarded");
3369                         goto next;
3370                 }
3371
3372                 /*
3373                  * If this block is not completely contained in the range
3374                  * to be discarded, then it is not going to be released. Because
3375                  * we need to keep this block, we need to make sure this part
3376                  * of the page is uptodate before we modify it by writeing
3377                  * partial zeros on it.
3378                  */
3379                 if (!buffer_mapped(bh)) {
3380                         /*
3381                          * Buffer head must be mapped before we can read
3382                          * from the block
3383                          */
3384                         BUFFER_TRACE(bh, "unmapped");
3385                         ext4_get_block(inode, iblock, bh, 0);
3386                         /* unmapped? It's a hole - nothing to do */
3387                         if (!buffer_mapped(bh)) {
3388                                 BUFFER_TRACE(bh, "still unmapped");
3389                                 goto next;
3390                         }
3391                 }
3392
3393                 /* Ok, it's mapped. Make sure it's up-to-date */
3394                 if (PageUptodate(page))
3395                         set_buffer_uptodate(bh);
3396
3397                 if (!buffer_uptodate(bh)) {
3398                         err = -EIO;
3399                         ll_rw_block(READ, 1, &bh);
3400                         wait_on_buffer(bh);
3401                         /* Uhhuh. Read error. Complain and punt.*/
3402                         if (!buffer_uptodate(bh))
3403                                 goto next;
3404                 }
3405
3406                 if (ext4_should_journal_data(inode)) {
3407                         BUFFER_TRACE(bh, "get write access");
3408                         err = ext4_journal_get_write_access(handle, bh);
3409                         if (err)
3410                                 goto next;
3411                 }
3412
3413                 zero_user(page, pos, range_to_discard);
3414
3415                 err = 0;
3416                 if (ext4_should_journal_data(inode)) {
3417                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3418                 } else
3419                         mark_buffer_dirty(bh);
3420
3421                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3422 next:
3423                 bh = bh->b_this_page;
3424                 iblock++;
3425                 pos += range_to_discard;
3426         }
3427
3428         return err;
3429 }
3430
3431 int ext4_can_truncate(struct inode *inode)
3432 {
3433         if (S_ISREG(inode->i_mode))
3434                 return 1;
3435         if (S_ISDIR(inode->i_mode))
3436                 return 1;
3437         if (S_ISLNK(inode->i_mode))
3438                 return !ext4_inode_is_fast_symlink(inode);
3439         return 0;
3440 }
3441
3442 /*
3443  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3444  * associated with the given offset and length
3445  *
3446  * @inode:  File inode
3447  * @offset: The offset where the hole will begin
3448  * @len:    The length of the hole
3449  *
3450  * Returns: 0 on success or negative on failure
3451  */
3452
3453 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3454 {
3455         struct inode *inode = file->f_path.dentry->d_inode;
3456         if (!S_ISREG(inode->i_mode))
3457                 return -EOPNOTSUPP;
3458
3459         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3460                 return ext4_ind_punch_hole(file, offset, length);
3461
3462         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3463                 /* TODO: Add support for bigalloc file systems */
3464                 return -EOPNOTSUPP;
3465         }
3466
3467         trace_ext4_punch_hole(inode, offset, length);
3468
3469         return ext4_ext_punch_hole(file, offset, length);
3470 }
3471
3472 /*
3473  * ext4_truncate()
3474  *
3475  * We block out ext4_get_block() block instantiations across the entire
3476  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3477  * simultaneously on behalf of the same inode.
3478  *
3479  * As we work through the truncate and commit bits of it to the journal there
3480  * is one core, guiding principle: the file's tree must always be consistent on
3481  * disk.  We must be able to restart the truncate after a crash.
3482  *
3483  * The file's tree may be transiently inconsistent in memory (although it
3484  * probably isn't), but whenever we close off and commit a journal transaction,
3485  * the contents of (the filesystem + the journal) must be consistent and
3486  * restartable.  It's pretty simple, really: bottom up, right to left (although
3487  * left-to-right works OK too).
3488  *
3489  * Note that at recovery time, journal replay occurs *before* the restart of
3490  * truncate against the orphan inode list.
3491  *
3492  * The committed inode has the new, desired i_size (which is the same as
3493  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3494  * that this inode's truncate did not complete and it will again call
3495  * ext4_truncate() to have another go.  So there will be instantiated blocks
3496  * to the right of the truncation point in a crashed ext4 filesystem.  But
3497  * that's fine - as long as they are linked from the inode, the post-crash
3498  * ext4_truncate() run will find them and release them.
3499  */
3500 void ext4_truncate(struct inode *inode)
3501 {
3502         trace_ext4_truncate_enter(inode);
3503
3504         if (!ext4_can_truncate(inode))
3505                 return;
3506
3507         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3508
3509         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3510                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3511
3512         if (ext4_has_inline_data(inode)) {
3513                 int has_inline = 1;
3514
3515                 ext4_inline_data_truncate(inode, &has_inline);
3516                 if (has_inline)
3517                         return;
3518         }
3519
3520         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3521                 ext4_ext_truncate(inode);
3522         else
3523                 ext4_ind_truncate(inode);
3524
3525         trace_ext4_truncate_exit(inode);
3526 }
3527
3528 /*
3529  * ext4_get_inode_loc returns with an extra refcount against the inode's
3530  * underlying buffer_head on success. If 'in_mem' is true, we have all
3531  * data in memory that is needed to recreate the on-disk version of this
3532  * inode.
3533  */
3534 static int __ext4_get_inode_loc(struct inode *inode,
3535                                 struct ext4_iloc *iloc, int in_mem)
3536 {
3537         struct ext4_group_desc  *gdp;
3538         struct buffer_head      *bh;
3539         struct super_block      *sb = inode->i_sb;
3540         ext4_fsblk_t            block;
3541         int                     inodes_per_block, inode_offset;
3542
3543         iloc->bh = NULL;
3544         if (!ext4_valid_inum(sb, inode->i_ino))
3545                 return -EIO;
3546
3547         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3548         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3549         if (!gdp)
3550                 return -EIO;
3551
3552         /*
3553          * Figure out the offset within the block group inode table
3554          */
3555         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3556         inode_offset = ((inode->i_ino - 1) %
3557                         EXT4_INODES_PER_GROUP(sb));
3558         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3559         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3560
3561         bh = sb_getblk(sb, block);
3562         if (unlikely(!bh))
3563                 return -ENOMEM;
3564         if (!buffer_uptodate(bh)) {
3565                 lock_buffer(bh);
3566
3567                 /*
3568                  * If the buffer has the write error flag, we have failed
3569                  * to write out another inode in the same block.  In this
3570                  * case, we don't have to read the block because we may
3571                  * read the old inode data successfully.
3572                  */
3573                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3574                         set_buffer_uptodate(bh);
3575
3576                 if (buffer_uptodate(bh)) {
3577                         /* someone brought it uptodate while we waited */
3578                         unlock_buffer(bh);
3579                         goto has_buffer;
3580                 }
3581
3582                 /*
3583                  * If we have all information of the inode in memory and this
3584                  * is the only valid inode in the block, we need not read the
3585                  * block.
3586                  */
3587                 if (in_mem) {
3588                         struct buffer_head *bitmap_bh;
3589                         int i, start;
3590
3591                         start = inode_offset & ~(inodes_per_block - 1);
3592
3593                         /* Is the inode bitmap in cache? */
3594                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3595                         if (unlikely(!bitmap_bh))
3596                                 goto make_io;
3597
3598                         /*
3599                          * If the inode bitmap isn't in cache then the
3600                          * optimisation may end up performing two reads instead
3601                          * of one, so skip it.
3602                          */
3603                         if (!buffer_uptodate(bitmap_bh)) {
3604                                 brelse(bitmap_bh);
3605                                 goto make_io;
3606                         }
3607                         for (i = start; i < start + inodes_per_block; i++) {
3608                                 if (i == inode_offset)
3609                                         continue;
3610                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3611                                         break;
3612                         }
3613                         brelse(bitmap_bh);
3614                         if (i == start + inodes_per_block) {
3615                                 /* all other inodes are free, so skip I/O */
3616                                 memset(bh->b_data, 0, bh->b_size);
3617                                 set_buffer_uptodate(bh);
3618                                 unlock_buffer(bh);
3619                                 goto has_buffer;
3620                         }
3621                 }
3622
3623 make_io:
3624                 /*
3625                  * If we need to do any I/O, try to pre-readahead extra
3626                  * blocks from the inode table.
3627                  */
3628                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3629                         ext4_fsblk_t b, end, table;
3630                         unsigned num;
3631
3632                         table = ext4_inode_table(sb, gdp);
3633                         /* s_inode_readahead_blks is always a power of 2 */
3634                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3635                         if (table > b)
3636                                 b = table;
3637                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3638                         num = EXT4_INODES_PER_GROUP(sb);
3639                         if (ext4_has_group_desc_csum(sb))
3640                                 num -= ext4_itable_unused_count(sb, gdp);
3641                         table += num / inodes_per_block;
3642                         if (end > table)
3643                                 end = table;
3644                         while (b <= end)
3645                                 sb_breadahead(sb, b++);
3646                 }
3647
3648                 /*
3649                  * There are other valid inodes in the buffer, this inode
3650                  * has in-inode xattrs, or we don't have this inode in memory.
3651                  * Read the block from disk.
3652                  */
3653                 trace_ext4_load_inode(inode);
3654                 get_bh(bh);
3655                 bh->b_end_io = end_buffer_read_sync;
3656                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3657                 wait_on_buffer(bh);
3658                 if (!buffer_uptodate(bh)) {
3659                         EXT4_ERROR_INODE_BLOCK(inode, block,
3660                                                "unable to read itable block");
3661                         brelse(bh);
3662                         return -EIO;
3663                 }
3664         }
3665 has_buffer:
3666         iloc->bh = bh;
3667         return 0;
3668 }
3669
3670 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3671 {
3672         /* We have all inode data except xattrs in memory here. */
3673         return __ext4_get_inode_loc(inode, iloc,
3674                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3675 }
3676
3677 void ext4_set_inode_flags(struct inode *inode)
3678 {
3679         unsigned int flags = EXT4_I(inode)->i_flags;
3680
3681         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3682         if (flags & EXT4_SYNC_FL)
3683                 inode->i_flags |= S_SYNC;
3684         if (flags & EXT4_APPEND_FL)
3685                 inode->i_flags |= S_APPEND;
3686         if (flags & EXT4_IMMUTABLE_FL)
3687                 inode->i_flags |= S_IMMUTABLE;
3688         if (flags & EXT4_NOATIME_FL)
3689                 inode->i_flags |= S_NOATIME;
3690         if (flags & EXT4_DIRSYNC_FL)
3691                 inode->i_flags |= S_DIRSYNC;
3692 }
3693
3694 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3695 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3696 {
3697         unsigned int vfs_fl;
3698         unsigned long old_fl, new_fl;
3699
3700         do {
3701                 vfs_fl = ei->vfs_inode.i_flags;
3702                 old_fl = ei->i_flags;
3703                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3704                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3705                                 EXT4_DIRSYNC_FL);
3706                 if (vfs_fl & S_SYNC)
3707                         new_fl |= EXT4_SYNC_FL;
3708                 if (vfs_fl & S_APPEND)
3709                         new_fl |= EXT4_APPEND_FL;
3710                 if (vfs_fl & S_IMMUTABLE)
3711                         new_fl |= EXT4_IMMUTABLE_FL;
3712                 if (vfs_fl & S_NOATIME)
3713                         new_fl |= EXT4_NOATIME_FL;
3714                 if (vfs_fl & S_DIRSYNC)
3715                         new_fl |= EXT4_DIRSYNC_FL;
3716         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3717 }
3718
3719 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3720                                   struct ext4_inode_info *ei)
3721 {
3722         blkcnt_t i_blocks ;
3723         struct inode *inode = &(ei->vfs_inode);
3724         struct super_block *sb = inode->i_sb;
3725
3726         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3727                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3728                 /* we are using combined 48 bit field */
3729                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3730                                         le32_to_cpu(raw_inode->i_blocks_lo);
3731                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3732                         /* i_blocks represent file system block size */
3733                         return i_blocks  << (inode->i_blkbits - 9);
3734                 } else {
3735                         return i_blocks;
3736                 }
3737         } else {
3738                 return le32_to_cpu(raw_inode->i_blocks_lo);
3739         }
3740 }
3741
3742 static inline void ext4_iget_extra_inode(struct inode *inode,
3743                                          struct ext4_inode *raw_inode,
3744                                          struct ext4_inode_info *ei)
3745 {
3746         __le32 *magic = (void *)raw_inode +
3747                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3748         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3749                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3750                 ext4_find_inline_data_nolock(inode);
3751         } else
3752                 EXT4_I(inode)->i_inline_off = 0;
3753 }
3754
3755 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3756 {
3757         struct ext4_iloc iloc;
3758         struct ext4_inode *raw_inode;
3759         struct ext4_inode_info *ei;
3760         struct inode *inode;
3761         journal_t *journal = EXT4_SB(sb)->s_journal;
3762         long ret;
3763         int block;
3764         uid_t i_uid;
3765         gid_t i_gid;
3766
3767         inode = iget_locked(sb, ino);
3768         if (!inode)
3769                 return ERR_PTR(-ENOMEM);
3770         if (!(inode->i_state & I_NEW))
3771                 return inode;
3772
3773         ei = EXT4_I(inode);
3774         iloc.bh = NULL;
3775
3776         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3777         if (ret < 0)
3778                 goto bad_inode;
3779         raw_inode = ext4_raw_inode(&iloc);
3780
3781         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3782                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3783                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3784                     EXT4_INODE_SIZE(inode->i_sb)) {
3785                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3786                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3787                                 EXT4_INODE_SIZE(inode->i_sb));
3788                         ret = -EIO;
3789                         goto bad_inode;
3790                 }
3791         } else
3792                 ei->i_extra_isize = 0;
3793
3794         /* Precompute checksum seed for inode metadata */
3795         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3796                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3797                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3798                 __u32 csum;
3799                 __le32 inum = cpu_to_le32(inode->i_ino);
3800                 __le32 gen = raw_inode->i_generation;
3801                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3802                                    sizeof(inum));
3803                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3804                                               sizeof(gen));
3805         }
3806
3807         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3808                 EXT4_ERROR_INODE(inode, "checksum invalid");
3809                 ret = -EIO;
3810                 goto bad_inode;
3811         }
3812
3813         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3814         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3815         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3816         if (!(test_opt(inode->i_sb, NO_UID32))) {
3817                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3818                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3819         }
3820         i_uid_write(inode, i_uid);
3821         i_gid_write(inode, i_gid);
3822         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3823
3824         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3825         ei->i_inline_off = 0;
3826         ei->i_dir_start_lookup = 0;
3827         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3828         /* We now have enough fields to check if the inode was active or not.
3829          * This is needed because nfsd might try to access dead inodes
3830          * the test is that same one that e2fsck uses
3831          * NeilBrown 1999oct15
3832          */
3833         if (inode->i_nlink == 0) {
3834                 if (inode->i_mode == 0 ||
3835                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3836                         /* this inode is deleted */
3837                         ret = -ESTALE;
3838                         goto bad_inode;
3839                 }
3840                 /* The only unlinked inodes we let through here have
3841                  * valid i_mode and are being read by the orphan
3842                  * recovery code: that's fine, we're about to complete
3843                  * the process of deleting those. */
3844         }
3845         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3846         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3847         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3848         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3849                 ei->i_file_acl |=
3850                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3851         inode->i_size = ext4_isize(raw_inode);
3852         ei->i_disksize = inode->i_size;
3853 #ifdef CONFIG_QUOTA
3854         ei->i_reserved_quota = 0;
3855 #endif
3856         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3857         ei->i_block_group = iloc.block_group;
3858         ei->i_last_alloc_group = ~0;
3859         /*
3860          * NOTE! The in-memory inode i_data array is in little-endian order
3861          * even on big-endian machines: we do NOT byteswap the block numbers!
3862          */
3863         for (block = 0; block < EXT4_N_BLOCKS; block++)
3864                 ei->i_data[block] = raw_inode->i_block[block];
3865         INIT_LIST_HEAD(&ei->i_orphan);
3866
3867         /*
3868          * Set transaction id's of transactions that have to be committed
3869          * to finish f[data]sync. We set them to currently running transaction
3870          * as we cannot be sure that the inode or some of its metadata isn't
3871          * part of the transaction - the inode could have been reclaimed and
3872          * now it is reread from disk.
3873          */
3874         if (journal) {
3875                 transaction_t *transaction;
3876                 tid_t tid;
3877
3878                 read_lock(&journal->j_state_lock);
3879                 if (journal->j_running_transaction)
3880                         transaction = journal->j_running_transaction;
3881                 else
3882                         transaction = journal->j_committing_transaction;
3883                 if (transaction)
3884                         tid = transaction->t_tid;
3885                 else
3886                         tid = journal->j_commit_sequence;
3887                 read_unlock(&journal->j_state_lock);
3888                 ei->i_sync_tid = tid;
3889                 ei->i_datasync_tid = tid;
3890         }
3891
3892         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893                 if (ei->i_extra_isize == 0) {
3894                         /* The extra space is currently unused. Use it. */
3895                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3896                                             EXT4_GOOD_OLD_INODE_SIZE;
3897                 } else {
3898                         ext4_iget_extra_inode(inode, raw_inode, ei);
3899                 }
3900         }
3901
3902         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3903         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3904         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3905         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3906
3907         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3908         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3909                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3910                         inode->i_version |=
3911                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3912         }
3913
3914         ret = 0;
3915         if (ei->i_file_acl &&
3916             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3917                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3918                                  ei->i_file_acl);
3919                 ret = -EIO;
3920                 goto bad_inode;
3921         } else if (!ext4_has_inline_data(inode)) {
3922                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3923                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3924                             (S_ISLNK(inode->i_mode) &&
3925                              !ext4_inode_is_fast_symlink(inode))))
3926                                 /* Validate extent which is part of inode */
3927                                 ret = ext4_ext_check_inode(inode);
3928                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3929                            (S_ISLNK(inode->i_mode) &&
3930                             !ext4_inode_is_fast_symlink(inode))) {
3931                         /* Validate block references which are part of inode */
3932                         ret = ext4_ind_check_inode(inode);
3933                 }
3934         }
3935         if (ret)
3936                 goto bad_inode;
3937
3938         if (S_ISREG(inode->i_mode)) {
3939                 inode->i_op = &ext4_file_inode_operations;
3940                 inode->i_fop = &ext4_file_operations;
3941                 ext4_set_aops(inode);
3942         } else if (S_ISDIR(inode->i_mode)) {
3943                 inode->i_op = &ext4_dir_inode_operations;
3944                 inode->i_fop = &ext4_dir_operations;
3945         } else if (S_ISLNK(inode->i_mode)) {
3946                 if (ext4_inode_is_fast_symlink(inode)) {
3947                         inode->i_op = &ext4_fast_symlink_inode_operations;
3948                         nd_terminate_link(ei->i_data, inode->i_size,
3949                                 sizeof(ei->i_data) - 1);
3950                 } else {
3951                         inode->i_op = &ext4_symlink_inode_operations;
3952                         ext4_set_aops(inode);
3953                 }
3954         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3955               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3956                 inode->i_op = &ext4_special_inode_operations;
3957                 if (raw_inode->i_block[0])
3958                         init_special_inode(inode, inode->i_mode,
3959                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3960                 else
3961                         init_special_inode(inode, inode->i_mode,
3962                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3963         } else {
3964                 ret = -EIO;
3965                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3966                 goto bad_inode;
3967         }
3968         brelse(iloc.bh);
3969         ext4_set_inode_flags(inode);
3970         unlock_new_inode(inode);
3971         return inode;
3972
3973 bad_inode:
3974         brelse(iloc.bh);
3975         iget_failed(inode);
3976         return ERR_PTR(ret);
3977 }
3978
3979 static int ext4_inode_blocks_set(handle_t *handle,
3980                                 struct ext4_inode *raw_inode,
3981                                 struct ext4_inode_info *ei)
3982 {
3983         struct inode *inode = &(ei->vfs_inode);
3984         u64 i_blocks = inode->i_blocks;
3985         struct super_block *sb = inode->i_sb;
3986
3987         if (i_blocks <= ~0U) {
3988                 /*
3989                  * i_blocks can be represented in a 32 bit variable
3990                  * as multiple of 512 bytes
3991                  */
3992                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3993                 raw_inode->i_blocks_high = 0;
3994                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3995                 return 0;
3996         }
3997         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3998                 return -EFBIG;
3999
4000         if (i_blocks <= 0xffffffffffffULL) {
4001                 /*
4002                  * i_blocks can be represented in a 48 bit variable
4003                  * as multiple of 512 bytes
4004                  */
4005                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4006                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4007                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4008         } else {
4009                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4010                 /* i_block is stored in file system block size */
4011                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4012                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4013                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4014         }
4015         return 0;
4016 }
4017
4018 /*
4019  * Post the struct inode info into an on-disk inode location in the
4020  * buffer-cache.  This gobbles the caller's reference to the
4021  * buffer_head in the inode location struct.
4022  *
4023  * The caller must have write access to iloc->bh.
4024  */
4025 static int ext4_do_update_inode(handle_t *handle,
4026                                 struct inode *inode,
4027                                 struct ext4_iloc *iloc)
4028 {
4029         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4030         struct ext4_inode_info *ei = EXT4_I(inode);
4031         struct buffer_head *bh = iloc->bh;
4032         int err = 0, rc, block;
4033         int need_datasync = 0;
4034         uid_t i_uid;
4035         gid_t i_gid;
4036
4037         /* For fields not not tracking in the in-memory inode,
4038          * initialise them to zero for new inodes. */
4039         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4040                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4041
4042         ext4_get_inode_flags(ei);
4043         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4044         i_uid = i_uid_read(inode);
4045         i_gid = i_gid_read(inode);
4046         if (!(test_opt(inode->i_sb, NO_UID32))) {
4047                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4048                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4049 /*
4050  * Fix up interoperability with old kernels. Otherwise, old inodes get
4051  * re-used with the upper 16 bits of the uid/gid intact
4052  */
4053                 if (!ei->i_dtime) {
4054                         raw_inode->i_uid_high =
4055                                 cpu_to_le16(high_16_bits(i_uid));
4056                         raw_inode->i_gid_high =
4057                                 cpu_to_le16(high_16_bits(i_gid));
4058                 } else {
4059                         raw_inode->i_uid_high = 0;
4060                         raw_inode->i_gid_high = 0;
4061                 }
4062         } else {
4063                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4064                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4065                 raw_inode->i_uid_high = 0;
4066                 raw_inode->i_gid_high = 0;
4067         }
4068         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4069
4070         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4071         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4072         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4073         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4074
4075         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4076                 goto out_brelse;
4077         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4078         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4079         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4080             cpu_to_le32(EXT4_OS_HURD))
4081                 raw_inode->i_file_acl_high =
4082                         cpu_to_le16(ei->i_file_acl >> 32);
4083         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4084         if (ei->i_disksize != ext4_isize(raw_inode)) {
4085                 ext4_isize_set(raw_inode, ei->i_disksize);
4086                 need_datasync = 1;
4087         }
4088         if (ei->i_disksize > 0x7fffffffULL) {
4089                 struct super_block *sb = inode->i_sb;
4090                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4091                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4092                                 EXT4_SB(sb)->s_es->s_rev_level ==
4093                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4094                         /* If this is the first large file
4095                          * created, add a flag to the superblock.
4096                          */
4097                         err = ext4_journal_get_write_access(handle,
4098                                         EXT4_SB(sb)->s_sbh);
4099                         if (err)
4100                                 goto out_brelse;
4101                         ext4_update_dynamic_rev(sb);
4102                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4103                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4104                         ext4_handle_sync(handle);
4105                         err = ext4_handle_dirty_super(handle, sb);
4106                 }
4107         }
4108         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4109         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4110                 if (old_valid_dev(inode->i_rdev)) {
4111                         raw_inode->i_block[0] =
4112                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4113                         raw_inode->i_block[1] = 0;
4114                 } else {
4115                         raw_inode->i_block[0] = 0;
4116                         raw_inode->i_block[1] =
4117                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4118                         raw_inode->i_block[2] = 0;
4119                 }
4120         } else if (!ext4_has_inline_data(inode)) {
4121                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4122                         raw_inode->i_block[block] = ei->i_data[block];
4123         }
4124
4125         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4126         if (ei->i_extra_isize) {
4127                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4128                         raw_inode->i_version_hi =
4129                         cpu_to_le32(inode->i_version >> 32);
4130                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4131         }
4132
4133         ext4_inode_csum_set(inode, raw_inode, ei);
4134
4135         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4136         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4137         if (!err)
4138                 err = rc;
4139         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4140
4141         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4142 out_brelse:
4143         brelse(bh);
4144         ext4_std_error(inode->i_sb, err);
4145         return err;
4146 }
4147
4148 /*
4149  * ext4_write_inode()
4150  *
4151  * We are called from a few places:
4152  *
4153  * - Within generic_file_write() for O_SYNC files.
4154  *   Here, there will be no transaction running. We wait for any running
4155  *   transaction to commit.
4156  *
4157  * - Within sys_sync(), kupdate and such.
4158  *   We wait on commit, if tol to.
4159  *
4160  * - Within prune_icache() (PF_MEMALLOC == true)
4161  *   Here we simply return.  We can't afford to block kswapd on the
4162  *   journal commit.
4163  *
4164  * In all cases it is actually safe for us to return without doing anything,
4165  * because the inode has been copied into a raw inode buffer in
4166  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4167  * knfsd.
4168  *
4169  * Note that we are absolutely dependent upon all inode dirtiers doing the
4170  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4171  * which we are interested.
4172  *
4173  * It would be a bug for them to not do this.  The code:
4174  *
4175  *      mark_inode_dirty(inode)
4176  *      stuff();
4177  *      inode->i_size = expr;
4178  *
4179  * is in error because a kswapd-driven write_inode() could occur while
4180  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4181  * will no longer be on the superblock's dirty inode list.
4182  */
4183 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4184 {
4185         int err;
4186
4187         if (current->flags & PF_MEMALLOC)
4188                 return 0;
4189
4190         if (EXT4_SB(inode->i_sb)->s_journal) {
4191                 if (ext4_journal_current_handle()) {
4192                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4193                         dump_stack();
4194                         return -EIO;
4195                 }
4196
4197                 if (wbc->sync_mode != WB_SYNC_ALL)
4198                         return 0;
4199
4200                 err = ext4_force_commit(inode->i_sb);
4201         } else {
4202                 struct ext4_iloc iloc;
4203
4204                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4205                 if (err)
4206                         return err;
4207                 if (wbc->sync_mode == WB_SYNC_ALL)
4208                         sync_dirty_buffer(iloc.bh);
4209                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4210                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4211                                          "IO error syncing inode");
4212                         err = -EIO;
4213                 }
4214                 brelse(iloc.bh);
4215         }
4216         return err;
4217 }
4218
4219 /*
4220  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4221  * buffers that are attached to a page stradding i_size and are undergoing
4222  * commit. In that case we have to wait for commit to finish and try again.
4223  */
4224 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4225 {
4226         struct page *page;
4227         unsigned offset;
4228         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4229         tid_t commit_tid = 0;
4230         int ret;
4231
4232         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4233         /*
4234          * All buffers in the last page remain valid? Then there's nothing to
4235          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4236          * blocksize case
4237          */
4238         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4239                 return;
4240         while (1) {
4241                 page = find_lock_page(inode->i_mapping,
4242                                       inode->i_size >> PAGE_CACHE_SHIFT);
4243                 if (!page)
4244                         return;
4245                 ret = __ext4_journalled_invalidatepage(page, offset);
4246                 unlock_page(page);
4247                 page_cache_release(page);
4248                 if (ret != -EBUSY)
4249                         return;
4250                 commit_tid = 0;
4251                 read_lock(&journal->j_state_lock);
4252                 if (journal->j_committing_transaction)
4253                         commit_tid = journal->j_committing_transaction->t_tid;
4254                 read_unlock(&journal->j_state_lock);
4255                 if (commit_tid)
4256                         jbd2_log_wait_commit(journal, commit_tid);
4257         }
4258 }
4259
4260 /*
4261  * ext4_setattr()
4262  *
4263  * Called from notify_change.
4264  *
4265  * We want to trap VFS attempts to truncate the file as soon as
4266  * possible.  In particular, we want to make sure that when the VFS
4267  * shrinks i_size, we put the inode on the orphan list and modify
4268  * i_disksize immediately, so that during the subsequent flushing of
4269  * dirty pages and freeing of disk blocks, we can guarantee that any
4270  * commit will leave the blocks being flushed in an unused state on
4271  * disk.  (On recovery, the inode will get truncated and the blocks will
4272  * be freed, so we have a strong guarantee that no future commit will
4273  * leave these blocks visible to the user.)
4274  *
4275  * Another thing we have to assure is that if we are in ordered mode
4276  * and inode is still attached to the committing transaction, we must
4277  * we start writeout of all the dirty pages which are being truncated.
4278  * This way we are sure that all the data written in the previous
4279  * transaction are already on disk (truncate waits for pages under
4280  * writeback).
4281  *
4282  * Called with inode->i_mutex down.
4283  */
4284 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4285 {
4286         struct inode *inode = dentry->d_inode;
4287         int error, rc = 0;
4288         int orphan = 0;
4289         const unsigned int ia_valid = attr->ia_valid;
4290
4291         error = inode_change_ok(inode, attr);
4292         if (error)
4293                 return error;
4294
4295         if (is_quota_modification(inode, attr))
4296                 dquot_initialize(inode);
4297         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4298             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4299                 handle_t *handle;
4300
4301                 /* (user+group)*(old+new) structure, inode write (sb,
4302                  * inode block, ? - but truncate inode update has it) */
4303                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4304                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4305                 if (IS_ERR(handle)) {
4306                         error = PTR_ERR(handle);
4307                         goto err_out;
4308                 }
4309                 error = dquot_transfer(inode, attr);
4310                 if (error) {
4311                         ext4_journal_stop(handle);
4312                         return error;
4313                 }
4314                 /* Update corresponding info in inode so that everything is in
4315                  * one transaction */
4316                 if (attr->ia_valid & ATTR_UID)
4317                         inode->i_uid = attr->ia_uid;
4318                 if (attr->ia_valid & ATTR_GID)
4319                         inode->i_gid = attr->ia_gid;
4320                 error = ext4_mark_inode_dirty(handle, inode);
4321                 ext4_journal_stop(handle);
4322         }
4323
4324         if (attr->ia_valid & ATTR_SIZE) {
4325
4326                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4327                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4328
4329                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4330                                 return -EFBIG;
4331                 }
4332         }
4333
4334         if (S_ISREG(inode->i_mode) &&
4335             attr->ia_valid & ATTR_SIZE &&
4336             (attr->ia_size < inode->i_size)) {
4337                 handle_t *handle;
4338
4339                 handle = ext4_journal_start(inode, 3);
4340                 if (IS_ERR(handle)) {
4341                         error = PTR_ERR(handle);
4342                         goto err_out;
4343                 }
4344                 if (ext4_handle_valid(handle)) {
4345                         error = ext4_orphan_add(handle, inode);
4346                         orphan = 1;
4347                 }
4348                 EXT4_I(inode)->i_disksize = attr->ia_size;
4349                 rc = ext4_mark_inode_dirty(handle, inode);
4350                 if (!error)
4351                         error = rc;
4352                 ext4_journal_stop(handle);
4353
4354                 if (ext4_should_order_data(inode)) {
4355                         error = ext4_begin_ordered_truncate(inode,
4356                                                             attr->ia_size);
4357                         if (error) {
4358                                 /* Do as much error cleanup as possible */
4359                                 handle = ext4_journal_start(inode, 3);
4360                                 if (IS_ERR(handle)) {
4361                                         ext4_orphan_del(NULL, inode);
4362                                         goto err_out;
4363                                 }
4364                                 ext4_orphan_del(handle, inode);
4365                                 orphan = 0;
4366                                 ext4_journal_stop(handle);
4367                                 goto err_out;
4368                         }
4369                 }
4370         }
4371
4372         if (attr->ia_valid & ATTR_SIZE) {
4373                 if (attr->ia_size != inode->i_size) {
4374                         loff_t oldsize = inode->i_size;
4375
4376                         i_size_write(inode, attr->ia_size);
4377                         /*
4378                          * Blocks are going to be removed from the inode. Wait
4379                          * for dio in flight.  Temporarily disable
4380                          * dioread_nolock to prevent livelock.
4381                          */
4382                         if (orphan) {
4383                                 if (!ext4_should_journal_data(inode)) {
4384                                         ext4_inode_block_unlocked_dio(inode);
4385                                         inode_dio_wait(inode);
4386                                         ext4_inode_resume_unlocked_dio(inode);
4387                                 } else
4388                                         ext4_wait_for_tail_page_commit(inode);
4389                         }
4390                         /*
4391                          * Truncate pagecache after we've waited for commit
4392                          * in data=journal mode to make pages freeable.
4393                          */
4394                         truncate_pagecache(inode, oldsize, inode->i_size);
4395                 }
4396                 ext4_truncate(inode);
4397         }
4398
4399         if (!rc) {
4400                 setattr_copy(inode, attr);
4401                 mark_inode_dirty(inode);
4402         }
4403
4404         /*
4405          * If the call to ext4_truncate failed to get a transaction handle at
4406          * all, we need to clean up the in-core orphan list manually.
4407          */
4408         if (orphan && inode->i_nlink)
4409                 ext4_orphan_del(NULL, inode);
4410
4411         if (!rc && (ia_valid & ATTR_MODE))
4412                 rc = ext4_acl_chmod(inode);
4413
4414 err_out:
4415         ext4_std_error(inode->i_sb, error);
4416         if (!error)
4417                 error = rc;
4418         return error;
4419 }
4420
4421 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4422                  struct kstat *stat)
4423 {
4424         struct inode *inode;
4425         unsigned long delalloc_blocks;
4426
4427         inode = dentry->d_inode;
4428         generic_fillattr(inode, stat);
4429
4430         /*
4431          * We can't update i_blocks if the block allocation is delayed
4432          * otherwise in the case of system crash before the real block
4433          * allocation is done, we will have i_blocks inconsistent with
4434          * on-disk file blocks.
4435          * We always keep i_blocks updated together with real
4436          * allocation. But to not confuse with user, stat
4437          * will return the blocks that include the delayed allocation
4438          * blocks for this file.
4439          */
4440         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4441                                 EXT4_I(inode)->i_reserved_data_blocks);
4442
4443         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4444         return 0;
4445 }
4446
4447 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4448 {
4449         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4450                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4451         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4452 }
4453
4454 /*
4455  * Account for index blocks, block groups bitmaps and block group
4456  * descriptor blocks if modify datablocks and index blocks
4457  * worse case, the indexs blocks spread over different block groups
4458  *
4459  * If datablocks are discontiguous, they are possible to spread over
4460  * different block groups too. If they are contiguous, with flexbg,
4461  * they could still across block group boundary.
4462  *
4463  * Also account for superblock, inode, quota and xattr blocks
4464  */
4465 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4466 {
4467         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4468         int gdpblocks;
4469         int idxblocks;
4470         int ret = 0;
4471
4472         /*
4473          * How many index blocks need to touch to modify nrblocks?
4474          * The "Chunk" flag indicating whether the nrblocks is
4475          * physically contiguous on disk
4476          *
4477          * For Direct IO and fallocate, they calls get_block to allocate
4478          * one single extent at a time, so they could set the "Chunk" flag
4479          */
4480         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4481
4482         ret = idxblocks;
4483
4484         /*
4485          * Now let's see how many group bitmaps and group descriptors need
4486          * to account
4487          */
4488         groups = idxblocks;
4489         if (chunk)
4490                 groups += 1;
4491         else
4492                 groups += nrblocks;
4493
4494         gdpblocks = groups;
4495         if (groups > ngroups)
4496                 groups = ngroups;
4497         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4498                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4499
4500         /* bitmaps and block group descriptor blocks */
4501         ret += groups + gdpblocks;
4502
4503         /* Blocks for super block, inode, quota and xattr blocks */
4504         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4505
4506         return ret;
4507 }
4508
4509 /*
4510  * Calculate the total number of credits to reserve to fit
4511  * the modification of a single pages into a single transaction,
4512  * which may include multiple chunks of block allocations.
4513  *
4514  * This could be called via ext4_write_begin()
4515  *
4516  * We need to consider the worse case, when
4517  * one new block per extent.
4518  */
4519 int ext4_writepage_trans_blocks(struct inode *inode)
4520 {
4521         int bpp = ext4_journal_blocks_per_page(inode);
4522         int ret;
4523
4524         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4525
4526         /* Account for data blocks for journalled mode */
4527         if (ext4_should_journal_data(inode))
4528                 ret += bpp;
4529         return ret;
4530 }
4531
4532 /*
4533  * Calculate the journal credits for a chunk of data modification.
4534  *
4535  * This is called from DIO, fallocate or whoever calling
4536  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4537  *
4538  * journal buffers for data blocks are not included here, as DIO
4539  * and fallocate do no need to journal data buffers.
4540  */
4541 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4542 {
4543         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4544 }
4545
4546 /*
4547  * The caller must have previously called ext4_reserve_inode_write().
4548  * Give this, we know that the caller already has write access to iloc->bh.
4549  */
4550 int ext4_mark_iloc_dirty(handle_t *handle,
4551                          struct inode *inode, struct ext4_iloc *iloc)
4552 {
4553         int err = 0;
4554
4555         if (IS_I_VERSION(inode))
4556                 inode_inc_iversion(inode);
4557
4558         /* the do_update_inode consumes one bh->b_count */
4559         get_bh(iloc->bh);
4560
4561         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4562         err = ext4_do_update_inode(handle, inode, iloc);
4563         put_bh(iloc->bh);
4564         return err;
4565 }
4566
4567 /*
4568  * On success, We end up with an outstanding reference count against
4569  * iloc->bh.  This _must_ be cleaned up later.
4570  */
4571
4572 int
4573 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4574                          struct ext4_iloc *iloc)
4575 {
4576         int err;
4577
4578         err = ext4_get_inode_loc(inode, iloc);
4579         if (!err) {
4580                 BUFFER_TRACE(iloc->bh, "get_write_access");
4581                 err = ext4_journal_get_write_access(handle, iloc->bh);
4582                 if (err) {
4583                         brelse(iloc->bh);
4584                         iloc->bh = NULL;
4585                 }
4586         }
4587         ext4_std_error(inode->i_sb, err);
4588         return err;
4589 }
4590
4591 /*
4592  * Expand an inode by new_extra_isize bytes.
4593  * Returns 0 on success or negative error number on failure.
4594  */
4595 static int ext4_expand_extra_isize(struct inode *inode,
4596                                    unsigned int new_extra_isize,
4597                                    struct ext4_iloc iloc,
4598                                    handle_t *handle)
4599 {
4600         struct ext4_inode *raw_inode;
4601         struct ext4_xattr_ibody_header *header;
4602
4603         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4604                 return 0;
4605
4606         raw_inode = ext4_raw_inode(&iloc);
4607
4608         header = IHDR(inode, raw_inode);
4609
4610         /* No extended attributes present */
4611         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4612             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4613                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4614                         new_extra_isize);
4615                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4616                 return 0;
4617         }
4618
4619         /* try to expand with EAs present */
4620         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4621                                           raw_inode, handle);
4622 }
4623
4624 /*
4625  * What we do here is to mark the in-core inode as clean with respect to inode
4626  * dirtiness (it may still be data-dirty).
4627  * This means that the in-core inode may be reaped by prune_icache
4628  * without having to perform any I/O.  This is a very good thing,
4629  * because *any* task may call prune_icache - even ones which
4630  * have a transaction open against a different journal.
4631  *
4632  * Is this cheating?  Not really.  Sure, we haven't written the
4633  * inode out, but prune_icache isn't a user-visible syncing function.
4634  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4635  * we start and wait on commits.
4636  */
4637 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4638 {
4639         struct ext4_iloc iloc;
4640         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4641         static unsigned int mnt_count;
4642         int err, ret;
4643
4644         might_sleep();
4645         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4646         err = ext4_reserve_inode_write(handle, inode, &iloc);
4647         if (ext4_handle_valid(handle) &&
4648             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4649             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4650                 /*
4651                  * We need extra buffer credits since we may write into EA block
4652                  * with this same handle. If journal_extend fails, then it will
4653                  * only result in a minor loss of functionality for that inode.
4654                  * If this is felt to be critical, then e2fsck should be run to
4655                  * force a large enough s_min_extra_isize.
4656                  */
4657                 if ((jbd2_journal_extend(handle,
4658                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4659                         ret = ext4_expand_extra_isize(inode,
4660                                                       sbi->s_want_extra_isize,
4661                                                       iloc, handle);
4662                         if (ret) {
4663                                 ext4_set_inode_state(inode,
4664                                                      EXT4_STATE_NO_EXPAND);
4665                                 if (mnt_count !=
4666                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4667                                         ext4_warning(inode->i_sb,
4668                                         "Unable to expand inode %lu. Delete"
4669                                         " some EAs or run e2fsck.",
4670                                         inode->i_ino);
4671                                         mnt_count =
4672                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4673                                 }
4674                         }
4675                 }
4676         }
4677         if (!err)
4678                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4679         return err;
4680 }
4681
4682 /*
4683  * ext4_dirty_inode() is called from __mark_inode_dirty()
4684  *
4685  * We're really interested in the case where a file is being extended.
4686  * i_size has been changed by generic_commit_write() and we thus need
4687  * to include the updated inode in the current transaction.
4688  *
4689  * Also, dquot_alloc_block() will always dirty the inode when blocks
4690  * are allocated to the file.
4691  *
4692  * If the inode is marked synchronous, we don't honour that here - doing
4693  * so would cause a commit on atime updates, which we don't bother doing.
4694  * We handle synchronous inodes at the highest possible level.
4695  */
4696 void ext4_dirty_inode(struct inode *inode, int flags)
4697 {
4698         handle_t *handle;
4699
4700         handle = ext4_journal_start(inode, 2);
4701         if (IS_ERR(handle))
4702                 goto out;
4703
4704         ext4_mark_inode_dirty(handle, inode);
4705
4706         ext4_journal_stop(handle);
4707 out:
4708         return;
4709 }
4710
4711 #if 0
4712 /*
4713  * Bind an inode's backing buffer_head into this transaction, to prevent
4714  * it from being flushed to disk early.  Unlike
4715  * ext4_reserve_inode_write, this leaves behind no bh reference and
4716  * returns no iloc structure, so the caller needs to repeat the iloc
4717  * lookup to mark the inode dirty later.
4718  */
4719 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4720 {
4721         struct ext4_iloc iloc;
4722
4723         int err = 0;
4724         if (handle) {
4725                 err = ext4_get_inode_loc(inode, &iloc);
4726                 if (!err) {
4727                         BUFFER_TRACE(iloc.bh, "get_write_access");
4728                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4729                         if (!err)
4730                                 err = ext4_handle_dirty_metadata(handle,
4731                                                                  NULL,
4732                                                                  iloc.bh);
4733                         brelse(iloc.bh);
4734                 }
4735         }
4736         ext4_std_error(inode->i_sb, err);
4737         return err;
4738 }
4739 #endif
4740
4741 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4742 {
4743         journal_t *journal;
4744         handle_t *handle;
4745         int err;
4746
4747         /*
4748          * We have to be very careful here: changing a data block's
4749          * journaling status dynamically is dangerous.  If we write a
4750          * data block to the journal, change the status and then delete
4751          * that block, we risk forgetting to revoke the old log record
4752          * from the journal and so a subsequent replay can corrupt data.
4753          * So, first we make sure that the journal is empty and that
4754          * nobody is changing anything.
4755          */
4756
4757         journal = EXT4_JOURNAL(inode);
4758         if (!journal)
4759                 return 0;
4760         if (is_journal_aborted(journal))
4761                 return -EROFS;
4762         /* We have to allocate physical blocks for delalloc blocks
4763          * before flushing journal. otherwise delalloc blocks can not
4764          * be allocated any more. even more truncate on delalloc blocks
4765          * could trigger BUG by flushing delalloc blocks in journal.
4766          * There is no delalloc block in non-journal data mode.
4767          */
4768         if (val && test_opt(inode->i_sb, DELALLOC)) {
4769                 err = ext4_alloc_da_blocks(inode);
4770                 if (err < 0)
4771                         return err;
4772         }
4773
4774         /* Wait for all existing dio workers */
4775         ext4_inode_block_unlocked_dio(inode);
4776         inode_dio_wait(inode);
4777
4778         jbd2_journal_lock_updates(journal);
4779
4780         /*
4781          * OK, there are no updates running now, and all cached data is
4782          * synced to disk.  We are now in a completely consistent state
4783          * which doesn't have anything in the journal, and we know that
4784          * no filesystem updates are running, so it is safe to modify
4785          * the inode's in-core data-journaling state flag now.
4786          */
4787
4788         if (val)
4789                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4790         else {
4791                 jbd2_journal_flush(journal);
4792                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4793         }
4794         ext4_set_aops(inode);
4795
4796         jbd2_journal_unlock_updates(journal);
4797         ext4_inode_resume_unlocked_dio(inode);
4798
4799         /* Finally we can mark the inode as dirty. */
4800
4801         handle = ext4_journal_start(inode, 1);
4802         if (IS_ERR(handle))
4803                 return PTR_ERR(handle);
4804
4805         err = ext4_mark_inode_dirty(handle, inode);
4806         ext4_handle_sync(handle);
4807         ext4_journal_stop(handle);
4808         ext4_std_error(inode->i_sb, err);
4809
4810         return err;
4811 }
4812
4813 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4814 {
4815         return !buffer_mapped(bh);
4816 }
4817
4818 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4819 {
4820         struct page *page = vmf->page;
4821         loff_t size;
4822         unsigned long len;
4823         int ret;
4824         struct file *file = vma->vm_file;
4825         struct inode *inode = file->f_path.dentry->d_inode;
4826         struct address_space *mapping = inode->i_mapping;
4827         handle_t *handle;
4828         get_block_t *get_block;
4829         int retries = 0;
4830
4831         sb_start_pagefault(inode->i_sb);
4832         file_update_time(vma->vm_file);
4833         /* Delalloc case is easy... */
4834         if (test_opt(inode->i_sb, DELALLOC) &&
4835             !ext4_should_journal_data(inode) &&
4836             !ext4_nonda_switch(inode->i_sb)) {
4837                 do {
4838                         ret = __block_page_mkwrite(vma, vmf,
4839                                                    ext4_da_get_block_prep);
4840                 } while (ret == -ENOSPC &&
4841                        ext4_should_retry_alloc(inode->i_sb, &retries));
4842                 goto out_ret;
4843         }
4844
4845         lock_page(page);
4846         size = i_size_read(inode);
4847         /* Page got truncated from under us? */
4848         if (page->mapping != mapping || page_offset(page) > size) {
4849                 unlock_page(page);
4850                 ret = VM_FAULT_NOPAGE;
4851                 goto out;
4852         }
4853
4854         if (page->index == size >> PAGE_CACHE_SHIFT)
4855                 len = size & ~PAGE_CACHE_MASK;
4856         else
4857                 len = PAGE_CACHE_SIZE;
4858         /*
4859          * Return if we have all the buffers mapped. This avoids the need to do
4860          * journal_start/journal_stop which can block and take a long time
4861          */
4862         if (page_has_buffers(page)) {
4863                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4864                                             0, len, NULL,
4865                                             ext4_bh_unmapped)) {
4866                         /* Wait so that we don't change page under IO */
4867                         wait_on_page_writeback(page);
4868                         ret = VM_FAULT_LOCKED;
4869                         goto out;
4870                 }
4871         }
4872         unlock_page(page);
4873         /* OK, we need to fill the hole... */
4874         if (ext4_should_dioread_nolock(inode))
4875                 get_block = ext4_get_block_write;
4876         else
4877                 get_block = ext4_get_block;
4878 retry_alloc:
4879         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4880         if (IS_ERR(handle)) {
4881                 ret = VM_FAULT_SIGBUS;
4882                 goto out;
4883         }
4884         ret = __block_page_mkwrite(vma, vmf, get_block);
4885         if (!ret && ext4_should_journal_data(inode)) {
4886                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4887                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4888                         unlock_page(page);
4889                         ret = VM_FAULT_SIGBUS;
4890                         ext4_journal_stop(handle);
4891                         goto out;
4892                 }
4893                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4894         }
4895         ext4_journal_stop(handle);
4896         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4897                 goto retry_alloc;
4898 out_ret:
4899         ret = block_page_mkwrite_return(ret);
4900 out:
4901         sb_end_pagefault(inode->i_sb);
4902         return ret;
4903 }