Merge branch 'delalloc-buffer-write' into dev
[linux-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178         bool freeze_protected = false;
179
180         trace_ext4_evict_inode(inode);
181
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204                     inode->i_data.nrpages) {
205                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207
208                         jbd2_complete_transaction(journal, commit_tid);
209                         filemap_write_and_wait(&inode->i_data);
210                 }
211                 truncate_inode_pages_final(&inode->i_data);
212
213                 goto no_delete;
214         }
215
216         if (is_bad_inode(inode))
217                 goto no_delete;
218         dquot_initialize(inode);
219
220         if (ext4_should_order_data(inode))
221                 ext4_begin_ordered_truncate(inode, 0);
222         truncate_inode_pages_final(&inode->i_data);
223
224         /*
225          * For inodes with journalled data, transaction commit could have
226          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227          * flag but we still need to remove the inode from the writeback lists.
228          */
229         if (!list_empty_careful(&inode->i_io_list)) {
230                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231                 inode_io_list_del(inode);
232         }
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it. When we are in a running transaction though,
237          * we are already protected against freezing and we cannot grab further
238          * protection due to lock ordering constraints.
239          */
240         if (!ext4_journal_current_handle()) {
241                 sb_start_intwrite(inode->i_sb);
242                 freeze_protected = true;
243         }
244
245         if (!IS_NOQUOTA(inode))
246                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247
248         /*
249          * Block bitmap, group descriptor, and inode are accounted in both
250          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251          */
252         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
254         if (IS_ERR(handle)) {
255                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
256                 /*
257                  * If we're going to skip the normal cleanup, we still need to
258                  * make sure that the in-core orphan linked list is properly
259                  * cleaned up.
260                  */
261                 ext4_orphan_del(NULL, inode);
262                 if (freeze_protected)
263                         sb_end_intwrite(inode->i_sb);
264                 goto no_delete;
265         }
266
267         if (IS_SYNC(inode))
268                 ext4_handle_sync(handle);
269
270         /*
271          * Set inode->i_size to 0 before calling ext4_truncate(). We need
272          * special handling of symlinks here because i_size is used to
273          * determine whether ext4_inode_info->i_data contains symlink data or
274          * block mappings. Setting i_size to 0 will remove its fast symlink
275          * status. Erase i_data so that it becomes a valid empty block map.
276          */
277         if (ext4_inode_is_fast_symlink(inode))
278                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279         inode->i_size = 0;
280         err = ext4_mark_inode_dirty(handle, inode);
281         if (err) {
282                 ext4_warning(inode->i_sb,
283                              "couldn't mark inode dirty (err %d)", err);
284                 goto stop_handle;
285         }
286         if (inode->i_blocks) {
287                 err = ext4_truncate(inode);
288                 if (err) {
289                         ext4_error_err(inode->i_sb, -err,
290                                        "couldn't truncate inode %lu (err %d)",
291                                        inode->i_ino, err);
292                         goto stop_handle;
293                 }
294         }
295
296         /* Remove xattr references. */
297         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298                                       extra_credits);
299         if (err) {
300                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302                 ext4_journal_stop(handle);
303                 ext4_orphan_del(NULL, inode);
304                 if (freeze_protected)
305                         sb_end_intwrite(inode->i_sb);
306                 ext4_xattr_inode_array_free(ea_inode_array);
307                 goto no_delete;
308         }
309
310         /*
311          * Kill off the orphan record which ext4_truncate created.
312          * AKPM: I think this can be inside the above `if'.
313          * Note that ext4_orphan_del() has to be able to cope with the
314          * deletion of a non-existent orphan - this is because we don't
315          * know if ext4_truncate() actually created an orphan record.
316          * (Well, we could do this if we need to, but heck - it works)
317          */
318         ext4_orphan_del(handle, inode);
319         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
320
321         /*
322          * One subtle ordering requirement: if anything has gone wrong
323          * (transaction abort, IO errors, whatever), then we can still
324          * do these next steps (the fs will already have been marked as
325          * having errors), but we can't free the inode if the mark_dirty
326          * fails.
327          */
328         if (ext4_mark_inode_dirty(handle, inode))
329                 /* If that failed, just do the required in-core inode clear. */
330                 ext4_clear_inode(inode);
331         else
332                 ext4_free_inode(handle, inode);
333         ext4_journal_stop(handle);
334         if (freeze_protected)
335                 sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         if (!list_empty(&EXT4_I(inode)->i_fc_list))
340                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
342 }
343
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347         return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356                                         int used, int quota_claim)
357 {
358         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359         struct ext4_inode_info *ei = EXT4_I(inode);
360
361         spin_lock(&ei->i_block_reservation_lock);
362         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363         if (unlikely(used > ei->i_reserved_data_blocks)) {
364                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365                          "with only %d reserved data blocks",
366                          __func__, inode->i_ino, used,
367                          ei->i_reserved_data_blocks);
368                 WARN_ON(1);
369                 used = ei->i_reserved_data_blocks;
370         }
371
372         /* Update per-inode reservations */
373         ei->i_reserved_data_blocks -= used;
374         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375
376         spin_unlock(&ei->i_block_reservation_lock);
377
378         /* Update quota subsystem for data blocks */
379         if (quota_claim)
380                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381         else {
382                 /*
383                  * We did fallocate with an offset that is already delayed
384                  * allocated. So on delayed allocated writeback we should
385                  * not re-claim the quota for fallocated blocks.
386                  */
387                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388         }
389
390         /*
391          * If we have done all the pending block allocations and if
392          * there aren't any writers on the inode, we can discard the
393          * inode's preallocations.
394          */
395         if ((ei->i_reserved_data_blocks == 0) &&
396             !inode_is_open_for_write(inode))
397                 ext4_discard_preallocations(inode, 0);
398 }
399
400 static int __check_block_validity(struct inode *inode, const char *func,
401                                 unsigned int line,
402                                 struct ext4_map_blocks *map)
403 {
404         if (ext4_has_feature_journal(inode->i_sb) &&
405             (inode->i_ino ==
406              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407                 return 0;
408         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409                 ext4_error_inode(inode, func, line, map->m_pblk,
410                                  "lblock %lu mapped to illegal pblock %llu "
411                                  "(length %d)", (unsigned long) map->m_lblk,
412                                  map->m_pblk, map->m_len);
413                 return -EFSCORRUPTED;
414         }
415         return 0;
416 }
417
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419                        ext4_lblk_t len)
420 {
421         int ret;
422
423         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
425
426         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427         if (ret > 0)
428                 ret = 0;
429
430         return ret;
431 }
432
433 #define check_block_validity(inode, map)        \
434         __check_block_validity((inode), __func__, __LINE__, (map))
435
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438                                        struct inode *inode,
439                                        struct ext4_map_blocks *es_map,
440                                        struct ext4_map_blocks *map,
441                                        int flags)
442 {
443         int retval;
444
445         map->m_flags = 0;
446         /*
447          * There is a race window that the result is not the same.
448          * e.g. xfstests #223 when dioread_nolock enables.  The reason
449          * is that we lookup a block mapping in extent status tree with
450          * out taking i_data_sem.  So at the time the unwritten extent
451          * could be converted.
452          */
453         down_read(&EXT4_I(inode)->i_data_sem);
454         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
458         }
459         up_read((&EXT4_I(inode)->i_data_sem));
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506         int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515                   flags, map->m_len, (unsigned long) map->m_lblk);
516
517         /*
518          * ext4_map_blocks returns an int, and m_len is an unsigned int
519          */
520         if (unlikely(map->m_len > INT_MAX))
521                 map->m_len = INT_MAX;
522
523         /* We can handle the block number less than EXT_MAX_BLOCKS */
524         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525                 return -EFSCORRUPTED;
526
527         /* Lookup extent status tree firstly */
528         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531                         map->m_pblk = ext4_es_pblock(&es) +
532                                         map->m_lblk - es.es_lblk;
533                         map->m_flags |= ext4_es_is_written(&es) ?
534                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535                         retval = es.es_len - (map->m_lblk - es.es_lblk);
536                         if (retval > map->m_len)
537                                 retval = map->m_len;
538                         map->m_len = retval;
539                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540                         map->m_pblk = 0;
541                         retval = es.es_len - (map->m_lblk - es.es_lblk);
542                         if (retval > map->m_len)
543                                 retval = map->m_len;
544                         map->m_len = retval;
545                         retval = 0;
546                 } else {
547                         BUG();
548                 }
549 #ifdef ES_AGGRESSIVE_TEST
550                 ext4_map_blocks_es_recheck(handle, inode, map,
551                                            &orig_map, flags);
552 #endif
553                 goto found;
554         }
555
556         /*
557          * Try to see if we can get the block without requesting a new
558          * file system block.
559          */
560         down_read(&EXT4_I(inode)->i_data_sem);
561         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
563         } else {
564                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     !(status & EXTENT_STATUS_WRITTEN) &&
581                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582                                        map->m_lblk + map->m_len - 1))
583                         status |= EXTENT_STATUS_DELAYED;
584                 ret = ext4_es_insert_extent(inode, map->m_lblk,
585                                             map->m_len, map->m_pblk, status);
586                 if (ret < 0)
587                         retval = ret;
588         }
589         up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to unwritten extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_block()
628          * with create == 1 flag.
629          */
630         down_write(&EXT4_I(inode)->i_data_sem);
631
632         /*
633          * We need to check for EXT4 here because migrate
634          * could have changed the inode type in between
635          */
636         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638         } else {
639                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640
641                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642                         /*
643                          * We allocated new blocks which will result in
644                          * i_data's format changing.  Force the migrate
645                          * to fail by clearing migrate flags
646                          */
647                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648                 }
649
650                 /*
651                  * Update reserved blocks/metadata blocks after successful
652                  * block allocation which had been deferred till now. We don't
653                  * support fallocate for non extent files. So we can update
654                  * reserve space here.
655                  */
656                 if ((retval > 0) &&
657                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658                         ext4_da_update_reserve_space(inode, retval, 1);
659         }
660
661         if (retval > 0) {
662                 unsigned int status;
663
664                 if (unlikely(retval != map->m_len)) {
665                         ext4_warning(inode->i_sb,
666                                      "ES len assertion failed for inode "
667                                      "%lu: retval %d != map->m_len %d",
668                                      inode->i_ino, retval, map->m_len);
669                         WARN_ON(1);
670                 }
671
672                 /*
673                  * We have to zeroout blocks before inserting them into extent
674                  * status tree. Otherwise someone could look them up there and
675                  * use them before they are really zeroed. We also have to
676                  * unmap metadata before zeroing as otherwise writeback can
677                  * overwrite zeros with stale data from block device.
678                  */
679                 if (flags & EXT4_GET_BLOCKS_ZERO &&
680                     map->m_flags & EXT4_MAP_MAPPED &&
681                     map->m_flags & EXT4_MAP_NEW) {
682                         ret = ext4_issue_zeroout(inode, map->m_lblk,
683                                                  map->m_pblk, map->m_len);
684                         if (ret) {
685                                 retval = ret;
686                                 goto out_sem;
687                         }
688                 }
689
690                 /*
691                  * If the extent has been zeroed out, we don't need to update
692                  * extent status tree.
693                  */
694                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696                         if (ext4_es_is_written(&es))
697                                 goto out_sem;
698                 }
699                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702                     !(status & EXTENT_STATUS_WRITTEN) &&
703                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704                                        map->m_lblk + map->m_len - 1))
705                         status |= EXTENT_STATUS_DELAYED;
706                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707                                             map->m_pblk, status);
708                 if (ret < 0) {
709                         retval = ret;
710                         goto out_sem;
711                 }
712         }
713
714 out_sem:
715         up_write((&EXT4_I(inode)->i_data_sem));
716         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717                 ret = check_block_validity(inode, map);
718                 if (ret != 0)
719                         return ret;
720
721                 /*
722                  * Inodes with freshly allocated blocks where contents will be
723                  * visible after transaction commit must be on transaction's
724                  * ordered data list.
725                  */
726                 if (map->m_flags & EXT4_MAP_NEW &&
727                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
729                     !ext4_is_quota_file(inode) &&
730                     ext4_should_order_data(inode)) {
731                         loff_t start_byte =
732                                 (loff_t)map->m_lblk << inode->i_blkbits;
733                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734
735                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
737                                                 start_byte, length);
738                         else
739                                 ret = ext4_jbd2_inode_add_write(handle, inode,
740                                                 start_byte, length);
741                         if (ret)
742                                 return ret;
743                 }
744                 ext4_fc_track_range(handle, inode, map->m_lblk,
745                             map->m_lblk + map->m_len - 1);
746         }
747
748         if (retval < 0)
749                 ext_debug(inode, "failed with err %d\n", retval);
750         return retval;
751 }
752
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759         unsigned long old_state;
760         unsigned long new_state;
761
762         flags &= EXT4_MAP_FLAGS;
763
764         /* Dummy buffer_head? Set non-atomically. */
765         if (!bh->b_page) {
766                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767                 return;
768         }
769         /*
770          * Someone else may be modifying b_state. Be careful! This is ugly but
771          * once we get rid of using bh as a container for mapping information
772          * to pass to / from get_block functions, this can go away.
773          */
774         do {
775                 old_state = READ_ONCE(bh->b_state);
776                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777         } while (unlikely(
778                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782                            struct buffer_head *bh, int flags)
783 {
784         struct ext4_map_blocks map;
785         int ret = 0;
786
787         if (ext4_has_inline_data(inode))
788                 return -ERANGE;
789
790         map.m_lblk = iblock;
791         map.m_len = bh->b_size >> inode->i_blkbits;
792
793         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794                               flags);
795         if (ret > 0) {
796                 map_bh(bh, inode->i_sb, map.m_pblk);
797                 ext4_update_bh_state(bh, map.m_flags);
798                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799                 ret = 0;
800         } else if (ret == 0) {
801                 /* hole case, need to fill in bh->b_size */
802                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803         }
804         return ret;
805 }
806
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808                    struct buffer_head *bh, int create)
809 {
810         return _ext4_get_block(inode, iblock, bh,
811                                create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820                              struct buffer_head *bh_result, int create)
821 {
822         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823                    inode->i_ino, create);
824         return _ext4_get_block(inode, iblock, bh_result,
825                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         int err;
841
842         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843                     || handle != NULL || create == 0);
844
845         map.m_lblk = block;
846         map.m_len = 1;
847         err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849         if (err == 0)
850                 return create ? ERR_PTR(-ENOSPC) : NULL;
851         if (err < 0)
852                 return ERR_PTR(err);
853
854         bh = sb_getblk(inode->i_sb, map.m_pblk);
855         if (unlikely(!bh))
856                 return ERR_PTR(-ENOMEM);
857         if (map.m_flags & EXT4_MAP_NEW) {
858                 ASSERT(create != 0);
859                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860                             || (handle != NULL));
861
862                 /*
863                  * Now that we do not always journal data, we should
864                  * keep in mind whether this should always journal the
865                  * new buffer as metadata.  For now, regular file
866                  * writes use ext4_get_block instead, so it's not a
867                  * problem.
868                  */
869                 lock_buffer(bh);
870                 BUFFER_TRACE(bh, "call get_create_access");
871                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872                                                      EXT4_JTR_NONE);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle, struct inode *inode,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, inode, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032                                             EXT4_JTR_NONE);
1033         if (!ret && dirty)
1034                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035         return ret;
1036 }
1037
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040                                   get_block_t *get_block)
1041 {
1042         unsigned from = pos & (PAGE_SIZE - 1);
1043         unsigned to = from + len;
1044         struct inode *inode = page->mapping->host;
1045         unsigned block_start, block_end;
1046         sector_t block;
1047         int err = 0;
1048         unsigned blocksize = inode->i_sb->s_blocksize;
1049         unsigned bbits;
1050         struct buffer_head *bh, *head, *wait[2];
1051         int nr_wait = 0;
1052         int i;
1053
1054         BUG_ON(!PageLocked(page));
1055         BUG_ON(from > PAGE_SIZE);
1056         BUG_ON(to > PAGE_SIZE);
1057         BUG_ON(from > to);
1058
1059         if (!page_has_buffers(page))
1060                 create_empty_buffers(page, blocksize, 0);
1061         head = page_buffers(page);
1062         bbits = ilog2(blocksize);
1063         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065         for (bh = head, block_start = 0; bh != head || !block_start;
1066             block++, block_start = block_end, bh = bh->b_this_page) {
1067                 block_end = block_start + blocksize;
1068                 if (block_end <= from || block_start >= to) {
1069                         if (PageUptodate(page)) {
1070                                 set_buffer_uptodate(bh);
1071                         }
1072                         continue;
1073                 }
1074                 if (buffer_new(bh))
1075                         clear_buffer_new(bh);
1076                 if (!buffer_mapped(bh)) {
1077                         WARN_ON(bh->b_size != blocksize);
1078                         err = get_block(inode, block, bh, 1);
1079                         if (err)
1080                                 break;
1081                         if (buffer_new(bh)) {
1082                                 if (PageUptodate(page)) {
1083                                         clear_buffer_new(bh);
1084                                         set_buffer_uptodate(bh);
1085                                         mark_buffer_dirty(bh);
1086                                         continue;
1087                                 }
1088                                 if (block_end > to || block_start < from)
1089                                         zero_user_segments(page, to, block_end,
1090                                                            block_start, from);
1091                                 continue;
1092                         }
1093                 }
1094                 if (PageUptodate(page)) {
1095                         set_buffer_uptodate(bh);
1096                         continue;
1097                 }
1098                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                     !buffer_unwritten(bh) &&
1100                     (block_start < from || block_end > to)) {
1101                         ext4_read_bh_lock(bh, 0, false);
1102                         wait[nr_wait++] = bh;
1103                 }
1104         }
1105         /*
1106          * If we issued read requests, let them complete.
1107          */
1108         for (i = 0; i < nr_wait; i++) {
1109                 wait_on_buffer(wait[i]);
1110                 if (!buffer_uptodate(wait[i]))
1111                         err = -EIO;
1112         }
1113         if (unlikely(err)) {
1114                 page_zero_new_buffers(page, from, to);
1115         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                 for (i = 0; i < nr_wait; i++) {
1117                         int err2;
1118
1119                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                 bh_offset(wait[i]));
1121                         if (err2) {
1122                                 clear_buffer_uptodate(wait[i]);
1123                                 err = err2;
1124                         }
1125                 }
1126         }
1127
1128         return err;
1129 }
1130 #endif
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                             loff_t pos, unsigned len, unsigned flags,
1134                             struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks;
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                 return -EIO;
1146
1147         trace_ext4_write_begin(inode, pos, len, flags);
1148         /*
1149          * Reserve one block more for addition to orphan list in case
1150          * we allocate blocks but write fails for some reason
1151          */
1152         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153         index = pos >> PAGE_SHIFT;
1154         from = pos & (PAGE_SIZE - 1);
1155         to = from + len;
1156
1157         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                     flags, pagep);
1160                 if (ret < 0)
1161                         return ret;
1162                 if (ret == 1)
1163                         return 0;
1164         }
1165
1166         /*
1167          * grab_cache_page_write_begin() can take a long time if the
1168          * system is thrashing due to memory pressure, or if the page
1169          * is being written back.  So grab it first before we start
1170          * the transaction handle.  This also allows us to allocate
1171          * the page (if needed) without using GFP_NOFS.
1172          */
1173 retry_grab:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, inode,
1213                                              page_buffers(page), from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_mutex.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258                         struct buffer_head *bh)
1259 {
1260         int ret;
1261         if (!buffer_mapped(bh) || buffer_freed(bh))
1262                 return 0;
1263         set_buffer_uptodate(bh);
1264         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265         clear_buffer_meta(bh);
1266         clear_buffer_prio(bh);
1267         return ret;
1268 }
1269
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278                           struct address_space *mapping,
1279                           loff_t pos, unsigned len, unsigned copied,
1280                           struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = mapping->host;
1284         loff_t old_size = inode->i_size;
1285         int ret = 0, ret2;
1286         int i_size_changed = 0;
1287         bool verity = ext4_verity_in_progress(inode);
1288
1289         trace_ext4_write_end(inode, pos, len, copied);
1290
1291         if (ext4_has_inline_data(inode))
1292                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293
1294         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295         /*
1296          * it's important to update i_size while still holding page lock:
1297          * page writeout could otherwise come in and zero beyond i_size.
1298          *
1299          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300          * blocks are being written past EOF, so skip the i_size update.
1301          */
1302         if (!verity)
1303                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304         unlock_page(page);
1305         put_page(page);
1306
1307         if (old_size < pos && !verity)
1308                 pagecache_isize_extended(inode, old_size, pos);
1309         /*
1310          * Don't mark the inode dirty under page lock. First, it unnecessarily
1311          * makes the holding time of page lock longer. Second, it forces lock
1312          * ordering of page lock and transaction start for journaling
1313          * filesystems.
1314          */
1315         if (i_size_changed)
1316                 ret = ext4_mark_inode_dirty(handle, inode);
1317
1318         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319                 /* if we have allocated more blocks and copied
1320                  * less. We will have blocks allocated outside
1321                  * inode->i_size. So truncate them
1322                  */
1323                 ext4_orphan_add(handle, inode);
1324
1325         ret2 = ext4_journal_stop(handle);
1326         if (!ret)
1327                 ret = ret2;
1328
1329         if (pos + len > inode->i_size && !verity) {
1330                 ext4_truncate_failed_write(inode);
1331                 /*
1332                  * If truncate failed early the inode might still be
1333                  * on the orphan list; we need to make sure the inode
1334                  * is removed from the orphan list in that case.
1335                  */
1336                 if (inode->i_nlink)
1337                         ext4_orphan_del(NULL, inode);
1338         }
1339
1340         return ret ? ret : copied;
1341 }
1342
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349                                             struct inode *inode,
1350                                             struct page *page,
1351                                             unsigned from, unsigned to)
1352 {
1353         unsigned int block_start = 0, block_end;
1354         struct buffer_head *head, *bh;
1355
1356         bh = head = page_buffers(page);
1357         do {
1358                 block_end = block_start + bh->b_size;
1359                 if (buffer_new(bh)) {
1360                         if (block_end > from && block_start < to) {
1361                                 if (!PageUptodate(page)) {
1362                                         unsigned start, size;
1363
1364                                         start = max(from, block_start);
1365                                         size = min(to, block_end) - start;
1366
1367                                         zero_user(page, start, size);
1368                                         write_end_fn(handle, inode, bh);
1369                                 }
1370                                 clear_buffer_new(bh);
1371                         }
1372                 }
1373                 block_start = block_end;
1374                 bh = bh->b_this_page;
1375         } while (bh != head);
1376 }
1377
1378 static int ext4_journalled_write_end(struct file *file,
1379                                      struct address_space *mapping,
1380                                      loff_t pos, unsigned len, unsigned copied,
1381                                      struct page *page, void *fsdata)
1382 {
1383         handle_t *handle = ext4_journal_current_handle();
1384         struct inode *inode = mapping->host;
1385         loff_t old_size = inode->i_size;
1386         int ret = 0, ret2;
1387         int partial = 0;
1388         unsigned from, to;
1389         int size_changed = 0;
1390         bool verity = ext4_verity_in_progress(inode);
1391
1392         trace_ext4_journalled_write_end(inode, pos, len, copied);
1393         from = pos & (PAGE_SIZE - 1);
1394         to = from + len;
1395
1396         BUG_ON(!ext4_handle_valid(handle));
1397
1398         if (ext4_has_inline_data(inode))
1399                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400
1401         if (unlikely(copied < len) && !PageUptodate(page)) {
1402                 copied = 0;
1403                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404         } else {
1405                 if (unlikely(copied < len))
1406                         ext4_journalled_zero_new_buffers(handle, inode, page,
1407                                                          from + copied, to);
1408                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409                                              from, from + copied, &partial,
1410                                              write_end_fn);
1411                 if (!partial)
1412                         SetPageUptodate(page);
1413         }
1414         if (!verity)
1415                 size_changed = ext4_update_inode_size(inode, pos + copied);
1416         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418         unlock_page(page);
1419         put_page(page);
1420
1421         if (old_size < pos && !verity)
1422                 pagecache_isize_extended(inode, old_size, pos);
1423
1424         if (size_changed) {
1425                 ret2 = ext4_mark_inode_dirty(handle, inode);
1426                 if (!ret)
1427                         ret = ret2;
1428         }
1429
1430         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431                 /* if we have allocated more blocks and copied
1432                  * less. We will have blocks allocated outside
1433                  * inode->i_size. So truncate them
1434                  */
1435                 ext4_orphan_add(handle, inode);
1436
1437         ret2 = ext4_journal_stop(handle);
1438         if (!ret)
1439                 ret = ret2;
1440         if (pos + len > inode->i_size && !verity) {
1441                 ext4_truncate_failed_write(inode);
1442                 /*
1443                  * If truncate failed early the inode might still be
1444                  * on the orphan list; we need to make sure the inode
1445                  * is removed from the orphan list in that case.
1446                  */
1447                 if (inode->i_nlink)
1448                         ext4_orphan_del(NULL, inode);
1449         }
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460         struct ext4_inode_info *ei = EXT4_I(inode);
1461         int ret;
1462
1463         /*
1464          * We will charge metadata quota at writeout time; this saves
1465          * us from metadata over-estimation, though we may go over by
1466          * a small amount in the end.  Here we just reserve for data.
1467          */
1468         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469         if (ret)
1470                 return ret;
1471
1472         spin_lock(&ei->i_block_reservation_lock);
1473         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                 spin_unlock(&ei->i_block_reservation_lock);
1475                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                 return -ENOSPC;
1477         }
1478         ei->i_reserved_data_blocks++;
1479         trace_ext4_da_reserve_space(inode);
1480         spin_unlock(&ei->i_block_reservation_lock);
1481
1482         return 0;       /* success */
1483 }
1484
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         if (!to_free)
1491                 return;         /* Nothing to release, exit */
1492
1493         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495         trace_ext4_da_release_space(inode, to_free);
1496         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                 /*
1498                  * if there aren't enough reserved blocks, then the
1499                  * counter is messed up somewhere.  Since this
1500                  * function is called from invalidate page, it's
1501                  * harmless to return without any action.
1502                  */
1503                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                          "ino %lu, to_free %d with only %d reserved "
1505                          "data blocks", inode->i_ino, to_free,
1506                          ei->i_reserved_data_blocks);
1507                 WARN_ON(1);
1508                 to_free = ei->i_reserved_data_blocks;
1509         }
1510         ei->i_reserved_data_blocks -= to_free;
1511
1512         /* update fs dirty data blocks counter */
1513         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519
1520 /*
1521  * Delayed allocation stuff
1522  */
1523
1524 struct mpage_da_data {
1525         struct inode *inode;
1526         struct writeback_control *wbc;
1527
1528         pgoff_t first_page;     /* The first page to write */
1529         pgoff_t next_page;      /* Current page to examine */
1530         pgoff_t last_page;      /* Last page to examine */
1531         /*
1532          * Extent to map - this can be after first_page because that can be
1533          * fully mapped. We somewhat abuse m_flags to store whether the extent
1534          * is delalloc or unwritten.
1535          */
1536         struct ext4_map_blocks map;
1537         struct ext4_io_submit io_submit;        /* IO submission data */
1538         unsigned int do_map:1;
1539         unsigned int scanned_until_end:1;
1540 };
1541
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543                                        bool invalidate)
1544 {
1545         int nr_pages, i;
1546         pgoff_t index, end;
1547         struct pagevec pvec;
1548         struct inode *inode = mpd->inode;
1549         struct address_space *mapping = inode->i_mapping;
1550
1551         /* This is necessary when next_page == 0. */
1552         if (mpd->first_page >= mpd->next_page)
1553                 return;
1554
1555         mpd->scanned_until_end = 0;
1556         index = mpd->first_page;
1557         end   = mpd->next_page - 1;
1558         if (invalidate) {
1559                 ext4_lblk_t start, last;
1560                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562                 ext4_es_remove_extent(inode, start, last - start + 1);
1563         }
1564
1565         pagevec_init(&pvec);
1566         while (index <= end) {
1567                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568                 if (nr_pages == 0)
1569                         break;
1570                 for (i = 0; i < nr_pages; i++) {
1571                         struct page *page = pvec.pages[i];
1572
1573                         BUG_ON(!PageLocked(page));
1574                         BUG_ON(PageWriteback(page));
1575                         if (invalidate) {
1576                                 if (page_mapped(page))
1577                                         clear_page_dirty_for_io(page);
1578                                 block_invalidatepage(page, 0, PAGE_SIZE);
1579                                 ClearPageUptodate(page);
1580                         }
1581                         unlock_page(page);
1582                 }
1583                 pagevec_release(&pvec);
1584         }
1585 }
1586
1587 static void ext4_print_free_blocks(struct inode *inode)
1588 {
1589         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590         struct super_block *sb = inode->i_sb;
1591         struct ext4_inode_info *ei = EXT4_I(inode);
1592
1593         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594                EXT4_C2B(EXT4_SB(inode->i_sb),
1595                         ext4_count_free_clusters(sb)));
1596         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598                (long long) EXT4_C2B(EXT4_SB(sb),
1599                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601                (long long) EXT4_C2B(EXT4_SB(sb),
1602                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605                  ei->i_reserved_data_blocks);
1606         return;
1607 }
1608
1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1610                                       struct buffer_head *bh)
1611 {
1612         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1613 }
1614
1615 /*
1616  * ext4_insert_delayed_block - adds a delayed block to the extents status
1617  *                             tree, incrementing the reserved cluster/block
1618  *                             count or making a pending reservation
1619  *                             where needed
1620  *
1621  * @inode - file containing the newly added block
1622  * @lblk - logical block to be added
1623  *
1624  * Returns 0 on success, negative error code on failure.
1625  */
1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1627 {
1628         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629         int ret;
1630         bool allocated = false;
1631
1632         /*
1633          * If the cluster containing lblk is shared with a delayed,
1634          * written, or unwritten extent in a bigalloc file system, it's
1635          * already been accounted for and does not need to be reserved.
1636          * A pending reservation must be made for the cluster if it's
1637          * shared with a written or unwritten extent and doesn't already
1638          * have one.  Written and unwritten extents can be purged from the
1639          * extents status tree if the system is under memory pressure, so
1640          * it's necessary to examine the extent tree if a search of the
1641          * extents status tree doesn't get a match.
1642          */
1643         if (sbi->s_cluster_ratio == 1) {
1644                 ret = ext4_da_reserve_space(inode);
1645                 if (ret != 0)   /* ENOSPC */
1646                         goto errout;
1647         } else {   /* bigalloc */
1648                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1649                         if (!ext4_es_scan_clu(inode,
1650                                               &ext4_es_is_mapped, lblk)) {
1651                                 ret = ext4_clu_mapped(inode,
1652                                                       EXT4_B2C(sbi, lblk));
1653                                 if (ret < 0)
1654                                         goto errout;
1655                                 if (ret == 0) {
1656                                         ret = ext4_da_reserve_space(inode);
1657                                         if (ret != 0)   /* ENOSPC */
1658                                                 goto errout;
1659                                 } else {
1660                                         allocated = true;
1661                                 }
1662                         } else {
1663                                 allocated = true;
1664                         }
1665                 }
1666         }
1667
1668         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1669
1670 errout:
1671         return ret;
1672 }
1673
1674 /*
1675  * This function is grabs code from the very beginning of
1676  * ext4_map_blocks, but assumes that the caller is from delayed write
1677  * time. This function looks up the requested blocks and sets the
1678  * buffer delay bit under the protection of i_data_sem.
1679  */
1680 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681                               struct ext4_map_blocks *map,
1682                               struct buffer_head *bh)
1683 {
1684         struct extent_status es;
1685         int retval;
1686         sector_t invalid_block = ~((sector_t) 0xffff);
1687 #ifdef ES_AGGRESSIVE_TEST
1688         struct ext4_map_blocks orig_map;
1689
1690         memcpy(&orig_map, map, sizeof(*map));
1691 #endif
1692
1693         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694                 invalid_block = ~0;
1695
1696         map->m_flags = 0;
1697         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1698                   (unsigned long) map->m_lblk);
1699
1700         /* Lookup extent status tree firstly */
1701         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1702                 if (ext4_es_is_hole(&es)) {
1703                         retval = 0;
1704                         down_read(&EXT4_I(inode)->i_data_sem);
1705                         goto add_delayed;
1706                 }
1707
1708                 /*
1709                  * Delayed extent could be allocated by fallocate.
1710                  * So we need to check it.
1711                  */
1712                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1713                         map_bh(bh, inode->i_sb, invalid_block);
1714                         set_buffer_new(bh);
1715                         set_buffer_delay(bh);
1716                         return 0;
1717                 }
1718
1719                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1720                 retval = es.es_len - (iblock - es.es_lblk);
1721                 if (retval > map->m_len)
1722                         retval = map->m_len;
1723                 map->m_len = retval;
1724                 if (ext4_es_is_written(&es))
1725                         map->m_flags |= EXT4_MAP_MAPPED;
1726                 else if (ext4_es_is_unwritten(&es))
1727                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1728                 else
1729                         BUG();
1730
1731 #ifdef ES_AGGRESSIVE_TEST
1732                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1733 #endif
1734                 return retval;
1735         }
1736
1737         /*
1738          * Try to see if we can get the block without requesting a new
1739          * file system block.
1740          */
1741         down_read(&EXT4_I(inode)->i_data_sem);
1742         if (ext4_has_inline_data(inode))
1743                 retval = 0;
1744         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1745                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1746         else
1747                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1748
1749 add_delayed:
1750         if (retval == 0) {
1751                 int ret;
1752
1753                 /*
1754                  * XXX: __block_prepare_write() unmaps passed block,
1755                  * is it OK?
1756                  */
1757
1758                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1759                 if (ret != 0) {
1760                         retval = ret;
1761                         goto out_unlock;
1762                 }
1763
1764                 map_bh(bh, inode->i_sb, invalid_block);
1765                 set_buffer_new(bh);
1766                 set_buffer_delay(bh);
1767         } else if (retval > 0) {
1768                 int ret;
1769                 unsigned int status;
1770
1771                 if (unlikely(retval != map->m_len)) {
1772                         ext4_warning(inode->i_sb,
1773                                      "ES len assertion failed for inode "
1774                                      "%lu: retval %d != map->m_len %d",
1775                                      inode->i_ino, retval, map->m_len);
1776                         WARN_ON(1);
1777                 }
1778
1779                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1780                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1781                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1782                                             map->m_pblk, status);
1783                 if (ret != 0)
1784                         retval = ret;
1785         }
1786
1787 out_unlock:
1788         up_read((&EXT4_I(inode)->i_data_sem));
1789
1790         return retval;
1791 }
1792
1793 /*
1794  * This is a special get_block_t callback which is used by
1795  * ext4_da_write_begin().  It will either return mapped block or
1796  * reserve space for a single block.
1797  *
1798  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1799  * We also have b_blocknr = -1 and b_bdev initialized properly
1800  *
1801  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1802  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1803  * initialized properly.
1804  */
1805 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1806                            struct buffer_head *bh, int create)
1807 {
1808         struct ext4_map_blocks map;
1809         int ret = 0;
1810
1811         BUG_ON(create == 0);
1812         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1813
1814         map.m_lblk = iblock;
1815         map.m_len = 1;
1816
1817         /*
1818          * first, we need to know whether the block is allocated already
1819          * preallocated blocks are unmapped but should treated
1820          * the same as allocated blocks.
1821          */
1822         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1823         if (ret <= 0)
1824                 return ret;
1825
1826         map_bh(bh, inode->i_sb, map.m_pblk);
1827         ext4_update_bh_state(bh, map.m_flags);
1828
1829         if (buffer_unwritten(bh)) {
1830                 /* A delayed write to unwritten bh should be marked
1831                  * new and mapped.  Mapped ensures that we don't do
1832                  * get_block multiple times when we write to the same
1833                  * offset and new ensures that we do proper zero out
1834                  * for partial write.
1835                  */
1836                 set_buffer_new(bh);
1837                 set_buffer_mapped(bh);
1838         }
1839         return 0;
1840 }
1841
1842 static int bget_one(handle_t *handle, struct inode *inode,
1843                     struct buffer_head *bh)
1844 {
1845         get_bh(bh);
1846         return 0;
1847 }
1848
1849 static int bput_one(handle_t *handle, struct inode *inode,
1850                     struct buffer_head *bh)
1851 {
1852         put_bh(bh);
1853         return 0;
1854 }
1855
1856 static int __ext4_journalled_writepage(struct page *page,
1857                                        unsigned int len)
1858 {
1859         struct address_space *mapping = page->mapping;
1860         struct inode *inode = mapping->host;
1861         struct buffer_head *page_bufs = NULL;
1862         handle_t *handle = NULL;
1863         int ret = 0, err = 0;
1864         int inline_data = ext4_has_inline_data(inode);
1865         struct buffer_head *inode_bh = NULL;
1866
1867         ClearPageChecked(page);
1868
1869         if (inline_data) {
1870                 BUG_ON(page->index != 0);
1871                 BUG_ON(len > ext4_get_max_inline_size(inode));
1872                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1873                 if (inode_bh == NULL)
1874                         goto out;
1875         } else {
1876                 page_bufs = page_buffers(page);
1877                 if (!page_bufs) {
1878                         BUG();
1879                         goto out;
1880                 }
1881                 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1882                                        NULL, bget_one);
1883         }
1884         /*
1885          * We need to release the page lock before we start the
1886          * journal, so grab a reference so the page won't disappear
1887          * out from under us.
1888          */
1889         get_page(page);
1890         unlock_page(page);
1891
1892         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1893                                     ext4_writepage_trans_blocks(inode));
1894         if (IS_ERR(handle)) {
1895                 ret = PTR_ERR(handle);
1896                 put_page(page);
1897                 goto out_no_pagelock;
1898         }
1899         BUG_ON(!ext4_handle_valid(handle));
1900
1901         lock_page(page);
1902         put_page(page);
1903         if (page->mapping != mapping) {
1904                 /* The page got truncated from under us */
1905                 ext4_journal_stop(handle);
1906                 ret = 0;
1907                 goto out;
1908         }
1909
1910         if (inline_data) {
1911                 ret = ext4_mark_inode_dirty(handle, inode);
1912         } else {
1913                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1914                                              NULL, do_journal_get_write_access);
1915
1916                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1917                                              NULL, write_end_fn);
1918         }
1919         if (ret == 0)
1920                 ret = err;
1921         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1922         if (ret == 0)
1923                 ret = err;
1924         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1925         err = ext4_journal_stop(handle);
1926         if (!ret)
1927                 ret = err;
1928
1929         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1930 out:
1931         unlock_page(page);
1932 out_no_pagelock:
1933         if (!inline_data && page_bufs)
1934                 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1935                                        NULL, bput_one);
1936         brelse(inode_bh);
1937         return ret;
1938 }
1939
1940 /*
1941  * Note that we don't need to start a transaction unless we're journaling data
1942  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1943  * need to file the inode to the transaction's list in ordered mode because if
1944  * we are writing back data added by write(), the inode is already there and if
1945  * we are writing back data modified via mmap(), no one guarantees in which
1946  * transaction the data will hit the disk. In case we are journaling data, we
1947  * cannot start transaction directly because transaction start ranks above page
1948  * lock so we have to do some magic.
1949  *
1950  * This function can get called via...
1951  *   - ext4_writepages after taking page lock (have journal handle)
1952  *   - journal_submit_inode_data_buffers (no journal handle)
1953  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1954  *   - grab_page_cache when doing write_begin (have journal handle)
1955  *
1956  * We don't do any block allocation in this function. If we have page with
1957  * multiple blocks we need to write those buffer_heads that are mapped. This
1958  * is important for mmaped based write. So if we do with blocksize 1K
1959  * truncate(f, 1024);
1960  * a = mmap(f, 0, 4096);
1961  * a[0] = 'a';
1962  * truncate(f, 4096);
1963  * we have in the page first buffer_head mapped via page_mkwrite call back
1964  * but other buffer_heads would be unmapped but dirty (dirty done via the
1965  * do_wp_page). So writepage should write the first block. If we modify
1966  * the mmap area beyond 1024 we will again get a page_fault and the
1967  * page_mkwrite callback will do the block allocation and mark the
1968  * buffer_heads mapped.
1969  *
1970  * We redirty the page if we have any buffer_heads that is either delay or
1971  * unwritten in the page.
1972  *
1973  * We can get recursively called as show below.
1974  *
1975  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1976  *              ext4_writepage()
1977  *
1978  * But since we don't do any block allocation we should not deadlock.
1979  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1980  */
1981 static int ext4_writepage(struct page *page,
1982                           struct writeback_control *wbc)
1983 {
1984         int ret = 0;
1985         loff_t size;
1986         unsigned int len;
1987         struct buffer_head *page_bufs = NULL;
1988         struct inode *inode = page->mapping->host;
1989         struct ext4_io_submit io_submit;
1990         bool keep_towrite = false;
1991
1992         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1993                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1994                 unlock_page(page);
1995                 return -EIO;
1996         }
1997
1998         trace_ext4_writepage(page);
1999         size = i_size_read(inode);
2000         if (page->index == size >> PAGE_SHIFT &&
2001             !ext4_verity_in_progress(inode))
2002                 len = size & ~PAGE_MASK;
2003         else
2004                 len = PAGE_SIZE;
2005
2006         page_bufs = page_buffers(page);
2007         /*
2008          * We cannot do block allocation or other extent handling in this
2009          * function. If there are buffers needing that, we have to redirty
2010          * the page. But we may reach here when we do a journal commit via
2011          * journal_submit_inode_data_buffers() and in that case we must write
2012          * allocated buffers to achieve data=ordered mode guarantees.
2013          *
2014          * Also, if there is only one buffer per page (the fs block
2015          * size == the page size), if one buffer needs block
2016          * allocation or needs to modify the extent tree to clear the
2017          * unwritten flag, we know that the page can't be written at
2018          * all, so we might as well refuse the write immediately.
2019          * Unfortunately if the block size != page size, we can't as
2020          * easily detect this case using ext4_walk_page_buffers(), but
2021          * for the extremely common case, this is an optimization that
2022          * skips a useless round trip through ext4_bio_write_page().
2023          */
2024         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2025                                    ext4_bh_delay_or_unwritten)) {
2026                 redirty_page_for_writepage(wbc, page);
2027                 if ((current->flags & PF_MEMALLOC) ||
2028                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2029                         /*
2030                          * For memory cleaning there's no point in writing only
2031                          * some buffers. So just bail out. Warn if we came here
2032                          * from direct reclaim.
2033                          */
2034                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2035                                                         == PF_MEMALLOC);
2036                         unlock_page(page);
2037                         return 0;
2038                 }
2039                 keep_towrite = true;
2040         }
2041
2042         if (PageChecked(page) && ext4_should_journal_data(inode))
2043                 /*
2044                  * It's mmapped pagecache.  Add buffers and journal it.  There
2045                  * doesn't seem much point in redirtying the page here.
2046                  */
2047                 return __ext4_journalled_writepage(page, len);
2048
2049         ext4_io_submit_init(&io_submit, wbc);
2050         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2051         if (!io_submit.io_end) {
2052                 redirty_page_for_writepage(wbc, page);
2053                 unlock_page(page);
2054                 return -ENOMEM;
2055         }
2056         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2057         ext4_io_submit(&io_submit);
2058         /* Drop io_end reference we got from init */
2059         ext4_put_io_end_defer(io_submit.io_end);
2060         return ret;
2061 }
2062
2063 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2064 {
2065         int len;
2066         loff_t size;
2067         int err;
2068
2069         BUG_ON(page->index != mpd->first_page);
2070         clear_page_dirty_for_io(page);
2071         /*
2072          * We have to be very careful here!  Nothing protects writeback path
2073          * against i_size changes and the page can be writeably mapped into
2074          * page tables. So an application can be growing i_size and writing
2075          * data through mmap while writeback runs. clear_page_dirty_for_io()
2076          * write-protects our page in page tables and the page cannot get
2077          * written to again until we release page lock. So only after
2078          * clear_page_dirty_for_io() we are safe to sample i_size for
2079          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2080          * on the barrier provided by TestClearPageDirty in
2081          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2082          * after page tables are updated.
2083          */
2084         size = i_size_read(mpd->inode);
2085         if (page->index == size >> PAGE_SHIFT &&
2086             !ext4_verity_in_progress(mpd->inode))
2087                 len = size & ~PAGE_MASK;
2088         else
2089                 len = PAGE_SIZE;
2090         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2091         if (!err)
2092                 mpd->wbc->nr_to_write--;
2093         mpd->first_page++;
2094
2095         return err;
2096 }
2097
2098 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2099
2100 /*
2101  * mballoc gives us at most this number of blocks...
2102  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2103  * The rest of mballoc seems to handle chunks up to full group size.
2104  */
2105 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2106
2107 /*
2108  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2109  *
2110  * @mpd - extent of blocks
2111  * @lblk - logical number of the block in the file
2112  * @bh - buffer head we want to add to the extent
2113  *
2114  * The function is used to collect contig. blocks in the same state. If the
2115  * buffer doesn't require mapping for writeback and we haven't started the
2116  * extent of buffers to map yet, the function returns 'true' immediately - the
2117  * caller can write the buffer right away. Otherwise the function returns true
2118  * if the block has been added to the extent, false if the block couldn't be
2119  * added.
2120  */
2121 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2122                                    struct buffer_head *bh)
2123 {
2124         struct ext4_map_blocks *map = &mpd->map;
2125
2126         /* Buffer that doesn't need mapping for writeback? */
2127         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2128             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2129                 /* So far no extent to map => we write the buffer right away */
2130                 if (map->m_len == 0)
2131                         return true;
2132                 return false;
2133         }
2134
2135         /* First block in the extent? */
2136         if (map->m_len == 0) {
2137                 /* We cannot map unless handle is started... */
2138                 if (!mpd->do_map)
2139                         return false;
2140                 map->m_lblk = lblk;
2141                 map->m_len = 1;
2142                 map->m_flags = bh->b_state & BH_FLAGS;
2143                 return true;
2144         }
2145
2146         /* Don't go larger than mballoc is willing to allocate */
2147         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2148                 return false;
2149
2150         /* Can we merge the block to our big extent? */
2151         if (lblk == map->m_lblk + map->m_len &&
2152             (bh->b_state & BH_FLAGS) == map->m_flags) {
2153                 map->m_len++;
2154                 return true;
2155         }
2156         return false;
2157 }
2158
2159 /*
2160  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2161  *
2162  * @mpd - extent of blocks for mapping
2163  * @head - the first buffer in the page
2164  * @bh - buffer we should start processing from
2165  * @lblk - logical number of the block in the file corresponding to @bh
2166  *
2167  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2168  * the page for IO if all buffers in this page were mapped and there's no
2169  * accumulated extent of buffers to map or add buffers in the page to the
2170  * extent of buffers to map. The function returns 1 if the caller can continue
2171  * by processing the next page, 0 if it should stop adding buffers to the
2172  * extent to map because we cannot extend it anymore. It can also return value
2173  * < 0 in case of error during IO submission.
2174  */
2175 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2176                                    struct buffer_head *head,
2177                                    struct buffer_head *bh,
2178                                    ext4_lblk_t lblk)
2179 {
2180         struct inode *inode = mpd->inode;
2181         int err;
2182         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2183                                                         >> inode->i_blkbits;
2184
2185         if (ext4_verity_in_progress(inode))
2186                 blocks = EXT_MAX_BLOCKS;
2187
2188         do {
2189                 BUG_ON(buffer_locked(bh));
2190
2191                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2192                         /* Found extent to map? */
2193                         if (mpd->map.m_len)
2194                                 return 0;
2195                         /* Buffer needs mapping and handle is not started? */
2196                         if (!mpd->do_map)
2197                                 return 0;
2198                         /* Everything mapped so far and we hit EOF */
2199                         break;
2200                 }
2201         } while (lblk++, (bh = bh->b_this_page) != head);
2202         /* So far everything mapped? Submit the page for IO. */
2203         if (mpd->map.m_len == 0) {
2204                 err = mpage_submit_page(mpd, head->b_page);
2205                 if (err < 0)
2206                         return err;
2207         }
2208         if (lblk >= blocks) {
2209                 mpd->scanned_until_end = 1;
2210                 return 0;
2211         }
2212         return 1;
2213 }
2214
2215 /*
2216  * mpage_process_page - update page buffers corresponding to changed extent and
2217  *                     may submit fully mapped page for IO
2218  *
2219  * @mpd         - description of extent to map, on return next extent to map
2220  * @m_lblk      - logical block mapping.
2221  * @m_pblk      - corresponding physical mapping.
2222  * @map_bh      - determines on return whether this page requires any further
2223  *                mapping or not.
2224  * Scan given page buffers corresponding to changed extent and update buffer
2225  * state according to new extent state.
2226  * We map delalloc buffers to their physical location, clear unwritten bits.
2227  * If the given page is not fully mapped, we update @map to the next extent in
2228  * the given page that needs mapping & return @map_bh as true.
2229  */
2230 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2231                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2232                               bool *map_bh)
2233 {
2234         struct buffer_head *head, *bh;
2235         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2236         ext4_lblk_t lblk = *m_lblk;
2237         ext4_fsblk_t pblock = *m_pblk;
2238         int err = 0;
2239         int blkbits = mpd->inode->i_blkbits;
2240         ssize_t io_end_size = 0;
2241         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2242
2243         bh = head = page_buffers(page);
2244         do {
2245                 if (lblk < mpd->map.m_lblk)
2246                         continue;
2247                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2248                         /*
2249                          * Buffer after end of mapped extent.
2250                          * Find next buffer in the page to map.
2251                          */
2252                         mpd->map.m_len = 0;
2253                         mpd->map.m_flags = 0;
2254                         io_end_vec->size += io_end_size;
2255                         io_end_size = 0;
2256
2257                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2258                         if (err > 0)
2259                                 err = 0;
2260                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2261                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2262                                 if (IS_ERR(io_end_vec)) {
2263                                         err = PTR_ERR(io_end_vec);
2264                                         goto out;
2265                                 }
2266                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2267                         }
2268                         *map_bh = true;
2269                         goto out;
2270                 }
2271                 if (buffer_delay(bh)) {
2272                         clear_buffer_delay(bh);
2273                         bh->b_blocknr = pblock++;
2274                 }
2275                 clear_buffer_unwritten(bh);
2276                 io_end_size += (1 << blkbits);
2277         } while (lblk++, (bh = bh->b_this_page) != head);
2278
2279         io_end_vec->size += io_end_size;
2280         io_end_size = 0;
2281         *map_bh = false;
2282 out:
2283         *m_lblk = lblk;
2284         *m_pblk = pblock;
2285         return err;
2286 }
2287
2288 /*
2289  * mpage_map_buffers - update buffers corresponding to changed extent and
2290  *                     submit fully mapped pages for IO
2291  *
2292  * @mpd - description of extent to map, on return next extent to map
2293  *
2294  * Scan buffers corresponding to changed extent (we expect corresponding pages
2295  * to be already locked) and update buffer state according to new extent state.
2296  * We map delalloc buffers to their physical location, clear unwritten bits,
2297  * and mark buffers as uninit when we perform writes to unwritten extents
2298  * and do extent conversion after IO is finished. If the last page is not fully
2299  * mapped, we update @map to the next extent in the last page that needs
2300  * mapping. Otherwise we submit the page for IO.
2301  */
2302 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2303 {
2304         struct pagevec pvec;
2305         int nr_pages, i;
2306         struct inode *inode = mpd->inode;
2307         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2308         pgoff_t start, end;
2309         ext4_lblk_t lblk;
2310         ext4_fsblk_t pblock;
2311         int err;
2312         bool map_bh = false;
2313
2314         start = mpd->map.m_lblk >> bpp_bits;
2315         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2316         lblk = start << bpp_bits;
2317         pblock = mpd->map.m_pblk;
2318
2319         pagevec_init(&pvec);
2320         while (start <= end) {
2321                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2322                                                 &start, end);
2323                 if (nr_pages == 0)
2324                         break;
2325                 for (i = 0; i < nr_pages; i++) {
2326                         struct page *page = pvec.pages[i];
2327
2328                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2329                                                  &map_bh);
2330                         /*
2331                          * If map_bh is true, means page may require further bh
2332                          * mapping, or maybe the page was submitted for IO.
2333                          * So we return to call further extent mapping.
2334                          */
2335                         if (err < 0 || map_bh)
2336                                 goto out;
2337                         /* Page fully mapped - let IO run! */
2338                         err = mpage_submit_page(mpd, page);
2339                         if (err < 0)
2340                                 goto out;
2341                 }
2342                 pagevec_release(&pvec);
2343         }
2344         /* Extent fully mapped and matches with page boundary. We are done. */
2345         mpd->map.m_len = 0;
2346         mpd->map.m_flags = 0;
2347         return 0;
2348 out:
2349         pagevec_release(&pvec);
2350         return err;
2351 }
2352
2353 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2354 {
2355         struct inode *inode = mpd->inode;
2356         struct ext4_map_blocks *map = &mpd->map;
2357         int get_blocks_flags;
2358         int err, dioread_nolock;
2359
2360         trace_ext4_da_write_pages_extent(inode, map);
2361         /*
2362          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2363          * to convert an unwritten extent to be initialized (in the case
2364          * where we have written into one or more preallocated blocks).  It is
2365          * possible that we're going to need more metadata blocks than
2366          * previously reserved. However we must not fail because we're in
2367          * writeback and there is nothing we can do about it so it might result
2368          * in data loss.  So use reserved blocks to allocate metadata if
2369          * possible.
2370          *
2371          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2372          * the blocks in question are delalloc blocks.  This indicates
2373          * that the blocks and quotas has already been checked when
2374          * the data was copied into the page cache.
2375          */
2376         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2377                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2378                            EXT4_GET_BLOCKS_IO_SUBMIT;
2379         dioread_nolock = ext4_should_dioread_nolock(inode);
2380         if (dioread_nolock)
2381                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2382         if (map->m_flags & BIT(BH_Delay))
2383                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2384
2385         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2386         if (err < 0)
2387                 return err;
2388         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2389                 if (!mpd->io_submit.io_end->handle &&
2390                     ext4_handle_valid(handle)) {
2391                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2392                         handle->h_rsv_handle = NULL;
2393                 }
2394                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2395         }
2396
2397         BUG_ON(map->m_len == 0);
2398         return 0;
2399 }
2400
2401 /*
2402  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2403  *                               mpd->len and submit pages underlying it for IO
2404  *
2405  * @handle - handle for journal operations
2406  * @mpd - extent to map
2407  * @give_up_on_write - we set this to true iff there is a fatal error and there
2408  *                     is no hope of writing the data. The caller should discard
2409  *                     dirty pages to avoid infinite loops.
2410  *
2411  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2412  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2413  * them to initialized or split the described range from larger unwritten
2414  * extent. Note that we need not map all the described range since allocation
2415  * can return less blocks or the range is covered by more unwritten extents. We
2416  * cannot map more because we are limited by reserved transaction credits. On
2417  * the other hand we always make sure that the last touched page is fully
2418  * mapped so that it can be written out (and thus forward progress is
2419  * guaranteed). After mapping we submit all mapped pages for IO.
2420  */
2421 static int mpage_map_and_submit_extent(handle_t *handle,
2422                                        struct mpage_da_data *mpd,
2423                                        bool *give_up_on_write)
2424 {
2425         struct inode *inode = mpd->inode;
2426         struct ext4_map_blocks *map = &mpd->map;
2427         int err;
2428         loff_t disksize;
2429         int progress = 0;
2430         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2431         struct ext4_io_end_vec *io_end_vec;
2432
2433         io_end_vec = ext4_alloc_io_end_vec(io_end);
2434         if (IS_ERR(io_end_vec))
2435                 return PTR_ERR(io_end_vec);
2436         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2437         do {
2438                 err = mpage_map_one_extent(handle, mpd);
2439                 if (err < 0) {
2440                         struct super_block *sb = inode->i_sb;
2441
2442                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2443                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2444                                 goto invalidate_dirty_pages;
2445                         /*
2446                          * Let the uper layers retry transient errors.
2447                          * In the case of ENOSPC, if ext4_count_free_blocks()
2448                          * is non-zero, a commit should free up blocks.
2449                          */
2450                         if ((err == -ENOMEM) ||
2451                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2452                                 if (progress)
2453                                         goto update_disksize;
2454                                 return err;
2455                         }
2456                         ext4_msg(sb, KERN_CRIT,
2457                                  "Delayed block allocation failed for "
2458                                  "inode %lu at logical offset %llu with"
2459                                  " max blocks %u with error %d",
2460                                  inode->i_ino,
2461                                  (unsigned long long)map->m_lblk,
2462                                  (unsigned)map->m_len, -err);
2463                         ext4_msg(sb, KERN_CRIT,
2464                                  "This should not happen!! Data will "
2465                                  "be lost\n");
2466                         if (err == -ENOSPC)
2467                                 ext4_print_free_blocks(inode);
2468                 invalidate_dirty_pages:
2469                         *give_up_on_write = true;
2470                         return err;
2471                 }
2472                 progress = 1;
2473                 /*
2474                  * Update buffer state, submit mapped pages, and get us new
2475                  * extent to map
2476                  */
2477                 err = mpage_map_and_submit_buffers(mpd);
2478                 if (err < 0)
2479                         goto update_disksize;
2480         } while (map->m_len);
2481
2482 update_disksize:
2483         /*
2484          * Update on-disk size after IO is submitted.  Races with
2485          * truncate are avoided by checking i_size under i_data_sem.
2486          */
2487         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2488         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2489                 int err2;
2490                 loff_t i_size;
2491
2492                 down_write(&EXT4_I(inode)->i_data_sem);
2493                 i_size = i_size_read(inode);
2494                 if (disksize > i_size)
2495                         disksize = i_size;
2496                 if (disksize > EXT4_I(inode)->i_disksize)
2497                         EXT4_I(inode)->i_disksize = disksize;
2498                 up_write(&EXT4_I(inode)->i_data_sem);
2499                 err2 = ext4_mark_inode_dirty(handle, inode);
2500                 if (err2) {
2501                         ext4_error_err(inode->i_sb, -err2,
2502                                        "Failed to mark inode %lu dirty",
2503                                        inode->i_ino);
2504                 }
2505                 if (!err)
2506                         err = err2;
2507         }
2508         return err;
2509 }
2510
2511 /*
2512  * Calculate the total number of credits to reserve for one writepages
2513  * iteration. This is called from ext4_writepages(). We map an extent of
2514  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2515  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2516  * bpp - 1 blocks in bpp different extents.
2517  */
2518 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2519 {
2520         int bpp = ext4_journal_blocks_per_page(inode);
2521
2522         return ext4_meta_trans_blocks(inode,
2523                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2524 }
2525
2526 /*
2527  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2528  *                               and underlying extent to map
2529  *
2530  * @mpd - where to look for pages
2531  *
2532  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2533  * IO immediately. When we find a page which isn't mapped we start accumulating
2534  * extent of buffers underlying these pages that needs mapping (formed by
2535  * either delayed or unwritten buffers). We also lock the pages containing
2536  * these buffers. The extent found is returned in @mpd structure (starting at
2537  * mpd->lblk with length mpd->len blocks).
2538  *
2539  * Note that this function can attach bios to one io_end structure which are
2540  * neither logically nor physically contiguous. Although it may seem as an
2541  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2542  * case as we need to track IO to all buffers underlying a page in one io_end.
2543  */
2544 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2545 {
2546         struct address_space *mapping = mpd->inode->i_mapping;
2547         struct pagevec pvec;
2548         unsigned int nr_pages;
2549         long left = mpd->wbc->nr_to_write;
2550         pgoff_t index = mpd->first_page;
2551         pgoff_t end = mpd->last_page;
2552         xa_mark_t tag;
2553         int i, err = 0;
2554         int blkbits = mpd->inode->i_blkbits;
2555         ext4_lblk_t lblk;
2556         struct buffer_head *head;
2557
2558         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2559                 tag = PAGECACHE_TAG_TOWRITE;
2560         else
2561                 tag = PAGECACHE_TAG_DIRTY;
2562
2563         pagevec_init(&pvec);
2564         mpd->map.m_len = 0;
2565         mpd->next_page = index;
2566         while (index <= end) {
2567                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2568                                 tag);
2569                 if (nr_pages == 0)
2570                         break;
2571
2572                 for (i = 0; i < nr_pages; i++) {
2573                         struct page *page = pvec.pages[i];
2574
2575                         /*
2576                          * Accumulated enough dirty pages? This doesn't apply
2577                          * to WB_SYNC_ALL mode. For integrity sync we have to
2578                          * keep going because someone may be concurrently
2579                          * dirtying pages, and we might have synced a lot of
2580                          * newly appeared dirty pages, but have not synced all
2581                          * of the old dirty pages.
2582                          */
2583                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2584                                 goto out;
2585
2586                         /* If we can't merge this page, we are done. */
2587                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2588                                 goto out;
2589
2590                         lock_page(page);
2591                         /*
2592                          * If the page is no longer dirty, or its mapping no
2593                          * longer corresponds to inode we are writing (which
2594                          * means it has been truncated or invalidated), or the
2595                          * page is already under writeback and we are not doing
2596                          * a data integrity writeback, skip the page
2597                          */
2598                         if (!PageDirty(page) ||
2599                             (PageWriteback(page) &&
2600                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2601                             unlikely(page->mapping != mapping)) {
2602                                 unlock_page(page);
2603                                 continue;
2604                         }
2605
2606                         wait_on_page_writeback(page);
2607                         BUG_ON(PageWriteback(page));
2608
2609                         if (mpd->map.m_len == 0)
2610                                 mpd->first_page = page->index;
2611                         mpd->next_page = page->index + 1;
2612                         /* Add all dirty buffers to mpd */
2613                         lblk = ((ext4_lblk_t)page->index) <<
2614                                 (PAGE_SHIFT - blkbits);
2615                         head = page_buffers(page);
2616                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2617                         if (err <= 0)
2618                                 goto out;
2619                         err = 0;
2620                         left--;
2621                 }
2622                 pagevec_release(&pvec);
2623                 cond_resched();
2624         }
2625         mpd->scanned_until_end = 1;
2626         return 0;
2627 out:
2628         pagevec_release(&pvec);
2629         return err;
2630 }
2631
2632 static int ext4_writepages(struct address_space *mapping,
2633                            struct writeback_control *wbc)
2634 {
2635         pgoff_t writeback_index = 0;
2636         long nr_to_write = wbc->nr_to_write;
2637         int range_whole = 0;
2638         int cycled = 1;
2639         handle_t *handle = NULL;
2640         struct mpage_da_data mpd;
2641         struct inode *inode = mapping->host;
2642         int needed_blocks, rsv_blocks = 0, ret = 0;
2643         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2644         struct blk_plug plug;
2645         bool give_up_on_write = false;
2646
2647         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2648                 return -EIO;
2649
2650         percpu_down_read(&sbi->s_writepages_rwsem);
2651         trace_ext4_writepages(inode, wbc);
2652
2653         /*
2654          * No pages to write? This is mainly a kludge to avoid starting
2655          * a transaction for special inodes like journal inode on last iput()
2656          * because that could violate lock ordering on umount
2657          */
2658         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2659                 goto out_writepages;
2660
2661         if (ext4_should_journal_data(inode)) {
2662                 ret = generic_writepages(mapping, wbc);
2663                 goto out_writepages;
2664         }
2665
2666         /*
2667          * If the filesystem has aborted, it is read-only, so return
2668          * right away instead of dumping stack traces later on that
2669          * will obscure the real source of the problem.  We test
2670          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2671          * the latter could be true if the filesystem is mounted
2672          * read-only, and in that case, ext4_writepages should
2673          * *never* be called, so if that ever happens, we would want
2674          * the stack trace.
2675          */
2676         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2677                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2678                 ret = -EROFS;
2679                 goto out_writepages;
2680         }
2681
2682         /*
2683          * If we have inline data and arrive here, it means that
2684          * we will soon create the block for the 1st page, so
2685          * we'd better clear the inline data here.
2686          */
2687         if (ext4_has_inline_data(inode)) {
2688                 /* Just inode will be modified... */
2689                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2690                 if (IS_ERR(handle)) {
2691                         ret = PTR_ERR(handle);
2692                         goto out_writepages;
2693                 }
2694                 BUG_ON(ext4_test_inode_state(inode,
2695                                 EXT4_STATE_MAY_INLINE_DATA));
2696                 ext4_destroy_inline_data(handle, inode);
2697                 ext4_journal_stop(handle);
2698         }
2699
2700         if (ext4_should_dioread_nolock(inode)) {
2701                 /*
2702                  * We may need to convert up to one extent per block in
2703                  * the page and we may dirty the inode.
2704                  */
2705                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2706                                                 PAGE_SIZE >> inode->i_blkbits);
2707         }
2708
2709         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2710                 range_whole = 1;
2711
2712         if (wbc->range_cyclic) {
2713                 writeback_index = mapping->writeback_index;
2714                 if (writeback_index)
2715                         cycled = 0;
2716                 mpd.first_page = writeback_index;
2717                 mpd.last_page = -1;
2718         } else {
2719                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2720                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2721         }
2722
2723         mpd.inode = inode;
2724         mpd.wbc = wbc;
2725         ext4_io_submit_init(&mpd.io_submit, wbc);
2726 retry:
2727         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2728                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2729         blk_start_plug(&plug);
2730
2731         /*
2732          * First writeback pages that don't need mapping - we can avoid
2733          * starting a transaction unnecessarily and also avoid being blocked
2734          * in the block layer on device congestion while having transaction
2735          * started.
2736          */
2737         mpd.do_map = 0;
2738         mpd.scanned_until_end = 0;
2739         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2740         if (!mpd.io_submit.io_end) {
2741                 ret = -ENOMEM;
2742                 goto unplug;
2743         }
2744         ret = mpage_prepare_extent_to_map(&mpd);
2745         /* Unlock pages we didn't use */
2746         mpage_release_unused_pages(&mpd, false);
2747         /* Submit prepared bio */
2748         ext4_io_submit(&mpd.io_submit);
2749         ext4_put_io_end_defer(mpd.io_submit.io_end);
2750         mpd.io_submit.io_end = NULL;
2751         if (ret < 0)
2752                 goto unplug;
2753
2754         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2755                 /* For each extent of pages we use new io_end */
2756                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2757                 if (!mpd.io_submit.io_end) {
2758                         ret = -ENOMEM;
2759                         break;
2760                 }
2761
2762                 /*
2763                  * We have two constraints: We find one extent to map and we
2764                  * must always write out whole page (makes a difference when
2765                  * blocksize < pagesize) so that we don't block on IO when we
2766                  * try to write out the rest of the page. Journalled mode is
2767                  * not supported by delalloc.
2768                  */
2769                 BUG_ON(ext4_should_journal_data(inode));
2770                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2771
2772                 /* start a new transaction */
2773                 handle = ext4_journal_start_with_reserve(inode,
2774                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2775                 if (IS_ERR(handle)) {
2776                         ret = PTR_ERR(handle);
2777                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2778                                "%ld pages, ino %lu; err %d", __func__,
2779                                 wbc->nr_to_write, inode->i_ino, ret);
2780                         /* Release allocated io_end */
2781                         ext4_put_io_end(mpd.io_submit.io_end);
2782                         mpd.io_submit.io_end = NULL;
2783                         break;
2784                 }
2785                 mpd.do_map = 1;
2786
2787                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2788                 ret = mpage_prepare_extent_to_map(&mpd);
2789                 if (!ret && mpd.map.m_len)
2790                         ret = mpage_map_and_submit_extent(handle, &mpd,
2791                                         &give_up_on_write);
2792                 /*
2793                  * Caution: If the handle is synchronous,
2794                  * ext4_journal_stop() can wait for transaction commit
2795                  * to finish which may depend on writeback of pages to
2796                  * complete or on page lock to be released.  In that
2797                  * case, we have to wait until after we have
2798                  * submitted all the IO, released page locks we hold,
2799                  * and dropped io_end reference (for extent conversion
2800                  * to be able to complete) before stopping the handle.
2801                  */
2802                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2803                         ext4_journal_stop(handle);
2804                         handle = NULL;
2805                         mpd.do_map = 0;
2806                 }
2807                 /* Unlock pages we didn't use */
2808                 mpage_release_unused_pages(&mpd, give_up_on_write);
2809                 /* Submit prepared bio */
2810                 ext4_io_submit(&mpd.io_submit);
2811
2812                 /*
2813                  * Drop our io_end reference we got from init. We have
2814                  * to be careful and use deferred io_end finishing if
2815                  * we are still holding the transaction as we can
2816                  * release the last reference to io_end which may end
2817                  * up doing unwritten extent conversion.
2818                  */
2819                 if (handle) {
2820                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2821                         ext4_journal_stop(handle);
2822                 } else
2823                         ext4_put_io_end(mpd.io_submit.io_end);
2824                 mpd.io_submit.io_end = NULL;
2825
2826                 if (ret == -ENOSPC && sbi->s_journal) {
2827                         /*
2828                          * Commit the transaction which would
2829                          * free blocks released in the transaction
2830                          * and try again
2831                          */
2832                         jbd2_journal_force_commit_nested(sbi->s_journal);
2833                         ret = 0;
2834                         continue;
2835                 }
2836                 /* Fatal error - ENOMEM, EIO... */
2837                 if (ret)
2838                         break;
2839         }
2840 unplug:
2841         blk_finish_plug(&plug);
2842         if (!ret && !cycled && wbc->nr_to_write > 0) {
2843                 cycled = 1;
2844                 mpd.last_page = writeback_index - 1;
2845                 mpd.first_page = 0;
2846                 goto retry;
2847         }
2848
2849         /* Update index */
2850         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2851                 /*
2852                  * Set the writeback_index so that range_cyclic
2853                  * mode will write it back later
2854                  */
2855                 mapping->writeback_index = mpd.first_page;
2856
2857 out_writepages:
2858         trace_ext4_writepages_result(inode, wbc, ret,
2859                                      nr_to_write - wbc->nr_to_write);
2860         percpu_up_read(&sbi->s_writepages_rwsem);
2861         return ret;
2862 }
2863
2864 static int ext4_dax_writepages(struct address_space *mapping,
2865                                struct writeback_control *wbc)
2866 {
2867         int ret;
2868         long nr_to_write = wbc->nr_to_write;
2869         struct inode *inode = mapping->host;
2870         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2871
2872         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2873                 return -EIO;
2874
2875         percpu_down_read(&sbi->s_writepages_rwsem);
2876         trace_ext4_writepages(inode, wbc);
2877
2878         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2879         trace_ext4_writepages_result(inode, wbc, ret,
2880                                      nr_to_write - wbc->nr_to_write);
2881         percpu_up_read(&sbi->s_writepages_rwsem);
2882         return ret;
2883 }
2884
2885 static int ext4_nonda_switch(struct super_block *sb)
2886 {
2887         s64 free_clusters, dirty_clusters;
2888         struct ext4_sb_info *sbi = EXT4_SB(sb);
2889
2890         /*
2891          * switch to non delalloc mode if we are running low
2892          * on free block. The free block accounting via percpu
2893          * counters can get slightly wrong with percpu_counter_batch getting
2894          * accumulated on each CPU without updating global counters
2895          * Delalloc need an accurate free block accounting. So switch
2896          * to non delalloc when we are near to error range.
2897          */
2898         free_clusters =
2899                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2900         dirty_clusters =
2901                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2902         /*
2903          * Start pushing delalloc when 1/2 of free blocks are dirty.
2904          */
2905         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2906                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2907
2908         if (2 * free_clusters < 3 * dirty_clusters ||
2909             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2910                 /*
2911                  * free block count is less than 150% of dirty blocks
2912                  * or free blocks is less than watermark
2913                  */
2914                 return 1;
2915         }
2916         return 0;
2917 }
2918
2919 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2920                                loff_t pos, unsigned len, unsigned flags,
2921                                struct page **pagep, void **fsdata)
2922 {
2923         int ret, retries = 0;
2924         struct page *page;
2925         pgoff_t index;
2926         struct inode *inode = mapping->host;
2927
2928         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2929                 return -EIO;
2930
2931         index = pos >> PAGE_SHIFT;
2932
2933         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2934             ext4_verity_in_progress(inode)) {
2935                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2936                 return ext4_write_begin(file, mapping, pos,
2937                                         len, flags, pagep, fsdata);
2938         }
2939         *fsdata = (void *)0;
2940         trace_ext4_da_write_begin(inode, pos, len, flags);
2941
2942         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2943                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2944                                                       pos, len, flags,
2945                                                       pagep, fsdata);
2946                 if (ret < 0)
2947                         return ret;
2948                 if (ret == 1)
2949                         return 0;
2950         }
2951
2952 retry:
2953         page = grab_cache_page_write_begin(mapping, index, flags);
2954         if (!page)
2955                 return -ENOMEM;
2956
2957         /* In case writeback began while the page was unlocked */
2958         wait_for_stable_page(page);
2959
2960 #ifdef CONFIG_FS_ENCRYPTION
2961         ret = ext4_block_write_begin(page, pos, len,
2962                                      ext4_da_get_block_prep);
2963 #else
2964         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2965 #endif
2966         if (ret < 0) {
2967                 unlock_page(page);
2968                 put_page(page);
2969                 /*
2970                  * block_write_begin may have instantiated a few blocks
2971                  * outside i_size.  Trim these off again. Don't need
2972                  * i_size_read because we hold inode lock.
2973                  */
2974                 if (pos + len > inode->i_size)
2975                         ext4_truncate_failed_write(inode);
2976
2977                 if (ret == -ENOSPC &&
2978                     ext4_should_retry_alloc(inode->i_sb, &retries))
2979                         goto retry;
2980                 return ret;
2981         }
2982
2983         *pagep = page;
2984         return ret;
2985 }
2986
2987 /*
2988  * Check if we should update i_disksize
2989  * when write to the end of file but not require block allocation
2990  */
2991 static int ext4_da_should_update_i_disksize(struct page *page,
2992                                             unsigned long offset)
2993 {
2994         struct buffer_head *bh;
2995         struct inode *inode = page->mapping->host;
2996         unsigned int idx;
2997         int i;
2998
2999         bh = page_buffers(page);
3000         idx = offset >> inode->i_blkbits;
3001
3002         for (i = 0; i < idx; i++)
3003                 bh = bh->b_this_page;
3004
3005         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3006                 return 0;
3007         return 1;
3008 }
3009
3010 static int ext4_da_write_end(struct file *file,
3011                              struct address_space *mapping,
3012                              loff_t pos, unsigned len, unsigned copied,
3013                              struct page *page, void *fsdata)
3014 {
3015         struct inode *inode = mapping->host;
3016         loff_t new_i_size;
3017         unsigned long start, end;
3018         int write_mode = (int)(unsigned long)fsdata;
3019
3020         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3021                 return ext4_write_end(file, mapping, pos,
3022                                       len, copied, page, fsdata);
3023
3024         trace_ext4_da_write_end(inode, pos, len, copied);
3025
3026         if (write_mode != CONVERT_INLINE_DATA &&
3027             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3028             ext4_has_inline_data(inode))
3029                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3030
3031         start = pos & (PAGE_SIZE - 1);
3032         end = start + copied - 1;
3033
3034         /*
3035          * Since we are holding inode lock, we are sure i_disksize <=
3036          * i_size. We also know that if i_disksize < i_size, there are
3037          * delalloc writes pending in the range upto i_size. If the end of
3038          * the current write is <= i_size, there's no need to touch
3039          * i_disksize since writeback will push i_disksize upto i_size
3040          * eventually. If the end of the current write is > i_size and
3041          * inside an allocated block (ext4_da_should_update_i_disksize()
3042          * check), we need to update i_disksize here as neither
3043          * ext4_writepage() nor certain ext4_writepages() paths not
3044          * allocating blocks update i_disksize.
3045          *
3046          * Note that we defer inode dirtying to generic_write_end() /
3047          * ext4_da_write_inline_data_end().
3048          */
3049         new_i_size = pos + copied;
3050         if (copied && new_i_size > inode->i_size &&
3051             ext4_da_should_update_i_disksize(page, end))
3052                 ext4_update_i_disksize(inode, new_i_size);
3053
3054         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3055 }
3056
3057 /*
3058  * Force all delayed allocation blocks to be allocated for a given inode.
3059  */
3060 int ext4_alloc_da_blocks(struct inode *inode)
3061 {
3062         trace_ext4_alloc_da_blocks(inode);
3063
3064         if (!EXT4_I(inode)->i_reserved_data_blocks)
3065                 return 0;
3066
3067         /*
3068          * We do something simple for now.  The filemap_flush() will
3069          * also start triggering a write of the data blocks, which is
3070          * not strictly speaking necessary (and for users of
3071          * laptop_mode, not even desirable).  However, to do otherwise
3072          * would require replicating code paths in:
3073          *
3074          * ext4_writepages() ->
3075          *    write_cache_pages() ---> (via passed in callback function)
3076          *        __mpage_da_writepage() -->
3077          *           mpage_add_bh_to_extent()
3078          *           mpage_da_map_blocks()
3079          *
3080          * The problem is that write_cache_pages(), located in
3081          * mm/page-writeback.c, marks pages clean in preparation for
3082          * doing I/O, which is not desirable if we're not planning on
3083          * doing I/O at all.
3084          *
3085          * We could call write_cache_pages(), and then redirty all of
3086          * the pages by calling redirty_page_for_writepage() but that
3087          * would be ugly in the extreme.  So instead we would need to
3088          * replicate parts of the code in the above functions,
3089          * simplifying them because we wouldn't actually intend to
3090          * write out the pages, but rather only collect contiguous
3091          * logical block extents, call the multi-block allocator, and
3092          * then update the buffer heads with the block allocations.
3093          *
3094          * For now, though, we'll cheat by calling filemap_flush(),
3095          * which will map the blocks, and start the I/O, but not
3096          * actually wait for the I/O to complete.
3097          */
3098         return filemap_flush(inode->i_mapping);
3099 }
3100
3101 /*
3102  * bmap() is special.  It gets used by applications such as lilo and by
3103  * the swapper to find the on-disk block of a specific piece of data.
3104  *
3105  * Naturally, this is dangerous if the block concerned is still in the
3106  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3107  * filesystem and enables swap, then they may get a nasty shock when the
3108  * data getting swapped to that swapfile suddenly gets overwritten by
3109  * the original zero's written out previously to the journal and
3110  * awaiting writeback in the kernel's buffer cache.
3111  *
3112  * So, if we see any bmap calls here on a modified, data-journaled file,
3113  * take extra steps to flush any blocks which might be in the cache.
3114  */
3115 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3116 {
3117         struct inode *inode = mapping->host;
3118         journal_t *journal;
3119         int err;
3120
3121         /*
3122          * We can get here for an inline file via the FIBMAP ioctl
3123          */
3124         if (ext4_has_inline_data(inode))
3125                 return 0;
3126
3127         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3128                         test_opt(inode->i_sb, DELALLOC)) {
3129                 /*
3130                  * With delalloc we want to sync the file
3131                  * so that we can make sure we allocate
3132                  * blocks for file
3133                  */
3134                 filemap_write_and_wait(mapping);
3135         }
3136
3137         if (EXT4_JOURNAL(inode) &&
3138             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3139                 /*
3140                  * This is a REALLY heavyweight approach, but the use of
3141                  * bmap on dirty files is expected to be extremely rare:
3142                  * only if we run lilo or swapon on a freshly made file
3143                  * do we expect this to happen.
3144                  *
3145                  * (bmap requires CAP_SYS_RAWIO so this does not
3146                  * represent an unprivileged user DOS attack --- we'd be
3147                  * in trouble if mortal users could trigger this path at
3148                  * will.)
3149                  *
3150                  * NB. EXT4_STATE_JDATA is not set on files other than
3151                  * regular files.  If somebody wants to bmap a directory
3152                  * or symlink and gets confused because the buffer
3153                  * hasn't yet been flushed to disk, they deserve
3154                  * everything they get.
3155                  */
3156
3157                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3158                 journal = EXT4_JOURNAL(inode);
3159                 jbd2_journal_lock_updates(journal);
3160                 err = jbd2_journal_flush(journal, 0);
3161                 jbd2_journal_unlock_updates(journal);
3162
3163                 if (err)
3164                         return 0;
3165         }
3166
3167         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3168 }
3169
3170 static int ext4_readpage(struct file *file, struct page *page)
3171 {
3172         int ret = -EAGAIN;
3173         struct inode *inode = page->mapping->host;
3174
3175         trace_ext4_readpage(page);
3176
3177         if (ext4_has_inline_data(inode))
3178                 ret = ext4_readpage_inline(inode, page);
3179
3180         if (ret == -EAGAIN)
3181                 return ext4_mpage_readpages(inode, NULL, page);
3182
3183         return ret;
3184 }
3185
3186 static void ext4_readahead(struct readahead_control *rac)
3187 {
3188         struct inode *inode = rac->mapping->host;
3189
3190         /* If the file has inline data, no need to do readahead. */
3191         if (ext4_has_inline_data(inode))
3192                 return;
3193
3194         ext4_mpage_readpages(inode, rac, NULL);
3195 }
3196
3197 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3198                                 unsigned int length)
3199 {
3200         trace_ext4_invalidatepage(page, offset, length);
3201
3202         /* No journalling happens on data buffers when this function is used */
3203         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3204
3205         block_invalidatepage(page, offset, length);
3206 }
3207
3208 static int __ext4_journalled_invalidatepage(struct page *page,
3209                                             unsigned int offset,
3210                                             unsigned int length)
3211 {
3212         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3213
3214         trace_ext4_journalled_invalidatepage(page, offset, length);
3215
3216         /*
3217          * If it's a full truncate we just forget about the pending dirtying
3218          */
3219         if (offset == 0 && length == PAGE_SIZE)
3220                 ClearPageChecked(page);
3221
3222         return jbd2_journal_invalidatepage(journal, page, offset, length);
3223 }
3224
3225 /* Wrapper for aops... */
3226 static void ext4_journalled_invalidatepage(struct page *page,
3227                                            unsigned int offset,
3228                                            unsigned int length)
3229 {
3230         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3231 }
3232
3233 static int ext4_releasepage(struct page *page, gfp_t wait)
3234 {
3235         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3236
3237         trace_ext4_releasepage(page);
3238
3239         /* Page has dirty journalled data -> cannot release */
3240         if (PageChecked(page))
3241                 return 0;
3242         if (journal)
3243                 return jbd2_journal_try_to_free_buffers(journal, page);
3244         else
3245                 return try_to_free_buffers(page);
3246 }
3247
3248 static bool ext4_inode_datasync_dirty(struct inode *inode)
3249 {
3250         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3251
3252         if (journal) {
3253                 if (jbd2_transaction_committed(journal,
3254                         EXT4_I(inode)->i_datasync_tid))
3255                         return false;
3256                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3257                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3258                 return true;
3259         }
3260
3261         /* Any metadata buffers to write? */
3262         if (!list_empty(&inode->i_mapping->private_list))
3263                 return true;
3264         return inode->i_state & I_DIRTY_DATASYNC;
3265 }
3266
3267 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3268                            struct ext4_map_blocks *map, loff_t offset,
3269                            loff_t length)
3270 {
3271         u8 blkbits = inode->i_blkbits;
3272
3273         /*
3274          * Writes that span EOF might trigger an I/O size update on completion,
3275          * so consider them to be dirty for the purpose of O_DSYNC, even if
3276          * there is no other metadata changes being made or are pending.
3277          */
3278         iomap->flags = 0;
3279         if (ext4_inode_datasync_dirty(inode) ||
3280             offset + length > i_size_read(inode))
3281                 iomap->flags |= IOMAP_F_DIRTY;
3282
3283         if (map->m_flags & EXT4_MAP_NEW)
3284                 iomap->flags |= IOMAP_F_NEW;
3285
3286         iomap->bdev = inode->i_sb->s_bdev;
3287         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3288         iomap->offset = (u64) map->m_lblk << blkbits;
3289         iomap->length = (u64) map->m_len << blkbits;
3290
3291         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3292             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3293                 iomap->flags |= IOMAP_F_MERGED;
3294
3295         /*
3296          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3297          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3298          * set. In order for any allocated unwritten extents to be converted
3299          * into written extents correctly within the ->end_io() handler, we
3300          * need to ensure that the iomap->type is set appropriately. Hence, the
3301          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3302          * been set first.
3303          */
3304         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3305                 iomap->type = IOMAP_UNWRITTEN;
3306                 iomap->addr = (u64) map->m_pblk << blkbits;
3307         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3308                 iomap->type = IOMAP_MAPPED;
3309                 iomap->addr = (u64) map->m_pblk << blkbits;
3310         } else {
3311                 iomap->type = IOMAP_HOLE;
3312                 iomap->addr = IOMAP_NULL_ADDR;
3313         }
3314 }
3315
3316 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3317                             unsigned int flags)
3318 {
3319         handle_t *handle;
3320         u8 blkbits = inode->i_blkbits;
3321         int ret, dio_credits, m_flags = 0, retries = 0;
3322
3323         /*
3324          * Trim the mapping request to the maximum value that we can map at
3325          * once for direct I/O.
3326          */
3327         if (map->m_len > DIO_MAX_BLOCKS)
3328                 map->m_len = DIO_MAX_BLOCKS;
3329         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3330
3331 retry:
3332         /*
3333          * Either we allocate blocks and then don't get an unwritten extent, so
3334          * in that case we have reserved enough credits. Or, the blocks are
3335          * already allocated and unwritten. In that case, the extent conversion
3336          * fits into the credits as well.
3337          */
3338         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3339         if (IS_ERR(handle))
3340                 return PTR_ERR(handle);
3341
3342         /*
3343          * DAX and direct I/O are the only two operations that are currently
3344          * supported with IOMAP_WRITE.
3345          */
3346         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3347         if (IS_DAX(inode))
3348                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3349         /*
3350          * We use i_size instead of i_disksize here because delalloc writeback
3351          * can complete at any point during the I/O and subsequently push the
3352          * i_disksize out to i_size. This could be beyond where direct I/O is
3353          * happening and thus expose allocated blocks to direct I/O reads.
3354          */
3355         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3356                 m_flags = EXT4_GET_BLOCKS_CREATE;
3357         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3358                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3359
3360         ret = ext4_map_blocks(handle, inode, map, m_flags);
3361
3362         /*
3363          * We cannot fill holes in indirect tree based inodes as that could
3364          * expose stale data in the case of a crash. Use the magic error code
3365          * to fallback to buffered I/O.
3366          */
3367         if (!m_flags && !ret)
3368                 ret = -ENOTBLK;
3369
3370         ext4_journal_stop(handle);
3371         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3372                 goto retry;
3373
3374         return ret;
3375 }
3376
3377
3378 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3379                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3380 {
3381         int ret;
3382         struct ext4_map_blocks map;
3383         u8 blkbits = inode->i_blkbits;
3384
3385         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3386                 return -EINVAL;
3387
3388         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3389                 return -ERANGE;
3390
3391         /*
3392          * Calculate the first and last logical blocks respectively.
3393          */
3394         map.m_lblk = offset >> blkbits;
3395         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3396                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3397
3398         if (flags & IOMAP_WRITE) {
3399                 /*
3400                  * We check here if the blocks are already allocated, then we
3401                  * don't need to start a journal txn and we can directly return
3402                  * the mapping information. This could boost performance
3403                  * especially in multi-threaded overwrite requests.
3404                  */
3405                 if (offset + length <= i_size_read(inode)) {
3406                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3407                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3408                                 goto out;
3409                 }
3410                 ret = ext4_iomap_alloc(inode, &map, flags);
3411         } else {
3412                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3413         }
3414
3415         if (ret < 0)
3416                 return ret;
3417 out:
3418         ext4_set_iomap(inode, iomap, &map, offset, length);
3419
3420         return 0;
3421 }
3422
3423 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3424                 loff_t length, unsigned flags, struct iomap *iomap,
3425                 struct iomap *srcmap)
3426 {
3427         int ret;
3428
3429         /*
3430          * Even for writes we don't need to allocate blocks, so just pretend
3431          * we are reading to save overhead of starting a transaction.
3432          */
3433         flags &= ~IOMAP_WRITE;
3434         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3435         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3436         return ret;
3437 }
3438
3439 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3440                           ssize_t written, unsigned flags, struct iomap *iomap)
3441 {
3442         /*
3443          * Check to see whether an error occurred while writing out the data to
3444          * the allocated blocks. If so, return the magic error code so that we
3445          * fallback to buffered I/O and attempt to complete the remainder of
3446          * the I/O. Any blocks that may have been allocated in preparation for
3447          * the direct I/O will be reused during buffered I/O.
3448          */
3449         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3450                 return -ENOTBLK;
3451
3452         return 0;
3453 }
3454
3455 const struct iomap_ops ext4_iomap_ops = {
3456         .iomap_begin            = ext4_iomap_begin,
3457         .iomap_end              = ext4_iomap_end,
3458 };
3459
3460 const struct iomap_ops ext4_iomap_overwrite_ops = {
3461         .iomap_begin            = ext4_iomap_overwrite_begin,
3462         .iomap_end              = ext4_iomap_end,
3463 };
3464
3465 static bool ext4_iomap_is_delalloc(struct inode *inode,
3466                                    struct ext4_map_blocks *map)
3467 {
3468         struct extent_status es;
3469         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3470
3471         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3472                                   map->m_lblk, end, &es);
3473
3474         if (!es.es_len || es.es_lblk > end)
3475                 return false;
3476
3477         if (es.es_lblk > map->m_lblk) {
3478                 map->m_len = es.es_lblk - map->m_lblk;
3479                 return false;
3480         }
3481
3482         offset = map->m_lblk - es.es_lblk;
3483         map->m_len = es.es_len - offset;
3484
3485         return true;
3486 }
3487
3488 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3489                                    loff_t length, unsigned int flags,
3490                                    struct iomap *iomap, struct iomap *srcmap)
3491 {
3492         int ret;
3493         bool delalloc = false;
3494         struct ext4_map_blocks map;
3495         u8 blkbits = inode->i_blkbits;
3496
3497         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3498                 return -EINVAL;
3499
3500         if (ext4_has_inline_data(inode)) {
3501                 ret = ext4_inline_data_iomap(inode, iomap);
3502                 if (ret != -EAGAIN) {
3503                         if (ret == 0 && offset >= iomap->length)
3504                                 ret = -ENOENT;
3505                         return ret;
3506                 }
3507         }
3508
3509         /*
3510          * Calculate the first and last logical block respectively.
3511          */
3512         map.m_lblk = offset >> blkbits;
3513         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3514                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3515
3516         /*
3517          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3518          * So handle it here itself instead of querying ext4_map_blocks().
3519          * Since ext4_map_blocks() will warn about it and will return
3520          * -EIO error.
3521          */
3522         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3523                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3524
3525                 if (offset >= sbi->s_bitmap_maxbytes) {
3526                         map.m_flags = 0;
3527                         goto set_iomap;
3528                 }
3529         }
3530
3531         ret = ext4_map_blocks(NULL, inode, &map, 0);
3532         if (ret < 0)
3533                 return ret;
3534         if (ret == 0)
3535                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3536
3537 set_iomap:
3538         ext4_set_iomap(inode, iomap, &map, offset, length);
3539         if (delalloc && iomap->type == IOMAP_HOLE)
3540                 iomap->type = IOMAP_DELALLOC;
3541
3542         return 0;
3543 }
3544
3545 const struct iomap_ops ext4_iomap_report_ops = {
3546         .iomap_begin = ext4_iomap_begin_report,
3547 };
3548
3549 /*
3550  * Pages can be marked dirty completely asynchronously from ext4's journalling
3551  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3552  * much here because ->set_page_dirty is called under VFS locks.  The page is
3553  * not necessarily locked.
3554  *
3555  * We cannot just dirty the page and leave attached buffers clean, because the
3556  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3557  * or jbddirty because all the journalling code will explode.
3558  *
3559  * So what we do is to mark the page "pending dirty" and next time writepage
3560  * is called, propagate that into the buffers appropriately.
3561  */
3562 static int ext4_journalled_set_page_dirty(struct page *page)
3563 {
3564         SetPageChecked(page);
3565         return __set_page_dirty_nobuffers(page);
3566 }
3567
3568 static int ext4_set_page_dirty(struct page *page)
3569 {
3570         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3571         WARN_ON_ONCE(!page_has_buffers(page));
3572         return __set_page_dirty_buffers(page);
3573 }
3574
3575 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3576                                     struct file *file, sector_t *span)
3577 {
3578         return iomap_swapfile_activate(sis, file, span,
3579                                        &ext4_iomap_report_ops);
3580 }
3581
3582 static const struct address_space_operations ext4_aops = {
3583         .readpage               = ext4_readpage,
3584         .readahead              = ext4_readahead,
3585         .writepage              = ext4_writepage,
3586         .writepages             = ext4_writepages,
3587         .write_begin            = ext4_write_begin,
3588         .write_end              = ext4_write_end,
3589         .set_page_dirty         = ext4_set_page_dirty,
3590         .bmap                   = ext4_bmap,
3591         .invalidatepage         = ext4_invalidatepage,
3592         .releasepage            = ext4_releasepage,
3593         .direct_IO              = noop_direct_IO,
3594         .migratepage            = buffer_migrate_page,
3595         .is_partially_uptodate  = block_is_partially_uptodate,
3596         .error_remove_page      = generic_error_remove_page,
3597         .swap_activate          = ext4_iomap_swap_activate,
3598 };
3599
3600 static const struct address_space_operations ext4_journalled_aops = {
3601         .readpage               = ext4_readpage,
3602         .readahead              = ext4_readahead,
3603         .writepage              = ext4_writepage,
3604         .writepages             = ext4_writepages,
3605         .write_begin            = ext4_write_begin,
3606         .write_end              = ext4_journalled_write_end,
3607         .set_page_dirty         = ext4_journalled_set_page_dirty,
3608         .bmap                   = ext4_bmap,
3609         .invalidatepage         = ext4_journalled_invalidatepage,
3610         .releasepage            = ext4_releasepage,
3611         .direct_IO              = noop_direct_IO,
3612         .is_partially_uptodate  = block_is_partially_uptodate,
3613         .error_remove_page      = generic_error_remove_page,
3614         .swap_activate          = ext4_iomap_swap_activate,
3615 };
3616
3617 static const struct address_space_operations ext4_da_aops = {
3618         .readpage               = ext4_readpage,
3619         .readahead              = ext4_readahead,
3620         .writepage              = ext4_writepage,
3621         .writepages             = ext4_writepages,
3622         .write_begin            = ext4_da_write_begin,
3623         .write_end              = ext4_da_write_end,
3624         .set_page_dirty         = ext4_set_page_dirty,
3625         .bmap                   = ext4_bmap,
3626         .invalidatepage         = ext4_invalidatepage,
3627         .releasepage            = ext4_releasepage,
3628         .direct_IO              = noop_direct_IO,
3629         .migratepage            = buffer_migrate_page,
3630         .is_partially_uptodate  = block_is_partially_uptodate,
3631         .error_remove_page      = generic_error_remove_page,
3632         .swap_activate          = ext4_iomap_swap_activate,
3633 };
3634
3635 static const struct address_space_operations ext4_dax_aops = {
3636         .writepages             = ext4_dax_writepages,
3637         .direct_IO              = noop_direct_IO,
3638         .set_page_dirty         = __set_page_dirty_no_writeback,
3639         .bmap                   = ext4_bmap,
3640         .invalidatepage         = noop_invalidatepage,
3641         .swap_activate          = ext4_iomap_swap_activate,
3642 };
3643
3644 void ext4_set_aops(struct inode *inode)
3645 {
3646         switch (ext4_inode_journal_mode(inode)) {
3647         case EXT4_INODE_ORDERED_DATA_MODE:
3648         case EXT4_INODE_WRITEBACK_DATA_MODE:
3649                 break;
3650         case EXT4_INODE_JOURNAL_DATA_MODE:
3651                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3652                 return;
3653         default:
3654                 BUG();
3655         }
3656         if (IS_DAX(inode))
3657                 inode->i_mapping->a_ops = &ext4_dax_aops;
3658         else if (test_opt(inode->i_sb, DELALLOC))
3659                 inode->i_mapping->a_ops = &ext4_da_aops;
3660         else
3661                 inode->i_mapping->a_ops = &ext4_aops;
3662 }
3663
3664 static int __ext4_block_zero_page_range(handle_t *handle,
3665                 struct address_space *mapping, loff_t from, loff_t length)
3666 {
3667         ext4_fsblk_t index = from >> PAGE_SHIFT;
3668         unsigned offset = from & (PAGE_SIZE-1);
3669         unsigned blocksize, pos;
3670         ext4_lblk_t iblock;
3671         struct inode *inode = mapping->host;
3672         struct buffer_head *bh;
3673         struct page *page;
3674         int err = 0;
3675
3676         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3677                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3678         if (!page)
3679                 return -ENOMEM;
3680
3681         blocksize = inode->i_sb->s_blocksize;
3682
3683         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3684
3685         if (!page_has_buffers(page))
3686                 create_empty_buffers(page, blocksize, 0);
3687
3688         /* Find the buffer that contains "offset" */
3689         bh = page_buffers(page);
3690         pos = blocksize;
3691         while (offset >= pos) {
3692                 bh = bh->b_this_page;
3693                 iblock++;
3694                 pos += blocksize;
3695         }
3696         if (buffer_freed(bh)) {
3697                 BUFFER_TRACE(bh, "freed: skip");
3698                 goto unlock;
3699         }
3700         if (!buffer_mapped(bh)) {
3701                 BUFFER_TRACE(bh, "unmapped");
3702                 ext4_get_block(inode, iblock, bh, 0);
3703                 /* unmapped? It's a hole - nothing to do */
3704                 if (!buffer_mapped(bh)) {
3705                         BUFFER_TRACE(bh, "still unmapped");
3706                         goto unlock;
3707                 }
3708         }
3709
3710         /* Ok, it's mapped. Make sure it's up-to-date */
3711         if (PageUptodate(page))
3712                 set_buffer_uptodate(bh);
3713
3714         if (!buffer_uptodate(bh)) {
3715                 err = ext4_read_bh_lock(bh, 0, true);
3716                 if (err)
3717                         goto unlock;
3718                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3719                         /* We expect the key to be set. */
3720                         BUG_ON(!fscrypt_has_encryption_key(inode));
3721                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3722                                                                bh_offset(bh));
3723                         if (err) {
3724                                 clear_buffer_uptodate(bh);
3725                                 goto unlock;
3726                         }
3727                 }
3728         }
3729         if (ext4_should_journal_data(inode)) {
3730                 BUFFER_TRACE(bh, "get write access");
3731                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3732                                                     EXT4_JTR_NONE);
3733                 if (err)
3734                         goto unlock;
3735         }
3736         zero_user(page, offset, length);
3737         BUFFER_TRACE(bh, "zeroed end of block");
3738
3739         if (ext4_should_journal_data(inode)) {
3740                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3741         } else {
3742                 err = 0;
3743                 mark_buffer_dirty(bh);
3744                 if (ext4_should_order_data(inode))
3745                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3746                                         length);
3747         }
3748
3749 unlock:
3750         unlock_page(page);
3751         put_page(page);
3752         return err;
3753 }
3754
3755 /*
3756  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3757  * starting from file offset 'from'.  The range to be zero'd must
3758  * be contained with in one block.  If the specified range exceeds
3759  * the end of the block it will be shortened to end of the block
3760  * that corresponds to 'from'
3761  */
3762 static int ext4_block_zero_page_range(handle_t *handle,
3763                 struct address_space *mapping, loff_t from, loff_t length)
3764 {
3765         struct inode *inode = mapping->host;
3766         unsigned offset = from & (PAGE_SIZE-1);
3767         unsigned blocksize = inode->i_sb->s_blocksize;
3768         unsigned max = blocksize - (offset & (blocksize - 1));
3769
3770         /*
3771          * correct length if it does not fall between
3772          * 'from' and the end of the block
3773          */
3774         if (length > max || length < 0)
3775                 length = max;
3776
3777         if (IS_DAX(inode)) {
3778                 return iomap_zero_range(inode, from, length, NULL,
3779                                         &ext4_iomap_ops);
3780         }
3781         return __ext4_block_zero_page_range(handle, mapping, from, length);
3782 }
3783
3784 /*
3785  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3786  * up to the end of the block which corresponds to `from'.
3787  * This required during truncate. We need to physically zero the tail end
3788  * of that block so it doesn't yield old data if the file is later grown.
3789  */
3790 static int ext4_block_truncate_page(handle_t *handle,
3791                 struct address_space *mapping, loff_t from)
3792 {
3793         unsigned offset = from & (PAGE_SIZE-1);
3794         unsigned length;
3795         unsigned blocksize;
3796         struct inode *inode = mapping->host;
3797
3798         /* If we are processing an encrypted inode during orphan list handling */
3799         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3800                 return 0;
3801
3802         blocksize = inode->i_sb->s_blocksize;
3803         length = blocksize - (offset & (blocksize - 1));
3804
3805         return ext4_block_zero_page_range(handle, mapping, from, length);
3806 }
3807
3808 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3809                              loff_t lstart, loff_t length)
3810 {
3811         struct super_block *sb = inode->i_sb;
3812         struct address_space *mapping = inode->i_mapping;
3813         unsigned partial_start, partial_end;
3814         ext4_fsblk_t start, end;
3815         loff_t byte_end = (lstart + length - 1);
3816         int err = 0;
3817
3818         partial_start = lstart & (sb->s_blocksize - 1);
3819         partial_end = byte_end & (sb->s_blocksize - 1);
3820
3821         start = lstart >> sb->s_blocksize_bits;
3822         end = byte_end >> sb->s_blocksize_bits;
3823
3824         /* Handle partial zero within the single block */
3825         if (start == end &&
3826             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3827                 err = ext4_block_zero_page_range(handle, mapping,
3828                                                  lstart, length);
3829                 return err;
3830         }
3831         /* Handle partial zero out on the start of the range */
3832         if (partial_start) {
3833                 err = ext4_block_zero_page_range(handle, mapping,
3834                                                  lstart, sb->s_blocksize);
3835                 if (err)
3836                         return err;
3837         }
3838         /* Handle partial zero out on the end of the range */
3839         if (partial_end != sb->s_blocksize - 1)
3840                 err = ext4_block_zero_page_range(handle, mapping,
3841                                                  byte_end - partial_end,
3842                                                  partial_end + 1);
3843         return err;
3844 }
3845
3846 int ext4_can_truncate(struct inode *inode)
3847 {
3848         if (S_ISREG(inode->i_mode))
3849                 return 1;
3850         if (S_ISDIR(inode->i_mode))
3851                 return 1;
3852         if (S_ISLNK(inode->i_mode))
3853                 return !ext4_inode_is_fast_symlink(inode);
3854         return 0;
3855 }
3856
3857 /*
3858  * We have to make sure i_disksize gets properly updated before we truncate
3859  * page cache due to hole punching or zero range. Otherwise i_disksize update
3860  * can get lost as it may have been postponed to submission of writeback but
3861  * that will never happen after we truncate page cache.
3862  */
3863 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3864                                       loff_t len)
3865 {
3866         handle_t *handle;
3867         int ret;
3868
3869         loff_t size = i_size_read(inode);
3870
3871         WARN_ON(!inode_is_locked(inode));
3872         if (offset > size || offset + len < size)
3873                 return 0;
3874
3875         if (EXT4_I(inode)->i_disksize >= size)
3876                 return 0;
3877
3878         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3879         if (IS_ERR(handle))
3880                 return PTR_ERR(handle);
3881         ext4_update_i_disksize(inode, size);
3882         ret = ext4_mark_inode_dirty(handle, inode);
3883         ext4_journal_stop(handle);
3884
3885         return ret;
3886 }
3887
3888 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3889 {
3890         up_write(&ei->i_mmap_sem);
3891         schedule();
3892         down_write(&ei->i_mmap_sem);
3893 }
3894
3895 int ext4_break_layouts(struct inode *inode)
3896 {
3897         struct ext4_inode_info *ei = EXT4_I(inode);
3898         struct page *page;
3899         int error;
3900
3901         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3902                 return -EINVAL;
3903
3904         do {
3905                 page = dax_layout_busy_page(inode->i_mapping);
3906                 if (!page)
3907                         return 0;
3908
3909                 error = ___wait_var_event(&page->_refcount,
3910                                 atomic_read(&page->_refcount) == 1,
3911                                 TASK_INTERRUPTIBLE, 0, 0,
3912                                 ext4_wait_dax_page(ei));
3913         } while (error == 0);
3914
3915         return error;
3916 }
3917
3918 /*
3919  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3920  * associated with the given offset and length
3921  *
3922  * @inode:  File inode
3923  * @offset: The offset where the hole will begin
3924  * @len:    The length of the hole
3925  *
3926  * Returns: 0 on success or negative on failure
3927  */
3928
3929 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3930 {
3931         struct super_block *sb = inode->i_sb;
3932         ext4_lblk_t first_block, stop_block;
3933         struct address_space *mapping = inode->i_mapping;
3934         loff_t first_block_offset, last_block_offset;
3935         handle_t *handle;
3936         unsigned int credits;
3937         int ret = 0, ret2 = 0;
3938
3939         trace_ext4_punch_hole(inode, offset, length, 0);
3940
3941         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3942         if (ext4_has_inline_data(inode)) {
3943                 down_write(&EXT4_I(inode)->i_mmap_sem);
3944                 ret = ext4_convert_inline_data(inode);
3945                 up_write(&EXT4_I(inode)->i_mmap_sem);
3946                 if (ret)
3947                         return ret;
3948         }
3949
3950         /*
3951          * Write out all dirty pages to avoid race conditions
3952          * Then release them.
3953          */
3954         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3955                 ret = filemap_write_and_wait_range(mapping, offset,
3956                                                    offset + length - 1);
3957                 if (ret)
3958                         return ret;
3959         }
3960
3961         inode_lock(inode);
3962
3963         /* No need to punch hole beyond i_size */
3964         if (offset >= inode->i_size)
3965                 goto out_mutex;
3966
3967         /*
3968          * If the hole extends beyond i_size, set the hole
3969          * to end after the page that contains i_size
3970          */
3971         if (offset + length > inode->i_size) {
3972                 length = inode->i_size +
3973                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3974                    offset;
3975         }
3976
3977         if (offset & (sb->s_blocksize - 1) ||
3978             (offset + length) & (sb->s_blocksize - 1)) {
3979                 /*
3980                  * Attach jinode to inode for jbd2 if we do any zeroing of
3981                  * partial block
3982                  */
3983                 ret = ext4_inode_attach_jinode(inode);
3984                 if (ret < 0)
3985                         goto out_mutex;
3986
3987         }
3988
3989         /* Wait all existing dio workers, newcomers will block on i_mutex */
3990         inode_dio_wait(inode);
3991
3992         /*
3993          * Prevent page faults from reinstantiating pages we have released from
3994          * page cache.
3995          */
3996         down_write(&EXT4_I(inode)->i_mmap_sem);
3997
3998         ret = ext4_break_layouts(inode);
3999         if (ret)
4000                 goto out_dio;
4001
4002         first_block_offset = round_up(offset, sb->s_blocksize);
4003         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4004
4005         /* Now release the pages and zero block aligned part of pages*/
4006         if (last_block_offset > first_block_offset) {
4007                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4008                 if (ret)
4009                         goto out_dio;
4010                 truncate_pagecache_range(inode, first_block_offset,
4011                                          last_block_offset);
4012         }
4013
4014         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4015                 credits = ext4_writepage_trans_blocks(inode);
4016         else
4017                 credits = ext4_blocks_for_truncate(inode);
4018         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4019         if (IS_ERR(handle)) {
4020                 ret = PTR_ERR(handle);
4021                 ext4_std_error(sb, ret);
4022                 goto out_dio;
4023         }
4024
4025         ret = ext4_zero_partial_blocks(handle, inode, offset,
4026                                        length);
4027         if (ret)
4028                 goto out_stop;
4029
4030         first_block = (offset + sb->s_blocksize - 1) >>
4031                 EXT4_BLOCK_SIZE_BITS(sb);
4032         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4033
4034         /* If there are blocks to remove, do it */
4035         if (stop_block > first_block) {
4036
4037                 down_write(&EXT4_I(inode)->i_data_sem);
4038                 ext4_discard_preallocations(inode, 0);
4039
4040                 ret = ext4_es_remove_extent(inode, first_block,
4041                                             stop_block - first_block);
4042                 if (ret) {
4043                         up_write(&EXT4_I(inode)->i_data_sem);
4044                         goto out_stop;
4045                 }
4046
4047                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4048                         ret = ext4_ext_remove_space(inode, first_block,
4049                                                     stop_block - 1);
4050                 else
4051                         ret = ext4_ind_remove_space(handle, inode, first_block,
4052                                                     stop_block);
4053
4054                 up_write(&EXT4_I(inode)->i_data_sem);
4055         }
4056         ext4_fc_track_range(handle, inode, first_block, stop_block);
4057         if (IS_SYNC(inode))
4058                 ext4_handle_sync(handle);
4059
4060         inode->i_mtime = inode->i_ctime = current_time(inode);
4061         ret2 = ext4_mark_inode_dirty(handle, inode);
4062         if (unlikely(ret2))
4063                 ret = ret2;
4064         if (ret >= 0)
4065                 ext4_update_inode_fsync_trans(handle, inode, 1);
4066 out_stop:
4067         ext4_journal_stop(handle);
4068 out_dio:
4069         up_write(&EXT4_I(inode)->i_mmap_sem);
4070 out_mutex:
4071         inode_unlock(inode);
4072         return ret;
4073 }
4074
4075 int ext4_inode_attach_jinode(struct inode *inode)
4076 {
4077         struct ext4_inode_info *ei = EXT4_I(inode);
4078         struct jbd2_inode *jinode;
4079
4080         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4081                 return 0;
4082
4083         jinode = jbd2_alloc_inode(GFP_KERNEL);
4084         spin_lock(&inode->i_lock);
4085         if (!ei->jinode) {
4086                 if (!jinode) {
4087                         spin_unlock(&inode->i_lock);
4088                         return -ENOMEM;
4089                 }
4090                 ei->jinode = jinode;
4091                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4092                 jinode = NULL;
4093         }
4094         spin_unlock(&inode->i_lock);
4095         if (unlikely(jinode != NULL))
4096                 jbd2_free_inode(jinode);
4097         return 0;
4098 }
4099
4100 /*
4101  * ext4_truncate()
4102  *
4103  * We block out ext4_get_block() block instantiations across the entire
4104  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4105  * simultaneously on behalf of the same inode.
4106  *
4107  * As we work through the truncate and commit bits of it to the journal there
4108  * is one core, guiding principle: the file's tree must always be consistent on
4109  * disk.  We must be able to restart the truncate after a crash.
4110  *
4111  * The file's tree may be transiently inconsistent in memory (although it
4112  * probably isn't), but whenever we close off and commit a journal transaction,
4113  * the contents of (the filesystem + the journal) must be consistent and
4114  * restartable.  It's pretty simple, really: bottom up, right to left (although
4115  * left-to-right works OK too).
4116  *
4117  * Note that at recovery time, journal replay occurs *before* the restart of
4118  * truncate against the orphan inode list.
4119  *
4120  * The committed inode has the new, desired i_size (which is the same as
4121  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4122  * that this inode's truncate did not complete and it will again call
4123  * ext4_truncate() to have another go.  So there will be instantiated blocks
4124  * to the right of the truncation point in a crashed ext4 filesystem.  But
4125  * that's fine - as long as they are linked from the inode, the post-crash
4126  * ext4_truncate() run will find them and release them.
4127  */
4128 int ext4_truncate(struct inode *inode)
4129 {
4130         struct ext4_inode_info *ei = EXT4_I(inode);
4131         unsigned int credits;
4132         int err = 0, err2;
4133         handle_t *handle;
4134         struct address_space *mapping = inode->i_mapping;
4135
4136         /*
4137          * There is a possibility that we're either freeing the inode
4138          * or it's a completely new inode. In those cases we might not
4139          * have i_mutex locked because it's not necessary.
4140          */
4141         if (!(inode->i_state & (I_NEW|I_FREEING)))
4142                 WARN_ON(!inode_is_locked(inode));
4143         trace_ext4_truncate_enter(inode);
4144
4145         if (!ext4_can_truncate(inode))
4146                 goto out_trace;
4147
4148         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4149                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4150
4151         if (ext4_has_inline_data(inode)) {
4152                 int has_inline = 1;
4153
4154                 err = ext4_inline_data_truncate(inode, &has_inline);
4155                 if (err || has_inline)
4156                         goto out_trace;
4157         }
4158
4159         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4160         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4161                 if (ext4_inode_attach_jinode(inode) < 0)
4162                         goto out_trace;
4163         }
4164
4165         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4166                 credits = ext4_writepage_trans_blocks(inode);
4167         else
4168                 credits = ext4_blocks_for_truncate(inode);
4169
4170         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4171         if (IS_ERR(handle)) {
4172                 err = PTR_ERR(handle);
4173                 goto out_trace;
4174         }
4175
4176         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4177                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4178
4179         /*
4180          * We add the inode to the orphan list, so that if this
4181          * truncate spans multiple transactions, and we crash, we will
4182          * resume the truncate when the filesystem recovers.  It also
4183          * marks the inode dirty, to catch the new size.
4184          *
4185          * Implication: the file must always be in a sane, consistent
4186          * truncatable state while each transaction commits.
4187          */
4188         err = ext4_orphan_add(handle, inode);
4189         if (err)
4190                 goto out_stop;
4191
4192         down_write(&EXT4_I(inode)->i_data_sem);
4193
4194         ext4_discard_preallocations(inode, 0);
4195
4196         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4197                 err = ext4_ext_truncate(handle, inode);
4198         else
4199                 ext4_ind_truncate(handle, inode);
4200
4201         up_write(&ei->i_data_sem);
4202         if (err)
4203                 goto out_stop;
4204
4205         if (IS_SYNC(inode))
4206                 ext4_handle_sync(handle);
4207
4208 out_stop:
4209         /*
4210          * If this was a simple ftruncate() and the file will remain alive,
4211          * then we need to clear up the orphan record which we created above.
4212          * However, if this was a real unlink then we were called by
4213          * ext4_evict_inode(), and we allow that function to clean up the
4214          * orphan info for us.
4215          */
4216         if (inode->i_nlink)
4217                 ext4_orphan_del(handle, inode);
4218
4219         inode->i_mtime = inode->i_ctime = current_time(inode);
4220         err2 = ext4_mark_inode_dirty(handle, inode);
4221         if (unlikely(err2 && !err))
4222                 err = err2;
4223         ext4_journal_stop(handle);
4224
4225 out_trace:
4226         trace_ext4_truncate_exit(inode);
4227         return err;
4228 }
4229
4230 /*
4231  * ext4_get_inode_loc returns with an extra refcount against the inode's
4232  * underlying buffer_head on success. If 'in_mem' is true, we have all
4233  * data in memory that is needed to recreate the on-disk version of this
4234  * inode.
4235  */
4236 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4237                                 struct ext4_iloc *iloc, int in_mem,
4238                                 ext4_fsblk_t *ret_block)
4239 {
4240         struct ext4_group_desc  *gdp;
4241         struct buffer_head      *bh;
4242         ext4_fsblk_t            block;
4243         struct blk_plug         plug;
4244         int                     inodes_per_block, inode_offset;
4245
4246         iloc->bh = NULL;
4247         if (ino < EXT4_ROOT_INO ||
4248             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4249                 return -EFSCORRUPTED;
4250
4251         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4252         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4253         if (!gdp)
4254                 return -EIO;
4255
4256         /*
4257          * Figure out the offset within the block group inode table
4258          */
4259         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4260         inode_offset = ((ino - 1) %
4261                         EXT4_INODES_PER_GROUP(sb));
4262         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4263         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4264
4265         bh = sb_getblk(sb, block);
4266         if (unlikely(!bh))
4267                 return -ENOMEM;
4268         if (ext4_buffer_uptodate(bh))
4269                 goto has_buffer;
4270
4271         lock_buffer(bh);
4272         /*
4273          * If we have all information of the inode in memory and this
4274          * is the only valid inode in the block, we need not read the
4275          * block.
4276          */
4277         if (in_mem) {
4278                 struct buffer_head *bitmap_bh;
4279                 int i, start;
4280
4281                 start = inode_offset & ~(inodes_per_block - 1);
4282
4283                 /* Is the inode bitmap in cache? */
4284                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4285                 if (unlikely(!bitmap_bh))
4286                         goto make_io;
4287
4288                 /*
4289                  * If the inode bitmap isn't in cache then the
4290                  * optimisation may end up performing two reads instead
4291                  * of one, so skip it.
4292                  */
4293                 if (!buffer_uptodate(bitmap_bh)) {
4294                         brelse(bitmap_bh);
4295                         goto make_io;
4296                 }
4297                 for (i = start; i < start + inodes_per_block; i++) {
4298                         if (i == inode_offset)
4299                                 continue;
4300                         if (ext4_test_bit(i, bitmap_bh->b_data))
4301                                 break;
4302                 }
4303                 brelse(bitmap_bh);
4304                 if (i == start + inodes_per_block) {
4305                         /* all other inodes are free, so skip I/O */
4306                         memset(bh->b_data, 0, bh->b_size);
4307                         set_buffer_uptodate(bh);
4308                         unlock_buffer(bh);
4309                         goto has_buffer;
4310                 }
4311         }
4312
4313 make_io:
4314         /*
4315          * If we need to do any I/O, try to pre-readahead extra
4316          * blocks from the inode table.
4317          */
4318         blk_start_plug(&plug);
4319         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4320                 ext4_fsblk_t b, end, table;
4321                 unsigned num;
4322                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4323
4324                 table = ext4_inode_table(sb, gdp);
4325                 /* s_inode_readahead_blks is always a power of 2 */
4326                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4327                 if (table > b)
4328                         b = table;
4329                 end = b + ra_blks;
4330                 num = EXT4_INODES_PER_GROUP(sb);
4331                 if (ext4_has_group_desc_csum(sb))
4332                         num -= ext4_itable_unused_count(sb, gdp);
4333                 table += num / inodes_per_block;
4334                 if (end > table)
4335                         end = table;
4336                 while (b <= end)
4337                         ext4_sb_breadahead_unmovable(sb, b++);
4338         }
4339
4340         /*
4341          * There are other valid inodes in the buffer, this inode
4342          * has in-inode xattrs, or we don't have this inode in memory.
4343          * Read the block from disk.
4344          */
4345         trace_ext4_load_inode(sb, ino);
4346         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4347         blk_finish_plug(&plug);
4348         wait_on_buffer(bh);
4349         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4350         if (!buffer_uptodate(bh)) {
4351                 if (ret_block)
4352                         *ret_block = block;
4353                 brelse(bh);
4354                 return -EIO;
4355         }
4356 has_buffer:
4357         iloc->bh = bh;
4358         return 0;
4359 }
4360
4361 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4362                                         struct ext4_iloc *iloc)
4363 {
4364         ext4_fsblk_t err_blk;
4365         int ret;
4366
4367         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4368                                         &err_blk);
4369
4370         if (ret == -EIO)
4371                 ext4_error_inode_block(inode, err_blk, EIO,
4372                                         "unable to read itable block");
4373
4374         return ret;
4375 }
4376
4377 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4378 {
4379         ext4_fsblk_t err_blk;
4380         int ret;
4381
4382         /* We have all inode data except xattrs in memory here. */
4383         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4384                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4385
4386         if (ret == -EIO)
4387                 ext4_error_inode_block(inode, err_blk, EIO,
4388                                         "unable to read itable block");
4389
4390         return ret;
4391 }
4392
4393
4394 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4395                           struct ext4_iloc *iloc)
4396 {
4397         return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4398 }
4399
4400 static bool ext4_should_enable_dax(struct inode *inode)
4401 {
4402         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4403
4404         if (test_opt2(inode->i_sb, DAX_NEVER))
4405                 return false;
4406         if (!S_ISREG(inode->i_mode))
4407                 return false;
4408         if (ext4_should_journal_data(inode))
4409                 return false;
4410         if (ext4_has_inline_data(inode))
4411                 return false;
4412         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4413                 return false;
4414         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4415                 return false;
4416         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4417                 return false;
4418         if (test_opt(inode->i_sb, DAX_ALWAYS))
4419                 return true;
4420
4421         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4422 }
4423
4424 void ext4_set_inode_flags(struct inode *inode, bool init)
4425 {
4426         unsigned int flags = EXT4_I(inode)->i_flags;
4427         unsigned int new_fl = 0;
4428
4429         WARN_ON_ONCE(IS_DAX(inode) && init);
4430
4431         if (flags & EXT4_SYNC_FL)
4432                 new_fl |= S_SYNC;
4433         if (flags & EXT4_APPEND_FL)
4434                 new_fl |= S_APPEND;
4435         if (flags & EXT4_IMMUTABLE_FL)
4436                 new_fl |= S_IMMUTABLE;
4437         if (flags & EXT4_NOATIME_FL)
4438                 new_fl |= S_NOATIME;
4439         if (flags & EXT4_DIRSYNC_FL)
4440                 new_fl |= S_DIRSYNC;
4441
4442         /* Because of the way inode_set_flags() works we must preserve S_DAX
4443          * here if already set. */
4444         new_fl |= (inode->i_flags & S_DAX);
4445         if (init && ext4_should_enable_dax(inode))
4446                 new_fl |= S_DAX;
4447
4448         if (flags & EXT4_ENCRYPT_FL)
4449                 new_fl |= S_ENCRYPTED;
4450         if (flags & EXT4_CASEFOLD_FL)
4451                 new_fl |= S_CASEFOLD;
4452         if (flags & EXT4_VERITY_FL)
4453                 new_fl |= S_VERITY;
4454         inode_set_flags(inode, new_fl,
4455                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4456                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4457 }
4458
4459 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4460                                   struct ext4_inode_info *ei)
4461 {
4462         blkcnt_t i_blocks ;
4463         struct inode *inode = &(ei->vfs_inode);
4464         struct super_block *sb = inode->i_sb;
4465
4466         if (ext4_has_feature_huge_file(sb)) {
4467                 /* we are using combined 48 bit field */
4468                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4469                                         le32_to_cpu(raw_inode->i_blocks_lo);
4470                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4471                         /* i_blocks represent file system block size */
4472                         return i_blocks  << (inode->i_blkbits - 9);
4473                 } else {
4474                         return i_blocks;
4475                 }
4476         } else {
4477                 return le32_to_cpu(raw_inode->i_blocks_lo);
4478         }
4479 }
4480
4481 static inline int ext4_iget_extra_inode(struct inode *inode,
4482                                          struct ext4_inode *raw_inode,
4483                                          struct ext4_inode_info *ei)
4484 {
4485         __le32 *magic = (void *)raw_inode +
4486                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4487
4488         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4489             EXT4_INODE_SIZE(inode->i_sb) &&
4490             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4491                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4492                 return ext4_find_inline_data_nolock(inode);
4493         } else
4494                 EXT4_I(inode)->i_inline_off = 0;
4495         return 0;
4496 }
4497
4498 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4499 {
4500         if (!ext4_has_feature_project(inode->i_sb))
4501                 return -EOPNOTSUPP;
4502         *projid = EXT4_I(inode)->i_projid;
4503         return 0;
4504 }
4505
4506 /*
4507  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4508  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4509  * set.
4510  */
4511 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4512 {
4513         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4514                 inode_set_iversion_raw(inode, val);
4515         else
4516                 inode_set_iversion_queried(inode, val);
4517 }
4518 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4519 {
4520         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4521                 return inode_peek_iversion_raw(inode);
4522         else
4523                 return inode_peek_iversion(inode);
4524 }
4525
4526 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4527                           ext4_iget_flags flags, const char *function,
4528                           unsigned int line)
4529 {
4530         struct ext4_iloc iloc;
4531         struct ext4_inode *raw_inode;
4532         struct ext4_inode_info *ei;
4533         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4534         struct inode *inode;
4535         journal_t *journal = EXT4_SB(sb)->s_journal;
4536         long ret;
4537         loff_t size;
4538         int block;
4539         uid_t i_uid;
4540         gid_t i_gid;
4541         projid_t i_projid;
4542
4543         if ((!(flags & EXT4_IGET_SPECIAL) &&
4544              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4545               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4546               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4547               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4548               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4549             (ino < EXT4_ROOT_INO) ||
4550             (ino > le32_to_cpu(es->s_inodes_count))) {
4551                 if (flags & EXT4_IGET_HANDLE)
4552                         return ERR_PTR(-ESTALE);
4553                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4554                              "inode #%lu: comm %s: iget: illegal inode #",
4555                              ino, current->comm);
4556                 return ERR_PTR(-EFSCORRUPTED);
4557         }
4558
4559         inode = iget_locked(sb, ino);
4560         if (!inode)
4561                 return ERR_PTR(-ENOMEM);
4562         if (!(inode->i_state & I_NEW))
4563                 return inode;
4564
4565         ei = EXT4_I(inode);
4566         iloc.bh = NULL;
4567
4568         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4569         if (ret < 0)
4570                 goto bad_inode;
4571         raw_inode = ext4_raw_inode(&iloc);
4572
4573         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4574                 ext4_error_inode(inode, function, line, 0,
4575                                  "iget: root inode unallocated");
4576                 ret = -EFSCORRUPTED;
4577                 goto bad_inode;
4578         }
4579
4580         if ((flags & EXT4_IGET_HANDLE) &&
4581             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4582                 ret = -ESTALE;
4583                 goto bad_inode;
4584         }
4585
4586         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4587                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4588                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4589                         EXT4_INODE_SIZE(inode->i_sb) ||
4590                     (ei->i_extra_isize & 3)) {
4591                         ext4_error_inode(inode, function, line, 0,
4592                                          "iget: bad extra_isize %u "
4593                                          "(inode size %u)",
4594                                          ei->i_extra_isize,
4595                                          EXT4_INODE_SIZE(inode->i_sb));
4596                         ret = -EFSCORRUPTED;
4597                         goto bad_inode;
4598                 }
4599         } else
4600                 ei->i_extra_isize = 0;
4601
4602         /* Precompute checksum seed for inode metadata */
4603         if (ext4_has_metadata_csum(sb)) {
4604                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4605                 __u32 csum;
4606                 __le32 inum = cpu_to_le32(inode->i_ino);
4607                 __le32 gen = raw_inode->i_generation;
4608                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4609                                    sizeof(inum));
4610                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4611                                               sizeof(gen));
4612         }
4613
4614         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4615             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4616              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4617                 ext4_error_inode_err(inode, function, line, 0,
4618                                 EFSBADCRC, "iget: checksum invalid");
4619                 ret = -EFSBADCRC;
4620                 goto bad_inode;
4621         }
4622
4623         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626         if (ext4_has_feature_project(sb) &&
4627             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630         else
4631                 i_projid = EXT4_DEF_PROJID;
4632
4633         if (!(test_opt(inode->i_sb, NO_UID32))) {
4634                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636         }
4637         i_uid_write(inode, i_uid);
4638         i_gid_write(inode, i_gid);
4639         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641
4642         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4643         ei->i_inline_off = 0;
4644         ei->i_dir_start_lookup = 0;
4645         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646         /* We now have enough fields to check if the inode was active or not.
4647          * This is needed because nfsd might try to access dead inodes
4648          * the test is that same one that e2fsck uses
4649          * NeilBrown 1999oct15
4650          */
4651         if (inode->i_nlink == 0) {
4652                 if ((inode->i_mode == 0 ||
4653                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654                     ino != EXT4_BOOT_LOADER_INO) {
4655                         /* this inode is deleted */
4656                         ret = -ESTALE;
4657                         goto bad_inode;
4658                 }
4659                 /* The only unlinked inodes we let through here have
4660                  * valid i_mode and are being read by the orphan
4661                  * recovery code: that's fine, we're about to complete
4662                  * the process of deleting those.
4663                  * OR it is the EXT4_BOOT_LOADER_INO which is
4664                  * not initialized on a new filesystem. */
4665         }
4666         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667         ext4_set_inode_flags(inode, true);
4668         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670         if (ext4_has_feature_64bit(sb))
4671                 ei->i_file_acl |=
4672                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673         inode->i_size = ext4_isize(sb, raw_inode);
4674         if ((size = i_size_read(inode)) < 0) {
4675                 ext4_error_inode(inode, function, line, 0,
4676                                  "iget: bad i_size value: %lld", size);
4677                 ret = -EFSCORRUPTED;
4678                 goto bad_inode;
4679         }
4680         /*
4681          * If dir_index is not enabled but there's dir with INDEX flag set,
4682          * we'd normally treat htree data as empty space. But with metadata
4683          * checksumming that corrupts checksums so forbid that.
4684          */
4685         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687                 ext4_error_inode(inode, function, line, 0,
4688                          "iget: Dir with htree data on filesystem without dir_index feature.");
4689                 ret = -EFSCORRUPTED;
4690                 goto bad_inode;
4691         }
4692         ei->i_disksize = inode->i_size;
4693 #ifdef CONFIG_QUOTA
4694         ei->i_reserved_quota = 0;
4695 #endif
4696         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697         ei->i_block_group = iloc.block_group;
4698         ei->i_last_alloc_group = ~0;
4699         /*
4700          * NOTE! The in-memory inode i_data array is in little-endian order
4701          * even on big-endian machines: we do NOT byteswap the block numbers!
4702          */
4703         for (block = 0; block < EXT4_N_BLOCKS; block++)
4704                 ei->i_data[block] = raw_inode->i_block[block];
4705         INIT_LIST_HEAD(&ei->i_orphan);
4706         ext4_fc_init_inode(&ei->vfs_inode);
4707
4708         /*
4709          * Set transaction id's of transactions that have to be committed
4710          * to finish f[data]sync. We set them to currently running transaction
4711          * as we cannot be sure that the inode or some of its metadata isn't
4712          * part of the transaction - the inode could have been reclaimed and
4713          * now it is reread from disk.
4714          */
4715         if (journal) {
4716                 transaction_t *transaction;
4717                 tid_t tid;
4718
4719                 read_lock(&journal->j_state_lock);
4720                 if (journal->j_running_transaction)
4721                         transaction = journal->j_running_transaction;
4722                 else
4723                         transaction = journal->j_committing_transaction;
4724                 if (transaction)
4725                         tid = transaction->t_tid;
4726                 else
4727                         tid = journal->j_commit_sequence;
4728                 read_unlock(&journal->j_state_lock);
4729                 ei->i_sync_tid = tid;
4730                 ei->i_datasync_tid = tid;
4731         }
4732
4733         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4734                 if (ei->i_extra_isize == 0) {
4735                         /* The extra space is currently unused. Use it. */
4736                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4737                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4738                                             EXT4_GOOD_OLD_INODE_SIZE;
4739                 } else {
4740                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4741                         if (ret)
4742                                 goto bad_inode;
4743                 }
4744         }
4745
4746         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4747         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4748         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4749         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4750
4751         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4752                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4753
4754                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4755                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4756                                 ivers |=
4757                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4758                 }
4759                 ext4_inode_set_iversion_queried(inode, ivers);
4760         }
4761
4762         ret = 0;
4763         if (ei->i_file_acl &&
4764             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4765                 ext4_error_inode(inode, function, line, 0,
4766                                  "iget: bad extended attribute block %llu",
4767                                  ei->i_file_acl);
4768                 ret = -EFSCORRUPTED;
4769                 goto bad_inode;
4770         } else if (!ext4_has_inline_data(inode)) {
4771                 /* validate the block references in the inode */
4772                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4773                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4774                         (S_ISLNK(inode->i_mode) &&
4775                         !ext4_inode_is_fast_symlink(inode)))) {
4776                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4777                                 ret = ext4_ext_check_inode(inode);
4778                         else
4779                                 ret = ext4_ind_check_inode(inode);
4780                 }
4781         }
4782         if (ret)
4783                 goto bad_inode;
4784
4785         if (S_ISREG(inode->i_mode)) {
4786                 inode->i_op = &ext4_file_inode_operations;
4787                 inode->i_fop = &ext4_file_operations;
4788                 ext4_set_aops(inode);
4789         } else if (S_ISDIR(inode->i_mode)) {
4790                 inode->i_op = &ext4_dir_inode_operations;
4791                 inode->i_fop = &ext4_dir_operations;
4792         } else if (S_ISLNK(inode->i_mode)) {
4793                 /* VFS does not allow setting these so must be corruption */
4794                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4795                         ext4_error_inode(inode, function, line, 0,
4796                                          "iget: immutable or append flags "
4797                                          "not allowed on symlinks");
4798                         ret = -EFSCORRUPTED;
4799                         goto bad_inode;
4800                 }
4801                 if (IS_ENCRYPTED(inode)) {
4802                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4803                         ext4_set_aops(inode);
4804                 } else if (ext4_inode_is_fast_symlink(inode)) {
4805                         inode->i_link = (char *)ei->i_data;
4806                         inode->i_op = &ext4_fast_symlink_inode_operations;
4807                         nd_terminate_link(ei->i_data, inode->i_size,
4808                                 sizeof(ei->i_data) - 1);
4809                 } else {
4810                         inode->i_op = &ext4_symlink_inode_operations;
4811                         ext4_set_aops(inode);
4812                 }
4813                 inode_nohighmem(inode);
4814         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4815               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4816                 inode->i_op = &ext4_special_inode_operations;
4817                 if (raw_inode->i_block[0])
4818                         init_special_inode(inode, inode->i_mode,
4819                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4820                 else
4821                         init_special_inode(inode, inode->i_mode,
4822                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4823         } else if (ino == EXT4_BOOT_LOADER_INO) {
4824                 make_bad_inode(inode);
4825         } else {
4826                 ret = -EFSCORRUPTED;
4827                 ext4_error_inode(inode, function, line, 0,
4828                                  "iget: bogus i_mode (%o)", inode->i_mode);
4829                 goto bad_inode;
4830         }
4831         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4832                 ext4_error_inode(inode, function, line, 0,
4833                                  "casefold flag without casefold feature");
4834         brelse(iloc.bh);
4835
4836         unlock_new_inode(inode);
4837         return inode;
4838
4839 bad_inode:
4840         brelse(iloc.bh);
4841         iget_failed(inode);
4842         return ERR_PTR(ret);
4843 }
4844
4845 static int ext4_inode_blocks_set(handle_t *handle,
4846                                 struct ext4_inode *raw_inode,
4847                                 struct ext4_inode_info *ei)
4848 {
4849         struct inode *inode = &(ei->vfs_inode);
4850         u64 i_blocks = READ_ONCE(inode->i_blocks);
4851         struct super_block *sb = inode->i_sb;
4852
4853         if (i_blocks <= ~0U) {
4854                 /*
4855                  * i_blocks can be represented in a 32 bit variable
4856                  * as multiple of 512 bytes
4857                  */
4858                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4859                 raw_inode->i_blocks_high = 0;
4860                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4861                 return 0;
4862         }
4863
4864         /*
4865          * This should never happen since sb->s_maxbytes should not have
4866          * allowed this, sb->s_maxbytes was set according to the huge_file
4867          * feature in ext4_fill_super().
4868          */
4869         if (!ext4_has_feature_huge_file(sb))
4870                 return -EFSCORRUPTED;
4871
4872         if (i_blocks <= 0xffffffffffffULL) {
4873                 /*
4874                  * i_blocks can be represented in a 48 bit variable
4875                  * as multiple of 512 bytes
4876                  */
4877                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4878                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4879                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4880         } else {
4881                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4882                 /* i_block is stored in file system block size */
4883                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4884                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4885                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4886         }
4887         return 0;
4888 }
4889
4890 static void __ext4_update_other_inode_time(struct super_block *sb,
4891                                            unsigned long orig_ino,
4892                                            unsigned long ino,
4893                                            struct ext4_inode *raw_inode)
4894 {
4895         struct inode *inode;
4896
4897         inode = find_inode_by_ino_rcu(sb, ino);
4898         if (!inode)
4899                 return;
4900
4901         if (!inode_is_dirtytime_only(inode))
4902                 return;
4903
4904         spin_lock(&inode->i_lock);
4905         if (inode_is_dirtytime_only(inode)) {
4906                 struct ext4_inode_info  *ei = EXT4_I(inode);
4907
4908                 inode->i_state &= ~I_DIRTY_TIME;
4909                 spin_unlock(&inode->i_lock);
4910
4911                 spin_lock(&ei->i_raw_lock);
4912                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4913                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4914                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4915                 ext4_inode_csum_set(inode, raw_inode, ei);
4916                 spin_unlock(&ei->i_raw_lock);
4917                 trace_ext4_other_inode_update_time(inode, orig_ino);
4918                 return;
4919         }
4920         spin_unlock(&inode->i_lock);
4921 }
4922
4923 /*
4924  * Opportunistically update the other time fields for other inodes in
4925  * the same inode table block.
4926  */
4927 static void ext4_update_other_inodes_time(struct super_block *sb,
4928                                           unsigned long orig_ino, char *buf)
4929 {
4930         unsigned long ino;
4931         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4932         int inode_size = EXT4_INODE_SIZE(sb);
4933
4934         /*
4935          * Calculate the first inode in the inode table block.  Inode
4936          * numbers are one-based.  That is, the first inode in a block
4937          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4938          */
4939         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4940         rcu_read_lock();
4941         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4942                 if (ino == orig_ino)
4943                         continue;
4944                 __ext4_update_other_inode_time(sb, orig_ino, ino,
4945                                                (struct ext4_inode *)buf);
4946         }
4947         rcu_read_unlock();
4948 }
4949
4950 /*
4951  * Post the struct inode info into an on-disk inode location in the
4952  * buffer-cache.  This gobbles the caller's reference to the
4953  * buffer_head in the inode location struct.
4954  *
4955  * The caller must have write access to iloc->bh.
4956  */
4957 static int ext4_do_update_inode(handle_t *handle,
4958                                 struct inode *inode,
4959                                 struct ext4_iloc *iloc)
4960 {
4961         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4962         struct ext4_inode_info *ei = EXT4_I(inode);
4963         struct buffer_head *bh = iloc->bh;
4964         struct super_block *sb = inode->i_sb;
4965         int err = 0, block;
4966         int need_datasync = 0, set_large_file = 0;
4967         uid_t i_uid;
4968         gid_t i_gid;
4969         projid_t i_projid;
4970
4971         spin_lock(&ei->i_raw_lock);
4972
4973         /*
4974          * For fields not tracked in the in-memory inode, initialise them
4975          * to zero for new inodes.
4976          */
4977         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4978                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4979
4980         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4981
4982         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4983         i_uid = i_uid_read(inode);
4984         i_gid = i_gid_read(inode);
4985         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4986         if (!(test_opt(inode->i_sb, NO_UID32))) {
4987                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4988                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4989                 /*
4990                  * Fix up interoperability with old kernels. Otherwise,
4991                  * old inodes get re-used with the upper 16 bits of the
4992                  * uid/gid intact.
4993                  */
4994                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4995                         raw_inode->i_uid_high = 0;
4996                         raw_inode->i_gid_high = 0;
4997                 } else {
4998                         raw_inode->i_uid_high =
4999                                 cpu_to_le16(high_16_bits(i_uid));
5000                         raw_inode->i_gid_high =
5001                                 cpu_to_le16(high_16_bits(i_gid));
5002                 }
5003         } else {
5004                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5005                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5006                 raw_inode->i_uid_high = 0;
5007                 raw_inode->i_gid_high = 0;
5008         }
5009         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5010
5011         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5012         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5013         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5014         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5015
5016         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5017         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5018         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5019                 raw_inode->i_file_acl_high =
5020                         cpu_to_le16(ei->i_file_acl >> 32);
5021         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5022         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5023                 ext4_isize_set(raw_inode, ei->i_disksize);
5024                 need_datasync = 1;
5025         }
5026         if (ei->i_disksize > 0x7fffffffULL) {
5027                 if (!ext4_has_feature_large_file(sb) ||
5028                                 EXT4_SB(sb)->s_es->s_rev_level ==
5029                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5030                         set_large_file = 1;
5031         }
5032         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5033         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5034                 if (old_valid_dev(inode->i_rdev)) {
5035                         raw_inode->i_block[0] =
5036                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5037                         raw_inode->i_block[1] = 0;
5038                 } else {
5039                         raw_inode->i_block[0] = 0;
5040                         raw_inode->i_block[1] =
5041                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5042                         raw_inode->i_block[2] = 0;
5043                 }
5044         } else if (!ext4_has_inline_data(inode)) {
5045                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5046                         raw_inode->i_block[block] = ei->i_data[block];
5047         }
5048
5049         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5050                 u64 ivers = ext4_inode_peek_iversion(inode);
5051
5052                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5053                 if (ei->i_extra_isize) {
5054                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5055                                 raw_inode->i_version_hi =
5056                                         cpu_to_le32(ivers >> 32);
5057                         raw_inode->i_extra_isize =
5058                                 cpu_to_le16(ei->i_extra_isize);
5059                 }
5060         }
5061
5062         if (i_projid != EXT4_DEF_PROJID &&
5063             !ext4_has_feature_project(inode->i_sb))
5064                 err = err ?: -EFSCORRUPTED;
5065
5066         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5067             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5068                 raw_inode->i_projid = cpu_to_le32(i_projid);
5069
5070         ext4_inode_csum_set(inode, raw_inode, ei);
5071         spin_unlock(&ei->i_raw_lock);
5072         if (err) {
5073                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5074                 goto out_brelse;
5075         }
5076
5077         if (inode->i_sb->s_flags & SB_LAZYTIME)
5078                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5079                                               bh->b_data);
5080
5081         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5082         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5083         if (err)
5084                 goto out_error;
5085         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5086         if (set_large_file) {
5087                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5088                 err = ext4_journal_get_write_access(handle, sb,
5089                                                     EXT4_SB(sb)->s_sbh,
5090                                                     EXT4_JTR_NONE);
5091                 if (err)
5092                         goto out_error;
5093                 lock_buffer(EXT4_SB(sb)->s_sbh);
5094                 ext4_set_feature_large_file(sb);
5095                 ext4_superblock_csum_set(sb);
5096                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5097                 ext4_handle_sync(handle);
5098                 err = ext4_handle_dirty_metadata(handle, NULL,
5099                                                  EXT4_SB(sb)->s_sbh);
5100         }
5101         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5102 out_error:
5103         ext4_std_error(inode->i_sb, err);
5104 out_brelse:
5105         brelse(bh);
5106         return err;
5107 }
5108
5109 /*
5110  * ext4_write_inode()
5111  *
5112  * We are called from a few places:
5113  *
5114  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5115  *   Here, there will be no transaction running. We wait for any running
5116  *   transaction to commit.
5117  *
5118  * - Within flush work (sys_sync(), kupdate and such).
5119  *   We wait on commit, if told to.
5120  *
5121  * - Within iput_final() -> write_inode_now()
5122  *   We wait on commit, if told to.
5123  *
5124  * In all cases it is actually safe for us to return without doing anything,
5125  * because the inode has been copied into a raw inode buffer in
5126  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5127  * writeback.
5128  *
5129  * Note that we are absolutely dependent upon all inode dirtiers doing the
5130  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5131  * which we are interested.
5132  *
5133  * It would be a bug for them to not do this.  The code:
5134  *
5135  *      mark_inode_dirty(inode)
5136  *      stuff();
5137  *      inode->i_size = expr;
5138  *
5139  * is in error because write_inode() could occur while `stuff()' is running,
5140  * and the new i_size will be lost.  Plus the inode will no longer be on the
5141  * superblock's dirty inode list.
5142  */
5143 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5144 {
5145         int err;
5146
5147         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5148             sb_rdonly(inode->i_sb))
5149                 return 0;
5150
5151         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5152                 return -EIO;
5153
5154         if (EXT4_SB(inode->i_sb)->s_journal) {
5155                 if (ext4_journal_current_handle()) {
5156                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5157                         dump_stack();
5158                         return -EIO;
5159                 }
5160
5161                 /*
5162                  * No need to force transaction in WB_SYNC_NONE mode. Also
5163                  * ext4_sync_fs() will force the commit after everything is
5164                  * written.
5165                  */
5166                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5167                         return 0;
5168
5169                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5170                                                 EXT4_I(inode)->i_sync_tid);
5171         } else {
5172                 struct ext4_iloc iloc;
5173
5174                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5175                 if (err)
5176                         return err;
5177                 /*
5178                  * sync(2) will flush the whole buffer cache. No need to do
5179                  * it here separately for each inode.
5180                  */
5181                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5182                         sync_dirty_buffer(iloc.bh);
5183                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5184                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5185                                                "IO error syncing inode");
5186                         err = -EIO;
5187                 }
5188                 brelse(iloc.bh);
5189         }
5190         return err;
5191 }
5192
5193 /*
5194  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5195  * buffers that are attached to a page stradding i_size and are undergoing
5196  * commit. In that case we have to wait for commit to finish and try again.
5197  */
5198 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5199 {
5200         struct page *page;
5201         unsigned offset;
5202         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5203         tid_t commit_tid = 0;
5204         int ret;
5205
5206         offset = inode->i_size & (PAGE_SIZE - 1);
5207         /*
5208          * If the page is fully truncated, we don't need to wait for any commit
5209          * (and we even should not as __ext4_journalled_invalidatepage() may
5210          * strip all buffers from the page but keep the page dirty which can then
5211          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5212          * buffers). Also we don't need to wait for any commit if all buffers in
5213          * the page remain valid. This is most beneficial for the common case of
5214          * blocksize == PAGESIZE.
5215          */
5216         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5217                 return;
5218         while (1) {
5219                 page = find_lock_page(inode->i_mapping,
5220                                       inode->i_size >> PAGE_SHIFT);
5221                 if (!page)
5222                         return;
5223                 ret = __ext4_journalled_invalidatepage(page, offset,
5224                                                 PAGE_SIZE - offset);
5225                 unlock_page(page);
5226                 put_page(page);
5227                 if (ret != -EBUSY)
5228                         return;
5229                 commit_tid = 0;
5230                 read_lock(&journal->j_state_lock);
5231                 if (journal->j_committing_transaction)
5232                         commit_tid = journal->j_committing_transaction->t_tid;
5233                 read_unlock(&journal->j_state_lock);
5234                 if (commit_tid)
5235                         jbd2_log_wait_commit(journal, commit_tid);
5236         }
5237 }
5238
5239 /*
5240  * ext4_setattr()
5241  *
5242  * Called from notify_change.
5243  *
5244  * We want to trap VFS attempts to truncate the file as soon as
5245  * possible.  In particular, we want to make sure that when the VFS
5246  * shrinks i_size, we put the inode on the orphan list and modify
5247  * i_disksize immediately, so that during the subsequent flushing of
5248  * dirty pages and freeing of disk blocks, we can guarantee that any
5249  * commit will leave the blocks being flushed in an unused state on
5250  * disk.  (On recovery, the inode will get truncated and the blocks will
5251  * be freed, so we have a strong guarantee that no future commit will
5252  * leave these blocks visible to the user.)
5253  *
5254  * Another thing we have to assure is that if we are in ordered mode
5255  * and inode is still attached to the committing transaction, we must
5256  * we start writeout of all the dirty pages which are being truncated.
5257  * This way we are sure that all the data written in the previous
5258  * transaction are already on disk (truncate waits for pages under
5259  * writeback).
5260  *
5261  * Called with inode->i_mutex down.
5262  */
5263 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5264                  struct iattr *attr)
5265 {
5266         struct inode *inode = d_inode(dentry);
5267         int error, rc = 0;
5268         int orphan = 0;
5269         const unsigned int ia_valid = attr->ia_valid;
5270
5271         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5272                 return -EIO;
5273
5274         if (unlikely(IS_IMMUTABLE(inode)))
5275                 return -EPERM;
5276
5277         if (unlikely(IS_APPEND(inode) &&
5278                      (ia_valid & (ATTR_MODE | ATTR_UID |
5279                                   ATTR_GID | ATTR_TIMES_SET))))
5280                 return -EPERM;
5281
5282         error = setattr_prepare(mnt_userns, dentry, attr);
5283         if (error)
5284                 return error;
5285
5286         error = fscrypt_prepare_setattr(dentry, attr);
5287         if (error)
5288                 return error;
5289
5290         error = fsverity_prepare_setattr(dentry, attr);
5291         if (error)
5292                 return error;
5293
5294         if (is_quota_modification(inode, attr)) {
5295                 error = dquot_initialize(inode);
5296                 if (error)
5297                         return error;
5298         }
5299         ext4_fc_start_update(inode);
5300         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5301             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5302                 handle_t *handle;
5303
5304                 /* (user+group)*(old+new) structure, inode write (sb,
5305                  * inode block, ? - but truncate inode update has it) */
5306                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5307                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5308                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5309                 if (IS_ERR(handle)) {
5310                         error = PTR_ERR(handle);
5311                         goto err_out;
5312                 }
5313
5314                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5315                  * counts xattr inode references.
5316                  */
5317                 down_read(&EXT4_I(inode)->xattr_sem);
5318                 error = dquot_transfer(inode, attr);
5319                 up_read(&EXT4_I(inode)->xattr_sem);
5320
5321                 if (error) {
5322                         ext4_journal_stop(handle);
5323                         ext4_fc_stop_update(inode);
5324                         return error;
5325                 }
5326                 /* Update corresponding info in inode so that everything is in
5327                  * one transaction */
5328                 if (attr->ia_valid & ATTR_UID)
5329                         inode->i_uid = attr->ia_uid;
5330                 if (attr->ia_valid & ATTR_GID)
5331                         inode->i_gid = attr->ia_gid;
5332                 error = ext4_mark_inode_dirty(handle, inode);
5333                 ext4_journal_stop(handle);
5334                 if (unlikely(error)) {
5335                         ext4_fc_stop_update(inode);
5336                         return error;
5337                 }
5338         }
5339
5340         if (attr->ia_valid & ATTR_SIZE) {
5341                 handle_t *handle;
5342                 loff_t oldsize = inode->i_size;
5343                 int shrink = (attr->ia_size < inode->i_size);
5344
5345                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5346                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5347
5348                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5349                                 ext4_fc_stop_update(inode);
5350                                 return -EFBIG;
5351                         }
5352                 }
5353                 if (!S_ISREG(inode->i_mode)) {
5354                         ext4_fc_stop_update(inode);
5355                         return -EINVAL;
5356                 }
5357
5358                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5359                         inode_inc_iversion(inode);
5360
5361                 if (shrink) {
5362                         if (ext4_should_order_data(inode)) {
5363                                 error = ext4_begin_ordered_truncate(inode,
5364                                                             attr->ia_size);
5365                                 if (error)
5366                                         goto err_out;
5367                         }
5368                         /*
5369                          * Blocks are going to be removed from the inode. Wait
5370                          * for dio in flight.
5371                          */
5372                         inode_dio_wait(inode);
5373                 }
5374
5375                 down_write(&EXT4_I(inode)->i_mmap_sem);
5376
5377                 rc = ext4_break_layouts(inode);
5378                 if (rc) {
5379                         up_write(&EXT4_I(inode)->i_mmap_sem);
5380                         goto err_out;
5381                 }
5382
5383                 if (attr->ia_size != inode->i_size) {
5384                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5385                         if (IS_ERR(handle)) {
5386                                 error = PTR_ERR(handle);
5387                                 goto out_mmap_sem;
5388                         }
5389                         if (ext4_handle_valid(handle) && shrink) {
5390                                 error = ext4_orphan_add(handle, inode);
5391                                 orphan = 1;
5392                         }
5393                         /*
5394                          * Update c/mtime on truncate up, ext4_truncate() will
5395                          * update c/mtime in shrink case below
5396                          */
5397                         if (!shrink) {
5398                                 inode->i_mtime = current_time(inode);
5399                                 inode->i_ctime = inode->i_mtime;
5400                         }
5401
5402                         if (shrink)
5403                                 ext4_fc_track_range(handle, inode,
5404                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5405                                         inode->i_sb->s_blocksize_bits,
5406                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5407                                         inode->i_sb->s_blocksize_bits);
5408                         else
5409                                 ext4_fc_track_range(
5410                                         handle, inode,
5411                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5412                                         inode->i_sb->s_blocksize_bits,
5413                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5414                                         inode->i_sb->s_blocksize_bits);
5415
5416                         down_write(&EXT4_I(inode)->i_data_sem);
5417                         EXT4_I(inode)->i_disksize = attr->ia_size;
5418                         rc = ext4_mark_inode_dirty(handle, inode);
5419                         if (!error)
5420                                 error = rc;
5421                         /*
5422                          * We have to update i_size under i_data_sem together
5423                          * with i_disksize to avoid races with writeback code
5424                          * running ext4_wb_update_i_disksize().
5425                          */
5426                         if (!error)
5427                                 i_size_write(inode, attr->ia_size);
5428                         up_write(&EXT4_I(inode)->i_data_sem);
5429                         ext4_journal_stop(handle);
5430                         if (error)
5431                                 goto out_mmap_sem;
5432                         if (!shrink) {
5433                                 pagecache_isize_extended(inode, oldsize,
5434                                                          inode->i_size);
5435                         } else if (ext4_should_journal_data(inode)) {
5436                                 ext4_wait_for_tail_page_commit(inode);
5437                         }
5438                 }
5439
5440                 /*
5441                  * Truncate pagecache after we've waited for commit
5442                  * in data=journal mode to make pages freeable.
5443                  */
5444                 truncate_pagecache(inode, inode->i_size);
5445                 /*
5446                  * Call ext4_truncate() even if i_size didn't change to
5447                  * truncate possible preallocated blocks.
5448                  */
5449                 if (attr->ia_size <= oldsize) {
5450                         rc = ext4_truncate(inode);
5451                         if (rc)
5452                                 error = rc;
5453                 }
5454 out_mmap_sem:
5455                 up_write(&EXT4_I(inode)->i_mmap_sem);
5456         }
5457
5458         if (!error) {
5459                 setattr_copy(mnt_userns, inode, attr);
5460                 mark_inode_dirty(inode);
5461         }
5462
5463         /*
5464          * If the call to ext4_truncate failed to get a transaction handle at
5465          * all, we need to clean up the in-core orphan list manually.
5466          */
5467         if (orphan && inode->i_nlink)
5468                 ext4_orphan_del(NULL, inode);
5469
5470         if (!error && (ia_valid & ATTR_MODE))
5471                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5472
5473 err_out:
5474         if  (error)
5475                 ext4_std_error(inode->i_sb, error);
5476         if (!error)
5477                 error = rc;
5478         ext4_fc_stop_update(inode);
5479         return error;
5480 }
5481
5482 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5483                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5484 {
5485         struct inode *inode = d_inode(path->dentry);
5486         struct ext4_inode *raw_inode;
5487         struct ext4_inode_info *ei = EXT4_I(inode);
5488         unsigned int flags;
5489
5490         if ((request_mask & STATX_BTIME) &&
5491             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5492                 stat->result_mask |= STATX_BTIME;
5493                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5494                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5495         }
5496
5497         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5498         if (flags & EXT4_APPEND_FL)
5499                 stat->attributes |= STATX_ATTR_APPEND;
5500         if (flags & EXT4_COMPR_FL)
5501                 stat->attributes |= STATX_ATTR_COMPRESSED;
5502         if (flags & EXT4_ENCRYPT_FL)
5503                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5504         if (flags & EXT4_IMMUTABLE_FL)
5505                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5506         if (flags & EXT4_NODUMP_FL)
5507                 stat->attributes |= STATX_ATTR_NODUMP;
5508         if (flags & EXT4_VERITY_FL)
5509                 stat->attributes |= STATX_ATTR_VERITY;
5510
5511         stat->attributes_mask |= (STATX_ATTR_APPEND |
5512                                   STATX_ATTR_COMPRESSED |
5513                                   STATX_ATTR_ENCRYPTED |
5514                                   STATX_ATTR_IMMUTABLE |
5515                                   STATX_ATTR_NODUMP |
5516                                   STATX_ATTR_VERITY);
5517
5518         generic_fillattr(mnt_userns, inode, stat);
5519         return 0;
5520 }
5521
5522 int ext4_file_getattr(struct user_namespace *mnt_userns,
5523                       const struct path *path, struct kstat *stat,
5524                       u32 request_mask, unsigned int query_flags)
5525 {
5526         struct inode *inode = d_inode(path->dentry);
5527         u64 delalloc_blocks;
5528
5529         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5530
5531         /*
5532          * If there is inline data in the inode, the inode will normally not
5533          * have data blocks allocated (it may have an external xattr block).
5534          * Report at least one sector for such files, so tools like tar, rsync,
5535          * others don't incorrectly think the file is completely sparse.
5536          */
5537         if (unlikely(ext4_has_inline_data(inode)))
5538                 stat->blocks += (stat->size + 511) >> 9;
5539
5540         /*
5541          * We can't update i_blocks if the block allocation is delayed
5542          * otherwise in the case of system crash before the real block
5543          * allocation is done, we will have i_blocks inconsistent with
5544          * on-disk file blocks.
5545          * We always keep i_blocks updated together with real
5546          * allocation. But to not confuse with user, stat
5547          * will return the blocks that include the delayed allocation
5548          * blocks for this file.
5549          */
5550         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5551                                    EXT4_I(inode)->i_reserved_data_blocks);
5552         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5553         return 0;
5554 }
5555
5556 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5557                                    int pextents)
5558 {
5559         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5560                 return ext4_ind_trans_blocks(inode, lblocks);
5561         return ext4_ext_index_trans_blocks(inode, pextents);
5562 }
5563
5564 /*
5565  * Account for index blocks, block groups bitmaps and block group
5566  * descriptor blocks if modify datablocks and index blocks
5567  * worse case, the indexs blocks spread over different block groups
5568  *
5569  * If datablocks are discontiguous, they are possible to spread over
5570  * different block groups too. If they are contiguous, with flexbg,
5571  * they could still across block group boundary.
5572  *
5573  * Also account for superblock, inode, quota and xattr blocks
5574  */
5575 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5576                                   int pextents)
5577 {
5578         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5579         int gdpblocks;
5580         int idxblocks;
5581         int ret = 0;
5582
5583         /*
5584          * How many index blocks need to touch to map @lblocks logical blocks
5585          * to @pextents physical extents?
5586          */
5587         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5588
5589         ret = idxblocks;
5590
5591         /*
5592          * Now let's see how many group bitmaps and group descriptors need
5593          * to account
5594          */
5595         groups = idxblocks + pextents;
5596         gdpblocks = groups;
5597         if (groups > ngroups)
5598                 groups = ngroups;
5599         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5600                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5601
5602         /* bitmaps and block group descriptor blocks */
5603         ret += groups + gdpblocks;
5604
5605         /* Blocks for super block, inode, quota and xattr blocks */
5606         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5607
5608         return ret;
5609 }
5610
5611 /*
5612  * Calculate the total number of credits to reserve to fit
5613  * the modification of a single pages into a single transaction,
5614  * which may include multiple chunks of block allocations.
5615  *
5616  * This could be called via ext4_write_begin()
5617  *
5618  * We need to consider the worse case, when
5619  * one new block per extent.
5620  */
5621 int ext4_writepage_trans_blocks(struct inode *inode)
5622 {
5623         int bpp = ext4_journal_blocks_per_page(inode);
5624         int ret;
5625
5626         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5627
5628         /* Account for data blocks for journalled mode */
5629         if (ext4_should_journal_data(inode))
5630                 ret += bpp;
5631         return ret;
5632 }
5633
5634 /*
5635  * Calculate the journal credits for a chunk of data modification.
5636  *
5637  * This is called from DIO, fallocate or whoever calling
5638  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5639  *
5640  * journal buffers for data blocks are not included here, as DIO
5641  * and fallocate do no need to journal data buffers.
5642  */
5643 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5644 {
5645         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5646 }
5647
5648 /*
5649  * The caller must have previously called ext4_reserve_inode_write().
5650  * Give this, we know that the caller already has write access to iloc->bh.
5651  */
5652 int ext4_mark_iloc_dirty(handle_t *handle,
5653                          struct inode *inode, struct ext4_iloc *iloc)
5654 {
5655         int err = 0;
5656
5657         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5658                 put_bh(iloc->bh);
5659                 return -EIO;
5660         }
5661         ext4_fc_track_inode(handle, inode);
5662
5663         if (IS_I_VERSION(inode))
5664                 inode_inc_iversion(inode);
5665
5666         /* the do_update_inode consumes one bh->b_count */
5667         get_bh(iloc->bh);
5668
5669         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5670         err = ext4_do_update_inode(handle, inode, iloc);
5671         put_bh(iloc->bh);
5672         return err;
5673 }
5674
5675 /*
5676  * On success, We end up with an outstanding reference count against
5677  * iloc->bh.  This _must_ be cleaned up later.
5678  */
5679
5680 int
5681 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5682                          struct ext4_iloc *iloc)
5683 {
5684         int err;
5685
5686         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5687                 return -EIO;
5688
5689         err = ext4_get_inode_loc(inode, iloc);
5690         if (!err) {
5691                 BUFFER_TRACE(iloc->bh, "get_write_access");
5692                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5693                                                     iloc->bh, EXT4_JTR_NONE);
5694                 if (err) {
5695                         brelse(iloc->bh);
5696                         iloc->bh = NULL;
5697                 }
5698         }
5699         ext4_std_error(inode->i_sb, err);
5700         return err;
5701 }
5702
5703 static int __ext4_expand_extra_isize(struct inode *inode,
5704                                      unsigned int new_extra_isize,
5705                                      struct ext4_iloc *iloc,
5706                                      handle_t *handle, int *no_expand)
5707 {
5708         struct ext4_inode *raw_inode;
5709         struct ext4_xattr_ibody_header *header;
5710         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5711         struct ext4_inode_info *ei = EXT4_I(inode);
5712         int error;
5713
5714         /* this was checked at iget time, but double check for good measure */
5715         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5716             (ei->i_extra_isize & 3)) {
5717                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5718                                  ei->i_extra_isize,
5719                                  EXT4_INODE_SIZE(inode->i_sb));
5720                 return -EFSCORRUPTED;
5721         }
5722         if ((new_extra_isize < ei->i_extra_isize) ||
5723             (new_extra_isize < 4) ||
5724             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5725                 return -EINVAL; /* Should never happen */
5726
5727         raw_inode = ext4_raw_inode(iloc);
5728
5729         header = IHDR(inode, raw_inode);
5730
5731         /* No extended attributes present */
5732         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5733             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5734                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5735                        EXT4_I(inode)->i_extra_isize, 0,
5736                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5737                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5738                 return 0;
5739         }
5740
5741         /* try to expand with EAs present */
5742         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5743                                            raw_inode, handle);
5744         if (error) {
5745                 /*
5746                  * Inode size expansion failed; don't try again
5747                  */
5748                 *no_expand = 1;
5749         }
5750
5751         return error;
5752 }
5753
5754 /*
5755  * Expand an inode by new_extra_isize bytes.
5756  * Returns 0 on success or negative error number on failure.
5757  */
5758 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5759                                           unsigned int new_extra_isize,
5760                                           struct ext4_iloc iloc,
5761                                           handle_t *handle)
5762 {
5763         int no_expand;
5764         int error;
5765
5766         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5767                 return -EOVERFLOW;
5768
5769         /*
5770          * In nojournal mode, we can immediately attempt to expand
5771          * the inode.  When journaled, we first need to obtain extra
5772          * buffer credits since we may write into the EA block
5773          * with this same handle. If journal_extend fails, then it will
5774          * only result in a minor loss of functionality for that inode.
5775          * If this is felt to be critical, then e2fsck should be run to
5776          * force a large enough s_min_extra_isize.
5777          */
5778         if (ext4_journal_extend(handle,
5779                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5780                 return -ENOSPC;
5781
5782         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5783                 return -EBUSY;
5784
5785         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5786                                           handle, &no_expand);
5787         ext4_write_unlock_xattr(inode, &no_expand);
5788
5789         return error;
5790 }
5791
5792 int ext4_expand_extra_isize(struct inode *inode,
5793                             unsigned int new_extra_isize,
5794                             struct ext4_iloc *iloc)
5795 {
5796         handle_t *handle;
5797         int no_expand;
5798         int error, rc;
5799
5800         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5801                 brelse(iloc->bh);
5802                 return -EOVERFLOW;
5803         }
5804
5805         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5806                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5807         if (IS_ERR(handle)) {
5808                 error = PTR_ERR(handle);
5809                 brelse(iloc->bh);
5810                 return error;
5811         }
5812
5813         ext4_write_lock_xattr(inode, &no_expand);
5814
5815         BUFFER_TRACE(iloc->bh, "get_write_access");
5816         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5817                                               EXT4_JTR_NONE);
5818         if (error) {
5819                 brelse(iloc->bh);
5820                 goto out_unlock;
5821         }
5822
5823         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5824                                           handle, &no_expand);
5825
5826         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5827         if (!error)
5828                 error = rc;
5829
5830 out_unlock:
5831         ext4_write_unlock_xattr(inode, &no_expand);
5832         ext4_journal_stop(handle);
5833         return error;
5834 }
5835
5836 /*
5837  * What we do here is to mark the in-core inode as clean with respect to inode
5838  * dirtiness (it may still be data-dirty).
5839  * This means that the in-core inode may be reaped by prune_icache
5840  * without having to perform any I/O.  This is a very good thing,
5841  * because *any* task may call prune_icache - even ones which
5842  * have a transaction open against a different journal.
5843  *
5844  * Is this cheating?  Not really.  Sure, we haven't written the
5845  * inode out, but prune_icache isn't a user-visible syncing function.
5846  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5847  * we start and wait on commits.
5848  */
5849 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5850                                 const char *func, unsigned int line)
5851 {
5852         struct ext4_iloc iloc;
5853         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5854         int err;
5855
5856         might_sleep();
5857         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5858         err = ext4_reserve_inode_write(handle, inode, &iloc);
5859         if (err)
5860                 goto out;
5861
5862         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5863                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5864                                                iloc, handle);
5865
5866         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5867 out:
5868         if (unlikely(err))
5869                 ext4_error_inode_err(inode, func, line, 0, err,
5870                                         "mark_inode_dirty error");
5871         return err;
5872 }
5873
5874 /*
5875  * ext4_dirty_inode() is called from __mark_inode_dirty()
5876  *
5877  * We're really interested in the case where a file is being extended.
5878  * i_size has been changed by generic_commit_write() and we thus need
5879  * to include the updated inode in the current transaction.
5880  *
5881  * Also, dquot_alloc_block() will always dirty the inode when blocks
5882  * are allocated to the file.
5883  *
5884  * If the inode is marked synchronous, we don't honour that here - doing
5885  * so would cause a commit on atime updates, which we don't bother doing.
5886  * We handle synchronous inodes at the highest possible level.
5887  */
5888 void ext4_dirty_inode(struct inode *inode, int flags)
5889 {
5890         handle_t *handle;
5891
5892         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5893         if (IS_ERR(handle))
5894                 return;
5895         ext4_mark_inode_dirty(handle, inode);
5896         ext4_journal_stop(handle);
5897 }
5898
5899 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5900 {
5901         journal_t *journal;
5902         handle_t *handle;
5903         int err;
5904         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5905
5906         /*
5907          * We have to be very careful here: changing a data block's
5908          * journaling status dynamically is dangerous.  If we write a
5909          * data block to the journal, change the status and then delete
5910          * that block, we risk forgetting to revoke the old log record
5911          * from the journal and so a subsequent replay can corrupt data.
5912          * So, first we make sure that the journal is empty and that
5913          * nobody is changing anything.
5914          */
5915
5916         journal = EXT4_JOURNAL(inode);
5917         if (!journal)
5918                 return 0;
5919         if (is_journal_aborted(journal))
5920                 return -EROFS;
5921
5922         /* Wait for all existing dio workers */
5923         inode_dio_wait(inode);
5924
5925         /*
5926          * Before flushing the journal and switching inode's aops, we have
5927          * to flush all dirty data the inode has. There can be outstanding
5928          * delayed allocations, there can be unwritten extents created by
5929          * fallocate or buffered writes in dioread_nolock mode covered by
5930          * dirty data which can be converted only after flushing the dirty
5931          * data (and journalled aops don't know how to handle these cases).
5932          */
5933         if (val) {
5934                 down_write(&EXT4_I(inode)->i_mmap_sem);
5935                 err = filemap_write_and_wait(inode->i_mapping);
5936                 if (err < 0) {
5937                         up_write(&EXT4_I(inode)->i_mmap_sem);
5938                         return err;
5939                 }
5940         }
5941
5942         percpu_down_write(&sbi->s_writepages_rwsem);
5943         jbd2_journal_lock_updates(journal);
5944
5945         /*
5946          * OK, there are no updates running now, and all cached data is
5947          * synced to disk.  We are now in a completely consistent state
5948          * which doesn't have anything in the journal, and we know that
5949          * no filesystem updates are running, so it is safe to modify
5950          * the inode's in-core data-journaling state flag now.
5951          */
5952
5953         if (val)
5954                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5955         else {
5956                 err = jbd2_journal_flush(journal, 0);
5957                 if (err < 0) {
5958                         jbd2_journal_unlock_updates(journal);
5959                         percpu_up_write(&sbi->s_writepages_rwsem);
5960                         return err;
5961                 }
5962                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5963         }
5964         ext4_set_aops(inode);
5965
5966         jbd2_journal_unlock_updates(journal);
5967         percpu_up_write(&sbi->s_writepages_rwsem);
5968
5969         if (val)
5970                 up_write(&EXT4_I(inode)->i_mmap_sem);
5971
5972         /* Finally we can mark the inode as dirty. */
5973
5974         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5975         if (IS_ERR(handle))
5976                 return PTR_ERR(handle);
5977
5978         ext4_fc_mark_ineligible(inode->i_sb,
5979                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
5980         err = ext4_mark_inode_dirty(handle, inode);
5981         ext4_handle_sync(handle);
5982         ext4_journal_stop(handle);
5983         ext4_std_error(inode->i_sb, err);
5984
5985         return err;
5986 }
5987
5988 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
5989                             struct buffer_head *bh)
5990 {
5991         return !buffer_mapped(bh);
5992 }
5993
5994 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5995 {
5996         struct vm_area_struct *vma = vmf->vma;
5997         struct page *page = vmf->page;
5998         loff_t size;
5999         unsigned long len;
6000         int err;
6001         vm_fault_t ret;
6002         struct file *file = vma->vm_file;
6003         struct inode *inode = file_inode(file);
6004         struct address_space *mapping = inode->i_mapping;
6005         handle_t *handle;
6006         get_block_t *get_block;
6007         int retries = 0;
6008
6009         if (unlikely(IS_IMMUTABLE(inode)))
6010                 return VM_FAULT_SIGBUS;
6011
6012         sb_start_pagefault(inode->i_sb);
6013         file_update_time(vma->vm_file);
6014
6015         down_read(&EXT4_I(inode)->i_mmap_sem);
6016
6017         err = ext4_convert_inline_data(inode);
6018         if (err)
6019                 goto out_ret;
6020
6021         /*
6022          * On data journalling we skip straight to the transaction handle:
6023          * there's no delalloc; page truncated will be checked later; the
6024          * early return w/ all buffers mapped (calculates size/len) can't
6025          * be used; and there's no dioread_nolock, so only ext4_get_block.
6026          */
6027         if (ext4_should_journal_data(inode))
6028                 goto retry_alloc;
6029
6030         /* Delalloc case is easy... */
6031         if (test_opt(inode->i_sb, DELALLOC) &&
6032             !ext4_nonda_switch(inode->i_sb)) {
6033                 do {
6034                         err = block_page_mkwrite(vma, vmf,
6035                                                    ext4_da_get_block_prep);
6036                 } while (err == -ENOSPC &&
6037                        ext4_should_retry_alloc(inode->i_sb, &retries));
6038                 goto out_ret;
6039         }
6040
6041         lock_page(page);
6042         size = i_size_read(inode);
6043         /* Page got truncated from under us? */
6044         if (page->mapping != mapping || page_offset(page) > size) {
6045                 unlock_page(page);
6046                 ret = VM_FAULT_NOPAGE;
6047                 goto out;
6048         }
6049
6050         if (page->index == size >> PAGE_SHIFT)
6051                 len = size & ~PAGE_MASK;
6052         else
6053                 len = PAGE_SIZE;
6054         /*
6055          * Return if we have all the buffers mapped. This avoids the need to do
6056          * journal_start/journal_stop which can block and take a long time
6057          *
6058          * This cannot be done for data journalling, as we have to add the
6059          * inode to the transaction's list to writeprotect pages on commit.
6060          */
6061         if (page_has_buffers(page)) {
6062                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6063                                             0, len, NULL,
6064                                             ext4_bh_unmapped)) {
6065                         /* Wait so that we don't change page under IO */
6066                         wait_for_stable_page(page);
6067                         ret = VM_FAULT_LOCKED;
6068                         goto out;
6069                 }
6070         }
6071         unlock_page(page);
6072         /* OK, we need to fill the hole... */
6073         if (ext4_should_dioread_nolock(inode))
6074                 get_block = ext4_get_block_unwritten;
6075         else
6076                 get_block = ext4_get_block;
6077 retry_alloc:
6078         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6079                                     ext4_writepage_trans_blocks(inode));
6080         if (IS_ERR(handle)) {
6081                 ret = VM_FAULT_SIGBUS;
6082                 goto out;
6083         }
6084         /*
6085          * Data journalling can't use block_page_mkwrite() because it
6086          * will set_buffer_dirty() before do_journal_get_write_access()
6087          * thus might hit warning messages for dirty metadata buffers.
6088          */
6089         if (!ext4_should_journal_data(inode)) {
6090                 err = block_page_mkwrite(vma, vmf, get_block);
6091         } else {
6092                 lock_page(page);
6093                 size = i_size_read(inode);
6094                 /* Page got truncated from under us? */
6095                 if (page->mapping != mapping || page_offset(page) > size) {
6096                         ret = VM_FAULT_NOPAGE;
6097                         goto out_error;
6098                 }
6099
6100                 if (page->index == size >> PAGE_SHIFT)
6101                         len = size & ~PAGE_MASK;
6102                 else
6103                         len = PAGE_SIZE;
6104
6105                 err = __block_write_begin(page, 0, len, ext4_get_block);
6106                 if (!err) {
6107                         ret = VM_FAULT_SIGBUS;
6108                         if (ext4_walk_page_buffers(handle, inode,
6109                                         page_buffers(page), 0, len, NULL,
6110                                         do_journal_get_write_access))
6111                                 goto out_error;
6112                         if (ext4_walk_page_buffers(handle, inode,
6113                                         page_buffers(page), 0, len, NULL,
6114                                         write_end_fn))
6115                                 goto out_error;
6116                         if (ext4_jbd2_inode_add_write(handle, inode,
6117                                                       page_offset(page), len))
6118                                 goto out_error;
6119                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6120                 } else {
6121                         unlock_page(page);
6122                 }
6123         }
6124         ext4_journal_stop(handle);
6125         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6126                 goto retry_alloc;
6127 out_ret:
6128         ret = block_page_mkwrite_return(err);
6129 out:
6130         up_read(&EXT4_I(inode)->i_mmap_sem);
6131         sb_end_pagefault(inode->i_sb);
6132         return ret;
6133 out_error:
6134         unlock_page(page);
6135         ext4_journal_stop(handle);
6136         goto out;
6137 }
6138
6139 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6140 {
6141         struct inode *inode = file_inode(vmf->vma->vm_file);
6142         vm_fault_t ret;
6143
6144         down_read(&EXT4_I(inode)->i_mmap_sem);
6145         ret = filemap_fault(vmf);
6146         up_read(&EXT4_I(inode)->i_mmap_sem);
6147
6148         return ret;
6149 }