fs: move struct kiocb to fs.h
[linux-2.6-block.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/bitops.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !ext4_has_metadata_csum(inode->i_sb))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !ext4_has_metadata_csum(inode->i_sb))
107                 return;
108
109         csum = ext4_inode_csum(inode, raw, ei);
110         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
111         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
112             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
113                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
114 }
115
116 static inline int ext4_begin_ordered_truncate(struct inode *inode,
117                                               loff_t new_size)
118 {
119         trace_ext4_begin_ordered_truncate(inode, new_size);
120         /*
121          * If jinode is zero, then we never opened the file for
122          * writing, so there's no need to call
123          * jbd2_journal_begin_ordered_truncate() since there's no
124          * outstanding writes we need to flush.
125          */
126         if (!EXT4_I(inode)->jinode)
127                 return 0;
128         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
129                                                    EXT4_I(inode)->jinode,
130                                                    new_size);
131 }
132
133 static void ext4_invalidatepage(struct page *page, unsigned int offset,
134                                 unsigned int length);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
138                                   int pextents);
139
140 /*
141  * Test whether an inode is a fast symlink.
142  */
143 static int ext4_inode_is_fast_symlink(struct inode *inode)
144 {
145         int ea_blocks = EXT4_I(inode)->i_file_acl ?
146                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147
148         if (ext4_has_inline_data(inode))
149                 return 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages_final(&inode->i_data);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (is_bad_inode(inode))
225                 goto no_delete;
226         dquot_initialize(inode);
227
228         if (ext4_should_order_data(inode))
229                 ext4_begin_ordered_truncate(inode, 0);
230         truncate_inode_pages_final(&inode->i_data);
231
232         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Called with i_data_sem down, which is important since we can call
325  * ext4_discard_preallocations() from here.
326  */
327 void ext4_da_update_reserve_space(struct inode *inode,
328                                         int used, int quota_claim)
329 {
330         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331         struct ext4_inode_info *ei = EXT4_I(inode);
332
333         spin_lock(&ei->i_block_reservation_lock);
334         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
335         if (unlikely(used > ei->i_reserved_data_blocks)) {
336                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
337                          "with only %d reserved data blocks",
338                          __func__, inode->i_ino, used,
339                          ei->i_reserved_data_blocks);
340                 WARN_ON(1);
341                 used = ei->i_reserved_data_blocks;
342         }
343
344         /* Update per-inode reservations */
345         ei->i_reserved_data_blocks -= used;
346         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
347
348         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
349
350         /* Update quota subsystem for data blocks */
351         if (quota_claim)
352                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
353         else {
354                 /*
355                  * We did fallocate with an offset that is already delayed
356                  * allocated. So on delayed allocated writeback we should
357                  * not re-claim the quota for fallocated blocks.
358                  */
359                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
360         }
361
362         /*
363          * If we have done all the pending block allocations and if
364          * there aren't any writers on the inode, we can discard the
365          * inode's preallocations.
366          */
367         if ((ei->i_reserved_data_blocks == 0) &&
368             (atomic_read(&inode->i_writecount) == 0))
369                 ext4_discard_preallocations(inode);
370 }
371
372 static int __check_block_validity(struct inode *inode, const char *func,
373                                 unsigned int line,
374                                 struct ext4_map_blocks *map)
375 {
376         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
377                                    map->m_len)) {
378                 ext4_error_inode(inode, func, line, map->m_pblk,
379                                  "lblock %lu mapped to illegal pblock "
380                                  "(length %d)", (unsigned long) map->m_lblk,
381                                  map->m_len);
382                 return -EIO;
383         }
384         return 0;
385 }
386
387 #define check_block_validity(inode, map)        \
388         __check_block_validity((inode), __func__, __LINE__, (map))
389
390 #ifdef ES_AGGRESSIVE_TEST
391 static void ext4_map_blocks_es_recheck(handle_t *handle,
392                                        struct inode *inode,
393                                        struct ext4_map_blocks *es_map,
394                                        struct ext4_map_blocks *map,
395                                        int flags)
396 {
397         int retval;
398
399         map->m_flags = 0;
400         /*
401          * There is a race window that the result is not the same.
402          * e.g. xfstests #223 when dioread_nolock enables.  The reason
403          * is that we lookup a block mapping in extent status tree with
404          * out taking i_data_sem.  So at the time the unwritten extent
405          * could be converted.
406          */
407         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
408                 down_read(&EXT4_I(inode)->i_data_sem);
409         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
410                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
411                                              EXT4_GET_BLOCKS_KEEP_SIZE);
412         } else {
413                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
414                                              EXT4_GET_BLOCKS_KEEP_SIZE);
415         }
416         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
417                 up_read((&EXT4_I(inode)->i_data_sem));
418
419         /*
420          * We don't check m_len because extent will be collpased in status
421          * tree.  So the m_len might not equal.
422          */
423         if (es_map->m_lblk != map->m_lblk ||
424             es_map->m_flags != map->m_flags ||
425             es_map->m_pblk != map->m_pblk) {
426                 printk("ES cache assertion failed for inode: %lu "
427                        "es_cached ex [%d/%d/%llu/%x] != "
428                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
429                        inode->i_ino, es_map->m_lblk, es_map->m_len,
430                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
431                        map->m_len, map->m_pblk, map->m_flags,
432                        retval, flags);
433         }
434 }
435 #endif /* ES_AGGRESSIVE_TEST */
436
437 /*
438  * The ext4_map_blocks() function tries to look up the requested blocks,
439  * and returns if the blocks are already mapped.
440  *
441  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
442  * and store the allocated blocks in the result buffer head and mark it
443  * mapped.
444  *
445  * If file type is extents based, it will call ext4_ext_map_blocks(),
446  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
447  * based files
448  *
449  * On success, it returns the number of blocks being mapped or allocated.
450  * if create==0 and the blocks are pre-allocated and unwritten block,
451  * the result buffer head is unmapped. If the create ==1, it will make sure
452  * the buffer head is mapped.
453  *
454  * It returns 0 if plain look up failed (blocks have not been allocated), in
455  * that case, buffer head is unmapped
456  *
457  * It returns the error in case of allocation failure.
458  */
459 int ext4_map_blocks(handle_t *handle, struct inode *inode,
460                     struct ext4_map_blocks *map, int flags)
461 {
462         struct extent_status es;
463         int retval;
464         int ret = 0;
465 #ifdef ES_AGGRESSIVE_TEST
466         struct ext4_map_blocks orig_map;
467
468         memcpy(&orig_map, map, sizeof(*map));
469 #endif
470
471         map->m_flags = 0;
472         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
473                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
474                   (unsigned long) map->m_lblk);
475
476         /*
477          * ext4_map_blocks returns an int, and m_len is an unsigned int
478          */
479         if (unlikely(map->m_len > INT_MAX))
480                 map->m_len = INT_MAX;
481
482         /* We can handle the block number less than EXT_MAX_BLOCKS */
483         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
484                 return -EIO;
485
486         /* Lookup extent status tree firstly */
487         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
488                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
489                         map->m_pblk = ext4_es_pblock(&es) +
490                                         map->m_lblk - es.es_lblk;
491                         map->m_flags |= ext4_es_is_written(&es) ?
492                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
493                         retval = es.es_len - (map->m_lblk - es.es_lblk);
494                         if (retval > map->m_len)
495                                 retval = map->m_len;
496                         map->m_len = retval;
497                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
498                         retval = 0;
499                 } else {
500                         BUG_ON(1);
501                 }
502 #ifdef ES_AGGRESSIVE_TEST
503                 ext4_map_blocks_es_recheck(handle, inode, map,
504                                            &orig_map, flags);
505 #endif
506                 goto found;
507         }
508
509         /*
510          * Try to see if we can get the block without requesting a new
511          * file system block.
512          */
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 down_read(&EXT4_I(inode)->i_data_sem);
515         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
517                                              EXT4_GET_BLOCKS_KEEP_SIZE);
518         } else {
519                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
520                                              EXT4_GET_BLOCKS_KEEP_SIZE);
521         }
522         if (retval > 0) {
523                 unsigned int status;
524
525                 if (unlikely(retval != map->m_len)) {
526                         ext4_warning(inode->i_sb,
527                                      "ES len assertion failed for inode "
528                                      "%lu: retval %d != map->m_len %d",
529                                      inode->i_ino, retval, map->m_len);
530                         WARN_ON(1);
531                 }
532
533                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
534                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
535                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
536                     ext4_find_delalloc_range(inode, map->m_lblk,
537                                              map->m_lblk + map->m_len - 1))
538                         status |= EXTENT_STATUS_DELAYED;
539                 ret = ext4_es_insert_extent(inode, map->m_lblk,
540                                             map->m_len, map->m_pblk, status);
541                 if (ret < 0)
542                         retval = ret;
543         }
544         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545                 up_read((&EXT4_I(inode)->i_data_sem));
546
547 found:
548         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549                 ret = check_block_validity(inode, map);
550                 if (ret != 0)
551                         return ret;
552         }
553
554         /* If it is only a block(s) look up */
555         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556                 return retval;
557
558         /*
559          * Returns if the blocks have already allocated
560          *
561          * Note that if blocks have been preallocated
562          * ext4_ext_get_block() returns the create = 0
563          * with buffer head unmapped.
564          */
565         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566                 /*
567                  * If we need to convert extent to unwritten
568                  * we continue and do the actual work in
569                  * ext4_ext_map_blocks()
570                  */
571                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572                         return retval;
573
574         /*
575          * Here we clear m_flags because after allocating an new extent,
576          * it will be set again.
577          */
578         map->m_flags &= ~EXT4_MAP_FLAGS;
579
580         /*
581          * New blocks allocate and/or writing to unwritten extent
582          * will possibly result in updating i_data, so we take
583          * the write lock of i_data_sem, and call get_block()
584          * with create == 1 flag.
585          */
586         down_write(&EXT4_I(inode)->i_data_sem);
587
588         /*
589          * We need to check for EXT4 here because migrate
590          * could have changed the inode type in between
591          */
592         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594         } else {
595                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598                         /*
599                          * We allocated new blocks which will result in
600                          * i_data's format changing.  Force the migrate
601                          * to fail by clearing migrate flags
602                          */
603                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604                 }
605
606                 /*
607                  * Update reserved blocks/metadata blocks after successful
608                  * block allocation which had been deferred till now. We don't
609                  * support fallocate for non extent files. So we can update
610                  * reserve space here.
611                  */
612                 if ((retval > 0) &&
613                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614                         ext4_da_update_reserve_space(inode, retval, 1);
615         }
616
617         if (retval > 0) {
618                 unsigned int status;
619
620                 if (unlikely(retval != map->m_len)) {
621                         ext4_warning(inode->i_sb,
622                                      "ES len assertion failed for inode "
623                                      "%lu: retval %d != map->m_len %d",
624                                      inode->i_ino, retval, map->m_len);
625                         WARN_ON(1);
626                 }
627
628                 /*
629                  * If the extent has been zeroed out, we don't need to update
630                  * extent status tree.
631                  */
632                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634                         if (ext4_es_is_written(&es))
635                                 goto has_zeroout;
636                 }
637                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661         struct inode *inode = bh->b_assoc_map->host;
662         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664         int err;
665         if (!uptodate)
666                 return;
667         WARN_ON(!buffer_unwritten(bh));
668         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675                            struct buffer_head *bh, int flags)
676 {
677         handle_t *handle = ext4_journal_current_handle();
678         struct ext4_map_blocks map;
679         int ret = 0, started = 0;
680         int dio_credits;
681
682         if (ext4_has_inline_data(inode))
683                 return -ERANGE;
684
685         map.m_lblk = iblock;
686         map.m_len = bh->b_size >> inode->i_blkbits;
687
688         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689                 /* Direct IO write... */
690                 if (map.m_len > DIO_MAX_BLOCKS)
691                         map.m_len = DIO_MAX_BLOCKS;
692                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694                                             dio_credits);
695                 if (IS_ERR(handle)) {
696                         ret = PTR_ERR(handle);
697                         return ret;
698                 }
699                 started = 1;
700         }
701
702         ret = ext4_map_blocks(handle, inode, &map, flags);
703         if (ret > 0) {
704                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
706                 map_bh(bh, inode->i_sb, map.m_pblk);
707                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709                         bh->b_assoc_map = inode->i_mapping;
710                         bh->b_private = (void *)(unsigned long)iblock;
711                         bh->b_end_io = ext4_end_io_unwritten;
712                 }
713                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714                         set_buffer_defer_completion(bh);
715                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716                 ret = 0;
717         }
718         if (started)
719                 ext4_journal_stop(handle);
720         return ret;
721 }
722
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724                    struct buffer_head *bh, int create)
725 {
726         return _ext4_get_block(inode, iblock, bh,
727                                create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734                                 ext4_lblk_t block, int create)
735 {
736         struct ext4_map_blocks map;
737         struct buffer_head *bh;
738         int err;
739
740         J_ASSERT(handle != NULL || create == 0);
741
742         map.m_lblk = block;
743         map.m_len = 1;
744         err = ext4_map_blocks(handle, inode, &map,
745                               create ? EXT4_GET_BLOCKS_CREATE : 0);
746
747         if (err == 0)
748                 return create ? ERR_PTR(-ENOSPC) : NULL;
749         if (err < 0)
750                 return ERR_PTR(err);
751
752         bh = sb_getblk(inode->i_sb, map.m_pblk);
753         if (unlikely(!bh))
754                 return ERR_PTR(-ENOMEM);
755         if (map.m_flags & EXT4_MAP_NEW) {
756                 J_ASSERT(create != 0);
757                 J_ASSERT(handle != NULL);
758
759                 /*
760                  * Now that we do not always journal data, we should
761                  * keep in mind whether this should always journal the
762                  * new buffer as metadata.  For now, regular file
763                  * writes use ext4_get_block instead, so it's not a
764                  * problem.
765                  */
766                 lock_buffer(bh);
767                 BUFFER_TRACE(bh, "call get_create_access");
768                 err = ext4_journal_get_create_access(handle, bh);
769                 if (unlikely(err)) {
770                         unlock_buffer(bh);
771                         goto errout;
772                 }
773                 if (!buffer_uptodate(bh)) {
774                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775                         set_buffer_uptodate(bh);
776                 }
777                 unlock_buffer(bh);
778                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779                 err = ext4_handle_dirty_metadata(handle, inode, bh);
780                 if (unlikely(err))
781                         goto errout;
782         } else
783                 BUFFER_TRACE(bh, "not a new buffer");
784         return bh;
785 errout:
786         brelse(bh);
787         return ERR_PTR(err);
788 }
789
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791                                ext4_lblk_t block, int create)
792 {
793         struct buffer_head *bh;
794
795         bh = ext4_getblk(handle, inode, block, create);
796         if (IS_ERR(bh))
797                 return bh;
798         if (!bh || buffer_uptodate(bh))
799                 return bh;
800         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801         wait_on_buffer(bh);
802         if (buffer_uptodate(bh))
803                 return bh;
804         put_bh(bh);
805         return ERR_PTR(-EIO);
806 }
807
808 int ext4_walk_page_buffers(handle_t *handle,
809                            struct buffer_head *head,
810                            unsigned from,
811                            unsigned to,
812                            int *partial,
813                            int (*fn)(handle_t *handle,
814                                      struct buffer_head *bh))
815 {
816         struct buffer_head *bh;
817         unsigned block_start, block_end;
818         unsigned blocksize = head->b_size;
819         int err, ret = 0;
820         struct buffer_head *next;
821
822         for (bh = head, block_start = 0;
823              ret == 0 && (bh != head || !block_start);
824              block_start = block_end, bh = next) {
825                 next = bh->b_this_page;
826                 block_end = block_start + blocksize;
827                 if (block_end <= from || block_start >= to) {
828                         if (partial && !buffer_uptodate(bh))
829                                 *partial = 1;
830                         continue;
831                 }
832                 err = (*fn)(handle, bh);
833                 if (!ret)
834                         ret = err;
835         }
836         return ret;
837 }
838
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864                                 struct buffer_head *bh)
865 {
866         int dirty = buffer_dirty(bh);
867         int ret;
868
869         if (!buffer_mapped(bh) || buffer_freed(bh))
870                 return 0;
871         /*
872          * __block_write_begin() could have dirtied some buffers. Clean
873          * the dirty bit as jbd2_journal_get_write_access() could complain
874          * otherwise about fs integrity issues. Setting of the dirty bit
875          * by __block_write_begin() isn't a real problem here as we clear
876          * the bit before releasing a page lock and thus writeback cannot
877          * ever write the buffer.
878          */
879         if (dirty)
880                 clear_buffer_dirty(bh);
881         BUFFER_TRACE(bh, "get write access");
882         ret = ext4_journal_get_write_access(handle, bh);
883         if (!ret && dirty)
884                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885         return ret;
886 }
887
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889                    struct buffer_head *bh_result, int create);
890 static int ext4_write_begin(struct file *file, struct address_space *mapping,
891                             loff_t pos, unsigned len, unsigned flags,
892                             struct page **pagep, void **fsdata)
893 {
894         struct inode *inode = mapping->host;
895         int ret, needed_blocks;
896         handle_t *handle;
897         int retries = 0;
898         struct page *page;
899         pgoff_t index;
900         unsigned from, to;
901
902         trace_ext4_write_begin(inode, pos, len, flags);
903         /*
904          * Reserve one block more for addition to orphan list in case
905          * we allocate blocks but write fails for some reason
906          */
907         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
908         index = pos >> PAGE_CACHE_SHIFT;
909         from = pos & (PAGE_CACHE_SIZE - 1);
910         to = from + len;
911
912         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
913                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
914                                                     flags, pagep);
915                 if (ret < 0)
916                         return ret;
917                 if (ret == 1)
918                         return 0;
919         }
920
921         /*
922          * grab_cache_page_write_begin() can take a long time if the
923          * system is thrashing due to memory pressure, or if the page
924          * is being written back.  So grab it first before we start
925          * the transaction handle.  This also allows us to allocate
926          * the page (if needed) without using GFP_NOFS.
927          */
928 retry_grab:
929         page = grab_cache_page_write_begin(mapping, index, flags);
930         if (!page)
931                 return -ENOMEM;
932         unlock_page(page);
933
934 retry_journal:
935         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
936         if (IS_ERR(handle)) {
937                 page_cache_release(page);
938                 return PTR_ERR(handle);
939         }
940
941         lock_page(page);
942         if (page->mapping != mapping) {
943                 /* The page got truncated from under us */
944                 unlock_page(page);
945                 page_cache_release(page);
946                 ext4_journal_stop(handle);
947                 goto retry_grab;
948         }
949         /* In case writeback began while the page was unlocked */
950         wait_for_stable_page(page);
951
952         if (ext4_should_dioread_nolock(inode))
953                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
954         else
955                 ret = __block_write_begin(page, pos, len, ext4_get_block);
956
957         if (!ret && ext4_should_journal_data(inode)) {
958                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
959                                              from, to, NULL,
960                                              do_journal_get_write_access);
961         }
962
963         if (ret) {
964                 unlock_page(page);
965                 /*
966                  * __block_write_begin may have instantiated a few blocks
967                  * outside i_size.  Trim these off again. Don't need
968                  * i_size_read because we hold i_mutex.
969                  *
970                  * Add inode to orphan list in case we crash before
971                  * truncate finishes
972                  */
973                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
974                         ext4_orphan_add(handle, inode);
975
976                 ext4_journal_stop(handle);
977                 if (pos + len > inode->i_size) {
978                         ext4_truncate_failed_write(inode);
979                         /*
980                          * If truncate failed early the inode might
981                          * still be on the orphan list; we need to
982                          * make sure the inode is removed from the
983                          * orphan list in that case.
984                          */
985                         if (inode->i_nlink)
986                                 ext4_orphan_del(NULL, inode);
987                 }
988
989                 if (ret == -ENOSPC &&
990                     ext4_should_retry_alloc(inode->i_sb, &retries))
991                         goto retry_journal;
992                 page_cache_release(page);
993                 return ret;
994         }
995         *pagep = page;
996         return ret;
997 }
998
999 /* For write_end() in data=journal mode */
1000 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1001 {
1002         int ret;
1003         if (!buffer_mapped(bh) || buffer_freed(bh))
1004                 return 0;
1005         set_buffer_uptodate(bh);
1006         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1007         clear_buffer_meta(bh);
1008         clear_buffer_prio(bh);
1009         return ret;
1010 }
1011
1012 /*
1013  * We need to pick up the new inode size which generic_commit_write gave us
1014  * `file' can be NULL - eg, when called from page_symlink().
1015  *
1016  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1017  * buffers are managed internally.
1018  */
1019 static int ext4_write_end(struct file *file,
1020                           struct address_space *mapping,
1021                           loff_t pos, unsigned len, unsigned copied,
1022                           struct page *page, void *fsdata)
1023 {
1024         handle_t *handle = ext4_journal_current_handle();
1025         struct inode *inode = mapping->host;
1026         int ret = 0, ret2;
1027         int i_size_changed = 0;
1028
1029         trace_ext4_write_end(inode, pos, len, copied);
1030         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1031                 ret = ext4_jbd2_file_inode(handle, inode);
1032                 if (ret) {
1033                         unlock_page(page);
1034                         page_cache_release(page);
1035                         goto errout;
1036                 }
1037         }
1038
1039         if (ext4_has_inline_data(inode)) {
1040                 ret = ext4_write_inline_data_end(inode, pos, len,
1041                                                  copied, page);
1042                 if (ret < 0)
1043                         goto errout;
1044                 copied = ret;
1045         } else
1046                 copied = block_write_end(file, mapping, pos,
1047                                          len, copied, page, fsdata);
1048         /*
1049          * it's important to update i_size while still holding page lock:
1050          * page writeout could otherwise come in and zero beyond i_size.
1051          */
1052         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1053         unlock_page(page);
1054         page_cache_release(page);
1055
1056         /*
1057          * Don't mark the inode dirty under page lock. First, it unnecessarily
1058          * makes the holding time of page lock longer. Second, it forces lock
1059          * ordering of page lock and transaction start for journaling
1060          * filesystems.
1061          */
1062         if (i_size_changed)
1063                 ext4_mark_inode_dirty(handle, inode);
1064
1065         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066                 /* if we have allocated more blocks and copied
1067                  * less. We will have blocks allocated outside
1068                  * inode->i_size. So truncate them
1069                  */
1070                 ext4_orphan_add(handle, inode);
1071 errout:
1072         ret2 = ext4_journal_stop(handle);
1073         if (!ret)
1074                 ret = ret2;
1075
1076         if (pos + len > inode->i_size) {
1077                 ext4_truncate_failed_write(inode);
1078                 /*
1079                  * If truncate failed early the inode might still be
1080                  * on the orphan list; we need to make sure the inode
1081                  * is removed from the orphan list in that case.
1082                  */
1083                 if (inode->i_nlink)
1084                         ext4_orphan_del(NULL, inode);
1085         }
1086
1087         return ret ? ret : copied;
1088 }
1089
1090 static int ext4_journalled_write_end(struct file *file,
1091                                      struct address_space *mapping,
1092                                      loff_t pos, unsigned len, unsigned copied,
1093                                      struct page *page, void *fsdata)
1094 {
1095         handle_t *handle = ext4_journal_current_handle();
1096         struct inode *inode = mapping->host;
1097         int ret = 0, ret2;
1098         int partial = 0;
1099         unsigned from, to;
1100         int size_changed = 0;
1101
1102         trace_ext4_journalled_write_end(inode, pos, len, copied);
1103         from = pos & (PAGE_CACHE_SIZE - 1);
1104         to = from + len;
1105
1106         BUG_ON(!ext4_handle_valid(handle));
1107
1108         if (ext4_has_inline_data(inode))
1109                 copied = ext4_write_inline_data_end(inode, pos, len,
1110                                                     copied, page);
1111         else {
1112                 if (copied < len) {
1113                         if (!PageUptodate(page))
1114                                 copied = 0;
1115                         page_zero_new_buffers(page, from+copied, to);
1116                 }
1117
1118                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1119                                              to, &partial, write_end_fn);
1120                 if (!partial)
1121                         SetPageUptodate(page);
1122         }
1123         size_changed = ext4_update_inode_size(inode, pos + copied);
1124         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1125         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1126         unlock_page(page);
1127         page_cache_release(page);
1128
1129         if (size_changed) {
1130                 ret2 = ext4_mark_inode_dirty(handle, inode);
1131                 if (!ret)
1132                         ret = ret2;
1133         }
1134
1135         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1136                 /* if we have allocated more blocks and copied
1137                  * less. We will have blocks allocated outside
1138                  * inode->i_size. So truncate them
1139                  */
1140                 ext4_orphan_add(handle, inode);
1141
1142         ret2 = ext4_journal_stop(handle);
1143         if (!ret)
1144                 ret = ret2;
1145         if (pos + len > inode->i_size) {
1146                 ext4_truncate_failed_write(inode);
1147                 /*
1148                  * If truncate failed early the inode might still be
1149                  * on the orphan list; we need to make sure the inode
1150                  * is removed from the orphan list in that case.
1151                  */
1152                 if (inode->i_nlink)
1153                         ext4_orphan_del(NULL, inode);
1154         }
1155
1156         return ret ? ret : copied;
1157 }
1158
1159 /*
1160  * Reserve a single cluster located at lblock
1161  */
1162 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1163 {
1164         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1165         struct ext4_inode_info *ei = EXT4_I(inode);
1166         unsigned int md_needed;
1167         int ret;
1168
1169         /*
1170          * We will charge metadata quota at writeout time; this saves
1171          * us from metadata over-estimation, though we may go over by
1172          * a small amount in the end.  Here we just reserve for data.
1173          */
1174         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1175         if (ret)
1176                 return ret;
1177
1178         /*
1179          * recalculate the amount of metadata blocks to reserve
1180          * in order to allocate nrblocks
1181          * worse case is one extent per block
1182          */
1183         spin_lock(&ei->i_block_reservation_lock);
1184         /*
1185          * ext4_calc_metadata_amount() has side effects, which we have
1186          * to be prepared undo if we fail to claim space.
1187          */
1188         md_needed = 0;
1189         trace_ext4_da_reserve_space(inode, 0);
1190
1191         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1192                 spin_unlock(&ei->i_block_reservation_lock);
1193                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1194                 return -ENOSPC;
1195         }
1196         ei->i_reserved_data_blocks++;
1197         spin_unlock(&ei->i_block_reservation_lock);
1198
1199         return 0;       /* success */
1200 }
1201
1202 static void ext4_da_release_space(struct inode *inode, int to_free)
1203 {
1204         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205         struct ext4_inode_info *ei = EXT4_I(inode);
1206
1207         if (!to_free)
1208                 return;         /* Nothing to release, exit */
1209
1210         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1211
1212         trace_ext4_da_release_space(inode, to_free);
1213         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1214                 /*
1215                  * if there aren't enough reserved blocks, then the
1216                  * counter is messed up somewhere.  Since this
1217                  * function is called from invalidate page, it's
1218                  * harmless to return without any action.
1219                  */
1220                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1221                          "ino %lu, to_free %d with only %d reserved "
1222                          "data blocks", inode->i_ino, to_free,
1223                          ei->i_reserved_data_blocks);
1224                 WARN_ON(1);
1225                 to_free = ei->i_reserved_data_blocks;
1226         }
1227         ei->i_reserved_data_blocks -= to_free;
1228
1229         /* update fs dirty data blocks counter */
1230         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1231
1232         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1233
1234         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1235 }
1236
1237 static void ext4_da_page_release_reservation(struct page *page,
1238                                              unsigned int offset,
1239                                              unsigned int length)
1240 {
1241         int to_release = 0;
1242         struct buffer_head *head, *bh;
1243         unsigned int curr_off = 0;
1244         struct inode *inode = page->mapping->host;
1245         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1246         unsigned int stop = offset + length;
1247         int num_clusters;
1248         ext4_fsblk_t lblk;
1249
1250         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1251
1252         head = page_buffers(page);
1253         bh = head;
1254         do {
1255                 unsigned int next_off = curr_off + bh->b_size;
1256
1257                 if (next_off > stop)
1258                         break;
1259
1260                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1261                         to_release++;
1262                         clear_buffer_delay(bh);
1263                 }
1264                 curr_off = next_off;
1265         } while ((bh = bh->b_this_page) != head);
1266
1267         if (to_release) {
1268                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1269                 ext4_es_remove_extent(inode, lblk, to_release);
1270         }
1271
1272         /* If we have released all the blocks belonging to a cluster, then we
1273          * need to release the reserved space for that cluster. */
1274         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1275         while (num_clusters > 0) {
1276                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1277                         ((num_clusters - 1) << sbi->s_cluster_bits);
1278                 if (sbi->s_cluster_ratio == 1 ||
1279                     !ext4_find_delalloc_cluster(inode, lblk))
1280                         ext4_da_release_space(inode, 1);
1281
1282                 num_clusters--;
1283         }
1284 }
1285
1286 /*
1287  * Delayed allocation stuff
1288  */
1289
1290 struct mpage_da_data {
1291         struct inode *inode;
1292         struct writeback_control *wbc;
1293
1294         pgoff_t first_page;     /* The first page to write */
1295         pgoff_t next_page;      /* Current page to examine */
1296         pgoff_t last_page;      /* Last page to examine */
1297         /*
1298          * Extent to map - this can be after first_page because that can be
1299          * fully mapped. We somewhat abuse m_flags to store whether the extent
1300          * is delalloc or unwritten.
1301          */
1302         struct ext4_map_blocks map;
1303         struct ext4_io_submit io_submit;        /* IO submission data */
1304 };
1305
1306 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1307                                        bool invalidate)
1308 {
1309         int nr_pages, i;
1310         pgoff_t index, end;
1311         struct pagevec pvec;
1312         struct inode *inode = mpd->inode;
1313         struct address_space *mapping = inode->i_mapping;
1314
1315         /* This is necessary when next_page == 0. */
1316         if (mpd->first_page >= mpd->next_page)
1317                 return;
1318
1319         index = mpd->first_page;
1320         end   = mpd->next_page - 1;
1321         if (invalidate) {
1322                 ext4_lblk_t start, last;
1323                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1324                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1325                 ext4_es_remove_extent(inode, start, last - start + 1);
1326         }
1327
1328         pagevec_init(&pvec, 0);
1329         while (index <= end) {
1330                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1331                 if (nr_pages == 0)
1332                         break;
1333                 for (i = 0; i < nr_pages; i++) {
1334                         struct page *page = pvec.pages[i];
1335                         if (page->index > end)
1336                                 break;
1337                         BUG_ON(!PageLocked(page));
1338                         BUG_ON(PageWriteback(page));
1339                         if (invalidate) {
1340                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1341                                 ClearPageUptodate(page);
1342                         }
1343                         unlock_page(page);
1344                 }
1345                 index = pvec.pages[nr_pages - 1]->index + 1;
1346                 pagevec_release(&pvec);
1347         }
1348 }
1349
1350 static void ext4_print_free_blocks(struct inode *inode)
1351 {
1352         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1353         struct super_block *sb = inode->i_sb;
1354         struct ext4_inode_info *ei = EXT4_I(inode);
1355
1356         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1357                EXT4_C2B(EXT4_SB(inode->i_sb),
1358                         ext4_count_free_clusters(sb)));
1359         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1360         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1361                (long long) EXT4_C2B(EXT4_SB(sb),
1362                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1363         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1364                (long long) EXT4_C2B(EXT4_SB(sb),
1365                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1366         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1367         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1368                  ei->i_reserved_data_blocks);
1369         return;
1370 }
1371
1372 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1373 {
1374         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1375 }
1376
1377 /*
1378  * This function is grabs code from the very beginning of
1379  * ext4_map_blocks, but assumes that the caller is from delayed write
1380  * time. This function looks up the requested blocks and sets the
1381  * buffer delay bit under the protection of i_data_sem.
1382  */
1383 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1384                               struct ext4_map_blocks *map,
1385                               struct buffer_head *bh)
1386 {
1387         struct extent_status es;
1388         int retval;
1389         sector_t invalid_block = ~((sector_t) 0xffff);
1390 #ifdef ES_AGGRESSIVE_TEST
1391         struct ext4_map_blocks orig_map;
1392
1393         memcpy(&orig_map, map, sizeof(*map));
1394 #endif
1395
1396         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1397                 invalid_block = ~0;
1398
1399         map->m_flags = 0;
1400         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1401                   "logical block %lu\n", inode->i_ino, map->m_len,
1402                   (unsigned long) map->m_lblk);
1403
1404         /* Lookup extent status tree firstly */
1405         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1406                 if (ext4_es_is_hole(&es)) {
1407                         retval = 0;
1408                         down_read(&EXT4_I(inode)->i_data_sem);
1409                         goto add_delayed;
1410                 }
1411
1412                 /*
1413                  * Delayed extent could be allocated by fallocate.
1414                  * So we need to check it.
1415                  */
1416                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1417                         map_bh(bh, inode->i_sb, invalid_block);
1418                         set_buffer_new(bh);
1419                         set_buffer_delay(bh);
1420                         return 0;
1421                 }
1422
1423                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1424                 retval = es.es_len - (iblock - es.es_lblk);
1425                 if (retval > map->m_len)
1426                         retval = map->m_len;
1427                 map->m_len = retval;
1428                 if (ext4_es_is_written(&es))
1429                         map->m_flags |= EXT4_MAP_MAPPED;
1430                 else if (ext4_es_is_unwritten(&es))
1431                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1432                 else
1433                         BUG_ON(1);
1434
1435 #ifdef ES_AGGRESSIVE_TEST
1436                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1437 #endif
1438                 return retval;
1439         }
1440
1441         /*
1442          * Try to see if we can get the block without requesting a new
1443          * file system block.
1444          */
1445         down_read(&EXT4_I(inode)->i_data_sem);
1446         if (ext4_has_inline_data(inode))
1447                 retval = 0;
1448         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1449                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1450         else
1451                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1452
1453 add_delayed:
1454         if (retval == 0) {
1455                 int ret;
1456                 /*
1457                  * XXX: __block_prepare_write() unmaps passed block,
1458                  * is it OK?
1459                  */
1460                 /*
1461                  * If the block was allocated from previously allocated cluster,
1462                  * then we don't need to reserve it again. However we still need
1463                  * to reserve metadata for every block we're going to write.
1464                  */
1465                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1466                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1467                         ret = ext4_da_reserve_space(inode, iblock);
1468                         if (ret) {
1469                                 /* not enough space to reserve */
1470                                 retval = ret;
1471                                 goto out_unlock;
1472                         }
1473                 }
1474
1475                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1476                                             ~0, EXTENT_STATUS_DELAYED);
1477                 if (ret) {
1478                         retval = ret;
1479                         goto out_unlock;
1480                 }
1481
1482                 map_bh(bh, inode->i_sb, invalid_block);
1483                 set_buffer_new(bh);
1484                 set_buffer_delay(bh);
1485         } else if (retval > 0) {
1486                 int ret;
1487                 unsigned int status;
1488
1489                 if (unlikely(retval != map->m_len)) {
1490                         ext4_warning(inode->i_sb,
1491                                      "ES len assertion failed for inode "
1492                                      "%lu: retval %d != map->m_len %d",
1493                                      inode->i_ino, retval, map->m_len);
1494                         WARN_ON(1);
1495                 }
1496
1497                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1498                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1499                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1500                                             map->m_pblk, status);
1501                 if (ret != 0)
1502                         retval = ret;
1503         }
1504
1505 out_unlock:
1506         up_read((&EXT4_I(inode)->i_data_sem));
1507
1508         return retval;
1509 }
1510
1511 /*
1512  * This is a special get_block_t callback which is used by
1513  * ext4_da_write_begin().  It will either return mapped block or
1514  * reserve space for a single block.
1515  *
1516  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1517  * We also have b_blocknr = -1 and b_bdev initialized properly
1518  *
1519  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1520  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1521  * initialized properly.
1522  */
1523 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1524                            struct buffer_head *bh, int create)
1525 {
1526         struct ext4_map_blocks map;
1527         int ret = 0;
1528
1529         BUG_ON(create == 0);
1530         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1531
1532         map.m_lblk = iblock;
1533         map.m_len = 1;
1534
1535         /*
1536          * first, we need to know whether the block is allocated already
1537          * preallocated blocks are unmapped but should treated
1538          * the same as allocated blocks.
1539          */
1540         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1541         if (ret <= 0)
1542                 return ret;
1543
1544         map_bh(bh, inode->i_sb, map.m_pblk);
1545         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1546
1547         if (buffer_unwritten(bh)) {
1548                 /* A delayed write to unwritten bh should be marked
1549                  * new and mapped.  Mapped ensures that we don't do
1550                  * get_block multiple times when we write to the same
1551                  * offset and new ensures that we do proper zero out
1552                  * for partial write.
1553                  */
1554                 set_buffer_new(bh);
1555                 set_buffer_mapped(bh);
1556         }
1557         return 0;
1558 }
1559
1560 static int bget_one(handle_t *handle, struct buffer_head *bh)
1561 {
1562         get_bh(bh);
1563         return 0;
1564 }
1565
1566 static int bput_one(handle_t *handle, struct buffer_head *bh)
1567 {
1568         put_bh(bh);
1569         return 0;
1570 }
1571
1572 static int __ext4_journalled_writepage(struct page *page,
1573                                        unsigned int len)
1574 {
1575         struct address_space *mapping = page->mapping;
1576         struct inode *inode = mapping->host;
1577         struct buffer_head *page_bufs = NULL;
1578         handle_t *handle = NULL;
1579         int ret = 0, err = 0;
1580         int inline_data = ext4_has_inline_data(inode);
1581         struct buffer_head *inode_bh = NULL;
1582
1583         ClearPageChecked(page);
1584
1585         if (inline_data) {
1586                 BUG_ON(page->index != 0);
1587                 BUG_ON(len > ext4_get_max_inline_size(inode));
1588                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1589                 if (inode_bh == NULL)
1590                         goto out;
1591         } else {
1592                 page_bufs = page_buffers(page);
1593                 if (!page_bufs) {
1594                         BUG();
1595                         goto out;
1596                 }
1597                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1598                                        NULL, bget_one);
1599         }
1600         /* As soon as we unlock the page, it can go away, but we have
1601          * references to buffers so we are safe */
1602         unlock_page(page);
1603
1604         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1605                                     ext4_writepage_trans_blocks(inode));
1606         if (IS_ERR(handle)) {
1607                 ret = PTR_ERR(handle);
1608                 goto out;
1609         }
1610
1611         BUG_ON(!ext4_handle_valid(handle));
1612
1613         if (inline_data) {
1614                 BUFFER_TRACE(inode_bh, "get write access");
1615                 ret = ext4_journal_get_write_access(handle, inode_bh);
1616
1617                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1618
1619         } else {
1620                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1621                                              do_journal_get_write_access);
1622
1623                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1624                                              write_end_fn);
1625         }
1626         if (ret == 0)
1627                 ret = err;
1628         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1629         err = ext4_journal_stop(handle);
1630         if (!ret)
1631                 ret = err;
1632
1633         if (!ext4_has_inline_data(inode))
1634                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1635                                        NULL, bput_one);
1636         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1637 out:
1638         brelse(inode_bh);
1639         return ret;
1640 }
1641
1642 /*
1643  * Note that we don't need to start a transaction unless we're journaling data
1644  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1645  * need to file the inode to the transaction's list in ordered mode because if
1646  * we are writing back data added by write(), the inode is already there and if
1647  * we are writing back data modified via mmap(), no one guarantees in which
1648  * transaction the data will hit the disk. In case we are journaling data, we
1649  * cannot start transaction directly because transaction start ranks above page
1650  * lock so we have to do some magic.
1651  *
1652  * This function can get called via...
1653  *   - ext4_writepages after taking page lock (have journal handle)
1654  *   - journal_submit_inode_data_buffers (no journal handle)
1655  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1656  *   - grab_page_cache when doing write_begin (have journal handle)
1657  *
1658  * We don't do any block allocation in this function. If we have page with
1659  * multiple blocks we need to write those buffer_heads that are mapped. This
1660  * is important for mmaped based write. So if we do with blocksize 1K
1661  * truncate(f, 1024);
1662  * a = mmap(f, 0, 4096);
1663  * a[0] = 'a';
1664  * truncate(f, 4096);
1665  * we have in the page first buffer_head mapped via page_mkwrite call back
1666  * but other buffer_heads would be unmapped but dirty (dirty done via the
1667  * do_wp_page). So writepage should write the first block. If we modify
1668  * the mmap area beyond 1024 we will again get a page_fault and the
1669  * page_mkwrite callback will do the block allocation and mark the
1670  * buffer_heads mapped.
1671  *
1672  * We redirty the page if we have any buffer_heads that is either delay or
1673  * unwritten in the page.
1674  *
1675  * We can get recursively called as show below.
1676  *
1677  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1678  *              ext4_writepage()
1679  *
1680  * But since we don't do any block allocation we should not deadlock.
1681  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1682  */
1683 static int ext4_writepage(struct page *page,
1684                           struct writeback_control *wbc)
1685 {
1686         int ret = 0;
1687         loff_t size;
1688         unsigned int len;
1689         struct buffer_head *page_bufs = NULL;
1690         struct inode *inode = page->mapping->host;
1691         struct ext4_io_submit io_submit;
1692         bool keep_towrite = false;
1693
1694         trace_ext4_writepage(page);
1695         size = i_size_read(inode);
1696         if (page->index == size >> PAGE_CACHE_SHIFT)
1697                 len = size & ~PAGE_CACHE_MASK;
1698         else
1699                 len = PAGE_CACHE_SIZE;
1700
1701         page_bufs = page_buffers(page);
1702         /*
1703          * We cannot do block allocation or other extent handling in this
1704          * function. If there are buffers needing that, we have to redirty
1705          * the page. But we may reach here when we do a journal commit via
1706          * journal_submit_inode_data_buffers() and in that case we must write
1707          * allocated buffers to achieve data=ordered mode guarantees.
1708          */
1709         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1710                                    ext4_bh_delay_or_unwritten)) {
1711                 redirty_page_for_writepage(wbc, page);
1712                 if (current->flags & PF_MEMALLOC) {
1713                         /*
1714                          * For memory cleaning there's no point in writing only
1715                          * some buffers. So just bail out. Warn if we came here
1716                          * from direct reclaim.
1717                          */
1718                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1719                                                         == PF_MEMALLOC);
1720                         unlock_page(page);
1721                         return 0;
1722                 }
1723                 keep_towrite = true;
1724         }
1725
1726         if (PageChecked(page) && ext4_should_journal_data(inode))
1727                 /*
1728                  * It's mmapped pagecache.  Add buffers and journal it.  There
1729                  * doesn't seem much point in redirtying the page here.
1730                  */
1731                 return __ext4_journalled_writepage(page, len);
1732
1733         ext4_io_submit_init(&io_submit, wbc);
1734         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1735         if (!io_submit.io_end) {
1736                 redirty_page_for_writepage(wbc, page);
1737                 unlock_page(page);
1738                 return -ENOMEM;
1739         }
1740         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1741         ext4_io_submit(&io_submit);
1742         /* Drop io_end reference we got from init */
1743         ext4_put_io_end_defer(io_submit.io_end);
1744         return ret;
1745 }
1746
1747 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1748 {
1749         int len;
1750         loff_t size = i_size_read(mpd->inode);
1751         int err;
1752
1753         BUG_ON(page->index != mpd->first_page);
1754         if (page->index == size >> PAGE_CACHE_SHIFT)
1755                 len = size & ~PAGE_CACHE_MASK;
1756         else
1757                 len = PAGE_CACHE_SIZE;
1758         clear_page_dirty_for_io(page);
1759         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1760         if (!err)
1761                 mpd->wbc->nr_to_write--;
1762         mpd->first_page++;
1763
1764         return err;
1765 }
1766
1767 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1768
1769 /*
1770  * mballoc gives us at most this number of blocks...
1771  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1772  * The rest of mballoc seems to handle chunks up to full group size.
1773  */
1774 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1775
1776 /*
1777  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1778  *
1779  * @mpd - extent of blocks
1780  * @lblk - logical number of the block in the file
1781  * @bh - buffer head we want to add to the extent
1782  *
1783  * The function is used to collect contig. blocks in the same state. If the
1784  * buffer doesn't require mapping for writeback and we haven't started the
1785  * extent of buffers to map yet, the function returns 'true' immediately - the
1786  * caller can write the buffer right away. Otherwise the function returns true
1787  * if the block has been added to the extent, false if the block couldn't be
1788  * added.
1789  */
1790 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1791                                    struct buffer_head *bh)
1792 {
1793         struct ext4_map_blocks *map = &mpd->map;
1794
1795         /* Buffer that doesn't need mapping for writeback? */
1796         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1797             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1798                 /* So far no extent to map => we write the buffer right away */
1799                 if (map->m_len == 0)
1800                         return true;
1801                 return false;
1802         }
1803
1804         /* First block in the extent? */
1805         if (map->m_len == 0) {
1806                 map->m_lblk = lblk;
1807                 map->m_len = 1;
1808                 map->m_flags = bh->b_state & BH_FLAGS;
1809                 return true;
1810         }
1811
1812         /* Don't go larger than mballoc is willing to allocate */
1813         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1814                 return false;
1815
1816         /* Can we merge the block to our big extent? */
1817         if (lblk == map->m_lblk + map->m_len &&
1818             (bh->b_state & BH_FLAGS) == map->m_flags) {
1819                 map->m_len++;
1820                 return true;
1821         }
1822         return false;
1823 }
1824
1825 /*
1826  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1827  *
1828  * @mpd - extent of blocks for mapping
1829  * @head - the first buffer in the page
1830  * @bh - buffer we should start processing from
1831  * @lblk - logical number of the block in the file corresponding to @bh
1832  *
1833  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1834  * the page for IO if all buffers in this page were mapped and there's no
1835  * accumulated extent of buffers to map or add buffers in the page to the
1836  * extent of buffers to map. The function returns 1 if the caller can continue
1837  * by processing the next page, 0 if it should stop adding buffers to the
1838  * extent to map because we cannot extend it anymore. It can also return value
1839  * < 0 in case of error during IO submission.
1840  */
1841 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1842                                    struct buffer_head *head,
1843                                    struct buffer_head *bh,
1844                                    ext4_lblk_t lblk)
1845 {
1846         struct inode *inode = mpd->inode;
1847         int err;
1848         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1849                                                         >> inode->i_blkbits;
1850
1851         do {
1852                 BUG_ON(buffer_locked(bh));
1853
1854                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1855                         /* Found extent to map? */
1856                         if (mpd->map.m_len)
1857                                 return 0;
1858                         /* Everything mapped so far and we hit EOF */
1859                         break;
1860                 }
1861         } while (lblk++, (bh = bh->b_this_page) != head);
1862         /* So far everything mapped? Submit the page for IO. */
1863         if (mpd->map.m_len == 0) {
1864                 err = mpage_submit_page(mpd, head->b_page);
1865                 if (err < 0)
1866                         return err;
1867         }
1868         return lblk < blocks;
1869 }
1870
1871 /*
1872  * mpage_map_buffers - update buffers corresponding to changed extent and
1873  *                     submit fully mapped pages for IO
1874  *
1875  * @mpd - description of extent to map, on return next extent to map
1876  *
1877  * Scan buffers corresponding to changed extent (we expect corresponding pages
1878  * to be already locked) and update buffer state according to new extent state.
1879  * We map delalloc buffers to their physical location, clear unwritten bits,
1880  * and mark buffers as uninit when we perform writes to unwritten extents
1881  * and do extent conversion after IO is finished. If the last page is not fully
1882  * mapped, we update @map to the next extent in the last page that needs
1883  * mapping. Otherwise we submit the page for IO.
1884  */
1885 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1886 {
1887         struct pagevec pvec;
1888         int nr_pages, i;
1889         struct inode *inode = mpd->inode;
1890         struct buffer_head *head, *bh;
1891         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1892         pgoff_t start, end;
1893         ext4_lblk_t lblk;
1894         sector_t pblock;
1895         int err;
1896
1897         start = mpd->map.m_lblk >> bpp_bits;
1898         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1899         lblk = start << bpp_bits;
1900         pblock = mpd->map.m_pblk;
1901
1902         pagevec_init(&pvec, 0);
1903         while (start <= end) {
1904                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1905                                           PAGEVEC_SIZE);
1906                 if (nr_pages == 0)
1907                         break;
1908                 for (i = 0; i < nr_pages; i++) {
1909                         struct page *page = pvec.pages[i];
1910
1911                         if (page->index > end)
1912                                 break;
1913                         /* Up to 'end' pages must be contiguous */
1914                         BUG_ON(page->index != start);
1915                         bh = head = page_buffers(page);
1916                         do {
1917                                 if (lblk < mpd->map.m_lblk)
1918                                         continue;
1919                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1920                                         /*
1921                                          * Buffer after end of mapped extent.
1922                                          * Find next buffer in the page to map.
1923                                          */
1924                                         mpd->map.m_len = 0;
1925                                         mpd->map.m_flags = 0;
1926                                         /*
1927                                          * FIXME: If dioread_nolock supports
1928                                          * blocksize < pagesize, we need to make
1929                                          * sure we add size mapped so far to
1930                                          * io_end->size as the following call
1931                                          * can submit the page for IO.
1932                                          */
1933                                         err = mpage_process_page_bufs(mpd, head,
1934                                                                       bh, lblk);
1935                                         pagevec_release(&pvec);
1936                                         if (err > 0)
1937                                                 err = 0;
1938                                         return err;
1939                                 }
1940                                 if (buffer_delay(bh)) {
1941                                         clear_buffer_delay(bh);
1942                                         bh->b_blocknr = pblock++;
1943                                 }
1944                                 clear_buffer_unwritten(bh);
1945                         } while (lblk++, (bh = bh->b_this_page) != head);
1946
1947                         /*
1948                          * FIXME: This is going to break if dioread_nolock
1949                          * supports blocksize < pagesize as we will try to
1950                          * convert potentially unmapped parts of inode.
1951                          */
1952                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1953                         /* Page fully mapped - let IO run! */
1954                         err = mpage_submit_page(mpd, page);
1955                         if (err < 0) {
1956                                 pagevec_release(&pvec);
1957                                 return err;
1958                         }
1959                         start++;
1960                 }
1961                 pagevec_release(&pvec);
1962         }
1963         /* Extent fully mapped and matches with page boundary. We are done. */
1964         mpd->map.m_len = 0;
1965         mpd->map.m_flags = 0;
1966         return 0;
1967 }
1968
1969 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1970 {
1971         struct inode *inode = mpd->inode;
1972         struct ext4_map_blocks *map = &mpd->map;
1973         int get_blocks_flags;
1974         int err, dioread_nolock;
1975
1976         trace_ext4_da_write_pages_extent(inode, map);
1977         /*
1978          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1979          * to convert an unwritten extent to be initialized (in the case
1980          * where we have written into one or more preallocated blocks).  It is
1981          * possible that we're going to need more metadata blocks than
1982          * previously reserved. However we must not fail because we're in
1983          * writeback and there is nothing we can do about it so it might result
1984          * in data loss.  So use reserved blocks to allocate metadata if
1985          * possible.
1986          *
1987          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1988          * the blocks in question are delalloc blocks.  This indicates
1989          * that the blocks and quotas has already been checked when
1990          * the data was copied into the page cache.
1991          */
1992         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1993                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1994         dioread_nolock = ext4_should_dioread_nolock(inode);
1995         if (dioread_nolock)
1996                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1997         if (map->m_flags & (1 << BH_Delay))
1998                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1999
2000         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2001         if (err < 0)
2002                 return err;
2003         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2004                 if (!mpd->io_submit.io_end->handle &&
2005                     ext4_handle_valid(handle)) {
2006                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2007                         handle->h_rsv_handle = NULL;
2008                 }
2009                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2010         }
2011
2012         BUG_ON(map->m_len == 0);
2013         if (map->m_flags & EXT4_MAP_NEW) {
2014                 struct block_device *bdev = inode->i_sb->s_bdev;
2015                 int i;
2016
2017                 for (i = 0; i < map->m_len; i++)
2018                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2019         }
2020         return 0;
2021 }
2022
2023 /*
2024  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2025  *                               mpd->len and submit pages underlying it for IO
2026  *
2027  * @handle - handle for journal operations
2028  * @mpd - extent to map
2029  * @give_up_on_write - we set this to true iff there is a fatal error and there
2030  *                     is no hope of writing the data. The caller should discard
2031  *                     dirty pages to avoid infinite loops.
2032  *
2033  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2034  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2035  * them to initialized or split the described range from larger unwritten
2036  * extent. Note that we need not map all the described range since allocation
2037  * can return less blocks or the range is covered by more unwritten extents. We
2038  * cannot map more because we are limited by reserved transaction credits. On
2039  * the other hand we always make sure that the last touched page is fully
2040  * mapped so that it can be written out (and thus forward progress is
2041  * guaranteed). After mapping we submit all mapped pages for IO.
2042  */
2043 static int mpage_map_and_submit_extent(handle_t *handle,
2044                                        struct mpage_da_data *mpd,
2045                                        bool *give_up_on_write)
2046 {
2047         struct inode *inode = mpd->inode;
2048         struct ext4_map_blocks *map = &mpd->map;
2049         int err;
2050         loff_t disksize;
2051         int progress = 0;
2052
2053         mpd->io_submit.io_end->offset =
2054                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2055         do {
2056                 err = mpage_map_one_extent(handle, mpd);
2057                 if (err < 0) {
2058                         struct super_block *sb = inode->i_sb;
2059
2060                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2061                                 goto invalidate_dirty_pages;
2062                         /*
2063                          * Let the uper layers retry transient errors.
2064                          * In the case of ENOSPC, if ext4_count_free_blocks()
2065                          * is non-zero, a commit should free up blocks.
2066                          */
2067                         if ((err == -ENOMEM) ||
2068                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2069                                 if (progress)
2070                                         goto update_disksize;
2071                                 return err;
2072                         }
2073                         ext4_msg(sb, KERN_CRIT,
2074                                  "Delayed block allocation failed for "
2075                                  "inode %lu at logical offset %llu with"
2076                                  " max blocks %u with error %d",
2077                                  inode->i_ino,
2078                                  (unsigned long long)map->m_lblk,
2079                                  (unsigned)map->m_len, -err);
2080                         ext4_msg(sb, KERN_CRIT,
2081                                  "This should not happen!! Data will "
2082                                  "be lost\n");
2083                         if (err == -ENOSPC)
2084                                 ext4_print_free_blocks(inode);
2085                 invalidate_dirty_pages:
2086                         *give_up_on_write = true;
2087                         return err;
2088                 }
2089                 progress = 1;
2090                 /*
2091                  * Update buffer state, submit mapped pages, and get us new
2092                  * extent to map
2093                  */
2094                 err = mpage_map_and_submit_buffers(mpd);
2095                 if (err < 0)
2096                         goto update_disksize;
2097         } while (map->m_len);
2098
2099 update_disksize:
2100         /*
2101          * Update on-disk size after IO is submitted.  Races with
2102          * truncate are avoided by checking i_size under i_data_sem.
2103          */
2104         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2105         if (disksize > EXT4_I(inode)->i_disksize) {
2106                 int err2;
2107                 loff_t i_size;
2108
2109                 down_write(&EXT4_I(inode)->i_data_sem);
2110                 i_size = i_size_read(inode);
2111                 if (disksize > i_size)
2112                         disksize = i_size;
2113                 if (disksize > EXT4_I(inode)->i_disksize)
2114                         EXT4_I(inode)->i_disksize = disksize;
2115                 err2 = ext4_mark_inode_dirty(handle, inode);
2116                 up_write(&EXT4_I(inode)->i_data_sem);
2117                 if (err2)
2118                         ext4_error(inode->i_sb,
2119                                    "Failed to mark inode %lu dirty",
2120                                    inode->i_ino);
2121                 if (!err)
2122                         err = err2;
2123         }
2124         return err;
2125 }
2126
2127 /*
2128  * Calculate the total number of credits to reserve for one writepages
2129  * iteration. This is called from ext4_writepages(). We map an extent of
2130  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2131  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2132  * bpp - 1 blocks in bpp different extents.
2133  */
2134 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2135 {
2136         int bpp = ext4_journal_blocks_per_page(inode);
2137
2138         return ext4_meta_trans_blocks(inode,
2139                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2140 }
2141
2142 /*
2143  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2144  *                               and underlying extent to map
2145  *
2146  * @mpd - where to look for pages
2147  *
2148  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2149  * IO immediately. When we find a page which isn't mapped we start accumulating
2150  * extent of buffers underlying these pages that needs mapping (formed by
2151  * either delayed or unwritten buffers). We also lock the pages containing
2152  * these buffers. The extent found is returned in @mpd structure (starting at
2153  * mpd->lblk with length mpd->len blocks).
2154  *
2155  * Note that this function can attach bios to one io_end structure which are
2156  * neither logically nor physically contiguous. Although it may seem as an
2157  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2158  * case as we need to track IO to all buffers underlying a page in one io_end.
2159  */
2160 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2161 {
2162         struct address_space *mapping = mpd->inode->i_mapping;
2163         struct pagevec pvec;
2164         unsigned int nr_pages;
2165         long left = mpd->wbc->nr_to_write;
2166         pgoff_t index = mpd->first_page;
2167         pgoff_t end = mpd->last_page;
2168         int tag;
2169         int i, err = 0;
2170         int blkbits = mpd->inode->i_blkbits;
2171         ext4_lblk_t lblk;
2172         struct buffer_head *head;
2173
2174         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2175                 tag = PAGECACHE_TAG_TOWRITE;
2176         else
2177                 tag = PAGECACHE_TAG_DIRTY;
2178
2179         pagevec_init(&pvec, 0);
2180         mpd->map.m_len = 0;
2181         mpd->next_page = index;
2182         while (index <= end) {
2183                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2184                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2185                 if (nr_pages == 0)
2186                         goto out;
2187
2188                 for (i = 0; i < nr_pages; i++) {
2189                         struct page *page = pvec.pages[i];
2190
2191                         /*
2192                          * At this point, the page may be truncated or
2193                          * invalidated (changing page->mapping to NULL), or
2194                          * even swizzled back from swapper_space to tmpfs file
2195                          * mapping. However, page->index will not change
2196                          * because we have a reference on the page.
2197                          */
2198                         if (page->index > end)
2199                                 goto out;
2200
2201                         /*
2202                          * Accumulated enough dirty pages? This doesn't apply
2203                          * to WB_SYNC_ALL mode. For integrity sync we have to
2204                          * keep going because someone may be concurrently
2205                          * dirtying pages, and we might have synced a lot of
2206                          * newly appeared dirty pages, but have not synced all
2207                          * of the old dirty pages.
2208                          */
2209                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2210                                 goto out;
2211
2212                         /* If we can't merge this page, we are done. */
2213                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2214                                 goto out;
2215
2216                         lock_page(page);
2217                         /*
2218                          * If the page is no longer dirty, or its mapping no
2219                          * longer corresponds to inode we are writing (which
2220                          * means it has been truncated or invalidated), or the
2221                          * page is already under writeback and we are not doing
2222                          * a data integrity writeback, skip the page
2223                          */
2224                         if (!PageDirty(page) ||
2225                             (PageWriteback(page) &&
2226                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2227                             unlikely(page->mapping != mapping)) {
2228                                 unlock_page(page);
2229                                 continue;
2230                         }
2231
2232                         wait_on_page_writeback(page);
2233                         BUG_ON(PageWriteback(page));
2234
2235                         if (mpd->map.m_len == 0)
2236                                 mpd->first_page = page->index;
2237                         mpd->next_page = page->index + 1;
2238                         /* Add all dirty buffers to mpd */
2239                         lblk = ((ext4_lblk_t)page->index) <<
2240                                 (PAGE_CACHE_SHIFT - blkbits);
2241                         head = page_buffers(page);
2242                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2243                         if (err <= 0)
2244                                 goto out;
2245                         err = 0;
2246                         left--;
2247                 }
2248                 pagevec_release(&pvec);
2249                 cond_resched();
2250         }
2251         return 0;
2252 out:
2253         pagevec_release(&pvec);
2254         return err;
2255 }
2256
2257 static int __writepage(struct page *page, struct writeback_control *wbc,
2258                        void *data)
2259 {
2260         struct address_space *mapping = data;
2261         int ret = ext4_writepage(page, wbc);
2262         mapping_set_error(mapping, ret);
2263         return ret;
2264 }
2265
2266 static int ext4_writepages(struct address_space *mapping,
2267                            struct writeback_control *wbc)
2268 {
2269         pgoff_t writeback_index = 0;
2270         long nr_to_write = wbc->nr_to_write;
2271         int range_whole = 0;
2272         int cycled = 1;
2273         handle_t *handle = NULL;
2274         struct mpage_da_data mpd;
2275         struct inode *inode = mapping->host;
2276         int needed_blocks, rsv_blocks = 0, ret = 0;
2277         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2278         bool done;
2279         struct blk_plug plug;
2280         bool give_up_on_write = false;
2281
2282         trace_ext4_writepages(inode, wbc);
2283
2284         /*
2285          * No pages to write? This is mainly a kludge to avoid starting
2286          * a transaction for special inodes like journal inode on last iput()
2287          * because that could violate lock ordering on umount
2288          */
2289         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2290                 goto out_writepages;
2291
2292         if (ext4_should_journal_data(inode)) {
2293                 struct blk_plug plug;
2294
2295                 blk_start_plug(&plug);
2296                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2297                 blk_finish_plug(&plug);
2298                 goto out_writepages;
2299         }
2300
2301         /*
2302          * If the filesystem has aborted, it is read-only, so return
2303          * right away instead of dumping stack traces later on that
2304          * will obscure the real source of the problem.  We test
2305          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2306          * the latter could be true if the filesystem is mounted
2307          * read-only, and in that case, ext4_writepages should
2308          * *never* be called, so if that ever happens, we would want
2309          * the stack trace.
2310          */
2311         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2312                 ret = -EROFS;
2313                 goto out_writepages;
2314         }
2315
2316         if (ext4_should_dioread_nolock(inode)) {
2317                 /*
2318                  * We may need to convert up to one extent per block in
2319                  * the page and we may dirty the inode.
2320                  */
2321                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2322         }
2323
2324         /*
2325          * If we have inline data and arrive here, it means that
2326          * we will soon create the block for the 1st page, so
2327          * we'd better clear the inline data here.
2328          */
2329         if (ext4_has_inline_data(inode)) {
2330                 /* Just inode will be modified... */
2331                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2332                 if (IS_ERR(handle)) {
2333                         ret = PTR_ERR(handle);
2334                         goto out_writepages;
2335                 }
2336                 BUG_ON(ext4_test_inode_state(inode,
2337                                 EXT4_STATE_MAY_INLINE_DATA));
2338                 ext4_destroy_inline_data(handle, inode);
2339                 ext4_journal_stop(handle);
2340         }
2341
2342         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2343                 range_whole = 1;
2344
2345         if (wbc->range_cyclic) {
2346                 writeback_index = mapping->writeback_index;
2347                 if (writeback_index)
2348                         cycled = 0;
2349                 mpd.first_page = writeback_index;
2350                 mpd.last_page = -1;
2351         } else {
2352                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2353                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2354         }
2355
2356         mpd.inode = inode;
2357         mpd.wbc = wbc;
2358         ext4_io_submit_init(&mpd.io_submit, wbc);
2359 retry:
2360         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2361                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2362         done = false;
2363         blk_start_plug(&plug);
2364         while (!done && mpd.first_page <= mpd.last_page) {
2365                 /* For each extent of pages we use new io_end */
2366                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2367                 if (!mpd.io_submit.io_end) {
2368                         ret = -ENOMEM;
2369                         break;
2370                 }
2371
2372                 /*
2373                  * We have two constraints: We find one extent to map and we
2374                  * must always write out whole page (makes a difference when
2375                  * blocksize < pagesize) so that we don't block on IO when we
2376                  * try to write out the rest of the page. Journalled mode is
2377                  * not supported by delalloc.
2378                  */
2379                 BUG_ON(ext4_should_journal_data(inode));
2380                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2381
2382                 /* start a new transaction */
2383                 handle = ext4_journal_start_with_reserve(inode,
2384                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2385                 if (IS_ERR(handle)) {
2386                         ret = PTR_ERR(handle);
2387                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2388                                "%ld pages, ino %lu; err %d", __func__,
2389                                 wbc->nr_to_write, inode->i_ino, ret);
2390                         /* Release allocated io_end */
2391                         ext4_put_io_end(mpd.io_submit.io_end);
2392                         break;
2393                 }
2394
2395                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2396                 ret = mpage_prepare_extent_to_map(&mpd);
2397                 if (!ret) {
2398                         if (mpd.map.m_len)
2399                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2400                                         &give_up_on_write);
2401                         else {
2402                                 /*
2403                                  * We scanned the whole range (or exhausted
2404                                  * nr_to_write), submitted what was mapped and
2405                                  * didn't find anything needing mapping. We are
2406                                  * done.
2407                                  */
2408                                 done = true;
2409                         }
2410                 }
2411                 ext4_journal_stop(handle);
2412                 /* Submit prepared bio */
2413                 ext4_io_submit(&mpd.io_submit);
2414                 /* Unlock pages we didn't use */
2415                 mpage_release_unused_pages(&mpd, give_up_on_write);
2416                 /* Drop our io_end reference we got from init */
2417                 ext4_put_io_end(mpd.io_submit.io_end);
2418
2419                 if (ret == -ENOSPC && sbi->s_journal) {
2420                         /*
2421                          * Commit the transaction which would
2422                          * free blocks released in the transaction
2423                          * and try again
2424                          */
2425                         jbd2_journal_force_commit_nested(sbi->s_journal);
2426                         ret = 0;
2427                         continue;
2428                 }
2429                 /* Fatal error - ENOMEM, EIO... */
2430                 if (ret)
2431                         break;
2432         }
2433         blk_finish_plug(&plug);
2434         if (!ret && !cycled && wbc->nr_to_write > 0) {
2435                 cycled = 1;
2436                 mpd.last_page = writeback_index - 1;
2437                 mpd.first_page = 0;
2438                 goto retry;
2439         }
2440
2441         /* Update index */
2442         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2443                 /*
2444                  * Set the writeback_index so that range_cyclic
2445                  * mode will write it back later
2446                  */
2447                 mapping->writeback_index = mpd.first_page;
2448
2449 out_writepages:
2450         trace_ext4_writepages_result(inode, wbc, ret,
2451                                      nr_to_write - wbc->nr_to_write);
2452         return ret;
2453 }
2454
2455 static int ext4_nonda_switch(struct super_block *sb)
2456 {
2457         s64 free_clusters, dirty_clusters;
2458         struct ext4_sb_info *sbi = EXT4_SB(sb);
2459
2460         /*
2461          * switch to non delalloc mode if we are running low
2462          * on free block. The free block accounting via percpu
2463          * counters can get slightly wrong with percpu_counter_batch getting
2464          * accumulated on each CPU without updating global counters
2465          * Delalloc need an accurate free block accounting. So switch
2466          * to non delalloc when we are near to error range.
2467          */
2468         free_clusters =
2469                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2470         dirty_clusters =
2471                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2472         /*
2473          * Start pushing delalloc when 1/2 of free blocks are dirty.
2474          */
2475         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2476                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2477
2478         if (2 * free_clusters < 3 * dirty_clusters ||
2479             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2480                 /*
2481                  * free block count is less than 150% of dirty blocks
2482                  * or free blocks is less than watermark
2483                  */
2484                 return 1;
2485         }
2486         return 0;
2487 }
2488
2489 /* We always reserve for an inode update; the superblock could be there too */
2490 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2491 {
2492         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2493                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2494                 return 1;
2495
2496         if (pos + len <= 0x7fffffffULL)
2497                 return 1;
2498
2499         /* We might need to update the superblock to set LARGE_FILE */
2500         return 2;
2501 }
2502
2503 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2504                                loff_t pos, unsigned len, unsigned flags,
2505                                struct page **pagep, void **fsdata)
2506 {
2507         int ret, retries = 0;
2508         struct page *page;
2509         pgoff_t index;
2510         struct inode *inode = mapping->host;
2511         handle_t *handle;
2512
2513         index = pos >> PAGE_CACHE_SHIFT;
2514
2515         if (ext4_nonda_switch(inode->i_sb)) {
2516                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2517                 return ext4_write_begin(file, mapping, pos,
2518                                         len, flags, pagep, fsdata);
2519         }
2520         *fsdata = (void *)0;
2521         trace_ext4_da_write_begin(inode, pos, len, flags);
2522
2523         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2524                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2525                                                       pos, len, flags,
2526                                                       pagep, fsdata);
2527                 if (ret < 0)
2528                         return ret;
2529                 if (ret == 1)
2530                         return 0;
2531         }
2532
2533         /*
2534          * grab_cache_page_write_begin() can take a long time if the
2535          * system is thrashing due to memory pressure, or if the page
2536          * is being written back.  So grab it first before we start
2537          * the transaction handle.  This also allows us to allocate
2538          * the page (if needed) without using GFP_NOFS.
2539          */
2540 retry_grab:
2541         page = grab_cache_page_write_begin(mapping, index, flags);
2542         if (!page)
2543                 return -ENOMEM;
2544         unlock_page(page);
2545
2546         /*
2547          * With delayed allocation, we don't log the i_disksize update
2548          * if there is delayed block allocation. But we still need
2549          * to journalling the i_disksize update if writes to the end
2550          * of file which has an already mapped buffer.
2551          */
2552 retry_journal:
2553         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2554                                 ext4_da_write_credits(inode, pos, len));
2555         if (IS_ERR(handle)) {
2556                 page_cache_release(page);
2557                 return PTR_ERR(handle);
2558         }
2559
2560         lock_page(page);
2561         if (page->mapping != mapping) {
2562                 /* The page got truncated from under us */
2563                 unlock_page(page);
2564                 page_cache_release(page);
2565                 ext4_journal_stop(handle);
2566                 goto retry_grab;
2567         }
2568         /* In case writeback began while the page was unlocked */
2569         wait_for_stable_page(page);
2570
2571         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2572         if (ret < 0) {
2573                 unlock_page(page);
2574                 ext4_journal_stop(handle);
2575                 /*
2576                  * block_write_begin may have instantiated a few blocks
2577                  * outside i_size.  Trim these off again. Don't need
2578                  * i_size_read because we hold i_mutex.
2579                  */
2580                 if (pos + len > inode->i_size)
2581                         ext4_truncate_failed_write(inode);
2582
2583                 if (ret == -ENOSPC &&
2584                     ext4_should_retry_alloc(inode->i_sb, &retries))
2585                         goto retry_journal;
2586
2587                 page_cache_release(page);
2588                 return ret;
2589         }
2590
2591         *pagep = page;
2592         return ret;
2593 }
2594
2595 /*
2596  * Check if we should update i_disksize
2597  * when write to the end of file but not require block allocation
2598  */
2599 static int ext4_da_should_update_i_disksize(struct page *page,
2600                                             unsigned long offset)
2601 {
2602         struct buffer_head *bh;
2603         struct inode *inode = page->mapping->host;
2604         unsigned int idx;
2605         int i;
2606
2607         bh = page_buffers(page);
2608         idx = offset >> inode->i_blkbits;
2609
2610         for (i = 0; i < idx; i++)
2611                 bh = bh->b_this_page;
2612
2613         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2614                 return 0;
2615         return 1;
2616 }
2617
2618 static int ext4_da_write_end(struct file *file,
2619                              struct address_space *mapping,
2620                              loff_t pos, unsigned len, unsigned copied,
2621                              struct page *page, void *fsdata)
2622 {
2623         struct inode *inode = mapping->host;
2624         int ret = 0, ret2;
2625         handle_t *handle = ext4_journal_current_handle();
2626         loff_t new_i_size;
2627         unsigned long start, end;
2628         int write_mode = (int)(unsigned long)fsdata;
2629
2630         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2631                 return ext4_write_end(file, mapping, pos,
2632                                       len, copied, page, fsdata);
2633
2634         trace_ext4_da_write_end(inode, pos, len, copied);
2635         start = pos & (PAGE_CACHE_SIZE - 1);
2636         end = start + copied - 1;
2637
2638         /*
2639          * generic_write_end() will run mark_inode_dirty() if i_size
2640          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2641          * into that.
2642          */
2643         new_i_size = pos + copied;
2644         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2645                 if (ext4_has_inline_data(inode) ||
2646                     ext4_da_should_update_i_disksize(page, end)) {
2647                         ext4_update_i_disksize(inode, new_i_size);
2648                         /* We need to mark inode dirty even if
2649                          * new_i_size is less that inode->i_size
2650                          * bu greater than i_disksize.(hint delalloc)
2651                          */
2652                         ext4_mark_inode_dirty(handle, inode);
2653                 }
2654         }
2655
2656         if (write_mode != CONVERT_INLINE_DATA &&
2657             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2658             ext4_has_inline_data(inode))
2659                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2660                                                      page);
2661         else
2662                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2663                                                         page, fsdata);
2664
2665         copied = ret2;
2666         if (ret2 < 0)
2667                 ret = ret2;
2668         ret2 = ext4_journal_stop(handle);
2669         if (!ret)
2670                 ret = ret2;
2671
2672         return ret ? ret : copied;
2673 }
2674
2675 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2676                                    unsigned int length)
2677 {
2678         /*
2679          * Drop reserved blocks
2680          */
2681         BUG_ON(!PageLocked(page));
2682         if (!page_has_buffers(page))
2683                 goto out;
2684
2685         ext4_da_page_release_reservation(page, offset, length);
2686
2687 out:
2688         ext4_invalidatepage(page, offset, length);
2689
2690         return;
2691 }
2692
2693 /*
2694  * Force all delayed allocation blocks to be allocated for a given inode.
2695  */
2696 int ext4_alloc_da_blocks(struct inode *inode)
2697 {
2698         trace_ext4_alloc_da_blocks(inode);
2699
2700         if (!EXT4_I(inode)->i_reserved_data_blocks)
2701                 return 0;
2702
2703         /*
2704          * We do something simple for now.  The filemap_flush() will
2705          * also start triggering a write of the data blocks, which is
2706          * not strictly speaking necessary (and for users of
2707          * laptop_mode, not even desirable).  However, to do otherwise
2708          * would require replicating code paths in:
2709          *
2710          * ext4_writepages() ->
2711          *    write_cache_pages() ---> (via passed in callback function)
2712          *        __mpage_da_writepage() -->
2713          *           mpage_add_bh_to_extent()
2714          *           mpage_da_map_blocks()
2715          *
2716          * The problem is that write_cache_pages(), located in
2717          * mm/page-writeback.c, marks pages clean in preparation for
2718          * doing I/O, which is not desirable if we're not planning on
2719          * doing I/O at all.
2720          *
2721          * We could call write_cache_pages(), and then redirty all of
2722          * the pages by calling redirty_page_for_writepage() but that
2723          * would be ugly in the extreme.  So instead we would need to
2724          * replicate parts of the code in the above functions,
2725          * simplifying them because we wouldn't actually intend to
2726          * write out the pages, but rather only collect contiguous
2727          * logical block extents, call the multi-block allocator, and
2728          * then update the buffer heads with the block allocations.
2729          *
2730          * For now, though, we'll cheat by calling filemap_flush(),
2731          * which will map the blocks, and start the I/O, but not
2732          * actually wait for the I/O to complete.
2733          */
2734         return filemap_flush(inode->i_mapping);
2735 }
2736
2737 /*
2738  * bmap() is special.  It gets used by applications such as lilo and by
2739  * the swapper to find the on-disk block of a specific piece of data.
2740  *
2741  * Naturally, this is dangerous if the block concerned is still in the
2742  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2743  * filesystem and enables swap, then they may get a nasty shock when the
2744  * data getting swapped to that swapfile suddenly gets overwritten by
2745  * the original zero's written out previously to the journal and
2746  * awaiting writeback in the kernel's buffer cache.
2747  *
2748  * So, if we see any bmap calls here on a modified, data-journaled file,
2749  * take extra steps to flush any blocks which might be in the cache.
2750  */
2751 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2752 {
2753         struct inode *inode = mapping->host;
2754         journal_t *journal;
2755         int err;
2756
2757         /*
2758          * We can get here for an inline file via the FIBMAP ioctl
2759          */
2760         if (ext4_has_inline_data(inode))
2761                 return 0;
2762
2763         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2764                         test_opt(inode->i_sb, DELALLOC)) {
2765                 /*
2766                  * With delalloc we want to sync the file
2767                  * so that we can make sure we allocate
2768                  * blocks for file
2769                  */
2770                 filemap_write_and_wait(mapping);
2771         }
2772
2773         if (EXT4_JOURNAL(inode) &&
2774             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2775                 /*
2776                  * This is a REALLY heavyweight approach, but the use of
2777                  * bmap on dirty files is expected to be extremely rare:
2778                  * only if we run lilo or swapon on a freshly made file
2779                  * do we expect this to happen.
2780                  *
2781                  * (bmap requires CAP_SYS_RAWIO so this does not
2782                  * represent an unprivileged user DOS attack --- we'd be
2783                  * in trouble if mortal users could trigger this path at
2784                  * will.)
2785                  *
2786                  * NB. EXT4_STATE_JDATA is not set on files other than
2787                  * regular files.  If somebody wants to bmap a directory
2788                  * or symlink and gets confused because the buffer
2789                  * hasn't yet been flushed to disk, they deserve
2790                  * everything they get.
2791                  */
2792
2793                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2794                 journal = EXT4_JOURNAL(inode);
2795                 jbd2_journal_lock_updates(journal);
2796                 err = jbd2_journal_flush(journal);
2797                 jbd2_journal_unlock_updates(journal);
2798
2799                 if (err)
2800                         return 0;
2801         }
2802
2803         return generic_block_bmap(mapping, block, ext4_get_block);
2804 }
2805
2806 static int ext4_readpage(struct file *file, struct page *page)
2807 {
2808         int ret = -EAGAIN;
2809         struct inode *inode = page->mapping->host;
2810
2811         trace_ext4_readpage(page);
2812
2813         if (ext4_has_inline_data(inode))
2814                 ret = ext4_readpage_inline(inode, page);
2815
2816         if (ret == -EAGAIN)
2817                 return mpage_readpage(page, ext4_get_block);
2818
2819         return ret;
2820 }
2821
2822 static int
2823 ext4_readpages(struct file *file, struct address_space *mapping,
2824                 struct list_head *pages, unsigned nr_pages)
2825 {
2826         struct inode *inode = mapping->host;
2827
2828         /* If the file has inline data, no need to do readpages. */
2829         if (ext4_has_inline_data(inode))
2830                 return 0;
2831
2832         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2833 }
2834
2835 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2836                                 unsigned int length)
2837 {
2838         trace_ext4_invalidatepage(page, offset, length);
2839
2840         /* No journalling happens on data buffers when this function is used */
2841         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2842
2843         block_invalidatepage(page, offset, length);
2844 }
2845
2846 static int __ext4_journalled_invalidatepage(struct page *page,
2847                                             unsigned int offset,
2848                                             unsigned int length)
2849 {
2850         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2851
2852         trace_ext4_journalled_invalidatepage(page, offset, length);
2853
2854         /*
2855          * If it's a full truncate we just forget about the pending dirtying
2856          */
2857         if (offset == 0 && length == PAGE_CACHE_SIZE)
2858                 ClearPageChecked(page);
2859
2860         return jbd2_journal_invalidatepage(journal, page, offset, length);
2861 }
2862
2863 /* Wrapper for aops... */
2864 static void ext4_journalled_invalidatepage(struct page *page,
2865                                            unsigned int offset,
2866                                            unsigned int length)
2867 {
2868         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2869 }
2870
2871 static int ext4_releasepage(struct page *page, gfp_t wait)
2872 {
2873         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2874
2875         trace_ext4_releasepage(page);
2876
2877         /* Page has dirty journalled data -> cannot release */
2878         if (PageChecked(page))
2879                 return 0;
2880         if (journal)
2881                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2882         else
2883                 return try_to_free_buffers(page);
2884 }
2885
2886 /*
2887  * ext4_get_block used when preparing for a DIO write or buffer write.
2888  * We allocate an uinitialized extent if blocks haven't been allocated.
2889  * The extent will be converted to initialized after the IO is complete.
2890  */
2891 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2892                    struct buffer_head *bh_result, int create)
2893 {
2894         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2895                    inode->i_ino, create);
2896         return _ext4_get_block(inode, iblock, bh_result,
2897                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2898 }
2899
2900 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2901                    struct buffer_head *bh_result, int create)
2902 {
2903         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2904                    inode->i_ino, create);
2905         return _ext4_get_block(inode, iblock, bh_result,
2906                                EXT4_GET_BLOCKS_NO_LOCK);
2907 }
2908
2909 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2910                             ssize_t size, void *private)
2911 {
2912         ext4_io_end_t *io_end = iocb->private;
2913
2914         /* if not async direct IO just return */
2915         if (!io_end)
2916                 return;
2917
2918         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2919                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2920                   iocb->private, io_end->inode->i_ino, iocb, offset,
2921                   size);
2922
2923         iocb->private = NULL;
2924         io_end->offset = offset;
2925         io_end->size = size;
2926         ext4_put_io_end(io_end);
2927 }
2928
2929 /*
2930  * For ext4 extent files, ext4 will do direct-io write to holes,
2931  * preallocated extents, and those write extend the file, no need to
2932  * fall back to buffered IO.
2933  *
2934  * For holes, we fallocate those blocks, mark them as unwritten
2935  * If those blocks were preallocated, we mark sure they are split, but
2936  * still keep the range to write as unwritten.
2937  *
2938  * The unwritten extents will be converted to written when DIO is completed.
2939  * For async direct IO, since the IO may still pending when return, we
2940  * set up an end_io call back function, which will do the conversion
2941  * when async direct IO completed.
2942  *
2943  * If the O_DIRECT write will extend the file then add this inode to the
2944  * orphan list.  So recovery will truncate it back to the original size
2945  * if the machine crashes during the write.
2946  *
2947  */
2948 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2949                               struct iov_iter *iter, loff_t offset)
2950 {
2951         struct file *file = iocb->ki_filp;
2952         struct inode *inode = file->f_mapping->host;
2953         ssize_t ret;
2954         size_t count = iov_iter_count(iter);
2955         int overwrite = 0;
2956         get_block_t *get_block_func = NULL;
2957         int dio_flags = 0;
2958         loff_t final_size = offset + count;
2959         ext4_io_end_t *io_end = NULL;
2960
2961         /* Use the old path for reads and writes beyond i_size. */
2962         if (rw != WRITE || final_size > inode->i_size)
2963                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2964
2965         BUG_ON(iocb->private == NULL);
2966
2967         /*
2968          * Make all waiters for direct IO properly wait also for extent
2969          * conversion. This also disallows race between truncate() and
2970          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2971          */
2972         if (rw == WRITE)
2973                 atomic_inc(&inode->i_dio_count);
2974
2975         /* If we do a overwrite dio, i_mutex locking can be released */
2976         overwrite = *((int *)iocb->private);
2977
2978         if (overwrite) {
2979                 down_read(&EXT4_I(inode)->i_data_sem);
2980                 mutex_unlock(&inode->i_mutex);
2981         }
2982
2983         /*
2984          * We could direct write to holes and fallocate.
2985          *
2986          * Allocated blocks to fill the hole are marked as
2987          * unwritten to prevent parallel buffered read to expose
2988          * the stale data before DIO complete the data IO.
2989          *
2990          * As to previously fallocated extents, ext4 get_block will
2991          * just simply mark the buffer mapped but still keep the
2992          * extents unwritten.
2993          *
2994          * For non AIO case, we will convert those unwritten extents
2995          * to written after return back from blockdev_direct_IO.
2996          *
2997          * For async DIO, the conversion needs to be deferred when the
2998          * IO is completed. The ext4 end_io callback function will be
2999          * called to take care of the conversion work.  Here for async
3000          * case, we allocate an io_end structure to hook to the iocb.
3001          */
3002         iocb->private = NULL;
3003         ext4_inode_aio_set(inode, NULL);
3004         if (!is_sync_kiocb(iocb)) {
3005                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3006                 if (!io_end) {
3007                         ret = -ENOMEM;
3008                         goto retake_lock;
3009                 }
3010                 /*
3011                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3012                  */
3013                 iocb->private = ext4_get_io_end(io_end);
3014                 /*
3015                  * we save the io structure for current async direct
3016                  * IO, so that later ext4_map_blocks() could flag the
3017                  * io structure whether there is a unwritten extents
3018                  * needs to be converted when IO is completed.
3019                  */
3020                 ext4_inode_aio_set(inode, io_end);
3021         }
3022
3023         if (overwrite) {
3024                 get_block_func = ext4_get_block_write_nolock;
3025         } else {
3026                 get_block_func = ext4_get_block_write;
3027                 dio_flags = DIO_LOCKING;
3028         }
3029         if (IS_DAX(inode))
3030                 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3031                                 ext4_end_io_dio, dio_flags);
3032         else
3033                 ret = __blockdev_direct_IO(rw, iocb, inode,
3034                                            inode->i_sb->s_bdev, iter, offset,
3035                                            get_block_func,
3036                                            ext4_end_io_dio, NULL, dio_flags);
3037
3038         /*
3039          * Put our reference to io_end. This can free the io_end structure e.g.
3040          * in sync IO case or in case of error. It can even perform extent
3041          * conversion if all bios we submitted finished before we got here.
3042          * Note that in that case iocb->private can be already set to NULL
3043          * here.
3044          */
3045         if (io_end) {
3046                 ext4_inode_aio_set(inode, NULL);
3047                 ext4_put_io_end(io_end);
3048                 /*
3049                  * When no IO was submitted ext4_end_io_dio() was not
3050                  * called so we have to put iocb's reference.
3051                  */
3052                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3053                         WARN_ON(iocb->private != io_end);
3054                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3055                         ext4_put_io_end(io_end);
3056                         iocb->private = NULL;
3057                 }
3058         }
3059         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3060                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3061                 int err;
3062                 /*
3063                  * for non AIO case, since the IO is already
3064                  * completed, we could do the conversion right here
3065                  */
3066                 err = ext4_convert_unwritten_extents(NULL, inode,
3067                                                      offset, ret);
3068                 if (err < 0)
3069                         ret = err;
3070                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3071         }
3072
3073 retake_lock:
3074         if (rw == WRITE)
3075                 inode_dio_done(inode);
3076         /* take i_mutex locking again if we do a ovewrite dio */
3077         if (overwrite) {
3078                 up_read(&EXT4_I(inode)->i_data_sem);
3079                 mutex_lock(&inode->i_mutex);
3080         }
3081
3082         return ret;
3083 }
3084
3085 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3086                               struct iov_iter *iter, loff_t offset)
3087 {
3088         struct file *file = iocb->ki_filp;
3089         struct inode *inode = file->f_mapping->host;
3090         size_t count = iov_iter_count(iter);
3091         ssize_t ret;
3092
3093         /*
3094          * If we are doing data journalling we don't support O_DIRECT
3095          */
3096         if (ext4_should_journal_data(inode))
3097                 return 0;
3098
3099         /* Let buffer I/O handle the inline data case. */
3100         if (ext4_has_inline_data(inode))
3101                 return 0;
3102
3103         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3104         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3105                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3106         else
3107                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3108         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3109         return ret;
3110 }
3111
3112 /*
3113  * Pages can be marked dirty completely asynchronously from ext4's journalling
3114  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3115  * much here because ->set_page_dirty is called under VFS locks.  The page is
3116  * not necessarily locked.
3117  *
3118  * We cannot just dirty the page and leave attached buffers clean, because the
3119  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3120  * or jbddirty because all the journalling code will explode.
3121  *
3122  * So what we do is to mark the page "pending dirty" and next time writepage
3123  * is called, propagate that into the buffers appropriately.
3124  */
3125 static int ext4_journalled_set_page_dirty(struct page *page)
3126 {
3127         SetPageChecked(page);
3128         return __set_page_dirty_nobuffers(page);
3129 }
3130
3131 static const struct address_space_operations ext4_aops = {
3132         .readpage               = ext4_readpage,
3133         .readpages              = ext4_readpages,
3134         .writepage              = ext4_writepage,
3135         .writepages             = ext4_writepages,
3136         .write_begin            = ext4_write_begin,
3137         .write_end              = ext4_write_end,
3138         .bmap                   = ext4_bmap,
3139         .invalidatepage         = ext4_invalidatepage,
3140         .releasepage            = ext4_releasepage,
3141         .direct_IO              = ext4_direct_IO,
3142         .migratepage            = buffer_migrate_page,
3143         .is_partially_uptodate  = block_is_partially_uptodate,
3144         .error_remove_page      = generic_error_remove_page,
3145 };
3146
3147 static const struct address_space_operations ext4_journalled_aops = {
3148         .readpage               = ext4_readpage,
3149         .readpages              = ext4_readpages,
3150         .writepage              = ext4_writepage,
3151         .writepages             = ext4_writepages,
3152         .write_begin            = ext4_write_begin,
3153         .write_end              = ext4_journalled_write_end,
3154         .set_page_dirty         = ext4_journalled_set_page_dirty,
3155         .bmap                   = ext4_bmap,
3156         .invalidatepage         = ext4_journalled_invalidatepage,
3157         .releasepage            = ext4_releasepage,
3158         .direct_IO              = ext4_direct_IO,
3159         .is_partially_uptodate  = block_is_partially_uptodate,
3160         .error_remove_page      = generic_error_remove_page,
3161 };
3162
3163 static const struct address_space_operations ext4_da_aops = {
3164         .readpage               = ext4_readpage,
3165         .readpages              = ext4_readpages,
3166         .writepage              = ext4_writepage,
3167         .writepages             = ext4_writepages,
3168         .write_begin            = ext4_da_write_begin,
3169         .write_end              = ext4_da_write_end,
3170         .bmap                   = ext4_bmap,
3171         .invalidatepage         = ext4_da_invalidatepage,
3172         .releasepage            = ext4_releasepage,
3173         .direct_IO              = ext4_direct_IO,
3174         .migratepage            = buffer_migrate_page,
3175         .is_partially_uptodate  = block_is_partially_uptodate,
3176         .error_remove_page      = generic_error_remove_page,
3177 };
3178
3179 void ext4_set_aops(struct inode *inode)
3180 {
3181         switch (ext4_inode_journal_mode(inode)) {
3182         case EXT4_INODE_ORDERED_DATA_MODE:
3183                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3184                 break;
3185         case EXT4_INODE_WRITEBACK_DATA_MODE:
3186                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3187                 break;
3188         case EXT4_INODE_JOURNAL_DATA_MODE:
3189                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3190                 return;
3191         default:
3192                 BUG();
3193         }
3194         if (test_opt(inode->i_sb, DELALLOC))
3195                 inode->i_mapping->a_ops = &ext4_da_aops;
3196         else
3197                 inode->i_mapping->a_ops = &ext4_aops;
3198 }
3199
3200 static int __ext4_block_zero_page_range(handle_t *handle,
3201                 struct address_space *mapping, loff_t from, loff_t length)
3202 {
3203         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3204         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3205         unsigned blocksize, pos;
3206         ext4_lblk_t iblock;
3207         struct inode *inode = mapping->host;
3208         struct buffer_head *bh;
3209         struct page *page;
3210         int err = 0;
3211
3212         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3213                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3214         if (!page)
3215                 return -ENOMEM;
3216
3217         blocksize = inode->i_sb->s_blocksize;
3218
3219         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3220
3221         if (!page_has_buffers(page))
3222                 create_empty_buffers(page, blocksize, 0);
3223
3224         /* Find the buffer that contains "offset" */
3225         bh = page_buffers(page);
3226         pos = blocksize;
3227         while (offset >= pos) {
3228                 bh = bh->b_this_page;
3229                 iblock++;
3230                 pos += blocksize;
3231         }
3232         if (buffer_freed(bh)) {
3233                 BUFFER_TRACE(bh, "freed: skip");
3234                 goto unlock;
3235         }
3236         if (!buffer_mapped(bh)) {
3237                 BUFFER_TRACE(bh, "unmapped");
3238                 ext4_get_block(inode, iblock, bh, 0);
3239                 /* unmapped? It's a hole - nothing to do */
3240                 if (!buffer_mapped(bh)) {
3241                         BUFFER_TRACE(bh, "still unmapped");
3242                         goto unlock;
3243                 }
3244         }
3245
3246         /* Ok, it's mapped. Make sure it's up-to-date */
3247         if (PageUptodate(page))
3248                 set_buffer_uptodate(bh);
3249
3250         if (!buffer_uptodate(bh)) {
3251                 err = -EIO;
3252                 ll_rw_block(READ, 1, &bh);
3253                 wait_on_buffer(bh);
3254                 /* Uhhuh. Read error. Complain and punt. */
3255                 if (!buffer_uptodate(bh))
3256                         goto unlock;
3257         }
3258         if (ext4_should_journal_data(inode)) {
3259                 BUFFER_TRACE(bh, "get write access");
3260                 err = ext4_journal_get_write_access(handle, bh);
3261                 if (err)
3262                         goto unlock;
3263         }
3264         zero_user(page, offset, length);
3265         BUFFER_TRACE(bh, "zeroed end of block");
3266
3267         if (ext4_should_journal_data(inode)) {
3268                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3269         } else {
3270                 err = 0;
3271                 mark_buffer_dirty(bh);
3272                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3273                         err = ext4_jbd2_file_inode(handle, inode);
3274         }
3275
3276 unlock:
3277         unlock_page(page);
3278         page_cache_release(page);
3279         return err;
3280 }
3281
3282 /*
3283  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3284  * starting from file offset 'from'.  The range to be zero'd must
3285  * be contained with in one block.  If the specified range exceeds
3286  * the end of the block it will be shortened to end of the block
3287  * that cooresponds to 'from'
3288  */
3289 static int ext4_block_zero_page_range(handle_t *handle,
3290                 struct address_space *mapping, loff_t from, loff_t length)
3291 {
3292         struct inode *inode = mapping->host;
3293         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3294         unsigned blocksize = inode->i_sb->s_blocksize;
3295         unsigned max = blocksize - (offset & (blocksize - 1));
3296
3297         /*
3298          * correct length if it does not fall between
3299          * 'from' and the end of the block
3300          */
3301         if (length > max || length < 0)
3302                 length = max;
3303
3304         if (IS_DAX(inode))
3305                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3306         return __ext4_block_zero_page_range(handle, mapping, from, length);
3307 }
3308
3309 /*
3310  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3311  * up to the end of the block which corresponds to `from'.
3312  * This required during truncate. We need to physically zero the tail end
3313  * of that block so it doesn't yield old data if the file is later grown.
3314  */
3315 static int ext4_block_truncate_page(handle_t *handle,
3316                 struct address_space *mapping, loff_t from)
3317 {
3318         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3319         unsigned length;
3320         unsigned blocksize;
3321         struct inode *inode = mapping->host;
3322
3323         blocksize = inode->i_sb->s_blocksize;
3324         length = blocksize - (offset & (blocksize - 1));
3325
3326         return ext4_block_zero_page_range(handle, mapping, from, length);
3327 }
3328
3329 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3330                              loff_t lstart, loff_t length)
3331 {
3332         struct super_block *sb = inode->i_sb;
3333         struct address_space *mapping = inode->i_mapping;
3334         unsigned partial_start, partial_end;
3335         ext4_fsblk_t start, end;
3336         loff_t byte_end = (lstart + length - 1);
3337         int err = 0;
3338
3339         partial_start = lstart & (sb->s_blocksize - 1);
3340         partial_end = byte_end & (sb->s_blocksize - 1);
3341
3342         start = lstart >> sb->s_blocksize_bits;
3343         end = byte_end >> sb->s_blocksize_bits;
3344
3345         /* Handle partial zero within the single block */
3346         if (start == end &&
3347             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3348                 err = ext4_block_zero_page_range(handle, mapping,
3349                                                  lstart, length);
3350                 return err;
3351         }
3352         /* Handle partial zero out on the start of the range */
3353         if (partial_start) {
3354                 err = ext4_block_zero_page_range(handle, mapping,
3355                                                  lstart, sb->s_blocksize);
3356                 if (err)
3357                         return err;
3358         }
3359         /* Handle partial zero out on the end of the range */
3360         if (partial_end != sb->s_blocksize - 1)
3361                 err = ext4_block_zero_page_range(handle, mapping,
3362                                                  byte_end - partial_end,
3363                                                  partial_end + 1);
3364         return err;
3365 }
3366
3367 int ext4_can_truncate(struct inode *inode)
3368 {
3369         if (S_ISREG(inode->i_mode))
3370                 return 1;
3371         if (S_ISDIR(inode->i_mode))
3372                 return 1;
3373         if (S_ISLNK(inode->i_mode))
3374                 return !ext4_inode_is_fast_symlink(inode);
3375         return 0;
3376 }
3377
3378 /*
3379  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3380  * associated with the given offset and length
3381  *
3382  * @inode:  File inode
3383  * @offset: The offset where the hole will begin
3384  * @len:    The length of the hole
3385  *
3386  * Returns: 0 on success or negative on failure
3387  */
3388
3389 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3390 {
3391         struct super_block *sb = inode->i_sb;
3392         ext4_lblk_t first_block, stop_block;
3393         struct address_space *mapping = inode->i_mapping;
3394         loff_t first_block_offset, last_block_offset;
3395         handle_t *handle;
3396         unsigned int credits;
3397         int ret = 0;
3398
3399         if (!S_ISREG(inode->i_mode))
3400                 return -EOPNOTSUPP;
3401
3402         trace_ext4_punch_hole(inode, offset, length, 0);
3403
3404         /*
3405          * Write out all dirty pages to avoid race conditions
3406          * Then release them.
3407          */
3408         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3409                 ret = filemap_write_and_wait_range(mapping, offset,
3410                                                    offset + length - 1);
3411                 if (ret)
3412                         return ret;
3413         }
3414
3415         mutex_lock(&inode->i_mutex);
3416
3417         /* No need to punch hole beyond i_size */
3418         if (offset >= inode->i_size)
3419                 goto out_mutex;
3420
3421         /*
3422          * If the hole extends beyond i_size, set the hole
3423          * to end after the page that contains i_size
3424          */
3425         if (offset + length > inode->i_size) {
3426                 length = inode->i_size +
3427                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3428                    offset;
3429         }
3430
3431         if (offset & (sb->s_blocksize - 1) ||
3432             (offset + length) & (sb->s_blocksize - 1)) {
3433                 /*
3434                  * Attach jinode to inode for jbd2 if we do any zeroing of
3435                  * partial block
3436                  */
3437                 ret = ext4_inode_attach_jinode(inode);
3438                 if (ret < 0)
3439                         goto out_mutex;
3440
3441         }
3442
3443         first_block_offset = round_up(offset, sb->s_blocksize);
3444         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3445
3446         /* Now release the pages and zero block aligned part of pages*/
3447         if (last_block_offset > first_block_offset)
3448                 truncate_pagecache_range(inode, first_block_offset,
3449                                          last_block_offset);
3450
3451         /* Wait all existing dio workers, newcomers will block on i_mutex */
3452         ext4_inode_block_unlocked_dio(inode);
3453         inode_dio_wait(inode);
3454
3455         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3456                 credits = ext4_writepage_trans_blocks(inode);
3457         else
3458                 credits = ext4_blocks_for_truncate(inode);
3459         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3460         if (IS_ERR(handle)) {
3461                 ret = PTR_ERR(handle);
3462                 ext4_std_error(sb, ret);
3463                 goto out_dio;
3464         }
3465
3466         ret = ext4_zero_partial_blocks(handle, inode, offset,
3467                                        length);
3468         if (ret)
3469                 goto out_stop;
3470
3471         first_block = (offset + sb->s_blocksize - 1) >>
3472                 EXT4_BLOCK_SIZE_BITS(sb);
3473         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3474
3475         /* If there are no blocks to remove, return now */
3476         if (first_block >= stop_block)
3477                 goto out_stop;
3478
3479         down_write(&EXT4_I(inode)->i_data_sem);
3480         ext4_discard_preallocations(inode);
3481
3482         ret = ext4_es_remove_extent(inode, first_block,
3483                                     stop_block - first_block);
3484         if (ret) {
3485                 up_write(&EXT4_I(inode)->i_data_sem);
3486                 goto out_stop;
3487         }
3488
3489         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3490                 ret = ext4_ext_remove_space(inode, first_block,
3491                                             stop_block - 1);
3492         else
3493                 ret = ext4_ind_remove_space(handle, inode, first_block,
3494                                             stop_block);
3495
3496         up_write(&EXT4_I(inode)->i_data_sem);
3497         if (IS_SYNC(inode))
3498                 ext4_handle_sync(handle);
3499
3500         /* Now release the pages again to reduce race window */
3501         if (last_block_offset > first_block_offset)
3502                 truncate_pagecache_range(inode, first_block_offset,
3503                                          last_block_offset);
3504
3505         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3506         ext4_mark_inode_dirty(handle, inode);
3507 out_stop:
3508         ext4_journal_stop(handle);
3509 out_dio:
3510         ext4_inode_resume_unlocked_dio(inode);
3511 out_mutex:
3512         mutex_unlock(&inode->i_mutex);
3513         return ret;
3514 }
3515
3516 int ext4_inode_attach_jinode(struct inode *inode)
3517 {
3518         struct ext4_inode_info *ei = EXT4_I(inode);
3519         struct jbd2_inode *jinode;
3520
3521         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3522                 return 0;
3523
3524         jinode = jbd2_alloc_inode(GFP_KERNEL);
3525         spin_lock(&inode->i_lock);
3526         if (!ei->jinode) {
3527                 if (!jinode) {
3528                         spin_unlock(&inode->i_lock);
3529                         return -ENOMEM;
3530                 }
3531                 ei->jinode = jinode;
3532                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3533                 jinode = NULL;
3534         }
3535         spin_unlock(&inode->i_lock);
3536         if (unlikely(jinode != NULL))
3537                 jbd2_free_inode(jinode);
3538         return 0;
3539 }
3540
3541 /*
3542  * ext4_truncate()
3543  *
3544  * We block out ext4_get_block() block instantiations across the entire
3545  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3546  * simultaneously on behalf of the same inode.
3547  *
3548  * As we work through the truncate and commit bits of it to the journal there
3549  * is one core, guiding principle: the file's tree must always be consistent on
3550  * disk.  We must be able to restart the truncate after a crash.
3551  *
3552  * The file's tree may be transiently inconsistent in memory (although it
3553  * probably isn't), but whenever we close off and commit a journal transaction,
3554  * the contents of (the filesystem + the journal) must be consistent and
3555  * restartable.  It's pretty simple, really: bottom up, right to left (although
3556  * left-to-right works OK too).
3557  *
3558  * Note that at recovery time, journal replay occurs *before* the restart of
3559  * truncate against the orphan inode list.
3560  *
3561  * The committed inode has the new, desired i_size (which is the same as
3562  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3563  * that this inode's truncate did not complete and it will again call
3564  * ext4_truncate() to have another go.  So there will be instantiated blocks
3565  * to the right of the truncation point in a crashed ext4 filesystem.  But
3566  * that's fine - as long as they are linked from the inode, the post-crash
3567  * ext4_truncate() run will find them and release them.
3568  */
3569 void ext4_truncate(struct inode *inode)
3570 {
3571         struct ext4_inode_info *ei = EXT4_I(inode);
3572         unsigned int credits;
3573         handle_t *handle;
3574         struct address_space *mapping = inode->i_mapping;
3575
3576         /*
3577          * There is a possibility that we're either freeing the inode
3578          * or it's a completely new inode. In those cases we might not
3579          * have i_mutex locked because it's not necessary.
3580          */
3581         if (!(inode->i_state & (I_NEW|I_FREEING)))
3582                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3583         trace_ext4_truncate_enter(inode);
3584
3585         if (!ext4_can_truncate(inode))
3586                 return;
3587
3588         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3589
3590         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3591                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3592
3593         if (ext4_has_inline_data(inode)) {
3594                 int has_inline = 1;
3595
3596                 ext4_inline_data_truncate(inode, &has_inline);
3597                 if (has_inline)
3598                         return;
3599         }
3600
3601         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3602         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3603                 if (ext4_inode_attach_jinode(inode) < 0)
3604                         return;
3605         }
3606
3607         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3608                 credits = ext4_writepage_trans_blocks(inode);
3609         else
3610                 credits = ext4_blocks_for_truncate(inode);
3611
3612         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3613         if (IS_ERR(handle)) {
3614                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3615                 return;
3616         }
3617
3618         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3619                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3620
3621         /*
3622          * We add the inode to the orphan list, so that if this
3623          * truncate spans multiple transactions, and we crash, we will
3624          * resume the truncate when the filesystem recovers.  It also
3625          * marks the inode dirty, to catch the new size.
3626          *
3627          * Implication: the file must always be in a sane, consistent
3628          * truncatable state while each transaction commits.
3629          */
3630         if (ext4_orphan_add(handle, inode))
3631                 goto out_stop;
3632
3633         down_write(&EXT4_I(inode)->i_data_sem);
3634
3635         ext4_discard_preallocations(inode);
3636
3637         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3638                 ext4_ext_truncate(handle, inode);
3639         else
3640                 ext4_ind_truncate(handle, inode);
3641
3642         up_write(&ei->i_data_sem);
3643
3644         if (IS_SYNC(inode))
3645                 ext4_handle_sync(handle);
3646
3647 out_stop:
3648         /*
3649          * If this was a simple ftruncate() and the file will remain alive,
3650          * then we need to clear up the orphan record which we created above.
3651          * However, if this was a real unlink then we were called by
3652          * ext4_evict_inode(), and we allow that function to clean up the
3653          * orphan info for us.
3654          */
3655         if (inode->i_nlink)
3656                 ext4_orphan_del(handle, inode);
3657
3658         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3659         ext4_mark_inode_dirty(handle, inode);
3660         ext4_journal_stop(handle);
3661
3662         trace_ext4_truncate_exit(inode);
3663 }
3664
3665 /*
3666  * ext4_get_inode_loc returns with an extra refcount against the inode's
3667  * underlying buffer_head on success. If 'in_mem' is true, we have all
3668  * data in memory that is needed to recreate the on-disk version of this
3669  * inode.
3670  */
3671 static int __ext4_get_inode_loc(struct inode *inode,
3672                                 struct ext4_iloc *iloc, int in_mem)
3673 {
3674         struct ext4_group_desc  *gdp;
3675         struct buffer_head      *bh;
3676         struct super_block      *sb = inode->i_sb;
3677         ext4_fsblk_t            block;
3678         int                     inodes_per_block, inode_offset;
3679
3680         iloc->bh = NULL;
3681         if (!ext4_valid_inum(sb, inode->i_ino))
3682                 return -EIO;
3683
3684         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3685         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3686         if (!gdp)
3687                 return -EIO;
3688
3689         /*
3690          * Figure out the offset within the block group inode table
3691          */
3692         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3693         inode_offset = ((inode->i_ino - 1) %
3694                         EXT4_INODES_PER_GROUP(sb));
3695         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3696         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3697
3698         bh = sb_getblk(sb, block);
3699         if (unlikely(!bh))
3700                 return -ENOMEM;
3701         if (!buffer_uptodate(bh)) {
3702                 lock_buffer(bh);
3703
3704                 /*
3705                  * If the buffer has the write error flag, we have failed
3706                  * to write out another inode in the same block.  In this
3707                  * case, we don't have to read the block because we may
3708                  * read the old inode data successfully.
3709                  */
3710                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3711                         set_buffer_uptodate(bh);
3712
3713                 if (buffer_uptodate(bh)) {
3714                         /* someone brought it uptodate while we waited */
3715                         unlock_buffer(bh);
3716                         goto has_buffer;
3717                 }
3718
3719                 /*
3720                  * If we have all information of the inode in memory and this
3721                  * is the only valid inode in the block, we need not read the
3722                  * block.
3723                  */
3724                 if (in_mem) {
3725                         struct buffer_head *bitmap_bh;
3726                         int i, start;
3727
3728                         start = inode_offset & ~(inodes_per_block - 1);
3729
3730                         /* Is the inode bitmap in cache? */
3731                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3732                         if (unlikely(!bitmap_bh))
3733                                 goto make_io;
3734
3735                         /*
3736                          * If the inode bitmap isn't in cache then the
3737                          * optimisation may end up performing two reads instead
3738                          * of one, so skip it.
3739                          */
3740                         if (!buffer_uptodate(bitmap_bh)) {
3741                                 brelse(bitmap_bh);
3742                                 goto make_io;
3743                         }
3744                         for (i = start; i < start + inodes_per_block; i++) {
3745                                 if (i == inode_offset)
3746                                         continue;
3747                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3748                                         break;
3749                         }
3750                         brelse(bitmap_bh);
3751                         if (i == start + inodes_per_block) {
3752                                 /* all other inodes are free, so skip I/O */
3753                                 memset(bh->b_data, 0, bh->b_size);
3754                                 set_buffer_uptodate(bh);
3755                                 unlock_buffer(bh);
3756                                 goto has_buffer;
3757                         }
3758                 }
3759
3760 make_io:
3761                 /*
3762                  * If we need to do any I/O, try to pre-readahead extra
3763                  * blocks from the inode table.
3764                  */
3765                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3766                         ext4_fsblk_t b, end, table;
3767                         unsigned num;
3768                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3769
3770                         table = ext4_inode_table(sb, gdp);
3771                         /* s_inode_readahead_blks is always a power of 2 */
3772                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3773                         if (table > b)
3774                                 b = table;
3775                         end = b + ra_blks;
3776                         num = EXT4_INODES_PER_GROUP(sb);
3777                         if (ext4_has_group_desc_csum(sb))
3778                                 num -= ext4_itable_unused_count(sb, gdp);
3779                         table += num / inodes_per_block;
3780                         if (end > table)
3781                                 end = table;
3782                         while (b <= end)
3783                                 sb_breadahead(sb, b++);
3784                 }
3785
3786                 /*
3787                  * There are other valid inodes in the buffer, this inode
3788                  * has in-inode xattrs, or we don't have this inode in memory.
3789                  * Read the block from disk.
3790                  */
3791                 trace_ext4_load_inode(inode);
3792                 get_bh(bh);
3793                 bh->b_end_io = end_buffer_read_sync;
3794                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3795                 wait_on_buffer(bh);
3796                 if (!buffer_uptodate(bh)) {
3797                         EXT4_ERROR_INODE_BLOCK(inode, block,
3798                                                "unable to read itable block");
3799                         brelse(bh);
3800                         return -EIO;
3801                 }
3802         }
3803 has_buffer:
3804         iloc->bh = bh;
3805         return 0;
3806 }
3807
3808 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3809 {
3810         /* We have all inode data except xattrs in memory here. */
3811         return __ext4_get_inode_loc(inode, iloc,
3812                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3813 }
3814
3815 void ext4_set_inode_flags(struct inode *inode)
3816 {
3817         unsigned int flags = EXT4_I(inode)->i_flags;
3818         unsigned int new_fl = 0;
3819
3820         if (flags & EXT4_SYNC_FL)
3821                 new_fl |= S_SYNC;
3822         if (flags & EXT4_APPEND_FL)
3823                 new_fl |= S_APPEND;
3824         if (flags & EXT4_IMMUTABLE_FL)
3825                 new_fl |= S_IMMUTABLE;
3826         if (flags & EXT4_NOATIME_FL)
3827                 new_fl |= S_NOATIME;
3828         if (flags & EXT4_DIRSYNC_FL)
3829                 new_fl |= S_DIRSYNC;
3830         if (test_opt(inode->i_sb, DAX))
3831                 new_fl |= S_DAX;
3832         inode_set_flags(inode, new_fl,
3833                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3834 }
3835
3836 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3837 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3838 {
3839         unsigned int vfs_fl;
3840         unsigned long old_fl, new_fl;
3841
3842         do {
3843                 vfs_fl = ei->vfs_inode.i_flags;
3844                 old_fl = ei->i_flags;
3845                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3846                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3847                                 EXT4_DIRSYNC_FL);
3848                 if (vfs_fl & S_SYNC)
3849                         new_fl |= EXT4_SYNC_FL;
3850                 if (vfs_fl & S_APPEND)
3851                         new_fl |= EXT4_APPEND_FL;
3852                 if (vfs_fl & S_IMMUTABLE)
3853                         new_fl |= EXT4_IMMUTABLE_FL;
3854                 if (vfs_fl & S_NOATIME)
3855                         new_fl |= EXT4_NOATIME_FL;
3856                 if (vfs_fl & S_DIRSYNC)
3857                         new_fl |= EXT4_DIRSYNC_FL;
3858         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3859 }
3860
3861 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3862                                   struct ext4_inode_info *ei)
3863 {
3864         blkcnt_t i_blocks ;
3865         struct inode *inode = &(ei->vfs_inode);
3866         struct super_block *sb = inode->i_sb;
3867
3868         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3869                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3870                 /* we are using combined 48 bit field */
3871                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3872                                         le32_to_cpu(raw_inode->i_blocks_lo);
3873                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3874                         /* i_blocks represent file system block size */
3875                         return i_blocks  << (inode->i_blkbits - 9);
3876                 } else {
3877                         return i_blocks;
3878                 }
3879         } else {
3880                 return le32_to_cpu(raw_inode->i_blocks_lo);
3881         }
3882 }
3883
3884 static inline void ext4_iget_extra_inode(struct inode *inode,
3885                                          struct ext4_inode *raw_inode,
3886                                          struct ext4_inode_info *ei)
3887 {
3888         __le32 *magic = (void *)raw_inode +
3889                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3890         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3891                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3892                 ext4_find_inline_data_nolock(inode);
3893         } else
3894                 EXT4_I(inode)->i_inline_off = 0;
3895 }
3896
3897 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3898 {
3899         struct ext4_iloc iloc;
3900         struct ext4_inode *raw_inode;
3901         struct ext4_inode_info *ei;
3902         struct inode *inode;
3903         journal_t *journal = EXT4_SB(sb)->s_journal;
3904         long ret;
3905         int block;
3906         uid_t i_uid;
3907         gid_t i_gid;
3908
3909         inode = iget_locked(sb, ino);
3910         if (!inode)
3911                 return ERR_PTR(-ENOMEM);
3912         if (!(inode->i_state & I_NEW))
3913                 return inode;
3914
3915         ei = EXT4_I(inode);
3916         iloc.bh = NULL;
3917
3918         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3919         if (ret < 0)
3920                 goto bad_inode;
3921         raw_inode = ext4_raw_inode(&iloc);
3922
3923         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3924                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3925                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3926                     EXT4_INODE_SIZE(inode->i_sb)) {
3927                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3928                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3929                                 EXT4_INODE_SIZE(inode->i_sb));
3930                         ret = -EIO;
3931                         goto bad_inode;
3932                 }
3933         } else
3934                 ei->i_extra_isize = 0;
3935
3936         /* Precompute checksum seed for inode metadata */
3937         if (ext4_has_metadata_csum(sb)) {
3938                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3939                 __u32 csum;
3940                 __le32 inum = cpu_to_le32(inode->i_ino);
3941                 __le32 gen = raw_inode->i_generation;
3942                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3943                                    sizeof(inum));
3944                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3945                                               sizeof(gen));
3946         }
3947
3948         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3949                 EXT4_ERROR_INODE(inode, "checksum invalid");
3950                 ret = -EIO;
3951                 goto bad_inode;
3952         }
3953
3954         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3955         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3956         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3957         if (!(test_opt(inode->i_sb, NO_UID32))) {
3958                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3959                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3960         }
3961         i_uid_write(inode, i_uid);
3962         i_gid_write(inode, i_gid);
3963         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3964
3965         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3966         ei->i_inline_off = 0;
3967         ei->i_dir_start_lookup = 0;
3968         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3969         /* We now have enough fields to check if the inode was active or not.
3970          * This is needed because nfsd might try to access dead inodes
3971          * the test is that same one that e2fsck uses
3972          * NeilBrown 1999oct15
3973          */
3974         if (inode->i_nlink == 0) {
3975                 if ((inode->i_mode == 0 ||
3976                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3977                     ino != EXT4_BOOT_LOADER_INO) {
3978                         /* this inode is deleted */
3979                         ret = -ESTALE;
3980                         goto bad_inode;
3981                 }
3982                 /* The only unlinked inodes we let through here have
3983                  * valid i_mode and are being read by the orphan
3984                  * recovery code: that's fine, we're about to complete
3985                  * the process of deleting those.
3986                  * OR it is the EXT4_BOOT_LOADER_INO which is
3987                  * not initialized on a new filesystem. */
3988         }
3989         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3990         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3991         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3992         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3993                 ei->i_file_acl |=
3994                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3995         inode->i_size = ext4_isize(raw_inode);
3996         ei->i_disksize = inode->i_size;
3997 #ifdef CONFIG_QUOTA
3998         ei->i_reserved_quota = 0;
3999 #endif
4000         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4001         ei->i_block_group = iloc.block_group;
4002         ei->i_last_alloc_group = ~0;
4003         /*
4004          * NOTE! The in-memory inode i_data array is in little-endian order
4005          * even on big-endian machines: we do NOT byteswap the block numbers!
4006          */
4007         for (block = 0; block < EXT4_N_BLOCKS; block++)
4008                 ei->i_data[block] = raw_inode->i_block[block];
4009         INIT_LIST_HEAD(&ei->i_orphan);
4010
4011         /*
4012          * Set transaction id's of transactions that have to be committed
4013          * to finish f[data]sync. We set them to currently running transaction
4014          * as we cannot be sure that the inode or some of its metadata isn't
4015          * part of the transaction - the inode could have been reclaimed and
4016          * now it is reread from disk.
4017          */
4018         if (journal) {
4019                 transaction_t *transaction;
4020                 tid_t tid;
4021
4022                 read_lock(&journal->j_state_lock);
4023                 if (journal->j_running_transaction)
4024                         transaction = journal->j_running_transaction;
4025                 else
4026                         transaction = journal->j_committing_transaction;
4027                 if (transaction)
4028                         tid = transaction->t_tid;
4029                 else
4030                         tid = journal->j_commit_sequence;
4031                 read_unlock(&journal->j_state_lock);
4032                 ei->i_sync_tid = tid;
4033                 ei->i_datasync_tid = tid;
4034         }
4035
4036         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4037                 if (ei->i_extra_isize == 0) {
4038                         /* The extra space is currently unused. Use it. */
4039                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4040                                             EXT4_GOOD_OLD_INODE_SIZE;
4041                 } else {
4042                         ext4_iget_extra_inode(inode, raw_inode, ei);
4043                 }
4044         }
4045
4046         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4047         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4048         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4049         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4050
4051         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4052                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4053                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4054                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4055                                 inode->i_version |=
4056                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4057                 }
4058         }
4059
4060         ret = 0;
4061         if (ei->i_file_acl &&
4062             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4063                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4064                                  ei->i_file_acl);
4065                 ret = -EIO;
4066                 goto bad_inode;
4067         } else if (!ext4_has_inline_data(inode)) {
4068                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4069                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4070                             (S_ISLNK(inode->i_mode) &&
4071                              !ext4_inode_is_fast_symlink(inode))))
4072                                 /* Validate extent which is part of inode */
4073                                 ret = ext4_ext_check_inode(inode);
4074                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4075                            (S_ISLNK(inode->i_mode) &&
4076                             !ext4_inode_is_fast_symlink(inode))) {
4077                         /* Validate block references which are part of inode */
4078                         ret = ext4_ind_check_inode(inode);
4079                 }
4080         }
4081         if (ret)
4082                 goto bad_inode;
4083
4084         if (S_ISREG(inode->i_mode)) {
4085                 inode->i_op = &ext4_file_inode_operations;
4086                 if (test_opt(inode->i_sb, DAX))
4087                         inode->i_fop = &ext4_dax_file_operations;
4088                 else
4089                         inode->i_fop = &ext4_file_operations;
4090                 ext4_set_aops(inode);
4091         } else if (S_ISDIR(inode->i_mode)) {
4092                 inode->i_op = &ext4_dir_inode_operations;
4093                 inode->i_fop = &ext4_dir_operations;
4094         } else if (S_ISLNK(inode->i_mode)) {
4095                 if (ext4_inode_is_fast_symlink(inode)) {
4096                         inode->i_op = &ext4_fast_symlink_inode_operations;
4097                         nd_terminate_link(ei->i_data, inode->i_size,
4098                                 sizeof(ei->i_data) - 1);
4099                 } else {
4100                         inode->i_op = &ext4_symlink_inode_operations;
4101                         ext4_set_aops(inode);
4102                 }
4103         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4104               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4105                 inode->i_op = &ext4_special_inode_operations;
4106                 if (raw_inode->i_block[0])
4107                         init_special_inode(inode, inode->i_mode,
4108                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4109                 else
4110                         init_special_inode(inode, inode->i_mode,
4111                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4112         } else if (ino == EXT4_BOOT_LOADER_INO) {
4113                 make_bad_inode(inode);
4114         } else {
4115                 ret = -EIO;
4116                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4117                 goto bad_inode;
4118         }
4119         brelse(iloc.bh);
4120         ext4_set_inode_flags(inode);
4121         unlock_new_inode(inode);
4122         return inode;
4123
4124 bad_inode:
4125         brelse(iloc.bh);
4126         iget_failed(inode);
4127         return ERR_PTR(ret);
4128 }
4129
4130 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4131 {
4132         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4133                 return ERR_PTR(-EIO);
4134         return ext4_iget(sb, ino);
4135 }
4136
4137 static int ext4_inode_blocks_set(handle_t *handle,
4138                                 struct ext4_inode *raw_inode,
4139                                 struct ext4_inode_info *ei)
4140 {
4141         struct inode *inode = &(ei->vfs_inode);
4142         u64 i_blocks = inode->i_blocks;
4143         struct super_block *sb = inode->i_sb;
4144
4145         if (i_blocks <= ~0U) {
4146                 /*
4147                  * i_blocks can be represented in a 32 bit variable
4148                  * as multiple of 512 bytes
4149                  */
4150                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4151                 raw_inode->i_blocks_high = 0;
4152                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4153                 return 0;
4154         }
4155         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4156                 return -EFBIG;
4157
4158         if (i_blocks <= 0xffffffffffffULL) {
4159                 /*
4160                  * i_blocks can be represented in a 48 bit variable
4161                  * as multiple of 512 bytes
4162                  */
4163                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4164                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4165                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4166         } else {
4167                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4168                 /* i_block is stored in file system block size */
4169                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4170                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4171                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4172         }
4173         return 0;
4174 }
4175
4176 struct other_inode {
4177         unsigned long           orig_ino;
4178         struct ext4_inode       *raw_inode;
4179 };
4180
4181 static int other_inode_match(struct inode * inode, unsigned long ino,
4182                              void *data)
4183 {
4184         struct other_inode *oi = (struct other_inode *) data;
4185
4186         if ((inode->i_ino != ino) ||
4187             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4188                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4189             ((inode->i_state & I_DIRTY_TIME) == 0))
4190                 return 0;
4191         spin_lock(&inode->i_lock);
4192         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4193                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4194             (inode->i_state & I_DIRTY_TIME)) {
4195                 struct ext4_inode_info  *ei = EXT4_I(inode);
4196
4197                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4198                 spin_unlock(&inode->i_lock);
4199
4200                 spin_lock(&ei->i_raw_lock);
4201                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4202                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4203                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4204                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4205                 spin_unlock(&ei->i_raw_lock);
4206                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4207                 return -1;
4208         }
4209         spin_unlock(&inode->i_lock);
4210         return -1;
4211 }
4212
4213 /*
4214  * Opportunistically update the other time fields for other inodes in
4215  * the same inode table block.
4216  */
4217 static void ext4_update_other_inodes_time(struct super_block *sb,
4218                                           unsigned long orig_ino, char *buf)
4219 {
4220         struct other_inode oi;
4221         unsigned long ino;
4222         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4223         int inode_size = EXT4_INODE_SIZE(sb);
4224
4225         oi.orig_ino = orig_ino;
4226         ino = orig_ino & ~(inodes_per_block - 1);
4227         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4228                 if (ino == orig_ino)
4229                         continue;
4230                 oi.raw_inode = (struct ext4_inode *) buf;
4231                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4232         }
4233 }
4234
4235 /*
4236  * Post the struct inode info into an on-disk inode location in the
4237  * buffer-cache.  This gobbles the caller's reference to the
4238  * buffer_head in the inode location struct.
4239  *
4240  * The caller must have write access to iloc->bh.
4241  */
4242 static int ext4_do_update_inode(handle_t *handle,
4243                                 struct inode *inode,
4244                                 struct ext4_iloc *iloc)
4245 {
4246         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4247         struct ext4_inode_info *ei = EXT4_I(inode);
4248         struct buffer_head *bh = iloc->bh;
4249         struct super_block *sb = inode->i_sb;
4250         int err = 0, rc, block;
4251         int need_datasync = 0, set_large_file = 0;
4252         uid_t i_uid;
4253         gid_t i_gid;
4254
4255         spin_lock(&ei->i_raw_lock);
4256
4257         /* For fields not tracked in the in-memory inode,
4258          * initialise them to zero for new inodes. */
4259         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4260                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4261
4262         ext4_get_inode_flags(ei);
4263         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4264         i_uid = i_uid_read(inode);
4265         i_gid = i_gid_read(inode);
4266         if (!(test_opt(inode->i_sb, NO_UID32))) {
4267                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4268                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4269 /*
4270  * Fix up interoperability with old kernels. Otherwise, old inodes get
4271  * re-used with the upper 16 bits of the uid/gid intact
4272  */
4273                 if (!ei->i_dtime) {
4274                         raw_inode->i_uid_high =
4275                                 cpu_to_le16(high_16_bits(i_uid));
4276                         raw_inode->i_gid_high =
4277                                 cpu_to_le16(high_16_bits(i_gid));
4278                 } else {
4279                         raw_inode->i_uid_high = 0;
4280                         raw_inode->i_gid_high = 0;
4281                 }
4282         } else {
4283                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4284                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4285                 raw_inode->i_uid_high = 0;
4286                 raw_inode->i_gid_high = 0;
4287         }
4288         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4289
4290         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4291         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4292         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4293         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4294
4295         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4296         if (err) {
4297                 spin_unlock(&ei->i_raw_lock);
4298                 goto out_brelse;
4299         }
4300         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4301         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4302         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4303                 raw_inode->i_file_acl_high =
4304                         cpu_to_le16(ei->i_file_acl >> 32);
4305         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4306         if (ei->i_disksize != ext4_isize(raw_inode)) {
4307                 ext4_isize_set(raw_inode, ei->i_disksize);
4308                 need_datasync = 1;
4309         }
4310         if (ei->i_disksize > 0x7fffffffULL) {
4311                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4312                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4313                                 EXT4_SB(sb)->s_es->s_rev_level ==
4314                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4315                         set_large_file = 1;
4316         }
4317         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4318         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4319                 if (old_valid_dev(inode->i_rdev)) {
4320                         raw_inode->i_block[0] =
4321                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4322                         raw_inode->i_block[1] = 0;
4323                 } else {
4324                         raw_inode->i_block[0] = 0;
4325                         raw_inode->i_block[1] =
4326                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4327                         raw_inode->i_block[2] = 0;
4328                 }
4329         } else if (!ext4_has_inline_data(inode)) {
4330                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4331                         raw_inode->i_block[block] = ei->i_data[block];
4332         }
4333
4334         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4335                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4336                 if (ei->i_extra_isize) {
4337                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4338                                 raw_inode->i_version_hi =
4339                                         cpu_to_le32(inode->i_version >> 32);
4340                         raw_inode->i_extra_isize =
4341                                 cpu_to_le16(ei->i_extra_isize);
4342                 }
4343         }
4344         ext4_inode_csum_set(inode, raw_inode, ei);
4345         spin_unlock(&ei->i_raw_lock);
4346         if (inode->i_sb->s_flags & MS_LAZYTIME)
4347                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4348                                               bh->b_data);
4349
4350         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4351         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4352         if (!err)
4353                 err = rc;
4354         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4355         if (set_large_file) {
4356                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4357                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4358                 if (err)
4359                         goto out_brelse;
4360                 ext4_update_dynamic_rev(sb);
4361                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4362                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4363                 ext4_handle_sync(handle);
4364                 err = ext4_handle_dirty_super(handle, sb);
4365         }
4366         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4367 out_brelse:
4368         brelse(bh);
4369         ext4_std_error(inode->i_sb, err);
4370         return err;
4371 }
4372
4373 /*
4374  * ext4_write_inode()
4375  *
4376  * We are called from a few places:
4377  *
4378  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4379  *   Here, there will be no transaction running. We wait for any running
4380  *   transaction to commit.
4381  *
4382  * - Within flush work (sys_sync(), kupdate and such).
4383  *   We wait on commit, if told to.
4384  *
4385  * - Within iput_final() -> write_inode_now()
4386  *   We wait on commit, if told to.
4387  *
4388  * In all cases it is actually safe for us to return without doing anything,
4389  * because the inode has been copied into a raw inode buffer in
4390  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4391  * writeback.
4392  *
4393  * Note that we are absolutely dependent upon all inode dirtiers doing the
4394  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4395  * which we are interested.
4396  *
4397  * It would be a bug for them to not do this.  The code:
4398  *
4399  *      mark_inode_dirty(inode)
4400  *      stuff();
4401  *      inode->i_size = expr;
4402  *
4403  * is in error because write_inode() could occur while `stuff()' is running,
4404  * and the new i_size will be lost.  Plus the inode will no longer be on the
4405  * superblock's dirty inode list.
4406  */
4407 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4408 {
4409         int err;
4410
4411         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4412                 return 0;
4413
4414         if (EXT4_SB(inode->i_sb)->s_journal) {
4415                 if (ext4_journal_current_handle()) {
4416                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4417                         dump_stack();
4418                         return -EIO;
4419                 }
4420
4421                 /*
4422                  * No need to force transaction in WB_SYNC_NONE mode. Also
4423                  * ext4_sync_fs() will force the commit after everything is
4424                  * written.
4425                  */
4426                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4427                         return 0;
4428
4429                 err = ext4_force_commit(inode->i_sb);
4430         } else {
4431                 struct ext4_iloc iloc;
4432
4433                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4434                 if (err)
4435                         return err;
4436                 /*
4437                  * sync(2) will flush the whole buffer cache. No need to do
4438                  * it here separately for each inode.
4439                  */
4440                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4441                         sync_dirty_buffer(iloc.bh);
4442                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4443                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4444                                          "IO error syncing inode");
4445                         err = -EIO;
4446                 }
4447                 brelse(iloc.bh);
4448         }
4449         return err;
4450 }
4451
4452 /*
4453  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4454  * buffers that are attached to a page stradding i_size and are undergoing
4455  * commit. In that case we have to wait for commit to finish and try again.
4456  */
4457 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4458 {
4459         struct page *page;
4460         unsigned offset;
4461         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4462         tid_t commit_tid = 0;
4463         int ret;
4464
4465         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4466         /*
4467          * All buffers in the last page remain valid? Then there's nothing to
4468          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4469          * blocksize case
4470          */
4471         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4472                 return;
4473         while (1) {
4474                 page = find_lock_page(inode->i_mapping,
4475                                       inode->i_size >> PAGE_CACHE_SHIFT);
4476                 if (!page)
4477                         return;
4478                 ret = __ext4_journalled_invalidatepage(page, offset,
4479                                                 PAGE_CACHE_SIZE - offset);
4480                 unlock_page(page);
4481                 page_cache_release(page);
4482                 if (ret != -EBUSY)
4483                         return;
4484                 commit_tid = 0;
4485                 read_lock(&journal->j_state_lock);
4486                 if (journal->j_committing_transaction)
4487                         commit_tid = journal->j_committing_transaction->t_tid;
4488                 read_unlock(&journal->j_state_lock);
4489                 if (commit_tid)
4490                         jbd2_log_wait_commit(journal, commit_tid);
4491         }
4492 }
4493
4494 /*
4495  * ext4_setattr()
4496  *
4497  * Called from notify_change.
4498  *
4499  * We want to trap VFS attempts to truncate the file as soon as
4500  * possible.  In particular, we want to make sure that when the VFS
4501  * shrinks i_size, we put the inode on the orphan list and modify
4502  * i_disksize immediately, so that during the subsequent flushing of
4503  * dirty pages and freeing of disk blocks, we can guarantee that any
4504  * commit will leave the blocks being flushed in an unused state on
4505  * disk.  (On recovery, the inode will get truncated and the blocks will
4506  * be freed, so we have a strong guarantee that no future commit will
4507  * leave these blocks visible to the user.)
4508  *
4509  * Another thing we have to assure is that if we are in ordered mode
4510  * and inode is still attached to the committing transaction, we must
4511  * we start writeout of all the dirty pages which are being truncated.
4512  * This way we are sure that all the data written in the previous
4513  * transaction are already on disk (truncate waits for pages under
4514  * writeback).
4515  *
4516  * Called with inode->i_mutex down.
4517  */
4518 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4519 {
4520         struct inode *inode = dentry->d_inode;
4521         int error, rc = 0;
4522         int orphan = 0;
4523         const unsigned int ia_valid = attr->ia_valid;
4524
4525         error = inode_change_ok(inode, attr);
4526         if (error)
4527                 return error;
4528
4529         if (is_quota_modification(inode, attr))
4530                 dquot_initialize(inode);
4531         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4532             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4533                 handle_t *handle;
4534
4535                 /* (user+group)*(old+new) structure, inode write (sb,
4536                  * inode block, ? - but truncate inode update has it) */
4537                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4538                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4539                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4540                 if (IS_ERR(handle)) {
4541                         error = PTR_ERR(handle);
4542                         goto err_out;
4543                 }
4544                 error = dquot_transfer(inode, attr);
4545                 if (error) {
4546                         ext4_journal_stop(handle);
4547                         return error;
4548                 }
4549                 /* Update corresponding info in inode so that everything is in
4550                  * one transaction */
4551                 if (attr->ia_valid & ATTR_UID)
4552                         inode->i_uid = attr->ia_uid;
4553                 if (attr->ia_valid & ATTR_GID)
4554                         inode->i_gid = attr->ia_gid;
4555                 error = ext4_mark_inode_dirty(handle, inode);
4556                 ext4_journal_stop(handle);
4557         }
4558
4559         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4560                 handle_t *handle;
4561
4562                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4563                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4564
4565                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4566                                 return -EFBIG;
4567                 }
4568
4569                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4570                         inode_inc_iversion(inode);
4571
4572                 if (S_ISREG(inode->i_mode) &&
4573                     (attr->ia_size < inode->i_size)) {
4574                         if (ext4_should_order_data(inode)) {
4575                                 error = ext4_begin_ordered_truncate(inode,
4576                                                             attr->ia_size);
4577                                 if (error)
4578                                         goto err_out;
4579                         }
4580                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4581                         if (IS_ERR(handle)) {
4582                                 error = PTR_ERR(handle);
4583                                 goto err_out;
4584                         }
4585                         if (ext4_handle_valid(handle)) {
4586                                 error = ext4_orphan_add(handle, inode);
4587                                 orphan = 1;
4588                         }
4589                         down_write(&EXT4_I(inode)->i_data_sem);
4590                         EXT4_I(inode)->i_disksize = attr->ia_size;
4591                         rc = ext4_mark_inode_dirty(handle, inode);
4592                         if (!error)
4593                                 error = rc;
4594                         /*
4595                          * We have to update i_size under i_data_sem together
4596                          * with i_disksize to avoid races with writeback code
4597                          * running ext4_wb_update_i_disksize().
4598                          */
4599                         if (!error)
4600                                 i_size_write(inode, attr->ia_size);
4601                         up_write(&EXT4_I(inode)->i_data_sem);
4602                         ext4_journal_stop(handle);
4603                         if (error) {
4604                                 ext4_orphan_del(NULL, inode);
4605                                 goto err_out;
4606                         }
4607                 } else {
4608                         loff_t oldsize = inode->i_size;
4609
4610                         i_size_write(inode, attr->ia_size);
4611                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4612                 }
4613
4614                 /*
4615                  * Blocks are going to be removed from the inode. Wait
4616                  * for dio in flight.  Temporarily disable
4617                  * dioread_nolock to prevent livelock.
4618                  */
4619                 if (orphan) {
4620                         if (!ext4_should_journal_data(inode)) {
4621                                 ext4_inode_block_unlocked_dio(inode);
4622                                 inode_dio_wait(inode);
4623                                 ext4_inode_resume_unlocked_dio(inode);
4624                         } else
4625                                 ext4_wait_for_tail_page_commit(inode);
4626                 }
4627                 /*
4628                  * Truncate pagecache after we've waited for commit
4629                  * in data=journal mode to make pages freeable.
4630                  */
4631                 truncate_pagecache(inode, inode->i_size);
4632         }
4633         /*
4634          * We want to call ext4_truncate() even if attr->ia_size ==
4635          * inode->i_size for cases like truncation of fallocated space
4636          */
4637         if (attr->ia_valid & ATTR_SIZE)
4638                 ext4_truncate(inode);
4639
4640         if (!rc) {
4641                 setattr_copy(inode, attr);
4642                 mark_inode_dirty(inode);
4643         }
4644
4645         /*
4646          * If the call to ext4_truncate failed to get a transaction handle at
4647          * all, we need to clean up the in-core orphan list manually.
4648          */
4649         if (orphan && inode->i_nlink)
4650                 ext4_orphan_del(NULL, inode);
4651
4652         if (!rc && (ia_valid & ATTR_MODE))
4653                 rc = posix_acl_chmod(inode, inode->i_mode);
4654
4655 err_out:
4656         ext4_std_error(inode->i_sb, error);
4657         if (!error)
4658                 error = rc;
4659         return error;
4660 }
4661
4662 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4663                  struct kstat *stat)
4664 {
4665         struct inode *inode;
4666         unsigned long long delalloc_blocks;
4667
4668         inode = dentry->d_inode;
4669         generic_fillattr(inode, stat);
4670
4671         /*
4672          * If there is inline data in the inode, the inode will normally not
4673          * have data blocks allocated (it may have an external xattr block).
4674          * Report at least one sector for such files, so tools like tar, rsync,
4675          * others doen't incorrectly think the file is completely sparse.
4676          */
4677         if (unlikely(ext4_has_inline_data(inode)))
4678                 stat->blocks += (stat->size + 511) >> 9;
4679
4680         /*
4681          * We can't update i_blocks if the block allocation is delayed
4682          * otherwise in the case of system crash before the real block
4683          * allocation is done, we will have i_blocks inconsistent with
4684          * on-disk file blocks.
4685          * We always keep i_blocks updated together with real
4686          * allocation. But to not confuse with user, stat
4687          * will return the blocks that include the delayed allocation
4688          * blocks for this file.
4689          */
4690         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4691                                    EXT4_I(inode)->i_reserved_data_blocks);
4692         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4693         return 0;
4694 }
4695
4696 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4697                                    int pextents)
4698 {
4699         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4700                 return ext4_ind_trans_blocks(inode, lblocks);
4701         return ext4_ext_index_trans_blocks(inode, pextents);
4702 }
4703
4704 /*
4705  * Account for index blocks, block groups bitmaps and block group
4706  * descriptor blocks if modify datablocks and index blocks
4707  * worse case, the indexs blocks spread over different block groups
4708  *
4709  * If datablocks are discontiguous, they are possible to spread over
4710  * different block groups too. If they are contiguous, with flexbg,
4711  * they could still across block group boundary.
4712  *
4713  * Also account for superblock, inode, quota and xattr blocks
4714  */
4715 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4716                                   int pextents)
4717 {
4718         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4719         int gdpblocks;
4720         int idxblocks;
4721         int ret = 0;
4722
4723         /*
4724          * How many index blocks need to touch to map @lblocks logical blocks
4725          * to @pextents physical extents?
4726          */
4727         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4728
4729         ret = idxblocks;
4730
4731         /*
4732          * Now let's see how many group bitmaps and group descriptors need
4733          * to account
4734          */
4735         groups = idxblocks + pextents;
4736         gdpblocks = groups;
4737         if (groups > ngroups)
4738                 groups = ngroups;
4739         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4740                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4741
4742         /* bitmaps and block group descriptor blocks */
4743         ret += groups + gdpblocks;
4744
4745         /* Blocks for super block, inode, quota and xattr blocks */
4746         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4747
4748         return ret;
4749 }
4750
4751 /*
4752  * Calculate the total number of credits to reserve to fit
4753  * the modification of a single pages into a single transaction,
4754  * which may include multiple chunks of block allocations.
4755  *
4756  * This could be called via ext4_write_begin()
4757  *
4758  * We need to consider the worse case, when
4759  * one new block per extent.
4760  */
4761 int ext4_writepage_trans_blocks(struct inode *inode)
4762 {
4763         int bpp = ext4_journal_blocks_per_page(inode);
4764         int ret;
4765
4766         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4767
4768         /* Account for data blocks for journalled mode */
4769         if (ext4_should_journal_data(inode))
4770                 ret += bpp;
4771         return ret;
4772 }
4773
4774 /*
4775  * Calculate the journal credits for a chunk of data modification.
4776  *
4777  * This is called from DIO, fallocate or whoever calling
4778  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4779  *
4780  * journal buffers for data blocks are not included here, as DIO
4781  * and fallocate do no need to journal data buffers.
4782  */
4783 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4784 {
4785         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4786 }
4787
4788 /*
4789  * The caller must have previously called ext4_reserve_inode_write().
4790  * Give this, we know that the caller already has write access to iloc->bh.
4791  */
4792 int ext4_mark_iloc_dirty(handle_t *handle,
4793                          struct inode *inode, struct ext4_iloc *iloc)
4794 {
4795         int err = 0;
4796
4797         if (IS_I_VERSION(inode))
4798                 inode_inc_iversion(inode);
4799
4800         /* the do_update_inode consumes one bh->b_count */
4801         get_bh(iloc->bh);
4802
4803         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4804         err = ext4_do_update_inode(handle, inode, iloc);
4805         put_bh(iloc->bh);
4806         return err;
4807 }
4808
4809 /*
4810  * On success, We end up with an outstanding reference count against
4811  * iloc->bh.  This _must_ be cleaned up later.
4812  */
4813
4814 int
4815 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4816                          struct ext4_iloc *iloc)
4817 {
4818         int err;
4819
4820         err = ext4_get_inode_loc(inode, iloc);
4821         if (!err) {
4822                 BUFFER_TRACE(iloc->bh, "get_write_access");
4823                 err = ext4_journal_get_write_access(handle, iloc->bh);
4824                 if (err) {
4825                         brelse(iloc->bh);
4826                         iloc->bh = NULL;
4827                 }
4828         }
4829         ext4_std_error(inode->i_sb, err);
4830         return err;
4831 }
4832
4833 /*
4834  * Expand an inode by new_extra_isize bytes.
4835  * Returns 0 on success or negative error number on failure.
4836  */
4837 static int ext4_expand_extra_isize(struct inode *inode,
4838                                    unsigned int new_extra_isize,
4839                                    struct ext4_iloc iloc,
4840                                    handle_t *handle)
4841 {
4842         struct ext4_inode *raw_inode;
4843         struct ext4_xattr_ibody_header *header;
4844
4845         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4846                 return 0;
4847
4848         raw_inode = ext4_raw_inode(&iloc);
4849
4850         header = IHDR(inode, raw_inode);
4851
4852         /* No extended attributes present */
4853         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4854             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4855                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4856                         new_extra_isize);
4857                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4858                 return 0;
4859         }
4860
4861         /* try to expand with EAs present */
4862         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4863                                           raw_inode, handle);
4864 }
4865
4866 /*
4867  * What we do here is to mark the in-core inode as clean with respect to inode
4868  * dirtiness (it may still be data-dirty).
4869  * This means that the in-core inode may be reaped by prune_icache
4870  * without having to perform any I/O.  This is a very good thing,
4871  * because *any* task may call prune_icache - even ones which
4872  * have a transaction open against a different journal.
4873  *
4874  * Is this cheating?  Not really.  Sure, we haven't written the
4875  * inode out, but prune_icache isn't a user-visible syncing function.
4876  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4877  * we start and wait on commits.
4878  */
4879 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4880 {
4881         struct ext4_iloc iloc;
4882         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4883         static unsigned int mnt_count;
4884         int err, ret;
4885
4886         might_sleep();
4887         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4888         err = ext4_reserve_inode_write(handle, inode, &iloc);
4889         if (ext4_handle_valid(handle) &&
4890             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4891             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4892                 /*
4893                  * We need extra buffer credits since we may write into EA block
4894                  * with this same handle. If journal_extend fails, then it will
4895                  * only result in a minor loss of functionality for that inode.
4896                  * If this is felt to be critical, then e2fsck should be run to
4897                  * force a large enough s_min_extra_isize.
4898                  */
4899                 if ((jbd2_journal_extend(handle,
4900                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4901                         ret = ext4_expand_extra_isize(inode,
4902                                                       sbi->s_want_extra_isize,
4903                                                       iloc, handle);
4904                         if (ret) {
4905                                 ext4_set_inode_state(inode,
4906                                                      EXT4_STATE_NO_EXPAND);
4907                                 if (mnt_count !=
4908                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4909                                         ext4_warning(inode->i_sb,
4910                                         "Unable to expand inode %lu. Delete"
4911                                         " some EAs or run e2fsck.",
4912                                         inode->i_ino);
4913                                         mnt_count =
4914                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4915                                 }
4916                         }
4917                 }
4918         }
4919         if (!err)
4920                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4921         return err;
4922 }
4923
4924 /*
4925  * ext4_dirty_inode() is called from __mark_inode_dirty()
4926  *
4927  * We're really interested in the case where a file is being extended.
4928  * i_size has been changed by generic_commit_write() and we thus need
4929  * to include the updated inode in the current transaction.
4930  *
4931  * Also, dquot_alloc_block() will always dirty the inode when blocks
4932  * are allocated to the file.
4933  *
4934  * If the inode is marked synchronous, we don't honour that here - doing
4935  * so would cause a commit on atime updates, which we don't bother doing.
4936  * We handle synchronous inodes at the highest possible level.
4937  *
4938  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4939  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4940  * to copy into the on-disk inode structure are the timestamp files.
4941  */
4942 void ext4_dirty_inode(struct inode *inode, int flags)
4943 {
4944         handle_t *handle;
4945
4946         if (flags == I_DIRTY_TIME)
4947                 return;
4948         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4949         if (IS_ERR(handle))
4950                 goto out;
4951
4952         ext4_mark_inode_dirty(handle, inode);
4953
4954         ext4_journal_stop(handle);
4955 out:
4956         return;
4957 }
4958
4959 #if 0
4960 /*
4961  * Bind an inode's backing buffer_head into this transaction, to prevent
4962  * it from being flushed to disk early.  Unlike
4963  * ext4_reserve_inode_write, this leaves behind no bh reference and
4964  * returns no iloc structure, so the caller needs to repeat the iloc
4965  * lookup to mark the inode dirty later.
4966  */
4967 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4968 {
4969         struct ext4_iloc iloc;
4970
4971         int err = 0;
4972         if (handle) {
4973                 err = ext4_get_inode_loc(inode, &iloc);
4974                 if (!err) {
4975                         BUFFER_TRACE(iloc.bh, "get_write_access");
4976                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4977                         if (!err)
4978                                 err = ext4_handle_dirty_metadata(handle,
4979                                                                  NULL,
4980                                                                  iloc.bh);
4981                         brelse(iloc.bh);
4982                 }
4983         }
4984         ext4_std_error(inode->i_sb, err);
4985         return err;
4986 }
4987 #endif
4988
4989 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4990 {
4991         journal_t *journal;
4992         handle_t *handle;
4993         int err;
4994
4995         /*
4996          * We have to be very careful here: changing a data block's
4997          * journaling status dynamically is dangerous.  If we write a
4998          * data block to the journal, change the status and then delete
4999          * that block, we risk forgetting to revoke the old log record
5000          * from the journal and so a subsequent replay can corrupt data.
5001          * So, first we make sure that the journal is empty and that
5002          * nobody is changing anything.
5003          */
5004
5005         journal = EXT4_JOURNAL(inode);
5006         if (!journal)
5007                 return 0;
5008         if (is_journal_aborted(journal))
5009                 return -EROFS;
5010         /* We have to allocate physical blocks for delalloc blocks
5011          * before flushing journal. otherwise delalloc blocks can not
5012          * be allocated any more. even more truncate on delalloc blocks
5013          * could trigger BUG by flushing delalloc blocks in journal.
5014          * There is no delalloc block in non-journal data mode.
5015          */
5016         if (val && test_opt(inode->i_sb, DELALLOC)) {
5017                 err = ext4_alloc_da_blocks(inode);
5018                 if (err < 0)
5019                         return err;
5020         }
5021
5022         /* Wait for all existing dio workers */
5023         ext4_inode_block_unlocked_dio(inode);
5024         inode_dio_wait(inode);
5025
5026         jbd2_journal_lock_updates(journal);
5027
5028         /*
5029          * OK, there are no updates running now, and all cached data is
5030          * synced to disk.  We are now in a completely consistent state
5031          * which doesn't have anything in the journal, and we know that
5032          * no filesystem updates are running, so it is safe to modify
5033          * the inode's in-core data-journaling state flag now.
5034          */
5035
5036         if (val)
5037                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5038         else {
5039                 err = jbd2_journal_flush(journal);
5040                 if (err < 0) {
5041                         jbd2_journal_unlock_updates(journal);
5042                         ext4_inode_resume_unlocked_dio(inode);
5043                         return err;
5044                 }
5045                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5046         }
5047         ext4_set_aops(inode);
5048
5049         jbd2_journal_unlock_updates(journal);
5050         ext4_inode_resume_unlocked_dio(inode);
5051
5052         /* Finally we can mark the inode as dirty. */
5053
5054         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5055         if (IS_ERR(handle))
5056                 return PTR_ERR(handle);
5057
5058         err = ext4_mark_inode_dirty(handle, inode);
5059         ext4_handle_sync(handle);
5060         ext4_journal_stop(handle);
5061         ext4_std_error(inode->i_sb, err);
5062
5063         return err;
5064 }
5065
5066 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5067 {
5068         return !buffer_mapped(bh);
5069 }
5070
5071 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5072 {
5073         struct page *page = vmf->page;
5074         loff_t size;
5075         unsigned long len;
5076         int ret;
5077         struct file *file = vma->vm_file;
5078         struct inode *inode = file_inode(file);
5079         struct address_space *mapping = inode->i_mapping;
5080         handle_t *handle;
5081         get_block_t *get_block;
5082         int retries = 0;
5083
5084         sb_start_pagefault(inode->i_sb);
5085         file_update_time(vma->vm_file);
5086         /* Delalloc case is easy... */
5087         if (test_opt(inode->i_sb, DELALLOC) &&
5088             !ext4_should_journal_data(inode) &&
5089             !ext4_nonda_switch(inode->i_sb)) {
5090                 do {
5091                         ret = __block_page_mkwrite(vma, vmf,
5092                                                    ext4_da_get_block_prep);
5093                 } while (ret == -ENOSPC &&
5094                        ext4_should_retry_alloc(inode->i_sb, &retries));
5095                 goto out_ret;
5096         }
5097
5098         lock_page(page);
5099         size = i_size_read(inode);
5100         /* Page got truncated from under us? */
5101         if (page->mapping != mapping || page_offset(page) > size) {
5102                 unlock_page(page);
5103                 ret = VM_FAULT_NOPAGE;
5104                 goto out;
5105         }
5106
5107         if (page->index == size >> PAGE_CACHE_SHIFT)
5108                 len = size & ~PAGE_CACHE_MASK;
5109         else
5110                 len = PAGE_CACHE_SIZE;
5111         /*
5112          * Return if we have all the buffers mapped. This avoids the need to do
5113          * journal_start/journal_stop which can block and take a long time
5114          */
5115         if (page_has_buffers(page)) {
5116                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5117                                             0, len, NULL,
5118                                             ext4_bh_unmapped)) {
5119                         /* Wait so that we don't change page under IO */
5120                         wait_for_stable_page(page);
5121                         ret = VM_FAULT_LOCKED;
5122                         goto out;
5123                 }
5124         }
5125         unlock_page(page);
5126         /* OK, we need to fill the hole... */
5127         if (ext4_should_dioread_nolock(inode))
5128                 get_block = ext4_get_block_write;
5129         else
5130                 get_block = ext4_get_block;
5131 retry_alloc:
5132         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5133                                     ext4_writepage_trans_blocks(inode));
5134         if (IS_ERR(handle)) {
5135                 ret = VM_FAULT_SIGBUS;
5136                 goto out;
5137         }
5138         ret = __block_page_mkwrite(vma, vmf, get_block);
5139         if (!ret && ext4_should_journal_data(inode)) {
5140                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5141                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5142                         unlock_page(page);
5143                         ret = VM_FAULT_SIGBUS;
5144                         ext4_journal_stop(handle);
5145                         goto out;
5146                 }
5147                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5148         }
5149         ext4_journal_stop(handle);
5150         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5151                 goto retry_alloc;
5152 out_ret:
5153         ret = block_page_mkwrite_return(ret);
5154 out:
5155         sb_end_pagefault(inode->i_sb);
5156         return ret;
5157 }