Merge tag 'trace-tracefs-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152                 if (ext4_has_inline_data(inode))
153                         return 0;
154
155                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156         }
157         return S_ISLNK(inode->i_mode) && inode->i_size &&
158                (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166         handle_t *handle;
167         int err;
168         /*
169          * Credits for final inode cleanup and freeing:
170          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171          * (xattr block freeing), bitmap, group descriptor (inode freeing)
172          */
173         int extra_credits = 6;
174         struct ext4_xattr_inode_array *ea_inode_array = NULL;
175         bool freeze_protected = false;
176
177         trace_ext4_evict_inode(inode);
178
179         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180                 ext4_evict_ea_inode(inode);
181         if (inode->i_nlink) {
182                 truncate_inode_pages_final(&inode->i_data);
183
184                 goto no_delete;
185         }
186
187         if (is_bad_inode(inode))
188                 goto no_delete;
189         dquot_initialize(inode);
190
191         if (ext4_should_order_data(inode))
192                 ext4_begin_ordered_truncate(inode, 0);
193         truncate_inode_pages_final(&inode->i_data);
194
195         /*
196          * For inodes with journalled data, transaction commit could have
197          * dirtied the inode. And for inodes with dioread_nolock, unwritten
198          * extents converting worker could merge extents and also have dirtied
199          * the inode. Flush worker is ignoring it because of I_FREEING flag but
200          * we still need to remove the inode from the writeback lists.
201          */
202         if (!list_empty_careful(&inode->i_io_list))
203                 inode_io_list_del(inode);
204
205         /*
206          * Protect us against freezing - iput() caller didn't have to have any
207          * protection against it. When we are in a running transaction though,
208          * we are already protected against freezing and we cannot grab further
209          * protection due to lock ordering constraints.
210          */
211         if (!ext4_journal_current_handle()) {
212                 sb_start_intwrite(inode->i_sb);
213                 freeze_protected = true;
214         }
215
216         if (!IS_NOQUOTA(inode))
217                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219         /*
220          * Block bitmap, group descriptor, and inode are accounted in both
221          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222          */
223         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
225         if (IS_ERR(handle)) {
226                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227                 /*
228                  * If we're going to skip the normal cleanup, we still need to
229                  * make sure that the in-core orphan linked list is properly
230                  * cleaned up.
231                  */
232                 ext4_orphan_del(NULL, inode);
233                 if (freeze_protected)
234                         sb_end_intwrite(inode->i_sb);
235                 goto no_delete;
236         }
237
238         if (IS_SYNC(inode))
239                 ext4_handle_sync(handle);
240
241         /*
242          * Set inode->i_size to 0 before calling ext4_truncate(). We need
243          * special handling of symlinks here because i_size is used to
244          * determine whether ext4_inode_info->i_data contains symlink data or
245          * block mappings. Setting i_size to 0 will remove its fast symlink
246          * status. Erase i_data so that it becomes a valid empty block map.
247          */
248         if (ext4_inode_is_fast_symlink(inode))
249                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250         inode->i_size = 0;
251         err = ext4_mark_inode_dirty(handle, inode);
252         if (err) {
253                 ext4_warning(inode->i_sb,
254                              "couldn't mark inode dirty (err %d)", err);
255                 goto stop_handle;
256         }
257         if (inode->i_blocks) {
258                 err = ext4_truncate(inode);
259                 if (err) {
260                         ext4_error_err(inode->i_sb, -err,
261                                        "couldn't truncate inode %lu (err %d)",
262                                        inode->i_ino, err);
263                         goto stop_handle;
264                 }
265         }
266
267         /* Remove xattr references. */
268         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269                                       extra_credits);
270         if (err) {
271                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273                 ext4_journal_stop(handle);
274                 ext4_orphan_del(NULL, inode);
275                 if (freeze_protected)
276                         sb_end_intwrite(inode->i_sb);
277                 ext4_xattr_inode_array_free(ea_inode_array);
278                 goto no_delete;
279         }
280
281         /*
282          * Kill off the orphan record which ext4_truncate created.
283          * AKPM: I think this can be inside the above `if'.
284          * Note that ext4_orphan_del() has to be able to cope with the
285          * deletion of a non-existent orphan - this is because we don't
286          * know if ext4_truncate() actually created an orphan record.
287          * (Well, we could do this if we need to, but heck - it works)
288          */
289         ext4_orphan_del(handle, inode);
290         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
291
292         /*
293          * One subtle ordering requirement: if anything has gone wrong
294          * (transaction abort, IO errors, whatever), then we can still
295          * do these next steps (the fs will already have been marked as
296          * having errors), but we can't free the inode if the mark_dirty
297          * fails.
298          */
299         if (ext4_mark_inode_dirty(handle, inode))
300                 /* If that failed, just do the required in-core inode clear. */
301                 ext4_clear_inode(inode);
302         else
303                 ext4_free_inode(handle, inode);
304         ext4_journal_stop(handle);
305         if (freeze_protected)
306                 sb_end_intwrite(inode->i_sb);
307         ext4_xattr_inode_array_free(ea_inode_array);
308         return;
309 no_delete:
310         /*
311          * Check out some where else accidentally dirty the evicting inode,
312          * which may probably cause inode use-after-free issues later.
313          */
314         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316         if (!list_empty(&EXT4_I(inode)->i_fc_list))
317                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324         return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353         spin_unlock(&ei->i_block_reservation_lock);
354
355         /* Update quota subsystem for data blocks */
356         if (quota_claim)
357                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358         else {
359                 /*
360                  * We did fallocate with an offset that is already delayed
361                  * allocated. So on delayed allocated writeback we should
362                  * not re-claim the quota for fallocated blocks.
363                  */
364                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365         }
366
367         /*
368          * If we have done all the pending block allocations and if
369          * there aren't any writers on the inode, we can discard the
370          * inode's preallocations.
371          */
372         if ((ei->i_reserved_data_blocks == 0) &&
373             !inode_is_open_for_write(inode))
374                 ext4_discard_preallocations(inode);
375 }
376
377 static int __check_block_validity(struct inode *inode, const char *func,
378                                 unsigned int line,
379                                 struct ext4_map_blocks *map)
380 {
381         if (ext4_has_feature_journal(inode->i_sb) &&
382             (inode->i_ino ==
383              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384                 return 0;
385         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386                 ext4_error_inode(inode, func, line, map->m_pblk,
387                                  "lblock %lu mapped to illegal pblock %llu "
388                                  "(length %d)", (unsigned long) map->m_lblk,
389                                  map->m_pblk, map->m_len);
390                 return -EFSCORRUPTED;
391         }
392         return 0;
393 }
394
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396                        ext4_lblk_t len)
397 {
398         int ret;
399
400         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404         if (ret > 0)
405                 ret = 0;
406
407         return ret;
408 }
409
410 #define check_block_validity(inode, map)        \
411         __check_block_validity((inode), __func__, __LINE__, (map))
412
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415                                        struct inode *inode,
416                                        struct ext4_map_blocks *es_map,
417                                        struct ext4_map_blocks *map,
418                                        int flags)
419 {
420         int retval;
421
422         map->m_flags = 0;
423         /*
424          * There is a race window that the result is not the same.
425          * e.g. xfstests #223 when dioread_nolock enables.  The reason
426          * is that we lookup a block mapping in extent status tree with
427          * out taking i_data_sem.  So at the time the unwritten extent
428          * could be converted.
429          */
430         down_read(&EXT4_I(inode)->i_data_sem);
431         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433         } else {
434                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435         }
436         up_read((&EXT4_I(inode)->i_data_sem));
437
438         /*
439          * We don't check m_len because extent will be collpased in status
440          * tree.  So the m_len might not equal.
441          */
442         if (es_map->m_lblk != map->m_lblk ||
443             es_map->m_flags != map->m_flags ||
444             es_map->m_pblk != map->m_pblk) {
445                 printk("ES cache assertion failed for inode: %lu "
446                        "es_cached ex [%d/%d/%llu/%x] != "
447                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448                        inode->i_ino, es_map->m_lblk, es_map->m_len,
449                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
450                        map->m_len, map->m_pblk, map->m_flags,
451                        retval, flags);
452         }
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.
469  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
470  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
471  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
472  *
473  * It returns 0 if plain look up failed (blocks have not been allocated), in
474  * that case, @map is returned as unmapped but we still do fill map->m_len to
475  * indicate the length of a hole starting at map->m_lblk.
476  *
477  * It returns the error in case of allocation failure.
478  */
479 int ext4_map_blocks(handle_t *handle, struct inode *inode,
480                     struct ext4_map_blocks *map, int flags)
481 {
482         struct extent_status es;
483         int retval;
484         int ret = 0;
485 #ifdef ES_AGGRESSIVE_TEST
486         struct ext4_map_blocks orig_map;
487
488         memcpy(&orig_map, map, sizeof(*map));
489 #endif
490
491         map->m_flags = 0;
492         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
493                   flags, map->m_len, (unsigned long) map->m_lblk);
494
495         /*
496          * ext4_map_blocks returns an int, and m_len is an unsigned int
497          */
498         if (unlikely(map->m_len > INT_MAX))
499                 map->m_len = INT_MAX;
500
501         /* We can handle the block number less than EXT_MAX_BLOCKS */
502         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
503                 return -EFSCORRUPTED;
504
505         /* Lookup extent status tree firstly */
506         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
507             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
508                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
509                         map->m_pblk = ext4_es_pblock(&es) +
510                                         map->m_lblk - es.es_lblk;
511                         map->m_flags |= ext4_es_is_written(&es) ?
512                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
513                         retval = es.es_len - (map->m_lblk - es.es_lblk);
514                         if (retval > map->m_len)
515                                 retval = map->m_len;
516                         map->m_len = retval;
517                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
518                         map->m_pblk = 0;
519                         map->m_flags |= ext4_es_is_delayed(&es) ?
520                                         EXT4_MAP_DELAYED : 0;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                         retval = 0;
526                 } else {
527                         BUG();
528                 }
529
530                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
531                         return retval;
532 #ifdef ES_AGGRESSIVE_TEST
533                 ext4_map_blocks_es_recheck(handle, inode, map,
534                                            &orig_map, flags);
535 #endif
536                 goto found;
537         }
538         /*
539          * In the query cache no-wait mode, nothing we can do more if we
540          * cannot find extent in the cache.
541          */
542         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
543                 return 0;
544
545         /*
546          * Try to see if we can get the block without requesting a new
547          * file system block.
548          */
549         down_read(&EXT4_I(inode)->i_data_sem);
550         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
552         } else {
553                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
554         }
555         if (retval > 0) {
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     !(status & EXTENT_STATUS_WRITTEN) &&
570                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571                                        map->m_lblk + map->m_len - 1))
572                         status |= EXTENT_STATUS_DELAYED;
573                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
574                                       map->m_pblk, status);
575         }
576         up_read((&EXT4_I(inode)->i_data_sem));
577
578 found:
579         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
580                 ret = check_block_validity(inode, map);
581                 if (ret != 0)
582                         return ret;
583         }
584
585         /* If it is only a block(s) look up */
586         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587                 return retval;
588
589         /*
590          * Returns if the blocks have already allocated
591          *
592          * Note that if blocks have been preallocated
593          * ext4_ext_map_blocks() returns with buffer head unmapped
594          */
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596                 /*
597                  * If we need to convert extent to unwritten
598                  * we continue and do the actual work in
599                  * ext4_ext_map_blocks()
600                  */
601                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602                         return retval;
603
604         /*
605          * Here we clear m_flags because after allocating an new extent,
606          * it will be set again.
607          */
608         map->m_flags &= ~EXT4_MAP_FLAGS;
609
610         /*
611          * New blocks allocate and/or writing to unwritten extent
612          * will possibly result in updating i_data, so we take
613          * the write lock of i_data_sem, and call get_block()
614          * with create == 1 flag.
615          */
616         down_write(&EXT4_I(inode)->i_data_sem);
617
618         /*
619          * We need to check for EXT4 here because migrate
620          * could have changed the inode type in between
621          */
622         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
624         } else {
625                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628                         /*
629                          * We allocated new blocks which will result in
630                          * i_data's format changing.  Force the migrate
631                          * to fail by clearing migrate flags
632                          */
633                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634                 }
635         }
636
637         if (retval > 0) {
638                 unsigned int status;
639
640                 if (unlikely(retval != map->m_len)) {
641                         ext4_warning(inode->i_sb,
642                                      "ES len assertion failed for inode "
643                                      "%lu: retval %d != map->m_len %d",
644                                      inode->i_ino, retval, map->m_len);
645                         WARN_ON(1);
646                 }
647
648                 /*
649                  * We have to zeroout blocks before inserting them into extent
650                  * status tree. Otherwise someone could look them up there and
651                  * use them before they are really zeroed. We also have to
652                  * unmap metadata before zeroing as otherwise writeback can
653                  * overwrite zeros with stale data from block device.
654                  */
655                 if (flags & EXT4_GET_BLOCKS_ZERO &&
656                     map->m_flags & EXT4_MAP_MAPPED &&
657                     map->m_flags & EXT4_MAP_NEW) {
658                         ret = ext4_issue_zeroout(inode, map->m_lblk,
659                                                  map->m_pblk, map->m_len);
660                         if (ret) {
661                                 retval = ret;
662                                 goto out_sem;
663                         }
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto out_sem;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     !(status & EXTENT_STATUS_WRITTEN) &&
679                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
680                                        map->m_lblk + map->m_len - 1))
681                         status |= EXTENT_STATUS_DELAYED;
682                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683                                       map->m_pblk, status);
684         }
685
686 out_sem:
687         up_write((&EXT4_I(inode)->i_data_sem));
688         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
689                 ret = check_block_validity(inode, map);
690                 if (ret != 0)
691                         return ret;
692
693                 /*
694                  * Inodes with freshly allocated blocks where contents will be
695                  * visible after transaction commit must be on transaction's
696                  * ordered data list.
697                  */
698                 if (map->m_flags & EXT4_MAP_NEW &&
699                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
700                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
701                     !ext4_is_quota_file(inode) &&
702                     ext4_should_order_data(inode)) {
703                         loff_t start_byte =
704                                 (loff_t)map->m_lblk << inode->i_blkbits;
705                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
706
707                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
708                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
709                                                 start_byte, length);
710                         else
711                                 ret = ext4_jbd2_inode_add_write(handle, inode,
712                                                 start_byte, length);
713                         if (ret)
714                                 return ret;
715                 }
716         }
717         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
718                                 map->m_flags & EXT4_MAP_MAPPED))
719                 ext4_fc_track_range(handle, inode, map->m_lblk,
720                                         map->m_lblk + map->m_len - 1);
721         if (retval < 0)
722                 ext_debug(inode, "failed with err %d\n", retval);
723         return retval;
724 }
725
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732         unsigned long old_state;
733         unsigned long new_state;
734
735         flags &= EXT4_MAP_FLAGS;
736
737         /* Dummy buffer_head? Set non-atomically. */
738         if (!bh->b_page) {
739                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740                 return;
741         }
742         /*
743          * Someone else may be modifying b_state. Be careful! This is ugly but
744          * once we get rid of using bh as a container for mapping information
745          * to pass to / from get_block functions, this can go away.
746          */
747         old_state = READ_ONCE(bh->b_state);
748         do {
749                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
751 }
752
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754                            struct buffer_head *bh, int flags)
755 {
756         struct ext4_map_blocks map;
757         int ret = 0;
758
759         if (ext4_has_inline_data(inode))
760                 return -ERANGE;
761
762         map.m_lblk = iblock;
763         map.m_len = bh->b_size >> inode->i_blkbits;
764
765         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766                               flags);
767         if (ret > 0) {
768                 map_bh(bh, inode->i_sb, map.m_pblk);
769                 ext4_update_bh_state(bh, map.m_flags);
770                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771                 ret = 0;
772         } else if (ret == 0) {
773                 /* hole case, need to fill in bh->b_size */
774                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775         }
776         return ret;
777 }
778
779 int ext4_get_block(struct inode *inode, sector_t iblock,
780                    struct buffer_head *bh, int create)
781 {
782         return _ext4_get_block(inode, iblock, bh,
783                                create ? EXT4_GET_BLOCKS_CREATE : 0);
784 }
785
786 /*
787  * Get block function used when preparing for buffered write if we require
788  * creating an unwritten extent if blocks haven't been allocated.  The extent
789  * will be converted to written after the IO is complete.
790  */
791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792                              struct buffer_head *bh_result, int create)
793 {
794         int ret = 0;
795
796         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
797                    inode->i_ino, create);
798         ret = _ext4_get_block(inode, iblock, bh_result,
799                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
800
801         /*
802          * If the buffer is marked unwritten, mark it as new to make sure it is
803          * zeroed out correctly in case of partial writes. Otherwise, there is
804          * a chance of stale data getting exposed.
805          */
806         if (ret == 0 && buffer_unwritten(bh_result))
807                 set_buffer_new(bh_result);
808
809         return ret;
810 }
811
812 /* Maximum number of blocks we map for direct IO at once. */
813 #define DIO_MAX_BLOCKS 4096
814
815 /*
816  * `handle' can be NULL if create is zero
817  */
818 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
819                                 ext4_lblk_t block, int map_flags)
820 {
821         struct ext4_map_blocks map;
822         struct buffer_head *bh;
823         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
824         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
825         int err;
826
827         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
828                     || handle != NULL || create == 0);
829         ASSERT(create == 0 || !nowait);
830
831         map.m_lblk = block;
832         map.m_len = 1;
833         err = ext4_map_blocks(handle, inode, &map, map_flags);
834
835         if (err == 0)
836                 return create ? ERR_PTR(-ENOSPC) : NULL;
837         if (err < 0)
838                 return ERR_PTR(err);
839
840         if (nowait)
841                 return sb_find_get_block(inode->i_sb, map.m_pblk);
842
843         bh = sb_getblk(inode->i_sb, map.m_pblk);
844         if (unlikely(!bh))
845                 return ERR_PTR(-ENOMEM);
846         if (map.m_flags & EXT4_MAP_NEW) {
847                 ASSERT(create != 0);
848                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
849                             || (handle != NULL));
850
851                 /*
852                  * Now that we do not always journal data, we should
853                  * keep in mind whether this should always journal the
854                  * new buffer as metadata.  For now, regular file
855                  * writes use ext4_get_block instead, so it's not a
856                  * problem.
857                  */
858                 lock_buffer(bh);
859                 BUFFER_TRACE(bh, "call get_create_access");
860                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
861                                                      EXT4_JTR_NONE);
862                 if (unlikely(err)) {
863                         unlock_buffer(bh);
864                         goto errout;
865                 }
866                 if (!buffer_uptodate(bh)) {
867                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
868                         set_buffer_uptodate(bh);
869                 }
870                 unlock_buffer(bh);
871                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
872                 err = ext4_handle_dirty_metadata(handle, inode, bh);
873                 if (unlikely(err))
874                         goto errout;
875         } else
876                 BUFFER_TRACE(bh, "not a new buffer");
877         return bh;
878 errout:
879         brelse(bh);
880         return ERR_PTR(err);
881 }
882
883 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
884                                ext4_lblk_t block, int map_flags)
885 {
886         struct buffer_head *bh;
887         int ret;
888
889         bh = ext4_getblk(handle, inode, block, map_flags);
890         if (IS_ERR(bh))
891                 return bh;
892         if (!bh || ext4_buffer_uptodate(bh))
893                 return bh;
894
895         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
896         if (ret) {
897                 put_bh(bh);
898                 return ERR_PTR(ret);
899         }
900         return bh;
901 }
902
903 /* Read a contiguous batch of blocks. */
904 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
905                      bool wait, struct buffer_head **bhs)
906 {
907         int i, err;
908
909         for (i = 0; i < bh_count; i++) {
910                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
911                 if (IS_ERR(bhs[i])) {
912                         err = PTR_ERR(bhs[i]);
913                         bh_count = i;
914                         goto out_brelse;
915                 }
916         }
917
918         for (i = 0; i < bh_count; i++)
919                 /* Note that NULL bhs[i] is valid because of holes. */
920                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
921                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
922
923         if (!wait)
924                 return 0;
925
926         for (i = 0; i < bh_count; i++)
927                 if (bhs[i])
928                         wait_on_buffer(bhs[i]);
929
930         for (i = 0; i < bh_count; i++) {
931                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
932                         err = -EIO;
933                         goto out_brelse;
934                 }
935         }
936         return 0;
937
938 out_brelse:
939         for (i = 0; i < bh_count; i++) {
940                 brelse(bhs[i]);
941                 bhs[i] = NULL;
942         }
943         return err;
944 }
945
946 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
947                            struct buffer_head *head,
948                            unsigned from,
949                            unsigned to,
950                            int *partial,
951                            int (*fn)(handle_t *handle, struct inode *inode,
952                                      struct buffer_head *bh))
953 {
954         struct buffer_head *bh;
955         unsigned block_start, block_end;
956         unsigned blocksize = head->b_size;
957         int err, ret = 0;
958         struct buffer_head *next;
959
960         for (bh = head, block_start = 0;
961              ret == 0 && (bh != head || !block_start);
962              block_start = block_end, bh = next) {
963                 next = bh->b_this_page;
964                 block_end = block_start + blocksize;
965                 if (block_end <= from || block_start >= to) {
966                         if (partial && !buffer_uptodate(bh))
967                                 *partial = 1;
968                         continue;
969                 }
970                 err = (*fn)(handle, inode, bh);
971                 if (!ret)
972                         ret = err;
973         }
974         return ret;
975 }
976
977 /*
978  * Helper for handling dirtying of journalled data. We also mark the folio as
979  * dirty so that writeback code knows about this page (and inode) contains
980  * dirty data. ext4_writepages() then commits appropriate transaction to
981  * make data stable.
982  */
983 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
984 {
985         folio_mark_dirty(bh->b_folio);
986         return ext4_handle_dirty_metadata(handle, NULL, bh);
987 }
988
989 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
990                                 struct buffer_head *bh)
991 {
992         int dirty = buffer_dirty(bh);
993         int ret;
994
995         if (!buffer_mapped(bh) || buffer_freed(bh))
996                 return 0;
997         /*
998          * __block_write_begin() could have dirtied some buffers. Clean
999          * the dirty bit as jbd2_journal_get_write_access() could complain
1000          * otherwise about fs integrity issues. Setting of the dirty bit
1001          * by __block_write_begin() isn't a real problem here as we clear
1002          * the bit before releasing a page lock and thus writeback cannot
1003          * ever write the buffer.
1004          */
1005         if (dirty)
1006                 clear_buffer_dirty(bh);
1007         BUFFER_TRACE(bh, "get write access");
1008         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009                                             EXT4_JTR_NONE);
1010         if (!ret && dirty)
1011                 ret = ext4_dirty_journalled_data(handle, bh);
1012         return ret;
1013 }
1014
1015 #ifdef CONFIG_FS_ENCRYPTION
1016 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017                                   get_block_t *get_block)
1018 {
1019         unsigned from = pos & (PAGE_SIZE - 1);
1020         unsigned to = from + len;
1021         struct inode *inode = folio->mapping->host;
1022         unsigned block_start, block_end;
1023         sector_t block;
1024         int err = 0;
1025         unsigned blocksize = inode->i_sb->s_blocksize;
1026         unsigned bbits;
1027         struct buffer_head *bh, *head, *wait[2];
1028         int nr_wait = 0;
1029         int i;
1030
1031         BUG_ON(!folio_test_locked(folio));
1032         BUG_ON(from > PAGE_SIZE);
1033         BUG_ON(to > PAGE_SIZE);
1034         BUG_ON(from > to);
1035
1036         head = folio_buffers(folio);
1037         if (!head)
1038                 head = create_empty_buffers(folio, blocksize, 0);
1039         bbits = ilog2(blocksize);
1040         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042         for (bh = head, block_start = 0; bh != head || !block_start;
1043             block++, block_start = block_end, bh = bh->b_this_page) {
1044                 block_end = block_start + blocksize;
1045                 if (block_end <= from || block_start >= to) {
1046                         if (folio_test_uptodate(folio)) {
1047                                 set_buffer_uptodate(bh);
1048                         }
1049                         continue;
1050                 }
1051                 if (buffer_new(bh))
1052                         clear_buffer_new(bh);
1053                 if (!buffer_mapped(bh)) {
1054                         WARN_ON(bh->b_size != blocksize);
1055                         err = get_block(inode, block, bh, 1);
1056                         if (err)
1057                                 break;
1058                         if (buffer_new(bh)) {
1059                                 if (folio_test_uptodate(folio)) {
1060                                         clear_buffer_new(bh);
1061                                         set_buffer_uptodate(bh);
1062                                         mark_buffer_dirty(bh);
1063                                         continue;
1064                                 }
1065                                 if (block_end > to || block_start < from)
1066                                         folio_zero_segments(folio, to,
1067                                                             block_end,
1068                                                             block_start, from);
1069                                 continue;
1070                         }
1071                 }
1072                 if (folio_test_uptodate(folio)) {
1073                         set_buffer_uptodate(bh);
1074                         continue;
1075                 }
1076                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077                     !buffer_unwritten(bh) &&
1078                     (block_start < from || block_end > to)) {
1079                         ext4_read_bh_lock(bh, 0, false);
1080                         wait[nr_wait++] = bh;
1081                 }
1082         }
1083         /*
1084          * If we issued read requests, let them complete.
1085          */
1086         for (i = 0; i < nr_wait; i++) {
1087                 wait_on_buffer(wait[i]);
1088                 if (!buffer_uptodate(wait[i]))
1089                         err = -EIO;
1090         }
1091         if (unlikely(err)) {
1092                 folio_zero_new_buffers(folio, from, to);
1093         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094                 for (i = 0; i < nr_wait; i++) {
1095                         int err2;
1096
1097                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098                                                 blocksize, bh_offset(wait[i]));
1099                         if (err2) {
1100                                 clear_buffer_uptodate(wait[i]);
1101                                 err = err2;
1102                         }
1103                 }
1104         }
1105
1106         return err;
1107 }
1108 #endif
1109
1110 /*
1111  * To preserve ordering, it is essential that the hole instantiation and
1112  * the data write be encapsulated in a single transaction.  We cannot
1113  * close off a transaction and start a new one between the ext4_get_block()
1114  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115  * ext4_write_begin() is the right place.
1116  */
1117 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118                             loff_t pos, unsigned len,
1119                             struct page **pagep, void **fsdata)
1120 {
1121         struct inode *inode = mapping->host;
1122         int ret, needed_blocks;
1123         handle_t *handle;
1124         int retries = 0;
1125         struct folio *folio;
1126         pgoff_t index;
1127         unsigned from, to;
1128
1129         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130                 return -EIO;
1131
1132         trace_ext4_write_begin(inode, pos, len);
1133         /*
1134          * Reserve one block more for addition to orphan list in case
1135          * we allocate blocks but write fails for some reason
1136          */
1137         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138         index = pos >> PAGE_SHIFT;
1139         from = pos & (PAGE_SIZE - 1);
1140         to = from + len;
1141
1142         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144                                                     pagep);
1145                 if (ret < 0)
1146                         return ret;
1147                 if (ret == 1)
1148                         return 0;
1149         }
1150
1151         /*
1152          * __filemap_get_folio() can take a long time if the
1153          * system is thrashing due to memory pressure, or if the folio
1154          * is being written back.  So grab it first before we start
1155          * the transaction handle.  This also allows us to allocate
1156          * the folio (if needed) without using GFP_NOFS.
1157          */
1158 retry_grab:
1159         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160                                         mapping_gfp_mask(mapping));
1161         if (IS_ERR(folio))
1162                 return PTR_ERR(folio);
1163         /*
1164          * The same as page allocation, we prealloc buffer heads before
1165          * starting the handle.
1166          */
1167         if (!folio_buffers(folio))
1168                 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1169
1170         folio_unlock(folio);
1171
1172 retry_journal:
1173         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174         if (IS_ERR(handle)) {
1175                 folio_put(folio);
1176                 return PTR_ERR(handle);
1177         }
1178
1179         folio_lock(folio);
1180         if (folio->mapping != mapping) {
1181                 /* The folio got truncated from under us */
1182                 folio_unlock(folio);
1183                 folio_put(folio);
1184                 ext4_journal_stop(handle);
1185                 goto retry_grab;
1186         }
1187         /* In case writeback began while the folio was unlocked */
1188         folio_wait_stable(folio);
1189
1190 #ifdef CONFIG_FS_ENCRYPTION
1191         if (ext4_should_dioread_nolock(inode))
1192                 ret = ext4_block_write_begin(folio, pos, len,
1193                                              ext4_get_block_unwritten);
1194         else
1195                 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196 #else
1197         if (ext4_should_dioread_nolock(inode))
1198                 ret = __block_write_begin(&folio->page, pos, len,
1199                                           ext4_get_block_unwritten);
1200         else
1201                 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202 #endif
1203         if (!ret && ext4_should_journal_data(inode)) {
1204                 ret = ext4_walk_page_buffers(handle, inode,
1205                                              folio_buffers(folio), from, to,
1206                                              NULL, do_journal_get_write_access);
1207         }
1208
1209         if (ret) {
1210                 bool extended = (pos + len > inode->i_size) &&
1211                                 !ext4_verity_in_progress(inode);
1212
1213                 folio_unlock(folio);
1214                 /*
1215                  * __block_write_begin may have instantiated a few blocks
1216                  * outside i_size.  Trim these off again. Don't need
1217                  * i_size_read because we hold i_rwsem.
1218                  *
1219                  * Add inode to orphan list in case we crash before
1220                  * truncate finishes
1221                  */
1222                 if (extended && ext4_can_truncate(inode))
1223                         ext4_orphan_add(handle, inode);
1224
1225                 ext4_journal_stop(handle);
1226                 if (extended) {
1227                         ext4_truncate_failed_write(inode);
1228                         /*
1229                          * If truncate failed early the inode might
1230                          * still be on the orphan list; we need to
1231                          * make sure the inode is removed from the
1232                          * orphan list in that case.
1233                          */
1234                         if (inode->i_nlink)
1235                                 ext4_orphan_del(NULL, inode);
1236                 }
1237
1238                 if (ret == -ENOSPC &&
1239                     ext4_should_retry_alloc(inode->i_sb, &retries))
1240                         goto retry_journal;
1241                 folio_put(folio);
1242                 return ret;
1243         }
1244         *pagep = &folio->page;
1245         return ret;
1246 }
1247
1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct inode *inode,
1250                         struct buffer_head *bh)
1251 {
1252         int ret;
1253         if (!buffer_mapped(bh) || buffer_freed(bh))
1254                 return 0;
1255         set_buffer_uptodate(bh);
1256         ret = ext4_dirty_journalled_data(handle, bh);
1257         clear_buffer_meta(bh);
1258         clear_buffer_prio(bh);
1259         return ret;
1260 }
1261
1262 /*
1263  * We need to pick up the new inode size which generic_commit_write gave us
1264  * `file' can be NULL - eg, when called from page_symlink().
1265  *
1266  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1267  * buffers are managed internally.
1268  */
1269 static int ext4_write_end(struct file *file,
1270                           struct address_space *mapping,
1271                           loff_t pos, unsigned len, unsigned copied,
1272                           struct page *page, void *fsdata)
1273 {
1274         struct folio *folio = page_folio(page);
1275         handle_t *handle = ext4_journal_current_handle();
1276         struct inode *inode = mapping->host;
1277         loff_t old_size = inode->i_size;
1278         int ret = 0, ret2;
1279         int i_size_changed = 0;
1280         bool verity = ext4_verity_in_progress(inode);
1281
1282         trace_ext4_write_end(inode, pos, len, copied);
1283
1284         if (ext4_has_inline_data(inode) &&
1285             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286                 return ext4_write_inline_data_end(inode, pos, len, copied,
1287                                                   folio);
1288
1289         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290         /*
1291          * it's important to update i_size while still holding folio lock:
1292          * page writeout could otherwise come in and zero beyond i_size.
1293          *
1294          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295          * blocks are being written past EOF, so skip the i_size update.
1296          */
1297         if (!verity)
1298                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299         folio_unlock(folio);
1300         folio_put(folio);
1301
1302         if (old_size < pos && !verity)
1303                 pagecache_isize_extended(inode, old_size, pos);
1304         /*
1305          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306          * makes the holding time of folio lock longer. Second, it forces lock
1307          * ordering of folio lock and transaction start for journaling
1308          * filesystems.
1309          */
1310         if (i_size_changed)
1311                 ret = ext4_mark_inode_dirty(handle, inode);
1312
1313         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314                 /* if we have allocated more blocks and copied
1315                  * less. We will have blocks allocated outside
1316                  * inode->i_size. So truncate them
1317                  */
1318                 ext4_orphan_add(handle, inode);
1319
1320         ret2 = ext4_journal_stop(handle);
1321         if (!ret)
1322                 ret = ret2;
1323
1324         if (pos + len > inode->i_size && !verity) {
1325                 ext4_truncate_failed_write(inode);
1326                 /*
1327                  * If truncate failed early the inode might still be
1328                  * on the orphan list; we need to make sure the inode
1329                  * is removed from the orphan list in that case.
1330                  */
1331                 if (inode->i_nlink)
1332                         ext4_orphan_del(NULL, inode);
1333         }
1334
1335         return ret ? ret : copied;
1336 }
1337
1338 /*
1339  * This is a private version of folio_zero_new_buffers() which doesn't
1340  * set the buffer to be dirty, since in data=journalled mode we need
1341  * to call ext4_dirty_journalled_data() instead.
1342  */
1343 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344                                             struct inode *inode,
1345                                             struct folio *folio,
1346                                             unsigned from, unsigned to)
1347 {
1348         unsigned int block_start = 0, block_end;
1349         struct buffer_head *head, *bh;
1350
1351         bh = head = folio_buffers(folio);
1352         do {
1353                 block_end = block_start + bh->b_size;
1354                 if (buffer_new(bh)) {
1355                         if (block_end > from && block_start < to) {
1356                                 if (!folio_test_uptodate(folio)) {
1357                                         unsigned start, size;
1358
1359                                         start = max(from, block_start);
1360                                         size = min(to, block_end) - start;
1361
1362                                         folio_zero_range(folio, start, size);
1363                                         write_end_fn(handle, inode, bh);
1364                                 }
1365                                 clear_buffer_new(bh);
1366                         }
1367                 }
1368                 block_start = block_end;
1369                 bh = bh->b_this_page;
1370         } while (bh != head);
1371 }
1372
1373 static int ext4_journalled_write_end(struct file *file,
1374                                      struct address_space *mapping,
1375                                      loff_t pos, unsigned len, unsigned copied,
1376                                      struct page *page, void *fsdata)
1377 {
1378         struct folio *folio = page_folio(page);
1379         handle_t *handle = ext4_journal_current_handle();
1380         struct inode *inode = mapping->host;
1381         loff_t old_size = inode->i_size;
1382         int ret = 0, ret2;
1383         int partial = 0;
1384         unsigned from, to;
1385         int size_changed = 0;
1386         bool verity = ext4_verity_in_progress(inode);
1387
1388         trace_ext4_journalled_write_end(inode, pos, len, copied);
1389         from = pos & (PAGE_SIZE - 1);
1390         to = from + len;
1391
1392         BUG_ON(!ext4_handle_valid(handle));
1393
1394         if (ext4_has_inline_data(inode))
1395                 return ext4_write_inline_data_end(inode, pos, len, copied,
1396                                                   folio);
1397
1398         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399                 copied = 0;
1400                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1401                                                  from, to);
1402         } else {
1403                 if (unlikely(copied < len))
1404                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1405                                                          from + copied, to);
1406                 ret = ext4_walk_page_buffers(handle, inode,
1407                                              folio_buffers(folio),
1408                                              from, from + copied, &partial,
1409                                              write_end_fn);
1410                 if (!partial)
1411                         folio_mark_uptodate(folio);
1412         }
1413         if (!verity)
1414                 size_changed = ext4_update_inode_size(inode, pos + copied);
1415         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416         folio_unlock(folio);
1417         folio_put(folio);
1418
1419         if (old_size < pos && !verity)
1420                 pagecache_isize_extended(inode, old_size, pos);
1421
1422         if (size_changed) {
1423                 ret2 = ext4_mark_inode_dirty(handle, inode);
1424                 if (!ret)
1425                         ret = ret2;
1426         }
1427
1428         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429                 /* if we have allocated more blocks and copied
1430                  * less. We will have blocks allocated outside
1431                  * inode->i_size. So truncate them
1432                  */
1433                 ext4_orphan_add(handle, inode);
1434
1435         ret2 = ext4_journal_stop(handle);
1436         if (!ret)
1437                 ret = ret2;
1438         if (pos + len > inode->i_size && !verity) {
1439                 ext4_truncate_failed_write(inode);
1440                 /*
1441                  * If truncate failed early the inode might still be
1442                  * on the orphan list; we need to make sure the inode
1443                  * is removed from the orphan list in that case.
1444                  */
1445                 if (inode->i_nlink)
1446                         ext4_orphan_del(NULL, inode);
1447         }
1448
1449         return ret ? ret : copied;
1450 }
1451
1452 /*
1453  * Reserve space for a single cluster
1454  */
1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458         struct ext4_inode_info *ei = EXT4_I(inode);
1459         int ret;
1460
1461         /*
1462          * We will charge metadata quota at writeout time; this saves
1463          * us from metadata over-estimation, though we may go over by
1464          * a small amount in the end.  Here we just reserve for data.
1465          */
1466         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467         if (ret)
1468                 return ret;
1469
1470         spin_lock(&ei->i_block_reservation_lock);
1471         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472                 spin_unlock(&ei->i_block_reservation_lock);
1473                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474                 return -ENOSPC;
1475         }
1476         ei->i_reserved_data_blocks++;
1477         trace_ext4_da_reserve_space(inode);
1478         spin_unlock(&ei->i_block_reservation_lock);
1479
1480         return 0;       /* success */
1481 }
1482
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486         struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488         if (!to_free)
1489                 return;         /* Nothing to release, exit */
1490
1491         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493         trace_ext4_da_release_space(inode, to_free);
1494         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495                 /*
1496                  * if there aren't enough reserved blocks, then the
1497                  * counter is messed up somewhere.  Since this
1498                  * function is called from invalidate page, it's
1499                  * harmless to return without any action.
1500                  */
1501                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502                          "ino %lu, to_free %d with only %d reserved "
1503                          "data blocks", inode->i_ino, to_free,
1504                          ei->i_reserved_data_blocks);
1505                 WARN_ON(1);
1506                 to_free = ei->i_reserved_data_blocks;
1507         }
1508         ei->i_reserved_data_blocks -= to_free;
1509
1510         /* update fs dirty data blocks counter */
1511         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517
1518 /*
1519  * Delayed allocation stuff
1520  */
1521
1522 struct mpage_da_data {
1523         /* These are input fields for ext4_do_writepages() */
1524         struct inode *inode;
1525         struct writeback_control *wbc;
1526         unsigned int can_map:1; /* Can writepages call map blocks? */
1527
1528         /* These are internal state of ext4_do_writepages() */
1529         pgoff_t first_page;     /* The first page to write */
1530         pgoff_t next_page;      /* Current page to examine */
1531         pgoff_t last_page;      /* Last page to examine */
1532         /*
1533          * Extent to map - this can be after first_page because that can be
1534          * fully mapped. We somewhat abuse m_flags to store whether the extent
1535          * is delalloc or unwritten.
1536          */
1537         struct ext4_map_blocks map;
1538         struct ext4_io_submit io_submit;        /* IO submission data */
1539         unsigned int do_map:1;
1540         unsigned int scanned_until_end:1;
1541         unsigned int journalled_more_data:1;
1542 };
1543
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545                                        bool invalidate)
1546 {
1547         unsigned nr, i;
1548         pgoff_t index, end;
1549         struct folio_batch fbatch;
1550         struct inode *inode = mpd->inode;
1551         struct address_space *mapping = inode->i_mapping;
1552
1553         /* This is necessary when next_page == 0. */
1554         if (mpd->first_page >= mpd->next_page)
1555                 return;
1556
1557         mpd->scanned_until_end = 0;
1558         index = mpd->first_page;
1559         end   = mpd->next_page - 1;
1560         if (invalidate) {
1561                 ext4_lblk_t start, last;
1562                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1563                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565                 /*
1566                  * avoid racing with extent status tree scans made by
1567                  * ext4_insert_delayed_block()
1568                  */
1569                 down_write(&EXT4_I(inode)->i_data_sem);
1570                 ext4_es_remove_extent(inode, start, last - start + 1);
1571                 up_write(&EXT4_I(inode)->i_data_sem);
1572         }
1573
1574         folio_batch_init(&fbatch);
1575         while (index <= end) {
1576                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577                 if (nr == 0)
1578                         break;
1579                 for (i = 0; i < nr; i++) {
1580                         struct folio *folio = fbatch.folios[i];
1581
1582                         if (folio->index < mpd->first_page)
1583                                 continue;
1584                         if (folio_next_index(folio) - 1 > end)
1585                                 continue;
1586                         BUG_ON(!folio_test_locked(folio));
1587                         BUG_ON(folio_test_writeback(folio));
1588                         if (invalidate) {
1589                                 if (folio_mapped(folio))
1590                                         folio_clear_dirty_for_io(folio);
1591                                 block_invalidate_folio(folio, 0,
1592                                                 folio_size(folio));
1593                                 folio_clear_uptodate(folio);
1594                         }
1595                         folio_unlock(folio);
1596                 }
1597                 folio_batch_release(&fbatch);
1598         }
1599 }
1600
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604         struct super_block *sb = inode->i_sb;
1605         struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608                EXT4_C2B(EXT4_SB(inode->i_sb),
1609                         ext4_count_free_clusters(sb)));
1610         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612                (long long) EXT4_C2B(EXT4_SB(sb),
1613                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615                (long long) EXT4_C2B(EXT4_SB(sb),
1616                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619                  ei->i_reserved_data_blocks);
1620         return;
1621 }
1622
1623 /*
1624  * ext4_insert_delayed_block - adds a delayed block to the extents status
1625  *                             tree, incrementing the reserved cluster/block
1626  *                             count or making a pending reservation
1627  *                             where needed
1628  *
1629  * @inode - file containing the newly added block
1630  * @lblk - logical block to be added
1631  *
1632  * Returns 0 on success, negative error code on failure.
1633  */
1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635 {
1636         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637         int ret;
1638         bool allocated = false;
1639
1640         /*
1641          * If the cluster containing lblk is shared with a delayed,
1642          * written, or unwritten extent in a bigalloc file system, it's
1643          * already been accounted for and does not need to be reserved.
1644          * A pending reservation must be made for the cluster if it's
1645          * shared with a written or unwritten extent and doesn't already
1646          * have one.  Written and unwritten extents can be purged from the
1647          * extents status tree if the system is under memory pressure, so
1648          * it's necessary to examine the extent tree if a search of the
1649          * extents status tree doesn't get a match.
1650          */
1651         if (sbi->s_cluster_ratio == 1) {
1652                 ret = ext4_da_reserve_space(inode);
1653                 if (ret != 0)   /* ENOSPC */
1654                         return ret;
1655         } else {   /* bigalloc */
1656                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657                         if (!ext4_es_scan_clu(inode,
1658                                               &ext4_es_is_mapped, lblk)) {
1659                                 ret = ext4_clu_mapped(inode,
1660                                                       EXT4_B2C(sbi, lblk));
1661                                 if (ret < 0)
1662                                         return ret;
1663                                 if (ret == 0) {
1664                                         ret = ext4_da_reserve_space(inode);
1665                                         if (ret != 0)   /* ENOSPC */
1666                                                 return ret;
1667                                 } else {
1668                                         allocated = true;
1669                                 }
1670                         } else {
1671                                 allocated = true;
1672                         }
1673                 }
1674         }
1675
1676         ext4_es_insert_delayed_block(inode, lblk, allocated);
1677         return 0;
1678 }
1679
1680 /*
1681  * This function is grabs code from the very beginning of
1682  * ext4_map_blocks, but assumes that the caller is from delayed write
1683  * time. This function looks up the requested blocks and sets the
1684  * buffer delay bit under the protection of i_data_sem.
1685  */
1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687                               struct ext4_map_blocks *map,
1688                               struct buffer_head *bh)
1689 {
1690         struct extent_status es;
1691         int retval;
1692         sector_t invalid_block = ~((sector_t) 0xffff);
1693 #ifdef ES_AGGRESSIVE_TEST
1694         struct ext4_map_blocks orig_map;
1695
1696         memcpy(&orig_map, map, sizeof(*map));
1697 #endif
1698
1699         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700                 invalid_block = ~0;
1701
1702         map->m_flags = 0;
1703         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704                   (unsigned long) map->m_lblk);
1705
1706         /* Lookup extent status tree firstly */
1707         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708                 if (ext4_es_is_hole(&es))
1709                         goto add_delayed;
1710
1711                 /*
1712                  * Delayed extent could be allocated by fallocate.
1713                  * So we need to check it.
1714                  */
1715                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716                         map_bh(bh, inode->i_sb, invalid_block);
1717                         set_buffer_new(bh);
1718                         set_buffer_delay(bh);
1719                         return 0;
1720                 }
1721
1722                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723                 retval = es.es_len - (iblock - es.es_lblk);
1724                 if (retval > map->m_len)
1725                         retval = map->m_len;
1726                 map->m_len = retval;
1727                 if (ext4_es_is_written(&es))
1728                         map->m_flags |= EXT4_MAP_MAPPED;
1729                 else if (ext4_es_is_unwritten(&es))
1730                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1731                 else
1732                         BUG();
1733
1734 #ifdef ES_AGGRESSIVE_TEST
1735                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737                 return retval;
1738         }
1739
1740         /*
1741          * Try to see if we can get the block without requesting a new
1742          * file system block.
1743          */
1744         down_read(&EXT4_I(inode)->i_data_sem);
1745         if (ext4_has_inline_data(inode))
1746                 retval = 0;
1747         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749         else
1750                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751         if (retval < 0) {
1752                 up_read(&EXT4_I(inode)->i_data_sem);
1753                 return retval;
1754         }
1755         if (retval > 0) {
1756                 unsigned int status;
1757
1758                 if (unlikely(retval != map->m_len)) {
1759                         ext4_warning(inode->i_sb,
1760                                      "ES len assertion failed for inode "
1761                                      "%lu: retval %d != map->m_len %d",
1762                                      inode->i_ino, retval, map->m_len);
1763                         WARN_ON(1);
1764                 }
1765
1766                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769                                       map->m_pblk, status);
1770                 up_read(&EXT4_I(inode)->i_data_sem);
1771                 return retval;
1772         }
1773         up_read(&EXT4_I(inode)->i_data_sem);
1774
1775 add_delayed:
1776         down_write(&EXT4_I(inode)->i_data_sem);
1777         retval = ext4_insert_delayed_block(inode, map->m_lblk);
1778         up_write(&EXT4_I(inode)->i_data_sem);
1779         if (retval)
1780                 return retval;
1781
1782         map_bh(bh, inode->i_sb, invalid_block);
1783         set_buffer_new(bh);
1784         set_buffer_delay(bh);
1785         return retval;
1786 }
1787
1788 /*
1789  * This is a special get_block_t callback which is used by
1790  * ext4_da_write_begin().  It will either return mapped block or
1791  * reserve space for a single block.
1792  *
1793  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794  * We also have b_blocknr = -1 and b_bdev initialized properly
1795  *
1796  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798  * initialized properly.
1799  */
1800 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801                            struct buffer_head *bh, int create)
1802 {
1803         struct ext4_map_blocks map;
1804         int ret = 0;
1805
1806         BUG_ON(create == 0);
1807         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
1809         map.m_lblk = iblock;
1810         map.m_len = 1;
1811
1812         /*
1813          * first, we need to know whether the block is allocated already
1814          * preallocated blocks are unmapped but should treated
1815          * the same as allocated blocks.
1816          */
1817         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818         if (ret <= 0)
1819                 return ret;
1820
1821         map_bh(bh, inode->i_sb, map.m_pblk);
1822         ext4_update_bh_state(bh, map.m_flags);
1823
1824         if (buffer_unwritten(bh)) {
1825                 /* A delayed write to unwritten bh should be marked
1826                  * new and mapped.  Mapped ensures that we don't do
1827                  * get_block multiple times when we write to the same
1828                  * offset and new ensures that we do proper zero out
1829                  * for partial write.
1830                  */
1831                 set_buffer_new(bh);
1832                 set_buffer_mapped(bh);
1833         }
1834         return 0;
1835 }
1836
1837 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1838 {
1839         mpd->first_page += folio_nr_pages(folio);
1840         folio_unlock(folio);
1841 }
1842
1843 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844 {
1845         size_t len;
1846         loff_t size;
1847         int err;
1848
1849         BUG_ON(folio->index != mpd->first_page);
1850         folio_clear_dirty_for_io(folio);
1851         /*
1852          * We have to be very careful here!  Nothing protects writeback path
1853          * against i_size changes and the page can be writeably mapped into
1854          * page tables. So an application can be growing i_size and writing
1855          * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856          * write-protects our page in page tables and the page cannot get
1857          * written to again until we release folio lock. So only after
1858          * folio_clear_dirty_for_io() we are safe to sample i_size for
1859          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860          * on the barrier provided by folio_test_clear_dirty() in
1861          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862          * after page tables are updated.
1863          */
1864         size = i_size_read(mpd->inode);
1865         len = folio_size(folio);
1866         if (folio_pos(folio) + len > size &&
1867             !ext4_verity_in_progress(mpd->inode))
1868                 len = size & (len - 1);
1869         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1870         if (!err)
1871                 mpd->wbc->nr_to_write--;
1872
1873         return err;
1874 }
1875
1876 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877
1878 /*
1879  * mballoc gives us at most this number of blocks...
1880  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881  * The rest of mballoc seems to handle chunks up to full group size.
1882  */
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885 /*
1886  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887  *
1888  * @mpd - extent of blocks
1889  * @lblk - logical number of the block in the file
1890  * @bh - buffer head we want to add to the extent
1891  *
1892  * The function is used to collect contig. blocks in the same state. If the
1893  * buffer doesn't require mapping for writeback and we haven't started the
1894  * extent of buffers to map yet, the function returns 'true' immediately - the
1895  * caller can write the buffer right away. Otherwise the function returns true
1896  * if the block has been added to the extent, false if the block couldn't be
1897  * added.
1898  */
1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900                                    struct buffer_head *bh)
1901 {
1902         struct ext4_map_blocks *map = &mpd->map;
1903
1904         /* Buffer that doesn't need mapping for writeback? */
1905         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907                 /* So far no extent to map => we write the buffer right away */
1908                 if (map->m_len == 0)
1909                         return true;
1910                 return false;
1911         }
1912
1913         /* First block in the extent? */
1914         if (map->m_len == 0) {
1915                 /* We cannot map unless handle is started... */
1916                 if (!mpd->do_map)
1917                         return false;
1918                 map->m_lblk = lblk;
1919                 map->m_len = 1;
1920                 map->m_flags = bh->b_state & BH_FLAGS;
1921                 return true;
1922         }
1923
1924         /* Don't go larger than mballoc is willing to allocate */
1925         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926                 return false;
1927
1928         /* Can we merge the block to our big extent? */
1929         if (lblk == map->m_lblk + map->m_len &&
1930             (bh->b_state & BH_FLAGS) == map->m_flags) {
1931                 map->m_len++;
1932                 return true;
1933         }
1934         return false;
1935 }
1936
1937 /*
1938  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939  *
1940  * @mpd - extent of blocks for mapping
1941  * @head - the first buffer in the page
1942  * @bh - buffer we should start processing from
1943  * @lblk - logical number of the block in the file corresponding to @bh
1944  *
1945  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946  * the page for IO if all buffers in this page were mapped and there's no
1947  * accumulated extent of buffers to map or add buffers in the page to the
1948  * extent of buffers to map. The function returns 1 if the caller can continue
1949  * by processing the next page, 0 if it should stop adding buffers to the
1950  * extent to map because we cannot extend it anymore. It can also return value
1951  * < 0 in case of error during IO submission.
1952  */
1953 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954                                    struct buffer_head *head,
1955                                    struct buffer_head *bh,
1956                                    ext4_lblk_t lblk)
1957 {
1958         struct inode *inode = mpd->inode;
1959         int err;
1960         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1961                                                         >> inode->i_blkbits;
1962
1963         if (ext4_verity_in_progress(inode))
1964                 blocks = EXT_MAX_BLOCKS;
1965
1966         do {
1967                 BUG_ON(buffer_locked(bh));
1968
1969                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970                         /* Found extent to map? */
1971                         if (mpd->map.m_len)
1972                                 return 0;
1973                         /* Buffer needs mapping and handle is not started? */
1974                         if (!mpd->do_map)
1975                                 return 0;
1976                         /* Everything mapped so far and we hit EOF */
1977                         break;
1978                 }
1979         } while (lblk++, (bh = bh->b_this_page) != head);
1980         /* So far everything mapped? Submit the page for IO. */
1981         if (mpd->map.m_len == 0) {
1982                 err = mpage_submit_folio(mpd, head->b_folio);
1983                 if (err < 0)
1984                         return err;
1985                 mpage_folio_done(mpd, head->b_folio);
1986         }
1987         if (lblk >= blocks) {
1988                 mpd->scanned_until_end = 1;
1989                 return 0;
1990         }
1991         return 1;
1992 }
1993
1994 /*
1995  * mpage_process_folio - update folio buffers corresponding to changed extent
1996  *                       and may submit fully mapped page for IO
1997  * @mpd: description of extent to map, on return next extent to map
1998  * @folio: Contains these buffers.
1999  * @m_lblk: logical block mapping.
2000  * @m_pblk: corresponding physical mapping.
2001  * @map_bh: determines on return whether this page requires any further
2002  *                mapping or not.
2003  *
2004  * Scan given folio buffers corresponding to changed extent and update buffer
2005  * state according to new extent state.
2006  * We map delalloc buffers to their physical location, clear unwritten bits.
2007  * If the given folio is not fully mapped, we update @mpd to the next extent in
2008  * the given folio that needs mapping & return @map_bh as true.
2009  */
2010 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012                               bool *map_bh)
2013 {
2014         struct buffer_head *head, *bh;
2015         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016         ext4_lblk_t lblk = *m_lblk;
2017         ext4_fsblk_t pblock = *m_pblk;
2018         int err = 0;
2019         int blkbits = mpd->inode->i_blkbits;
2020         ssize_t io_end_size = 0;
2021         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022
2023         bh = head = folio_buffers(folio);
2024         do {
2025                 if (lblk < mpd->map.m_lblk)
2026                         continue;
2027                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028                         /*
2029                          * Buffer after end of mapped extent.
2030                          * Find next buffer in the folio to map.
2031                          */
2032                         mpd->map.m_len = 0;
2033                         mpd->map.m_flags = 0;
2034                         io_end_vec->size += io_end_size;
2035
2036                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037                         if (err > 0)
2038                                 err = 0;
2039                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2041                                 if (IS_ERR(io_end_vec)) {
2042                                         err = PTR_ERR(io_end_vec);
2043                                         goto out;
2044                                 }
2045                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046                         }
2047                         *map_bh = true;
2048                         goto out;
2049                 }
2050                 if (buffer_delay(bh)) {
2051                         clear_buffer_delay(bh);
2052                         bh->b_blocknr = pblock++;
2053                 }
2054                 clear_buffer_unwritten(bh);
2055                 io_end_size += (1 << blkbits);
2056         } while (lblk++, (bh = bh->b_this_page) != head);
2057
2058         io_end_vec->size += io_end_size;
2059         *map_bh = false;
2060 out:
2061         *m_lblk = lblk;
2062         *m_pblk = pblock;
2063         return err;
2064 }
2065
2066 /*
2067  * mpage_map_buffers - update buffers corresponding to changed extent and
2068  *                     submit fully mapped pages for IO
2069  *
2070  * @mpd - description of extent to map, on return next extent to map
2071  *
2072  * Scan buffers corresponding to changed extent (we expect corresponding pages
2073  * to be already locked) and update buffer state according to new extent state.
2074  * We map delalloc buffers to their physical location, clear unwritten bits,
2075  * and mark buffers as uninit when we perform writes to unwritten extents
2076  * and do extent conversion after IO is finished. If the last page is not fully
2077  * mapped, we update @map to the next extent in the last page that needs
2078  * mapping. Otherwise we submit the page for IO.
2079  */
2080 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2081 {
2082         struct folio_batch fbatch;
2083         unsigned nr, i;
2084         struct inode *inode = mpd->inode;
2085         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086         pgoff_t start, end;
2087         ext4_lblk_t lblk;
2088         ext4_fsblk_t pblock;
2089         int err;
2090         bool map_bh = false;
2091
2092         start = mpd->map.m_lblk >> bpp_bits;
2093         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094         lblk = start << bpp_bits;
2095         pblock = mpd->map.m_pblk;
2096
2097         folio_batch_init(&fbatch);
2098         while (start <= end) {
2099                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2100                 if (nr == 0)
2101                         break;
2102                 for (i = 0; i < nr; i++) {
2103                         struct folio *folio = fbatch.folios[i];
2104
2105                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2106                                                  &map_bh);
2107                         /*
2108                          * If map_bh is true, means page may require further bh
2109                          * mapping, or maybe the page was submitted for IO.
2110                          * So we return to call further extent mapping.
2111                          */
2112                         if (err < 0 || map_bh)
2113                                 goto out;
2114                         /* Page fully mapped - let IO run! */
2115                         err = mpage_submit_folio(mpd, folio);
2116                         if (err < 0)
2117                                 goto out;
2118                         mpage_folio_done(mpd, folio);
2119                 }
2120                 folio_batch_release(&fbatch);
2121         }
2122         /* Extent fully mapped and matches with page boundary. We are done. */
2123         mpd->map.m_len = 0;
2124         mpd->map.m_flags = 0;
2125         return 0;
2126 out:
2127         folio_batch_release(&fbatch);
2128         return err;
2129 }
2130
2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132 {
2133         struct inode *inode = mpd->inode;
2134         struct ext4_map_blocks *map = &mpd->map;
2135         int get_blocks_flags;
2136         int err, dioread_nolock;
2137
2138         trace_ext4_da_write_pages_extent(inode, map);
2139         /*
2140          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141          * to convert an unwritten extent to be initialized (in the case
2142          * where we have written into one or more preallocated blocks).  It is
2143          * possible that we're going to need more metadata blocks than
2144          * previously reserved. However we must not fail because we're in
2145          * writeback and there is nothing we can do about it so it might result
2146          * in data loss.  So use reserved blocks to allocate metadata if
2147          * possible.
2148          *
2149          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150          * the blocks in question are delalloc blocks.  This indicates
2151          * that the blocks and quotas has already been checked when
2152          * the data was copied into the page cache.
2153          */
2154         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156                            EXT4_GET_BLOCKS_IO_SUBMIT;
2157         dioread_nolock = ext4_should_dioread_nolock(inode);
2158         if (dioread_nolock)
2159                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160         if (map->m_flags & BIT(BH_Delay))
2161                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162
2163         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2164         if (err < 0)
2165                 return err;
2166         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167                 if (!mpd->io_submit.io_end->handle &&
2168                     ext4_handle_valid(handle)) {
2169                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170                         handle->h_rsv_handle = NULL;
2171                 }
2172                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2173         }
2174
2175         BUG_ON(map->m_len == 0);
2176         return 0;
2177 }
2178
2179 /*
2180  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181  *                               mpd->len and submit pages underlying it for IO
2182  *
2183  * @handle - handle for journal operations
2184  * @mpd - extent to map
2185  * @give_up_on_write - we set this to true iff there is a fatal error and there
2186  *                     is no hope of writing the data. The caller should discard
2187  *                     dirty pages to avoid infinite loops.
2188  *
2189  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191  * them to initialized or split the described range from larger unwritten
2192  * extent. Note that we need not map all the described range since allocation
2193  * can return less blocks or the range is covered by more unwritten extents. We
2194  * cannot map more because we are limited by reserved transaction credits. On
2195  * the other hand we always make sure that the last touched page is fully
2196  * mapped so that it can be written out (and thus forward progress is
2197  * guaranteed). After mapping we submit all mapped pages for IO.
2198  */
2199 static int mpage_map_and_submit_extent(handle_t *handle,
2200                                        struct mpage_da_data *mpd,
2201                                        bool *give_up_on_write)
2202 {
2203         struct inode *inode = mpd->inode;
2204         struct ext4_map_blocks *map = &mpd->map;
2205         int err;
2206         loff_t disksize;
2207         int progress = 0;
2208         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209         struct ext4_io_end_vec *io_end_vec;
2210
2211         io_end_vec = ext4_alloc_io_end_vec(io_end);
2212         if (IS_ERR(io_end_vec))
2213                 return PTR_ERR(io_end_vec);
2214         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215         do {
2216                 err = mpage_map_one_extent(handle, mpd);
2217                 if (err < 0) {
2218                         struct super_block *sb = inode->i_sb;
2219
2220                         if (ext4_forced_shutdown(sb))
2221                                 goto invalidate_dirty_pages;
2222                         /*
2223                          * Let the uper layers retry transient errors.
2224                          * In the case of ENOSPC, if ext4_count_free_blocks()
2225                          * is non-zero, a commit should free up blocks.
2226                          */
2227                         if ((err == -ENOMEM) ||
2228                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229                                 if (progress)
2230                                         goto update_disksize;
2231                                 return err;
2232                         }
2233                         ext4_msg(sb, KERN_CRIT,
2234                                  "Delayed block allocation failed for "
2235                                  "inode %lu at logical offset %llu with"
2236                                  " max blocks %u with error %d",
2237                                  inode->i_ino,
2238                                  (unsigned long long)map->m_lblk,
2239                                  (unsigned)map->m_len, -err);
2240                         ext4_msg(sb, KERN_CRIT,
2241                                  "This should not happen!! Data will "
2242                                  "be lost\n");
2243                         if (err == -ENOSPC)
2244                                 ext4_print_free_blocks(inode);
2245                 invalidate_dirty_pages:
2246                         *give_up_on_write = true;
2247                         return err;
2248                 }
2249                 progress = 1;
2250                 /*
2251                  * Update buffer state, submit mapped pages, and get us new
2252                  * extent to map
2253                  */
2254                 err = mpage_map_and_submit_buffers(mpd);
2255                 if (err < 0)
2256                         goto update_disksize;
2257         } while (map->m_len);
2258
2259 update_disksize:
2260         /*
2261          * Update on-disk size after IO is submitted.  Races with
2262          * truncate are avoided by checking i_size under i_data_sem.
2263          */
2264         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266                 int err2;
2267                 loff_t i_size;
2268
2269                 down_write(&EXT4_I(inode)->i_data_sem);
2270                 i_size = i_size_read(inode);
2271                 if (disksize > i_size)
2272                         disksize = i_size;
2273                 if (disksize > EXT4_I(inode)->i_disksize)
2274                         EXT4_I(inode)->i_disksize = disksize;
2275                 up_write(&EXT4_I(inode)->i_data_sem);
2276                 err2 = ext4_mark_inode_dirty(handle, inode);
2277                 if (err2) {
2278                         ext4_error_err(inode->i_sb, -err2,
2279                                        "Failed to mark inode %lu dirty",
2280                                        inode->i_ino);
2281                 }
2282                 if (!err)
2283                         err = err2;
2284         }
2285         return err;
2286 }
2287
2288 /*
2289  * Calculate the total number of credits to reserve for one writepages
2290  * iteration. This is called from ext4_writepages(). We map an extent of
2291  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293  * bpp - 1 blocks in bpp different extents.
2294  */
2295 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296 {
2297         int bpp = ext4_journal_blocks_per_page(inode);
2298
2299         return ext4_meta_trans_blocks(inode,
2300                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301 }
2302
2303 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304                                      size_t len)
2305 {
2306         struct buffer_head *page_bufs = folio_buffers(folio);
2307         struct inode *inode = folio->mapping->host;
2308         int ret, err;
2309
2310         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2311                                      NULL, do_journal_get_write_access);
2312         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2313                                      NULL, write_end_fn);
2314         if (ret == 0)
2315                 ret = err;
2316         err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2317         if (ret == 0)
2318                 ret = err;
2319         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320
2321         return ret;
2322 }
2323
2324 static int mpage_journal_page_buffers(handle_t *handle,
2325                                       struct mpage_da_data *mpd,
2326                                       struct folio *folio)
2327 {
2328         struct inode *inode = mpd->inode;
2329         loff_t size = i_size_read(inode);
2330         size_t len = folio_size(folio);
2331
2332         folio_clear_checked(folio);
2333         mpd->wbc->nr_to_write--;
2334
2335         if (folio_pos(folio) + len > size &&
2336             !ext4_verity_in_progress(inode))
2337                 len = size & (len - 1);
2338
2339         return ext4_journal_folio_buffers(handle, folio, len);
2340 }
2341
2342 /*
2343  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344  *                               needing mapping, submit mapped pages
2345  *
2346  * @mpd - where to look for pages
2347  *
2348  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349  * IO immediately. If we cannot map blocks, we submit just already mapped
2350  * buffers in the page for IO and keep page dirty. When we can map blocks and
2351  * we find a page which isn't mapped we start accumulating extent of buffers
2352  * underlying these pages that needs mapping (formed by either delayed or
2353  * unwritten buffers). We also lock the pages containing these buffers. The
2354  * extent found is returned in @mpd structure (starting at mpd->lblk with
2355  * length mpd->len blocks).
2356  *
2357  * Note that this function can attach bios to one io_end structure which are
2358  * neither logically nor physically contiguous. Although it may seem as an
2359  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360  * case as we need to track IO to all buffers underlying a page in one io_end.
2361  */
2362 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363 {
2364         struct address_space *mapping = mpd->inode->i_mapping;
2365         struct folio_batch fbatch;
2366         unsigned int nr_folios;
2367         pgoff_t index = mpd->first_page;
2368         pgoff_t end = mpd->last_page;
2369         xa_mark_t tag;
2370         int i, err = 0;
2371         int blkbits = mpd->inode->i_blkbits;
2372         ext4_lblk_t lblk;
2373         struct buffer_head *head;
2374         handle_t *handle = NULL;
2375         int bpp = ext4_journal_blocks_per_page(mpd->inode);
2376
2377         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378                 tag = PAGECACHE_TAG_TOWRITE;
2379         else
2380                 tag = PAGECACHE_TAG_DIRTY;
2381
2382         mpd->map.m_len = 0;
2383         mpd->next_page = index;
2384         if (ext4_should_journal_data(mpd->inode)) {
2385                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386                                             bpp);
2387                 if (IS_ERR(handle))
2388                         return PTR_ERR(handle);
2389         }
2390         folio_batch_init(&fbatch);
2391         while (index <= end) {
2392                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393                                 tag, &fbatch);
2394                 if (nr_folios == 0)
2395                         break;
2396
2397                 for (i = 0; i < nr_folios; i++) {
2398                         struct folio *folio = fbatch.folios[i];
2399
2400                         /*
2401                          * Accumulated enough dirty pages? This doesn't apply
2402                          * to WB_SYNC_ALL mode. For integrity sync we have to
2403                          * keep going because someone may be concurrently
2404                          * dirtying pages, and we might have synced a lot of
2405                          * newly appeared dirty pages, but have not synced all
2406                          * of the old dirty pages.
2407                          */
2408                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409                             mpd->wbc->nr_to_write <=
2410                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411                                 goto out;
2412
2413                         /* If we can't merge this page, we are done. */
2414                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415                                 goto out;
2416
2417                         if (handle) {
2418                                 err = ext4_journal_ensure_credits(handle, bpp,
2419                                                                   0);
2420                                 if (err < 0)
2421                                         goto out;
2422                         }
2423
2424                         folio_lock(folio);
2425                         /*
2426                          * If the page is no longer dirty, or its mapping no
2427                          * longer corresponds to inode we are writing (which
2428                          * means it has been truncated or invalidated), or the
2429                          * page is already under writeback and we are not doing
2430                          * a data integrity writeback, skip the page
2431                          */
2432                         if (!folio_test_dirty(folio) ||
2433                             (folio_test_writeback(folio) &&
2434                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435                             unlikely(folio->mapping != mapping)) {
2436                                 folio_unlock(folio);
2437                                 continue;
2438                         }
2439
2440                         folio_wait_writeback(folio);
2441                         BUG_ON(folio_test_writeback(folio));
2442
2443                         /*
2444                          * Should never happen but for buggy code in
2445                          * other subsystems that call
2446                          * set_page_dirty() without properly warning
2447                          * the file system first.  See [1] for more
2448                          * information.
2449                          *
2450                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451                          */
2452                         if (!folio_buffers(folio)) {
2453                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454                                 folio_clear_dirty(folio);
2455                                 folio_unlock(folio);
2456                                 continue;
2457                         }
2458
2459                         if (mpd->map.m_len == 0)
2460                                 mpd->first_page = folio->index;
2461                         mpd->next_page = folio_next_index(folio);
2462                         /*
2463                          * Writeout when we cannot modify metadata is simple.
2464                          * Just submit the page. For data=journal mode we
2465                          * first handle writeout of the page for checkpoint and
2466                          * only after that handle delayed page dirtying. This
2467                          * makes sure current data is checkpointed to the final
2468                          * location before possibly journalling it again which
2469                          * is desirable when the page is frequently dirtied
2470                          * through a pin.
2471                          */
2472                         if (!mpd->can_map) {
2473                                 err = mpage_submit_folio(mpd, folio);
2474                                 if (err < 0)
2475                                         goto out;
2476                                 /* Pending dirtying of journalled data? */
2477                                 if (folio_test_checked(folio)) {
2478                                         err = mpage_journal_page_buffers(handle,
2479                                                 mpd, folio);
2480                                         if (err < 0)
2481                                                 goto out;
2482                                         mpd->journalled_more_data = 1;
2483                                 }
2484                                 mpage_folio_done(mpd, folio);
2485                         } else {
2486                                 /* Add all dirty buffers to mpd */
2487                                 lblk = ((ext4_lblk_t)folio->index) <<
2488                                         (PAGE_SHIFT - blkbits);
2489                                 head = folio_buffers(folio);
2490                                 err = mpage_process_page_bufs(mpd, head, head,
2491                                                 lblk);
2492                                 if (err <= 0)
2493                                         goto out;
2494                                 err = 0;
2495                         }
2496                 }
2497                 folio_batch_release(&fbatch);
2498                 cond_resched();
2499         }
2500         mpd->scanned_until_end = 1;
2501         if (handle)
2502                 ext4_journal_stop(handle);
2503         return 0;
2504 out:
2505         folio_batch_release(&fbatch);
2506         if (handle)
2507                 ext4_journal_stop(handle);
2508         return err;
2509 }
2510
2511 static int ext4_do_writepages(struct mpage_da_data *mpd)
2512 {
2513         struct writeback_control *wbc = mpd->wbc;
2514         pgoff_t writeback_index = 0;
2515         long nr_to_write = wbc->nr_to_write;
2516         int range_whole = 0;
2517         int cycled = 1;
2518         handle_t *handle = NULL;
2519         struct inode *inode = mpd->inode;
2520         struct address_space *mapping = inode->i_mapping;
2521         int needed_blocks, rsv_blocks = 0, ret = 0;
2522         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2523         struct blk_plug plug;
2524         bool give_up_on_write = false;
2525
2526         trace_ext4_writepages(inode, wbc);
2527
2528         /*
2529          * No pages to write? This is mainly a kludge to avoid starting
2530          * a transaction for special inodes like journal inode on last iput()
2531          * because that could violate lock ordering on umount
2532          */
2533         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534                 goto out_writepages;
2535
2536         /*
2537          * If the filesystem has aborted, it is read-only, so return
2538          * right away instead of dumping stack traces later on that
2539          * will obscure the real source of the problem.  We test
2540          * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541          * the latter could be true if the filesystem is mounted
2542          * read-only, and in that case, ext4_writepages should
2543          * *never* be called, so if that ever happens, we would want
2544          * the stack trace.
2545          */
2546         if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547                 ret = -EROFS;
2548                 goto out_writepages;
2549         }
2550
2551         /*
2552          * If we have inline data and arrive here, it means that
2553          * we will soon create the block for the 1st page, so
2554          * we'd better clear the inline data here.
2555          */
2556         if (ext4_has_inline_data(inode)) {
2557                 /* Just inode will be modified... */
2558                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559                 if (IS_ERR(handle)) {
2560                         ret = PTR_ERR(handle);
2561                         goto out_writepages;
2562                 }
2563                 BUG_ON(ext4_test_inode_state(inode,
2564                                 EXT4_STATE_MAY_INLINE_DATA));
2565                 ext4_destroy_inline_data(handle, inode);
2566                 ext4_journal_stop(handle);
2567         }
2568
2569         /*
2570          * data=journal mode does not do delalloc so we just need to writeout /
2571          * journal already mapped buffers. On the other hand we need to commit
2572          * transaction to make data stable. We expect all the data to be
2573          * already in the journal (the only exception are DMA pinned pages
2574          * dirtied behind our back) so we commit transaction here and run the
2575          * writeback loop to checkpoint them. The checkpointing is not actually
2576          * necessary to make data persistent *but* quite a few places (extent
2577          * shifting operations, fsverity, ...) depend on being able to drop
2578          * pagecache pages after calling filemap_write_and_wait() and for that
2579          * checkpointing needs to happen.
2580          */
2581         if (ext4_should_journal_data(inode)) {
2582                 mpd->can_map = 0;
2583                 if (wbc->sync_mode == WB_SYNC_ALL)
2584                         ext4_fc_commit(sbi->s_journal,
2585                                        EXT4_I(inode)->i_datasync_tid);
2586         }
2587         mpd->journalled_more_data = 0;
2588
2589         if (ext4_should_dioread_nolock(inode)) {
2590                 /*
2591                  * We may need to convert up to one extent per block in
2592                  * the page and we may dirty the inode.
2593                  */
2594                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595                                                 PAGE_SIZE >> inode->i_blkbits);
2596         }
2597
2598         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599                 range_whole = 1;
2600
2601         if (wbc->range_cyclic) {
2602                 writeback_index = mapping->writeback_index;
2603                 if (writeback_index)
2604                         cycled = 0;
2605                 mpd->first_page = writeback_index;
2606                 mpd->last_page = -1;
2607         } else {
2608                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2610         }
2611
2612         ext4_io_submit_init(&mpd->io_submit, wbc);
2613 retry:
2614         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615                 tag_pages_for_writeback(mapping, mpd->first_page,
2616                                         mpd->last_page);
2617         blk_start_plug(&plug);
2618
2619         /*
2620          * First writeback pages that don't need mapping - we can avoid
2621          * starting a transaction unnecessarily and also avoid being blocked
2622          * in the block layer on device congestion while having transaction
2623          * started.
2624          */
2625         mpd->do_map = 0;
2626         mpd->scanned_until_end = 0;
2627         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628         if (!mpd->io_submit.io_end) {
2629                 ret = -ENOMEM;
2630                 goto unplug;
2631         }
2632         ret = mpage_prepare_extent_to_map(mpd);
2633         /* Unlock pages we didn't use */
2634         mpage_release_unused_pages(mpd, false);
2635         /* Submit prepared bio */
2636         ext4_io_submit(&mpd->io_submit);
2637         ext4_put_io_end_defer(mpd->io_submit.io_end);
2638         mpd->io_submit.io_end = NULL;
2639         if (ret < 0)
2640                 goto unplug;
2641
2642         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643                 /* For each extent of pages we use new io_end */
2644                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645                 if (!mpd->io_submit.io_end) {
2646                         ret = -ENOMEM;
2647                         break;
2648                 }
2649
2650                 WARN_ON_ONCE(!mpd->can_map);
2651                 /*
2652                  * We have two constraints: We find one extent to map and we
2653                  * must always write out whole page (makes a difference when
2654                  * blocksize < pagesize) so that we don't block on IO when we
2655                  * try to write out the rest of the page. Journalled mode is
2656                  * not supported by delalloc.
2657                  */
2658                 BUG_ON(ext4_should_journal_data(inode));
2659                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660
2661                 /* start a new transaction */
2662                 handle = ext4_journal_start_with_reserve(inode,
2663                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664                 if (IS_ERR(handle)) {
2665                         ret = PTR_ERR(handle);
2666                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667                                "%ld pages, ino %lu; err %d", __func__,
2668                                 wbc->nr_to_write, inode->i_ino, ret);
2669                         /* Release allocated io_end */
2670                         ext4_put_io_end(mpd->io_submit.io_end);
2671                         mpd->io_submit.io_end = NULL;
2672                         break;
2673                 }
2674                 mpd->do_map = 1;
2675
2676                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2677                 ret = mpage_prepare_extent_to_map(mpd);
2678                 if (!ret && mpd->map.m_len)
2679                         ret = mpage_map_and_submit_extent(handle, mpd,
2680                                         &give_up_on_write);
2681                 /*
2682                  * Caution: If the handle is synchronous,
2683                  * ext4_journal_stop() can wait for transaction commit
2684                  * to finish which may depend on writeback of pages to
2685                  * complete or on page lock to be released.  In that
2686                  * case, we have to wait until after we have
2687                  * submitted all the IO, released page locks we hold,
2688                  * and dropped io_end reference (for extent conversion
2689                  * to be able to complete) before stopping the handle.
2690                  */
2691                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692                         ext4_journal_stop(handle);
2693                         handle = NULL;
2694                         mpd->do_map = 0;
2695                 }
2696                 /* Unlock pages we didn't use */
2697                 mpage_release_unused_pages(mpd, give_up_on_write);
2698                 /* Submit prepared bio */
2699                 ext4_io_submit(&mpd->io_submit);
2700
2701                 /*
2702                  * Drop our io_end reference we got from init. We have
2703                  * to be careful and use deferred io_end finishing if
2704                  * we are still holding the transaction as we can
2705                  * release the last reference to io_end which may end
2706                  * up doing unwritten extent conversion.
2707                  */
2708                 if (handle) {
2709                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2710                         ext4_journal_stop(handle);
2711                 } else
2712                         ext4_put_io_end(mpd->io_submit.io_end);
2713                 mpd->io_submit.io_end = NULL;
2714
2715                 if (ret == -ENOSPC && sbi->s_journal) {
2716                         /*
2717                          * Commit the transaction which would
2718                          * free blocks released in the transaction
2719                          * and try again
2720                          */
2721                         jbd2_journal_force_commit_nested(sbi->s_journal);
2722                         ret = 0;
2723                         continue;
2724                 }
2725                 /* Fatal error - ENOMEM, EIO... */
2726                 if (ret)
2727                         break;
2728         }
2729 unplug:
2730         blk_finish_plug(&plug);
2731         if (!ret && !cycled && wbc->nr_to_write > 0) {
2732                 cycled = 1;
2733                 mpd->last_page = writeback_index - 1;
2734                 mpd->first_page = 0;
2735                 goto retry;
2736         }
2737
2738         /* Update index */
2739         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740                 /*
2741                  * Set the writeback_index so that range_cyclic
2742                  * mode will write it back later
2743                  */
2744                 mapping->writeback_index = mpd->first_page;
2745
2746 out_writepages:
2747         trace_ext4_writepages_result(inode, wbc, ret,
2748                                      nr_to_write - wbc->nr_to_write);
2749         return ret;
2750 }
2751
2752 static int ext4_writepages(struct address_space *mapping,
2753                            struct writeback_control *wbc)
2754 {
2755         struct super_block *sb = mapping->host->i_sb;
2756         struct mpage_da_data mpd = {
2757                 .inode = mapping->host,
2758                 .wbc = wbc,
2759                 .can_map = 1,
2760         };
2761         int ret;
2762         int alloc_ctx;
2763
2764         if (unlikely(ext4_forced_shutdown(sb)))
2765                 return -EIO;
2766
2767         alloc_ctx = ext4_writepages_down_read(sb);
2768         ret = ext4_do_writepages(&mpd);
2769         /*
2770          * For data=journal writeback we could have come across pages marked
2771          * for delayed dirtying (PageChecked) which were just added to the
2772          * running transaction. Try once more to get them to stable storage.
2773          */
2774         if (!ret && mpd.journalled_more_data)
2775                 ret = ext4_do_writepages(&mpd);
2776         ext4_writepages_up_read(sb, alloc_ctx);
2777
2778         return ret;
2779 }
2780
2781 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782 {
2783         struct writeback_control wbc = {
2784                 .sync_mode = WB_SYNC_ALL,
2785                 .nr_to_write = LONG_MAX,
2786                 .range_start = jinode->i_dirty_start,
2787                 .range_end = jinode->i_dirty_end,
2788         };
2789         struct mpage_da_data mpd = {
2790                 .inode = jinode->i_vfs_inode,
2791                 .wbc = &wbc,
2792                 .can_map = 0,
2793         };
2794         return ext4_do_writepages(&mpd);
2795 }
2796
2797 static int ext4_dax_writepages(struct address_space *mapping,
2798                                struct writeback_control *wbc)
2799 {
2800         int ret;
2801         long nr_to_write = wbc->nr_to_write;
2802         struct inode *inode = mapping->host;
2803         int alloc_ctx;
2804
2805         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806                 return -EIO;
2807
2808         alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2809         trace_ext4_writepages(inode, wbc);
2810
2811         ret = dax_writeback_mapping_range(mapping,
2812                                           EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2813         trace_ext4_writepages_result(inode, wbc, ret,
2814                                      nr_to_write - wbc->nr_to_write);
2815         ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2816         return ret;
2817 }
2818
2819 static int ext4_nonda_switch(struct super_block *sb)
2820 {
2821         s64 free_clusters, dirty_clusters;
2822         struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824         /*
2825          * switch to non delalloc mode if we are running low
2826          * on free block. The free block accounting via percpu
2827          * counters can get slightly wrong with percpu_counter_batch getting
2828          * accumulated on each CPU without updating global counters
2829          * Delalloc need an accurate free block accounting. So switch
2830          * to non delalloc when we are near to error range.
2831          */
2832         free_clusters =
2833                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2834         dirty_clusters =
2835                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2836         /*
2837          * Start pushing delalloc when 1/2 of free blocks are dirty.
2838          */
2839         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2841
2842         if (2 * free_clusters < 3 * dirty_clusters ||
2843             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844                 /*
2845                  * free block count is less than 150% of dirty blocks
2846                  * or free blocks is less than watermark
2847                  */
2848                 return 1;
2849         }
2850         return 0;
2851 }
2852
2853 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854                                loff_t pos, unsigned len,
2855                                struct page **pagep, void **fsdata)
2856 {
2857         int ret, retries = 0;
2858         struct folio *folio;
2859         pgoff_t index;
2860         struct inode *inode = mapping->host;
2861
2862         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863                 return -EIO;
2864
2865         index = pos >> PAGE_SHIFT;
2866
2867         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2868                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869                 return ext4_write_begin(file, mapping, pos,
2870                                         len, pagep, fsdata);
2871         }
2872         *fsdata = (void *)0;
2873         trace_ext4_da_write_begin(inode, pos, len);
2874
2875         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2876                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877                                                       pagep, fsdata);
2878                 if (ret < 0)
2879                         return ret;
2880                 if (ret == 1)
2881                         return 0;
2882         }
2883
2884 retry:
2885         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886                         mapping_gfp_mask(mapping));
2887         if (IS_ERR(folio))
2888                 return PTR_ERR(folio);
2889
2890 #ifdef CONFIG_FS_ENCRYPTION
2891         ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2892 #else
2893         ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2894 #endif
2895         if (ret < 0) {
2896                 folio_unlock(folio);
2897                 folio_put(folio);
2898                 /*
2899                  * block_write_begin may have instantiated a few blocks
2900                  * outside i_size.  Trim these off again. Don't need
2901                  * i_size_read because we hold inode lock.
2902                  */
2903                 if (pos + len > inode->i_size)
2904                         ext4_truncate_failed_write(inode);
2905
2906                 if (ret == -ENOSPC &&
2907                     ext4_should_retry_alloc(inode->i_sb, &retries))
2908                         goto retry;
2909                 return ret;
2910         }
2911
2912         *pagep = &folio->page;
2913         return ret;
2914 }
2915
2916 /*
2917  * Check if we should update i_disksize
2918  * when write to the end of file but not require block allocation
2919  */
2920 static int ext4_da_should_update_i_disksize(struct folio *folio,
2921                                             unsigned long offset)
2922 {
2923         struct buffer_head *bh;
2924         struct inode *inode = folio->mapping->host;
2925         unsigned int idx;
2926         int i;
2927
2928         bh = folio_buffers(folio);
2929         idx = offset >> inode->i_blkbits;
2930
2931         for (i = 0; i < idx; i++)
2932                 bh = bh->b_this_page;
2933
2934         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2935                 return 0;
2936         return 1;
2937 }
2938
2939 static int ext4_da_do_write_end(struct address_space *mapping,
2940                         loff_t pos, unsigned len, unsigned copied,
2941                         struct folio *folio)
2942 {
2943         struct inode *inode = mapping->host;
2944         loff_t old_size = inode->i_size;
2945         bool disksize_changed = false;
2946         loff_t new_i_size;
2947
2948         /*
2949          * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2950          * flag, which all that's needed to trigger page writeback.
2951          */
2952         copied = block_write_end(NULL, mapping, pos, len, copied,
2953                         &folio->page, NULL);
2954         new_i_size = pos + copied;
2955
2956         /*
2957          * It's important to update i_size while still holding folio lock,
2958          * because folio writeout could otherwise come in and zero beyond
2959          * i_size.
2960          *
2961          * Since we are holding inode lock, we are sure i_disksize <=
2962          * i_size. We also know that if i_disksize < i_size, there are
2963          * delalloc writes pending in the range up to i_size. If the end of
2964          * the current write is <= i_size, there's no need to touch
2965          * i_disksize since writeback will push i_disksize up to i_size
2966          * eventually. If the end of the current write is > i_size and
2967          * inside an allocated block which ext4_da_should_update_i_disksize()
2968          * checked, we need to update i_disksize here as certain
2969          * ext4_writepages() paths not allocating blocks and update i_disksize.
2970          */
2971         if (new_i_size > inode->i_size) {
2972                 unsigned long end;
2973
2974                 i_size_write(inode, new_i_size);
2975                 end = (new_i_size - 1) & (PAGE_SIZE - 1);
2976                 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2977                         ext4_update_i_disksize(inode, new_i_size);
2978                         disksize_changed = true;
2979                 }
2980         }
2981
2982         folio_unlock(folio);
2983         folio_put(folio);
2984
2985         if (old_size < pos)
2986                 pagecache_isize_extended(inode, old_size, pos);
2987
2988         if (disksize_changed) {
2989                 handle_t *handle;
2990
2991                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2992                 if (IS_ERR(handle))
2993                         return PTR_ERR(handle);
2994                 ext4_mark_inode_dirty(handle, inode);
2995                 ext4_journal_stop(handle);
2996         }
2997
2998         return copied;
2999 }
3000
3001 static int ext4_da_write_end(struct file *file,
3002                              struct address_space *mapping,
3003                              loff_t pos, unsigned len, unsigned copied,
3004                              struct page *page, void *fsdata)
3005 {
3006         struct inode *inode = mapping->host;
3007         int write_mode = (int)(unsigned long)fsdata;
3008         struct folio *folio = page_folio(page);
3009
3010         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3011                 return ext4_write_end(file, mapping, pos,
3012                                       len, copied, &folio->page, fsdata);
3013
3014         trace_ext4_da_write_end(inode, pos, len, copied);
3015
3016         if (write_mode != CONVERT_INLINE_DATA &&
3017             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3018             ext4_has_inline_data(inode))
3019                 return ext4_write_inline_data_end(inode, pos, len, copied,
3020                                                   folio);
3021
3022         if (unlikely(copied < len) && !folio_test_uptodate(folio))
3023                 copied = 0;
3024
3025         return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3026 }
3027
3028 /*
3029  * Force all delayed allocation blocks to be allocated for a given inode.
3030  */
3031 int ext4_alloc_da_blocks(struct inode *inode)
3032 {
3033         trace_ext4_alloc_da_blocks(inode);
3034
3035         if (!EXT4_I(inode)->i_reserved_data_blocks)
3036                 return 0;
3037
3038         /*
3039          * We do something simple for now.  The filemap_flush() will
3040          * also start triggering a write of the data blocks, which is
3041          * not strictly speaking necessary (and for users of
3042          * laptop_mode, not even desirable).  However, to do otherwise
3043          * would require replicating code paths in:
3044          *
3045          * ext4_writepages() ->
3046          *    write_cache_pages() ---> (via passed in callback function)
3047          *        __mpage_da_writepage() -->
3048          *           mpage_add_bh_to_extent()
3049          *           mpage_da_map_blocks()
3050          *
3051          * The problem is that write_cache_pages(), located in
3052          * mm/page-writeback.c, marks pages clean in preparation for
3053          * doing I/O, which is not desirable if we're not planning on
3054          * doing I/O at all.
3055          *
3056          * We could call write_cache_pages(), and then redirty all of
3057          * the pages by calling redirty_page_for_writepage() but that
3058          * would be ugly in the extreme.  So instead we would need to
3059          * replicate parts of the code in the above functions,
3060          * simplifying them because we wouldn't actually intend to
3061          * write out the pages, but rather only collect contiguous
3062          * logical block extents, call the multi-block allocator, and
3063          * then update the buffer heads with the block allocations.
3064          *
3065          * For now, though, we'll cheat by calling filemap_flush(),
3066          * which will map the blocks, and start the I/O, but not
3067          * actually wait for the I/O to complete.
3068          */
3069         return filemap_flush(inode->i_mapping);
3070 }
3071
3072 /*
3073  * bmap() is special.  It gets used by applications such as lilo and by
3074  * the swapper to find the on-disk block of a specific piece of data.
3075  *
3076  * Naturally, this is dangerous if the block concerned is still in the
3077  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3078  * filesystem and enables swap, then they may get a nasty shock when the
3079  * data getting swapped to that swapfile suddenly gets overwritten by
3080  * the original zero's written out previously to the journal and
3081  * awaiting writeback in the kernel's buffer cache.
3082  *
3083  * So, if we see any bmap calls here on a modified, data-journaled file,
3084  * take extra steps to flush any blocks which might be in the cache.
3085  */
3086 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3087 {
3088         struct inode *inode = mapping->host;
3089         sector_t ret = 0;
3090
3091         inode_lock_shared(inode);
3092         /*
3093          * We can get here for an inline file via the FIBMAP ioctl
3094          */
3095         if (ext4_has_inline_data(inode))
3096                 goto out;
3097
3098         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3099             (test_opt(inode->i_sb, DELALLOC) ||
3100              ext4_should_journal_data(inode))) {
3101                 /*
3102                  * With delalloc or journalled data we want to sync the file so
3103                  * that we can make sure we allocate blocks for file and data
3104                  * is in place for the user to see it
3105                  */
3106                 filemap_write_and_wait(mapping);
3107         }
3108
3109         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3110
3111 out:
3112         inode_unlock_shared(inode);
3113         return ret;
3114 }
3115
3116 static int ext4_read_folio(struct file *file, struct folio *folio)
3117 {
3118         int ret = -EAGAIN;
3119         struct inode *inode = folio->mapping->host;
3120
3121         trace_ext4_read_folio(inode, folio);
3122
3123         if (ext4_has_inline_data(inode))
3124                 ret = ext4_readpage_inline(inode, folio);
3125
3126         if (ret == -EAGAIN)
3127                 return ext4_mpage_readpages(inode, NULL, folio);
3128
3129         return ret;
3130 }
3131
3132 static void ext4_readahead(struct readahead_control *rac)
3133 {
3134         struct inode *inode = rac->mapping->host;
3135
3136         /* If the file has inline data, no need to do readahead. */
3137         if (ext4_has_inline_data(inode))
3138                 return;
3139
3140         ext4_mpage_readpages(inode, rac, NULL);
3141 }
3142
3143 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3144                                 size_t length)
3145 {
3146         trace_ext4_invalidate_folio(folio, offset, length);
3147
3148         /* No journalling happens on data buffers when this function is used */
3149         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3150
3151         block_invalidate_folio(folio, offset, length);
3152 }
3153
3154 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3155                                             size_t offset, size_t length)
3156 {
3157         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3158
3159         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3160
3161         /*
3162          * If it's a full truncate we just forget about the pending dirtying
3163          */
3164         if (offset == 0 && length == folio_size(folio))
3165                 folio_clear_checked(folio);
3166
3167         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3168 }
3169
3170 /* Wrapper for aops... */
3171 static void ext4_journalled_invalidate_folio(struct folio *folio,
3172                                            size_t offset,
3173                                            size_t length)
3174 {
3175         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3176 }
3177
3178 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3179 {
3180         struct inode *inode = folio->mapping->host;
3181         journal_t *journal = EXT4_JOURNAL(inode);
3182
3183         trace_ext4_release_folio(inode, folio);
3184
3185         /* Page has dirty journalled data -> cannot release */
3186         if (folio_test_checked(folio))
3187                 return false;
3188         if (journal)
3189                 return jbd2_journal_try_to_free_buffers(journal, folio);
3190         else
3191                 return try_to_free_buffers(folio);
3192 }
3193
3194 static bool ext4_inode_datasync_dirty(struct inode *inode)
3195 {
3196         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3197
3198         if (journal) {
3199                 if (jbd2_transaction_committed(journal,
3200                         EXT4_I(inode)->i_datasync_tid))
3201                         return false;
3202                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3203                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3204                 return true;
3205         }
3206
3207         /* Any metadata buffers to write? */
3208         if (!list_empty(&inode->i_mapping->i_private_list))
3209                 return true;
3210         return inode->i_state & I_DIRTY_DATASYNC;
3211 }
3212
3213 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3214                            struct ext4_map_blocks *map, loff_t offset,
3215                            loff_t length, unsigned int flags)
3216 {
3217         u8 blkbits = inode->i_blkbits;
3218
3219         /*
3220          * Writes that span EOF might trigger an I/O size update on completion,
3221          * so consider them to be dirty for the purpose of O_DSYNC, even if
3222          * there is no other metadata changes being made or are pending.
3223          */
3224         iomap->flags = 0;
3225         if (ext4_inode_datasync_dirty(inode) ||
3226             offset + length > i_size_read(inode))
3227                 iomap->flags |= IOMAP_F_DIRTY;
3228
3229         if (map->m_flags & EXT4_MAP_NEW)
3230                 iomap->flags |= IOMAP_F_NEW;
3231
3232         if (flags & IOMAP_DAX)
3233                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3234         else
3235                 iomap->bdev = inode->i_sb->s_bdev;
3236         iomap->offset = (u64) map->m_lblk << blkbits;
3237         iomap->length = (u64) map->m_len << blkbits;
3238
3239         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3240             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3241                 iomap->flags |= IOMAP_F_MERGED;
3242
3243         /*
3244          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3245          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3246          * set. In order for any allocated unwritten extents to be converted
3247          * into written extents correctly within the ->end_io() handler, we
3248          * need to ensure that the iomap->type is set appropriately. Hence, the
3249          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3250          * been set first.
3251          */
3252         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3253                 iomap->type = IOMAP_UNWRITTEN;
3254                 iomap->addr = (u64) map->m_pblk << blkbits;
3255                 if (flags & IOMAP_DAX)
3256                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3257         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3258                 iomap->type = IOMAP_MAPPED;
3259                 iomap->addr = (u64) map->m_pblk << blkbits;
3260                 if (flags & IOMAP_DAX)
3261                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3262         } else if (map->m_flags & EXT4_MAP_DELAYED) {
3263                 iomap->type = IOMAP_DELALLOC;
3264                 iomap->addr = IOMAP_NULL_ADDR;
3265         } else {
3266                 iomap->type = IOMAP_HOLE;
3267                 iomap->addr = IOMAP_NULL_ADDR;
3268         }
3269 }
3270
3271 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3272                             unsigned int flags)
3273 {
3274         handle_t *handle;
3275         u8 blkbits = inode->i_blkbits;
3276         int ret, dio_credits, m_flags = 0, retries = 0;
3277
3278         /*
3279          * Trim the mapping request to the maximum value that we can map at
3280          * once for direct I/O.
3281          */
3282         if (map->m_len > DIO_MAX_BLOCKS)
3283                 map->m_len = DIO_MAX_BLOCKS;
3284         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3285
3286 retry:
3287         /*
3288          * Either we allocate blocks and then don't get an unwritten extent, so
3289          * in that case we have reserved enough credits. Or, the blocks are
3290          * already allocated and unwritten. In that case, the extent conversion
3291          * fits into the credits as well.
3292          */
3293         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3294         if (IS_ERR(handle))
3295                 return PTR_ERR(handle);
3296
3297         /*
3298          * DAX and direct I/O are the only two operations that are currently
3299          * supported with IOMAP_WRITE.
3300          */
3301         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3302         if (flags & IOMAP_DAX)
3303                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3304         /*
3305          * We use i_size instead of i_disksize here because delalloc writeback
3306          * can complete at any point during the I/O and subsequently push the
3307          * i_disksize out to i_size. This could be beyond where direct I/O is
3308          * happening and thus expose allocated blocks to direct I/O reads.
3309          */
3310         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3311                 m_flags = EXT4_GET_BLOCKS_CREATE;
3312         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3314
3315         ret = ext4_map_blocks(handle, inode, map, m_flags);
3316
3317         /*
3318          * We cannot fill holes in indirect tree based inodes as that could
3319          * expose stale data in the case of a crash. Use the magic error code
3320          * to fallback to buffered I/O.
3321          */
3322         if (!m_flags && !ret)
3323                 ret = -ENOTBLK;
3324
3325         ext4_journal_stop(handle);
3326         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3327                 goto retry;
3328
3329         return ret;
3330 }
3331
3332
3333 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3334                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3335 {
3336         int ret;
3337         struct ext4_map_blocks map;
3338         u8 blkbits = inode->i_blkbits;
3339
3340         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3341                 return -EINVAL;
3342
3343         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3344                 return -ERANGE;
3345
3346         /*
3347          * Calculate the first and last logical blocks respectively.
3348          */
3349         map.m_lblk = offset >> blkbits;
3350         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3351                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3352
3353         if (flags & IOMAP_WRITE) {
3354                 /*
3355                  * We check here if the blocks are already allocated, then we
3356                  * don't need to start a journal txn and we can directly return
3357                  * the mapping information. This could boost performance
3358                  * especially in multi-threaded overwrite requests.
3359                  */
3360                 if (offset + length <= i_size_read(inode)) {
3361                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3362                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3363                                 goto out;
3364                 }
3365                 ret = ext4_iomap_alloc(inode, &map, flags);
3366         } else {
3367                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3368         }
3369
3370         if (ret < 0)
3371                 return ret;
3372 out:
3373         /*
3374          * When inline encryption is enabled, sometimes I/O to an encrypted file
3375          * has to be broken up to guarantee DUN contiguity.  Handle this by
3376          * limiting the length of the mapping returned.
3377          */
3378         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3379
3380         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3381
3382         return 0;
3383 }
3384
3385 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3386                 loff_t length, unsigned flags, struct iomap *iomap,
3387                 struct iomap *srcmap)
3388 {
3389         int ret;
3390
3391         /*
3392          * Even for writes we don't need to allocate blocks, so just pretend
3393          * we are reading to save overhead of starting a transaction.
3394          */
3395         flags &= ~IOMAP_WRITE;
3396         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3397         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3398         return ret;
3399 }
3400
3401 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402                           ssize_t written, unsigned flags, struct iomap *iomap)
3403 {
3404         /*
3405          * Check to see whether an error occurred while writing out the data to
3406          * the allocated blocks. If so, return the magic error code so that we
3407          * fallback to buffered I/O and attempt to complete the remainder of
3408          * the I/O. Any blocks that may have been allocated in preparation for
3409          * the direct I/O will be reused during buffered I/O.
3410          */
3411         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3412                 return -ENOTBLK;
3413
3414         return 0;
3415 }
3416
3417 const struct iomap_ops ext4_iomap_ops = {
3418         .iomap_begin            = ext4_iomap_begin,
3419         .iomap_end              = ext4_iomap_end,
3420 };
3421
3422 const struct iomap_ops ext4_iomap_overwrite_ops = {
3423         .iomap_begin            = ext4_iomap_overwrite_begin,
3424         .iomap_end              = ext4_iomap_end,
3425 };
3426
3427 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3428                                    loff_t length, unsigned int flags,
3429                                    struct iomap *iomap, struct iomap *srcmap)
3430 {
3431         int ret;
3432         struct ext4_map_blocks map;
3433         u8 blkbits = inode->i_blkbits;
3434
3435         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3436                 return -EINVAL;
3437
3438         if (ext4_has_inline_data(inode)) {
3439                 ret = ext4_inline_data_iomap(inode, iomap);
3440                 if (ret != -EAGAIN) {
3441                         if (ret == 0 && offset >= iomap->length)
3442                                 ret = -ENOENT;
3443                         return ret;
3444                 }
3445         }
3446
3447         /*
3448          * Calculate the first and last logical block respectively.
3449          */
3450         map.m_lblk = offset >> blkbits;
3451         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3452                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3453
3454         /*
3455          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3456          * So handle it here itself instead of querying ext4_map_blocks().
3457          * Since ext4_map_blocks() will warn about it and will return
3458          * -EIO error.
3459          */
3460         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3461                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3462
3463                 if (offset >= sbi->s_bitmap_maxbytes) {
3464                         map.m_flags = 0;
3465                         goto set_iomap;
3466                 }
3467         }
3468
3469         ret = ext4_map_blocks(NULL, inode, &map, 0);
3470         if (ret < 0)
3471                 return ret;
3472 set_iomap:
3473         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3474
3475         return 0;
3476 }
3477
3478 const struct iomap_ops ext4_iomap_report_ops = {
3479         .iomap_begin = ext4_iomap_begin_report,
3480 };
3481
3482 /*
3483  * For data=journal mode, folio should be marked dirty only when it was
3484  * writeably mapped. When that happens, it was already attached to the
3485  * transaction and marked as jbddirty (we take care of this in
3486  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3487  * so we should have nothing to do here, except for the case when someone
3488  * had the page pinned and dirtied the page through this pin (e.g. by doing
3489  * direct IO to it). In that case we'd need to attach buffers here to the
3490  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3491  * folio and leave attached buffers clean, because the buffers' dirty state is
3492  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3493  * the journalling code will explode.  So what we do is to mark the folio
3494  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3495  * to the transaction appropriately.
3496  */
3497 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3498                 struct folio *folio)
3499 {
3500         WARN_ON_ONCE(!folio_buffers(folio));
3501         if (folio_maybe_dma_pinned(folio))
3502                 folio_set_checked(folio);
3503         return filemap_dirty_folio(mapping, folio);
3504 }
3505
3506 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3507 {
3508         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3509         WARN_ON_ONCE(!folio_buffers(folio));
3510         return block_dirty_folio(mapping, folio);
3511 }
3512
3513 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3514                                     struct file *file, sector_t *span)
3515 {
3516         return iomap_swapfile_activate(sis, file, span,
3517                                        &ext4_iomap_report_ops);
3518 }
3519
3520 static const struct address_space_operations ext4_aops = {
3521         .read_folio             = ext4_read_folio,
3522         .readahead              = ext4_readahead,
3523         .writepages             = ext4_writepages,
3524         .write_begin            = ext4_write_begin,
3525         .write_end              = ext4_write_end,
3526         .dirty_folio            = ext4_dirty_folio,
3527         .bmap                   = ext4_bmap,
3528         .invalidate_folio       = ext4_invalidate_folio,
3529         .release_folio          = ext4_release_folio,
3530         .migrate_folio          = buffer_migrate_folio,
3531         .is_partially_uptodate  = block_is_partially_uptodate,
3532         .error_remove_folio     = generic_error_remove_folio,
3533         .swap_activate          = ext4_iomap_swap_activate,
3534 };
3535
3536 static const struct address_space_operations ext4_journalled_aops = {
3537         .read_folio             = ext4_read_folio,
3538         .readahead              = ext4_readahead,
3539         .writepages             = ext4_writepages,
3540         .write_begin            = ext4_write_begin,
3541         .write_end              = ext4_journalled_write_end,
3542         .dirty_folio            = ext4_journalled_dirty_folio,
3543         .bmap                   = ext4_bmap,
3544         .invalidate_folio       = ext4_journalled_invalidate_folio,
3545         .release_folio          = ext4_release_folio,
3546         .migrate_folio          = buffer_migrate_folio_norefs,
3547         .is_partially_uptodate  = block_is_partially_uptodate,
3548         .error_remove_folio     = generic_error_remove_folio,
3549         .swap_activate          = ext4_iomap_swap_activate,
3550 };
3551
3552 static const struct address_space_operations ext4_da_aops = {
3553         .read_folio             = ext4_read_folio,
3554         .readahead              = ext4_readahead,
3555         .writepages             = ext4_writepages,
3556         .write_begin            = ext4_da_write_begin,
3557         .write_end              = ext4_da_write_end,
3558         .dirty_folio            = ext4_dirty_folio,
3559         .bmap                   = ext4_bmap,
3560         .invalidate_folio       = ext4_invalidate_folio,
3561         .release_folio          = ext4_release_folio,
3562         .migrate_folio          = buffer_migrate_folio,
3563         .is_partially_uptodate  = block_is_partially_uptodate,
3564         .error_remove_folio     = generic_error_remove_folio,
3565         .swap_activate          = ext4_iomap_swap_activate,
3566 };
3567
3568 static const struct address_space_operations ext4_dax_aops = {
3569         .writepages             = ext4_dax_writepages,
3570         .dirty_folio            = noop_dirty_folio,
3571         .bmap                   = ext4_bmap,
3572         .swap_activate          = ext4_iomap_swap_activate,
3573 };
3574
3575 void ext4_set_aops(struct inode *inode)
3576 {
3577         switch (ext4_inode_journal_mode(inode)) {
3578         case EXT4_INODE_ORDERED_DATA_MODE:
3579         case EXT4_INODE_WRITEBACK_DATA_MODE:
3580                 break;
3581         case EXT4_INODE_JOURNAL_DATA_MODE:
3582                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3583                 return;
3584         default:
3585                 BUG();
3586         }
3587         if (IS_DAX(inode))
3588                 inode->i_mapping->a_ops = &ext4_dax_aops;
3589         else if (test_opt(inode->i_sb, DELALLOC))
3590                 inode->i_mapping->a_ops = &ext4_da_aops;
3591         else
3592                 inode->i_mapping->a_ops = &ext4_aops;
3593 }
3594
3595 /*
3596  * Here we can't skip an unwritten buffer even though it usually reads zero
3597  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3598  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3599  * racing writeback can come later and flush the stale pagecache to disk.
3600  */
3601 static int __ext4_block_zero_page_range(handle_t *handle,
3602                 struct address_space *mapping, loff_t from, loff_t length)
3603 {
3604         ext4_fsblk_t index = from >> PAGE_SHIFT;
3605         unsigned offset = from & (PAGE_SIZE-1);
3606         unsigned blocksize, pos;
3607         ext4_lblk_t iblock;
3608         struct inode *inode = mapping->host;
3609         struct buffer_head *bh;
3610         struct folio *folio;
3611         int err = 0;
3612
3613         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3614                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3615                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
3616         if (IS_ERR(folio))
3617                 return PTR_ERR(folio);
3618
3619         blocksize = inode->i_sb->s_blocksize;
3620
3621         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3622
3623         bh = folio_buffers(folio);
3624         if (!bh)
3625                 bh = create_empty_buffers(folio, blocksize, 0);
3626
3627         /* Find the buffer that contains "offset" */
3628         pos = blocksize;
3629         while (offset >= pos) {
3630                 bh = bh->b_this_page;
3631                 iblock++;
3632                 pos += blocksize;
3633         }
3634         if (buffer_freed(bh)) {
3635                 BUFFER_TRACE(bh, "freed: skip");
3636                 goto unlock;
3637         }
3638         if (!buffer_mapped(bh)) {
3639                 BUFFER_TRACE(bh, "unmapped");
3640                 ext4_get_block(inode, iblock, bh, 0);
3641                 /* unmapped? It's a hole - nothing to do */
3642                 if (!buffer_mapped(bh)) {
3643                         BUFFER_TRACE(bh, "still unmapped");
3644                         goto unlock;
3645                 }
3646         }
3647
3648         /* Ok, it's mapped. Make sure it's up-to-date */
3649         if (folio_test_uptodate(folio))
3650                 set_buffer_uptodate(bh);
3651
3652         if (!buffer_uptodate(bh)) {
3653                 err = ext4_read_bh_lock(bh, 0, true);
3654                 if (err)
3655                         goto unlock;
3656                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3657                         /* We expect the key to be set. */
3658                         BUG_ON(!fscrypt_has_encryption_key(inode));
3659                         err = fscrypt_decrypt_pagecache_blocks(folio,
3660                                                                blocksize,
3661                                                                bh_offset(bh));
3662                         if (err) {
3663                                 clear_buffer_uptodate(bh);
3664                                 goto unlock;
3665                         }
3666                 }
3667         }
3668         if (ext4_should_journal_data(inode)) {
3669                 BUFFER_TRACE(bh, "get write access");
3670                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3671                                                     EXT4_JTR_NONE);
3672                 if (err)
3673                         goto unlock;
3674         }
3675         folio_zero_range(folio, offset, length);
3676         BUFFER_TRACE(bh, "zeroed end of block");
3677
3678         if (ext4_should_journal_data(inode)) {
3679                 err = ext4_dirty_journalled_data(handle, bh);
3680         } else {
3681                 err = 0;
3682                 mark_buffer_dirty(bh);
3683                 if (ext4_should_order_data(inode))
3684                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3685                                         length);
3686         }
3687
3688 unlock:
3689         folio_unlock(folio);
3690         folio_put(folio);
3691         return err;
3692 }
3693
3694 /*
3695  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3696  * starting from file offset 'from'.  The range to be zero'd must
3697  * be contained with in one block.  If the specified range exceeds
3698  * the end of the block it will be shortened to end of the block
3699  * that corresponds to 'from'
3700  */
3701 static int ext4_block_zero_page_range(handle_t *handle,
3702                 struct address_space *mapping, loff_t from, loff_t length)
3703 {
3704         struct inode *inode = mapping->host;
3705         unsigned offset = from & (PAGE_SIZE-1);
3706         unsigned blocksize = inode->i_sb->s_blocksize;
3707         unsigned max = blocksize - (offset & (blocksize - 1));
3708
3709         /*
3710          * correct length if it does not fall between
3711          * 'from' and the end of the block
3712          */
3713         if (length > max || length < 0)
3714                 length = max;
3715
3716         if (IS_DAX(inode)) {
3717                 return dax_zero_range(inode, from, length, NULL,
3718                                       &ext4_iomap_ops);
3719         }
3720         return __ext4_block_zero_page_range(handle, mapping, from, length);
3721 }
3722
3723 /*
3724  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3725  * up to the end of the block which corresponds to `from'.
3726  * This required during truncate. We need to physically zero the tail end
3727  * of that block so it doesn't yield old data if the file is later grown.
3728  */
3729 static int ext4_block_truncate_page(handle_t *handle,
3730                 struct address_space *mapping, loff_t from)
3731 {
3732         unsigned offset = from & (PAGE_SIZE-1);
3733         unsigned length;
3734         unsigned blocksize;
3735         struct inode *inode = mapping->host;
3736
3737         /* If we are processing an encrypted inode during orphan list handling */
3738         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3739                 return 0;
3740
3741         blocksize = inode->i_sb->s_blocksize;
3742         length = blocksize - (offset & (blocksize - 1));
3743
3744         return ext4_block_zero_page_range(handle, mapping, from, length);
3745 }
3746
3747 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3748                              loff_t lstart, loff_t length)
3749 {
3750         struct super_block *sb = inode->i_sb;
3751         struct address_space *mapping = inode->i_mapping;
3752         unsigned partial_start, partial_end;
3753         ext4_fsblk_t start, end;
3754         loff_t byte_end = (lstart + length - 1);
3755         int err = 0;
3756
3757         partial_start = lstart & (sb->s_blocksize - 1);
3758         partial_end = byte_end & (sb->s_blocksize - 1);
3759
3760         start = lstart >> sb->s_blocksize_bits;
3761         end = byte_end >> sb->s_blocksize_bits;
3762
3763         /* Handle partial zero within the single block */
3764         if (start == end &&
3765             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3766                 err = ext4_block_zero_page_range(handle, mapping,
3767                                                  lstart, length);
3768                 return err;
3769         }
3770         /* Handle partial zero out on the start of the range */
3771         if (partial_start) {
3772                 err = ext4_block_zero_page_range(handle, mapping,
3773                                                  lstart, sb->s_blocksize);
3774                 if (err)
3775                         return err;
3776         }
3777         /* Handle partial zero out on the end of the range */
3778         if (partial_end != sb->s_blocksize - 1)
3779                 err = ext4_block_zero_page_range(handle, mapping,
3780                                                  byte_end - partial_end,
3781                                                  partial_end + 1);
3782         return err;
3783 }
3784
3785 int ext4_can_truncate(struct inode *inode)
3786 {
3787         if (S_ISREG(inode->i_mode))
3788                 return 1;
3789         if (S_ISDIR(inode->i_mode))
3790                 return 1;
3791         if (S_ISLNK(inode->i_mode))
3792                 return !ext4_inode_is_fast_symlink(inode);
3793         return 0;
3794 }
3795
3796 /*
3797  * We have to make sure i_disksize gets properly updated before we truncate
3798  * page cache due to hole punching or zero range. Otherwise i_disksize update
3799  * can get lost as it may have been postponed to submission of writeback but
3800  * that will never happen after we truncate page cache.
3801  */
3802 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3803                                       loff_t len)
3804 {
3805         handle_t *handle;
3806         int ret;
3807
3808         loff_t size = i_size_read(inode);
3809
3810         WARN_ON(!inode_is_locked(inode));
3811         if (offset > size || offset + len < size)
3812                 return 0;
3813
3814         if (EXT4_I(inode)->i_disksize >= size)
3815                 return 0;
3816
3817         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3818         if (IS_ERR(handle))
3819                 return PTR_ERR(handle);
3820         ext4_update_i_disksize(inode, size);
3821         ret = ext4_mark_inode_dirty(handle, inode);
3822         ext4_journal_stop(handle);
3823
3824         return ret;
3825 }
3826
3827 static void ext4_wait_dax_page(struct inode *inode)
3828 {
3829         filemap_invalidate_unlock(inode->i_mapping);
3830         schedule();
3831         filemap_invalidate_lock(inode->i_mapping);
3832 }
3833
3834 int ext4_break_layouts(struct inode *inode)
3835 {
3836         struct page *page;
3837         int error;
3838
3839         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3840                 return -EINVAL;
3841
3842         do {
3843                 page = dax_layout_busy_page(inode->i_mapping);
3844                 if (!page)
3845                         return 0;
3846
3847                 error = ___wait_var_event(&page->_refcount,
3848                                 atomic_read(&page->_refcount) == 1,
3849                                 TASK_INTERRUPTIBLE, 0, 0,
3850                                 ext4_wait_dax_page(inode));
3851         } while (error == 0);
3852
3853         return error;
3854 }
3855
3856 /*
3857  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3858  * associated with the given offset and length
3859  *
3860  * @inode:  File inode
3861  * @offset: The offset where the hole will begin
3862  * @len:    The length of the hole
3863  *
3864  * Returns: 0 on success or negative on failure
3865  */
3866
3867 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3868 {
3869         struct inode *inode = file_inode(file);
3870         struct super_block *sb = inode->i_sb;
3871         ext4_lblk_t first_block, stop_block;
3872         struct address_space *mapping = inode->i_mapping;
3873         loff_t first_block_offset, last_block_offset, max_length;
3874         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3875         handle_t *handle;
3876         unsigned int credits;
3877         int ret = 0, ret2 = 0;
3878
3879         trace_ext4_punch_hole(inode, offset, length, 0);
3880
3881         /*
3882          * Write out all dirty pages to avoid race conditions
3883          * Then release them.
3884          */
3885         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3886                 ret = filemap_write_and_wait_range(mapping, offset,
3887                                                    offset + length - 1);
3888                 if (ret)
3889                         return ret;
3890         }
3891
3892         inode_lock(inode);
3893
3894         /* No need to punch hole beyond i_size */
3895         if (offset >= inode->i_size)
3896                 goto out_mutex;
3897
3898         /*
3899          * If the hole extends beyond i_size, set the hole
3900          * to end after the page that contains i_size
3901          */
3902         if (offset + length > inode->i_size) {
3903                 length = inode->i_size +
3904                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3905                    offset;
3906         }
3907
3908         /*
3909          * For punch hole the length + offset needs to be within one block
3910          * before last range. Adjust the length if it goes beyond that limit.
3911          */
3912         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3913         if (offset + length > max_length)
3914                 length = max_length - offset;
3915
3916         if (offset & (sb->s_blocksize - 1) ||
3917             (offset + length) & (sb->s_blocksize - 1)) {
3918                 /*
3919                  * Attach jinode to inode for jbd2 if we do any zeroing of
3920                  * partial block
3921                  */
3922                 ret = ext4_inode_attach_jinode(inode);
3923                 if (ret < 0)
3924                         goto out_mutex;
3925
3926         }
3927
3928         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3929         inode_dio_wait(inode);
3930
3931         ret = file_modified(file);
3932         if (ret)
3933                 goto out_mutex;
3934
3935         /*
3936          * Prevent page faults from reinstantiating pages we have released from
3937          * page cache.
3938          */
3939         filemap_invalidate_lock(mapping);
3940
3941         ret = ext4_break_layouts(inode);
3942         if (ret)
3943                 goto out_dio;
3944
3945         first_block_offset = round_up(offset, sb->s_blocksize);
3946         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3947
3948         /* Now release the pages and zero block aligned part of pages*/
3949         if (last_block_offset > first_block_offset) {
3950                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3951                 if (ret)
3952                         goto out_dio;
3953                 truncate_pagecache_range(inode, first_block_offset,
3954                                          last_block_offset);
3955         }
3956
3957         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3958                 credits = ext4_writepage_trans_blocks(inode);
3959         else
3960                 credits = ext4_blocks_for_truncate(inode);
3961         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3962         if (IS_ERR(handle)) {
3963                 ret = PTR_ERR(handle);
3964                 ext4_std_error(sb, ret);
3965                 goto out_dio;
3966         }
3967
3968         ret = ext4_zero_partial_blocks(handle, inode, offset,
3969                                        length);
3970         if (ret)
3971                 goto out_stop;
3972
3973         first_block = (offset + sb->s_blocksize - 1) >>
3974                 EXT4_BLOCK_SIZE_BITS(sb);
3975         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3976
3977         /* If there are blocks to remove, do it */
3978         if (stop_block > first_block) {
3979                 ext4_lblk_t hole_len = stop_block - first_block;
3980
3981                 down_write(&EXT4_I(inode)->i_data_sem);
3982                 ext4_discard_preallocations(inode);
3983
3984                 ext4_es_remove_extent(inode, first_block, hole_len);
3985
3986                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3987                         ret = ext4_ext_remove_space(inode, first_block,
3988                                                     stop_block - 1);
3989                 else
3990                         ret = ext4_ind_remove_space(handle, inode, first_block,
3991                                                     stop_block);
3992
3993                 ext4_es_insert_extent(inode, first_block, hole_len, ~0,
3994                                       EXTENT_STATUS_HOLE);
3995                 up_write(&EXT4_I(inode)->i_data_sem);
3996         }
3997         ext4_fc_track_range(handle, inode, first_block, stop_block);
3998         if (IS_SYNC(inode))
3999                 ext4_handle_sync(handle);
4000
4001         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4002         ret2 = ext4_mark_inode_dirty(handle, inode);
4003         if (unlikely(ret2))
4004                 ret = ret2;
4005         if (ret >= 0)
4006                 ext4_update_inode_fsync_trans(handle, inode, 1);
4007 out_stop:
4008         ext4_journal_stop(handle);
4009 out_dio:
4010         filemap_invalidate_unlock(mapping);
4011 out_mutex:
4012         inode_unlock(inode);
4013         return ret;
4014 }
4015
4016 int ext4_inode_attach_jinode(struct inode *inode)
4017 {
4018         struct ext4_inode_info *ei = EXT4_I(inode);
4019         struct jbd2_inode *jinode;
4020
4021         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4022                 return 0;
4023
4024         jinode = jbd2_alloc_inode(GFP_KERNEL);
4025         spin_lock(&inode->i_lock);
4026         if (!ei->jinode) {
4027                 if (!jinode) {
4028                         spin_unlock(&inode->i_lock);
4029                         return -ENOMEM;
4030                 }
4031                 ei->jinode = jinode;
4032                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4033                 jinode = NULL;
4034         }
4035         spin_unlock(&inode->i_lock);
4036         if (unlikely(jinode != NULL))
4037                 jbd2_free_inode(jinode);
4038         return 0;
4039 }
4040
4041 /*
4042  * ext4_truncate()
4043  *
4044  * We block out ext4_get_block() block instantiations across the entire
4045  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4046  * simultaneously on behalf of the same inode.
4047  *
4048  * As we work through the truncate and commit bits of it to the journal there
4049  * is one core, guiding principle: the file's tree must always be consistent on
4050  * disk.  We must be able to restart the truncate after a crash.
4051  *
4052  * The file's tree may be transiently inconsistent in memory (although it
4053  * probably isn't), but whenever we close off and commit a journal transaction,
4054  * the contents of (the filesystem + the journal) must be consistent and
4055  * restartable.  It's pretty simple, really: bottom up, right to left (although
4056  * left-to-right works OK too).
4057  *
4058  * Note that at recovery time, journal replay occurs *before* the restart of
4059  * truncate against the orphan inode list.
4060  *
4061  * The committed inode has the new, desired i_size (which is the same as
4062  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4063  * that this inode's truncate did not complete and it will again call
4064  * ext4_truncate() to have another go.  So there will be instantiated blocks
4065  * to the right of the truncation point in a crashed ext4 filesystem.  But
4066  * that's fine - as long as they are linked from the inode, the post-crash
4067  * ext4_truncate() run will find them and release them.
4068  */
4069 int ext4_truncate(struct inode *inode)
4070 {
4071         struct ext4_inode_info *ei = EXT4_I(inode);
4072         unsigned int credits;
4073         int err = 0, err2;
4074         handle_t *handle;
4075         struct address_space *mapping = inode->i_mapping;
4076
4077         /*
4078          * There is a possibility that we're either freeing the inode
4079          * or it's a completely new inode. In those cases we might not
4080          * have i_rwsem locked because it's not necessary.
4081          */
4082         if (!(inode->i_state & (I_NEW|I_FREEING)))
4083                 WARN_ON(!inode_is_locked(inode));
4084         trace_ext4_truncate_enter(inode);
4085
4086         if (!ext4_can_truncate(inode))
4087                 goto out_trace;
4088
4089         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4090                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4091
4092         if (ext4_has_inline_data(inode)) {
4093                 int has_inline = 1;
4094
4095                 err = ext4_inline_data_truncate(inode, &has_inline);
4096                 if (err || has_inline)
4097                         goto out_trace;
4098         }
4099
4100         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4101         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4102                 err = ext4_inode_attach_jinode(inode);
4103                 if (err)
4104                         goto out_trace;
4105         }
4106
4107         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4108                 credits = ext4_writepage_trans_blocks(inode);
4109         else
4110                 credits = ext4_blocks_for_truncate(inode);
4111
4112         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4113         if (IS_ERR(handle)) {
4114                 err = PTR_ERR(handle);
4115                 goto out_trace;
4116         }
4117
4118         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4119                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4120
4121         /*
4122          * We add the inode to the orphan list, so that if this
4123          * truncate spans multiple transactions, and we crash, we will
4124          * resume the truncate when the filesystem recovers.  It also
4125          * marks the inode dirty, to catch the new size.
4126          *
4127          * Implication: the file must always be in a sane, consistent
4128          * truncatable state while each transaction commits.
4129          */
4130         err = ext4_orphan_add(handle, inode);
4131         if (err)
4132                 goto out_stop;
4133
4134         down_write(&EXT4_I(inode)->i_data_sem);
4135
4136         ext4_discard_preallocations(inode);
4137
4138         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139                 err = ext4_ext_truncate(handle, inode);
4140         else
4141                 ext4_ind_truncate(handle, inode);
4142
4143         up_write(&ei->i_data_sem);
4144         if (err)
4145                 goto out_stop;
4146
4147         if (IS_SYNC(inode))
4148                 ext4_handle_sync(handle);
4149
4150 out_stop:
4151         /*
4152          * If this was a simple ftruncate() and the file will remain alive,
4153          * then we need to clear up the orphan record which we created above.
4154          * However, if this was a real unlink then we were called by
4155          * ext4_evict_inode(), and we allow that function to clean up the
4156          * orphan info for us.
4157          */
4158         if (inode->i_nlink)
4159                 ext4_orphan_del(handle, inode);
4160
4161         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4162         err2 = ext4_mark_inode_dirty(handle, inode);
4163         if (unlikely(err2 && !err))
4164                 err = err2;
4165         ext4_journal_stop(handle);
4166
4167 out_trace:
4168         trace_ext4_truncate_exit(inode);
4169         return err;
4170 }
4171
4172 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4173 {
4174         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4175                 return inode_peek_iversion_raw(inode);
4176         else
4177                 return inode_peek_iversion(inode);
4178 }
4179
4180 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4181                                  struct ext4_inode_info *ei)
4182 {
4183         struct inode *inode = &(ei->vfs_inode);
4184         u64 i_blocks = READ_ONCE(inode->i_blocks);
4185         struct super_block *sb = inode->i_sb;
4186
4187         if (i_blocks <= ~0U) {
4188                 /*
4189                  * i_blocks can be represented in a 32 bit variable
4190                  * as multiple of 512 bytes
4191                  */
4192                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4193                 raw_inode->i_blocks_high = 0;
4194                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4195                 return 0;
4196         }
4197
4198         /*
4199          * This should never happen since sb->s_maxbytes should not have
4200          * allowed this, sb->s_maxbytes was set according to the huge_file
4201          * feature in ext4_fill_super().
4202          */
4203         if (!ext4_has_feature_huge_file(sb))
4204                 return -EFSCORRUPTED;
4205
4206         if (i_blocks <= 0xffffffffffffULL) {
4207                 /*
4208                  * i_blocks can be represented in a 48 bit variable
4209                  * as multiple of 512 bytes
4210                  */
4211                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4212                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4214         } else {
4215                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4216                 /* i_block is stored in file system block size */
4217                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4218                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220         }
4221         return 0;
4222 }
4223
4224 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4225 {
4226         struct ext4_inode_info *ei = EXT4_I(inode);
4227         uid_t i_uid;
4228         gid_t i_gid;
4229         projid_t i_projid;
4230         int block;
4231         int err;
4232
4233         err = ext4_inode_blocks_set(raw_inode, ei);
4234
4235         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4236         i_uid = i_uid_read(inode);
4237         i_gid = i_gid_read(inode);
4238         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4239         if (!(test_opt(inode->i_sb, NO_UID32))) {
4240                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4241                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4242                 /*
4243                  * Fix up interoperability with old kernels. Otherwise,
4244                  * old inodes get re-used with the upper 16 bits of the
4245                  * uid/gid intact.
4246                  */
4247                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4248                         raw_inode->i_uid_high = 0;
4249                         raw_inode->i_gid_high = 0;
4250                 } else {
4251                         raw_inode->i_uid_high =
4252                                 cpu_to_le16(high_16_bits(i_uid));
4253                         raw_inode->i_gid_high =
4254                                 cpu_to_le16(high_16_bits(i_gid));
4255                 }
4256         } else {
4257                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4258                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4259                 raw_inode->i_uid_high = 0;
4260                 raw_inode->i_gid_high = 0;
4261         }
4262         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4263
4264         EXT4_INODE_SET_CTIME(inode, raw_inode);
4265         EXT4_INODE_SET_MTIME(inode, raw_inode);
4266         EXT4_INODE_SET_ATIME(inode, raw_inode);
4267         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4268
4269         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4270         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4271         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4272                 raw_inode->i_file_acl_high =
4273                         cpu_to_le16(ei->i_file_acl >> 32);
4274         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4275         ext4_isize_set(raw_inode, ei->i_disksize);
4276
4277         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4278         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4279                 if (old_valid_dev(inode->i_rdev)) {
4280                         raw_inode->i_block[0] =
4281                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4282                         raw_inode->i_block[1] = 0;
4283                 } else {
4284                         raw_inode->i_block[0] = 0;
4285                         raw_inode->i_block[1] =
4286                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4287                         raw_inode->i_block[2] = 0;
4288                 }
4289         } else if (!ext4_has_inline_data(inode)) {
4290                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4291                         raw_inode->i_block[block] = ei->i_data[block];
4292         }
4293
4294         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4295                 u64 ivers = ext4_inode_peek_iversion(inode);
4296
4297                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4298                 if (ei->i_extra_isize) {
4299                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4300                                 raw_inode->i_version_hi =
4301                                         cpu_to_le32(ivers >> 32);
4302                         raw_inode->i_extra_isize =
4303                                 cpu_to_le16(ei->i_extra_isize);
4304                 }
4305         }
4306
4307         if (i_projid != EXT4_DEF_PROJID &&
4308             !ext4_has_feature_project(inode->i_sb))
4309                 err = err ?: -EFSCORRUPTED;
4310
4311         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4312             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4313                 raw_inode->i_projid = cpu_to_le32(i_projid);
4314
4315         ext4_inode_csum_set(inode, raw_inode, ei);
4316         return err;
4317 }
4318
4319 /*
4320  * ext4_get_inode_loc returns with an extra refcount against the inode's
4321  * underlying buffer_head on success. If we pass 'inode' and it does not
4322  * have in-inode xattr, we have all inode data in memory that is needed
4323  * to recreate the on-disk version of this inode.
4324  */
4325 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4326                                 struct inode *inode, struct ext4_iloc *iloc,
4327                                 ext4_fsblk_t *ret_block)
4328 {
4329         struct ext4_group_desc  *gdp;
4330         struct buffer_head      *bh;
4331         ext4_fsblk_t            block;
4332         struct blk_plug         plug;
4333         int                     inodes_per_block, inode_offset;
4334
4335         iloc->bh = NULL;
4336         if (ino < EXT4_ROOT_INO ||
4337             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4338                 return -EFSCORRUPTED;
4339
4340         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4341         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4342         if (!gdp)
4343                 return -EIO;
4344
4345         /*
4346          * Figure out the offset within the block group inode table
4347          */
4348         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4349         inode_offset = ((ino - 1) %
4350                         EXT4_INODES_PER_GROUP(sb));
4351         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4352
4353         block = ext4_inode_table(sb, gdp);
4354         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4355             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4356                 ext4_error(sb, "Invalid inode table block %llu in "
4357                            "block_group %u", block, iloc->block_group);
4358                 return -EFSCORRUPTED;
4359         }
4360         block += (inode_offset / inodes_per_block);
4361
4362         bh = sb_getblk(sb, block);
4363         if (unlikely(!bh))
4364                 return -ENOMEM;
4365         if (ext4_buffer_uptodate(bh))
4366                 goto has_buffer;
4367
4368         lock_buffer(bh);
4369         if (ext4_buffer_uptodate(bh)) {
4370                 /* Someone brought it uptodate while we waited */
4371                 unlock_buffer(bh);
4372                 goto has_buffer;
4373         }
4374
4375         /*
4376          * If we have all information of the inode in memory and this
4377          * is the only valid inode in the block, we need not read the
4378          * block.
4379          */
4380         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4381                 struct buffer_head *bitmap_bh;
4382                 int i, start;
4383
4384                 start = inode_offset & ~(inodes_per_block - 1);
4385
4386                 /* Is the inode bitmap in cache? */
4387                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4388                 if (unlikely(!bitmap_bh))
4389                         goto make_io;
4390
4391                 /*
4392                  * If the inode bitmap isn't in cache then the
4393                  * optimisation may end up performing two reads instead
4394                  * of one, so skip it.
4395                  */
4396                 if (!buffer_uptodate(bitmap_bh)) {
4397                         brelse(bitmap_bh);
4398                         goto make_io;
4399                 }
4400                 for (i = start; i < start + inodes_per_block; i++) {
4401                         if (i == inode_offset)
4402                                 continue;
4403                         if (ext4_test_bit(i, bitmap_bh->b_data))
4404                                 break;
4405                 }
4406                 brelse(bitmap_bh);
4407                 if (i == start + inodes_per_block) {
4408                         struct ext4_inode *raw_inode =
4409                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4410
4411                         /* all other inodes are free, so skip I/O */
4412                         memset(bh->b_data, 0, bh->b_size);
4413                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4414                                 ext4_fill_raw_inode(inode, raw_inode);
4415                         set_buffer_uptodate(bh);
4416                         unlock_buffer(bh);
4417                         goto has_buffer;
4418                 }
4419         }
4420
4421 make_io:
4422         /*
4423          * If we need to do any I/O, try to pre-readahead extra
4424          * blocks from the inode table.
4425          */
4426         blk_start_plug(&plug);
4427         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4428                 ext4_fsblk_t b, end, table;
4429                 unsigned num;
4430                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4431
4432                 table = ext4_inode_table(sb, gdp);
4433                 /* s_inode_readahead_blks is always a power of 2 */
4434                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4435                 if (table > b)
4436                         b = table;
4437                 end = b + ra_blks;
4438                 num = EXT4_INODES_PER_GROUP(sb);
4439                 if (ext4_has_group_desc_csum(sb))
4440                         num -= ext4_itable_unused_count(sb, gdp);
4441                 table += num / inodes_per_block;
4442                 if (end > table)
4443                         end = table;
4444                 while (b <= end)
4445                         ext4_sb_breadahead_unmovable(sb, b++);
4446         }
4447
4448         /*
4449          * There are other valid inodes in the buffer, this inode
4450          * has in-inode xattrs, or we don't have this inode in memory.
4451          * Read the block from disk.
4452          */
4453         trace_ext4_load_inode(sb, ino);
4454         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4455         blk_finish_plug(&plug);
4456         wait_on_buffer(bh);
4457         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4458         if (!buffer_uptodate(bh)) {
4459                 if (ret_block)
4460                         *ret_block = block;
4461                 brelse(bh);
4462                 return -EIO;
4463         }
4464 has_buffer:
4465         iloc->bh = bh;
4466         return 0;
4467 }
4468
4469 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4470                                         struct ext4_iloc *iloc)
4471 {
4472         ext4_fsblk_t err_blk = 0;
4473         int ret;
4474
4475         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4476                                         &err_blk);
4477
4478         if (ret == -EIO)
4479                 ext4_error_inode_block(inode, err_blk, EIO,
4480                                         "unable to read itable block");
4481
4482         return ret;
4483 }
4484
4485 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4486 {
4487         ext4_fsblk_t err_blk = 0;
4488         int ret;
4489
4490         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4491                                         &err_blk);
4492
4493         if (ret == -EIO)
4494                 ext4_error_inode_block(inode, err_blk, EIO,
4495                                         "unable to read itable block");
4496
4497         return ret;
4498 }
4499
4500
4501 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4502                           struct ext4_iloc *iloc)
4503 {
4504         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4505 }
4506
4507 static bool ext4_should_enable_dax(struct inode *inode)
4508 {
4509         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4510
4511         if (test_opt2(inode->i_sb, DAX_NEVER))
4512                 return false;
4513         if (!S_ISREG(inode->i_mode))
4514                 return false;
4515         if (ext4_should_journal_data(inode))
4516                 return false;
4517         if (ext4_has_inline_data(inode))
4518                 return false;
4519         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4520                 return false;
4521         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4522                 return false;
4523         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4524                 return false;
4525         if (test_opt(inode->i_sb, DAX_ALWAYS))
4526                 return true;
4527
4528         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4529 }
4530
4531 void ext4_set_inode_flags(struct inode *inode, bool init)
4532 {
4533         unsigned int flags = EXT4_I(inode)->i_flags;
4534         unsigned int new_fl = 0;
4535
4536         WARN_ON_ONCE(IS_DAX(inode) && init);
4537
4538         if (flags & EXT4_SYNC_FL)
4539                 new_fl |= S_SYNC;
4540         if (flags & EXT4_APPEND_FL)
4541                 new_fl |= S_APPEND;
4542         if (flags & EXT4_IMMUTABLE_FL)
4543                 new_fl |= S_IMMUTABLE;
4544         if (flags & EXT4_NOATIME_FL)
4545                 new_fl |= S_NOATIME;
4546         if (flags & EXT4_DIRSYNC_FL)
4547                 new_fl |= S_DIRSYNC;
4548
4549         /* Because of the way inode_set_flags() works we must preserve S_DAX
4550          * here if already set. */
4551         new_fl |= (inode->i_flags & S_DAX);
4552         if (init && ext4_should_enable_dax(inode))
4553                 new_fl |= S_DAX;
4554
4555         if (flags & EXT4_ENCRYPT_FL)
4556                 new_fl |= S_ENCRYPTED;
4557         if (flags & EXT4_CASEFOLD_FL)
4558                 new_fl |= S_CASEFOLD;
4559         if (flags & EXT4_VERITY_FL)
4560                 new_fl |= S_VERITY;
4561         inode_set_flags(inode, new_fl,
4562                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4563                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4564 }
4565
4566 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4567                                   struct ext4_inode_info *ei)
4568 {
4569         blkcnt_t i_blocks ;
4570         struct inode *inode = &(ei->vfs_inode);
4571         struct super_block *sb = inode->i_sb;
4572
4573         if (ext4_has_feature_huge_file(sb)) {
4574                 /* we are using combined 48 bit field */
4575                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4576                                         le32_to_cpu(raw_inode->i_blocks_lo);
4577                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4578                         /* i_blocks represent file system block size */
4579                         return i_blocks  << (inode->i_blkbits - 9);
4580                 } else {
4581                         return i_blocks;
4582                 }
4583         } else {
4584                 return le32_to_cpu(raw_inode->i_blocks_lo);
4585         }
4586 }
4587
4588 static inline int ext4_iget_extra_inode(struct inode *inode,
4589                                          struct ext4_inode *raw_inode,
4590                                          struct ext4_inode_info *ei)
4591 {
4592         __le32 *magic = (void *)raw_inode +
4593                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4594
4595         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4596             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4597                 int err;
4598
4599                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4600                 err = ext4_find_inline_data_nolock(inode);
4601                 if (!err && ext4_has_inline_data(inode))
4602                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4603                 return err;
4604         } else
4605                 EXT4_I(inode)->i_inline_off = 0;
4606         return 0;
4607 }
4608
4609 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4610 {
4611         if (!ext4_has_feature_project(inode->i_sb))
4612                 return -EOPNOTSUPP;
4613         *projid = EXT4_I(inode)->i_projid;
4614         return 0;
4615 }
4616
4617 /*
4618  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4619  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4620  * set.
4621  */
4622 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4623 {
4624         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4625                 inode_set_iversion_raw(inode, val);
4626         else
4627                 inode_set_iversion_queried(inode, val);
4628 }
4629
4630 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4631
4632 {
4633         if (flags & EXT4_IGET_EA_INODE) {
4634                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4635                         return "missing EA_INODE flag";
4636                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4637                     EXT4_I(inode)->i_file_acl)
4638                         return "ea_inode with extended attributes";
4639         } else {
4640                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4641                         return "unexpected EA_INODE flag";
4642         }
4643         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4644                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4645         return NULL;
4646 }
4647
4648 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4649                           ext4_iget_flags flags, const char *function,
4650                           unsigned int line)
4651 {
4652         struct ext4_iloc iloc;
4653         struct ext4_inode *raw_inode;
4654         struct ext4_inode_info *ei;
4655         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4656         struct inode *inode;
4657         const char *err_str;
4658         journal_t *journal = EXT4_SB(sb)->s_journal;
4659         long ret;
4660         loff_t size;
4661         int block;
4662         uid_t i_uid;
4663         gid_t i_gid;
4664         projid_t i_projid;
4665
4666         if ((!(flags & EXT4_IGET_SPECIAL) &&
4667              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4668               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4669               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4670               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4671               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4672             (ino < EXT4_ROOT_INO) ||
4673             (ino > le32_to_cpu(es->s_inodes_count))) {
4674                 if (flags & EXT4_IGET_HANDLE)
4675                         return ERR_PTR(-ESTALE);
4676                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4677                              "inode #%lu: comm %s: iget: illegal inode #",
4678                              ino, current->comm);
4679                 return ERR_PTR(-EFSCORRUPTED);
4680         }
4681
4682         inode = iget_locked(sb, ino);
4683         if (!inode)
4684                 return ERR_PTR(-ENOMEM);
4685         if (!(inode->i_state & I_NEW)) {
4686                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4687                         ext4_error_inode(inode, function, line, 0, err_str);
4688                         iput(inode);
4689                         return ERR_PTR(-EFSCORRUPTED);
4690                 }
4691                 return inode;
4692         }
4693
4694         ei = EXT4_I(inode);
4695         iloc.bh = NULL;
4696
4697         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4698         if (ret < 0)
4699                 goto bad_inode;
4700         raw_inode = ext4_raw_inode(&iloc);
4701
4702         if ((flags & EXT4_IGET_HANDLE) &&
4703             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4704                 ret = -ESTALE;
4705                 goto bad_inode;
4706         }
4707
4708         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4709                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4710                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4711                         EXT4_INODE_SIZE(inode->i_sb) ||
4712                     (ei->i_extra_isize & 3)) {
4713                         ext4_error_inode(inode, function, line, 0,
4714                                          "iget: bad extra_isize %u "
4715                                          "(inode size %u)",
4716                                          ei->i_extra_isize,
4717                                          EXT4_INODE_SIZE(inode->i_sb));
4718                         ret = -EFSCORRUPTED;
4719                         goto bad_inode;
4720                 }
4721         } else
4722                 ei->i_extra_isize = 0;
4723
4724         /* Precompute checksum seed for inode metadata */
4725         if (ext4_has_metadata_csum(sb)) {
4726                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4727                 __u32 csum;
4728                 __le32 inum = cpu_to_le32(inode->i_ino);
4729                 __le32 gen = raw_inode->i_generation;
4730                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4731                                    sizeof(inum));
4732                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4733                                               sizeof(gen));
4734         }
4735
4736         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4737             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4738              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4739                 ext4_error_inode_err(inode, function, line, 0,
4740                                 EFSBADCRC, "iget: checksum invalid");
4741                 ret = -EFSBADCRC;
4742                 goto bad_inode;
4743         }
4744
4745         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4746         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4747         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4748         if (ext4_has_feature_project(sb) &&
4749             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4750             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4751                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4752         else
4753                 i_projid = EXT4_DEF_PROJID;
4754
4755         if (!(test_opt(inode->i_sb, NO_UID32))) {
4756                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4757                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4758         }
4759         i_uid_write(inode, i_uid);
4760         i_gid_write(inode, i_gid);
4761         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4762         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4763
4764         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4765         ei->i_inline_off = 0;
4766         ei->i_dir_start_lookup = 0;
4767         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4768         /* We now have enough fields to check if the inode was active or not.
4769          * This is needed because nfsd might try to access dead inodes
4770          * the test is that same one that e2fsck uses
4771          * NeilBrown 1999oct15
4772          */
4773         if (inode->i_nlink == 0) {
4774                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4775                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4776                     ino != EXT4_BOOT_LOADER_INO) {
4777                         /* this inode is deleted or unallocated */
4778                         if (flags & EXT4_IGET_SPECIAL) {
4779                                 ext4_error_inode(inode, function, line, 0,
4780                                                  "iget: special inode unallocated");
4781                                 ret = -EFSCORRUPTED;
4782                         } else
4783                                 ret = -ESTALE;
4784                         goto bad_inode;
4785                 }
4786                 /* The only unlinked inodes we let through here have
4787                  * valid i_mode and are being read by the orphan
4788                  * recovery code: that's fine, we're about to complete
4789                  * the process of deleting those.
4790                  * OR it is the EXT4_BOOT_LOADER_INO which is
4791                  * not initialized on a new filesystem. */
4792         }
4793         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4794         ext4_set_inode_flags(inode, true);
4795         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4796         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4797         if (ext4_has_feature_64bit(sb))
4798                 ei->i_file_acl |=
4799                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4800         inode->i_size = ext4_isize(sb, raw_inode);
4801         if ((size = i_size_read(inode)) < 0) {
4802                 ext4_error_inode(inode, function, line, 0,
4803                                  "iget: bad i_size value: %lld", size);
4804                 ret = -EFSCORRUPTED;
4805                 goto bad_inode;
4806         }
4807         /*
4808          * If dir_index is not enabled but there's dir with INDEX flag set,
4809          * we'd normally treat htree data as empty space. But with metadata
4810          * checksumming that corrupts checksums so forbid that.
4811          */
4812         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4813             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4814                 ext4_error_inode(inode, function, line, 0,
4815                          "iget: Dir with htree data on filesystem without dir_index feature.");
4816                 ret = -EFSCORRUPTED;
4817                 goto bad_inode;
4818         }
4819         ei->i_disksize = inode->i_size;
4820 #ifdef CONFIG_QUOTA
4821         ei->i_reserved_quota = 0;
4822 #endif
4823         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4824         ei->i_block_group = iloc.block_group;
4825         ei->i_last_alloc_group = ~0;
4826         /*
4827          * NOTE! The in-memory inode i_data array is in little-endian order
4828          * even on big-endian machines: we do NOT byteswap the block numbers!
4829          */
4830         for (block = 0; block < EXT4_N_BLOCKS; block++)
4831                 ei->i_data[block] = raw_inode->i_block[block];
4832         INIT_LIST_HEAD(&ei->i_orphan);
4833         ext4_fc_init_inode(&ei->vfs_inode);
4834
4835         /*
4836          * Set transaction id's of transactions that have to be committed
4837          * to finish f[data]sync. We set them to currently running transaction
4838          * as we cannot be sure that the inode or some of its metadata isn't
4839          * part of the transaction - the inode could have been reclaimed and
4840          * now it is reread from disk.
4841          */
4842         if (journal) {
4843                 transaction_t *transaction;
4844                 tid_t tid;
4845
4846                 read_lock(&journal->j_state_lock);
4847                 if (journal->j_running_transaction)
4848                         transaction = journal->j_running_transaction;
4849                 else
4850                         transaction = journal->j_committing_transaction;
4851                 if (transaction)
4852                         tid = transaction->t_tid;
4853                 else
4854                         tid = journal->j_commit_sequence;
4855                 read_unlock(&journal->j_state_lock);
4856                 ei->i_sync_tid = tid;
4857                 ei->i_datasync_tid = tid;
4858         }
4859
4860         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4861                 if (ei->i_extra_isize == 0) {
4862                         /* The extra space is currently unused. Use it. */
4863                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4864                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4865                                             EXT4_GOOD_OLD_INODE_SIZE;
4866                 } else {
4867                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4868                         if (ret)
4869                                 goto bad_inode;
4870                 }
4871         }
4872
4873         EXT4_INODE_GET_CTIME(inode, raw_inode);
4874         EXT4_INODE_GET_ATIME(inode, raw_inode);
4875         EXT4_INODE_GET_MTIME(inode, raw_inode);
4876         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4877
4878         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4879                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4880
4881                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4882                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4883                                 ivers |=
4884                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4885                 }
4886                 ext4_inode_set_iversion_queried(inode, ivers);
4887         }
4888
4889         ret = 0;
4890         if (ei->i_file_acl &&
4891             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4892                 ext4_error_inode(inode, function, line, 0,
4893                                  "iget: bad extended attribute block %llu",
4894                                  ei->i_file_acl);
4895                 ret = -EFSCORRUPTED;
4896                 goto bad_inode;
4897         } else if (!ext4_has_inline_data(inode)) {
4898                 /* validate the block references in the inode */
4899                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4900                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4901                         (S_ISLNK(inode->i_mode) &&
4902                         !ext4_inode_is_fast_symlink(inode)))) {
4903                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4904                                 ret = ext4_ext_check_inode(inode);
4905                         else
4906                                 ret = ext4_ind_check_inode(inode);
4907                 }
4908         }
4909         if (ret)
4910                 goto bad_inode;
4911
4912         if (S_ISREG(inode->i_mode)) {
4913                 inode->i_op = &ext4_file_inode_operations;
4914                 inode->i_fop = &ext4_file_operations;
4915                 ext4_set_aops(inode);
4916         } else if (S_ISDIR(inode->i_mode)) {
4917                 inode->i_op = &ext4_dir_inode_operations;
4918                 inode->i_fop = &ext4_dir_operations;
4919         } else if (S_ISLNK(inode->i_mode)) {
4920                 /* VFS does not allow setting these so must be corruption */
4921                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4922                         ext4_error_inode(inode, function, line, 0,
4923                                          "iget: immutable or append flags "
4924                                          "not allowed on symlinks");
4925                         ret = -EFSCORRUPTED;
4926                         goto bad_inode;
4927                 }
4928                 if (IS_ENCRYPTED(inode)) {
4929                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4930                 } else if (ext4_inode_is_fast_symlink(inode)) {
4931                         inode->i_link = (char *)ei->i_data;
4932                         inode->i_op = &ext4_fast_symlink_inode_operations;
4933                         nd_terminate_link(ei->i_data, inode->i_size,
4934                                 sizeof(ei->i_data) - 1);
4935                 } else {
4936                         inode->i_op = &ext4_symlink_inode_operations;
4937                 }
4938         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4940                 inode->i_op = &ext4_special_inode_operations;
4941                 if (raw_inode->i_block[0])
4942                         init_special_inode(inode, inode->i_mode,
4943                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944                 else
4945                         init_special_inode(inode, inode->i_mode,
4946                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4947         } else if (ino == EXT4_BOOT_LOADER_INO) {
4948                 make_bad_inode(inode);
4949         } else {
4950                 ret = -EFSCORRUPTED;
4951                 ext4_error_inode(inode, function, line, 0,
4952                                  "iget: bogus i_mode (%o)", inode->i_mode);
4953                 goto bad_inode;
4954         }
4955         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4956                 ext4_error_inode(inode, function, line, 0,
4957                                  "casefold flag without casefold feature");
4958                 ret = -EFSCORRUPTED;
4959                 goto bad_inode;
4960         }
4961         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4962                 ext4_error_inode(inode, function, line, 0, err_str);
4963                 ret = -EFSCORRUPTED;
4964                 goto bad_inode;
4965         }
4966
4967         brelse(iloc.bh);
4968         unlock_new_inode(inode);
4969         return inode;
4970
4971 bad_inode:
4972         brelse(iloc.bh);
4973         iget_failed(inode);
4974         return ERR_PTR(ret);
4975 }
4976
4977 static void __ext4_update_other_inode_time(struct super_block *sb,
4978                                            unsigned long orig_ino,
4979                                            unsigned long ino,
4980                                            struct ext4_inode *raw_inode)
4981 {
4982         struct inode *inode;
4983
4984         inode = find_inode_by_ino_rcu(sb, ino);
4985         if (!inode)
4986                 return;
4987
4988         if (!inode_is_dirtytime_only(inode))
4989                 return;
4990
4991         spin_lock(&inode->i_lock);
4992         if (inode_is_dirtytime_only(inode)) {
4993                 struct ext4_inode_info  *ei = EXT4_I(inode);
4994
4995                 inode->i_state &= ~I_DIRTY_TIME;
4996                 spin_unlock(&inode->i_lock);
4997
4998                 spin_lock(&ei->i_raw_lock);
4999                 EXT4_INODE_SET_CTIME(inode, raw_inode);
5000                 EXT4_INODE_SET_MTIME(inode, raw_inode);
5001                 EXT4_INODE_SET_ATIME(inode, raw_inode);
5002                 ext4_inode_csum_set(inode, raw_inode, ei);
5003                 spin_unlock(&ei->i_raw_lock);
5004                 trace_ext4_other_inode_update_time(inode, orig_ino);
5005                 return;
5006         }
5007         spin_unlock(&inode->i_lock);
5008 }
5009
5010 /*
5011  * Opportunistically update the other time fields for other inodes in
5012  * the same inode table block.
5013  */
5014 static void ext4_update_other_inodes_time(struct super_block *sb,
5015                                           unsigned long orig_ino, char *buf)
5016 {
5017         unsigned long ino;
5018         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5019         int inode_size = EXT4_INODE_SIZE(sb);
5020
5021         /*
5022          * Calculate the first inode in the inode table block.  Inode
5023          * numbers are one-based.  That is, the first inode in a block
5024          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5025          */
5026         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5027         rcu_read_lock();
5028         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5029                 if (ino == orig_ino)
5030                         continue;
5031                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5032                                                (struct ext4_inode *)buf);
5033         }
5034         rcu_read_unlock();
5035 }
5036
5037 /*
5038  * Post the struct inode info into an on-disk inode location in the
5039  * buffer-cache.  This gobbles the caller's reference to the
5040  * buffer_head in the inode location struct.
5041  *
5042  * The caller must have write access to iloc->bh.
5043  */
5044 static int ext4_do_update_inode(handle_t *handle,
5045                                 struct inode *inode,
5046                                 struct ext4_iloc *iloc)
5047 {
5048         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5049         struct ext4_inode_info *ei = EXT4_I(inode);
5050         struct buffer_head *bh = iloc->bh;
5051         struct super_block *sb = inode->i_sb;
5052         int err;
5053         int need_datasync = 0, set_large_file = 0;
5054
5055         spin_lock(&ei->i_raw_lock);
5056
5057         /*
5058          * For fields not tracked in the in-memory inode, initialise them
5059          * to zero for new inodes.
5060          */
5061         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5062                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5063
5064         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5065                 need_datasync = 1;
5066         if (ei->i_disksize > 0x7fffffffULL) {
5067                 if (!ext4_has_feature_large_file(sb) ||
5068                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5069                         set_large_file = 1;
5070         }
5071
5072         err = ext4_fill_raw_inode(inode, raw_inode);
5073         spin_unlock(&ei->i_raw_lock);
5074         if (err) {
5075                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5076                 goto out_brelse;
5077         }
5078
5079         if (inode->i_sb->s_flags & SB_LAZYTIME)
5080                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5081                                               bh->b_data);
5082
5083         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5084         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5085         if (err)
5086                 goto out_error;
5087         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5088         if (set_large_file) {
5089                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5090                 err = ext4_journal_get_write_access(handle, sb,
5091                                                     EXT4_SB(sb)->s_sbh,
5092                                                     EXT4_JTR_NONE);
5093                 if (err)
5094                         goto out_error;
5095                 lock_buffer(EXT4_SB(sb)->s_sbh);
5096                 ext4_set_feature_large_file(sb);
5097                 ext4_superblock_csum_set(sb);
5098                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5099                 ext4_handle_sync(handle);
5100                 err = ext4_handle_dirty_metadata(handle, NULL,
5101                                                  EXT4_SB(sb)->s_sbh);
5102         }
5103         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5104 out_error:
5105         ext4_std_error(inode->i_sb, err);
5106 out_brelse:
5107         brelse(bh);
5108         return err;
5109 }
5110
5111 /*
5112  * ext4_write_inode()
5113  *
5114  * We are called from a few places:
5115  *
5116  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5117  *   Here, there will be no transaction running. We wait for any running
5118  *   transaction to commit.
5119  *
5120  * - Within flush work (sys_sync(), kupdate and such).
5121  *   We wait on commit, if told to.
5122  *
5123  * - Within iput_final() -> write_inode_now()
5124  *   We wait on commit, if told to.
5125  *
5126  * In all cases it is actually safe for us to return without doing anything,
5127  * because the inode has been copied into a raw inode buffer in
5128  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5129  * writeback.
5130  *
5131  * Note that we are absolutely dependent upon all inode dirtiers doing the
5132  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5133  * which we are interested.
5134  *
5135  * It would be a bug for them to not do this.  The code:
5136  *
5137  *      mark_inode_dirty(inode)
5138  *      stuff();
5139  *      inode->i_size = expr;
5140  *
5141  * is in error because write_inode() could occur while `stuff()' is running,
5142  * and the new i_size will be lost.  Plus the inode will no longer be on the
5143  * superblock's dirty inode list.
5144  */
5145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5146 {
5147         int err;
5148
5149         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5150                 return 0;
5151
5152         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5153                 return -EIO;
5154
5155         if (EXT4_SB(inode->i_sb)->s_journal) {
5156                 if (ext4_journal_current_handle()) {
5157                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5158                         dump_stack();
5159                         return -EIO;
5160                 }
5161
5162                 /*
5163                  * No need to force transaction in WB_SYNC_NONE mode. Also
5164                  * ext4_sync_fs() will force the commit after everything is
5165                  * written.
5166                  */
5167                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5168                         return 0;
5169
5170                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5171                                                 EXT4_I(inode)->i_sync_tid);
5172         } else {
5173                 struct ext4_iloc iloc;
5174
5175                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5176                 if (err)
5177                         return err;
5178                 /*
5179                  * sync(2) will flush the whole buffer cache. No need to do
5180                  * it here separately for each inode.
5181                  */
5182                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5183                         sync_dirty_buffer(iloc.bh);
5184                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5185                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5186                                                "IO error syncing inode");
5187                         err = -EIO;
5188                 }
5189                 brelse(iloc.bh);
5190         }
5191         return err;
5192 }
5193
5194 /*
5195  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5196  * buffers that are attached to a folio straddling i_size and are undergoing
5197  * commit. In that case we have to wait for commit to finish and try again.
5198  */
5199 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5200 {
5201         unsigned offset;
5202         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5203         tid_t commit_tid = 0;
5204         int ret;
5205
5206         offset = inode->i_size & (PAGE_SIZE - 1);
5207         /*
5208          * If the folio is fully truncated, we don't need to wait for any commit
5209          * (and we even should not as __ext4_journalled_invalidate_folio() may
5210          * strip all buffers from the folio but keep the folio dirty which can then
5211          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5212          * buffers). Also we don't need to wait for any commit if all buffers in
5213          * the folio remain valid. This is most beneficial for the common case of
5214          * blocksize == PAGESIZE.
5215          */
5216         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5217                 return;
5218         while (1) {
5219                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5220                                       inode->i_size >> PAGE_SHIFT);
5221                 if (IS_ERR(folio))
5222                         return;
5223                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5224                                                 folio_size(folio) - offset);
5225                 folio_unlock(folio);
5226                 folio_put(folio);
5227                 if (ret != -EBUSY)
5228                         return;
5229                 commit_tid = 0;
5230                 read_lock(&journal->j_state_lock);
5231                 if (journal->j_committing_transaction)
5232                         commit_tid = journal->j_committing_transaction->t_tid;
5233                 read_unlock(&journal->j_state_lock);
5234                 if (commit_tid)
5235                         jbd2_log_wait_commit(journal, commit_tid);
5236         }
5237 }
5238
5239 /*
5240  * ext4_setattr()
5241  *
5242  * Called from notify_change.
5243  *
5244  * We want to trap VFS attempts to truncate the file as soon as
5245  * possible.  In particular, we want to make sure that when the VFS
5246  * shrinks i_size, we put the inode on the orphan list and modify
5247  * i_disksize immediately, so that during the subsequent flushing of
5248  * dirty pages and freeing of disk blocks, we can guarantee that any
5249  * commit will leave the blocks being flushed in an unused state on
5250  * disk.  (On recovery, the inode will get truncated and the blocks will
5251  * be freed, so we have a strong guarantee that no future commit will
5252  * leave these blocks visible to the user.)
5253  *
5254  * Another thing we have to assure is that if we are in ordered mode
5255  * and inode is still attached to the committing transaction, we must
5256  * we start writeout of all the dirty pages which are being truncated.
5257  * This way we are sure that all the data written in the previous
5258  * transaction are already on disk (truncate waits for pages under
5259  * writeback).
5260  *
5261  * Called with inode->i_rwsem down.
5262  */
5263 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5264                  struct iattr *attr)
5265 {
5266         struct inode *inode = d_inode(dentry);
5267         int error, rc = 0;
5268         int orphan = 0;
5269         const unsigned int ia_valid = attr->ia_valid;
5270         bool inc_ivers = true;
5271
5272         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5273                 return -EIO;
5274
5275         if (unlikely(IS_IMMUTABLE(inode)))
5276                 return -EPERM;
5277
5278         if (unlikely(IS_APPEND(inode) &&
5279                      (ia_valid & (ATTR_MODE | ATTR_UID |
5280                                   ATTR_GID | ATTR_TIMES_SET))))
5281                 return -EPERM;
5282
5283         error = setattr_prepare(idmap, dentry, attr);
5284         if (error)
5285                 return error;
5286
5287         error = fscrypt_prepare_setattr(dentry, attr);
5288         if (error)
5289                 return error;
5290
5291         error = fsverity_prepare_setattr(dentry, attr);
5292         if (error)
5293                 return error;
5294
5295         if (is_quota_modification(idmap, inode, attr)) {
5296                 error = dquot_initialize(inode);
5297                 if (error)
5298                         return error;
5299         }
5300
5301         if (i_uid_needs_update(idmap, attr, inode) ||
5302             i_gid_needs_update(idmap, attr, inode)) {
5303                 handle_t *handle;
5304
5305                 /* (user+group)*(old+new) structure, inode write (sb,
5306                  * inode block, ? - but truncate inode update has it) */
5307                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5308                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5309                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5310                 if (IS_ERR(handle)) {
5311                         error = PTR_ERR(handle);
5312                         goto err_out;
5313                 }
5314
5315                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5316                  * counts xattr inode references.
5317                  */
5318                 down_read(&EXT4_I(inode)->xattr_sem);
5319                 error = dquot_transfer(idmap, inode, attr);
5320                 up_read(&EXT4_I(inode)->xattr_sem);
5321
5322                 if (error) {
5323                         ext4_journal_stop(handle);
5324                         return error;
5325                 }
5326                 /* Update corresponding info in inode so that everything is in
5327                  * one transaction */
5328                 i_uid_update(idmap, attr, inode);
5329                 i_gid_update(idmap, attr, inode);
5330                 error = ext4_mark_inode_dirty(handle, inode);
5331                 ext4_journal_stop(handle);
5332                 if (unlikely(error)) {
5333                         return error;
5334                 }
5335         }
5336
5337         if (attr->ia_valid & ATTR_SIZE) {
5338                 handle_t *handle;
5339                 loff_t oldsize = inode->i_size;
5340                 loff_t old_disksize;
5341                 int shrink = (attr->ia_size < inode->i_size);
5342
5343                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5344                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5345
5346                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5347                                 return -EFBIG;
5348                         }
5349                 }
5350                 if (!S_ISREG(inode->i_mode)) {
5351                         return -EINVAL;
5352                 }
5353
5354                 if (attr->ia_size == inode->i_size)
5355                         inc_ivers = false;
5356
5357                 if (shrink) {
5358                         if (ext4_should_order_data(inode)) {
5359                                 error = ext4_begin_ordered_truncate(inode,
5360                                                             attr->ia_size);
5361                                 if (error)
5362                                         goto err_out;
5363                         }
5364                         /*
5365                          * Blocks are going to be removed from the inode. Wait
5366                          * for dio in flight.
5367                          */
5368                         inode_dio_wait(inode);
5369                 }
5370
5371                 filemap_invalidate_lock(inode->i_mapping);
5372
5373                 rc = ext4_break_layouts(inode);
5374                 if (rc) {
5375                         filemap_invalidate_unlock(inode->i_mapping);
5376                         goto err_out;
5377                 }
5378
5379                 if (attr->ia_size != inode->i_size) {
5380                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5381                         if (IS_ERR(handle)) {
5382                                 error = PTR_ERR(handle);
5383                                 goto out_mmap_sem;
5384                         }
5385                         if (ext4_handle_valid(handle) && shrink) {
5386                                 error = ext4_orphan_add(handle, inode);
5387                                 orphan = 1;
5388                         }
5389                         /*
5390                          * Update c/mtime on truncate up, ext4_truncate() will
5391                          * update c/mtime in shrink case below
5392                          */
5393                         if (!shrink)
5394                                 inode_set_mtime_to_ts(inode,
5395                                                       inode_set_ctime_current(inode));
5396
5397                         if (shrink)
5398                                 ext4_fc_track_range(handle, inode,
5399                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5400                                         inode->i_sb->s_blocksize_bits,
5401                                         EXT_MAX_BLOCKS - 1);
5402                         else
5403                                 ext4_fc_track_range(
5404                                         handle, inode,
5405                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5406                                         inode->i_sb->s_blocksize_bits,
5407                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5408                                         inode->i_sb->s_blocksize_bits);
5409
5410                         down_write(&EXT4_I(inode)->i_data_sem);
5411                         old_disksize = EXT4_I(inode)->i_disksize;
5412                         EXT4_I(inode)->i_disksize = attr->ia_size;
5413                         rc = ext4_mark_inode_dirty(handle, inode);
5414                         if (!error)
5415                                 error = rc;
5416                         /*
5417                          * We have to update i_size under i_data_sem together
5418                          * with i_disksize to avoid races with writeback code
5419                          * running ext4_wb_update_i_disksize().
5420                          */
5421                         if (!error)
5422                                 i_size_write(inode, attr->ia_size);
5423                         else
5424                                 EXT4_I(inode)->i_disksize = old_disksize;
5425                         up_write(&EXT4_I(inode)->i_data_sem);
5426                         ext4_journal_stop(handle);
5427                         if (error)
5428                                 goto out_mmap_sem;
5429                         if (!shrink) {
5430                                 pagecache_isize_extended(inode, oldsize,
5431                                                          inode->i_size);
5432                         } else if (ext4_should_journal_data(inode)) {
5433                                 ext4_wait_for_tail_page_commit(inode);
5434                         }
5435                 }
5436
5437                 /*
5438                  * Truncate pagecache after we've waited for commit
5439                  * in data=journal mode to make pages freeable.
5440                  */
5441                 truncate_pagecache(inode, inode->i_size);
5442                 /*
5443                  * Call ext4_truncate() even if i_size didn't change to
5444                  * truncate possible preallocated blocks.
5445                  */
5446                 if (attr->ia_size <= oldsize) {
5447                         rc = ext4_truncate(inode);
5448                         if (rc)
5449                                 error = rc;
5450                 }
5451 out_mmap_sem:
5452                 filemap_invalidate_unlock(inode->i_mapping);
5453         }
5454
5455         if (!error) {
5456                 if (inc_ivers)
5457                         inode_inc_iversion(inode);
5458                 setattr_copy(idmap, inode, attr);
5459                 mark_inode_dirty(inode);
5460         }
5461
5462         /*
5463          * If the call to ext4_truncate failed to get a transaction handle at
5464          * all, we need to clean up the in-core orphan list manually.
5465          */
5466         if (orphan && inode->i_nlink)
5467                 ext4_orphan_del(NULL, inode);
5468
5469         if (!error && (ia_valid & ATTR_MODE))
5470                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5471
5472 err_out:
5473         if  (error)
5474                 ext4_std_error(inode->i_sb, error);
5475         if (!error)
5476                 error = rc;
5477         return error;
5478 }
5479
5480 u32 ext4_dio_alignment(struct inode *inode)
5481 {
5482         if (fsverity_active(inode))
5483                 return 0;
5484         if (ext4_should_journal_data(inode))
5485                 return 0;
5486         if (ext4_has_inline_data(inode))
5487                 return 0;
5488         if (IS_ENCRYPTED(inode)) {
5489                 if (!fscrypt_dio_supported(inode))
5490                         return 0;
5491                 return i_blocksize(inode);
5492         }
5493         return 1; /* use the iomap defaults */
5494 }
5495
5496 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5497                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5498 {
5499         struct inode *inode = d_inode(path->dentry);
5500         struct ext4_inode *raw_inode;
5501         struct ext4_inode_info *ei = EXT4_I(inode);
5502         unsigned int flags;
5503
5504         if ((request_mask & STATX_BTIME) &&
5505             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5506                 stat->result_mask |= STATX_BTIME;
5507                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5508                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5509         }
5510
5511         /*
5512          * Return the DIO alignment restrictions if requested.  We only return
5513          * this information when requested, since on encrypted files it might
5514          * take a fair bit of work to get if the file wasn't opened recently.
5515          */
5516         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5517                 u32 dio_align = ext4_dio_alignment(inode);
5518
5519                 stat->result_mask |= STATX_DIOALIGN;
5520                 if (dio_align == 1) {
5521                         struct block_device *bdev = inode->i_sb->s_bdev;
5522
5523                         /* iomap defaults */
5524                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5525                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5526                 } else {
5527                         stat->dio_mem_align = dio_align;
5528                         stat->dio_offset_align = dio_align;
5529                 }
5530         }
5531
5532         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5533         if (flags & EXT4_APPEND_FL)
5534                 stat->attributes |= STATX_ATTR_APPEND;
5535         if (flags & EXT4_COMPR_FL)
5536                 stat->attributes |= STATX_ATTR_COMPRESSED;
5537         if (flags & EXT4_ENCRYPT_FL)
5538                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5539         if (flags & EXT4_IMMUTABLE_FL)
5540                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5541         if (flags & EXT4_NODUMP_FL)
5542                 stat->attributes |= STATX_ATTR_NODUMP;
5543         if (flags & EXT4_VERITY_FL)
5544                 stat->attributes |= STATX_ATTR_VERITY;
5545
5546         stat->attributes_mask |= (STATX_ATTR_APPEND |
5547                                   STATX_ATTR_COMPRESSED |
5548                                   STATX_ATTR_ENCRYPTED |
5549                                   STATX_ATTR_IMMUTABLE |
5550                                   STATX_ATTR_NODUMP |
5551                                   STATX_ATTR_VERITY);
5552
5553         generic_fillattr(idmap, request_mask, inode, stat);
5554         return 0;
5555 }
5556
5557 int ext4_file_getattr(struct mnt_idmap *idmap,
5558                       const struct path *path, struct kstat *stat,
5559                       u32 request_mask, unsigned int query_flags)
5560 {
5561         struct inode *inode = d_inode(path->dentry);
5562         u64 delalloc_blocks;
5563
5564         ext4_getattr(idmap, path, stat, request_mask, query_flags);
5565
5566         /*
5567          * If there is inline data in the inode, the inode will normally not
5568          * have data blocks allocated (it may have an external xattr block).
5569          * Report at least one sector for such files, so tools like tar, rsync,
5570          * others don't incorrectly think the file is completely sparse.
5571          */
5572         if (unlikely(ext4_has_inline_data(inode)))
5573                 stat->blocks += (stat->size + 511) >> 9;
5574
5575         /*
5576          * We can't update i_blocks if the block allocation is delayed
5577          * otherwise in the case of system crash before the real block
5578          * allocation is done, we will have i_blocks inconsistent with
5579          * on-disk file blocks.
5580          * We always keep i_blocks updated together with real
5581          * allocation. But to not confuse with user, stat
5582          * will return the blocks that include the delayed allocation
5583          * blocks for this file.
5584          */
5585         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5586                                    EXT4_I(inode)->i_reserved_data_blocks);
5587         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5588         return 0;
5589 }
5590
5591 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5592                                    int pextents)
5593 {
5594         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5595                 return ext4_ind_trans_blocks(inode, lblocks);
5596         return ext4_ext_index_trans_blocks(inode, pextents);
5597 }
5598
5599 /*
5600  * Account for index blocks, block groups bitmaps and block group
5601  * descriptor blocks if modify datablocks and index blocks
5602  * worse case, the indexs blocks spread over different block groups
5603  *
5604  * If datablocks are discontiguous, they are possible to spread over
5605  * different block groups too. If they are contiguous, with flexbg,
5606  * they could still across block group boundary.
5607  *
5608  * Also account for superblock, inode, quota and xattr blocks
5609  */
5610 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5611                                   int pextents)
5612 {
5613         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5614         int gdpblocks;
5615         int idxblocks;
5616         int ret;
5617
5618         /*
5619          * How many index blocks need to touch to map @lblocks logical blocks
5620          * to @pextents physical extents?
5621          */
5622         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5623
5624         ret = idxblocks;
5625
5626         /*
5627          * Now let's see how many group bitmaps and group descriptors need
5628          * to account
5629          */
5630         groups = idxblocks + pextents;
5631         gdpblocks = groups;
5632         if (groups > ngroups)
5633                 groups = ngroups;
5634         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5635                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5636
5637         /* bitmaps and block group descriptor blocks */
5638         ret += groups + gdpblocks;
5639
5640         /* Blocks for super block, inode, quota and xattr blocks */
5641         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5642
5643         return ret;
5644 }
5645
5646 /*
5647  * Calculate the total number of credits to reserve to fit
5648  * the modification of a single pages into a single transaction,
5649  * which may include multiple chunks of block allocations.
5650  *
5651  * This could be called via ext4_write_begin()
5652  *
5653  * We need to consider the worse case, when
5654  * one new block per extent.
5655  */
5656 int ext4_writepage_trans_blocks(struct inode *inode)
5657 {
5658         int bpp = ext4_journal_blocks_per_page(inode);
5659         int ret;
5660
5661         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5662
5663         /* Account for data blocks for journalled mode */
5664         if (ext4_should_journal_data(inode))
5665                 ret += bpp;
5666         return ret;
5667 }
5668
5669 /*
5670  * Calculate the journal credits for a chunk of data modification.
5671  *
5672  * This is called from DIO, fallocate or whoever calling
5673  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5674  *
5675  * journal buffers for data blocks are not included here, as DIO
5676  * and fallocate do no need to journal data buffers.
5677  */
5678 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5679 {
5680         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5681 }
5682
5683 /*
5684  * The caller must have previously called ext4_reserve_inode_write().
5685  * Give this, we know that the caller already has write access to iloc->bh.
5686  */
5687 int ext4_mark_iloc_dirty(handle_t *handle,
5688                          struct inode *inode, struct ext4_iloc *iloc)
5689 {
5690         int err = 0;
5691
5692         if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5693                 put_bh(iloc->bh);
5694                 return -EIO;
5695         }
5696         ext4_fc_track_inode(handle, inode);
5697
5698         /* the do_update_inode consumes one bh->b_count */
5699         get_bh(iloc->bh);
5700
5701         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5702         err = ext4_do_update_inode(handle, inode, iloc);
5703         put_bh(iloc->bh);
5704         return err;
5705 }
5706
5707 /*
5708  * On success, We end up with an outstanding reference count against
5709  * iloc->bh.  This _must_ be cleaned up later.
5710  */
5711
5712 int
5713 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5714                          struct ext4_iloc *iloc)
5715 {
5716         int err;
5717
5718         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5719                 return -EIO;
5720
5721         err = ext4_get_inode_loc(inode, iloc);
5722         if (!err) {
5723                 BUFFER_TRACE(iloc->bh, "get_write_access");
5724                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5725                                                     iloc->bh, EXT4_JTR_NONE);
5726                 if (err) {
5727                         brelse(iloc->bh);
5728                         iloc->bh = NULL;
5729                 }
5730         }
5731         ext4_std_error(inode->i_sb, err);
5732         return err;
5733 }
5734
5735 static int __ext4_expand_extra_isize(struct inode *inode,
5736                                      unsigned int new_extra_isize,
5737                                      struct ext4_iloc *iloc,
5738                                      handle_t *handle, int *no_expand)
5739 {
5740         struct ext4_inode *raw_inode;
5741         struct ext4_xattr_ibody_header *header;
5742         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5743         struct ext4_inode_info *ei = EXT4_I(inode);
5744         int error;
5745
5746         /* this was checked at iget time, but double check for good measure */
5747         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5748             (ei->i_extra_isize & 3)) {
5749                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5750                                  ei->i_extra_isize,
5751                                  EXT4_INODE_SIZE(inode->i_sb));
5752                 return -EFSCORRUPTED;
5753         }
5754         if ((new_extra_isize < ei->i_extra_isize) ||
5755             (new_extra_isize < 4) ||
5756             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5757                 return -EINVAL; /* Should never happen */
5758
5759         raw_inode = ext4_raw_inode(iloc);
5760
5761         header = IHDR(inode, raw_inode);
5762
5763         /* No extended attributes present */
5764         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767                        EXT4_I(inode)->i_extra_isize, 0,
5768                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770                 return 0;
5771         }
5772
5773         /*
5774          * We may need to allocate external xattr block so we need quotas
5775          * initialized. Here we can be called with various locks held so we
5776          * cannot affort to initialize quotas ourselves. So just bail.
5777          */
5778         if (dquot_initialize_needed(inode))
5779                 return -EAGAIN;
5780
5781         /* try to expand with EAs present */
5782         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5783                                            raw_inode, handle);
5784         if (error) {
5785                 /*
5786                  * Inode size expansion failed; don't try again
5787                  */
5788                 *no_expand = 1;
5789         }
5790
5791         return error;
5792 }
5793
5794 /*
5795  * Expand an inode by new_extra_isize bytes.
5796  * Returns 0 on success or negative error number on failure.
5797  */
5798 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5799                                           unsigned int new_extra_isize,
5800                                           struct ext4_iloc iloc,
5801                                           handle_t *handle)
5802 {
5803         int no_expand;
5804         int error;
5805
5806         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5807                 return -EOVERFLOW;
5808
5809         /*
5810          * In nojournal mode, we can immediately attempt to expand
5811          * the inode.  When journaled, we first need to obtain extra
5812          * buffer credits since we may write into the EA block
5813          * with this same handle. If journal_extend fails, then it will
5814          * only result in a minor loss of functionality for that inode.
5815          * If this is felt to be critical, then e2fsck should be run to
5816          * force a large enough s_min_extra_isize.
5817          */
5818         if (ext4_journal_extend(handle,
5819                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5820                 return -ENOSPC;
5821
5822         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5823                 return -EBUSY;
5824
5825         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5826                                           handle, &no_expand);
5827         ext4_write_unlock_xattr(inode, &no_expand);
5828
5829         return error;
5830 }
5831
5832 int ext4_expand_extra_isize(struct inode *inode,
5833                             unsigned int new_extra_isize,
5834                             struct ext4_iloc *iloc)
5835 {
5836         handle_t *handle;
5837         int no_expand;
5838         int error, rc;
5839
5840         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5841                 brelse(iloc->bh);
5842                 return -EOVERFLOW;
5843         }
5844
5845         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5846                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5847         if (IS_ERR(handle)) {
5848                 error = PTR_ERR(handle);
5849                 brelse(iloc->bh);
5850                 return error;
5851         }
5852
5853         ext4_write_lock_xattr(inode, &no_expand);
5854
5855         BUFFER_TRACE(iloc->bh, "get_write_access");
5856         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5857                                               EXT4_JTR_NONE);
5858         if (error) {
5859                 brelse(iloc->bh);
5860                 goto out_unlock;
5861         }
5862
5863         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5864                                           handle, &no_expand);
5865
5866         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5867         if (!error)
5868                 error = rc;
5869
5870 out_unlock:
5871         ext4_write_unlock_xattr(inode, &no_expand);
5872         ext4_journal_stop(handle);
5873         return error;
5874 }
5875
5876 /*
5877  * What we do here is to mark the in-core inode as clean with respect to inode
5878  * dirtiness (it may still be data-dirty).
5879  * This means that the in-core inode may be reaped by prune_icache
5880  * without having to perform any I/O.  This is a very good thing,
5881  * because *any* task may call prune_icache - even ones which
5882  * have a transaction open against a different journal.
5883  *
5884  * Is this cheating?  Not really.  Sure, we haven't written the
5885  * inode out, but prune_icache isn't a user-visible syncing function.
5886  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5887  * we start and wait on commits.
5888  */
5889 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5890                                 const char *func, unsigned int line)
5891 {
5892         struct ext4_iloc iloc;
5893         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5894         int err;
5895
5896         might_sleep();
5897         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5898         err = ext4_reserve_inode_write(handle, inode, &iloc);
5899         if (err)
5900                 goto out;
5901
5902         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5903                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5904                                                iloc, handle);
5905
5906         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5907 out:
5908         if (unlikely(err))
5909                 ext4_error_inode_err(inode, func, line, 0, err,
5910                                         "mark_inode_dirty error");
5911         return err;
5912 }
5913
5914 /*
5915  * ext4_dirty_inode() is called from __mark_inode_dirty()
5916  *
5917  * We're really interested in the case where a file is being extended.
5918  * i_size has been changed by generic_commit_write() and we thus need
5919  * to include the updated inode in the current transaction.
5920  *
5921  * Also, dquot_alloc_block() will always dirty the inode when blocks
5922  * are allocated to the file.
5923  *
5924  * If the inode is marked synchronous, we don't honour that here - doing
5925  * so would cause a commit on atime updates, which we don't bother doing.
5926  * We handle synchronous inodes at the highest possible level.
5927  */
5928 void ext4_dirty_inode(struct inode *inode, int flags)
5929 {
5930         handle_t *handle;
5931
5932         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5933         if (IS_ERR(handle))
5934                 return;
5935         ext4_mark_inode_dirty(handle, inode);
5936         ext4_journal_stop(handle);
5937 }
5938
5939 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5940 {
5941         journal_t *journal;
5942         handle_t *handle;
5943         int err;
5944         int alloc_ctx;
5945
5946         /*
5947          * We have to be very careful here: changing a data block's
5948          * journaling status dynamically is dangerous.  If we write a
5949          * data block to the journal, change the status and then delete
5950          * that block, we risk forgetting to revoke the old log record
5951          * from the journal and so a subsequent replay can corrupt data.
5952          * So, first we make sure that the journal is empty and that
5953          * nobody is changing anything.
5954          */
5955
5956         journal = EXT4_JOURNAL(inode);
5957         if (!journal)
5958                 return 0;
5959         if (is_journal_aborted(journal))
5960                 return -EROFS;
5961
5962         /* Wait for all existing dio workers */
5963         inode_dio_wait(inode);
5964
5965         /*
5966          * Before flushing the journal and switching inode's aops, we have
5967          * to flush all dirty data the inode has. There can be outstanding
5968          * delayed allocations, there can be unwritten extents created by
5969          * fallocate or buffered writes in dioread_nolock mode covered by
5970          * dirty data which can be converted only after flushing the dirty
5971          * data (and journalled aops don't know how to handle these cases).
5972          */
5973         if (val) {
5974                 filemap_invalidate_lock(inode->i_mapping);
5975                 err = filemap_write_and_wait(inode->i_mapping);
5976                 if (err < 0) {
5977                         filemap_invalidate_unlock(inode->i_mapping);
5978                         return err;
5979                 }
5980         }
5981
5982         alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5983         jbd2_journal_lock_updates(journal);
5984
5985         /*
5986          * OK, there are no updates running now, and all cached data is
5987          * synced to disk.  We are now in a completely consistent state
5988          * which doesn't have anything in the journal, and we know that
5989          * no filesystem updates are running, so it is safe to modify
5990          * the inode's in-core data-journaling state flag now.
5991          */
5992
5993         if (val)
5994                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5995         else {
5996                 err = jbd2_journal_flush(journal, 0);
5997                 if (err < 0) {
5998                         jbd2_journal_unlock_updates(journal);
5999                         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6000                         return err;
6001                 }
6002                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003         }
6004         ext4_set_aops(inode);
6005
6006         jbd2_journal_unlock_updates(journal);
6007         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6008
6009         if (val)
6010                 filemap_invalidate_unlock(inode->i_mapping);
6011
6012         /* Finally we can mark the inode as dirty. */
6013
6014         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6015         if (IS_ERR(handle))
6016                 return PTR_ERR(handle);
6017
6018         ext4_fc_mark_ineligible(inode->i_sb,
6019                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6020         err = ext4_mark_inode_dirty(handle, inode);
6021         ext4_handle_sync(handle);
6022         ext4_journal_stop(handle);
6023         ext4_std_error(inode->i_sb, err);
6024
6025         return err;
6026 }
6027
6028 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6029                             struct buffer_head *bh)
6030 {
6031         return !buffer_mapped(bh);
6032 }
6033
6034 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6035 {
6036         struct vm_area_struct *vma = vmf->vma;
6037         struct folio *folio = page_folio(vmf->page);
6038         loff_t size;
6039         unsigned long len;
6040         int err;
6041         vm_fault_t ret;
6042         struct file *file = vma->vm_file;
6043         struct inode *inode = file_inode(file);
6044         struct address_space *mapping = inode->i_mapping;
6045         handle_t *handle;
6046         get_block_t *get_block;
6047         int retries = 0;
6048
6049         if (unlikely(IS_IMMUTABLE(inode)))
6050                 return VM_FAULT_SIGBUS;
6051
6052         sb_start_pagefault(inode->i_sb);
6053         file_update_time(vma->vm_file);
6054
6055         filemap_invalidate_lock_shared(mapping);
6056
6057         err = ext4_convert_inline_data(inode);
6058         if (err)
6059                 goto out_ret;
6060
6061         /*
6062          * On data journalling we skip straight to the transaction handle:
6063          * there's no delalloc; page truncated will be checked later; the
6064          * early return w/ all buffers mapped (calculates size/len) can't
6065          * be used; and there's no dioread_nolock, so only ext4_get_block.
6066          */
6067         if (ext4_should_journal_data(inode))
6068                 goto retry_alloc;
6069
6070         /* Delalloc case is easy... */
6071         if (test_opt(inode->i_sb, DELALLOC) &&
6072             !ext4_nonda_switch(inode->i_sb)) {
6073                 do {
6074                         err = block_page_mkwrite(vma, vmf,
6075                                                    ext4_da_get_block_prep);
6076                 } while (err == -ENOSPC &&
6077                        ext4_should_retry_alloc(inode->i_sb, &retries));
6078                 goto out_ret;
6079         }
6080
6081         folio_lock(folio);
6082         size = i_size_read(inode);
6083         /* Page got truncated from under us? */
6084         if (folio->mapping != mapping || folio_pos(folio) > size) {
6085                 folio_unlock(folio);
6086                 ret = VM_FAULT_NOPAGE;
6087                 goto out;
6088         }
6089
6090         len = folio_size(folio);
6091         if (folio_pos(folio) + len > size)
6092                 len = size - folio_pos(folio);
6093         /*
6094          * Return if we have all the buffers mapped. This avoids the need to do
6095          * journal_start/journal_stop which can block and take a long time
6096          *
6097          * This cannot be done for data journalling, as we have to add the
6098          * inode to the transaction's list to writeprotect pages on commit.
6099          */
6100         if (folio_buffers(folio)) {
6101                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6102                                             0, len, NULL,
6103                                             ext4_bh_unmapped)) {
6104                         /* Wait so that we don't change page under IO */
6105                         folio_wait_stable(folio);
6106                         ret = VM_FAULT_LOCKED;
6107                         goto out;
6108                 }
6109         }
6110         folio_unlock(folio);
6111         /* OK, we need to fill the hole... */
6112         if (ext4_should_dioread_nolock(inode))
6113                 get_block = ext4_get_block_unwritten;
6114         else
6115                 get_block = ext4_get_block;
6116 retry_alloc:
6117         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6118                                     ext4_writepage_trans_blocks(inode));
6119         if (IS_ERR(handle)) {
6120                 ret = VM_FAULT_SIGBUS;
6121                 goto out;
6122         }
6123         /*
6124          * Data journalling can't use block_page_mkwrite() because it
6125          * will set_buffer_dirty() before do_journal_get_write_access()
6126          * thus might hit warning messages for dirty metadata buffers.
6127          */
6128         if (!ext4_should_journal_data(inode)) {
6129                 err = block_page_mkwrite(vma, vmf, get_block);
6130         } else {
6131                 folio_lock(folio);
6132                 size = i_size_read(inode);
6133                 /* Page got truncated from under us? */
6134                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6135                         ret = VM_FAULT_NOPAGE;
6136                         goto out_error;
6137                 }
6138
6139                 len = folio_size(folio);
6140                 if (folio_pos(folio) + len > size)
6141                         len = size - folio_pos(folio);
6142
6143                 err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6144                 if (!err) {
6145                         ret = VM_FAULT_SIGBUS;
6146                         if (ext4_journal_folio_buffers(handle, folio, len))
6147                                 goto out_error;
6148                 } else {
6149                         folio_unlock(folio);
6150                 }
6151         }
6152         ext4_journal_stop(handle);
6153         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6154                 goto retry_alloc;
6155 out_ret:
6156         ret = vmf_fs_error(err);
6157 out:
6158         filemap_invalidate_unlock_shared(mapping);
6159         sb_end_pagefault(inode->i_sb);
6160         return ret;
6161 out_error:
6162         folio_unlock(folio);
6163         ext4_journal_stop(handle);
6164         goto out;
6165 }