Merge remote-tracking branches 'asoc/fix/axi', 'asoc/fix/cs4265', 'asoc/fix/da732x...
[linux-2.6-block.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         if (ext4_has_inline_data(inode))
152                 return 0;
153
154         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (ext4_should_journal_data(inode) &&
213                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214                     inode->i_ino != EXT4_JOURNAL_INO) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_complete_transaction(journal, commit_tid);
219                         filemap_write_and_wait(&inode->i_data);
220                 }
221                 truncate_inode_pages_final(&inode->i_data);
222
223                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224                 goto no_delete;
225         }
226
227         if (!is_bad_inode(inode))
228                 dquot_initialize(inode);
229
230         if (ext4_should_order_data(inode))
231                 ext4_begin_ordered_truncate(inode, 0);
232         truncate_inode_pages_final(&inode->i_data);
233
234         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235         if (is_bad_inode(inode))
236                 goto no_delete;
237
238         /*
239          * Protect us against freezing - iput() caller didn't have to have any
240          * protection against it
241          */
242         sb_start_intwrite(inode->i_sb);
243         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244                                     ext4_blocks_for_truncate(inode)+3);
245         if (IS_ERR(handle)) {
246                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
247                 /*
248                  * If we're going to skip the normal cleanup, we still need to
249                  * make sure that the in-core orphan linked list is properly
250                  * cleaned up.
251                  */
252                 ext4_orphan_del(NULL, inode);
253                 sb_end_intwrite(inode->i_sb);
254                 goto no_delete;
255         }
256
257         if (IS_SYNC(inode))
258                 ext4_handle_sync(handle);
259         inode->i_size = 0;
260         err = ext4_mark_inode_dirty(handle, inode);
261         if (err) {
262                 ext4_warning(inode->i_sb,
263                              "couldn't mark inode dirty (err %d)", err);
264                 goto stop_handle;
265         }
266         if (inode->i_blocks)
267                 ext4_truncate(inode);
268
269         /*
270          * ext4_ext_truncate() doesn't reserve any slop when it
271          * restarts journal transactions; therefore there may not be
272          * enough credits left in the handle to remove the inode from
273          * the orphan list and set the dtime field.
274          */
275         if (!ext4_handle_has_enough_credits(handle, 3)) {
276                 err = ext4_journal_extend(handle, 3);
277                 if (err > 0)
278                         err = ext4_journal_restart(handle, 3);
279                 if (err != 0) {
280                         ext4_warning(inode->i_sb,
281                                      "couldn't extend journal (err %d)", err);
282                 stop_handle:
283                         ext4_journal_stop(handle);
284                         ext4_orphan_del(NULL, inode);
285                         sb_end_intwrite(inode->i_sb);
286                         goto no_delete;
287                 }
288         }
289
290         /*
291          * Kill off the orphan record which ext4_truncate created.
292          * AKPM: I think this can be inside the above `if'.
293          * Note that ext4_orphan_del() has to be able to cope with the
294          * deletion of a non-existent orphan - this is because we don't
295          * know if ext4_truncate() actually created an orphan record.
296          * (Well, we could do this if we need to, but heck - it works)
297          */
298         ext4_orphan_del(handle, inode);
299         EXT4_I(inode)->i_dtime  = get_seconds();
300
301         /*
302          * One subtle ordering requirement: if anything has gone wrong
303          * (transaction abort, IO errors, whatever), then we can still
304          * do these next steps (the fs will already have been marked as
305          * having errors), but we can't free the inode if the mark_dirty
306          * fails.
307          */
308         if (ext4_mark_inode_dirty(handle, inode))
309                 /* If that failed, just do the required in-core inode clear. */
310                 ext4_clear_inode(inode);
311         else
312                 ext4_free_inode(handle, inode);
313         ext4_journal_stop(handle);
314         sb_end_intwrite(inode->i_sb);
315         return;
316 no_delete:
317         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
318 }
319
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323         return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326
327 /*
328  * Called with i_data_sem down, which is important since we can call
329  * ext4_discard_preallocations() from here.
330  */
331 void ext4_da_update_reserve_space(struct inode *inode,
332                                         int used, int quota_claim)
333 {
334         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335         struct ext4_inode_info *ei = EXT4_I(inode);
336
337         spin_lock(&ei->i_block_reservation_lock);
338         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339         if (unlikely(used > ei->i_reserved_data_blocks)) {
340                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341                          "with only %d reserved data blocks",
342                          __func__, inode->i_ino, used,
343                          ei->i_reserved_data_blocks);
344                 WARN_ON(1);
345                 used = ei->i_reserved_data_blocks;
346         }
347
348         /* Update per-inode reservations */
349         ei->i_reserved_data_blocks -= used;
350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
351
352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
353
354         /* Update quota subsystem for data blocks */
355         if (quota_claim)
356                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357         else {
358                 /*
359                  * We did fallocate with an offset that is already delayed
360                  * allocated. So on delayed allocated writeback we should
361                  * not re-claim the quota for fallocated blocks.
362                  */
363                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364         }
365
366         /*
367          * If we have done all the pending block allocations and if
368          * there aren't any writers on the inode, we can discard the
369          * inode's preallocations.
370          */
371         if ((ei->i_reserved_data_blocks == 0) &&
372             (atomic_read(&inode->i_writecount) == 0))
373                 ext4_discard_preallocations(inode);
374 }
375
376 static int __check_block_validity(struct inode *inode, const char *func,
377                                 unsigned int line,
378                                 struct ext4_map_blocks *map)
379 {
380         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381                                    map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_len);
386                 return -EIO;
387         }
388         return 0;
389 }
390
391 #define check_block_validity(inode, map)        \
392         __check_block_validity((inode), __func__, __LINE__, (map))
393
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396                                        struct inode *inode,
397                                        struct ext4_map_blocks *es_map,
398                                        struct ext4_map_blocks *map,
399                                        int flags)
400 {
401         int retval;
402
403         map->m_flags = 0;
404         /*
405          * There is a race window that the result is not the same.
406          * e.g. xfstests #223 when dioread_nolock enables.  The reason
407          * is that we lookup a block mapping in extent status tree with
408          * out taking i_data_sem.  So at the time the unwritten extent
409          * could be converted.
410          */
411         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412                 down_read(&EXT4_I(inode)->i_data_sem);
413         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         } else {
417                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418                                              EXT4_GET_BLOCKS_KEEP_SIZE);
419         }
420         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421                 up_read((&EXT4_I(inode)->i_data_sem));
422         /*
423          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424          * because it shouldn't be marked in es_map->m_flags.
425          */
426         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.
459  * if create==0 and the blocks are pre-allocated and unwritten block,
460  * the result buffer head is unmapped. If the create ==1, it will make sure
461  * the buffer head is mapped.
462  *
463  * It returns 0 if plain look up failed (blocks have not been allocated), in
464  * that case, buffer head is unmapped
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EIO;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 ext4_es_lru_add(inode);
498                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499                         map->m_pblk = ext4_es_pblock(&es) +
500                                         map->m_lblk - es.es_lblk;
501                         map->m_flags |= ext4_es_is_written(&es) ?
502                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503                         retval = es.es_len - (map->m_lblk - es.es_lblk);
504                         if (retval > map->m_len)
505                                 retval = map->m_len;
506                         map->m_len = retval;
507                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508                         retval = 0;
509                 } else {
510                         BUG_ON(1);
511                 }
512 #ifdef ES_AGGRESSIVE_TEST
513                 ext4_map_blocks_es_recheck(handle, inode, map,
514                                            &orig_map, flags);
515 #endif
516                 goto found;
517         }
518
519         /*
520          * Try to see if we can get the block without requesting a new
521          * file system block.
522          */
523         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524                 down_read(&EXT4_I(inode)->i_data_sem);
525         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527                                              EXT4_GET_BLOCKS_KEEP_SIZE);
528         } else {
529                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         }
532         if (retval > 0) {
533                 unsigned int status;
534
535                 if (unlikely(retval != map->m_len)) {
536                         ext4_warning(inode->i_sb,
537                                      "ES len assertion failed for inode "
538                                      "%lu: retval %d != map->m_len %d",
539                                      inode->i_ino, retval, map->m_len);
540                         WARN_ON(1);
541                 }
542
543                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546                     ext4_find_delalloc_range(inode, map->m_lblk,
547                                              map->m_lblk + map->m_len - 1))
548                         status |= EXTENT_STATUS_DELAYED;
549                 ret = ext4_es_insert_extent(inode, map->m_lblk,
550                                             map->m_len, map->m_pblk, status);
551                 if (ret < 0)
552                         retval = ret;
553         }
554         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555                 up_read((&EXT4_I(inode)->i_data_sem));
556
557 found:
558         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559                 ret = check_block_validity(inode, map);
560                 if (ret != 0)
561                         return ret;
562         }
563
564         /* If it is only a block(s) look up */
565         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
566                 return retval;
567
568         /*
569          * Returns if the blocks have already allocated
570          *
571          * Note that if blocks have been preallocated
572          * ext4_ext_get_block() returns the create = 0
573          * with buffer head unmapped.
574          */
575         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576                 /*
577                  * If we need to convert extent to unwritten
578                  * we continue and do the actual work in
579                  * ext4_ext_map_blocks()
580                  */
581                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582                         return retval;
583
584         /*
585          * Here we clear m_flags because after allocating an new extent,
586          * it will be set again.
587          */
588         map->m_flags &= ~EXT4_MAP_FLAGS;
589
590         /*
591          * New blocks allocate and/or writing to unwritten extent
592          * will possibly result in updating i_data, so we take
593          * the write lock of i_data_sem, and call get_blocks()
594          * with create == 1 flag.
595          */
596         down_write(&EXT4_I(inode)->i_data_sem);
597
598         /*
599          * if the caller is from delayed allocation writeout path
600          * we have already reserved fs blocks for allocation
601          * let the underlying get_block() function know to
602          * avoid double accounting
603          */
604         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
605                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
606         /*
607          * We need to check for EXT4 here because migrate
608          * could have changed the inode type in between
609          */
610         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
612         } else {
613                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
614
615                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
616                         /*
617                          * We allocated new blocks which will result in
618                          * i_data's format changing.  Force the migrate
619                          * to fail by clearing migrate flags
620                          */
621                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
622                 }
623
624                 /*
625                  * Update reserved blocks/metadata blocks after successful
626                  * block allocation which had been deferred till now. We don't
627                  * support fallocate for non extent files. So we can update
628                  * reserve space here.
629                  */
630                 if ((retval > 0) &&
631                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632                         ext4_da_update_reserve_space(inode, retval, 1);
633         }
634         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636
637         if (retval > 0) {
638                 unsigned int status;
639
640                 if (unlikely(retval != map->m_len)) {
641                         ext4_warning(inode->i_sb,
642                                      "ES len assertion failed for inode "
643                                      "%lu: retval %d != map->m_len %d",
644                                      inode->i_ino, retval, map->m_len);
645                         WARN_ON(1);
646                 }
647
648                 /*
649                  * If the extent has been zeroed out, we don't need to update
650                  * extent status tree.
651                  */
652                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654                         if (ext4_es_is_written(&es))
655                                 goto has_zeroout;
656                 }
657                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660                     ext4_find_delalloc_range(inode, map->m_lblk,
661                                              map->m_lblk + map->m_len - 1))
662                         status |= EXTENT_STATUS_DELAYED;
663                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664                                             map->m_pblk, status);
665                 if (ret < 0)
666                         retval = ret;
667         }
668
669 has_zeroout:
670         up_write((&EXT4_I(inode)->i_data_sem));
671         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672                 ret = check_block_validity(inode, map);
673                 if (ret != 0)
674                         return ret;
675         }
676         return retval;
677 }
678
679 /* Maximum number of blocks we map for direct IO at once. */
680 #define DIO_MAX_BLOCKS 4096
681
682 static int _ext4_get_block(struct inode *inode, sector_t iblock,
683                            struct buffer_head *bh, int flags)
684 {
685         handle_t *handle = ext4_journal_current_handle();
686         struct ext4_map_blocks map;
687         int ret = 0, started = 0;
688         int dio_credits;
689
690         if (ext4_has_inline_data(inode))
691                 return -ERANGE;
692
693         map.m_lblk = iblock;
694         map.m_len = bh->b_size >> inode->i_blkbits;
695
696         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
697                 /* Direct IO write... */
698                 if (map.m_len > DIO_MAX_BLOCKS)
699                         map.m_len = DIO_MAX_BLOCKS;
700                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
701                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702                                             dio_credits);
703                 if (IS_ERR(handle)) {
704                         ret = PTR_ERR(handle);
705                         return ret;
706                 }
707                 started = 1;
708         }
709
710         ret = ext4_map_blocks(handle, inode, &map, flags);
711         if (ret > 0) {
712                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
713
714                 map_bh(bh, inode->i_sb, map.m_pblk);
715                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
716                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717                         set_buffer_defer_completion(bh);
718                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
719                 ret = 0;
720         }
721         if (started)
722                 ext4_journal_stop(handle);
723         return ret;
724 }
725
726 int ext4_get_block(struct inode *inode, sector_t iblock,
727                    struct buffer_head *bh, int create)
728 {
729         return _ext4_get_block(inode, iblock, bh,
730                                create ? EXT4_GET_BLOCKS_CREATE : 0);
731 }
732
733 /*
734  * `handle' can be NULL if create is zero
735  */
736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
737                                 ext4_lblk_t block, int create, int *errp)
738 {
739         struct ext4_map_blocks map;
740         struct buffer_head *bh;
741         int fatal = 0, err;
742
743         J_ASSERT(handle != NULL || create == 0);
744
745         map.m_lblk = block;
746         map.m_len = 1;
747         err = ext4_map_blocks(handle, inode, &map,
748                               create ? EXT4_GET_BLOCKS_CREATE : 0);
749
750         /* ensure we send some value back into *errp */
751         *errp = 0;
752
753         if (create && err == 0)
754                 err = -ENOSPC;  /* should never happen */
755         if (err < 0)
756                 *errp = err;
757         if (err <= 0)
758                 return NULL;
759
760         bh = sb_getblk(inode->i_sb, map.m_pblk);
761         if (unlikely(!bh)) {
762                 *errp = -ENOMEM;
763                 return NULL;
764         }
765         if (map.m_flags & EXT4_MAP_NEW) {
766                 J_ASSERT(create != 0);
767                 J_ASSERT(handle != NULL);
768
769                 /*
770                  * Now that we do not always journal data, we should
771                  * keep in mind whether this should always journal the
772                  * new buffer as metadata.  For now, regular file
773                  * writes use ext4_get_block instead, so it's not a
774                  * problem.
775                  */
776                 lock_buffer(bh);
777                 BUFFER_TRACE(bh, "call get_create_access");
778                 fatal = ext4_journal_get_create_access(handle, bh);
779                 if (!fatal && !buffer_uptodate(bh)) {
780                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781                         set_buffer_uptodate(bh);
782                 }
783                 unlock_buffer(bh);
784                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785                 err = ext4_handle_dirty_metadata(handle, inode, bh);
786                 if (!fatal)
787                         fatal = err;
788         } else {
789                 BUFFER_TRACE(bh, "not a new buffer");
790         }
791         if (fatal) {
792                 *errp = fatal;
793                 brelse(bh);
794                 bh = NULL;
795         }
796         return bh;
797 }
798
799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
800                                ext4_lblk_t block, int create, int *err)
801 {
802         struct buffer_head *bh;
803
804         bh = ext4_getblk(handle, inode, block, create, err);
805         if (!bh)
806                 return bh;
807         if (buffer_uptodate(bh))
808                 return bh;
809         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
810         wait_on_buffer(bh);
811         if (buffer_uptodate(bh))
812                 return bh;
813         put_bh(bh);
814         *err = -EIO;
815         return NULL;
816 }
817
818 int ext4_walk_page_buffers(handle_t *handle,
819                            struct buffer_head *head,
820                            unsigned from,
821                            unsigned to,
822                            int *partial,
823                            int (*fn)(handle_t *handle,
824                                      struct buffer_head *bh))
825 {
826         struct buffer_head *bh;
827         unsigned block_start, block_end;
828         unsigned blocksize = head->b_size;
829         int err, ret = 0;
830         struct buffer_head *next;
831
832         for (bh = head, block_start = 0;
833              ret == 0 && (bh != head || !block_start);
834              block_start = block_end, bh = next) {
835                 next = bh->b_this_page;
836                 block_end = block_start + blocksize;
837                 if (block_end <= from || block_start >= to) {
838                         if (partial && !buffer_uptodate(bh))
839                                 *partial = 1;
840                         continue;
841                 }
842                 err = (*fn)(handle, bh);
843                 if (!ret)
844                         ret = err;
845         }
846         return ret;
847 }
848
849 /*
850  * To preserve ordering, it is essential that the hole instantiation and
851  * the data write be encapsulated in a single transaction.  We cannot
852  * close off a transaction and start a new one between the ext4_get_block()
853  * and the commit_write().  So doing the jbd2_journal_start at the start of
854  * prepare_write() is the right place.
855  *
856  * Also, this function can nest inside ext4_writepage().  In that case, we
857  * *know* that ext4_writepage() has generated enough buffer credits to do the
858  * whole page.  So we won't block on the journal in that case, which is good,
859  * because the caller may be PF_MEMALLOC.
860  *
861  * By accident, ext4 can be reentered when a transaction is open via
862  * quota file writes.  If we were to commit the transaction while thus
863  * reentered, there can be a deadlock - we would be holding a quota
864  * lock, and the commit would never complete if another thread had a
865  * transaction open and was blocking on the quota lock - a ranking
866  * violation.
867  *
868  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
869  * will _not_ run commit under these circumstances because handle->h_ref
870  * is elevated.  We'll still have enough credits for the tiny quotafile
871  * write.
872  */
873 int do_journal_get_write_access(handle_t *handle,
874                                 struct buffer_head *bh)
875 {
876         int dirty = buffer_dirty(bh);
877         int ret;
878
879         if (!buffer_mapped(bh) || buffer_freed(bh))
880                 return 0;
881         /*
882          * __block_write_begin() could have dirtied some buffers. Clean
883          * the dirty bit as jbd2_journal_get_write_access() could complain
884          * otherwise about fs integrity issues. Setting of the dirty bit
885          * by __block_write_begin() isn't a real problem here as we clear
886          * the bit before releasing a page lock and thus writeback cannot
887          * ever write the buffer.
888          */
889         if (dirty)
890                 clear_buffer_dirty(bh);
891         BUFFER_TRACE(bh, "get write access");
892         ret = ext4_journal_get_write_access(handle, bh);
893         if (!ret && dirty)
894                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
895         return ret;
896 }
897
898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899                    struct buffer_head *bh_result, int create);
900 static int ext4_write_begin(struct file *file, struct address_space *mapping,
901                             loff_t pos, unsigned len, unsigned flags,
902                             struct page **pagep, void **fsdata)
903 {
904         struct inode *inode = mapping->host;
905         int ret, needed_blocks;
906         handle_t *handle;
907         int retries = 0;
908         struct page *page;
909         pgoff_t index;
910         unsigned from, to;
911
912         trace_ext4_write_begin(inode, pos, len, flags);
913         /*
914          * Reserve one block more for addition to orphan list in case
915          * we allocate blocks but write fails for some reason
916          */
917         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
918         index = pos >> PAGE_CACHE_SHIFT;
919         from = pos & (PAGE_CACHE_SIZE - 1);
920         to = from + len;
921
922         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
924                                                     flags, pagep);
925                 if (ret < 0)
926                         return ret;
927                 if (ret == 1)
928                         return 0;
929         }
930
931         /*
932          * grab_cache_page_write_begin() can take a long time if the
933          * system is thrashing due to memory pressure, or if the page
934          * is being written back.  So grab it first before we start
935          * the transaction handle.  This also allows us to allocate
936          * the page (if needed) without using GFP_NOFS.
937          */
938 retry_grab:
939         page = grab_cache_page_write_begin(mapping, index, flags);
940         if (!page)
941                 return -ENOMEM;
942         unlock_page(page);
943
944 retry_journal:
945         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
946         if (IS_ERR(handle)) {
947                 page_cache_release(page);
948                 return PTR_ERR(handle);
949         }
950
951         lock_page(page);
952         if (page->mapping != mapping) {
953                 /* The page got truncated from under us */
954                 unlock_page(page);
955                 page_cache_release(page);
956                 ext4_journal_stop(handle);
957                 goto retry_grab;
958         }
959         /* In case writeback began while the page was unlocked */
960         wait_for_stable_page(page);
961
962         if (ext4_should_dioread_nolock(inode))
963                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
964         else
965                 ret = __block_write_begin(page, pos, len, ext4_get_block);
966
967         if (!ret && ext4_should_journal_data(inode)) {
968                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
969                                              from, to, NULL,
970                                              do_journal_get_write_access);
971         }
972
973         if (ret) {
974                 unlock_page(page);
975                 /*
976                  * __block_write_begin may have instantiated a few blocks
977                  * outside i_size.  Trim these off again. Don't need
978                  * i_size_read because we hold i_mutex.
979                  *
980                  * Add inode to orphan list in case we crash before
981                  * truncate finishes
982                  */
983                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
984                         ext4_orphan_add(handle, inode);
985
986                 ext4_journal_stop(handle);
987                 if (pos + len > inode->i_size) {
988                         ext4_truncate_failed_write(inode);
989                         /*
990                          * If truncate failed early the inode might
991                          * still be on the orphan list; we need to
992                          * make sure the inode is removed from the
993                          * orphan list in that case.
994                          */
995                         if (inode->i_nlink)
996                                 ext4_orphan_del(NULL, inode);
997                 }
998
999                 if (ret == -ENOSPC &&
1000                     ext4_should_retry_alloc(inode->i_sb, &retries))
1001                         goto retry_journal;
1002                 page_cache_release(page);
1003                 return ret;
1004         }
1005         *pagep = page;
1006         return ret;
1007 }
1008
1009 /* For write_end() in data=journal mode */
1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1011 {
1012         int ret;
1013         if (!buffer_mapped(bh) || buffer_freed(bh))
1014                 return 0;
1015         set_buffer_uptodate(bh);
1016         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017         clear_buffer_meta(bh);
1018         clear_buffer_prio(bh);
1019         return ret;
1020 }
1021
1022 /*
1023  * We need to pick up the new inode size which generic_commit_write gave us
1024  * `file' can be NULL - eg, when called from page_symlink().
1025  *
1026  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1027  * buffers are managed internally.
1028  */
1029 static int ext4_write_end(struct file *file,
1030                           struct address_space *mapping,
1031                           loff_t pos, unsigned len, unsigned copied,
1032                           struct page *page, void *fsdata)
1033 {
1034         handle_t *handle = ext4_journal_current_handle();
1035         struct inode *inode = mapping->host;
1036         int ret = 0, ret2;
1037         int i_size_changed = 0;
1038
1039         trace_ext4_write_end(inode, pos, len, copied);
1040         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041                 ret = ext4_jbd2_file_inode(handle, inode);
1042                 if (ret) {
1043                         unlock_page(page);
1044                         page_cache_release(page);
1045                         goto errout;
1046                 }
1047         }
1048
1049         if (ext4_has_inline_data(inode)) {
1050                 ret = ext4_write_inline_data_end(inode, pos, len,
1051                                                  copied, page);
1052                 if (ret < 0)
1053                         goto errout;
1054                 copied = ret;
1055         } else
1056                 copied = block_write_end(file, mapping, pos,
1057                                          len, copied, page, fsdata);
1058         /*
1059          * it's important to update i_size while still holding page lock:
1060          * page writeout could otherwise come in and zero beyond i_size.
1061          */
1062         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1063         unlock_page(page);
1064         page_cache_release(page);
1065
1066         /*
1067          * Don't mark the inode dirty under page lock. First, it unnecessarily
1068          * makes the holding time of page lock longer. Second, it forces lock
1069          * ordering of page lock and transaction start for journaling
1070          * filesystems.
1071          */
1072         if (i_size_changed)
1073                 ext4_mark_inode_dirty(handle, inode);
1074
1075         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1076                 /* if we have allocated more blocks and copied
1077                  * less. We will have blocks allocated outside
1078                  * inode->i_size. So truncate them
1079                  */
1080                 ext4_orphan_add(handle, inode);
1081 errout:
1082         ret2 = ext4_journal_stop(handle);
1083         if (!ret)
1084                 ret = ret2;
1085
1086         if (pos + len > inode->i_size) {
1087                 ext4_truncate_failed_write(inode);
1088                 /*
1089                  * If truncate failed early the inode might still be
1090                  * on the orphan list; we need to make sure the inode
1091                  * is removed from the orphan list in that case.
1092                  */
1093                 if (inode->i_nlink)
1094                         ext4_orphan_del(NULL, inode);
1095         }
1096
1097         return ret ? ret : copied;
1098 }
1099
1100 static int ext4_journalled_write_end(struct file *file,
1101                                      struct address_space *mapping,
1102                                      loff_t pos, unsigned len, unsigned copied,
1103                                      struct page *page, void *fsdata)
1104 {
1105         handle_t *handle = ext4_journal_current_handle();
1106         struct inode *inode = mapping->host;
1107         int ret = 0, ret2;
1108         int partial = 0;
1109         unsigned from, to;
1110         int size_changed = 0;
1111
1112         trace_ext4_journalled_write_end(inode, pos, len, copied);
1113         from = pos & (PAGE_CACHE_SIZE - 1);
1114         to = from + len;
1115
1116         BUG_ON(!ext4_handle_valid(handle));
1117
1118         if (ext4_has_inline_data(inode))
1119                 copied = ext4_write_inline_data_end(inode, pos, len,
1120                                                     copied, page);
1121         else {
1122                 if (copied < len) {
1123                         if (!PageUptodate(page))
1124                                 copied = 0;
1125                         page_zero_new_buffers(page, from+copied, to);
1126                 }
1127
1128                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1129                                              to, &partial, write_end_fn);
1130                 if (!partial)
1131                         SetPageUptodate(page);
1132         }
1133         size_changed = ext4_update_inode_size(inode, pos + copied);
1134         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1135         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1136         unlock_page(page);
1137         page_cache_release(page);
1138
1139         if (size_changed) {
1140                 ret2 = ext4_mark_inode_dirty(handle, inode);
1141                 if (!ret)
1142                         ret = ret2;
1143         }
1144
1145         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1146                 /* if we have allocated more blocks and copied
1147                  * less. We will have blocks allocated outside
1148                  * inode->i_size. So truncate them
1149                  */
1150                 ext4_orphan_add(handle, inode);
1151
1152         ret2 = ext4_journal_stop(handle);
1153         if (!ret)
1154                 ret = ret2;
1155         if (pos + len > inode->i_size) {
1156                 ext4_truncate_failed_write(inode);
1157                 /*
1158                  * If truncate failed early the inode might still be
1159                  * on the orphan list; we need to make sure the inode
1160                  * is removed from the orphan list in that case.
1161                  */
1162                 if (inode->i_nlink)
1163                         ext4_orphan_del(NULL, inode);
1164         }
1165
1166         return ret ? ret : copied;
1167 }
1168
1169 /*
1170  * Reserve a single cluster located at lblock
1171  */
1172 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1173 {
1174         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1175         struct ext4_inode_info *ei = EXT4_I(inode);
1176         unsigned int md_needed;
1177         int ret;
1178
1179         /*
1180          * We will charge metadata quota at writeout time; this saves
1181          * us from metadata over-estimation, though we may go over by
1182          * a small amount in the end.  Here we just reserve for data.
1183          */
1184         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1185         if (ret)
1186                 return ret;
1187
1188         /*
1189          * recalculate the amount of metadata blocks to reserve
1190          * in order to allocate nrblocks
1191          * worse case is one extent per block
1192          */
1193         spin_lock(&ei->i_block_reservation_lock);
1194         /*
1195          * ext4_calc_metadata_amount() has side effects, which we have
1196          * to be prepared undo if we fail to claim space.
1197          */
1198         md_needed = 0;
1199         trace_ext4_da_reserve_space(inode, 0);
1200
1201         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1202                 spin_unlock(&ei->i_block_reservation_lock);
1203                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1204                 return -ENOSPC;
1205         }
1206         ei->i_reserved_data_blocks++;
1207         spin_unlock(&ei->i_block_reservation_lock);
1208
1209         return 0;       /* success */
1210 }
1211
1212 static void ext4_da_release_space(struct inode *inode, int to_free)
1213 {
1214         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1215         struct ext4_inode_info *ei = EXT4_I(inode);
1216
1217         if (!to_free)
1218                 return;         /* Nothing to release, exit */
1219
1220         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1221
1222         trace_ext4_da_release_space(inode, to_free);
1223         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1224                 /*
1225                  * if there aren't enough reserved blocks, then the
1226                  * counter is messed up somewhere.  Since this
1227                  * function is called from invalidate page, it's
1228                  * harmless to return without any action.
1229                  */
1230                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1231                          "ino %lu, to_free %d with only %d reserved "
1232                          "data blocks", inode->i_ino, to_free,
1233                          ei->i_reserved_data_blocks);
1234                 WARN_ON(1);
1235                 to_free = ei->i_reserved_data_blocks;
1236         }
1237         ei->i_reserved_data_blocks -= to_free;
1238
1239         /* update fs dirty data blocks counter */
1240         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1241
1242         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1243
1244         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1245 }
1246
1247 static void ext4_da_page_release_reservation(struct page *page,
1248                                              unsigned int offset,
1249                                              unsigned int length)
1250 {
1251         int to_release = 0;
1252         struct buffer_head *head, *bh;
1253         unsigned int curr_off = 0;
1254         struct inode *inode = page->mapping->host;
1255         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256         unsigned int stop = offset + length;
1257         int num_clusters;
1258         ext4_fsblk_t lblk;
1259
1260         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1261
1262         head = page_buffers(page);
1263         bh = head;
1264         do {
1265                 unsigned int next_off = curr_off + bh->b_size;
1266
1267                 if (next_off > stop)
1268                         break;
1269
1270                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1271                         to_release++;
1272                         clear_buffer_delay(bh);
1273                 }
1274                 curr_off = next_off;
1275         } while ((bh = bh->b_this_page) != head);
1276
1277         if (to_release) {
1278                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1279                 ext4_es_remove_extent(inode, lblk, to_release);
1280         }
1281
1282         /* If we have released all the blocks belonging to a cluster, then we
1283          * need to release the reserved space for that cluster. */
1284         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1285         while (num_clusters > 0) {
1286                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1287                         ((num_clusters - 1) << sbi->s_cluster_bits);
1288                 if (sbi->s_cluster_ratio == 1 ||
1289                     !ext4_find_delalloc_cluster(inode, lblk))
1290                         ext4_da_release_space(inode, 1);
1291
1292                 num_clusters--;
1293         }
1294 }
1295
1296 /*
1297  * Delayed allocation stuff
1298  */
1299
1300 struct mpage_da_data {
1301         struct inode *inode;
1302         struct writeback_control *wbc;
1303
1304         pgoff_t first_page;     /* The first page to write */
1305         pgoff_t next_page;      /* Current page to examine */
1306         pgoff_t last_page;      /* Last page to examine */
1307         /*
1308          * Extent to map - this can be after first_page because that can be
1309          * fully mapped. We somewhat abuse m_flags to store whether the extent
1310          * is delalloc or unwritten.
1311          */
1312         struct ext4_map_blocks map;
1313         struct ext4_io_submit io_submit;        /* IO submission data */
1314 };
1315
1316 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1317                                        bool invalidate)
1318 {
1319         int nr_pages, i;
1320         pgoff_t index, end;
1321         struct pagevec pvec;
1322         struct inode *inode = mpd->inode;
1323         struct address_space *mapping = inode->i_mapping;
1324
1325         /* This is necessary when next_page == 0. */
1326         if (mpd->first_page >= mpd->next_page)
1327                 return;
1328
1329         index = mpd->first_page;
1330         end   = mpd->next_page - 1;
1331         if (invalidate) {
1332                 ext4_lblk_t start, last;
1333                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1334                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1335                 ext4_es_remove_extent(inode, start, last - start + 1);
1336         }
1337
1338         pagevec_init(&pvec, 0);
1339         while (index <= end) {
1340                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1341                 if (nr_pages == 0)
1342                         break;
1343                 for (i = 0; i < nr_pages; i++) {
1344                         struct page *page = pvec.pages[i];
1345                         if (page->index > end)
1346                                 break;
1347                         BUG_ON(!PageLocked(page));
1348                         BUG_ON(PageWriteback(page));
1349                         if (invalidate) {
1350                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1351                                 ClearPageUptodate(page);
1352                         }
1353                         unlock_page(page);
1354                 }
1355                 index = pvec.pages[nr_pages - 1]->index + 1;
1356                 pagevec_release(&pvec);
1357         }
1358 }
1359
1360 static void ext4_print_free_blocks(struct inode *inode)
1361 {
1362         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363         struct super_block *sb = inode->i_sb;
1364         struct ext4_inode_info *ei = EXT4_I(inode);
1365
1366         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1367                EXT4_C2B(EXT4_SB(inode->i_sb),
1368                         ext4_count_free_clusters(sb)));
1369         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1370         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1371                (long long) EXT4_C2B(EXT4_SB(sb),
1372                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1373         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1374                (long long) EXT4_C2B(EXT4_SB(sb),
1375                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1376         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1377         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1378                  ei->i_reserved_data_blocks);
1379         return;
1380 }
1381
1382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1383 {
1384         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1385 }
1386
1387 /*
1388  * This function is grabs code from the very beginning of
1389  * ext4_map_blocks, but assumes that the caller is from delayed write
1390  * time. This function looks up the requested blocks and sets the
1391  * buffer delay bit under the protection of i_data_sem.
1392  */
1393 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1394                               struct ext4_map_blocks *map,
1395                               struct buffer_head *bh)
1396 {
1397         struct extent_status es;
1398         int retval;
1399         sector_t invalid_block = ~((sector_t) 0xffff);
1400 #ifdef ES_AGGRESSIVE_TEST
1401         struct ext4_map_blocks orig_map;
1402
1403         memcpy(&orig_map, map, sizeof(*map));
1404 #endif
1405
1406         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1407                 invalid_block = ~0;
1408
1409         map->m_flags = 0;
1410         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1411                   "logical block %lu\n", inode->i_ino, map->m_len,
1412                   (unsigned long) map->m_lblk);
1413
1414         /* Lookup extent status tree firstly */
1415         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1416                 ext4_es_lru_add(inode);
1417                 if (ext4_es_is_hole(&es)) {
1418                         retval = 0;
1419                         down_read(&EXT4_I(inode)->i_data_sem);
1420                         goto add_delayed;
1421                 }
1422
1423                 /*
1424                  * Delayed extent could be allocated by fallocate.
1425                  * So we need to check it.
1426                  */
1427                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1428                         map_bh(bh, inode->i_sb, invalid_block);
1429                         set_buffer_new(bh);
1430                         set_buffer_delay(bh);
1431                         return 0;
1432                 }
1433
1434                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1435                 retval = es.es_len - (iblock - es.es_lblk);
1436                 if (retval > map->m_len)
1437                         retval = map->m_len;
1438                 map->m_len = retval;
1439                 if (ext4_es_is_written(&es))
1440                         map->m_flags |= EXT4_MAP_MAPPED;
1441                 else if (ext4_es_is_unwritten(&es))
1442                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1443                 else
1444                         BUG_ON(1);
1445
1446 #ifdef ES_AGGRESSIVE_TEST
1447                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1448 #endif
1449                 return retval;
1450         }
1451
1452         /*
1453          * Try to see if we can get the block without requesting a new
1454          * file system block.
1455          */
1456         down_read(&EXT4_I(inode)->i_data_sem);
1457         if (ext4_has_inline_data(inode)) {
1458                 /*
1459                  * We will soon create blocks for this page, and let
1460                  * us pretend as if the blocks aren't allocated yet.
1461                  * In case of clusters, we have to handle the work
1462                  * of mapping from cluster so that the reserved space
1463                  * is calculated properly.
1464                  */
1465                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1466                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1467                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1468                 retval = 0;
1469         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1470                 retval = ext4_ext_map_blocks(NULL, inode, map,
1471                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1472         else
1473                 retval = ext4_ind_map_blocks(NULL, inode, map,
1474                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1475
1476 add_delayed:
1477         if (retval == 0) {
1478                 int ret;
1479                 /*
1480                  * XXX: __block_prepare_write() unmaps passed block,
1481                  * is it OK?
1482                  */
1483                 /*
1484                  * If the block was allocated from previously allocated cluster,
1485                  * then we don't need to reserve it again. However we still need
1486                  * to reserve metadata for every block we're going to write.
1487                  */
1488                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1489                         ret = ext4_da_reserve_space(inode, iblock);
1490                         if (ret) {
1491                                 /* not enough space to reserve */
1492                                 retval = ret;
1493                                 goto out_unlock;
1494                         }
1495                 }
1496
1497                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1498                                             ~0, EXTENT_STATUS_DELAYED);
1499                 if (ret) {
1500                         retval = ret;
1501                         goto out_unlock;
1502                 }
1503
1504                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1505                  * and it should not appear on the bh->b_state.
1506                  */
1507                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1508
1509                 map_bh(bh, inode->i_sb, invalid_block);
1510                 set_buffer_new(bh);
1511                 set_buffer_delay(bh);
1512         } else if (retval > 0) {
1513                 int ret;
1514                 unsigned int status;
1515
1516                 if (unlikely(retval != map->m_len)) {
1517                         ext4_warning(inode->i_sb,
1518                                      "ES len assertion failed for inode "
1519                                      "%lu: retval %d != map->m_len %d",
1520                                      inode->i_ino, retval, map->m_len);
1521                         WARN_ON(1);
1522                 }
1523
1524                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1525                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1526                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1527                                             map->m_pblk, status);
1528                 if (ret != 0)
1529                         retval = ret;
1530         }
1531
1532 out_unlock:
1533         up_read((&EXT4_I(inode)->i_data_sem));
1534
1535         return retval;
1536 }
1537
1538 /*
1539  * This is a special get_blocks_t callback which is used by
1540  * ext4_da_write_begin().  It will either return mapped block or
1541  * reserve space for a single block.
1542  *
1543  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1544  * We also have b_blocknr = -1 and b_bdev initialized properly
1545  *
1546  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1547  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1548  * initialized properly.
1549  */
1550 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1551                            struct buffer_head *bh, int create)
1552 {
1553         struct ext4_map_blocks map;
1554         int ret = 0;
1555
1556         BUG_ON(create == 0);
1557         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1558
1559         map.m_lblk = iblock;
1560         map.m_len = 1;
1561
1562         /*
1563          * first, we need to know whether the block is allocated already
1564          * preallocated blocks are unmapped but should treated
1565          * the same as allocated blocks.
1566          */
1567         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1568         if (ret <= 0)
1569                 return ret;
1570
1571         map_bh(bh, inode->i_sb, map.m_pblk);
1572         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1573
1574         if (buffer_unwritten(bh)) {
1575                 /* A delayed write to unwritten bh should be marked
1576                  * new and mapped.  Mapped ensures that we don't do
1577                  * get_block multiple times when we write to the same
1578                  * offset and new ensures that we do proper zero out
1579                  * for partial write.
1580                  */
1581                 set_buffer_new(bh);
1582                 set_buffer_mapped(bh);
1583         }
1584         return 0;
1585 }
1586
1587 static int bget_one(handle_t *handle, struct buffer_head *bh)
1588 {
1589         get_bh(bh);
1590         return 0;
1591 }
1592
1593 static int bput_one(handle_t *handle, struct buffer_head *bh)
1594 {
1595         put_bh(bh);
1596         return 0;
1597 }
1598
1599 static int __ext4_journalled_writepage(struct page *page,
1600                                        unsigned int len)
1601 {
1602         struct address_space *mapping = page->mapping;
1603         struct inode *inode = mapping->host;
1604         struct buffer_head *page_bufs = NULL;
1605         handle_t *handle = NULL;
1606         int ret = 0, err = 0;
1607         int inline_data = ext4_has_inline_data(inode);
1608         struct buffer_head *inode_bh = NULL;
1609
1610         ClearPageChecked(page);
1611
1612         if (inline_data) {
1613                 BUG_ON(page->index != 0);
1614                 BUG_ON(len > ext4_get_max_inline_size(inode));
1615                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1616                 if (inode_bh == NULL)
1617                         goto out;
1618         } else {
1619                 page_bufs = page_buffers(page);
1620                 if (!page_bufs) {
1621                         BUG();
1622                         goto out;
1623                 }
1624                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1625                                        NULL, bget_one);
1626         }
1627         /* As soon as we unlock the page, it can go away, but we have
1628          * references to buffers so we are safe */
1629         unlock_page(page);
1630
1631         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1632                                     ext4_writepage_trans_blocks(inode));
1633         if (IS_ERR(handle)) {
1634                 ret = PTR_ERR(handle);
1635                 goto out;
1636         }
1637
1638         BUG_ON(!ext4_handle_valid(handle));
1639
1640         if (inline_data) {
1641                 BUFFER_TRACE(inode_bh, "get write access");
1642                 ret = ext4_journal_get_write_access(handle, inode_bh);
1643
1644                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1645
1646         } else {
1647                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1648                                              do_journal_get_write_access);
1649
1650                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1651                                              write_end_fn);
1652         }
1653         if (ret == 0)
1654                 ret = err;
1655         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1656         err = ext4_journal_stop(handle);
1657         if (!ret)
1658                 ret = err;
1659
1660         if (!ext4_has_inline_data(inode))
1661                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1662                                        NULL, bput_one);
1663         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1664 out:
1665         brelse(inode_bh);
1666         return ret;
1667 }
1668
1669 /*
1670  * Note that we don't need to start a transaction unless we're journaling data
1671  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1672  * need to file the inode to the transaction's list in ordered mode because if
1673  * we are writing back data added by write(), the inode is already there and if
1674  * we are writing back data modified via mmap(), no one guarantees in which
1675  * transaction the data will hit the disk. In case we are journaling data, we
1676  * cannot start transaction directly because transaction start ranks above page
1677  * lock so we have to do some magic.
1678  *
1679  * This function can get called via...
1680  *   - ext4_writepages after taking page lock (have journal handle)
1681  *   - journal_submit_inode_data_buffers (no journal handle)
1682  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1683  *   - grab_page_cache when doing write_begin (have journal handle)
1684  *
1685  * We don't do any block allocation in this function. If we have page with
1686  * multiple blocks we need to write those buffer_heads that are mapped. This
1687  * is important for mmaped based write. So if we do with blocksize 1K
1688  * truncate(f, 1024);
1689  * a = mmap(f, 0, 4096);
1690  * a[0] = 'a';
1691  * truncate(f, 4096);
1692  * we have in the page first buffer_head mapped via page_mkwrite call back
1693  * but other buffer_heads would be unmapped but dirty (dirty done via the
1694  * do_wp_page). So writepage should write the first block. If we modify
1695  * the mmap area beyond 1024 we will again get a page_fault and the
1696  * page_mkwrite callback will do the block allocation and mark the
1697  * buffer_heads mapped.
1698  *
1699  * We redirty the page if we have any buffer_heads that is either delay or
1700  * unwritten in the page.
1701  *
1702  * We can get recursively called as show below.
1703  *
1704  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1705  *              ext4_writepage()
1706  *
1707  * But since we don't do any block allocation we should not deadlock.
1708  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1709  */
1710 static int ext4_writepage(struct page *page,
1711                           struct writeback_control *wbc)
1712 {
1713         int ret = 0;
1714         loff_t size;
1715         unsigned int len;
1716         struct buffer_head *page_bufs = NULL;
1717         struct inode *inode = page->mapping->host;
1718         struct ext4_io_submit io_submit;
1719         bool keep_towrite = false;
1720
1721         trace_ext4_writepage(page);
1722         size = i_size_read(inode);
1723         if (page->index == size >> PAGE_CACHE_SHIFT)
1724                 len = size & ~PAGE_CACHE_MASK;
1725         else
1726                 len = PAGE_CACHE_SIZE;
1727
1728         page_bufs = page_buffers(page);
1729         /*
1730          * We cannot do block allocation or other extent handling in this
1731          * function. If there are buffers needing that, we have to redirty
1732          * the page. But we may reach here when we do a journal commit via
1733          * journal_submit_inode_data_buffers() and in that case we must write
1734          * allocated buffers to achieve data=ordered mode guarantees.
1735          */
1736         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1737                                    ext4_bh_delay_or_unwritten)) {
1738                 redirty_page_for_writepage(wbc, page);
1739                 if (current->flags & PF_MEMALLOC) {
1740                         /*
1741                          * For memory cleaning there's no point in writing only
1742                          * some buffers. So just bail out. Warn if we came here
1743                          * from direct reclaim.
1744                          */
1745                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1746                                                         == PF_MEMALLOC);
1747                         unlock_page(page);
1748                         return 0;
1749                 }
1750                 keep_towrite = true;
1751         }
1752
1753         if (PageChecked(page) && ext4_should_journal_data(inode))
1754                 /*
1755                  * It's mmapped pagecache.  Add buffers and journal it.  There
1756                  * doesn't seem much point in redirtying the page here.
1757                  */
1758                 return __ext4_journalled_writepage(page, len);
1759
1760         ext4_io_submit_init(&io_submit, wbc);
1761         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1762         if (!io_submit.io_end) {
1763                 redirty_page_for_writepage(wbc, page);
1764                 unlock_page(page);
1765                 return -ENOMEM;
1766         }
1767         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1768         ext4_io_submit(&io_submit);
1769         /* Drop io_end reference we got from init */
1770         ext4_put_io_end_defer(io_submit.io_end);
1771         return ret;
1772 }
1773
1774 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1775 {
1776         int len;
1777         loff_t size = i_size_read(mpd->inode);
1778         int err;
1779
1780         BUG_ON(page->index != mpd->first_page);
1781         if (page->index == size >> PAGE_CACHE_SHIFT)
1782                 len = size & ~PAGE_CACHE_MASK;
1783         else
1784                 len = PAGE_CACHE_SIZE;
1785         clear_page_dirty_for_io(page);
1786         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1787         if (!err)
1788                 mpd->wbc->nr_to_write--;
1789         mpd->first_page++;
1790
1791         return err;
1792 }
1793
1794 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1795
1796 /*
1797  * mballoc gives us at most this number of blocks...
1798  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1799  * The rest of mballoc seems to handle chunks up to full group size.
1800  */
1801 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1802
1803 /*
1804  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1805  *
1806  * @mpd - extent of blocks
1807  * @lblk - logical number of the block in the file
1808  * @bh - buffer head we want to add to the extent
1809  *
1810  * The function is used to collect contig. blocks in the same state. If the
1811  * buffer doesn't require mapping for writeback and we haven't started the
1812  * extent of buffers to map yet, the function returns 'true' immediately - the
1813  * caller can write the buffer right away. Otherwise the function returns true
1814  * if the block has been added to the extent, false if the block couldn't be
1815  * added.
1816  */
1817 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1818                                    struct buffer_head *bh)
1819 {
1820         struct ext4_map_blocks *map = &mpd->map;
1821
1822         /* Buffer that doesn't need mapping for writeback? */
1823         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1824             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1825                 /* So far no extent to map => we write the buffer right away */
1826                 if (map->m_len == 0)
1827                         return true;
1828                 return false;
1829         }
1830
1831         /* First block in the extent? */
1832         if (map->m_len == 0) {
1833                 map->m_lblk = lblk;
1834                 map->m_len = 1;
1835                 map->m_flags = bh->b_state & BH_FLAGS;
1836                 return true;
1837         }
1838
1839         /* Don't go larger than mballoc is willing to allocate */
1840         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1841                 return false;
1842
1843         /* Can we merge the block to our big extent? */
1844         if (lblk == map->m_lblk + map->m_len &&
1845             (bh->b_state & BH_FLAGS) == map->m_flags) {
1846                 map->m_len++;
1847                 return true;
1848         }
1849         return false;
1850 }
1851
1852 /*
1853  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1854  *
1855  * @mpd - extent of blocks for mapping
1856  * @head - the first buffer in the page
1857  * @bh - buffer we should start processing from
1858  * @lblk - logical number of the block in the file corresponding to @bh
1859  *
1860  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1861  * the page for IO if all buffers in this page were mapped and there's no
1862  * accumulated extent of buffers to map or add buffers in the page to the
1863  * extent of buffers to map. The function returns 1 if the caller can continue
1864  * by processing the next page, 0 if it should stop adding buffers to the
1865  * extent to map because we cannot extend it anymore. It can also return value
1866  * < 0 in case of error during IO submission.
1867  */
1868 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1869                                    struct buffer_head *head,
1870                                    struct buffer_head *bh,
1871                                    ext4_lblk_t lblk)
1872 {
1873         struct inode *inode = mpd->inode;
1874         int err;
1875         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1876                                                         >> inode->i_blkbits;
1877
1878         do {
1879                 BUG_ON(buffer_locked(bh));
1880
1881                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1882                         /* Found extent to map? */
1883                         if (mpd->map.m_len)
1884                                 return 0;
1885                         /* Everything mapped so far and we hit EOF */
1886                         break;
1887                 }
1888         } while (lblk++, (bh = bh->b_this_page) != head);
1889         /* So far everything mapped? Submit the page for IO. */
1890         if (mpd->map.m_len == 0) {
1891                 err = mpage_submit_page(mpd, head->b_page);
1892                 if (err < 0)
1893                         return err;
1894         }
1895         return lblk < blocks;
1896 }
1897
1898 /*
1899  * mpage_map_buffers - update buffers corresponding to changed extent and
1900  *                     submit fully mapped pages for IO
1901  *
1902  * @mpd - description of extent to map, on return next extent to map
1903  *
1904  * Scan buffers corresponding to changed extent (we expect corresponding pages
1905  * to be already locked) and update buffer state according to new extent state.
1906  * We map delalloc buffers to their physical location, clear unwritten bits,
1907  * and mark buffers as uninit when we perform writes to unwritten extents
1908  * and do extent conversion after IO is finished. If the last page is not fully
1909  * mapped, we update @map to the next extent in the last page that needs
1910  * mapping. Otherwise we submit the page for IO.
1911  */
1912 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1913 {
1914         struct pagevec pvec;
1915         int nr_pages, i;
1916         struct inode *inode = mpd->inode;
1917         struct buffer_head *head, *bh;
1918         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1919         pgoff_t start, end;
1920         ext4_lblk_t lblk;
1921         sector_t pblock;
1922         int err;
1923
1924         start = mpd->map.m_lblk >> bpp_bits;
1925         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1926         lblk = start << bpp_bits;
1927         pblock = mpd->map.m_pblk;
1928
1929         pagevec_init(&pvec, 0);
1930         while (start <= end) {
1931                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1932                                           PAGEVEC_SIZE);
1933                 if (nr_pages == 0)
1934                         break;
1935                 for (i = 0; i < nr_pages; i++) {
1936                         struct page *page = pvec.pages[i];
1937
1938                         if (page->index > end)
1939                                 break;
1940                         /* Up to 'end' pages must be contiguous */
1941                         BUG_ON(page->index != start);
1942                         bh = head = page_buffers(page);
1943                         do {
1944                                 if (lblk < mpd->map.m_lblk)
1945                                         continue;
1946                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1947                                         /*
1948                                          * Buffer after end of mapped extent.
1949                                          * Find next buffer in the page to map.
1950                                          */
1951                                         mpd->map.m_len = 0;
1952                                         mpd->map.m_flags = 0;
1953                                         /*
1954                                          * FIXME: If dioread_nolock supports
1955                                          * blocksize < pagesize, we need to make
1956                                          * sure we add size mapped so far to
1957                                          * io_end->size as the following call
1958                                          * can submit the page for IO.
1959                                          */
1960                                         err = mpage_process_page_bufs(mpd, head,
1961                                                                       bh, lblk);
1962                                         pagevec_release(&pvec);
1963                                         if (err > 0)
1964                                                 err = 0;
1965                                         return err;
1966                                 }
1967                                 if (buffer_delay(bh)) {
1968                                         clear_buffer_delay(bh);
1969                                         bh->b_blocknr = pblock++;
1970                                 }
1971                                 clear_buffer_unwritten(bh);
1972                         } while (lblk++, (bh = bh->b_this_page) != head);
1973
1974                         /*
1975                          * FIXME: This is going to break if dioread_nolock
1976                          * supports blocksize < pagesize as we will try to
1977                          * convert potentially unmapped parts of inode.
1978                          */
1979                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1980                         /* Page fully mapped - let IO run! */
1981                         err = mpage_submit_page(mpd, page);
1982                         if (err < 0) {
1983                                 pagevec_release(&pvec);
1984                                 return err;
1985                         }
1986                         start++;
1987                 }
1988                 pagevec_release(&pvec);
1989         }
1990         /* Extent fully mapped and matches with page boundary. We are done. */
1991         mpd->map.m_len = 0;
1992         mpd->map.m_flags = 0;
1993         return 0;
1994 }
1995
1996 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1997 {
1998         struct inode *inode = mpd->inode;
1999         struct ext4_map_blocks *map = &mpd->map;
2000         int get_blocks_flags;
2001         int err, dioread_nolock;
2002
2003         trace_ext4_da_write_pages_extent(inode, map);
2004         /*
2005          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2006          * to convert an unwritten extent to be initialized (in the case
2007          * where we have written into one or more preallocated blocks).  It is
2008          * possible that we're going to need more metadata blocks than
2009          * previously reserved. However we must not fail because we're in
2010          * writeback and there is nothing we can do about it so it might result
2011          * in data loss.  So use reserved blocks to allocate metadata if
2012          * possible.
2013          *
2014          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2015          * in question are delalloc blocks.  This affects functions in many
2016          * different parts of the allocation call path.  This flag exists
2017          * primarily because we don't want to change *many* call functions, so
2018          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2019          * once the inode's allocation semaphore is taken.
2020          */
2021         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2022                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2023         dioread_nolock = ext4_should_dioread_nolock(inode);
2024         if (dioread_nolock)
2025                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2026         if (map->m_flags & (1 << BH_Delay))
2027                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2028
2029         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2030         if (err < 0)
2031                 return err;
2032         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2033                 if (!mpd->io_submit.io_end->handle &&
2034                     ext4_handle_valid(handle)) {
2035                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2036                         handle->h_rsv_handle = NULL;
2037                 }
2038                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2039         }
2040
2041         BUG_ON(map->m_len == 0);
2042         if (map->m_flags & EXT4_MAP_NEW) {
2043                 struct block_device *bdev = inode->i_sb->s_bdev;
2044                 int i;
2045
2046                 for (i = 0; i < map->m_len; i++)
2047                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2048         }
2049         return 0;
2050 }
2051
2052 /*
2053  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2054  *                               mpd->len and submit pages underlying it for IO
2055  *
2056  * @handle - handle for journal operations
2057  * @mpd - extent to map
2058  * @give_up_on_write - we set this to true iff there is a fatal error and there
2059  *                     is no hope of writing the data. The caller should discard
2060  *                     dirty pages to avoid infinite loops.
2061  *
2062  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2063  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2064  * them to initialized or split the described range from larger unwritten
2065  * extent. Note that we need not map all the described range since allocation
2066  * can return less blocks or the range is covered by more unwritten extents. We
2067  * cannot map more because we are limited by reserved transaction credits. On
2068  * the other hand we always make sure that the last touched page is fully
2069  * mapped so that it can be written out (and thus forward progress is
2070  * guaranteed). After mapping we submit all mapped pages for IO.
2071  */
2072 static int mpage_map_and_submit_extent(handle_t *handle,
2073                                        struct mpage_da_data *mpd,
2074                                        bool *give_up_on_write)
2075 {
2076         struct inode *inode = mpd->inode;
2077         struct ext4_map_blocks *map = &mpd->map;
2078         int err;
2079         loff_t disksize;
2080         int progress = 0;
2081
2082         mpd->io_submit.io_end->offset =
2083                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2084         do {
2085                 err = mpage_map_one_extent(handle, mpd);
2086                 if (err < 0) {
2087                         struct super_block *sb = inode->i_sb;
2088
2089                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2090                                 goto invalidate_dirty_pages;
2091                         /*
2092                          * Let the uper layers retry transient errors.
2093                          * In the case of ENOSPC, if ext4_count_free_blocks()
2094                          * is non-zero, a commit should free up blocks.
2095                          */
2096                         if ((err == -ENOMEM) ||
2097                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2098                                 if (progress)
2099                                         goto update_disksize;
2100                                 return err;
2101                         }
2102                         ext4_msg(sb, KERN_CRIT,
2103                                  "Delayed block allocation failed for "
2104                                  "inode %lu at logical offset %llu with"
2105                                  " max blocks %u with error %d",
2106                                  inode->i_ino,
2107                                  (unsigned long long)map->m_lblk,
2108                                  (unsigned)map->m_len, -err);
2109                         ext4_msg(sb, KERN_CRIT,
2110                                  "This should not happen!! Data will "
2111                                  "be lost\n");
2112                         if (err == -ENOSPC)
2113                                 ext4_print_free_blocks(inode);
2114                 invalidate_dirty_pages:
2115                         *give_up_on_write = true;
2116                         return err;
2117                 }
2118                 progress = 1;
2119                 /*
2120                  * Update buffer state, submit mapped pages, and get us new
2121                  * extent to map
2122                  */
2123                 err = mpage_map_and_submit_buffers(mpd);
2124                 if (err < 0)
2125                         goto update_disksize;
2126         } while (map->m_len);
2127
2128 update_disksize:
2129         /*
2130          * Update on-disk size after IO is submitted.  Races with
2131          * truncate are avoided by checking i_size under i_data_sem.
2132          */
2133         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2134         if (disksize > EXT4_I(inode)->i_disksize) {
2135                 int err2;
2136                 loff_t i_size;
2137
2138                 down_write(&EXT4_I(inode)->i_data_sem);
2139                 i_size = i_size_read(inode);
2140                 if (disksize > i_size)
2141                         disksize = i_size;
2142                 if (disksize > EXT4_I(inode)->i_disksize)
2143                         EXT4_I(inode)->i_disksize = disksize;
2144                 err2 = ext4_mark_inode_dirty(handle, inode);
2145                 up_write(&EXT4_I(inode)->i_data_sem);
2146                 if (err2)
2147                         ext4_error(inode->i_sb,
2148                                    "Failed to mark inode %lu dirty",
2149                                    inode->i_ino);
2150                 if (!err)
2151                         err = err2;
2152         }
2153         return err;
2154 }
2155
2156 /*
2157  * Calculate the total number of credits to reserve for one writepages
2158  * iteration. This is called from ext4_writepages(). We map an extent of
2159  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2160  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2161  * bpp - 1 blocks in bpp different extents.
2162  */
2163 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2164 {
2165         int bpp = ext4_journal_blocks_per_page(inode);
2166
2167         return ext4_meta_trans_blocks(inode,
2168                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2169 }
2170
2171 /*
2172  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2173  *                               and underlying extent to map
2174  *
2175  * @mpd - where to look for pages
2176  *
2177  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2178  * IO immediately. When we find a page which isn't mapped we start accumulating
2179  * extent of buffers underlying these pages that needs mapping (formed by
2180  * either delayed or unwritten buffers). We also lock the pages containing
2181  * these buffers. The extent found is returned in @mpd structure (starting at
2182  * mpd->lblk with length mpd->len blocks).
2183  *
2184  * Note that this function can attach bios to one io_end structure which are
2185  * neither logically nor physically contiguous. Although it may seem as an
2186  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2187  * case as we need to track IO to all buffers underlying a page in one io_end.
2188  */
2189 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2190 {
2191         struct address_space *mapping = mpd->inode->i_mapping;
2192         struct pagevec pvec;
2193         unsigned int nr_pages;
2194         long left = mpd->wbc->nr_to_write;
2195         pgoff_t index = mpd->first_page;
2196         pgoff_t end = mpd->last_page;
2197         int tag;
2198         int i, err = 0;
2199         int blkbits = mpd->inode->i_blkbits;
2200         ext4_lblk_t lblk;
2201         struct buffer_head *head;
2202
2203         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2204                 tag = PAGECACHE_TAG_TOWRITE;
2205         else
2206                 tag = PAGECACHE_TAG_DIRTY;
2207
2208         pagevec_init(&pvec, 0);
2209         mpd->map.m_len = 0;
2210         mpd->next_page = index;
2211         while (index <= end) {
2212                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2213                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2214                 if (nr_pages == 0)
2215                         goto out;
2216
2217                 for (i = 0; i < nr_pages; i++) {
2218                         struct page *page = pvec.pages[i];
2219
2220                         /*
2221                          * At this point, the page may be truncated or
2222                          * invalidated (changing page->mapping to NULL), or
2223                          * even swizzled back from swapper_space to tmpfs file
2224                          * mapping. However, page->index will not change
2225                          * because we have a reference on the page.
2226                          */
2227                         if (page->index > end)
2228                                 goto out;
2229
2230                         /*
2231                          * Accumulated enough dirty pages? This doesn't apply
2232                          * to WB_SYNC_ALL mode. For integrity sync we have to
2233                          * keep going because someone may be concurrently
2234                          * dirtying pages, and we might have synced a lot of
2235                          * newly appeared dirty pages, but have not synced all
2236                          * of the old dirty pages.
2237                          */
2238                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2239                                 goto out;
2240
2241                         /* If we can't merge this page, we are done. */
2242                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2243                                 goto out;
2244
2245                         lock_page(page);
2246                         /*
2247                          * If the page is no longer dirty, or its mapping no
2248                          * longer corresponds to inode we are writing (which
2249                          * means it has been truncated or invalidated), or the
2250                          * page is already under writeback and we are not doing
2251                          * a data integrity writeback, skip the page
2252                          */
2253                         if (!PageDirty(page) ||
2254                             (PageWriteback(page) &&
2255                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2256                             unlikely(page->mapping != mapping)) {
2257                                 unlock_page(page);
2258                                 continue;
2259                         }
2260
2261                         wait_on_page_writeback(page);
2262                         BUG_ON(PageWriteback(page));
2263
2264                         if (mpd->map.m_len == 0)
2265                                 mpd->first_page = page->index;
2266                         mpd->next_page = page->index + 1;
2267                         /* Add all dirty buffers to mpd */
2268                         lblk = ((ext4_lblk_t)page->index) <<
2269                                 (PAGE_CACHE_SHIFT - blkbits);
2270                         head = page_buffers(page);
2271                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2272                         if (err <= 0)
2273                                 goto out;
2274                         err = 0;
2275                         left--;
2276                 }
2277                 pagevec_release(&pvec);
2278                 cond_resched();
2279         }
2280         return 0;
2281 out:
2282         pagevec_release(&pvec);
2283         return err;
2284 }
2285
2286 static int __writepage(struct page *page, struct writeback_control *wbc,
2287                        void *data)
2288 {
2289         struct address_space *mapping = data;
2290         int ret = ext4_writepage(page, wbc);
2291         mapping_set_error(mapping, ret);
2292         return ret;
2293 }
2294
2295 static int ext4_writepages(struct address_space *mapping,
2296                            struct writeback_control *wbc)
2297 {
2298         pgoff_t writeback_index = 0;
2299         long nr_to_write = wbc->nr_to_write;
2300         int range_whole = 0;
2301         int cycled = 1;
2302         handle_t *handle = NULL;
2303         struct mpage_da_data mpd;
2304         struct inode *inode = mapping->host;
2305         int needed_blocks, rsv_blocks = 0, ret = 0;
2306         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2307         bool done;
2308         struct blk_plug plug;
2309         bool give_up_on_write = false;
2310
2311         trace_ext4_writepages(inode, wbc);
2312
2313         /*
2314          * No pages to write? This is mainly a kludge to avoid starting
2315          * a transaction for special inodes like journal inode on last iput()
2316          * because that could violate lock ordering on umount
2317          */
2318         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2319                 goto out_writepages;
2320
2321         if (ext4_should_journal_data(inode)) {
2322                 struct blk_plug plug;
2323
2324                 blk_start_plug(&plug);
2325                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2326                 blk_finish_plug(&plug);
2327                 goto out_writepages;
2328         }
2329
2330         /*
2331          * If the filesystem has aborted, it is read-only, so return
2332          * right away instead of dumping stack traces later on that
2333          * will obscure the real source of the problem.  We test
2334          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2335          * the latter could be true if the filesystem is mounted
2336          * read-only, and in that case, ext4_writepages should
2337          * *never* be called, so if that ever happens, we would want
2338          * the stack trace.
2339          */
2340         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2341                 ret = -EROFS;
2342                 goto out_writepages;
2343         }
2344
2345         if (ext4_should_dioread_nolock(inode)) {
2346                 /*
2347                  * We may need to convert up to one extent per block in
2348                  * the page and we may dirty the inode.
2349                  */
2350                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2351         }
2352
2353         /*
2354          * If we have inline data and arrive here, it means that
2355          * we will soon create the block for the 1st page, so
2356          * we'd better clear the inline data here.
2357          */
2358         if (ext4_has_inline_data(inode)) {
2359                 /* Just inode will be modified... */
2360                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2361                 if (IS_ERR(handle)) {
2362                         ret = PTR_ERR(handle);
2363                         goto out_writepages;
2364                 }
2365                 BUG_ON(ext4_test_inode_state(inode,
2366                                 EXT4_STATE_MAY_INLINE_DATA));
2367                 ext4_destroy_inline_data(handle, inode);
2368                 ext4_journal_stop(handle);
2369         }
2370
2371         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2372                 range_whole = 1;
2373
2374         if (wbc->range_cyclic) {
2375                 writeback_index = mapping->writeback_index;
2376                 if (writeback_index)
2377                         cycled = 0;
2378                 mpd.first_page = writeback_index;
2379                 mpd.last_page = -1;
2380         } else {
2381                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2382                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2383         }
2384
2385         mpd.inode = inode;
2386         mpd.wbc = wbc;
2387         ext4_io_submit_init(&mpd.io_submit, wbc);
2388 retry:
2389         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2390                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2391         done = false;
2392         blk_start_plug(&plug);
2393         while (!done && mpd.first_page <= mpd.last_page) {
2394                 /* For each extent of pages we use new io_end */
2395                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2396                 if (!mpd.io_submit.io_end) {
2397                         ret = -ENOMEM;
2398                         break;
2399                 }
2400
2401                 /*
2402                  * We have two constraints: We find one extent to map and we
2403                  * must always write out whole page (makes a difference when
2404                  * blocksize < pagesize) so that we don't block on IO when we
2405                  * try to write out the rest of the page. Journalled mode is
2406                  * not supported by delalloc.
2407                  */
2408                 BUG_ON(ext4_should_journal_data(inode));
2409                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2410
2411                 /* start a new transaction */
2412                 handle = ext4_journal_start_with_reserve(inode,
2413                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2414                 if (IS_ERR(handle)) {
2415                         ret = PTR_ERR(handle);
2416                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2417                                "%ld pages, ino %lu; err %d", __func__,
2418                                 wbc->nr_to_write, inode->i_ino, ret);
2419                         /* Release allocated io_end */
2420                         ext4_put_io_end(mpd.io_submit.io_end);
2421                         break;
2422                 }
2423
2424                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2425                 ret = mpage_prepare_extent_to_map(&mpd);
2426                 if (!ret) {
2427                         if (mpd.map.m_len)
2428                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2429                                         &give_up_on_write);
2430                         else {
2431                                 /*
2432                                  * We scanned the whole range (or exhausted
2433                                  * nr_to_write), submitted what was mapped and
2434                                  * didn't find anything needing mapping. We are
2435                                  * done.
2436                                  */
2437                                 done = true;
2438                         }
2439                 }
2440                 ext4_journal_stop(handle);
2441                 /* Submit prepared bio */
2442                 ext4_io_submit(&mpd.io_submit);
2443                 /* Unlock pages we didn't use */
2444                 mpage_release_unused_pages(&mpd, give_up_on_write);
2445                 /* Drop our io_end reference we got from init */
2446                 ext4_put_io_end(mpd.io_submit.io_end);
2447
2448                 if (ret == -ENOSPC && sbi->s_journal) {
2449                         /*
2450                          * Commit the transaction which would
2451                          * free blocks released in the transaction
2452                          * and try again
2453                          */
2454                         jbd2_journal_force_commit_nested(sbi->s_journal);
2455                         ret = 0;
2456                         continue;
2457                 }
2458                 /* Fatal error - ENOMEM, EIO... */
2459                 if (ret)
2460                         break;
2461         }
2462         blk_finish_plug(&plug);
2463         if (!ret && !cycled && wbc->nr_to_write > 0) {
2464                 cycled = 1;
2465                 mpd.last_page = writeback_index - 1;
2466                 mpd.first_page = 0;
2467                 goto retry;
2468         }
2469
2470         /* Update index */
2471         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2472                 /*
2473                  * Set the writeback_index so that range_cyclic
2474                  * mode will write it back later
2475                  */
2476                 mapping->writeback_index = mpd.first_page;
2477
2478 out_writepages:
2479         trace_ext4_writepages_result(inode, wbc, ret,
2480                                      nr_to_write - wbc->nr_to_write);
2481         return ret;
2482 }
2483
2484 static int ext4_nonda_switch(struct super_block *sb)
2485 {
2486         s64 free_clusters, dirty_clusters;
2487         struct ext4_sb_info *sbi = EXT4_SB(sb);
2488
2489         /*
2490          * switch to non delalloc mode if we are running low
2491          * on free block. The free block accounting via percpu
2492          * counters can get slightly wrong with percpu_counter_batch getting
2493          * accumulated on each CPU without updating global counters
2494          * Delalloc need an accurate free block accounting. So switch
2495          * to non delalloc when we are near to error range.
2496          */
2497         free_clusters =
2498                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2499         dirty_clusters =
2500                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2501         /*
2502          * Start pushing delalloc when 1/2 of free blocks are dirty.
2503          */
2504         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2505                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2506
2507         if (2 * free_clusters < 3 * dirty_clusters ||
2508             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2509                 /*
2510                  * free block count is less than 150% of dirty blocks
2511                  * or free blocks is less than watermark
2512                  */
2513                 return 1;
2514         }
2515         return 0;
2516 }
2517
2518 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2519                                loff_t pos, unsigned len, unsigned flags,
2520                                struct page **pagep, void **fsdata)
2521 {
2522         int ret, retries = 0;
2523         struct page *page;
2524         pgoff_t index;
2525         struct inode *inode = mapping->host;
2526         handle_t *handle;
2527
2528         index = pos >> PAGE_CACHE_SHIFT;
2529
2530         if (ext4_nonda_switch(inode->i_sb)) {
2531                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2532                 return ext4_write_begin(file, mapping, pos,
2533                                         len, flags, pagep, fsdata);
2534         }
2535         *fsdata = (void *)0;
2536         trace_ext4_da_write_begin(inode, pos, len, flags);
2537
2538         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2539                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2540                                                       pos, len, flags,
2541                                                       pagep, fsdata);
2542                 if (ret < 0)
2543                         return ret;
2544                 if (ret == 1)
2545                         return 0;
2546         }
2547
2548         /*
2549          * grab_cache_page_write_begin() can take a long time if the
2550          * system is thrashing due to memory pressure, or if the page
2551          * is being written back.  So grab it first before we start
2552          * the transaction handle.  This also allows us to allocate
2553          * the page (if needed) without using GFP_NOFS.
2554          */
2555 retry_grab:
2556         page = grab_cache_page_write_begin(mapping, index, flags);
2557         if (!page)
2558                 return -ENOMEM;
2559         unlock_page(page);
2560
2561         /*
2562          * With delayed allocation, we don't log the i_disksize update
2563          * if there is delayed block allocation. But we still need
2564          * to journalling the i_disksize update if writes to the end
2565          * of file which has an already mapped buffer.
2566          */
2567 retry_journal:
2568         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2569         if (IS_ERR(handle)) {
2570                 page_cache_release(page);
2571                 return PTR_ERR(handle);
2572         }
2573
2574         lock_page(page);
2575         if (page->mapping != mapping) {
2576                 /* The page got truncated from under us */
2577                 unlock_page(page);
2578                 page_cache_release(page);
2579                 ext4_journal_stop(handle);
2580                 goto retry_grab;
2581         }
2582         /* In case writeback began while the page was unlocked */
2583         wait_for_stable_page(page);
2584
2585         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2586         if (ret < 0) {
2587                 unlock_page(page);
2588                 ext4_journal_stop(handle);
2589                 /*
2590                  * block_write_begin may have instantiated a few blocks
2591                  * outside i_size.  Trim these off again. Don't need
2592                  * i_size_read because we hold i_mutex.
2593                  */
2594                 if (pos + len > inode->i_size)
2595                         ext4_truncate_failed_write(inode);
2596
2597                 if (ret == -ENOSPC &&
2598                     ext4_should_retry_alloc(inode->i_sb, &retries))
2599                         goto retry_journal;
2600
2601                 page_cache_release(page);
2602                 return ret;
2603         }
2604
2605         *pagep = page;
2606         return ret;
2607 }
2608
2609 /*
2610  * Check if we should update i_disksize
2611  * when write to the end of file but not require block allocation
2612  */
2613 static int ext4_da_should_update_i_disksize(struct page *page,
2614                                             unsigned long offset)
2615 {
2616         struct buffer_head *bh;
2617         struct inode *inode = page->mapping->host;
2618         unsigned int idx;
2619         int i;
2620
2621         bh = page_buffers(page);
2622         idx = offset >> inode->i_blkbits;
2623
2624         for (i = 0; i < idx; i++)
2625                 bh = bh->b_this_page;
2626
2627         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2628                 return 0;
2629         return 1;
2630 }
2631
2632 static int ext4_da_write_end(struct file *file,
2633                              struct address_space *mapping,
2634                              loff_t pos, unsigned len, unsigned copied,
2635                              struct page *page, void *fsdata)
2636 {
2637         struct inode *inode = mapping->host;
2638         int ret = 0, ret2;
2639         handle_t *handle = ext4_journal_current_handle();
2640         loff_t new_i_size;
2641         unsigned long start, end;
2642         int write_mode = (int)(unsigned long)fsdata;
2643
2644         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2645                 return ext4_write_end(file, mapping, pos,
2646                                       len, copied, page, fsdata);
2647
2648         trace_ext4_da_write_end(inode, pos, len, copied);
2649         start = pos & (PAGE_CACHE_SIZE - 1);
2650         end = start + copied - 1;
2651
2652         /*
2653          * generic_write_end() will run mark_inode_dirty() if i_size
2654          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2655          * into that.
2656          */
2657         new_i_size = pos + copied;
2658         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2659                 if (ext4_has_inline_data(inode) ||
2660                     ext4_da_should_update_i_disksize(page, end)) {
2661                         down_write(&EXT4_I(inode)->i_data_sem);
2662                         if (new_i_size > EXT4_I(inode)->i_disksize)
2663                                 EXT4_I(inode)->i_disksize = new_i_size;
2664                         up_write(&EXT4_I(inode)->i_data_sem);
2665                         /* We need to mark inode dirty even if
2666                          * new_i_size is less that inode->i_size
2667                          * bu greater than i_disksize.(hint delalloc)
2668                          */
2669                         ext4_mark_inode_dirty(handle, inode);
2670                 }
2671         }
2672
2673         if (write_mode != CONVERT_INLINE_DATA &&
2674             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2675             ext4_has_inline_data(inode))
2676                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2677                                                      page);
2678         else
2679                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2680                                                         page, fsdata);
2681
2682         copied = ret2;
2683         if (ret2 < 0)
2684                 ret = ret2;
2685         ret2 = ext4_journal_stop(handle);
2686         if (!ret)
2687                 ret = ret2;
2688
2689         return ret ? ret : copied;
2690 }
2691
2692 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2693                                    unsigned int length)
2694 {
2695         /*
2696          * Drop reserved blocks
2697          */
2698         BUG_ON(!PageLocked(page));
2699         if (!page_has_buffers(page))
2700                 goto out;
2701
2702         ext4_da_page_release_reservation(page, offset, length);
2703
2704 out:
2705         ext4_invalidatepage(page, offset, length);
2706
2707         return;
2708 }
2709
2710 /*
2711  * Force all delayed allocation blocks to be allocated for a given inode.
2712  */
2713 int ext4_alloc_da_blocks(struct inode *inode)
2714 {
2715         trace_ext4_alloc_da_blocks(inode);
2716
2717         if (!EXT4_I(inode)->i_reserved_data_blocks)
2718                 return 0;
2719
2720         /*
2721          * We do something simple for now.  The filemap_flush() will
2722          * also start triggering a write of the data blocks, which is
2723          * not strictly speaking necessary (and for users of
2724          * laptop_mode, not even desirable).  However, to do otherwise
2725          * would require replicating code paths in:
2726          *
2727          * ext4_writepages() ->
2728          *    write_cache_pages() ---> (via passed in callback function)
2729          *        __mpage_da_writepage() -->
2730          *           mpage_add_bh_to_extent()
2731          *           mpage_da_map_blocks()
2732          *
2733          * The problem is that write_cache_pages(), located in
2734          * mm/page-writeback.c, marks pages clean in preparation for
2735          * doing I/O, which is not desirable if we're not planning on
2736          * doing I/O at all.
2737          *
2738          * We could call write_cache_pages(), and then redirty all of
2739          * the pages by calling redirty_page_for_writepage() but that
2740          * would be ugly in the extreme.  So instead we would need to
2741          * replicate parts of the code in the above functions,
2742          * simplifying them because we wouldn't actually intend to
2743          * write out the pages, but rather only collect contiguous
2744          * logical block extents, call the multi-block allocator, and
2745          * then update the buffer heads with the block allocations.
2746          *
2747          * For now, though, we'll cheat by calling filemap_flush(),
2748          * which will map the blocks, and start the I/O, but not
2749          * actually wait for the I/O to complete.
2750          */
2751         return filemap_flush(inode->i_mapping);
2752 }
2753
2754 /*
2755  * bmap() is special.  It gets used by applications such as lilo and by
2756  * the swapper to find the on-disk block of a specific piece of data.
2757  *
2758  * Naturally, this is dangerous if the block concerned is still in the
2759  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2760  * filesystem and enables swap, then they may get a nasty shock when the
2761  * data getting swapped to that swapfile suddenly gets overwritten by
2762  * the original zero's written out previously to the journal and
2763  * awaiting writeback in the kernel's buffer cache.
2764  *
2765  * So, if we see any bmap calls here on a modified, data-journaled file,
2766  * take extra steps to flush any blocks which might be in the cache.
2767  */
2768 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2769 {
2770         struct inode *inode = mapping->host;
2771         journal_t *journal;
2772         int err;
2773
2774         /*
2775          * We can get here for an inline file via the FIBMAP ioctl
2776          */
2777         if (ext4_has_inline_data(inode))
2778                 return 0;
2779
2780         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2781                         test_opt(inode->i_sb, DELALLOC)) {
2782                 /*
2783                  * With delalloc we want to sync the file
2784                  * so that we can make sure we allocate
2785                  * blocks for file
2786                  */
2787                 filemap_write_and_wait(mapping);
2788         }
2789
2790         if (EXT4_JOURNAL(inode) &&
2791             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2792                 /*
2793                  * This is a REALLY heavyweight approach, but the use of
2794                  * bmap on dirty files is expected to be extremely rare:
2795                  * only if we run lilo or swapon on a freshly made file
2796                  * do we expect this to happen.
2797                  *
2798                  * (bmap requires CAP_SYS_RAWIO so this does not
2799                  * represent an unprivileged user DOS attack --- we'd be
2800                  * in trouble if mortal users could trigger this path at
2801                  * will.)
2802                  *
2803                  * NB. EXT4_STATE_JDATA is not set on files other than
2804                  * regular files.  If somebody wants to bmap a directory
2805                  * or symlink and gets confused because the buffer
2806                  * hasn't yet been flushed to disk, they deserve
2807                  * everything they get.
2808                  */
2809
2810                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2811                 journal = EXT4_JOURNAL(inode);
2812                 jbd2_journal_lock_updates(journal);
2813                 err = jbd2_journal_flush(journal);
2814                 jbd2_journal_unlock_updates(journal);
2815
2816                 if (err)
2817                         return 0;
2818         }
2819
2820         return generic_block_bmap(mapping, block, ext4_get_block);
2821 }
2822
2823 static int ext4_readpage(struct file *file, struct page *page)
2824 {
2825         int ret = -EAGAIN;
2826         struct inode *inode = page->mapping->host;
2827
2828         trace_ext4_readpage(page);
2829
2830         if (ext4_has_inline_data(inode))
2831                 ret = ext4_readpage_inline(inode, page);
2832
2833         if (ret == -EAGAIN)
2834                 return mpage_readpage(page, ext4_get_block);
2835
2836         return ret;
2837 }
2838
2839 static int
2840 ext4_readpages(struct file *file, struct address_space *mapping,
2841                 struct list_head *pages, unsigned nr_pages)
2842 {
2843         struct inode *inode = mapping->host;
2844
2845         /* If the file has inline data, no need to do readpages. */
2846         if (ext4_has_inline_data(inode))
2847                 return 0;
2848
2849         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2850 }
2851
2852 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2853                                 unsigned int length)
2854 {
2855         trace_ext4_invalidatepage(page, offset, length);
2856
2857         /* No journalling happens on data buffers when this function is used */
2858         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2859
2860         block_invalidatepage(page, offset, length);
2861 }
2862
2863 static int __ext4_journalled_invalidatepage(struct page *page,
2864                                             unsigned int offset,
2865                                             unsigned int length)
2866 {
2867         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2868
2869         trace_ext4_journalled_invalidatepage(page, offset, length);
2870
2871         /*
2872          * If it's a full truncate we just forget about the pending dirtying
2873          */
2874         if (offset == 0 && length == PAGE_CACHE_SIZE)
2875                 ClearPageChecked(page);
2876
2877         return jbd2_journal_invalidatepage(journal, page, offset, length);
2878 }
2879
2880 /* Wrapper for aops... */
2881 static void ext4_journalled_invalidatepage(struct page *page,
2882                                            unsigned int offset,
2883                                            unsigned int length)
2884 {
2885         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2886 }
2887
2888 static int ext4_releasepage(struct page *page, gfp_t wait)
2889 {
2890         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2891
2892         trace_ext4_releasepage(page);
2893
2894         /* Page has dirty journalled data -> cannot release */
2895         if (PageChecked(page))
2896                 return 0;
2897         if (journal)
2898                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2899         else
2900                 return try_to_free_buffers(page);
2901 }
2902
2903 /*
2904  * ext4_get_block used when preparing for a DIO write or buffer write.
2905  * We allocate an uinitialized extent if blocks haven't been allocated.
2906  * The extent will be converted to initialized after the IO is complete.
2907  */
2908 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2909                    struct buffer_head *bh_result, int create)
2910 {
2911         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2912                    inode->i_ino, create);
2913         return _ext4_get_block(inode, iblock, bh_result,
2914                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2915 }
2916
2917 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2918                    struct buffer_head *bh_result, int create)
2919 {
2920         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2921                    inode->i_ino, create);
2922         return _ext4_get_block(inode, iblock, bh_result,
2923                                EXT4_GET_BLOCKS_NO_LOCK);
2924 }
2925
2926 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2927                             ssize_t size, void *private)
2928 {
2929         ext4_io_end_t *io_end = iocb->private;
2930
2931         /* if not async direct IO just return */
2932         if (!io_end)
2933                 return;
2934
2935         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2936                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2937                   iocb->private, io_end->inode->i_ino, iocb, offset,
2938                   size);
2939
2940         iocb->private = NULL;
2941         io_end->offset = offset;
2942         io_end->size = size;
2943         ext4_put_io_end(io_end);
2944 }
2945
2946 /*
2947  * For ext4 extent files, ext4 will do direct-io write to holes,
2948  * preallocated extents, and those write extend the file, no need to
2949  * fall back to buffered IO.
2950  *
2951  * For holes, we fallocate those blocks, mark them as unwritten
2952  * If those blocks were preallocated, we mark sure they are split, but
2953  * still keep the range to write as unwritten.
2954  *
2955  * The unwritten extents will be converted to written when DIO is completed.
2956  * For async direct IO, since the IO may still pending when return, we
2957  * set up an end_io call back function, which will do the conversion
2958  * when async direct IO completed.
2959  *
2960  * If the O_DIRECT write will extend the file then add this inode to the
2961  * orphan list.  So recovery will truncate it back to the original size
2962  * if the machine crashes during the write.
2963  *
2964  */
2965 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2966                               struct iov_iter *iter, loff_t offset)
2967 {
2968         struct file *file = iocb->ki_filp;
2969         struct inode *inode = file->f_mapping->host;
2970         ssize_t ret;
2971         size_t count = iov_iter_count(iter);
2972         int overwrite = 0;
2973         get_block_t *get_block_func = NULL;
2974         int dio_flags = 0;
2975         loff_t final_size = offset + count;
2976         ext4_io_end_t *io_end = NULL;
2977
2978         /* Use the old path for reads and writes beyond i_size. */
2979         if (rw != WRITE || final_size > inode->i_size)
2980                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2981
2982         BUG_ON(iocb->private == NULL);
2983
2984         /*
2985          * Make all waiters for direct IO properly wait also for extent
2986          * conversion. This also disallows race between truncate() and
2987          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2988          */
2989         if (rw == WRITE)
2990                 atomic_inc(&inode->i_dio_count);
2991
2992         /* If we do a overwrite dio, i_mutex locking can be released */
2993         overwrite = *((int *)iocb->private);
2994
2995         if (overwrite) {
2996                 down_read(&EXT4_I(inode)->i_data_sem);
2997                 mutex_unlock(&inode->i_mutex);
2998         }
2999
3000         /*
3001          * We could direct write to holes and fallocate.
3002          *
3003          * Allocated blocks to fill the hole are marked as
3004          * unwritten to prevent parallel buffered read to expose
3005          * the stale data before DIO complete the data IO.
3006          *
3007          * As to previously fallocated extents, ext4 get_block will
3008          * just simply mark the buffer mapped but still keep the
3009          * extents unwritten.
3010          *
3011          * For non AIO case, we will convert those unwritten extents
3012          * to written after return back from blockdev_direct_IO.
3013          *
3014          * For async DIO, the conversion needs to be deferred when the
3015          * IO is completed. The ext4 end_io callback function will be
3016          * called to take care of the conversion work.  Here for async
3017          * case, we allocate an io_end structure to hook to the iocb.
3018          */
3019         iocb->private = NULL;
3020         ext4_inode_aio_set(inode, NULL);
3021         if (!is_sync_kiocb(iocb)) {
3022                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3023                 if (!io_end) {
3024                         ret = -ENOMEM;
3025                         goto retake_lock;
3026                 }
3027                 /*
3028                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3029                  */
3030                 iocb->private = ext4_get_io_end(io_end);
3031                 /*
3032                  * we save the io structure for current async direct
3033                  * IO, so that later ext4_map_blocks() could flag the
3034                  * io structure whether there is a unwritten extents
3035                  * needs to be converted when IO is completed.
3036                  */
3037                 ext4_inode_aio_set(inode, io_end);
3038         }
3039
3040         if (overwrite) {
3041                 get_block_func = ext4_get_block_write_nolock;
3042         } else {
3043                 get_block_func = ext4_get_block_write;
3044                 dio_flags = DIO_LOCKING;
3045         }
3046         ret = __blockdev_direct_IO(rw, iocb, inode,
3047                                    inode->i_sb->s_bdev, iter,
3048                                    offset,
3049                                    get_block_func,
3050                                    ext4_end_io_dio,
3051                                    NULL,
3052                                    dio_flags);
3053
3054         /*
3055          * Put our reference to io_end. This can free the io_end structure e.g.
3056          * in sync IO case or in case of error. It can even perform extent
3057          * conversion if all bios we submitted finished before we got here.
3058          * Note that in that case iocb->private can be already set to NULL
3059          * here.
3060          */
3061         if (io_end) {
3062                 ext4_inode_aio_set(inode, NULL);
3063                 ext4_put_io_end(io_end);
3064                 /*
3065                  * When no IO was submitted ext4_end_io_dio() was not
3066                  * called so we have to put iocb's reference.
3067                  */
3068                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3069                         WARN_ON(iocb->private != io_end);
3070                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3071                         ext4_put_io_end(io_end);
3072                         iocb->private = NULL;
3073                 }
3074         }
3075         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3076                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3077                 int err;
3078                 /*
3079                  * for non AIO case, since the IO is already
3080                  * completed, we could do the conversion right here
3081                  */
3082                 err = ext4_convert_unwritten_extents(NULL, inode,
3083                                                      offset, ret);
3084                 if (err < 0)
3085                         ret = err;
3086                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3087         }
3088
3089 retake_lock:
3090         if (rw == WRITE)
3091                 inode_dio_done(inode);
3092         /* take i_mutex locking again if we do a ovewrite dio */
3093         if (overwrite) {
3094                 up_read(&EXT4_I(inode)->i_data_sem);
3095                 mutex_lock(&inode->i_mutex);
3096         }
3097
3098         return ret;
3099 }
3100
3101 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3102                               struct iov_iter *iter, loff_t offset)
3103 {
3104         struct file *file = iocb->ki_filp;
3105         struct inode *inode = file->f_mapping->host;
3106         size_t count = iov_iter_count(iter);
3107         ssize_t ret;
3108
3109         /*
3110          * If we are doing data journalling we don't support O_DIRECT
3111          */
3112         if (ext4_should_journal_data(inode))
3113                 return 0;
3114
3115         /* Let buffer I/O handle the inline data case. */
3116         if (ext4_has_inline_data(inode))
3117                 return 0;
3118
3119         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3120         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3121                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3122         else
3123                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3124         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3125         return ret;
3126 }
3127
3128 /*
3129  * Pages can be marked dirty completely asynchronously from ext4's journalling
3130  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3131  * much here because ->set_page_dirty is called under VFS locks.  The page is
3132  * not necessarily locked.
3133  *
3134  * We cannot just dirty the page and leave attached buffers clean, because the
3135  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3136  * or jbddirty because all the journalling code will explode.
3137  *
3138  * So what we do is to mark the page "pending dirty" and next time writepage
3139  * is called, propagate that into the buffers appropriately.
3140  */
3141 static int ext4_journalled_set_page_dirty(struct page *page)
3142 {
3143         SetPageChecked(page);
3144         return __set_page_dirty_nobuffers(page);
3145 }
3146
3147 static const struct address_space_operations ext4_aops = {
3148         .readpage               = ext4_readpage,
3149         .readpages              = ext4_readpages,
3150         .writepage              = ext4_writepage,
3151         .writepages             = ext4_writepages,
3152         .write_begin            = ext4_write_begin,
3153         .write_end              = ext4_write_end,
3154         .bmap                   = ext4_bmap,
3155         .invalidatepage         = ext4_invalidatepage,
3156         .releasepage            = ext4_releasepage,
3157         .direct_IO              = ext4_direct_IO,
3158         .migratepage            = buffer_migrate_page,
3159         .is_partially_uptodate  = block_is_partially_uptodate,
3160         .error_remove_page      = generic_error_remove_page,
3161 };
3162
3163 static const struct address_space_operations ext4_journalled_aops = {
3164         .readpage               = ext4_readpage,
3165         .readpages              = ext4_readpages,
3166         .writepage              = ext4_writepage,
3167         .writepages             = ext4_writepages,
3168         .write_begin            = ext4_write_begin,
3169         .write_end              = ext4_journalled_write_end,
3170         .set_page_dirty         = ext4_journalled_set_page_dirty,
3171         .bmap                   = ext4_bmap,
3172         .invalidatepage         = ext4_journalled_invalidatepage,
3173         .releasepage            = ext4_releasepage,
3174         .direct_IO              = ext4_direct_IO,
3175         .is_partially_uptodate  = block_is_partially_uptodate,
3176         .error_remove_page      = generic_error_remove_page,
3177 };
3178
3179 static const struct address_space_operations ext4_da_aops = {
3180         .readpage               = ext4_readpage,
3181         .readpages              = ext4_readpages,
3182         .writepage              = ext4_writepage,
3183         .writepages             = ext4_writepages,
3184         .write_begin            = ext4_da_write_begin,
3185         .write_end              = ext4_da_write_end,
3186         .bmap                   = ext4_bmap,
3187         .invalidatepage         = ext4_da_invalidatepage,
3188         .releasepage            = ext4_releasepage,
3189         .direct_IO              = ext4_direct_IO,
3190         .migratepage            = buffer_migrate_page,
3191         .is_partially_uptodate  = block_is_partially_uptodate,
3192         .error_remove_page      = generic_error_remove_page,
3193 };
3194
3195 void ext4_set_aops(struct inode *inode)
3196 {
3197         switch (ext4_inode_journal_mode(inode)) {
3198         case EXT4_INODE_ORDERED_DATA_MODE:
3199                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3200                 break;
3201         case EXT4_INODE_WRITEBACK_DATA_MODE:
3202                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3203                 break;
3204         case EXT4_INODE_JOURNAL_DATA_MODE:
3205                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3206                 return;
3207         default:
3208                 BUG();
3209         }
3210         if (test_opt(inode->i_sb, DELALLOC))
3211                 inode->i_mapping->a_ops = &ext4_da_aops;
3212         else
3213                 inode->i_mapping->a_ops = &ext4_aops;
3214 }
3215
3216 /*
3217  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3218  * starting from file offset 'from'.  The range to be zero'd must
3219  * be contained with in one block.  If the specified range exceeds
3220  * the end of the block it will be shortened to end of the block
3221  * that cooresponds to 'from'
3222  */
3223 static int ext4_block_zero_page_range(handle_t *handle,
3224                 struct address_space *mapping, loff_t from, loff_t length)
3225 {
3226         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3227         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3228         unsigned blocksize, max, pos;
3229         ext4_lblk_t iblock;
3230         struct inode *inode = mapping->host;
3231         struct buffer_head *bh;
3232         struct page *page;
3233         int err = 0;
3234
3235         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3236                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3237         if (!page)
3238                 return -ENOMEM;
3239
3240         blocksize = inode->i_sb->s_blocksize;
3241         max = blocksize - (offset & (blocksize - 1));
3242
3243         /*
3244          * correct length if it does not fall between
3245          * 'from' and the end of the block
3246          */
3247         if (length > max || length < 0)
3248                 length = max;
3249
3250         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3251
3252         if (!page_has_buffers(page))
3253                 create_empty_buffers(page, blocksize, 0);
3254
3255         /* Find the buffer that contains "offset" */
3256         bh = page_buffers(page);
3257         pos = blocksize;
3258         while (offset >= pos) {
3259                 bh = bh->b_this_page;
3260                 iblock++;
3261                 pos += blocksize;
3262         }
3263         if (buffer_freed(bh)) {
3264                 BUFFER_TRACE(bh, "freed: skip");
3265                 goto unlock;
3266         }
3267         if (!buffer_mapped(bh)) {
3268                 BUFFER_TRACE(bh, "unmapped");
3269                 ext4_get_block(inode, iblock, bh, 0);
3270                 /* unmapped? It's a hole - nothing to do */
3271                 if (!buffer_mapped(bh)) {
3272                         BUFFER_TRACE(bh, "still unmapped");
3273                         goto unlock;
3274                 }
3275         }
3276
3277         /* Ok, it's mapped. Make sure it's up-to-date */
3278         if (PageUptodate(page))
3279                 set_buffer_uptodate(bh);
3280
3281         if (!buffer_uptodate(bh)) {
3282                 err = -EIO;
3283                 ll_rw_block(READ, 1, &bh);
3284                 wait_on_buffer(bh);
3285                 /* Uhhuh. Read error. Complain and punt. */
3286                 if (!buffer_uptodate(bh))
3287                         goto unlock;
3288         }
3289         if (ext4_should_journal_data(inode)) {
3290                 BUFFER_TRACE(bh, "get write access");
3291                 err = ext4_journal_get_write_access(handle, bh);
3292                 if (err)
3293                         goto unlock;
3294         }
3295         zero_user(page, offset, length);
3296         BUFFER_TRACE(bh, "zeroed end of block");
3297
3298         if (ext4_should_journal_data(inode)) {
3299                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3300         } else {
3301                 err = 0;
3302                 mark_buffer_dirty(bh);
3303                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3304                         err = ext4_jbd2_file_inode(handle, inode);
3305         }
3306
3307 unlock:
3308         unlock_page(page);
3309         page_cache_release(page);
3310         return err;
3311 }
3312
3313 /*
3314  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3315  * up to the end of the block which corresponds to `from'.
3316  * This required during truncate. We need to physically zero the tail end
3317  * of that block so it doesn't yield old data if the file is later grown.
3318  */
3319 static int ext4_block_truncate_page(handle_t *handle,
3320                 struct address_space *mapping, loff_t from)
3321 {
3322         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3323         unsigned length;
3324         unsigned blocksize;
3325         struct inode *inode = mapping->host;
3326
3327         blocksize = inode->i_sb->s_blocksize;
3328         length = blocksize - (offset & (blocksize - 1));
3329
3330         return ext4_block_zero_page_range(handle, mapping, from, length);
3331 }
3332
3333 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3334                              loff_t lstart, loff_t length)
3335 {
3336         struct super_block *sb = inode->i_sb;
3337         struct address_space *mapping = inode->i_mapping;
3338         unsigned partial_start, partial_end;
3339         ext4_fsblk_t start, end;
3340         loff_t byte_end = (lstart + length - 1);
3341         int err = 0;
3342
3343         partial_start = lstart & (sb->s_blocksize - 1);
3344         partial_end = byte_end & (sb->s_blocksize - 1);
3345
3346         start = lstart >> sb->s_blocksize_bits;
3347         end = byte_end >> sb->s_blocksize_bits;
3348
3349         /* Handle partial zero within the single block */
3350         if (start == end &&
3351             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3352                 err = ext4_block_zero_page_range(handle, mapping,
3353                                                  lstart, length);
3354                 return err;
3355         }
3356         /* Handle partial zero out on the start of the range */
3357         if (partial_start) {
3358                 err = ext4_block_zero_page_range(handle, mapping,
3359                                                  lstart, sb->s_blocksize);
3360                 if (err)
3361                         return err;
3362         }
3363         /* Handle partial zero out on the end of the range */
3364         if (partial_end != sb->s_blocksize - 1)
3365                 err = ext4_block_zero_page_range(handle, mapping,
3366                                                  byte_end - partial_end,
3367                                                  partial_end + 1);
3368         return err;
3369 }
3370
3371 int ext4_can_truncate(struct inode *inode)
3372 {
3373         if (S_ISREG(inode->i_mode))
3374                 return 1;
3375         if (S_ISDIR(inode->i_mode))
3376                 return 1;
3377         if (S_ISLNK(inode->i_mode))
3378                 return !ext4_inode_is_fast_symlink(inode);
3379         return 0;
3380 }
3381
3382 /*
3383  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3384  * associated with the given offset and length
3385  *
3386  * @inode:  File inode
3387  * @offset: The offset where the hole will begin
3388  * @len:    The length of the hole
3389  *
3390  * Returns: 0 on success or negative on failure
3391  */
3392
3393 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3394 {
3395         struct super_block *sb = inode->i_sb;
3396         ext4_lblk_t first_block, stop_block;
3397         struct address_space *mapping = inode->i_mapping;
3398         loff_t first_block_offset, last_block_offset;
3399         handle_t *handle;
3400         unsigned int credits;
3401         int ret = 0;
3402
3403         if (!S_ISREG(inode->i_mode))
3404                 return -EOPNOTSUPP;
3405
3406         trace_ext4_punch_hole(inode, offset, length, 0);
3407
3408         /*
3409          * Write out all dirty pages to avoid race conditions
3410          * Then release them.
3411          */
3412         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3413                 ret = filemap_write_and_wait_range(mapping, offset,
3414                                                    offset + length - 1);
3415                 if (ret)
3416                         return ret;
3417         }
3418
3419         mutex_lock(&inode->i_mutex);
3420
3421         /* No need to punch hole beyond i_size */
3422         if (offset >= inode->i_size)
3423                 goto out_mutex;
3424
3425         /*
3426          * If the hole extends beyond i_size, set the hole
3427          * to end after the page that contains i_size
3428          */
3429         if (offset + length > inode->i_size) {
3430                 length = inode->i_size +
3431                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3432                    offset;
3433         }
3434
3435         if (offset & (sb->s_blocksize - 1) ||
3436             (offset + length) & (sb->s_blocksize - 1)) {
3437                 /*
3438                  * Attach jinode to inode for jbd2 if we do any zeroing of
3439                  * partial block
3440                  */
3441                 ret = ext4_inode_attach_jinode(inode);
3442                 if (ret < 0)
3443                         goto out_mutex;
3444
3445         }
3446
3447         first_block_offset = round_up(offset, sb->s_blocksize);
3448         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3449
3450         /* Now release the pages and zero block aligned part of pages*/
3451         if (last_block_offset > first_block_offset)
3452                 truncate_pagecache_range(inode, first_block_offset,
3453                                          last_block_offset);
3454
3455         /* Wait all existing dio workers, newcomers will block on i_mutex */
3456         ext4_inode_block_unlocked_dio(inode);
3457         inode_dio_wait(inode);
3458
3459         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3460                 credits = ext4_writepage_trans_blocks(inode);
3461         else
3462                 credits = ext4_blocks_for_truncate(inode);
3463         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3464         if (IS_ERR(handle)) {
3465                 ret = PTR_ERR(handle);
3466                 ext4_std_error(sb, ret);
3467                 goto out_dio;
3468         }
3469
3470         ret = ext4_zero_partial_blocks(handle, inode, offset,
3471                                        length);
3472         if (ret)
3473                 goto out_stop;
3474
3475         first_block = (offset + sb->s_blocksize - 1) >>
3476                 EXT4_BLOCK_SIZE_BITS(sb);
3477         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3478
3479         /* If there are no blocks to remove, return now */
3480         if (first_block >= stop_block)
3481                 goto out_stop;
3482
3483         down_write(&EXT4_I(inode)->i_data_sem);
3484         ext4_discard_preallocations(inode);
3485
3486         ret = ext4_es_remove_extent(inode, first_block,
3487                                     stop_block - first_block);
3488         if (ret) {
3489                 up_write(&EXT4_I(inode)->i_data_sem);
3490                 goto out_stop;
3491         }
3492
3493         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3494                 ret = ext4_ext_remove_space(inode, first_block,
3495                                             stop_block - 1);
3496         else
3497                 ret = ext4_ind_remove_space(handle, inode, first_block,
3498                                             stop_block);
3499
3500         up_write(&EXT4_I(inode)->i_data_sem);
3501         if (IS_SYNC(inode))
3502                 ext4_handle_sync(handle);
3503
3504         /* Now release the pages again to reduce race window */
3505         if (last_block_offset > first_block_offset)
3506                 truncate_pagecache_range(inode, first_block_offset,
3507                                          last_block_offset);
3508
3509         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3510         ext4_mark_inode_dirty(handle, inode);
3511 out_stop:
3512         ext4_journal_stop(handle);
3513 out_dio:
3514         ext4_inode_resume_unlocked_dio(inode);
3515 out_mutex:
3516         mutex_unlock(&inode->i_mutex);
3517         return ret;
3518 }
3519
3520 int ext4_inode_attach_jinode(struct inode *inode)
3521 {
3522         struct ext4_inode_info *ei = EXT4_I(inode);
3523         struct jbd2_inode *jinode;
3524
3525         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3526                 return 0;
3527
3528         jinode = jbd2_alloc_inode(GFP_KERNEL);
3529         spin_lock(&inode->i_lock);
3530         if (!ei->jinode) {
3531                 if (!jinode) {
3532                         spin_unlock(&inode->i_lock);
3533                         return -ENOMEM;
3534                 }
3535                 ei->jinode = jinode;
3536                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3537                 jinode = NULL;
3538         }
3539         spin_unlock(&inode->i_lock);
3540         if (unlikely(jinode != NULL))
3541                 jbd2_free_inode(jinode);
3542         return 0;
3543 }
3544
3545 /*
3546  * ext4_truncate()
3547  *
3548  * We block out ext4_get_block() block instantiations across the entire
3549  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3550  * simultaneously on behalf of the same inode.
3551  *
3552  * As we work through the truncate and commit bits of it to the journal there
3553  * is one core, guiding principle: the file's tree must always be consistent on
3554  * disk.  We must be able to restart the truncate after a crash.
3555  *
3556  * The file's tree may be transiently inconsistent in memory (although it
3557  * probably isn't), but whenever we close off and commit a journal transaction,
3558  * the contents of (the filesystem + the journal) must be consistent and
3559  * restartable.  It's pretty simple, really: bottom up, right to left (although
3560  * left-to-right works OK too).
3561  *
3562  * Note that at recovery time, journal replay occurs *before* the restart of
3563  * truncate against the orphan inode list.
3564  *
3565  * The committed inode has the new, desired i_size (which is the same as
3566  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3567  * that this inode's truncate did not complete and it will again call
3568  * ext4_truncate() to have another go.  So there will be instantiated blocks
3569  * to the right of the truncation point in a crashed ext4 filesystem.  But
3570  * that's fine - as long as they are linked from the inode, the post-crash
3571  * ext4_truncate() run will find them and release them.
3572  */
3573 void ext4_truncate(struct inode *inode)
3574 {
3575         struct ext4_inode_info *ei = EXT4_I(inode);
3576         unsigned int credits;
3577         handle_t *handle;
3578         struct address_space *mapping = inode->i_mapping;
3579
3580         /*
3581          * There is a possibility that we're either freeing the inode
3582          * or it's a completely new inode. In those cases we might not
3583          * have i_mutex locked because it's not necessary.
3584          */
3585         if (!(inode->i_state & (I_NEW|I_FREEING)))
3586                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3587         trace_ext4_truncate_enter(inode);
3588
3589         if (!ext4_can_truncate(inode))
3590                 return;
3591
3592         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3593
3594         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3595                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3596
3597         if (ext4_has_inline_data(inode)) {
3598                 int has_inline = 1;
3599
3600                 ext4_inline_data_truncate(inode, &has_inline);
3601                 if (has_inline)
3602                         return;
3603         }
3604
3605         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3606         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3607                 if (ext4_inode_attach_jinode(inode) < 0)
3608                         return;
3609         }
3610
3611         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612                 credits = ext4_writepage_trans_blocks(inode);
3613         else
3614                 credits = ext4_blocks_for_truncate(inode);
3615
3616         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3617         if (IS_ERR(handle)) {
3618                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3619                 return;
3620         }
3621
3622         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3623                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3624
3625         /*
3626          * We add the inode to the orphan list, so that if this
3627          * truncate spans multiple transactions, and we crash, we will
3628          * resume the truncate when the filesystem recovers.  It also
3629          * marks the inode dirty, to catch the new size.
3630          *
3631          * Implication: the file must always be in a sane, consistent
3632          * truncatable state while each transaction commits.
3633          */
3634         if (ext4_orphan_add(handle, inode))
3635                 goto out_stop;
3636
3637         down_write(&EXT4_I(inode)->i_data_sem);
3638
3639         ext4_discard_preallocations(inode);
3640
3641         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3642                 ext4_ext_truncate(handle, inode);
3643         else
3644                 ext4_ind_truncate(handle, inode);
3645
3646         up_write(&ei->i_data_sem);
3647
3648         if (IS_SYNC(inode))
3649                 ext4_handle_sync(handle);
3650
3651 out_stop:
3652         /*
3653          * If this was a simple ftruncate() and the file will remain alive,
3654          * then we need to clear up the orphan record which we created above.
3655          * However, if this was a real unlink then we were called by
3656          * ext4_delete_inode(), and we allow that function to clean up the
3657          * orphan info for us.
3658          */
3659         if (inode->i_nlink)
3660                 ext4_orphan_del(handle, inode);
3661
3662         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3663         ext4_mark_inode_dirty(handle, inode);
3664         ext4_journal_stop(handle);
3665
3666         trace_ext4_truncate_exit(inode);
3667 }
3668
3669 /*
3670  * ext4_get_inode_loc returns with an extra refcount against the inode's
3671  * underlying buffer_head on success. If 'in_mem' is true, we have all
3672  * data in memory that is needed to recreate the on-disk version of this
3673  * inode.
3674  */
3675 static int __ext4_get_inode_loc(struct inode *inode,
3676                                 struct ext4_iloc *iloc, int in_mem)
3677 {
3678         struct ext4_group_desc  *gdp;
3679         struct buffer_head      *bh;
3680         struct super_block      *sb = inode->i_sb;
3681         ext4_fsblk_t            block;
3682         int                     inodes_per_block, inode_offset;
3683
3684         iloc->bh = NULL;
3685         if (!ext4_valid_inum(sb, inode->i_ino))
3686                 return -EIO;
3687
3688         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3689         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3690         if (!gdp)
3691                 return -EIO;
3692
3693         /*
3694          * Figure out the offset within the block group inode table
3695          */
3696         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3697         inode_offset = ((inode->i_ino - 1) %
3698                         EXT4_INODES_PER_GROUP(sb));
3699         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3700         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3701
3702         bh = sb_getblk(sb, block);
3703         if (unlikely(!bh))
3704                 return -ENOMEM;
3705         if (!buffer_uptodate(bh)) {
3706                 lock_buffer(bh);
3707
3708                 /*
3709                  * If the buffer has the write error flag, we have failed
3710                  * to write out another inode in the same block.  In this
3711                  * case, we don't have to read the block because we may
3712                  * read the old inode data successfully.
3713                  */
3714                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3715                         set_buffer_uptodate(bh);
3716
3717                 if (buffer_uptodate(bh)) {
3718                         /* someone brought it uptodate while we waited */
3719                         unlock_buffer(bh);
3720                         goto has_buffer;
3721                 }
3722
3723                 /*
3724                  * If we have all information of the inode in memory and this
3725                  * is the only valid inode in the block, we need not read the
3726                  * block.
3727                  */
3728                 if (in_mem) {
3729                         struct buffer_head *bitmap_bh;
3730                         int i, start;
3731
3732                         start = inode_offset & ~(inodes_per_block - 1);
3733
3734                         /* Is the inode bitmap in cache? */
3735                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3736                         if (unlikely(!bitmap_bh))
3737                                 goto make_io;
3738
3739                         /*
3740                          * If the inode bitmap isn't in cache then the
3741                          * optimisation may end up performing two reads instead
3742                          * of one, so skip it.
3743                          */
3744                         if (!buffer_uptodate(bitmap_bh)) {
3745                                 brelse(bitmap_bh);
3746                                 goto make_io;
3747                         }
3748                         for (i = start; i < start + inodes_per_block; i++) {
3749                                 if (i == inode_offset)
3750                                         continue;
3751                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3752                                         break;
3753                         }
3754                         brelse(bitmap_bh);
3755                         if (i == start + inodes_per_block) {
3756                                 /* all other inodes are free, so skip I/O */
3757                                 memset(bh->b_data, 0, bh->b_size);
3758                                 set_buffer_uptodate(bh);
3759                                 unlock_buffer(bh);
3760                                 goto has_buffer;
3761                         }
3762                 }
3763
3764 make_io:
3765                 /*
3766                  * If we need to do any I/O, try to pre-readahead extra
3767                  * blocks from the inode table.
3768                  */
3769                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3770                         ext4_fsblk_t b, end, table;
3771                         unsigned num;
3772                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3773
3774                         table = ext4_inode_table(sb, gdp);
3775                         /* s_inode_readahead_blks is always a power of 2 */
3776                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3777                         if (table > b)
3778                                 b = table;
3779                         end = b + ra_blks;
3780                         num = EXT4_INODES_PER_GROUP(sb);
3781                         if (ext4_has_group_desc_csum(sb))
3782                                 num -= ext4_itable_unused_count(sb, gdp);
3783                         table += num / inodes_per_block;
3784                         if (end > table)
3785                                 end = table;
3786                         while (b <= end)
3787                                 sb_breadahead(sb, b++);
3788                 }
3789
3790                 /*
3791                  * There are other valid inodes in the buffer, this inode
3792                  * has in-inode xattrs, or we don't have this inode in memory.
3793                  * Read the block from disk.
3794                  */
3795                 trace_ext4_load_inode(inode);
3796                 get_bh(bh);
3797                 bh->b_end_io = end_buffer_read_sync;
3798                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3799                 wait_on_buffer(bh);
3800                 if (!buffer_uptodate(bh)) {
3801                         EXT4_ERROR_INODE_BLOCK(inode, block,
3802                                                "unable to read itable block");
3803                         brelse(bh);
3804                         return -EIO;
3805                 }
3806         }
3807 has_buffer:
3808         iloc->bh = bh;
3809         return 0;
3810 }
3811
3812 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3813 {
3814         /* We have all inode data except xattrs in memory here. */
3815         return __ext4_get_inode_loc(inode, iloc,
3816                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3817 }
3818
3819 void ext4_set_inode_flags(struct inode *inode)
3820 {
3821         unsigned int flags = EXT4_I(inode)->i_flags;
3822         unsigned int new_fl = 0;
3823
3824         if (flags & EXT4_SYNC_FL)
3825                 new_fl |= S_SYNC;
3826         if (flags & EXT4_APPEND_FL)
3827                 new_fl |= S_APPEND;
3828         if (flags & EXT4_IMMUTABLE_FL)
3829                 new_fl |= S_IMMUTABLE;
3830         if (flags & EXT4_NOATIME_FL)
3831                 new_fl |= S_NOATIME;
3832         if (flags & EXT4_DIRSYNC_FL)
3833                 new_fl |= S_DIRSYNC;
3834         inode_set_flags(inode, new_fl,
3835                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3836 }
3837
3838 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3839 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3840 {
3841         unsigned int vfs_fl;
3842         unsigned long old_fl, new_fl;
3843
3844         do {
3845                 vfs_fl = ei->vfs_inode.i_flags;
3846                 old_fl = ei->i_flags;
3847                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3848                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3849                                 EXT4_DIRSYNC_FL);
3850                 if (vfs_fl & S_SYNC)
3851                         new_fl |= EXT4_SYNC_FL;
3852                 if (vfs_fl & S_APPEND)
3853                         new_fl |= EXT4_APPEND_FL;
3854                 if (vfs_fl & S_IMMUTABLE)
3855                         new_fl |= EXT4_IMMUTABLE_FL;
3856                 if (vfs_fl & S_NOATIME)
3857                         new_fl |= EXT4_NOATIME_FL;
3858                 if (vfs_fl & S_DIRSYNC)
3859                         new_fl |= EXT4_DIRSYNC_FL;
3860         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3861 }
3862
3863 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3864                                   struct ext4_inode_info *ei)
3865 {
3866         blkcnt_t i_blocks ;
3867         struct inode *inode = &(ei->vfs_inode);
3868         struct super_block *sb = inode->i_sb;
3869
3870         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3871                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3872                 /* we are using combined 48 bit field */
3873                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3874                                         le32_to_cpu(raw_inode->i_blocks_lo);
3875                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3876                         /* i_blocks represent file system block size */
3877                         return i_blocks  << (inode->i_blkbits - 9);
3878                 } else {
3879                         return i_blocks;
3880                 }
3881         } else {
3882                 return le32_to_cpu(raw_inode->i_blocks_lo);
3883         }
3884 }
3885
3886 static inline void ext4_iget_extra_inode(struct inode *inode,
3887                                          struct ext4_inode *raw_inode,
3888                                          struct ext4_inode_info *ei)
3889 {
3890         __le32 *magic = (void *)raw_inode +
3891                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3892         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3893                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3894                 ext4_find_inline_data_nolock(inode);
3895         } else
3896                 EXT4_I(inode)->i_inline_off = 0;
3897 }
3898
3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3900 {
3901         struct ext4_iloc iloc;
3902         struct ext4_inode *raw_inode;
3903         struct ext4_inode_info *ei;
3904         struct inode *inode;
3905         journal_t *journal = EXT4_SB(sb)->s_journal;
3906         long ret;
3907         int block;
3908         uid_t i_uid;
3909         gid_t i_gid;
3910
3911         inode = iget_locked(sb, ino);
3912         if (!inode)
3913                 return ERR_PTR(-ENOMEM);
3914         if (!(inode->i_state & I_NEW))
3915                 return inode;
3916
3917         ei = EXT4_I(inode);
3918         iloc.bh = NULL;
3919
3920         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3921         if (ret < 0)
3922                 goto bad_inode;
3923         raw_inode = ext4_raw_inode(&iloc);
3924
3925         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3926                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3927                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3928                     EXT4_INODE_SIZE(inode->i_sb)) {
3929                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3930                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3931                                 EXT4_INODE_SIZE(inode->i_sb));
3932                         ret = -EIO;
3933                         goto bad_inode;
3934                 }
3935         } else
3936                 ei->i_extra_isize = 0;
3937
3938         /* Precompute checksum seed for inode metadata */
3939         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3940                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3941                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3942                 __u32 csum;
3943                 __le32 inum = cpu_to_le32(inode->i_ino);
3944                 __le32 gen = raw_inode->i_generation;
3945                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3946                                    sizeof(inum));
3947                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3948                                               sizeof(gen));
3949         }
3950
3951         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3952                 EXT4_ERROR_INODE(inode, "checksum invalid");
3953                 ret = -EIO;
3954                 goto bad_inode;
3955         }
3956
3957         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3958         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3959         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3960         if (!(test_opt(inode->i_sb, NO_UID32))) {
3961                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3962                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3963         }
3964         i_uid_write(inode, i_uid);
3965         i_gid_write(inode, i_gid);
3966         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3967
3968         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3969         ei->i_inline_off = 0;
3970         ei->i_dir_start_lookup = 0;
3971         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3972         /* We now have enough fields to check if the inode was active or not.
3973          * This is needed because nfsd might try to access dead inodes
3974          * the test is that same one that e2fsck uses
3975          * NeilBrown 1999oct15
3976          */
3977         if (inode->i_nlink == 0) {
3978                 if ((inode->i_mode == 0 ||
3979                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3980                     ino != EXT4_BOOT_LOADER_INO) {
3981                         /* this inode is deleted */
3982                         ret = -ESTALE;
3983                         goto bad_inode;
3984                 }
3985                 /* The only unlinked inodes we let through here have
3986                  * valid i_mode and are being read by the orphan
3987                  * recovery code: that's fine, we're about to complete
3988                  * the process of deleting those.
3989                  * OR it is the EXT4_BOOT_LOADER_INO which is
3990                  * not initialized on a new filesystem. */
3991         }
3992         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3993         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3994         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3995         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3996                 ei->i_file_acl |=
3997                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3998         inode->i_size = ext4_isize(raw_inode);
3999         ei->i_disksize = inode->i_size;
4000 #ifdef CONFIG_QUOTA
4001         ei->i_reserved_quota = 0;
4002 #endif
4003         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4004         ei->i_block_group = iloc.block_group;
4005         ei->i_last_alloc_group = ~0;
4006         /*
4007          * NOTE! The in-memory inode i_data array is in little-endian order
4008          * even on big-endian machines: we do NOT byteswap the block numbers!
4009          */
4010         for (block = 0; block < EXT4_N_BLOCKS; block++)
4011                 ei->i_data[block] = raw_inode->i_block[block];
4012         INIT_LIST_HEAD(&ei->i_orphan);
4013
4014         /*
4015          * Set transaction id's of transactions that have to be committed
4016          * to finish f[data]sync. We set them to currently running transaction
4017          * as we cannot be sure that the inode or some of its metadata isn't
4018          * part of the transaction - the inode could have been reclaimed and
4019          * now it is reread from disk.
4020          */
4021         if (journal) {
4022                 transaction_t *transaction;
4023                 tid_t tid;
4024
4025                 read_lock(&journal->j_state_lock);
4026                 if (journal->j_running_transaction)
4027                         transaction = journal->j_running_transaction;
4028                 else
4029                         transaction = journal->j_committing_transaction;
4030                 if (transaction)
4031                         tid = transaction->t_tid;
4032                 else
4033                         tid = journal->j_commit_sequence;
4034                 read_unlock(&journal->j_state_lock);
4035                 ei->i_sync_tid = tid;
4036                 ei->i_datasync_tid = tid;
4037         }
4038
4039         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4040                 if (ei->i_extra_isize == 0) {
4041                         /* The extra space is currently unused. Use it. */
4042                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4043                                             EXT4_GOOD_OLD_INODE_SIZE;
4044                 } else {
4045                         ext4_iget_extra_inode(inode, raw_inode, ei);
4046                 }
4047         }
4048
4049         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4050         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4051         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4052         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4053
4054         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4055                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4056                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4057                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4058                                 inode->i_version |=
4059                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4060                 }
4061         }
4062
4063         ret = 0;
4064         if (ei->i_file_acl &&
4065             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4066                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4067                                  ei->i_file_acl);
4068                 ret = -EIO;
4069                 goto bad_inode;
4070         } else if (!ext4_has_inline_data(inode)) {
4071                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4072                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4073                             (S_ISLNK(inode->i_mode) &&
4074                              !ext4_inode_is_fast_symlink(inode))))
4075                                 /* Validate extent which is part of inode */
4076                                 ret = ext4_ext_check_inode(inode);
4077                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078                            (S_ISLNK(inode->i_mode) &&
4079                             !ext4_inode_is_fast_symlink(inode))) {
4080                         /* Validate block references which are part of inode */
4081                         ret = ext4_ind_check_inode(inode);
4082                 }
4083         }
4084         if (ret)
4085                 goto bad_inode;
4086
4087         if (S_ISREG(inode->i_mode)) {
4088                 inode->i_op = &ext4_file_inode_operations;
4089                 inode->i_fop = &ext4_file_operations;
4090                 ext4_set_aops(inode);
4091         } else if (S_ISDIR(inode->i_mode)) {
4092                 inode->i_op = &ext4_dir_inode_operations;
4093                 inode->i_fop = &ext4_dir_operations;
4094         } else if (S_ISLNK(inode->i_mode)) {
4095                 if (ext4_inode_is_fast_symlink(inode)) {
4096                         inode->i_op = &ext4_fast_symlink_inode_operations;
4097                         nd_terminate_link(ei->i_data, inode->i_size,
4098                                 sizeof(ei->i_data) - 1);
4099                 } else {
4100                         inode->i_op = &ext4_symlink_inode_operations;
4101                         ext4_set_aops(inode);
4102                 }
4103         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4104               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4105                 inode->i_op = &ext4_special_inode_operations;
4106                 if (raw_inode->i_block[0])
4107                         init_special_inode(inode, inode->i_mode,
4108                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4109                 else
4110                         init_special_inode(inode, inode->i_mode,
4111                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4112         } else if (ino == EXT4_BOOT_LOADER_INO) {
4113                 make_bad_inode(inode);
4114         } else {
4115                 ret = -EIO;
4116                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4117                 goto bad_inode;
4118         }
4119         brelse(iloc.bh);
4120         ext4_set_inode_flags(inode);
4121         unlock_new_inode(inode);
4122         return inode;
4123
4124 bad_inode:
4125         brelse(iloc.bh);
4126         iget_failed(inode);
4127         return ERR_PTR(ret);
4128 }
4129
4130 static int ext4_inode_blocks_set(handle_t *handle,
4131                                 struct ext4_inode *raw_inode,
4132                                 struct ext4_inode_info *ei)
4133 {
4134         struct inode *inode = &(ei->vfs_inode);
4135         u64 i_blocks = inode->i_blocks;
4136         struct super_block *sb = inode->i_sb;
4137
4138         if (i_blocks <= ~0U) {
4139                 /*
4140                  * i_blocks can be represented in a 32 bit variable
4141                  * as multiple of 512 bytes
4142                  */
4143                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4144                 raw_inode->i_blocks_high = 0;
4145                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4146                 return 0;
4147         }
4148         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4149                 return -EFBIG;
4150
4151         if (i_blocks <= 0xffffffffffffULL) {
4152                 /*
4153                  * i_blocks can be represented in a 48 bit variable
4154                  * as multiple of 512 bytes
4155                  */
4156                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4157                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4158                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4159         } else {
4160                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4161                 /* i_block is stored in file system block size */
4162                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4163                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4164                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4165         }
4166         return 0;
4167 }
4168
4169 /*
4170  * Post the struct inode info into an on-disk inode location in the
4171  * buffer-cache.  This gobbles the caller's reference to the
4172  * buffer_head in the inode location struct.
4173  *
4174  * The caller must have write access to iloc->bh.
4175  */
4176 static int ext4_do_update_inode(handle_t *handle,
4177                                 struct inode *inode,
4178                                 struct ext4_iloc *iloc)
4179 {
4180         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4181         struct ext4_inode_info *ei = EXT4_I(inode);
4182         struct buffer_head *bh = iloc->bh;
4183         struct super_block *sb = inode->i_sb;
4184         int err = 0, rc, block;
4185         int need_datasync = 0, set_large_file = 0;
4186         uid_t i_uid;
4187         gid_t i_gid;
4188
4189         spin_lock(&ei->i_raw_lock);
4190
4191         /* For fields not tracked in the in-memory inode,
4192          * initialise them to zero for new inodes. */
4193         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4194                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4195
4196         ext4_get_inode_flags(ei);
4197         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4198         i_uid = i_uid_read(inode);
4199         i_gid = i_gid_read(inode);
4200         if (!(test_opt(inode->i_sb, NO_UID32))) {
4201                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4202                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4203 /*
4204  * Fix up interoperability with old kernels. Otherwise, old inodes get
4205  * re-used with the upper 16 bits of the uid/gid intact
4206  */
4207                 if (!ei->i_dtime) {
4208                         raw_inode->i_uid_high =
4209                                 cpu_to_le16(high_16_bits(i_uid));
4210                         raw_inode->i_gid_high =
4211                                 cpu_to_le16(high_16_bits(i_gid));
4212                 } else {
4213                         raw_inode->i_uid_high = 0;
4214                         raw_inode->i_gid_high = 0;
4215                 }
4216         } else {
4217                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4218                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4219                 raw_inode->i_uid_high = 0;
4220                 raw_inode->i_gid_high = 0;
4221         }
4222         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4223
4224         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4225         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4226         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4227         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4228
4229         if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4230                 spin_unlock(&ei->i_raw_lock);
4231                 goto out_brelse;
4232         }
4233         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4234         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4235         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4236                 raw_inode->i_file_acl_high =
4237                         cpu_to_le16(ei->i_file_acl >> 32);
4238         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4239         if (ei->i_disksize != ext4_isize(raw_inode)) {
4240                 ext4_isize_set(raw_inode, ei->i_disksize);
4241                 need_datasync = 1;
4242         }
4243         if (ei->i_disksize > 0x7fffffffULL) {
4244                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4246                                 EXT4_SB(sb)->s_es->s_rev_level ==
4247                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4248                         set_large_file = 1;
4249         }
4250         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4251         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4252                 if (old_valid_dev(inode->i_rdev)) {
4253                         raw_inode->i_block[0] =
4254                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4255                         raw_inode->i_block[1] = 0;
4256                 } else {
4257                         raw_inode->i_block[0] = 0;
4258                         raw_inode->i_block[1] =
4259                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4260                         raw_inode->i_block[2] = 0;
4261                 }
4262         } else if (!ext4_has_inline_data(inode)) {
4263                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4264                         raw_inode->i_block[block] = ei->i_data[block];
4265         }
4266
4267         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4268                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4269                 if (ei->i_extra_isize) {
4270                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4271                                 raw_inode->i_version_hi =
4272                                         cpu_to_le32(inode->i_version >> 32);
4273                         raw_inode->i_extra_isize =
4274                                 cpu_to_le16(ei->i_extra_isize);
4275                 }
4276         }
4277
4278         ext4_inode_csum_set(inode, raw_inode, ei);
4279
4280         spin_unlock(&ei->i_raw_lock);
4281
4282         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4283         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4284         if (!err)
4285                 err = rc;
4286         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4287         if (set_large_file) {
4288                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4289                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4290                 if (err)
4291                         goto out_brelse;
4292                 ext4_update_dynamic_rev(sb);
4293                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4294                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4295                 ext4_handle_sync(handle);
4296                 err = ext4_handle_dirty_super(handle, sb);
4297         }
4298         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4299 out_brelse:
4300         brelse(bh);
4301         ext4_std_error(inode->i_sb, err);
4302         return err;
4303 }
4304
4305 /*
4306  * ext4_write_inode()
4307  *
4308  * We are called from a few places:
4309  *
4310  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4311  *   Here, there will be no transaction running. We wait for any running
4312  *   transaction to commit.
4313  *
4314  * - Within flush work (sys_sync(), kupdate and such).
4315  *   We wait on commit, if told to.
4316  *
4317  * - Within iput_final() -> write_inode_now()
4318  *   We wait on commit, if told to.
4319  *
4320  * In all cases it is actually safe for us to return without doing anything,
4321  * because the inode has been copied into a raw inode buffer in
4322  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4323  * writeback.
4324  *
4325  * Note that we are absolutely dependent upon all inode dirtiers doing the
4326  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4327  * which we are interested.
4328  *
4329  * It would be a bug for them to not do this.  The code:
4330  *
4331  *      mark_inode_dirty(inode)
4332  *      stuff();
4333  *      inode->i_size = expr;
4334  *
4335  * is in error because write_inode() could occur while `stuff()' is running,
4336  * and the new i_size will be lost.  Plus the inode will no longer be on the
4337  * superblock's dirty inode list.
4338  */
4339 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4340 {
4341         int err;
4342
4343         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4344                 return 0;
4345
4346         if (EXT4_SB(inode->i_sb)->s_journal) {
4347                 if (ext4_journal_current_handle()) {
4348                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4349                         dump_stack();
4350                         return -EIO;
4351                 }
4352
4353                 /*
4354                  * No need to force transaction in WB_SYNC_NONE mode. Also
4355                  * ext4_sync_fs() will force the commit after everything is
4356                  * written.
4357                  */
4358                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4359                         return 0;
4360
4361                 err = ext4_force_commit(inode->i_sb);
4362         } else {
4363                 struct ext4_iloc iloc;
4364
4365                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4366                 if (err)
4367                         return err;
4368                 /*
4369                  * sync(2) will flush the whole buffer cache. No need to do
4370                  * it here separately for each inode.
4371                  */
4372                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4373                         sync_dirty_buffer(iloc.bh);
4374                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4375                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376                                          "IO error syncing inode");
4377                         err = -EIO;
4378                 }
4379                 brelse(iloc.bh);
4380         }
4381         return err;
4382 }
4383
4384 /*
4385  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386  * buffers that are attached to a page stradding i_size and are undergoing
4387  * commit. In that case we have to wait for commit to finish and try again.
4388  */
4389 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390 {
4391         struct page *page;
4392         unsigned offset;
4393         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394         tid_t commit_tid = 0;
4395         int ret;
4396
4397         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398         /*
4399          * All buffers in the last page remain valid? Then there's nothing to
4400          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401          * blocksize case
4402          */
4403         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404                 return;
4405         while (1) {
4406                 page = find_lock_page(inode->i_mapping,
4407                                       inode->i_size >> PAGE_CACHE_SHIFT);
4408                 if (!page)
4409                         return;
4410                 ret = __ext4_journalled_invalidatepage(page, offset,
4411                                                 PAGE_CACHE_SIZE - offset);
4412                 unlock_page(page);
4413                 page_cache_release(page);
4414                 if (ret != -EBUSY)
4415                         return;
4416                 commit_tid = 0;
4417                 read_lock(&journal->j_state_lock);
4418                 if (journal->j_committing_transaction)
4419                         commit_tid = journal->j_committing_transaction->t_tid;
4420                 read_unlock(&journal->j_state_lock);
4421                 if (commit_tid)
4422                         jbd2_log_wait_commit(journal, commit_tid);
4423         }
4424 }
4425
4426 /*
4427  * ext4_setattr()
4428  *
4429  * Called from notify_change.
4430  *
4431  * We want to trap VFS attempts to truncate the file as soon as
4432  * possible.  In particular, we want to make sure that when the VFS
4433  * shrinks i_size, we put the inode on the orphan list and modify
4434  * i_disksize immediately, so that during the subsequent flushing of
4435  * dirty pages and freeing of disk blocks, we can guarantee that any
4436  * commit will leave the blocks being flushed in an unused state on
4437  * disk.  (On recovery, the inode will get truncated and the blocks will
4438  * be freed, so we have a strong guarantee that no future commit will
4439  * leave these blocks visible to the user.)
4440  *
4441  * Another thing we have to assure is that if we are in ordered mode
4442  * and inode is still attached to the committing transaction, we must
4443  * we start writeout of all the dirty pages which are being truncated.
4444  * This way we are sure that all the data written in the previous
4445  * transaction are already on disk (truncate waits for pages under
4446  * writeback).
4447  *
4448  * Called with inode->i_mutex down.
4449  */
4450 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4451 {
4452         struct inode *inode = dentry->d_inode;
4453         int error, rc = 0;
4454         int orphan = 0;
4455         const unsigned int ia_valid = attr->ia_valid;
4456
4457         error = inode_change_ok(inode, attr);
4458         if (error)
4459                 return error;
4460
4461         if (is_quota_modification(inode, attr))
4462                 dquot_initialize(inode);
4463         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4465                 handle_t *handle;
4466
4467                 /* (user+group)*(old+new) structure, inode write (sb,
4468                  * inode block, ? - but truncate inode update has it) */
4469                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4472                 if (IS_ERR(handle)) {
4473                         error = PTR_ERR(handle);
4474                         goto err_out;
4475                 }
4476                 error = dquot_transfer(inode, attr);
4477                 if (error) {
4478                         ext4_journal_stop(handle);
4479                         return error;
4480                 }
4481                 /* Update corresponding info in inode so that everything is in
4482                  * one transaction */
4483                 if (attr->ia_valid & ATTR_UID)
4484                         inode->i_uid = attr->ia_uid;
4485                 if (attr->ia_valid & ATTR_GID)
4486                         inode->i_gid = attr->ia_gid;
4487                 error = ext4_mark_inode_dirty(handle, inode);
4488                 ext4_journal_stop(handle);
4489         }
4490
4491         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4492                 handle_t *handle;
4493
4494                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4495                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4496
4497                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4498                                 return -EFBIG;
4499                 }
4500
4501                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4502                         inode_inc_iversion(inode);
4503
4504                 if (S_ISREG(inode->i_mode) &&
4505                     (attr->ia_size < inode->i_size)) {
4506                         if (ext4_should_order_data(inode)) {
4507                                 error = ext4_begin_ordered_truncate(inode,
4508                                                             attr->ia_size);
4509                                 if (error)
4510                                         goto err_out;
4511                         }
4512                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4513                         if (IS_ERR(handle)) {
4514                                 error = PTR_ERR(handle);
4515                                 goto err_out;
4516                         }
4517                         if (ext4_handle_valid(handle)) {
4518                                 error = ext4_orphan_add(handle, inode);
4519                                 orphan = 1;
4520                         }
4521                         down_write(&EXT4_I(inode)->i_data_sem);
4522                         EXT4_I(inode)->i_disksize = attr->ia_size;
4523                         rc = ext4_mark_inode_dirty(handle, inode);
4524                         if (!error)
4525                                 error = rc;
4526                         /*
4527                          * We have to update i_size under i_data_sem together
4528                          * with i_disksize to avoid races with writeback code
4529                          * running ext4_wb_update_i_disksize().
4530                          */
4531                         if (!error)
4532                                 i_size_write(inode, attr->ia_size);
4533                         up_write(&EXT4_I(inode)->i_data_sem);
4534                         ext4_journal_stop(handle);
4535                         if (error) {
4536                                 ext4_orphan_del(NULL, inode);
4537                                 goto err_out;
4538                         }
4539                 } else
4540                         i_size_write(inode, attr->ia_size);
4541
4542                 /*
4543                  * Blocks are going to be removed from the inode. Wait
4544                  * for dio in flight.  Temporarily disable
4545                  * dioread_nolock to prevent livelock.
4546                  */
4547                 if (orphan) {
4548                         if (!ext4_should_journal_data(inode)) {
4549                                 ext4_inode_block_unlocked_dio(inode);
4550                                 inode_dio_wait(inode);
4551                                 ext4_inode_resume_unlocked_dio(inode);
4552                         } else
4553                                 ext4_wait_for_tail_page_commit(inode);
4554                 }
4555                 /*
4556                  * Truncate pagecache after we've waited for commit
4557                  * in data=journal mode to make pages freeable.
4558                  */
4559                         truncate_pagecache(inode, inode->i_size);
4560         }
4561         /*
4562          * We want to call ext4_truncate() even if attr->ia_size ==
4563          * inode->i_size for cases like truncation of fallocated space
4564          */
4565         if (attr->ia_valid & ATTR_SIZE)
4566                 ext4_truncate(inode);
4567
4568         if (!rc) {
4569                 setattr_copy(inode, attr);
4570                 mark_inode_dirty(inode);
4571         }
4572
4573         /*
4574          * If the call to ext4_truncate failed to get a transaction handle at
4575          * all, we need to clean up the in-core orphan list manually.
4576          */
4577         if (orphan && inode->i_nlink)
4578                 ext4_orphan_del(NULL, inode);
4579
4580         if (!rc && (ia_valid & ATTR_MODE))
4581                 rc = posix_acl_chmod(inode, inode->i_mode);
4582
4583 err_out:
4584         ext4_std_error(inode->i_sb, error);
4585         if (!error)
4586                 error = rc;
4587         return error;
4588 }
4589
4590 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4591                  struct kstat *stat)
4592 {
4593         struct inode *inode;
4594         unsigned long long delalloc_blocks;
4595
4596         inode = dentry->d_inode;
4597         generic_fillattr(inode, stat);
4598
4599         /*
4600          * If there is inline data in the inode, the inode will normally not
4601          * have data blocks allocated (it may have an external xattr block).
4602          * Report at least one sector for such files, so tools like tar, rsync,
4603          * others doen't incorrectly think the file is completely sparse.
4604          */
4605         if (unlikely(ext4_has_inline_data(inode)))
4606                 stat->blocks += (stat->size + 511) >> 9;
4607
4608         /*
4609          * We can't update i_blocks if the block allocation is delayed
4610          * otherwise in the case of system crash before the real block
4611          * allocation is done, we will have i_blocks inconsistent with
4612          * on-disk file blocks.
4613          * We always keep i_blocks updated together with real
4614          * allocation. But to not confuse with user, stat
4615          * will return the blocks that include the delayed allocation
4616          * blocks for this file.
4617          */
4618         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4619                                    EXT4_I(inode)->i_reserved_data_blocks);
4620         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4621         return 0;
4622 }
4623
4624 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4625                                    int pextents)
4626 {
4627         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4628                 return ext4_ind_trans_blocks(inode, lblocks);
4629         return ext4_ext_index_trans_blocks(inode, pextents);
4630 }
4631
4632 /*
4633  * Account for index blocks, block groups bitmaps and block group
4634  * descriptor blocks if modify datablocks and index blocks
4635  * worse case, the indexs blocks spread over different block groups
4636  *
4637  * If datablocks are discontiguous, they are possible to spread over
4638  * different block groups too. If they are contiguous, with flexbg,
4639  * they could still across block group boundary.
4640  *
4641  * Also account for superblock, inode, quota and xattr blocks
4642  */
4643 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4644                                   int pextents)
4645 {
4646         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4647         int gdpblocks;
4648         int idxblocks;
4649         int ret = 0;
4650
4651         /*
4652          * How many index blocks need to touch to map @lblocks logical blocks
4653          * to @pextents physical extents?
4654          */
4655         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4656
4657         ret = idxblocks;
4658
4659         /*
4660          * Now let's see how many group bitmaps and group descriptors need
4661          * to account
4662          */
4663         groups = idxblocks + pextents;
4664         gdpblocks = groups;
4665         if (groups > ngroups)
4666                 groups = ngroups;
4667         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4668                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4669
4670         /* bitmaps and block group descriptor blocks */
4671         ret += groups + gdpblocks;
4672
4673         /* Blocks for super block, inode, quota and xattr blocks */
4674         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4675
4676         return ret;
4677 }
4678
4679 /*
4680  * Calculate the total number of credits to reserve to fit
4681  * the modification of a single pages into a single transaction,
4682  * which may include multiple chunks of block allocations.
4683  *
4684  * This could be called via ext4_write_begin()
4685  *
4686  * We need to consider the worse case, when
4687  * one new block per extent.
4688  */
4689 int ext4_writepage_trans_blocks(struct inode *inode)
4690 {
4691         int bpp = ext4_journal_blocks_per_page(inode);
4692         int ret;
4693
4694         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4695
4696         /* Account for data blocks for journalled mode */
4697         if (ext4_should_journal_data(inode))
4698                 ret += bpp;
4699         return ret;
4700 }
4701
4702 /*
4703  * Calculate the journal credits for a chunk of data modification.
4704  *
4705  * This is called from DIO, fallocate or whoever calling
4706  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4707  *
4708  * journal buffers for data blocks are not included here, as DIO
4709  * and fallocate do no need to journal data buffers.
4710  */
4711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4712 {
4713         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4714 }
4715
4716 /*
4717  * The caller must have previously called ext4_reserve_inode_write().
4718  * Give this, we know that the caller already has write access to iloc->bh.
4719  */
4720 int ext4_mark_iloc_dirty(handle_t *handle,
4721                          struct inode *inode, struct ext4_iloc *iloc)
4722 {
4723         int err = 0;
4724
4725         if (IS_I_VERSION(inode))
4726                 inode_inc_iversion(inode);
4727
4728         /* the do_update_inode consumes one bh->b_count */
4729         get_bh(iloc->bh);
4730
4731         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4732         err = ext4_do_update_inode(handle, inode, iloc);
4733         put_bh(iloc->bh);
4734         return err;
4735 }
4736
4737 /*
4738  * On success, We end up with an outstanding reference count against
4739  * iloc->bh.  This _must_ be cleaned up later.
4740  */
4741
4742 int
4743 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4744                          struct ext4_iloc *iloc)
4745 {
4746         int err;
4747
4748         err = ext4_get_inode_loc(inode, iloc);
4749         if (!err) {
4750                 BUFFER_TRACE(iloc->bh, "get_write_access");
4751                 err = ext4_journal_get_write_access(handle, iloc->bh);
4752                 if (err) {
4753                         brelse(iloc->bh);
4754                         iloc->bh = NULL;
4755                 }
4756         }
4757         ext4_std_error(inode->i_sb, err);
4758         return err;
4759 }
4760
4761 /*
4762  * Expand an inode by new_extra_isize bytes.
4763  * Returns 0 on success or negative error number on failure.
4764  */
4765 static int ext4_expand_extra_isize(struct inode *inode,
4766                                    unsigned int new_extra_isize,
4767                                    struct ext4_iloc iloc,
4768                                    handle_t *handle)
4769 {
4770         struct ext4_inode *raw_inode;
4771         struct ext4_xattr_ibody_header *header;
4772
4773         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4774                 return 0;
4775
4776         raw_inode = ext4_raw_inode(&iloc);
4777
4778         header = IHDR(inode, raw_inode);
4779
4780         /* No extended attributes present */
4781         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4782             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4783                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4784                         new_extra_isize);
4785                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4786                 return 0;
4787         }
4788
4789         /* try to expand with EAs present */
4790         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4791                                           raw_inode, handle);
4792 }
4793
4794 /*
4795  * What we do here is to mark the in-core inode as clean with respect to inode
4796  * dirtiness (it may still be data-dirty).
4797  * This means that the in-core inode may be reaped by prune_icache
4798  * without having to perform any I/O.  This is a very good thing,
4799  * because *any* task may call prune_icache - even ones which
4800  * have a transaction open against a different journal.
4801  *
4802  * Is this cheating?  Not really.  Sure, we haven't written the
4803  * inode out, but prune_icache isn't a user-visible syncing function.
4804  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4805  * we start and wait on commits.
4806  */
4807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4808 {
4809         struct ext4_iloc iloc;
4810         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4811         static unsigned int mnt_count;
4812         int err, ret;
4813
4814         might_sleep();
4815         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4816         err = ext4_reserve_inode_write(handle, inode, &iloc);
4817         if (ext4_handle_valid(handle) &&
4818             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4819             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4820                 /*
4821                  * We need extra buffer credits since we may write into EA block
4822                  * with this same handle. If journal_extend fails, then it will
4823                  * only result in a minor loss of functionality for that inode.
4824                  * If this is felt to be critical, then e2fsck should be run to
4825                  * force a large enough s_min_extra_isize.
4826                  */
4827                 if ((jbd2_journal_extend(handle,
4828                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4829                         ret = ext4_expand_extra_isize(inode,
4830                                                       sbi->s_want_extra_isize,
4831                                                       iloc, handle);
4832                         if (ret) {
4833                                 ext4_set_inode_state(inode,
4834                                                      EXT4_STATE_NO_EXPAND);
4835                                 if (mnt_count !=
4836                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4837                                         ext4_warning(inode->i_sb,
4838                                         "Unable to expand inode %lu. Delete"
4839                                         " some EAs or run e2fsck.",
4840                                         inode->i_ino);
4841                                         mnt_count =
4842                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4843                                 }
4844                         }
4845                 }
4846         }
4847         if (!err)
4848                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4849         return err;
4850 }
4851
4852 /*
4853  * ext4_dirty_inode() is called from __mark_inode_dirty()
4854  *
4855  * We're really interested in the case where a file is being extended.
4856  * i_size has been changed by generic_commit_write() and we thus need
4857  * to include the updated inode in the current transaction.
4858  *
4859  * Also, dquot_alloc_block() will always dirty the inode when blocks
4860  * are allocated to the file.
4861  *
4862  * If the inode is marked synchronous, we don't honour that here - doing
4863  * so would cause a commit on atime updates, which we don't bother doing.
4864  * We handle synchronous inodes at the highest possible level.
4865  */
4866 void ext4_dirty_inode(struct inode *inode, int flags)
4867 {
4868         handle_t *handle;
4869
4870         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4871         if (IS_ERR(handle))
4872                 goto out;
4873
4874         ext4_mark_inode_dirty(handle, inode);
4875
4876         ext4_journal_stop(handle);
4877 out:
4878         return;
4879 }
4880
4881 #if 0
4882 /*
4883  * Bind an inode's backing buffer_head into this transaction, to prevent
4884  * it from being flushed to disk early.  Unlike
4885  * ext4_reserve_inode_write, this leaves behind no bh reference and
4886  * returns no iloc structure, so the caller needs to repeat the iloc
4887  * lookup to mark the inode dirty later.
4888  */
4889 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4890 {
4891         struct ext4_iloc iloc;
4892
4893         int err = 0;
4894         if (handle) {
4895                 err = ext4_get_inode_loc(inode, &iloc);
4896                 if (!err) {
4897                         BUFFER_TRACE(iloc.bh, "get_write_access");
4898                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4899                         if (!err)
4900                                 err = ext4_handle_dirty_metadata(handle,
4901                                                                  NULL,
4902                                                                  iloc.bh);
4903                         brelse(iloc.bh);
4904                 }
4905         }
4906         ext4_std_error(inode->i_sb, err);
4907         return err;
4908 }
4909 #endif
4910
4911 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4912 {
4913         journal_t *journal;
4914         handle_t *handle;
4915         int err;
4916
4917         /*
4918          * We have to be very careful here: changing a data block's
4919          * journaling status dynamically is dangerous.  If we write a
4920          * data block to the journal, change the status and then delete
4921          * that block, we risk forgetting to revoke the old log record
4922          * from the journal and so a subsequent replay can corrupt data.
4923          * So, first we make sure that the journal is empty and that
4924          * nobody is changing anything.
4925          */
4926
4927         journal = EXT4_JOURNAL(inode);
4928         if (!journal)
4929                 return 0;
4930         if (is_journal_aborted(journal))
4931                 return -EROFS;
4932         /* We have to allocate physical blocks for delalloc blocks
4933          * before flushing journal. otherwise delalloc blocks can not
4934          * be allocated any more. even more truncate on delalloc blocks
4935          * could trigger BUG by flushing delalloc blocks in journal.
4936          * There is no delalloc block in non-journal data mode.
4937          */
4938         if (val && test_opt(inode->i_sb, DELALLOC)) {
4939                 err = ext4_alloc_da_blocks(inode);
4940                 if (err < 0)
4941                         return err;
4942         }
4943
4944         /* Wait for all existing dio workers */
4945         ext4_inode_block_unlocked_dio(inode);
4946         inode_dio_wait(inode);
4947
4948         jbd2_journal_lock_updates(journal);
4949
4950         /*
4951          * OK, there are no updates running now, and all cached data is
4952          * synced to disk.  We are now in a completely consistent state
4953          * which doesn't have anything in the journal, and we know that
4954          * no filesystem updates are running, so it is safe to modify
4955          * the inode's in-core data-journaling state flag now.
4956          */
4957
4958         if (val)
4959                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4960         else {
4961                 jbd2_journal_flush(journal);
4962                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4963         }
4964         ext4_set_aops(inode);
4965
4966         jbd2_journal_unlock_updates(journal);
4967         ext4_inode_resume_unlocked_dio(inode);
4968
4969         /* Finally we can mark the inode as dirty. */
4970
4971         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4972         if (IS_ERR(handle))
4973                 return PTR_ERR(handle);
4974
4975         err = ext4_mark_inode_dirty(handle, inode);
4976         ext4_handle_sync(handle);
4977         ext4_journal_stop(handle);
4978         ext4_std_error(inode->i_sb, err);
4979
4980         return err;
4981 }
4982
4983 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4984 {
4985         return !buffer_mapped(bh);
4986 }
4987
4988 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4989 {
4990         struct page *page = vmf->page;
4991         loff_t size;
4992         unsigned long len;
4993         int ret;
4994         struct file *file = vma->vm_file;
4995         struct inode *inode = file_inode(file);
4996         struct address_space *mapping = inode->i_mapping;
4997         handle_t *handle;
4998         get_block_t *get_block;
4999         int retries = 0;
5000
5001         sb_start_pagefault(inode->i_sb);
5002         file_update_time(vma->vm_file);
5003         /* Delalloc case is easy... */
5004         if (test_opt(inode->i_sb, DELALLOC) &&
5005             !ext4_should_journal_data(inode) &&
5006             !ext4_nonda_switch(inode->i_sb)) {
5007                 do {
5008                         ret = __block_page_mkwrite(vma, vmf,
5009                                                    ext4_da_get_block_prep);
5010                 } while (ret == -ENOSPC &&
5011                        ext4_should_retry_alloc(inode->i_sb, &retries));
5012                 goto out_ret;
5013         }
5014
5015         lock_page(page);
5016         size = i_size_read(inode);
5017         /* Page got truncated from under us? */
5018         if (page->mapping != mapping || page_offset(page) > size) {
5019                 unlock_page(page);
5020                 ret = VM_FAULT_NOPAGE;
5021                 goto out;
5022         }
5023
5024         if (page->index == size >> PAGE_CACHE_SHIFT)
5025                 len = size & ~PAGE_CACHE_MASK;
5026         else
5027                 len = PAGE_CACHE_SIZE;
5028         /*
5029          * Return if we have all the buffers mapped. This avoids the need to do
5030          * journal_start/journal_stop which can block and take a long time
5031          */
5032         if (page_has_buffers(page)) {
5033                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5034                                             0, len, NULL,
5035                                             ext4_bh_unmapped)) {
5036                         /* Wait so that we don't change page under IO */
5037                         wait_for_stable_page(page);
5038                         ret = VM_FAULT_LOCKED;
5039                         goto out;
5040                 }
5041         }
5042         unlock_page(page);
5043         /* OK, we need to fill the hole... */
5044         if (ext4_should_dioread_nolock(inode))
5045                 get_block = ext4_get_block_write;
5046         else
5047                 get_block = ext4_get_block;
5048 retry_alloc:
5049         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5050                                     ext4_writepage_trans_blocks(inode));
5051         if (IS_ERR(handle)) {
5052                 ret = VM_FAULT_SIGBUS;
5053                 goto out;
5054         }
5055         ret = __block_page_mkwrite(vma, vmf, get_block);
5056         if (!ret && ext4_should_journal_data(inode)) {
5057                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5058                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5059                         unlock_page(page);
5060                         ret = VM_FAULT_SIGBUS;
5061                         ext4_journal_stop(handle);
5062                         goto out;
5063                 }
5064                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5065         }
5066         ext4_journal_stop(handle);
5067         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5068                 goto retry_alloc;
5069 out_ret:
5070         ret = block_page_mkwrite_return(ret);
5071 out:
5072         sb_end_pagefault(inode->i_sb);
5073         return ret;
5074 }