381813205f99a3d8b82f5df835558a5e35c44ec8
[linux-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171         handle_t *handle;
172         int err;
173         /*
174          * Credits for final inode cleanup and freeing:
175          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176          * (xattr block freeing), bitmap, group descriptor (inode freeing)
177          */
178         int extra_credits = 6;
179         struct ext4_xattr_inode_array *ea_inode_array = NULL;
180
181         trace_ext4_evict_inode(inode);
182
183         if (inode->i_nlink) {
184                 /*
185                  * When journalling data dirty buffers are tracked only in the
186                  * journal. So although mm thinks everything is clean and
187                  * ready for reaping the inode might still have some pages to
188                  * write in the running transaction or waiting to be
189                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
190                  * (via truncate_inode_pages()) to discard these buffers can
191                  * cause data loss. Also even if we did not discard these
192                  * buffers, we would have no way to find them after the inode
193                  * is reaped and thus user could see stale data if he tries to
194                  * read them before the transaction is checkpointed. So be
195                  * careful and force everything to disk here... We use
196                  * ei->i_datasync_tid to store the newest transaction
197                  * containing inode's data.
198                  *
199                  * Note that directories do not have this problem because they
200                  * don't use page cache.
201                  */
202                 if (inode->i_ino != EXT4_JOURNAL_INO &&
203                     ext4_should_journal_data(inode) &&
204                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205                     inode->i_data.nrpages) {
206                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209                         jbd2_complete_transaction(journal, commit_tid);
210                         filemap_write_and_wait(&inode->i_data);
211                 }
212                 truncate_inode_pages_final(&inode->i_data);
213
214                 goto no_delete;
215         }
216
217         if (is_bad_inode(inode))
218                 goto no_delete;
219         dquot_initialize(inode);
220
221         if (ext4_should_order_data(inode))
222                 ext4_begin_ordered_truncate(inode, 0);
223         truncate_inode_pages_final(&inode->i_data);
224
225         /*
226          * Protect us against freezing - iput() caller didn't have to have any
227          * protection against it
228          */
229         sb_start_intwrite(inode->i_sb);
230
231         if (!IS_NOQUOTA(inode))
232                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
233
234         /*
235          * Block bitmap, group descriptor, and inode are accounted in both
236          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
237          */
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254
255         /*
256          * Set inode->i_size to 0 before calling ext4_truncate(). We need
257          * special handling of symlinks here because i_size is used to
258          * determine whether ext4_inode_info->i_data contains symlink data or
259          * block mappings. Setting i_size to 0 will remove its fast symlink
260          * status. Erase i_data so that it becomes a valid empty block map.
261          */
262         if (ext4_inode_is_fast_symlink(inode))
263                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
264         inode->i_size = 0;
265         err = ext4_mark_inode_dirty(handle, inode);
266         if (err) {
267                 ext4_warning(inode->i_sb,
268                              "couldn't mark inode dirty (err %d)", err);
269                 goto stop_handle;
270         }
271         if (inode->i_blocks) {
272                 err = ext4_truncate(inode);
273                 if (err) {
274                         ext4_error(inode->i_sb,
275                                    "couldn't truncate inode %lu (err %d)",
276                                    inode->i_ino, err);
277                         goto stop_handle;
278                 }
279         }
280
281         /* Remove xattr references. */
282         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
283                                       extra_credits);
284         if (err) {
285                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
286 stop_handle:
287                 ext4_journal_stop(handle);
288                 ext4_orphan_del(NULL, inode);
289                 sb_end_intwrite(inode->i_sb);
290                 ext4_xattr_inode_array_free(ea_inode_array);
291                 goto no_delete;
292         }
293
294         /*
295          * Kill off the orphan record which ext4_truncate created.
296          * AKPM: I think this can be inside the above `if'.
297          * Note that ext4_orphan_del() has to be able to cope with the
298          * deletion of a non-existent orphan - this is because we don't
299          * know if ext4_truncate() actually created an orphan record.
300          * (Well, we could do this if we need to, but heck - it works)
301          */
302         ext4_orphan_del(handle, inode);
303         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
304
305         /*
306          * One subtle ordering requirement: if anything has gone wrong
307          * (transaction abort, IO errors, whatever), then we can still
308          * do these next steps (the fs will already have been marked as
309          * having errors), but we can't free the inode if the mark_dirty
310          * fails.
311          */
312         if (ext4_mark_inode_dirty(handle, inode))
313                 /* If that failed, just do the required in-core inode clear. */
314                 ext4_clear_inode(inode);
315         else
316                 ext4_free_inode(handle, inode);
317         ext4_journal_stop(handle);
318         sb_end_intwrite(inode->i_sb);
319         ext4_xattr_inode_array_free(ea_inode_array);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             !inode_is_open_for_write(inode))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (ext4_has_feature_journal(inode->i_sb) &&
386             (inode->i_ino ==
387              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
388                 return 0;
389         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
390                                    map->m_len)) {
391                 ext4_error_inode(inode, func, line, map->m_pblk,
392                                  "lblock %lu mapped to illegal pblock %llu "
393                                  "(length %d)", (unsigned long) map->m_lblk,
394                                  map->m_pblk, map->m_len);
395                 return -EFSCORRUPTED;
396         }
397         return 0;
398 }
399
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401                        ext4_lblk_t len)
402 {
403         int ret;
404
405         if (IS_ENCRYPTED(inode))
406                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
407
408         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409         if (ret > 0)
410                 ret = 0;
411
412         return ret;
413 }
414
415 #define check_block_validity(inode, map)        \
416         __check_block_validity((inode), __func__, __LINE__, (map))
417
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420                                        struct inode *inode,
421                                        struct ext4_map_blocks *es_map,
422                                        struct ext4_map_blocks *map,
423                                        int flags)
424 {
425         int retval;
426
427         map->m_flags = 0;
428         /*
429          * There is a race window that the result is not the same.
430          * e.g. xfstests #223 when dioread_nolock enables.  The reason
431          * is that we lookup a block mapping in extent status tree with
432          * out taking i_data_sem.  So at the time the unwritten extent
433          * could be converted.
434          */
435         down_read(&EXT4_I(inode)->i_data_sem);
436         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
438                                              EXT4_GET_BLOCKS_KEEP_SIZE);
439         } else {
440                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
441                                              EXT4_GET_BLOCKS_KEEP_SIZE);
442         }
443         up_read((&EXT4_I(inode)->i_data_sem));
444
445         /*
446          * We don't check m_len because extent will be collpased in status
447          * tree.  So the m_len might not equal.
448          */
449         if (es_map->m_lblk != map->m_lblk ||
450             es_map->m_flags != map->m_flags ||
451             es_map->m_pblk != map->m_pblk) {
452                 printk("ES cache assertion failed for inode: %lu "
453                        "es_cached ex [%d/%d/%llu/%x] != "
454                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
455                        inode->i_ino, es_map->m_lblk, es_map->m_len,
456                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
457                        map->m_len, map->m_pblk, map->m_flags,
458                        retval, flags);
459         }
460 }
461 #endif /* ES_AGGRESSIVE_TEST */
462
463 /*
464  * The ext4_map_blocks() function tries to look up the requested blocks,
465  * and returns if the blocks are already mapped.
466  *
467  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
468  * and store the allocated blocks in the result buffer head and mark it
469  * mapped.
470  *
471  * If file type is extents based, it will call ext4_ext_map_blocks(),
472  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
473  * based files
474  *
475  * On success, it returns the number of blocks being mapped or allocated.  if
476  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
477  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
478  *
479  * It returns 0 if plain look up failed (blocks have not been allocated), in
480  * that case, @map is returned as unmapped but we still do fill map->m_len to
481  * indicate the length of a hole starting at map->m_lblk.
482  *
483  * It returns the error in case of allocation failure.
484  */
485 int ext4_map_blocks(handle_t *handle, struct inode *inode,
486                     struct ext4_map_blocks *map, int flags)
487 {
488         struct extent_status es;
489         int retval;
490         int ret = 0;
491 #ifdef ES_AGGRESSIVE_TEST
492         struct ext4_map_blocks orig_map;
493
494         memcpy(&orig_map, map, sizeof(*map));
495 #endif
496
497         map->m_flags = 0;
498         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
499                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
500                   (unsigned long) map->m_lblk);
501
502         /*
503          * ext4_map_blocks returns an int, and m_len is an unsigned int
504          */
505         if (unlikely(map->m_len > INT_MAX))
506                 map->m_len = INT_MAX;
507
508         /* We can handle the block number less than EXT_MAX_BLOCKS */
509         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
510                 return -EFSCORRUPTED;
511
512         /* Lookup extent status tree firstly */
513         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
514                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
515                         map->m_pblk = ext4_es_pblock(&es) +
516                                         map->m_lblk - es.es_lblk;
517                         map->m_flags |= ext4_es_is_written(&es) ?
518                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
519                         retval = es.es_len - (map->m_lblk - es.es_lblk);
520                         if (retval > map->m_len)
521                                 retval = map->m_len;
522                         map->m_len = retval;
523                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
524                         map->m_pblk = 0;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                         retval = 0;
530                 } else {
531                         BUG();
532                 }
533 #ifdef ES_AGGRESSIVE_TEST
534                 ext4_map_blocks_es_recheck(handle, inode, map,
535                                            &orig_map, flags);
536 #endif
537                 goto found;
538         }
539
540         /*
541          * Try to see if we can get the block without requesting a new
542          * file system block.
543          */
544         down_read(&EXT4_I(inode)->i_data_sem);
545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
546                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547                                              EXT4_GET_BLOCKS_KEEP_SIZE);
548         } else {
549                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         }
552         if (retval > 0) {
553                 unsigned int status;
554
555                 if (unlikely(retval != map->m_len)) {
556                         ext4_warning(inode->i_sb,
557                                      "ES len assertion failed for inode "
558                                      "%lu: retval %d != map->m_len %d",
559                                      inode->i_ino, retval, map->m_len);
560                         WARN_ON(1);
561                 }
562
563                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566                     !(status & EXTENT_STATUS_WRITTEN) &&
567                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568                                        map->m_lblk + map->m_len - 1))
569                         status |= EXTENT_STATUS_DELAYED;
570                 ret = ext4_es_insert_extent(inode, map->m_lblk,
571                                             map->m_len, map->m_pblk, status);
572                 if (ret < 0)
573                         retval = ret;
574         }
575         up_read((&EXT4_I(inode)->i_data_sem));
576
577 found:
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579                 ret = check_block_validity(inode, map);
580                 if (ret != 0)
581                         return ret;
582         }
583
584         /* If it is only a block(s) look up */
585         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
586                 return retval;
587
588         /*
589          * Returns if the blocks have already allocated
590          *
591          * Note that if blocks have been preallocated
592          * ext4_ext_get_block() returns the create = 0
593          * with buffer head unmapped.
594          */
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596                 /*
597                  * If we need to convert extent to unwritten
598                  * we continue and do the actual work in
599                  * ext4_ext_map_blocks()
600                  */
601                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602                         return retval;
603
604         /*
605          * Here we clear m_flags because after allocating an new extent,
606          * it will be set again.
607          */
608         map->m_flags &= ~EXT4_MAP_FLAGS;
609
610         /*
611          * New blocks allocate and/or writing to unwritten extent
612          * will possibly result in updating i_data, so we take
613          * the write lock of i_data_sem, and call get_block()
614          * with create == 1 flag.
615          */
616         down_write(&EXT4_I(inode)->i_data_sem);
617
618         /*
619          * We need to check for EXT4 here because migrate
620          * could have changed the inode type in between
621          */
622         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
624         } else {
625                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628                         /*
629                          * We allocated new blocks which will result in
630                          * i_data's format changing.  Force the migrate
631                          * to fail by clearing migrate flags
632                          */
633                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634                 }
635
636                 /*
637                  * Update reserved blocks/metadata blocks after successful
638                  * block allocation which had been deferred till now. We don't
639                  * support fallocate for non extent files. So we can update
640                  * reserve space here.
641                  */
642                 if ((retval > 0) &&
643                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
644                         ext4_da_update_reserve_space(inode, retval, 1);
645         }
646
647         if (retval > 0) {
648                 unsigned int status;
649
650                 if (unlikely(retval != map->m_len)) {
651                         ext4_warning(inode->i_sb,
652                                      "ES len assertion failed for inode "
653                                      "%lu: retval %d != map->m_len %d",
654                                      inode->i_ino, retval, map->m_len);
655                         WARN_ON(1);
656                 }
657
658                 /*
659                  * We have to zeroout blocks before inserting them into extent
660                  * status tree. Otherwise someone could look them up there and
661                  * use them before they are really zeroed. We also have to
662                  * unmap metadata before zeroing as otherwise writeback can
663                  * overwrite zeros with stale data from block device.
664                  */
665                 if (flags & EXT4_GET_BLOCKS_ZERO &&
666                     map->m_flags & EXT4_MAP_MAPPED &&
667                     map->m_flags & EXT4_MAP_NEW) {
668                         ret = ext4_issue_zeroout(inode, map->m_lblk,
669                                                  map->m_pblk, map->m_len);
670                         if (ret) {
671                                 retval = ret;
672                                 goto out_sem;
673                         }
674                 }
675
676                 /*
677                  * If the extent has been zeroed out, we don't need to update
678                  * extent status tree.
679                  */
680                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
681                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
682                         if (ext4_es_is_written(&es))
683                                 goto out_sem;
684                 }
685                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
686                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
687                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
688                     !(status & EXTENT_STATUS_WRITTEN) &&
689                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
690                                        map->m_lblk + map->m_len - 1))
691                         status |= EXTENT_STATUS_DELAYED;
692                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693                                             map->m_pblk, status);
694                 if (ret < 0) {
695                         retval = ret;
696                         goto out_sem;
697                 }
698         }
699
700 out_sem:
701         up_write((&EXT4_I(inode)->i_data_sem));
702         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
703                 ret = check_block_validity(inode, map);
704                 if (ret != 0)
705                         return ret;
706
707                 /*
708                  * Inodes with freshly allocated blocks where contents will be
709                  * visible after transaction commit must be on transaction's
710                  * ordered data list.
711                  */
712                 if (map->m_flags & EXT4_MAP_NEW &&
713                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
714                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
715                     !ext4_is_quota_file(inode) &&
716                     ext4_should_order_data(inode)) {
717                         loff_t start_byte =
718                                 (loff_t)map->m_lblk << inode->i_blkbits;
719                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
720
721                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
723                                                 start_byte, length);
724                         else
725                                 ret = ext4_jbd2_inode_add_write(handle, inode,
726                                                 start_byte, length);
727                         if (ret)
728                                 return ret;
729                 }
730         }
731         return retval;
732 }
733
734 /*
735  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
736  * we have to be careful as someone else may be manipulating b_state as well.
737  */
738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
739 {
740         unsigned long old_state;
741         unsigned long new_state;
742
743         flags &= EXT4_MAP_FLAGS;
744
745         /* Dummy buffer_head? Set non-atomically. */
746         if (!bh->b_page) {
747                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
748                 return;
749         }
750         /*
751          * Someone else may be modifying b_state. Be careful! This is ugly but
752          * once we get rid of using bh as a container for mapping information
753          * to pass to / from get_block functions, this can go away.
754          */
755         do {
756                 old_state = READ_ONCE(bh->b_state);
757                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
758         } while (unlikely(
759                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 }
761
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763                            struct buffer_head *bh, int flags)
764 {
765         struct ext4_map_blocks map;
766         int ret = 0;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775                               flags);
776         if (ret > 0) {
777                 map_bh(bh, inode->i_sb, map.m_pblk);
778                 ext4_update_bh_state(bh, map.m_flags);
779                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780                 ret = 0;
781         } else if (ret == 0) {
782                 /* hole case, need to fill in bh->b_size */
783                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
784         }
785         return ret;
786 }
787
788 int ext4_get_block(struct inode *inode, sector_t iblock,
789                    struct buffer_head *bh, int create)
790 {
791         return _ext4_get_block(inode, iblock, bh,
792                                create ? EXT4_GET_BLOCKS_CREATE : 0);
793 }
794
795 /*
796  * Get block function used when preparing for buffered write if we require
797  * creating an unwritten extent if blocks haven't been allocated.  The extent
798  * will be converted to written after the IO is complete.
799  */
800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
801                              struct buffer_head *bh_result, int create)
802 {
803         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
804                    inode->i_ino, create);
805         return _ext4_get_block(inode, iblock, bh_result,
806                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 }
808
809 /* Maximum number of blocks we map for direct IO at once. */
810 #define DIO_MAX_BLOCKS 4096
811
812 /*
813  * `handle' can be NULL if create is zero
814  */
815 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
816                                 ext4_lblk_t block, int map_flags)
817 {
818         struct ext4_map_blocks map;
819         struct buffer_head *bh;
820         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
821         int err;
822
823         J_ASSERT(handle != NULL || create == 0);
824
825         map.m_lblk = block;
826         map.m_len = 1;
827         err = ext4_map_blocks(handle, inode, &map, map_flags);
828
829         if (err == 0)
830                 return create ? ERR_PTR(-ENOSPC) : NULL;
831         if (err < 0)
832                 return ERR_PTR(err);
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh))
836                 return ERR_PTR(-ENOMEM);
837         if (map.m_flags & EXT4_MAP_NEW) {
838                 J_ASSERT(create != 0);
839                 J_ASSERT(handle != NULL);
840
841                 /*
842                  * Now that we do not always journal data, we should
843                  * keep in mind whether this should always journal the
844                  * new buffer as metadata.  For now, regular file
845                  * writes use ext4_get_block instead, so it's not a
846                  * problem.
847                  */
848                 lock_buffer(bh);
849                 BUFFER_TRACE(bh, "call get_create_access");
850                 err = ext4_journal_get_create_access(handle, bh);
851                 if (unlikely(err)) {
852                         unlock_buffer(bh);
853                         goto errout;
854                 }
855                 if (!buffer_uptodate(bh)) {
856                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
857                         set_buffer_uptodate(bh);
858                 }
859                 unlock_buffer(bh);
860                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
861                 err = ext4_handle_dirty_metadata(handle, inode, bh);
862                 if (unlikely(err))
863                         goto errout;
864         } else
865                 BUFFER_TRACE(bh, "not a new buffer");
866         return bh;
867 errout:
868         brelse(bh);
869         return ERR_PTR(err);
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int map_flags)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, map_flags);
878         if (IS_ERR(bh))
879                 return bh;
880         if (!bh || ext4_buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         return ERR_PTR(-EIO);
888 }
889
890 /* Read a contiguous batch of blocks. */
891 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
892                      bool wait, struct buffer_head **bhs)
893 {
894         int i, err;
895
896         for (i = 0; i < bh_count; i++) {
897                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
898                 if (IS_ERR(bhs[i])) {
899                         err = PTR_ERR(bhs[i]);
900                         bh_count = i;
901                         goto out_brelse;
902                 }
903         }
904
905         for (i = 0; i < bh_count; i++)
906                 /* Note that NULL bhs[i] is valid because of holes. */
907                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
908                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
909                                     &bhs[i]);
910
911         if (!wait)
912                 return 0;
913
914         for (i = 0; i < bh_count; i++)
915                 if (bhs[i])
916                         wait_on_buffer(bhs[i]);
917
918         for (i = 0; i < bh_count; i++) {
919                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
920                         err = -EIO;
921                         goto out_brelse;
922                 }
923         }
924         return 0;
925
926 out_brelse:
927         for (i = 0; i < bh_count; i++) {
928                 brelse(bhs[i]);
929                 bhs[i] = NULL;
930         }
931         return err;
932 }
933
934 int ext4_walk_page_buffers(handle_t *handle,
935                            struct buffer_head *head,
936                            unsigned from,
937                            unsigned to,
938                            int *partial,
939                            int (*fn)(handle_t *handle,
940                                      struct buffer_head *bh))
941 {
942         struct buffer_head *bh;
943         unsigned block_start, block_end;
944         unsigned blocksize = head->b_size;
945         int err, ret = 0;
946         struct buffer_head *next;
947
948         for (bh = head, block_start = 0;
949              ret == 0 && (bh != head || !block_start);
950              block_start = block_end, bh = next) {
951                 next = bh->b_this_page;
952                 block_end = block_start + blocksize;
953                 if (block_end <= from || block_start >= to) {
954                         if (partial && !buffer_uptodate(bh))
955                                 *partial = 1;
956                         continue;
957                 }
958                 err = (*fn)(handle, bh);
959                 if (!ret)
960                         ret = err;
961         }
962         return ret;
963 }
964
965 /*
966  * To preserve ordering, it is essential that the hole instantiation and
967  * the data write be encapsulated in a single transaction.  We cannot
968  * close off a transaction and start a new one between the ext4_get_block()
969  * and the commit_write().  So doing the jbd2_journal_start at the start of
970  * prepare_write() is the right place.
971  *
972  * Also, this function can nest inside ext4_writepage().  In that case, we
973  * *know* that ext4_writepage() has generated enough buffer credits to do the
974  * whole page.  So we won't block on the journal in that case, which is good,
975  * because the caller may be PF_MEMALLOC.
976  *
977  * By accident, ext4 can be reentered when a transaction is open via
978  * quota file writes.  If we were to commit the transaction while thus
979  * reentered, there can be a deadlock - we would be holding a quota
980  * lock, and the commit would never complete if another thread had a
981  * transaction open and was blocking on the quota lock - a ranking
982  * violation.
983  *
984  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
985  * will _not_ run commit under these circumstances because handle->h_ref
986  * is elevated.  We'll still have enough credits for the tiny quotafile
987  * write.
988  */
989 int do_journal_get_write_access(handle_t *handle,
990                                 struct buffer_head *bh)
991 {
992         int dirty = buffer_dirty(bh);
993         int ret;
994
995         if (!buffer_mapped(bh) || buffer_freed(bh))
996                 return 0;
997         /*
998          * __block_write_begin() could have dirtied some buffers. Clean
999          * the dirty bit as jbd2_journal_get_write_access() could complain
1000          * otherwise about fs integrity issues. Setting of the dirty bit
1001          * by __block_write_begin() isn't a real problem here as we clear
1002          * the bit before releasing a page lock and thus writeback cannot
1003          * ever write the buffer.
1004          */
1005         if (dirty)
1006                 clear_buffer_dirty(bh);
1007         BUFFER_TRACE(bh, "get write access");
1008         ret = ext4_journal_get_write_access(handle, bh);
1009         if (!ret && dirty)
1010                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1011         return ret;
1012 }
1013
1014 #ifdef CONFIG_FS_ENCRYPTION
1015 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1016                                   get_block_t *get_block)
1017 {
1018         unsigned from = pos & (PAGE_SIZE - 1);
1019         unsigned to = from + len;
1020         struct inode *inode = page->mapping->host;
1021         unsigned block_start, block_end;
1022         sector_t block;
1023         int err = 0;
1024         unsigned blocksize = inode->i_sb->s_blocksize;
1025         unsigned bbits;
1026         struct buffer_head *bh, *head, *wait[2];
1027         int nr_wait = 0;
1028         int i;
1029
1030         BUG_ON(!PageLocked(page));
1031         BUG_ON(from > PAGE_SIZE);
1032         BUG_ON(to > PAGE_SIZE);
1033         BUG_ON(from > to);
1034
1035         if (!page_has_buffers(page))
1036                 create_empty_buffers(page, blocksize, 0);
1037         head = page_buffers(page);
1038         bbits = ilog2(blocksize);
1039         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1040
1041         for (bh = head, block_start = 0; bh != head || !block_start;
1042             block++, block_start = block_end, bh = bh->b_this_page) {
1043                 block_end = block_start + blocksize;
1044                 if (block_end <= from || block_start >= to) {
1045                         if (PageUptodate(page)) {
1046                                 if (!buffer_uptodate(bh))
1047                                         set_buffer_uptodate(bh);
1048                         }
1049                         continue;
1050                 }
1051                 if (buffer_new(bh))
1052                         clear_buffer_new(bh);
1053                 if (!buffer_mapped(bh)) {
1054                         WARN_ON(bh->b_size != blocksize);
1055                         err = get_block(inode, block, bh, 1);
1056                         if (err)
1057                                 break;
1058                         if (buffer_new(bh)) {
1059                                 if (PageUptodate(page)) {
1060                                         clear_buffer_new(bh);
1061                                         set_buffer_uptodate(bh);
1062                                         mark_buffer_dirty(bh);
1063                                         continue;
1064                                 }
1065                                 if (block_end > to || block_start < from)
1066                                         zero_user_segments(page, to, block_end,
1067                                                            block_start, from);
1068                                 continue;
1069                         }
1070                 }
1071                 if (PageUptodate(page)) {
1072                         if (!buffer_uptodate(bh))
1073                                 set_buffer_uptodate(bh);
1074                         continue;
1075                 }
1076                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077                     !buffer_unwritten(bh) &&
1078                     (block_start < from || block_end > to)) {
1079                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1080                         wait[nr_wait++] = bh;
1081                 }
1082         }
1083         /*
1084          * If we issued read requests, let them complete.
1085          */
1086         for (i = 0; i < nr_wait; i++) {
1087                 wait_on_buffer(wait[i]);
1088                 if (!buffer_uptodate(wait[i]))
1089                         err = -EIO;
1090         }
1091         if (unlikely(err)) {
1092                 page_zero_new_buffers(page, from, to);
1093         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1094                 for (i = 0; i < nr_wait; i++) {
1095                         int err2;
1096
1097                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1098                                                                 bh_offset(wait[i]));
1099                         if (err2) {
1100                                 clear_buffer_uptodate(wait[i]);
1101                                 err = err2;
1102                         }
1103                 }
1104         }
1105
1106         return err;
1107 }
1108 #endif
1109
1110 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1111                             loff_t pos, unsigned len, unsigned flags,
1112                             struct page **pagep, void **fsdata)
1113 {
1114         struct inode *inode = mapping->host;
1115         int ret, needed_blocks;
1116         handle_t *handle;
1117         int retries = 0;
1118         struct page *page;
1119         pgoff_t index;
1120         unsigned from, to;
1121
1122         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1123                 return -EIO;
1124
1125         trace_ext4_write_begin(inode, pos, len, flags);
1126         /*
1127          * Reserve one block more for addition to orphan list in case
1128          * we allocate blocks but write fails for some reason
1129          */
1130         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1131         index = pos >> PAGE_SHIFT;
1132         from = pos & (PAGE_SIZE - 1);
1133         to = from + len;
1134
1135         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1136                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1137                                                     flags, pagep);
1138                 if (ret < 0)
1139                         return ret;
1140                 if (ret == 1)
1141                         return 0;
1142         }
1143
1144         /*
1145          * grab_cache_page_write_begin() can take a long time if the
1146          * system is thrashing due to memory pressure, or if the page
1147          * is being written back.  So grab it first before we start
1148          * the transaction handle.  This also allows us to allocate
1149          * the page (if needed) without using GFP_NOFS.
1150          */
1151 retry_grab:
1152         page = grab_cache_page_write_begin(mapping, index, flags);
1153         if (!page)
1154                 return -ENOMEM;
1155         unlock_page(page);
1156
1157 retry_journal:
1158         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1159         if (IS_ERR(handle)) {
1160                 put_page(page);
1161                 return PTR_ERR(handle);
1162         }
1163
1164         lock_page(page);
1165         if (page->mapping != mapping) {
1166                 /* The page got truncated from under us */
1167                 unlock_page(page);
1168                 put_page(page);
1169                 ext4_journal_stop(handle);
1170                 goto retry_grab;
1171         }
1172         /* In case writeback began while the page was unlocked */
1173         wait_for_stable_page(page);
1174
1175 #ifdef CONFIG_FS_ENCRYPTION
1176         if (ext4_should_dioread_nolock(inode))
1177                 ret = ext4_block_write_begin(page, pos, len,
1178                                              ext4_get_block_unwritten);
1179         else
1180                 ret = ext4_block_write_begin(page, pos, len,
1181                                              ext4_get_block);
1182 #else
1183         if (ext4_should_dioread_nolock(inode))
1184                 ret = __block_write_begin(page, pos, len,
1185                                           ext4_get_block_unwritten);
1186         else
1187                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1188 #endif
1189         if (!ret && ext4_should_journal_data(inode)) {
1190                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1191                                              from, to, NULL,
1192                                              do_journal_get_write_access);
1193         }
1194
1195         if (ret) {
1196                 bool extended = (pos + len > inode->i_size) &&
1197                                 !ext4_verity_in_progress(inode);
1198
1199                 unlock_page(page);
1200                 /*
1201                  * __block_write_begin may have instantiated a few blocks
1202                  * outside i_size.  Trim these off again. Don't need
1203                  * i_size_read because we hold i_mutex.
1204                  *
1205                  * Add inode to orphan list in case we crash before
1206                  * truncate finishes
1207                  */
1208                 if (extended && ext4_can_truncate(inode))
1209                         ext4_orphan_add(handle, inode);
1210
1211                 ext4_journal_stop(handle);
1212                 if (extended) {
1213                         ext4_truncate_failed_write(inode);
1214                         /*
1215                          * If truncate failed early the inode might
1216                          * still be on the orphan list; we need to
1217                          * make sure the inode is removed from the
1218                          * orphan list in that case.
1219                          */
1220                         if (inode->i_nlink)
1221                                 ext4_orphan_del(NULL, inode);
1222                 }
1223
1224                 if (ret == -ENOSPC &&
1225                     ext4_should_retry_alloc(inode->i_sb, &retries))
1226                         goto retry_journal;
1227                 put_page(page);
1228                 return ret;
1229         }
1230         *pagep = page;
1231         return ret;
1232 }
1233
1234 /* For write_end() in data=journal mode */
1235 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1236 {
1237         int ret;
1238         if (!buffer_mapped(bh) || buffer_freed(bh))
1239                 return 0;
1240         set_buffer_uptodate(bh);
1241         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1242         clear_buffer_meta(bh);
1243         clear_buffer_prio(bh);
1244         return ret;
1245 }
1246
1247 /*
1248  * We need to pick up the new inode size which generic_commit_write gave us
1249  * `file' can be NULL - eg, when called from page_symlink().
1250  *
1251  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1252  * buffers are managed internally.
1253  */
1254 static int ext4_write_end(struct file *file,
1255                           struct address_space *mapping,
1256                           loff_t pos, unsigned len, unsigned copied,
1257                           struct page *page, void *fsdata)
1258 {
1259         handle_t *handle = ext4_journal_current_handle();
1260         struct inode *inode = mapping->host;
1261         loff_t old_size = inode->i_size;
1262         int ret = 0, ret2;
1263         int i_size_changed = 0;
1264         int inline_data = ext4_has_inline_data(inode);
1265         bool verity = ext4_verity_in_progress(inode);
1266
1267         trace_ext4_write_end(inode, pos, len, copied);
1268         if (inline_data) {
1269                 ret = ext4_write_inline_data_end(inode, pos, len,
1270                                                  copied, page);
1271                 if (ret < 0) {
1272                         unlock_page(page);
1273                         put_page(page);
1274                         goto errout;
1275                 }
1276                 copied = ret;
1277         } else
1278                 copied = block_write_end(file, mapping, pos,
1279                                          len, copied, page, fsdata);
1280         /*
1281          * it's important to update i_size while still holding page lock:
1282          * page writeout could otherwise come in and zero beyond i_size.
1283          *
1284          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1285          * blocks are being written past EOF, so skip the i_size update.
1286          */
1287         if (!verity)
1288                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1289         unlock_page(page);
1290         put_page(page);
1291
1292         if (old_size < pos && !verity)
1293                 pagecache_isize_extended(inode, old_size, pos);
1294         /*
1295          * Don't mark the inode dirty under page lock. First, it unnecessarily
1296          * makes the holding time of page lock longer. Second, it forces lock
1297          * ordering of page lock and transaction start for journaling
1298          * filesystems.
1299          */
1300         if (i_size_changed || inline_data)
1301                 ext4_mark_inode_dirty(handle, inode);
1302
1303         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1304                 /* if we have allocated more blocks and copied
1305                  * less. We will have blocks allocated outside
1306                  * inode->i_size. So truncate them
1307                  */
1308                 ext4_orphan_add(handle, inode);
1309 errout:
1310         ret2 = ext4_journal_stop(handle);
1311         if (!ret)
1312                 ret = ret2;
1313
1314         if (pos + len > inode->i_size && !verity) {
1315                 ext4_truncate_failed_write(inode);
1316                 /*
1317                  * If truncate failed early the inode might still be
1318                  * on the orphan list; we need to make sure the inode
1319                  * is removed from the orphan list in that case.
1320                  */
1321                 if (inode->i_nlink)
1322                         ext4_orphan_del(NULL, inode);
1323         }
1324
1325         return ret ? ret : copied;
1326 }
1327
1328 /*
1329  * This is a private version of page_zero_new_buffers() which doesn't
1330  * set the buffer to be dirty, since in data=journalled mode we need
1331  * to call ext4_handle_dirty_metadata() instead.
1332  */
1333 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1334                                             struct page *page,
1335                                             unsigned from, unsigned to)
1336 {
1337         unsigned int block_start = 0, block_end;
1338         struct buffer_head *head, *bh;
1339
1340         bh = head = page_buffers(page);
1341         do {
1342                 block_end = block_start + bh->b_size;
1343                 if (buffer_new(bh)) {
1344                         if (block_end > from && block_start < to) {
1345                                 if (!PageUptodate(page)) {
1346                                         unsigned start, size;
1347
1348                                         start = max(from, block_start);
1349                                         size = min(to, block_end) - start;
1350
1351                                         zero_user(page, start, size);
1352                                         write_end_fn(handle, bh);
1353                                 }
1354                                 clear_buffer_new(bh);
1355                         }
1356                 }
1357                 block_start = block_end;
1358                 bh = bh->b_this_page;
1359         } while (bh != head);
1360 }
1361
1362 static int ext4_journalled_write_end(struct file *file,
1363                                      struct address_space *mapping,
1364                                      loff_t pos, unsigned len, unsigned copied,
1365                                      struct page *page, void *fsdata)
1366 {
1367         handle_t *handle = ext4_journal_current_handle();
1368         struct inode *inode = mapping->host;
1369         loff_t old_size = inode->i_size;
1370         int ret = 0, ret2;
1371         int partial = 0;
1372         unsigned from, to;
1373         int size_changed = 0;
1374         int inline_data = ext4_has_inline_data(inode);
1375         bool verity = ext4_verity_in_progress(inode);
1376
1377         trace_ext4_journalled_write_end(inode, pos, len, copied);
1378         from = pos & (PAGE_SIZE - 1);
1379         to = from + len;
1380
1381         BUG_ON(!ext4_handle_valid(handle));
1382
1383         if (inline_data) {
1384                 ret = ext4_write_inline_data_end(inode, pos, len,
1385                                                  copied, page);
1386                 if (ret < 0) {
1387                         unlock_page(page);
1388                         put_page(page);
1389                         goto errout;
1390                 }
1391                 copied = ret;
1392         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1393                 copied = 0;
1394                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1395         } else {
1396                 if (unlikely(copied < len))
1397                         ext4_journalled_zero_new_buffers(handle, page,
1398                                                          from + copied, to);
1399                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1400                                              from + copied, &partial,
1401                                              write_end_fn);
1402                 if (!partial)
1403                         SetPageUptodate(page);
1404         }
1405         if (!verity)
1406                 size_changed = ext4_update_inode_size(inode, pos + copied);
1407         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1408         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1409         unlock_page(page);
1410         put_page(page);
1411
1412         if (old_size < pos && !verity)
1413                 pagecache_isize_extended(inode, old_size, pos);
1414
1415         if (size_changed || inline_data) {
1416                 ret2 = ext4_mark_inode_dirty(handle, inode);
1417                 if (!ret)
1418                         ret = ret2;
1419         }
1420
1421         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1422                 /* if we have allocated more blocks and copied
1423                  * less. We will have blocks allocated outside
1424                  * inode->i_size. So truncate them
1425                  */
1426                 ext4_orphan_add(handle, inode);
1427
1428 errout:
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432         if (pos + len > inode->i_size && !verity) {
1433                 ext4_truncate_failed_write(inode);
1434                 /*
1435                  * If truncate failed early the inode might still be
1436                  * on the orphan list; we need to make sure the inode
1437                  * is removed from the orphan list in that case.
1438                  */
1439                 if (inode->i_nlink)
1440                         ext4_orphan_del(NULL, inode);
1441         }
1442
1443         return ret ? ret : copied;
1444 }
1445
1446 /*
1447  * Reserve space for a single cluster
1448  */
1449 static int ext4_da_reserve_space(struct inode *inode)
1450 {
1451         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1452         struct ext4_inode_info *ei = EXT4_I(inode);
1453         int ret;
1454
1455         /*
1456          * We will charge metadata quota at writeout time; this saves
1457          * us from metadata over-estimation, though we may go over by
1458          * a small amount in the end.  Here we just reserve for data.
1459          */
1460         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1461         if (ret)
1462                 return ret;
1463
1464         spin_lock(&ei->i_block_reservation_lock);
1465         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1466                 spin_unlock(&ei->i_block_reservation_lock);
1467                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1468                 return -ENOSPC;
1469         }
1470         ei->i_reserved_data_blocks++;
1471         trace_ext4_da_reserve_space(inode);
1472         spin_unlock(&ei->i_block_reservation_lock);
1473
1474         return 0;       /* success */
1475 }
1476
1477 void ext4_da_release_space(struct inode *inode, int to_free)
1478 {
1479         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481
1482         if (!to_free)
1483                 return;         /* Nothing to release, exit */
1484
1485         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1486
1487         trace_ext4_da_release_space(inode, to_free);
1488         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1489                 /*
1490                  * if there aren't enough reserved blocks, then the
1491                  * counter is messed up somewhere.  Since this
1492                  * function is called from invalidate page, it's
1493                  * harmless to return without any action.
1494                  */
1495                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1496                          "ino %lu, to_free %d with only %d reserved "
1497                          "data blocks", inode->i_ino, to_free,
1498                          ei->i_reserved_data_blocks);
1499                 WARN_ON(1);
1500                 to_free = ei->i_reserved_data_blocks;
1501         }
1502         ei->i_reserved_data_blocks -= to_free;
1503
1504         /* update fs dirty data blocks counter */
1505         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1506
1507         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1508
1509         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1510 }
1511
1512 /*
1513  * Delayed allocation stuff
1514  */
1515
1516 struct mpage_da_data {
1517         struct inode *inode;
1518         struct writeback_control *wbc;
1519
1520         pgoff_t first_page;     /* The first page to write */
1521         pgoff_t next_page;      /* Current page to examine */
1522         pgoff_t last_page;      /* Last page to examine */
1523         /*
1524          * Extent to map - this can be after first_page because that can be
1525          * fully mapped. We somewhat abuse m_flags to store whether the extent
1526          * is delalloc or unwritten.
1527          */
1528         struct ext4_map_blocks map;
1529         struct ext4_io_submit io_submit;        /* IO submission data */
1530         unsigned int do_map:1;
1531 };
1532
1533 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1534                                        bool invalidate)
1535 {
1536         int nr_pages, i;
1537         pgoff_t index, end;
1538         struct pagevec pvec;
1539         struct inode *inode = mpd->inode;
1540         struct address_space *mapping = inode->i_mapping;
1541
1542         /* This is necessary when next_page == 0. */
1543         if (mpd->first_page >= mpd->next_page)
1544                 return;
1545
1546         index = mpd->first_page;
1547         end   = mpd->next_page - 1;
1548         if (invalidate) {
1549                 ext4_lblk_t start, last;
1550                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1551                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1552                 ext4_es_remove_extent(inode, start, last - start + 1);
1553         }
1554
1555         pagevec_init(&pvec);
1556         while (index <= end) {
1557                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1558                 if (nr_pages == 0)
1559                         break;
1560                 for (i = 0; i < nr_pages; i++) {
1561                         struct page *page = pvec.pages[i];
1562
1563                         BUG_ON(!PageLocked(page));
1564                         BUG_ON(PageWriteback(page));
1565                         if (invalidate) {
1566                                 if (page_mapped(page))
1567                                         clear_page_dirty_for_io(page);
1568                                 block_invalidatepage(page, 0, PAGE_SIZE);
1569                                 ClearPageUptodate(page);
1570                         }
1571                         unlock_page(page);
1572                 }
1573                 pagevec_release(&pvec);
1574         }
1575 }
1576
1577 static void ext4_print_free_blocks(struct inode *inode)
1578 {
1579         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1580         struct super_block *sb = inode->i_sb;
1581         struct ext4_inode_info *ei = EXT4_I(inode);
1582
1583         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1584                EXT4_C2B(EXT4_SB(inode->i_sb),
1585                         ext4_count_free_clusters(sb)));
1586         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1587         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1588                (long long) EXT4_C2B(EXT4_SB(sb),
1589                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1590         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1591                (long long) EXT4_C2B(EXT4_SB(sb),
1592                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1593         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1594         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1595                  ei->i_reserved_data_blocks);
1596         return;
1597 }
1598
1599 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1600 {
1601         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1602 }
1603
1604 /*
1605  * ext4_insert_delayed_block - adds a delayed block to the extents status
1606  *                             tree, incrementing the reserved cluster/block
1607  *                             count or making a pending reservation
1608  *                             where needed
1609  *
1610  * @inode - file containing the newly added block
1611  * @lblk - logical block to be added
1612  *
1613  * Returns 0 on success, negative error code on failure.
1614  */
1615 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1616 {
1617         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1618         int ret;
1619         bool allocated = false;
1620
1621         /*
1622          * If the cluster containing lblk is shared with a delayed,
1623          * written, or unwritten extent in a bigalloc file system, it's
1624          * already been accounted for and does not need to be reserved.
1625          * A pending reservation must be made for the cluster if it's
1626          * shared with a written or unwritten extent and doesn't already
1627          * have one.  Written and unwritten extents can be purged from the
1628          * extents status tree if the system is under memory pressure, so
1629          * it's necessary to examine the extent tree if a search of the
1630          * extents status tree doesn't get a match.
1631          */
1632         if (sbi->s_cluster_ratio == 1) {
1633                 ret = ext4_da_reserve_space(inode);
1634                 if (ret != 0)   /* ENOSPC */
1635                         goto errout;
1636         } else {   /* bigalloc */
1637                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1638                         if (!ext4_es_scan_clu(inode,
1639                                               &ext4_es_is_mapped, lblk)) {
1640                                 ret = ext4_clu_mapped(inode,
1641                                                       EXT4_B2C(sbi, lblk));
1642                                 if (ret < 0)
1643                                         goto errout;
1644                                 if (ret == 0) {
1645                                         ret = ext4_da_reserve_space(inode);
1646                                         if (ret != 0)   /* ENOSPC */
1647                                                 goto errout;
1648                                 } else {
1649                                         allocated = true;
1650                                 }
1651                         } else {
1652                                 allocated = true;
1653                         }
1654                 }
1655         }
1656
1657         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1658
1659 errout:
1660         return ret;
1661 }
1662
1663 /*
1664  * This function is grabs code from the very beginning of
1665  * ext4_map_blocks, but assumes that the caller is from delayed write
1666  * time. This function looks up the requested blocks and sets the
1667  * buffer delay bit under the protection of i_data_sem.
1668  */
1669 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1670                               struct ext4_map_blocks *map,
1671                               struct buffer_head *bh)
1672 {
1673         struct extent_status es;
1674         int retval;
1675         sector_t invalid_block = ~((sector_t) 0xffff);
1676 #ifdef ES_AGGRESSIVE_TEST
1677         struct ext4_map_blocks orig_map;
1678
1679         memcpy(&orig_map, map, sizeof(*map));
1680 #endif
1681
1682         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1683                 invalid_block = ~0;
1684
1685         map->m_flags = 0;
1686         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1687                   "logical block %lu\n", inode->i_ino, map->m_len,
1688                   (unsigned long) map->m_lblk);
1689
1690         /* Lookup extent status tree firstly */
1691         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1692                 if (ext4_es_is_hole(&es)) {
1693                         retval = 0;
1694                         down_read(&EXT4_I(inode)->i_data_sem);
1695                         goto add_delayed;
1696                 }
1697
1698                 /*
1699                  * Delayed extent could be allocated by fallocate.
1700                  * So we need to check it.
1701                  */
1702                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1703                         map_bh(bh, inode->i_sb, invalid_block);
1704                         set_buffer_new(bh);
1705                         set_buffer_delay(bh);
1706                         return 0;
1707                 }
1708
1709                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1710                 retval = es.es_len - (iblock - es.es_lblk);
1711                 if (retval > map->m_len)
1712                         retval = map->m_len;
1713                 map->m_len = retval;
1714                 if (ext4_es_is_written(&es))
1715                         map->m_flags |= EXT4_MAP_MAPPED;
1716                 else if (ext4_es_is_unwritten(&es))
1717                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1718                 else
1719                         BUG();
1720
1721 #ifdef ES_AGGRESSIVE_TEST
1722                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1723 #endif
1724                 return retval;
1725         }
1726
1727         /*
1728          * Try to see if we can get the block without requesting a new
1729          * file system block.
1730          */
1731         down_read(&EXT4_I(inode)->i_data_sem);
1732         if (ext4_has_inline_data(inode))
1733                 retval = 0;
1734         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1735                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1736         else
1737                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1738
1739 add_delayed:
1740         if (retval == 0) {
1741                 int ret;
1742
1743                 /*
1744                  * XXX: __block_prepare_write() unmaps passed block,
1745                  * is it OK?
1746                  */
1747
1748                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1749                 if (ret != 0) {
1750                         retval = ret;
1751                         goto out_unlock;
1752                 }
1753
1754                 map_bh(bh, inode->i_sb, invalid_block);
1755                 set_buffer_new(bh);
1756                 set_buffer_delay(bh);
1757         } else if (retval > 0) {
1758                 int ret;
1759                 unsigned int status;
1760
1761                 if (unlikely(retval != map->m_len)) {
1762                         ext4_warning(inode->i_sb,
1763                                      "ES len assertion failed for inode "
1764                                      "%lu: retval %d != map->m_len %d",
1765                                      inode->i_ino, retval, map->m_len);
1766                         WARN_ON(1);
1767                 }
1768
1769                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1770                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1771                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1772                                             map->m_pblk, status);
1773                 if (ret != 0)
1774                         retval = ret;
1775         }
1776
1777 out_unlock:
1778         up_read((&EXT4_I(inode)->i_data_sem));
1779
1780         return retval;
1781 }
1782
1783 /*
1784  * This is a special get_block_t callback which is used by
1785  * ext4_da_write_begin().  It will either return mapped block or
1786  * reserve space for a single block.
1787  *
1788  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1789  * We also have b_blocknr = -1 and b_bdev initialized properly
1790  *
1791  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1792  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1793  * initialized properly.
1794  */
1795 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1796                            struct buffer_head *bh, int create)
1797 {
1798         struct ext4_map_blocks map;
1799         int ret = 0;
1800
1801         BUG_ON(create == 0);
1802         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1803
1804         map.m_lblk = iblock;
1805         map.m_len = 1;
1806
1807         /*
1808          * first, we need to know whether the block is allocated already
1809          * preallocated blocks are unmapped but should treated
1810          * the same as allocated blocks.
1811          */
1812         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1813         if (ret <= 0)
1814                 return ret;
1815
1816         map_bh(bh, inode->i_sb, map.m_pblk);
1817         ext4_update_bh_state(bh, map.m_flags);
1818
1819         if (buffer_unwritten(bh)) {
1820                 /* A delayed write to unwritten bh should be marked
1821                  * new and mapped.  Mapped ensures that we don't do
1822                  * get_block multiple times when we write to the same
1823                  * offset and new ensures that we do proper zero out
1824                  * for partial write.
1825                  */
1826                 set_buffer_new(bh);
1827                 set_buffer_mapped(bh);
1828         }
1829         return 0;
1830 }
1831
1832 static int bget_one(handle_t *handle, struct buffer_head *bh)
1833 {
1834         get_bh(bh);
1835         return 0;
1836 }
1837
1838 static int bput_one(handle_t *handle, struct buffer_head *bh)
1839 {
1840         put_bh(bh);
1841         return 0;
1842 }
1843
1844 static int __ext4_journalled_writepage(struct page *page,
1845                                        unsigned int len)
1846 {
1847         struct address_space *mapping = page->mapping;
1848         struct inode *inode = mapping->host;
1849         struct buffer_head *page_bufs = NULL;
1850         handle_t *handle = NULL;
1851         int ret = 0, err = 0;
1852         int inline_data = ext4_has_inline_data(inode);
1853         struct buffer_head *inode_bh = NULL;
1854
1855         ClearPageChecked(page);
1856
1857         if (inline_data) {
1858                 BUG_ON(page->index != 0);
1859                 BUG_ON(len > ext4_get_max_inline_size(inode));
1860                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1861                 if (inode_bh == NULL)
1862                         goto out;
1863         } else {
1864                 page_bufs = page_buffers(page);
1865                 if (!page_bufs) {
1866                         BUG();
1867                         goto out;
1868                 }
1869                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1870                                        NULL, bget_one);
1871         }
1872         /*
1873          * We need to release the page lock before we start the
1874          * journal, so grab a reference so the page won't disappear
1875          * out from under us.
1876          */
1877         get_page(page);
1878         unlock_page(page);
1879
1880         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1881                                     ext4_writepage_trans_blocks(inode));
1882         if (IS_ERR(handle)) {
1883                 ret = PTR_ERR(handle);
1884                 put_page(page);
1885                 goto out_no_pagelock;
1886         }
1887         BUG_ON(!ext4_handle_valid(handle));
1888
1889         lock_page(page);
1890         put_page(page);
1891         if (page->mapping != mapping) {
1892                 /* The page got truncated from under us */
1893                 ext4_journal_stop(handle);
1894                 ret = 0;
1895                 goto out;
1896         }
1897
1898         if (inline_data) {
1899                 ret = ext4_mark_inode_dirty(handle, inode);
1900         } else {
1901                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1902                                              do_journal_get_write_access);
1903
1904                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1905                                              write_end_fn);
1906         }
1907         if (ret == 0)
1908                 ret = err;
1909         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1910         err = ext4_journal_stop(handle);
1911         if (!ret)
1912                 ret = err;
1913
1914         if (!ext4_has_inline_data(inode))
1915                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1916                                        NULL, bput_one);
1917         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1918 out:
1919         unlock_page(page);
1920 out_no_pagelock:
1921         brelse(inode_bh);
1922         return ret;
1923 }
1924
1925 /*
1926  * Note that we don't need to start a transaction unless we're journaling data
1927  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1928  * need to file the inode to the transaction's list in ordered mode because if
1929  * we are writing back data added by write(), the inode is already there and if
1930  * we are writing back data modified via mmap(), no one guarantees in which
1931  * transaction the data will hit the disk. In case we are journaling data, we
1932  * cannot start transaction directly because transaction start ranks above page
1933  * lock so we have to do some magic.
1934  *
1935  * This function can get called via...
1936  *   - ext4_writepages after taking page lock (have journal handle)
1937  *   - journal_submit_inode_data_buffers (no journal handle)
1938  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1939  *   - grab_page_cache when doing write_begin (have journal handle)
1940  *
1941  * We don't do any block allocation in this function. If we have page with
1942  * multiple blocks we need to write those buffer_heads that are mapped. This
1943  * is important for mmaped based write. So if we do with blocksize 1K
1944  * truncate(f, 1024);
1945  * a = mmap(f, 0, 4096);
1946  * a[0] = 'a';
1947  * truncate(f, 4096);
1948  * we have in the page first buffer_head mapped via page_mkwrite call back
1949  * but other buffer_heads would be unmapped but dirty (dirty done via the
1950  * do_wp_page). So writepage should write the first block. If we modify
1951  * the mmap area beyond 1024 we will again get a page_fault and the
1952  * page_mkwrite callback will do the block allocation and mark the
1953  * buffer_heads mapped.
1954  *
1955  * We redirty the page if we have any buffer_heads that is either delay or
1956  * unwritten in the page.
1957  *
1958  * We can get recursively called as show below.
1959  *
1960  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1961  *              ext4_writepage()
1962  *
1963  * But since we don't do any block allocation we should not deadlock.
1964  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1965  */
1966 static int ext4_writepage(struct page *page,
1967                           struct writeback_control *wbc)
1968 {
1969         int ret = 0;
1970         loff_t size;
1971         unsigned int len;
1972         struct buffer_head *page_bufs = NULL;
1973         struct inode *inode = page->mapping->host;
1974         struct ext4_io_submit io_submit;
1975         bool keep_towrite = false;
1976
1977         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1978                 ext4_invalidatepage(page, 0, PAGE_SIZE);
1979                 unlock_page(page);
1980                 return -EIO;
1981         }
1982
1983         trace_ext4_writepage(page);
1984         size = i_size_read(inode);
1985         if (page->index == size >> PAGE_SHIFT &&
1986             !ext4_verity_in_progress(inode))
1987                 len = size & ~PAGE_MASK;
1988         else
1989                 len = PAGE_SIZE;
1990
1991         page_bufs = page_buffers(page);
1992         /*
1993          * We cannot do block allocation or other extent handling in this
1994          * function. If there are buffers needing that, we have to redirty
1995          * the page. But we may reach here when we do a journal commit via
1996          * journal_submit_inode_data_buffers() and in that case we must write
1997          * allocated buffers to achieve data=ordered mode guarantees.
1998          *
1999          * Also, if there is only one buffer per page (the fs block
2000          * size == the page size), if one buffer needs block
2001          * allocation or needs to modify the extent tree to clear the
2002          * unwritten flag, we know that the page can't be written at
2003          * all, so we might as well refuse the write immediately.
2004          * Unfortunately if the block size != page size, we can't as
2005          * easily detect this case using ext4_walk_page_buffers(), but
2006          * for the extremely common case, this is an optimization that
2007          * skips a useless round trip through ext4_bio_write_page().
2008          */
2009         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2010                                    ext4_bh_delay_or_unwritten)) {
2011                 redirty_page_for_writepage(wbc, page);
2012                 if ((current->flags & PF_MEMALLOC) ||
2013                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2014                         /*
2015                          * For memory cleaning there's no point in writing only
2016                          * some buffers. So just bail out. Warn if we came here
2017                          * from direct reclaim.
2018                          */
2019                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2020                                                         == PF_MEMALLOC);
2021                         unlock_page(page);
2022                         return 0;
2023                 }
2024                 keep_towrite = true;
2025         }
2026
2027         if (PageChecked(page) && ext4_should_journal_data(inode))
2028                 /*
2029                  * It's mmapped pagecache.  Add buffers and journal it.  There
2030                  * doesn't seem much point in redirtying the page here.
2031                  */
2032                 return __ext4_journalled_writepage(page, len);
2033
2034         ext4_io_submit_init(&io_submit, wbc);
2035         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2036         if (!io_submit.io_end) {
2037                 redirty_page_for_writepage(wbc, page);
2038                 unlock_page(page);
2039                 return -ENOMEM;
2040         }
2041         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2042         ext4_io_submit(&io_submit);
2043         /* Drop io_end reference we got from init */
2044         ext4_put_io_end_defer(io_submit.io_end);
2045         return ret;
2046 }
2047
2048 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2049 {
2050         int len;
2051         loff_t size;
2052         int err;
2053
2054         BUG_ON(page->index != mpd->first_page);
2055         clear_page_dirty_for_io(page);
2056         /*
2057          * We have to be very careful here!  Nothing protects writeback path
2058          * against i_size changes and the page can be writeably mapped into
2059          * page tables. So an application can be growing i_size and writing
2060          * data through mmap while writeback runs. clear_page_dirty_for_io()
2061          * write-protects our page in page tables and the page cannot get
2062          * written to again until we release page lock. So only after
2063          * clear_page_dirty_for_io() we are safe to sample i_size for
2064          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2065          * on the barrier provided by TestClearPageDirty in
2066          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2067          * after page tables are updated.
2068          */
2069         size = i_size_read(mpd->inode);
2070         if (page->index == size >> PAGE_SHIFT &&
2071             !ext4_verity_in_progress(mpd->inode))
2072                 len = size & ~PAGE_MASK;
2073         else
2074                 len = PAGE_SIZE;
2075         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2076         if (!err)
2077                 mpd->wbc->nr_to_write--;
2078         mpd->first_page++;
2079
2080         return err;
2081 }
2082
2083 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2084
2085 /*
2086  * mballoc gives us at most this number of blocks...
2087  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2088  * The rest of mballoc seems to handle chunks up to full group size.
2089  */
2090 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2091
2092 /*
2093  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2094  *
2095  * @mpd - extent of blocks
2096  * @lblk - logical number of the block in the file
2097  * @bh - buffer head we want to add to the extent
2098  *
2099  * The function is used to collect contig. blocks in the same state. If the
2100  * buffer doesn't require mapping for writeback and we haven't started the
2101  * extent of buffers to map yet, the function returns 'true' immediately - the
2102  * caller can write the buffer right away. Otherwise the function returns true
2103  * if the block has been added to the extent, false if the block couldn't be
2104  * added.
2105  */
2106 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2107                                    struct buffer_head *bh)
2108 {
2109         struct ext4_map_blocks *map = &mpd->map;
2110
2111         /* Buffer that doesn't need mapping for writeback? */
2112         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2113             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2114                 /* So far no extent to map => we write the buffer right away */
2115                 if (map->m_len == 0)
2116                         return true;
2117                 return false;
2118         }
2119
2120         /* First block in the extent? */
2121         if (map->m_len == 0) {
2122                 /* We cannot map unless handle is started... */
2123                 if (!mpd->do_map)
2124                         return false;
2125                 map->m_lblk = lblk;
2126                 map->m_len = 1;
2127                 map->m_flags = bh->b_state & BH_FLAGS;
2128                 return true;
2129         }
2130
2131         /* Don't go larger than mballoc is willing to allocate */
2132         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2133                 return false;
2134
2135         /* Can we merge the block to our big extent? */
2136         if (lblk == map->m_lblk + map->m_len &&
2137             (bh->b_state & BH_FLAGS) == map->m_flags) {
2138                 map->m_len++;
2139                 return true;
2140         }
2141         return false;
2142 }
2143
2144 /*
2145  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2146  *
2147  * @mpd - extent of blocks for mapping
2148  * @head - the first buffer in the page
2149  * @bh - buffer we should start processing from
2150  * @lblk - logical number of the block in the file corresponding to @bh
2151  *
2152  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2153  * the page for IO if all buffers in this page were mapped and there's no
2154  * accumulated extent of buffers to map or add buffers in the page to the
2155  * extent of buffers to map. The function returns 1 if the caller can continue
2156  * by processing the next page, 0 if it should stop adding buffers to the
2157  * extent to map because we cannot extend it anymore. It can also return value
2158  * < 0 in case of error during IO submission.
2159  */
2160 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2161                                    struct buffer_head *head,
2162                                    struct buffer_head *bh,
2163                                    ext4_lblk_t lblk)
2164 {
2165         struct inode *inode = mpd->inode;
2166         int err;
2167         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2168                                                         >> inode->i_blkbits;
2169
2170         if (ext4_verity_in_progress(inode))
2171                 blocks = EXT_MAX_BLOCKS;
2172
2173         do {
2174                 BUG_ON(buffer_locked(bh));
2175
2176                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2177                         /* Found extent to map? */
2178                         if (mpd->map.m_len)
2179                                 return 0;
2180                         /* Buffer needs mapping and handle is not started? */
2181                         if (!mpd->do_map)
2182                                 return 0;
2183                         /* Everything mapped so far and we hit EOF */
2184                         break;
2185                 }
2186         } while (lblk++, (bh = bh->b_this_page) != head);
2187         /* So far everything mapped? Submit the page for IO. */
2188         if (mpd->map.m_len == 0) {
2189                 err = mpage_submit_page(mpd, head->b_page);
2190                 if (err < 0)
2191                         return err;
2192         }
2193         return lblk < blocks;
2194 }
2195
2196 /*
2197  * mpage_process_page - update page buffers corresponding to changed extent and
2198  *                     may submit fully mapped page for IO
2199  *
2200  * @mpd         - description of extent to map, on return next extent to map
2201  * @m_lblk      - logical block mapping.
2202  * @m_pblk      - corresponding physical mapping.
2203  * @map_bh      - determines on return whether this page requires any further
2204  *                mapping or not.
2205  * Scan given page buffers corresponding to changed extent and update buffer
2206  * state according to new extent state.
2207  * We map delalloc buffers to their physical location, clear unwritten bits.
2208  * If the given page is not fully mapped, we update @map to the next extent in
2209  * the given page that needs mapping & return @map_bh as true.
2210  */
2211 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2212                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2213                               bool *map_bh)
2214 {
2215         struct buffer_head *head, *bh;
2216         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2217         ext4_lblk_t lblk = *m_lblk;
2218         ext4_fsblk_t pblock = *m_pblk;
2219         int err = 0;
2220         int blkbits = mpd->inode->i_blkbits;
2221         ssize_t io_end_size = 0;
2222         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2223
2224         bh = head = page_buffers(page);
2225         do {
2226                 if (lblk < mpd->map.m_lblk)
2227                         continue;
2228                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2229                         /*
2230                          * Buffer after end of mapped extent.
2231                          * Find next buffer in the page to map.
2232                          */
2233                         mpd->map.m_len = 0;
2234                         mpd->map.m_flags = 0;
2235                         io_end_vec->size += io_end_size;
2236                         io_end_size = 0;
2237
2238                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2239                         if (err > 0)
2240                                 err = 0;
2241                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2242                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2243                                 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2244                         }
2245                         *map_bh = true;
2246                         goto out;
2247                 }
2248                 if (buffer_delay(bh)) {
2249                         clear_buffer_delay(bh);
2250                         bh->b_blocknr = pblock++;
2251                 }
2252                 clear_buffer_unwritten(bh);
2253                 io_end_size += (1 << blkbits);
2254         } while (lblk++, (bh = bh->b_this_page) != head);
2255
2256         io_end_vec->size += io_end_size;
2257         io_end_size = 0;
2258         *map_bh = false;
2259 out:
2260         *m_lblk = lblk;
2261         *m_pblk = pblock;
2262         return err;
2263 }
2264
2265 /*
2266  * mpage_map_buffers - update buffers corresponding to changed extent and
2267  *                     submit fully mapped pages for IO
2268  *
2269  * @mpd - description of extent to map, on return next extent to map
2270  *
2271  * Scan buffers corresponding to changed extent (we expect corresponding pages
2272  * to be already locked) and update buffer state according to new extent state.
2273  * We map delalloc buffers to their physical location, clear unwritten bits,
2274  * and mark buffers as uninit when we perform writes to unwritten extents
2275  * and do extent conversion after IO is finished. If the last page is not fully
2276  * mapped, we update @map to the next extent in the last page that needs
2277  * mapping. Otherwise we submit the page for IO.
2278  */
2279 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2280 {
2281         struct pagevec pvec;
2282         int nr_pages, i;
2283         struct inode *inode = mpd->inode;
2284         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2285         pgoff_t start, end;
2286         ext4_lblk_t lblk;
2287         ext4_fsblk_t pblock;
2288         int err;
2289         bool map_bh = false;
2290
2291         start = mpd->map.m_lblk >> bpp_bits;
2292         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2293         lblk = start << bpp_bits;
2294         pblock = mpd->map.m_pblk;
2295
2296         pagevec_init(&pvec);
2297         while (start <= end) {
2298                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2299                                                 &start, end);
2300                 if (nr_pages == 0)
2301                         break;
2302                 for (i = 0; i < nr_pages; i++) {
2303                         struct page *page = pvec.pages[i];
2304
2305                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2306                                                  &map_bh);
2307                         /*
2308                          * If map_bh is true, means page may require further bh
2309                          * mapping, or maybe the page was submitted for IO.
2310                          * So we return to call further extent mapping.
2311                          */
2312                         if (err < 0 || map_bh == true)
2313                                 goto out;
2314                         /* Page fully mapped - let IO run! */
2315                         err = mpage_submit_page(mpd, page);
2316                         if (err < 0)
2317                                 goto out;
2318                 }
2319                 pagevec_release(&pvec);
2320         }
2321         /* Extent fully mapped and matches with page boundary. We are done. */
2322         mpd->map.m_len = 0;
2323         mpd->map.m_flags = 0;
2324         return 0;
2325 out:
2326         pagevec_release(&pvec);
2327         return err;
2328 }
2329
2330 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2331 {
2332         struct inode *inode = mpd->inode;
2333         struct ext4_map_blocks *map = &mpd->map;
2334         int get_blocks_flags;
2335         int err, dioread_nolock;
2336
2337         trace_ext4_da_write_pages_extent(inode, map);
2338         /*
2339          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2340          * to convert an unwritten extent to be initialized (in the case
2341          * where we have written into one or more preallocated blocks).  It is
2342          * possible that we're going to need more metadata blocks than
2343          * previously reserved. However we must not fail because we're in
2344          * writeback and there is nothing we can do about it so it might result
2345          * in data loss.  So use reserved blocks to allocate metadata if
2346          * possible.
2347          *
2348          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2349          * the blocks in question are delalloc blocks.  This indicates
2350          * that the blocks and quotas has already been checked when
2351          * the data was copied into the page cache.
2352          */
2353         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2354                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2355                            EXT4_GET_BLOCKS_IO_SUBMIT;
2356         dioread_nolock = ext4_should_dioread_nolock(inode);
2357         if (dioread_nolock)
2358                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2359         if (map->m_flags & (1 << BH_Delay))
2360                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2361
2362         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2363         if (err < 0)
2364                 return err;
2365         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2366                 if (!mpd->io_submit.io_end->handle &&
2367                     ext4_handle_valid(handle)) {
2368                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2369                         handle->h_rsv_handle = NULL;
2370                 }
2371                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2372         }
2373
2374         BUG_ON(map->m_len == 0);
2375         return 0;
2376 }
2377
2378 /*
2379  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2380  *                               mpd->len and submit pages underlying it for IO
2381  *
2382  * @handle - handle for journal operations
2383  * @mpd - extent to map
2384  * @give_up_on_write - we set this to true iff there is a fatal error and there
2385  *                     is no hope of writing the data. The caller should discard
2386  *                     dirty pages to avoid infinite loops.
2387  *
2388  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2389  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2390  * them to initialized or split the described range from larger unwritten
2391  * extent. Note that we need not map all the described range since allocation
2392  * can return less blocks or the range is covered by more unwritten extents. We
2393  * cannot map more because we are limited by reserved transaction credits. On
2394  * the other hand we always make sure that the last touched page is fully
2395  * mapped so that it can be written out (and thus forward progress is
2396  * guaranteed). After mapping we submit all mapped pages for IO.
2397  */
2398 static int mpage_map_and_submit_extent(handle_t *handle,
2399                                        struct mpage_da_data *mpd,
2400                                        bool *give_up_on_write)
2401 {
2402         struct inode *inode = mpd->inode;
2403         struct ext4_map_blocks *map = &mpd->map;
2404         int err;
2405         loff_t disksize;
2406         int progress = 0;
2407         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2408         struct ext4_io_end_vec *io_end_vec = ext4_alloc_io_end_vec(io_end);
2409
2410         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2411         do {
2412                 err = mpage_map_one_extent(handle, mpd);
2413                 if (err < 0) {
2414                         struct super_block *sb = inode->i_sb;
2415
2416                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2417                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2418                                 goto invalidate_dirty_pages;
2419                         /*
2420                          * Let the uper layers retry transient errors.
2421                          * In the case of ENOSPC, if ext4_count_free_blocks()
2422                          * is non-zero, a commit should free up blocks.
2423                          */
2424                         if ((err == -ENOMEM) ||
2425                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2426                                 if (progress)
2427                                         goto update_disksize;
2428                                 return err;
2429                         }
2430                         ext4_msg(sb, KERN_CRIT,
2431                                  "Delayed block allocation failed for "
2432                                  "inode %lu at logical offset %llu with"
2433                                  " max blocks %u with error %d",
2434                                  inode->i_ino,
2435                                  (unsigned long long)map->m_lblk,
2436                                  (unsigned)map->m_len, -err);
2437                         ext4_msg(sb, KERN_CRIT,
2438                                  "This should not happen!! Data will "
2439                                  "be lost\n");
2440                         if (err == -ENOSPC)
2441                                 ext4_print_free_blocks(inode);
2442                 invalidate_dirty_pages:
2443                         *give_up_on_write = true;
2444                         return err;
2445                 }
2446                 progress = 1;
2447                 /*
2448                  * Update buffer state, submit mapped pages, and get us new
2449                  * extent to map
2450                  */
2451                 err = mpage_map_and_submit_buffers(mpd);
2452                 if (err < 0)
2453                         goto update_disksize;
2454         } while (map->m_len);
2455
2456 update_disksize:
2457         /*
2458          * Update on-disk size after IO is submitted.  Races with
2459          * truncate are avoided by checking i_size under i_data_sem.
2460          */
2461         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2462         if (disksize > EXT4_I(inode)->i_disksize) {
2463                 int err2;
2464                 loff_t i_size;
2465
2466                 down_write(&EXT4_I(inode)->i_data_sem);
2467                 i_size = i_size_read(inode);
2468                 if (disksize > i_size)
2469                         disksize = i_size;
2470                 if (disksize > EXT4_I(inode)->i_disksize)
2471                         EXT4_I(inode)->i_disksize = disksize;
2472                 up_write(&EXT4_I(inode)->i_data_sem);
2473                 err2 = ext4_mark_inode_dirty(handle, inode);
2474                 if (err2)
2475                         ext4_error(inode->i_sb,
2476                                    "Failed to mark inode %lu dirty",
2477                                    inode->i_ino);
2478                 if (!err)
2479                         err = err2;
2480         }
2481         return err;
2482 }
2483
2484 /*
2485  * Calculate the total number of credits to reserve for one writepages
2486  * iteration. This is called from ext4_writepages(). We map an extent of
2487  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2488  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2489  * bpp - 1 blocks in bpp different extents.
2490  */
2491 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2492 {
2493         int bpp = ext4_journal_blocks_per_page(inode);
2494
2495         return ext4_meta_trans_blocks(inode,
2496                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2497 }
2498
2499 /*
2500  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2501  *                               and underlying extent to map
2502  *
2503  * @mpd - where to look for pages
2504  *
2505  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2506  * IO immediately. When we find a page which isn't mapped we start accumulating
2507  * extent of buffers underlying these pages that needs mapping (formed by
2508  * either delayed or unwritten buffers). We also lock the pages containing
2509  * these buffers. The extent found is returned in @mpd structure (starting at
2510  * mpd->lblk with length mpd->len blocks).
2511  *
2512  * Note that this function can attach bios to one io_end structure which are
2513  * neither logically nor physically contiguous. Although it may seem as an
2514  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2515  * case as we need to track IO to all buffers underlying a page in one io_end.
2516  */
2517 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2518 {
2519         struct address_space *mapping = mpd->inode->i_mapping;
2520         struct pagevec pvec;
2521         unsigned int nr_pages;
2522         long left = mpd->wbc->nr_to_write;
2523         pgoff_t index = mpd->first_page;
2524         pgoff_t end = mpd->last_page;
2525         xa_mark_t tag;
2526         int i, err = 0;
2527         int blkbits = mpd->inode->i_blkbits;
2528         ext4_lblk_t lblk;
2529         struct buffer_head *head;
2530
2531         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2532                 tag = PAGECACHE_TAG_TOWRITE;
2533         else
2534                 tag = PAGECACHE_TAG_DIRTY;
2535
2536         pagevec_init(&pvec);
2537         mpd->map.m_len = 0;
2538         mpd->next_page = index;
2539         while (index <= end) {
2540                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2541                                 tag);
2542                 if (nr_pages == 0)
2543                         goto out;
2544
2545                 for (i = 0; i < nr_pages; i++) {
2546                         struct page *page = pvec.pages[i];
2547
2548                         /*
2549                          * Accumulated enough dirty pages? This doesn't apply
2550                          * to WB_SYNC_ALL mode. For integrity sync we have to
2551                          * keep going because someone may be concurrently
2552                          * dirtying pages, and we might have synced a lot of
2553                          * newly appeared dirty pages, but have not synced all
2554                          * of the old dirty pages.
2555                          */
2556                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2557                                 goto out;
2558
2559                         /* If we can't merge this page, we are done. */
2560                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2561                                 goto out;
2562
2563                         lock_page(page);
2564                         /*
2565                          * If the page is no longer dirty, or its mapping no
2566                          * longer corresponds to inode we are writing (which
2567                          * means it has been truncated or invalidated), or the
2568                          * page is already under writeback and we are not doing
2569                          * a data integrity writeback, skip the page
2570                          */
2571                         if (!PageDirty(page) ||
2572                             (PageWriteback(page) &&
2573                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2574                             unlikely(page->mapping != mapping)) {
2575                                 unlock_page(page);
2576                                 continue;
2577                         }
2578
2579                         wait_on_page_writeback(page);
2580                         BUG_ON(PageWriteback(page));
2581
2582                         if (mpd->map.m_len == 0)
2583                                 mpd->first_page = page->index;
2584                         mpd->next_page = page->index + 1;
2585                         /* Add all dirty buffers to mpd */
2586                         lblk = ((ext4_lblk_t)page->index) <<
2587                                 (PAGE_SHIFT - blkbits);
2588                         head = page_buffers(page);
2589                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2590                         if (err <= 0)
2591                                 goto out;
2592                         err = 0;
2593                         left--;
2594                 }
2595                 pagevec_release(&pvec);
2596                 cond_resched();
2597         }
2598         return 0;
2599 out:
2600         pagevec_release(&pvec);
2601         return err;
2602 }
2603
2604 static int ext4_writepages(struct address_space *mapping,
2605                            struct writeback_control *wbc)
2606 {
2607         pgoff_t writeback_index = 0;
2608         long nr_to_write = wbc->nr_to_write;
2609         int range_whole = 0;
2610         int cycled = 1;
2611         handle_t *handle = NULL;
2612         struct mpage_da_data mpd;
2613         struct inode *inode = mapping->host;
2614         int needed_blocks, rsv_blocks = 0, ret = 0;
2615         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2616         bool done;
2617         struct blk_plug plug;
2618         bool give_up_on_write = false;
2619
2620         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2621                 return -EIO;
2622
2623         percpu_down_read(&sbi->s_journal_flag_rwsem);
2624         trace_ext4_writepages(inode, wbc);
2625
2626         /*
2627          * No pages to write? This is mainly a kludge to avoid starting
2628          * a transaction for special inodes like journal inode on last iput()
2629          * because that could violate lock ordering on umount
2630          */
2631         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2632                 goto out_writepages;
2633
2634         if (ext4_should_journal_data(inode)) {
2635                 ret = generic_writepages(mapping, wbc);
2636                 goto out_writepages;
2637         }
2638
2639         /*
2640          * If the filesystem has aborted, it is read-only, so return
2641          * right away instead of dumping stack traces later on that
2642          * will obscure the real source of the problem.  We test
2643          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2644          * the latter could be true if the filesystem is mounted
2645          * read-only, and in that case, ext4_writepages should
2646          * *never* be called, so if that ever happens, we would want
2647          * the stack trace.
2648          */
2649         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2650                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2651                 ret = -EROFS;
2652                 goto out_writepages;
2653         }
2654
2655         /*
2656          * If we have inline data and arrive here, it means that
2657          * we will soon create the block for the 1st page, so
2658          * we'd better clear the inline data here.
2659          */
2660         if (ext4_has_inline_data(inode)) {
2661                 /* Just inode will be modified... */
2662                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2663                 if (IS_ERR(handle)) {
2664                         ret = PTR_ERR(handle);
2665                         goto out_writepages;
2666                 }
2667                 BUG_ON(ext4_test_inode_state(inode,
2668                                 EXT4_STATE_MAY_INLINE_DATA));
2669                 ext4_destroy_inline_data(handle, inode);
2670                 ext4_journal_stop(handle);
2671         }
2672
2673         if (ext4_should_dioread_nolock(inode)) {
2674                 /*
2675                  * We may need to convert up to one extent per block in
2676                  * the page and we may dirty the inode.
2677                  */
2678                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2679                                                 PAGE_SIZE >> inode->i_blkbits);
2680         }
2681
2682         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2683                 range_whole = 1;
2684
2685         if (wbc->range_cyclic) {
2686                 writeback_index = mapping->writeback_index;
2687                 if (writeback_index)
2688                         cycled = 0;
2689                 mpd.first_page = writeback_index;
2690                 mpd.last_page = -1;
2691         } else {
2692                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2693                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2694         }
2695
2696         mpd.inode = inode;
2697         mpd.wbc = wbc;
2698         ext4_io_submit_init(&mpd.io_submit, wbc);
2699 retry:
2700         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2701                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2702         done = false;
2703         blk_start_plug(&plug);
2704
2705         /*
2706          * First writeback pages that don't need mapping - we can avoid
2707          * starting a transaction unnecessarily and also avoid being blocked
2708          * in the block layer on device congestion while having transaction
2709          * started.
2710          */
2711         mpd.do_map = 0;
2712         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2713         if (!mpd.io_submit.io_end) {
2714                 ret = -ENOMEM;
2715                 goto unplug;
2716         }
2717         ret = mpage_prepare_extent_to_map(&mpd);
2718         /* Unlock pages we didn't use */
2719         mpage_release_unused_pages(&mpd, false);
2720         /* Submit prepared bio */
2721         ext4_io_submit(&mpd.io_submit);
2722         ext4_put_io_end_defer(mpd.io_submit.io_end);
2723         mpd.io_submit.io_end = NULL;
2724         if (ret < 0)
2725                 goto unplug;
2726
2727         while (!done && mpd.first_page <= mpd.last_page) {
2728                 /* For each extent of pages we use new io_end */
2729                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2730                 if (!mpd.io_submit.io_end) {
2731                         ret = -ENOMEM;
2732                         break;
2733                 }
2734
2735                 /*
2736                  * We have two constraints: We find one extent to map and we
2737                  * must always write out whole page (makes a difference when
2738                  * blocksize < pagesize) so that we don't block on IO when we
2739                  * try to write out the rest of the page. Journalled mode is
2740                  * not supported by delalloc.
2741                  */
2742                 BUG_ON(ext4_should_journal_data(inode));
2743                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2744
2745                 /* start a new transaction */
2746                 handle = ext4_journal_start_with_reserve(inode,
2747                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2748                 if (IS_ERR(handle)) {
2749                         ret = PTR_ERR(handle);
2750                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2751                                "%ld pages, ino %lu; err %d", __func__,
2752                                 wbc->nr_to_write, inode->i_ino, ret);
2753                         /* Release allocated io_end */
2754                         ext4_put_io_end(mpd.io_submit.io_end);
2755                         mpd.io_submit.io_end = NULL;
2756                         break;
2757                 }
2758                 mpd.do_map = 1;
2759
2760                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2761                 ret = mpage_prepare_extent_to_map(&mpd);
2762                 if (!ret) {
2763                         if (mpd.map.m_len)
2764                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2765                                         &give_up_on_write);
2766                         else {
2767                                 /*
2768                                  * We scanned the whole range (or exhausted
2769                                  * nr_to_write), submitted what was mapped and
2770                                  * didn't find anything needing mapping. We are
2771                                  * done.
2772                                  */
2773                                 done = true;
2774                         }
2775                 }
2776                 /*
2777                  * Caution: If the handle is synchronous,
2778                  * ext4_journal_stop() can wait for transaction commit
2779                  * to finish which may depend on writeback of pages to
2780                  * complete or on page lock to be released.  In that
2781                  * case, we have to wait until after after we have
2782                  * submitted all the IO, released page locks we hold,
2783                  * and dropped io_end reference (for extent conversion
2784                  * to be able to complete) before stopping the handle.
2785                  */
2786                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2787                         ext4_journal_stop(handle);
2788                         handle = NULL;
2789                         mpd.do_map = 0;
2790                 }
2791                 /* Unlock pages we didn't use */
2792                 mpage_release_unused_pages(&mpd, give_up_on_write);
2793                 /* Submit prepared bio */
2794                 ext4_io_submit(&mpd.io_submit);
2795
2796                 /*
2797                  * Drop our io_end reference we got from init. We have
2798                  * to be careful and use deferred io_end finishing if
2799                  * we are still holding the transaction as we can
2800                  * release the last reference to io_end which may end
2801                  * up doing unwritten extent conversion.
2802                  */
2803                 if (handle) {
2804                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2805                         ext4_journal_stop(handle);
2806                 } else
2807                         ext4_put_io_end(mpd.io_submit.io_end);
2808                 mpd.io_submit.io_end = NULL;
2809
2810                 if (ret == -ENOSPC && sbi->s_journal) {
2811                         /*
2812                          * Commit the transaction which would
2813                          * free blocks released in the transaction
2814                          * and try again
2815                          */
2816                         jbd2_journal_force_commit_nested(sbi->s_journal);
2817                         ret = 0;
2818                         continue;
2819                 }
2820                 /* Fatal error - ENOMEM, EIO... */
2821                 if (ret)
2822                         break;
2823         }
2824 unplug:
2825         blk_finish_plug(&plug);
2826         if (!ret && !cycled && wbc->nr_to_write > 0) {
2827                 cycled = 1;
2828                 mpd.last_page = writeback_index - 1;
2829                 mpd.first_page = 0;
2830                 goto retry;
2831         }
2832
2833         /* Update index */
2834         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2835                 /*
2836                  * Set the writeback_index so that range_cyclic
2837                  * mode will write it back later
2838                  */
2839                 mapping->writeback_index = mpd.first_page;
2840
2841 out_writepages:
2842         trace_ext4_writepages_result(inode, wbc, ret,
2843                                      nr_to_write - wbc->nr_to_write);
2844         percpu_up_read(&sbi->s_journal_flag_rwsem);
2845         return ret;
2846 }
2847
2848 static int ext4_dax_writepages(struct address_space *mapping,
2849                                struct writeback_control *wbc)
2850 {
2851         int ret;
2852         long nr_to_write = wbc->nr_to_write;
2853         struct inode *inode = mapping->host;
2854         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2855
2856         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2857                 return -EIO;
2858
2859         percpu_down_read(&sbi->s_journal_flag_rwsem);
2860         trace_ext4_writepages(inode, wbc);
2861
2862         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2863         trace_ext4_writepages_result(inode, wbc, ret,
2864                                      nr_to_write - wbc->nr_to_write);
2865         percpu_up_read(&sbi->s_journal_flag_rwsem);
2866         return ret;
2867 }
2868
2869 static int ext4_nonda_switch(struct super_block *sb)
2870 {
2871         s64 free_clusters, dirty_clusters;
2872         struct ext4_sb_info *sbi = EXT4_SB(sb);
2873
2874         /*
2875          * switch to non delalloc mode if we are running low
2876          * on free block. The free block accounting via percpu
2877          * counters can get slightly wrong with percpu_counter_batch getting
2878          * accumulated on each CPU without updating global counters
2879          * Delalloc need an accurate free block accounting. So switch
2880          * to non delalloc when we are near to error range.
2881          */
2882         free_clusters =
2883                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2884         dirty_clusters =
2885                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2886         /*
2887          * Start pushing delalloc when 1/2 of free blocks are dirty.
2888          */
2889         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2890                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2891
2892         if (2 * free_clusters < 3 * dirty_clusters ||
2893             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2894                 /*
2895                  * free block count is less than 150% of dirty blocks
2896                  * or free blocks is less than watermark
2897                  */
2898                 return 1;
2899         }
2900         return 0;
2901 }
2902
2903 /* We always reserve for an inode update; the superblock could be there too */
2904 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2905 {
2906         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2907                 return 1;
2908
2909         if (pos + len <= 0x7fffffffULL)
2910                 return 1;
2911
2912         /* We might need to update the superblock to set LARGE_FILE */
2913         return 2;
2914 }
2915
2916 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2917                                loff_t pos, unsigned len, unsigned flags,
2918                                struct page **pagep, void **fsdata)
2919 {
2920         int ret, retries = 0;
2921         struct page *page;
2922         pgoff_t index;
2923         struct inode *inode = mapping->host;
2924         handle_t *handle;
2925
2926         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2927                 return -EIO;
2928
2929         index = pos >> PAGE_SHIFT;
2930
2931         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2932             ext4_verity_in_progress(inode)) {
2933                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2934                 return ext4_write_begin(file, mapping, pos,
2935                                         len, flags, pagep, fsdata);
2936         }
2937         *fsdata = (void *)0;
2938         trace_ext4_da_write_begin(inode, pos, len, flags);
2939
2940         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2941                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2942                                                       pos, len, flags,
2943                                                       pagep, fsdata);
2944                 if (ret < 0)
2945                         return ret;
2946                 if (ret == 1)
2947                         return 0;
2948         }
2949
2950         /*
2951          * grab_cache_page_write_begin() can take a long time if the
2952          * system is thrashing due to memory pressure, or if the page
2953          * is being written back.  So grab it first before we start
2954          * the transaction handle.  This also allows us to allocate
2955          * the page (if needed) without using GFP_NOFS.
2956          */
2957 retry_grab:
2958         page = grab_cache_page_write_begin(mapping, index, flags);
2959         if (!page)
2960                 return -ENOMEM;
2961         unlock_page(page);
2962
2963         /*
2964          * With delayed allocation, we don't log the i_disksize update
2965          * if there is delayed block allocation. But we still need
2966          * to journalling the i_disksize update if writes to the end
2967          * of file which has an already mapped buffer.
2968          */
2969 retry_journal:
2970         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2971                                 ext4_da_write_credits(inode, pos, len));
2972         if (IS_ERR(handle)) {
2973                 put_page(page);
2974                 return PTR_ERR(handle);
2975         }
2976
2977         lock_page(page);
2978         if (page->mapping != mapping) {
2979                 /* The page got truncated from under us */
2980                 unlock_page(page);
2981                 put_page(page);
2982                 ext4_journal_stop(handle);
2983                 goto retry_grab;
2984         }
2985         /* In case writeback began while the page was unlocked */
2986         wait_for_stable_page(page);
2987
2988 #ifdef CONFIG_FS_ENCRYPTION
2989         ret = ext4_block_write_begin(page, pos, len,
2990                                      ext4_da_get_block_prep);
2991 #else
2992         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2993 #endif
2994         if (ret < 0) {
2995                 unlock_page(page);
2996                 ext4_journal_stop(handle);
2997                 /*
2998                  * block_write_begin may have instantiated a few blocks
2999                  * outside i_size.  Trim these off again. Don't need
3000                  * i_size_read because we hold i_mutex.
3001                  */
3002                 if (pos + len > inode->i_size)
3003                         ext4_truncate_failed_write(inode);
3004
3005                 if (ret == -ENOSPC &&
3006                     ext4_should_retry_alloc(inode->i_sb, &retries))
3007                         goto retry_journal;
3008
3009                 put_page(page);
3010                 return ret;
3011         }
3012
3013         *pagep = page;
3014         return ret;
3015 }
3016
3017 /*
3018  * Check if we should update i_disksize
3019  * when write to the end of file but not require block allocation
3020  */
3021 static int ext4_da_should_update_i_disksize(struct page *page,
3022                                             unsigned long offset)
3023 {
3024         struct buffer_head *bh;
3025         struct inode *inode = page->mapping->host;
3026         unsigned int idx;
3027         int i;
3028
3029         bh = page_buffers(page);
3030         idx = offset >> inode->i_blkbits;
3031
3032         for (i = 0; i < idx; i++)
3033                 bh = bh->b_this_page;
3034
3035         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3036                 return 0;
3037         return 1;
3038 }
3039
3040 static int ext4_da_write_end(struct file *file,
3041                              struct address_space *mapping,
3042                              loff_t pos, unsigned len, unsigned copied,
3043                              struct page *page, void *fsdata)
3044 {
3045         struct inode *inode = mapping->host;
3046         int ret = 0, ret2;
3047         handle_t *handle = ext4_journal_current_handle();
3048         loff_t new_i_size;
3049         unsigned long start, end;
3050         int write_mode = (int)(unsigned long)fsdata;
3051
3052         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3053                 return ext4_write_end(file, mapping, pos,
3054                                       len, copied, page, fsdata);
3055
3056         trace_ext4_da_write_end(inode, pos, len, copied);
3057         start = pos & (PAGE_SIZE - 1);
3058         end = start + copied - 1;
3059
3060         /*
3061          * generic_write_end() will run mark_inode_dirty() if i_size
3062          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3063          * into that.
3064          */
3065         new_i_size = pos + copied;
3066         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3067                 if (ext4_has_inline_data(inode) ||
3068                     ext4_da_should_update_i_disksize(page, end)) {
3069                         ext4_update_i_disksize(inode, new_i_size);
3070                         /* We need to mark inode dirty even if
3071                          * new_i_size is less that inode->i_size
3072                          * bu greater than i_disksize.(hint delalloc)
3073                          */
3074                         ext4_mark_inode_dirty(handle, inode);
3075                 }
3076         }
3077
3078         if (write_mode != CONVERT_INLINE_DATA &&
3079             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3080             ext4_has_inline_data(inode))
3081                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3082                                                      page);
3083         else
3084                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3085                                                         page, fsdata);
3086
3087         copied = ret2;
3088         if (ret2 < 0)
3089                 ret = ret2;
3090         ret2 = ext4_journal_stop(handle);
3091         if (!ret)
3092                 ret = ret2;
3093
3094         return ret ? ret : copied;
3095 }
3096
3097 /*
3098  * Force all delayed allocation blocks to be allocated for a given inode.
3099  */
3100 int ext4_alloc_da_blocks(struct inode *inode)
3101 {
3102         trace_ext4_alloc_da_blocks(inode);
3103
3104         if (!EXT4_I(inode)->i_reserved_data_blocks)
3105                 return 0;
3106
3107         /*
3108          * We do something simple for now.  The filemap_flush() will
3109          * also start triggering a write of the data blocks, which is
3110          * not strictly speaking necessary (and for users of
3111          * laptop_mode, not even desirable).  However, to do otherwise
3112          * would require replicating code paths in:
3113          *
3114          * ext4_writepages() ->
3115          *    write_cache_pages() ---> (via passed in callback function)
3116          *        __mpage_da_writepage() -->
3117          *           mpage_add_bh_to_extent()
3118          *           mpage_da_map_blocks()
3119          *
3120          * The problem is that write_cache_pages(), located in
3121          * mm/page-writeback.c, marks pages clean in preparation for
3122          * doing I/O, which is not desirable if we're not planning on
3123          * doing I/O at all.
3124          *
3125          * We could call write_cache_pages(), and then redirty all of
3126          * the pages by calling redirty_page_for_writepage() but that
3127          * would be ugly in the extreme.  So instead we would need to
3128          * replicate parts of the code in the above functions,
3129          * simplifying them because we wouldn't actually intend to
3130          * write out the pages, but rather only collect contiguous
3131          * logical block extents, call the multi-block allocator, and
3132          * then update the buffer heads with the block allocations.
3133          *
3134          * For now, though, we'll cheat by calling filemap_flush(),
3135          * which will map the blocks, and start the I/O, but not
3136          * actually wait for the I/O to complete.
3137          */
3138         return filemap_flush(inode->i_mapping);
3139 }
3140
3141 /*
3142  * bmap() is special.  It gets used by applications such as lilo and by
3143  * the swapper to find the on-disk block of a specific piece of data.
3144  *
3145  * Naturally, this is dangerous if the block concerned is still in the
3146  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3147  * filesystem and enables swap, then they may get a nasty shock when the
3148  * data getting swapped to that swapfile suddenly gets overwritten by
3149  * the original zero's written out previously to the journal and
3150  * awaiting writeback in the kernel's buffer cache.
3151  *
3152  * So, if we see any bmap calls here on a modified, data-journaled file,
3153  * take extra steps to flush any blocks which might be in the cache.
3154  */
3155 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3156 {
3157         struct inode *inode = mapping->host;
3158         journal_t *journal;
3159         int err;
3160
3161         /*
3162          * We can get here for an inline file via the FIBMAP ioctl
3163          */
3164         if (ext4_has_inline_data(inode))
3165                 return 0;
3166
3167         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3168                         test_opt(inode->i_sb, DELALLOC)) {
3169                 /*
3170                  * With delalloc we want to sync the file
3171                  * so that we can make sure we allocate
3172                  * blocks for file
3173                  */
3174                 filemap_write_and_wait(mapping);
3175         }
3176
3177         if (EXT4_JOURNAL(inode) &&
3178             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3179                 /*
3180                  * This is a REALLY heavyweight approach, but the use of
3181                  * bmap on dirty files is expected to be extremely rare:
3182                  * only if we run lilo or swapon on a freshly made file
3183                  * do we expect this to happen.
3184                  *
3185                  * (bmap requires CAP_SYS_RAWIO so this does not
3186                  * represent an unprivileged user DOS attack --- we'd be
3187                  * in trouble if mortal users could trigger this path at
3188                  * will.)
3189                  *
3190                  * NB. EXT4_STATE_JDATA is not set on files other than
3191                  * regular files.  If somebody wants to bmap a directory
3192                  * or symlink and gets confused because the buffer
3193                  * hasn't yet been flushed to disk, they deserve
3194                  * everything they get.
3195                  */
3196
3197                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3198                 journal = EXT4_JOURNAL(inode);
3199                 jbd2_journal_lock_updates(journal);
3200                 err = jbd2_journal_flush(journal);
3201                 jbd2_journal_unlock_updates(journal);
3202
3203                 if (err)
3204                         return 0;
3205         }
3206
3207         return generic_block_bmap(mapping, block, ext4_get_block);
3208 }
3209
3210 static int ext4_readpage(struct file *file, struct page *page)
3211 {
3212         int ret = -EAGAIN;
3213         struct inode *inode = page->mapping->host;
3214
3215         trace_ext4_readpage(page);
3216
3217         if (ext4_has_inline_data(inode))
3218                 ret = ext4_readpage_inline(inode, page);
3219
3220         if (ret == -EAGAIN)
3221                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3222                                                 false);
3223
3224         return ret;
3225 }
3226
3227 static int
3228 ext4_readpages(struct file *file, struct address_space *mapping,
3229                 struct list_head *pages, unsigned nr_pages)
3230 {
3231         struct inode *inode = mapping->host;
3232
3233         /* If the file has inline data, no need to do readpages. */
3234         if (ext4_has_inline_data(inode))
3235                 return 0;
3236
3237         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3238 }
3239
3240 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3241                                 unsigned int length)
3242 {
3243         trace_ext4_invalidatepage(page, offset, length);
3244
3245         /* No journalling happens on data buffers when this function is used */
3246         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3247
3248         block_invalidatepage(page, offset, length);
3249 }
3250
3251 static int __ext4_journalled_invalidatepage(struct page *page,
3252                                             unsigned int offset,
3253                                             unsigned int length)
3254 {
3255         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3256
3257         trace_ext4_journalled_invalidatepage(page, offset, length);
3258
3259         /*
3260          * If it's a full truncate we just forget about the pending dirtying
3261          */
3262         if (offset == 0 && length == PAGE_SIZE)
3263                 ClearPageChecked(page);
3264
3265         return jbd2_journal_invalidatepage(journal, page, offset, length);
3266 }
3267
3268 /* Wrapper for aops... */
3269 static void ext4_journalled_invalidatepage(struct page *page,
3270                                            unsigned int offset,
3271                                            unsigned int length)
3272 {
3273         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3274 }
3275
3276 static int ext4_releasepage(struct page *page, gfp_t wait)
3277 {
3278         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3279
3280         trace_ext4_releasepage(page);
3281
3282         /* Page has dirty journalled data -> cannot release */
3283         if (PageChecked(page))
3284                 return 0;
3285         if (journal)
3286                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3287         else
3288                 return try_to_free_buffers(page);
3289 }
3290
3291 static bool ext4_inode_datasync_dirty(struct inode *inode)
3292 {
3293         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3294
3295         if (journal)
3296                 return !jbd2_transaction_committed(journal,
3297                                         EXT4_I(inode)->i_datasync_tid);
3298         /* Any metadata buffers to write? */
3299         if (!list_empty(&inode->i_mapping->private_list))
3300                 return true;
3301         return inode->i_state & I_DIRTY_DATASYNC;
3302 }
3303
3304 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3305                            struct ext4_map_blocks *map, loff_t offset,
3306                            loff_t length)
3307 {
3308         u8 blkbits = inode->i_blkbits;
3309
3310         /*
3311          * Writes that span EOF might trigger an I/O size update on completion,
3312          * so consider them to be dirty for the purpose of O_DSYNC, even if
3313          * there is no other metadata changes being made or are pending.
3314          */
3315         iomap->flags = 0;
3316         if (ext4_inode_datasync_dirty(inode) ||
3317             offset + length > i_size_read(inode))
3318                 iomap->flags |= IOMAP_F_DIRTY;
3319
3320         if (map->m_flags & EXT4_MAP_NEW)
3321                 iomap->flags |= IOMAP_F_NEW;
3322
3323         iomap->bdev = inode->i_sb->s_bdev;
3324         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3325         iomap->offset = (u64) map->m_lblk << blkbits;
3326         iomap->length = (u64) map->m_len << blkbits;
3327
3328         /*
3329          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3330          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3331          * set. In order for any allocated unwritten extents to be converted
3332          * into written extents correctly within the ->end_io() handler, we
3333          * need to ensure that the iomap->type is set appropriately. Hence, the
3334          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3335          * been set first.
3336          */
3337         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3338                 iomap->type = IOMAP_UNWRITTEN;
3339                 iomap->addr = (u64) map->m_pblk << blkbits;
3340         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3341                 iomap->type = IOMAP_MAPPED;
3342                 iomap->addr = (u64) map->m_pblk << blkbits;
3343         } else {
3344                 iomap->type = IOMAP_HOLE;
3345                 iomap->addr = IOMAP_NULL_ADDR;
3346         }
3347 }
3348
3349 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3350                             unsigned int flags)
3351 {
3352         handle_t *handle;
3353         u8 blkbits = inode->i_blkbits;
3354         int ret, dio_credits, m_flags = 0, retries = 0;
3355
3356         /*
3357          * Trim the mapping request to the maximum value that we can map at
3358          * once for direct I/O.
3359          */
3360         if (map->m_len > DIO_MAX_BLOCKS)
3361                 map->m_len = DIO_MAX_BLOCKS;
3362         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3363
3364 retry:
3365         /*
3366          * Either we allocate blocks and then don't get an unwritten extent, so
3367          * in that case we have reserved enough credits. Or, the blocks are
3368          * already allocated and unwritten. In that case, the extent conversion
3369          * fits into the credits as well.
3370          */
3371         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3372         if (IS_ERR(handle))
3373                 return PTR_ERR(handle);
3374
3375         /*
3376          * DAX and direct I/O are the only two operations that are currently
3377          * supported with IOMAP_WRITE.
3378          */
3379         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3380         if (IS_DAX(inode))
3381                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3382         /*
3383          * We use i_size instead of i_disksize here because delalloc writeback
3384          * can complete at any point during the I/O and subsequently push the
3385          * i_disksize out to i_size. This could be beyond where direct I/O is
3386          * happening and thus expose allocated blocks to direct I/O reads.
3387          */
3388         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3389                 m_flags = EXT4_GET_BLOCKS_CREATE;
3390         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3391                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3392
3393         ret = ext4_map_blocks(handle, inode, map, m_flags);
3394
3395         /*
3396          * We cannot fill holes in indirect tree based inodes as that could
3397          * expose stale data in the case of a crash. Use the magic error code
3398          * to fallback to buffered I/O.
3399          */
3400         if (!m_flags && !ret)
3401                 ret = -ENOTBLK;
3402
3403         ext4_journal_stop(handle);
3404         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3405                 goto retry;
3406
3407         return ret;
3408 }
3409
3410
3411 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3412                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3413 {
3414         int ret;
3415         struct ext4_map_blocks map;
3416         u8 blkbits = inode->i_blkbits;
3417
3418         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3419                 return -EINVAL;
3420
3421         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3422                 return -ERANGE;
3423
3424         /*
3425          * Calculate the first and last logical blocks respectively.
3426          */
3427         map.m_lblk = offset >> blkbits;
3428         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3429                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3430
3431         if (flags & IOMAP_WRITE)
3432                 ret = ext4_iomap_alloc(inode, &map, flags);
3433         else
3434                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3435
3436         if (ret < 0)
3437                 return ret;
3438
3439         ext4_set_iomap(inode, iomap, &map, offset, length);
3440
3441         return 0;
3442 }
3443
3444 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3445                           ssize_t written, unsigned flags, struct iomap *iomap)
3446 {
3447         /*
3448          * Check to see whether an error occurred while writing out the data to
3449          * the allocated blocks. If so, return the magic error code so that we
3450          * fallback to buffered I/O and attempt to complete the remainder of
3451          * the I/O. Any blocks that may have been allocated in preparation for
3452          * the direct I/O will be reused during buffered I/O.
3453          */
3454         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3455                 return -ENOTBLK;
3456
3457         return 0;
3458 }
3459
3460 const struct iomap_ops ext4_iomap_ops = {
3461         .iomap_begin            = ext4_iomap_begin,
3462         .iomap_end              = ext4_iomap_end,
3463 };
3464
3465 static bool ext4_iomap_is_delalloc(struct inode *inode,
3466                                    struct ext4_map_blocks *map)
3467 {
3468         struct extent_status es;
3469         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3470
3471         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3472                                   map->m_lblk, end, &es);
3473
3474         if (!es.es_len || es.es_lblk > end)
3475                 return false;
3476
3477         if (es.es_lblk > map->m_lblk) {
3478                 map->m_len = es.es_lblk - map->m_lblk;
3479                 return false;
3480         }
3481
3482         offset = map->m_lblk - es.es_lblk;
3483         map->m_len = es.es_len - offset;
3484
3485         return true;
3486 }
3487
3488 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3489                                    loff_t length, unsigned int flags,
3490                                    struct iomap *iomap, struct iomap *srcmap)
3491 {
3492         int ret;
3493         bool delalloc = false;
3494         struct ext4_map_blocks map;
3495         u8 blkbits = inode->i_blkbits;
3496
3497         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3498                 return -EINVAL;
3499
3500         if (ext4_has_inline_data(inode)) {
3501                 ret = ext4_inline_data_iomap(inode, iomap);
3502                 if (ret != -EAGAIN) {
3503                         if (ret == 0 && offset >= iomap->length)
3504                                 ret = -ENOENT;
3505                         return ret;
3506                 }
3507         }
3508
3509         /*
3510          * Calculate the first and last logical block respectively.
3511          */
3512         map.m_lblk = offset >> blkbits;
3513         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3514                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3515
3516         ret = ext4_map_blocks(NULL, inode, &map, 0);
3517         if (ret < 0)
3518                 return ret;
3519         if (ret == 0)
3520                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3521
3522         ext4_set_iomap(inode, iomap, &map, offset, length);
3523         if (delalloc && iomap->type == IOMAP_HOLE)
3524                 iomap->type = IOMAP_DELALLOC;
3525
3526         return 0;
3527 }
3528
3529 const struct iomap_ops ext4_iomap_report_ops = {
3530         .iomap_begin = ext4_iomap_begin_report,
3531 };
3532
3533 /*
3534  * Pages can be marked dirty completely asynchronously from ext4's journalling
3535  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3536  * much here because ->set_page_dirty is called under VFS locks.  The page is
3537  * not necessarily locked.
3538  *
3539  * We cannot just dirty the page and leave attached buffers clean, because the
3540  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3541  * or jbddirty because all the journalling code will explode.
3542  *
3543  * So what we do is to mark the page "pending dirty" and next time writepage
3544  * is called, propagate that into the buffers appropriately.
3545  */
3546 static int ext4_journalled_set_page_dirty(struct page *page)
3547 {
3548         SetPageChecked(page);
3549         return __set_page_dirty_nobuffers(page);
3550 }
3551
3552 static int ext4_set_page_dirty(struct page *page)
3553 {
3554         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3555         WARN_ON_ONCE(!page_has_buffers(page));
3556         return __set_page_dirty_buffers(page);
3557 }
3558
3559 static const struct address_space_operations ext4_aops = {
3560         .readpage               = ext4_readpage,
3561         .readpages              = ext4_readpages,
3562         .writepage              = ext4_writepage,
3563         .writepages             = ext4_writepages,
3564         .write_begin            = ext4_write_begin,
3565         .write_end              = ext4_write_end,
3566         .set_page_dirty         = ext4_set_page_dirty,
3567         .bmap                   = ext4_bmap,
3568         .invalidatepage         = ext4_invalidatepage,
3569         .releasepage            = ext4_releasepage,
3570         .direct_IO              = noop_direct_IO,
3571         .migratepage            = buffer_migrate_page,
3572         .is_partially_uptodate  = block_is_partially_uptodate,
3573         .error_remove_page      = generic_error_remove_page,
3574 };
3575
3576 static const struct address_space_operations ext4_journalled_aops = {
3577         .readpage               = ext4_readpage,
3578         .readpages              = ext4_readpages,
3579         .writepage              = ext4_writepage,
3580         .writepages             = ext4_writepages,
3581         .write_begin            = ext4_write_begin,
3582         .write_end              = ext4_journalled_write_end,
3583         .set_page_dirty         = ext4_journalled_set_page_dirty,
3584         .bmap                   = ext4_bmap,
3585         .invalidatepage         = ext4_journalled_invalidatepage,
3586         .releasepage            = ext4_releasepage,
3587         .direct_IO              = noop_direct_IO,
3588         .is_partially_uptodate  = block_is_partially_uptodate,
3589         .error_remove_page      = generic_error_remove_page,
3590 };
3591
3592 static const struct address_space_operations ext4_da_aops = {
3593         .readpage               = ext4_readpage,
3594         .readpages              = ext4_readpages,
3595         .writepage              = ext4_writepage,
3596         .writepages             = ext4_writepages,
3597         .write_begin            = ext4_da_write_begin,
3598         .write_end              = ext4_da_write_end,
3599         .set_page_dirty         = ext4_set_page_dirty,
3600         .bmap                   = ext4_bmap,
3601         .invalidatepage         = ext4_invalidatepage,
3602         .releasepage            = ext4_releasepage,
3603         .direct_IO              = noop_direct_IO,
3604         .migratepage            = buffer_migrate_page,
3605         .is_partially_uptodate  = block_is_partially_uptodate,
3606         .error_remove_page      = generic_error_remove_page,
3607 };
3608
3609 static const struct address_space_operations ext4_dax_aops = {
3610         .writepages             = ext4_dax_writepages,
3611         .direct_IO              = noop_direct_IO,
3612         .set_page_dirty         = noop_set_page_dirty,
3613         .bmap                   = ext4_bmap,
3614         .invalidatepage         = noop_invalidatepage,
3615 };
3616
3617 void ext4_set_aops(struct inode *inode)
3618 {
3619         switch (ext4_inode_journal_mode(inode)) {
3620         case EXT4_INODE_ORDERED_DATA_MODE:
3621         case EXT4_INODE_WRITEBACK_DATA_MODE:
3622                 break;
3623         case EXT4_INODE_JOURNAL_DATA_MODE:
3624                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3625                 return;
3626         default:
3627                 BUG();
3628         }
3629         if (IS_DAX(inode))
3630                 inode->i_mapping->a_ops = &ext4_dax_aops;
3631         else if (test_opt(inode->i_sb, DELALLOC))
3632                 inode->i_mapping->a_ops = &ext4_da_aops;
3633         else
3634                 inode->i_mapping->a_ops = &ext4_aops;
3635 }
3636
3637 static int __ext4_block_zero_page_range(handle_t *handle,
3638                 struct address_space *mapping, loff_t from, loff_t length)
3639 {
3640         ext4_fsblk_t index = from >> PAGE_SHIFT;
3641         unsigned offset = from & (PAGE_SIZE-1);
3642         unsigned blocksize, pos;
3643         ext4_lblk_t iblock;
3644         struct inode *inode = mapping->host;
3645         struct buffer_head *bh;
3646         struct page *page;
3647         int err = 0;
3648
3649         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3650                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3651         if (!page)
3652                 return -ENOMEM;
3653
3654         blocksize = inode->i_sb->s_blocksize;
3655
3656         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3657
3658         if (!page_has_buffers(page))
3659                 create_empty_buffers(page, blocksize, 0);
3660
3661         /* Find the buffer that contains "offset" */
3662         bh = page_buffers(page);
3663         pos = blocksize;
3664         while (offset >= pos) {
3665                 bh = bh->b_this_page;
3666                 iblock++;
3667                 pos += blocksize;
3668         }
3669         if (buffer_freed(bh)) {
3670                 BUFFER_TRACE(bh, "freed: skip");
3671                 goto unlock;
3672         }
3673         if (!buffer_mapped(bh)) {
3674                 BUFFER_TRACE(bh, "unmapped");
3675                 ext4_get_block(inode, iblock, bh, 0);
3676                 /* unmapped? It's a hole - nothing to do */
3677                 if (!buffer_mapped(bh)) {
3678                         BUFFER_TRACE(bh, "still unmapped");
3679                         goto unlock;
3680                 }
3681         }
3682
3683         /* Ok, it's mapped. Make sure it's up-to-date */
3684         if (PageUptodate(page))
3685                 set_buffer_uptodate(bh);
3686
3687         if (!buffer_uptodate(bh)) {
3688                 err = -EIO;
3689                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3690                 wait_on_buffer(bh);
3691                 /* Uhhuh. Read error. Complain and punt. */
3692                 if (!buffer_uptodate(bh))
3693                         goto unlock;
3694                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3695                         /* We expect the key to be set. */
3696                         BUG_ON(!fscrypt_has_encryption_key(inode));
3697                         WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
3698                                         page, blocksize, bh_offset(bh)));
3699                 }
3700         }
3701         if (ext4_should_journal_data(inode)) {
3702                 BUFFER_TRACE(bh, "get write access");
3703                 err = ext4_journal_get_write_access(handle, bh);
3704                 if (err)
3705                         goto unlock;
3706         }
3707         zero_user(page, offset, length);
3708         BUFFER_TRACE(bh, "zeroed end of block");
3709
3710         if (ext4_should_journal_data(inode)) {
3711                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3712         } else {
3713                 err = 0;
3714                 mark_buffer_dirty(bh);
3715                 if (ext4_should_order_data(inode))
3716                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3717                                         length);
3718         }
3719
3720 unlock:
3721         unlock_page(page);
3722         put_page(page);
3723         return err;
3724 }
3725
3726 /*
3727  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3728  * starting from file offset 'from'.  The range to be zero'd must
3729  * be contained with in one block.  If the specified range exceeds
3730  * the end of the block it will be shortened to end of the block
3731  * that cooresponds to 'from'
3732  */
3733 static int ext4_block_zero_page_range(handle_t *handle,
3734                 struct address_space *mapping, loff_t from, loff_t length)
3735 {
3736         struct inode *inode = mapping->host;
3737         unsigned offset = from & (PAGE_SIZE-1);
3738         unsigned blocksize = inode->i_sb->s_blocksize;
3739         unsigned max = blocksize - (offset & (blocksize - 1));
3740
3741         /*
3742          * correct length if it does not fall between
3743          * 'from' and the end of the block
3744          */
3745         if (length > max || length < 0)
3746                 length = max;
3747
3748         if (IS_DAX(inode)) {
3749                 return iomap_zero_range(inode, from, length, NULL,
3750                                         &ext4_iomap_ops);
3751         }
3752         return __ext4_block_zero_page_range(handle, mapping, from, length);
3753 }
3754
3755 /*
3756  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3757  * up to the end of the block which corresponds to `from'.
3758  * This required during truncate. We need to physically zero the tail end
3759  * of that block so it doesn't yield old data if the file is later grown.
3760  */
3761 static int ext4_block_truncate_page(handle_t *handle,
3762                 struct address_space *mapping, loff_t from)
3763 {
3764         unsigned offset = from & (PAGE_SIZE-1);
3765         unsigned length;
3766         unsigned blocksize;
3767         struct inode *inode = mapping->host;
3768
3769         /* If we are processing an encrypted inode during orphan list handling */
3770         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3771                 return 0;
3772
3773         blocksize = inode->i_sb->s_blocksize;
3774         length = blocksize - (offset & (blocksize - 1));
3775
3776         return ext4_block_zero_page_range(handle, mapping, from, length);
3777 }
3778
3779 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3780                              loff_t lstart, loff_t length)
3781 {
3782         struct super_block *sb = inode->i_sb;
3783         struct address_space *mapping = inode->i_mapping;
3784         unsigned partial_start, partial_end;
3785         ext4_fsblk_t start, end;
3786         loff_t byte_end = (lstart + length - 1);
3787         int err = 0;
3788
3789         partial_start = lstart & (sb->s_blocksize - 1);
3790         partial_end = byte_end & (sb->s_blocksize - 1);
3791
3792         start = lstart >> sb->s_blocksize_bits;
3793         end = byte_end >> sb->s_blocksize_bits;
3794
3795         /* Handle partial zero within the single block */
3796         if (start == end &&
3797             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3798                 err = ext4_block_zero_page_range(handle, mapping,
3799                                                  lstart, length);
3800                 return err;
3801         }
3802         /* Handle partial zero out on the start of the range */
3803         if (partial_start) {
3804                 err = ext4_block_zero_page_range(handle, mapping,
3805                                                  lstart, sb->s_blocksize);
3806                 if (err)
3807                         return err;
3808         }
3809         /* Handle partial zero out on the end of the range */
3810         if (partial_end != sb->s_blocksize - 1)
3811                 err = ext4_block_zero_page_range(handle, mapping,
3812                                                  byte_end - partial_end,
3813                                                  partial_end + 1);
3814         return err;
3815 }
3816
3817 int ext4_can_truncate(struct inode *inode)
3818 {
3819         if (S_ISREG(inode->i_mode))
3820                 return 1;
3821         if (S_ISDIR(inode->i_mode))
3822                 return 1;
3823         if (S_ISLNK(inode->i_mode))
3824                 return !ext4_inode_is_fast_symlink(inode);
3825         return 0;
3826 }
3827
3828 /*
3829  * We have to make sure i_disksize gets properly updated before we truncate
3830  * page cache due to hole punching or zero range. Otherwise i_disksize update
3831  * can get lost as it may have been postponed to submission of writeback but
3832  * that will never happen after we truncate page cache.
3833  */
3834 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3835                                       loff_t len)
3836 {
3837         handle_t *handle;
3838         loff_t size = i_size_read(inode);
3839
3840         WARN_ON(!inode_is_locked(inode));
3841         if (offset > size || offset + len < size)
3842                 return 0;
3843
3844         if (EXT4_I(inode)->i_disksize >= size)
3845                 return 0;
3846
3847         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3848         if (IS_ERR(handle))
3849                 return PTR_ERR(handle);
3850         ext4_update_i_disksize(inode, size);
3851         ext4_mark_inode_dirty(handle, inode);
3852         ext4_journal_stop(handle);
3853
3854         return 0;
3855 }
3856
3857 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3858 {
3859         up_write(&ei->i_mmap_sem);
3860         schedule();
3861         down_write(&ei->i_mmap_sem);
3862 }
3863
3864 int ext4_break_layouts(struct inode *inode)
3865 {
3866         struct ext4_inode_info *ei = EXT4_I(inode);
3867         struct page *page;
3868         int error;
3869
3870         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3871                 return -EINVAL;
3872
3873         do {
3874                 page = dax_layout_busy_page(inode->i_mapping);
3875                 if (!page)
3876                         return 0;
3877
3878                 error = ___wait_var_event(&page->_refcount,
3879                                 atomic_read(&page->_refcount) == 1,
3880                                 TASK_INTERRUPTIBLE, 0, 0,
3881                                 ext4_wait_dax_page(ei));
3882         } while (error == 0);
3883
3884         return error;
3885 }
3886
3887 /*
3888  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3889  * associated with the given offset and length
3890  *
3891  * @inode:  File inode
3892  * @offset: The offset where the hole will begin
3893  * @len:    The length of the hole
3894  *
3895  * Returns: 0 on success or negative on failure
3896  */
3897
3898 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3899 {
3900         struct super_block *sb = inode->i_sb;
3901         ext4_lblk_t first_block, stop_block;
3902         struct address_space *mapping = inode->i_mapping;
3903         loff_t first_block_offset, last_block_offset;
3904         handle_t *handle;
3905         unsigned int credits;
3906         int ret = 0;
3907
3908         if (!S_ISREG(inode->i_mode))
3909                 return -EOPNOTSUPP;
3910
3911         trace_ext4_punch_hole(inode, offset, length, 0);
3912
3913         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3914         if (ext4_has_inline_data(inode)) {
3915                 down_write(&EXT4_I(inode)->i_mmap_sem);
3916                 ret = ext4_convert_inline_data(inode);
3917                 up_write(&EXT4_I(inode)->i_mmap_sem);
3918                 if (ret)
3919                         return ret;
3920         }
3921
3922         /*
3923          * Write out all dirty pages to avoid race conditions
3924          * Then release them.
3925          */
3926         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3927                 ret = filemap_write_and_wait_range(mapping, offset,
3928                                                    offset + length - 1);
3929                 if (ret)
3930                         return ret;
3931         }
3932
3933         inode_lock(inode);
3934
3935         /* No need to punch hole beyond i_size */
3936         if (offset >= inode->i_size)
3937                 goto out_mutex;
3938
3939         /*
3940          * If the hole extends beyond i_size, set the hole
3941          * to end after the page that contains i_size
3942          */
3943         if (offset + length > inode->i_size) {
3944                 length = inode->i_size +
3945                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3946                    offset;
3947         }
3948
3949         if (offset & (sb->s_blocksize - 1) ||
3950             (offset + length) & (sb->s_blocksize - 1)) {
3951                 /*
3952                  * Attach jinode to inode for jbd2 if we do any zeroing of
3953                  * partial block
3954                  */
3955                 ret = ext4_inode_attach_jinode(inode);
3956                 if (ret < 0)
3957                         goto out_mutex;
3958
3959         }
3960
3961         /* Wait all existing dio workers, newcomers will block on i_mutex */
3962         inode_dio_wait(inode);
3963
3964         /*
3965          * Prevent page faults from reinstantiating pages we have released from
3966          * page cache.
3967          */
3968         down_write(&EXT4_I(inode)->i_mmap_sem);
3969
3970         ret = ext4_break_layouts(inode);
3971         if (ret)
3972                 goto out_dio;
3973
3974         first_block_offset = round_up(offset, sb->s_blocksize);
3975         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3976
3977         /* Now release the pages and zero block aligned part of pages*/
3978         if (last_block_offset > first_block_offset) {
3979                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3980                 if (ret)
3981                         goto out_dio;
3982                 truncate_pagecache_range(inode, first_block_offset,
3983                                          last_block_offset);
3984         }
3985
3986         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3987                 credits = ext4_writepage_trans_blocks(inode);
3988         else
3989                 credits = ext4_blocks_for_truncate(inode);
3990         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3991         if (IS_ERR(handle)) {
3992                 ret = PTR_ERR(handle);
3993                 ext4_std_error(sb, ret);
3994                 goto out_dio;
3995         }
3996
3997         ret = ext4_zero_partial_blocks(handle, inode, offset,
3998                                        length);
3999         if (ret)
4000                 goto out_stop;
4001
4002         first_block = (offset + sb->s_blocksize - 1) >>
4003                 EXT4_BLOCK_SIZE_BITS(sb);
4004         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4005
4006         /* If there are blocks to remove, do it */
4007         if (stop_block > first_block) {
4008
4009                 down_write(&EXT4_I(inode)->i_data_sem);
4010                 ext4_discard_preallocations(inode);
4011
4012                 ret = ext4_es_remove_extent(inode, first_block,
4013                                             stop_block - first_block);
4014                 if (ret) {
4015                         up_write(&EXT4_I(inode)->i_data_sem);
4016                         goto out_stop;
4017                 }
4018
4019                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4020                         ret = ext4_ext_remove_space(inode, first_block,
4021                                                     stop_block - 1);
4022                 else
4023                         ret = ext4_ind_remove_space(handle, inode, first_block,
4024                                                     stop_block);
4025
4026                 up_write(&EXT4_I(inode)->i_data_sem);
4027         }
4028         if (IS_SYNC(inode))
4029                 ext4_handle_sync(handle);
4030
4031         inode->i_mtime = inode->i_ctime = current_time(inode);
4032         ext4_mark_inode_dirty(handle, inode);
4033         if (ret >= 0)
4034                 ext4_update_inode_fsync_trans(handle, inode, 1);
4035 out_stop:
4036         ext4_journal_stop(handle);
4037 out_dio:
4038         up_write(&EXT4_I(inode)->i_mmap_sem);
4039 out_mutex:
4040         inode_unlock(inode);
4041         return ret;
4042 }
4043
4044 int ext4_inode_attach_jinode(struct inode *inode)
4045 {
4046         struct ext4_inode_info *ei = EXT4_I(inode);
4047         struct jbd2_inode *jinode;
4048
4049         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4050                 return 0;
4051
4052         jinode = jbd2_alloc_inode(GFP_KERNEL);
4053         spin_lock(&inode->i_lock);
4054         if (!ei->jinode) {
4055                 if (!jinode) {
4056                         spin_unlock(&inode->i_lock);
4057                         return -ENOMEM;
4058                 }
4059                 ei->jinode = jinode;
4060                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4061                 jinode = NULL;
4062         }
4063         spin_unlock(&inode->i_lock);
4064         if (unlikely(jinode != NULL))
4065                 jbd2_free_inode(jinode);
4066         return 0;
4067 }
4068
4069 /*
4070  * ext4_truncate()
4071  *
4072  * We block out ext4_get_block() block instantiations across the entire
4073  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4074  * simultaneously on behalf of the same inode.
4075  *
4076  * As we work through the truncate and commit bits of it to the journal there
4077  * is one core, guiding principle: the file's tree must always be consistent on
4078  * disk.  We must be able to restart the truncate after a crash.
4079  *
4080  * The file's tree may be transiently inconsistent in memory (although it
4081  * probably isn't), but whenever we close off and commit a journal transaction,
4082  * the contents of (the filesystem + the journal) must be consistent and
4083  * restartable.  It's pretty simple, really: bottom up, right to left (although
4084  * left-to-right works OK too).
4085  *
4086  * Note that at recovery time, journal replay occurs *before* the restart of
4087  * truncate against the orphan inode list.
4088  *
4089  * The committed inode has the new, desired i_size (which is the same as
4090  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4091  * that this inode's truncate did not complete and it will again call
4092  * ext4_truncate() to have another go.  So there will be instantiated blocks
4093  * to the right of the truncation point in a crashed ext4 filesystem.  But
4094  * that's fine - as long as they are linked from the inode, the post-crash
4095  * ext4_truncate() run will find them and release them.
4096  */
4097 int ext4_truncate(struct inode *inode)
4098 {
4099         struct ext4_inode_info *ei = EXT4_I(inode);
4100         unsigned int credits;
4101         int err = 0;
4102         handle_t *handle;
4103         struct address_space *mapping = inode->i_mapping;
4104
4105         /*
4106          * There is a possibility that we're either freeing the inode
4107          * or it's a completely new inode. In those cases we might not
4108          * have i_mutex locked because it's not necessary.
4109          */
4110         if (!(inode->i_state & (I_NEW|I_FREEING)))
4111                 WARN_ON(!inode_is_locked(inode));
4112         trace_ext4_truncate_enter(inode);
4113
4114         if (!ext4_can_truncate(inode))
4115                 return 0;
4116
4117         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4118
4119         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4120                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4121
4122         if (ext4_has_inline_data(inode)) {
4123                 int has_inline = 1;
4124
4125                 err = ext4_inline_data_truncate(inode, &has_inline);
4126                 if (err)
4127                         return err;
4128                 if (has_inline)
4129                         return 0;
4130         }
4131
4132         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4133         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4134                 if (ext4_inode_attach_jinode(inode) < 0)
4135                         return 0;
4136         }
4137
4138         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139                 credits = ext4_writepage_trans_blocks(inode);
4140         else
4141                 credits = ext4_blocks_for_truncate(inode);
4142
4143         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4144         if (IS_ERR(handle))
4145                 return PTR_ERR(handle);
4146
4147         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4148                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4149
4150         /*
4151          * We add the inode to the orphan list, so that if this
4152          * truncate spans multiple transactions, and we crash, we will
4153          * resume the truncate when the filesystem recovers.  It also
4154          * marks the inode dirty, to catch the new size.
4155          *
4156          * Implication: the file must always be in a sane, consistent
4157          * truncatable state while each transaction commits.
4158          */
4159         err = ext4_orphan_add(handle, inode);
4160         if (err)
4161                 goto out_stop;
4162
4163         down_write(&EXT4_I(inode)->i_data_sem);
4164
4165         ext4_discard_preallocations(inode);
4166
4167         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4168                 err = ext4_ext_truncate(handle, inode);
4169         else
4170                 ext4_ind_truncate(handle, inode);
4171
4172         up_write(&ei->i_data_sem);
4173         if (err)
4174                 goto out_stop;
4175
4176         if (IS_SYNC(inode))
4177                 ext4_handle_sync(handle);
4178
4179 out_stop:
4180         /*
4181          * If this was a simple ftruncate() and the file will remain alive,
4182          * then we need to clear up the orphan record which we created above.
4183          * However, if this was a real unlink then we were called by
4184          * ext4_evict_inode(), and we allow that function to clean up the
4185          * orphan info for us.
4186          */
4187         if (inode->i_nlink)
4188                 ext4_orphan_del(handle, inode);
4189
4190         inode->i_mtime = inode->i_ctime = current_time(inode);
4191         ext4_mark_inode_dirty(handle, inode);
4192         ext4_journal_stop(handle);
4193
4194         trace_ext4_truncate_exit(inode);
4195         return err;
4196 }
4197
4198 /*
4199  * ext4_get_inode_loc returns with an extra refcount against the inode's
4200  * underlying buffer_head on success. If 'in_mem' is true, we have all
4201  * data in memory that is needed to recreate the on-disk version of this
4202  * inode.
4203  */
4204 static int __ext4_get_inode_loc(struct inode *inode,
4205                                 struct ext4_iloc *iloc, int in_mem)
4206 {
4207         struct ext4_group_desc  *gdp;
4208         struct buffer_head      *bh;
4209         struct super_block      *sb = inode->i_sb;
4210         ext4_fsblk_t            block;
4211         struct blk_plug         plug;
4212         int                     inodes_per_block, inode_offset;
4213
4214         iloc->bh = NULL;
4215         if (inode->i_ino < EXT4_ROOT_INO ||
4216             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4217                 return -EFSCORRUPTED;
4218
4219         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4220         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4221         if (!gdp)
4222                 return -EIO;
4223
4224         /*
4225          * Figure out the offset within the block group inode table
4226          */
4227         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4228         inode_offset = ((inode->i_ino - 1) %
4229                         EXT4_INODES_PER_GROUP(sb));
4230         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4231         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4232
4233         bh = sb_getblk(sb, block);
4234         if (unlikely(!bh))
4235                 return -ENOMEM;
4236         if (!buffer_uptodate(bh)) {
4237                 lock_buffer(bh);
4238
4239                 /*
4240                  * If the buffer has the write error flag, we have failed
4241                  * to write out another inode in the same block.  In this
4242                  * case, we don't have to read the block because we may
4243                  * read the old inode data successfully.
4244                  */
4245                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4246                         set_buffer_uptodate(bh);
4247
4248                 if (buffer_uptodate(bh)) {
4249                         /* someone brought it uptodate while we waited */
4250                         unlock_buffer(bh);
4251                         goto has_buffer;
4252                 }
4253
4254                 /*
4255                  * If we have all information of the inode in memory and this
4256                  * is the only valid inode in the block, we need not read the
4257                  * block.
4258                  */
4259                 if (in_mem) {
4260                         struct buffer_head *bitmap_bh;
4261                         int i, start;
4262
4263                         start = inode_offset & ~(inodes_per_block - 1);
4264
4265                         /* Is the inode bitmap in cache? */
4266                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4267                         if (unlikely(!bitmap_bh))
4268                                 goto make_io;
4269
4270                         /*
4271                          * If the inode bitmap isn't in cache then the
4272                          * optimisation may end up performing two reads instead
4273                          * of one, so skip it.
4274                          */
4275                         if (!buffer_uptodate(bitmap_bh)) {
4276                                 brelse(bitmap_bh);
4277                                 goto make_io;
4278                         }
4279                         for (i = start; i < start + inodes_per_block; i++) {
4280                                 if (i == inode_offset)
4281                                         continue;
4282                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4283                                         break;
4284                         }
4285                         brelse(bitmap_bh);
4286                         if (i == start + inodes_per_block) {
4287                                 /* all other inodes are free, so skip I/O */
4288                                 memset(bh->b_data, 0, bh->b_size);
4289                                 set_buffer_uptodate(bh);
4290                                 unlock_buffer(bh);
4291                                 goto has_buffer;
4292                         }
4293                 }
4294
4295 make_io:
4296                 /*
4297                  * If we need to do any I/O, try to pre-readahead extra
4298                  * blocks from the inode table.
4299                  */
4300                 blk_start_plug(&plug);
4301                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4302                         ext4_fsblk_t b, end, table;
4303                         unsigned num;
4304                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4305
4306                         table = ext4_inode_table(sb, gdp);
4307                         /* s_inode_readahead_blks is always a power of 2 */
4308                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4309                         if (table > b)
4310                                 b = table;
4311                         end = b + ra_blks;
4312                         num = EXT4_INODES_PER_GROUP(sb);
4313                         if (ext4_has_group_desc_csum(sb))
4314                                 num -= ext4_itable_unused_count(sb, gdp);
4315                         table += num / inodes_per_block;
4316                         if (end > table)
4317                                 end = table;
4318                         while (b <= end)
4319                                 sb_breadahead(sb, b++);
4320                 }
4321
4322                 /*
4323                  * There are other valid inodes in the buffer, this inode
4324                  * has in-inode xattrs, or we don't have this inode in memory.
4325                  * Read the block from disk.
4326                  */
4327                 trace_ext4_load_inode(inode);
4328                 get_bh(bh);
4329                 bh->b_end_io = end_buffer_read_sync;
4330                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4331                 blk_finish_plug(&plug);
4332                 wait_on_buffer(bh);
4333                 if (!buffer_uptodate(bh)) {
4334                         EXT4_ERROR_INODE_BLOCK(inode, block,
4335                                                "unable to read itable block");
4336                         brelse(bh);
4337                         return -EIO;
4338                 }
4339         }
4340 has_buffer:
4341         iloc->bh = bh;
4342         return 0;
4343 }
4344
4345 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4346 {
4347         /* We have all inode data except xattrs in memory here. */
4348         return __ext4_get_inode_loc(inode, iloc,
4349                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4350 }
4351
4352 static bool ext4_should_use_dax(struct inode *inode)
4353 {
4354         if (!test_opt(inode->i_sb, DAX))
4355                 return false;
4356         if (!S_ISREG(inode->i_mode))
4357                 return false;
4358         if (ext4_should_journal_data(inode))
4359                 return false;
4360         if (ext4_has_inline_data(inode))
4361                 return false;
4362         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4363                 return false;
4364         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4365                 return false;
4366         return true;
4367 }
4368
4369 void ext4_set_inode_flags(struct inode *inode)
4370 {
4371         unsigned int flags = EXT4_I(inode)->i_flags;
4372         unsigned int new_fl = 0;
4373
4374         if (flags & EXT4_SYNC_FL)
4375                 new_fl |= S_SYNC;
4376         if (flags & EXT4_APPEND_FL)
4377                 new_fl |= S_APPEND;
4378         if (flags & EXT4_IMMUTABLE_FL)
4379                 new_fl |= S_IMMUTABLE;
4380         if (flags & EXT4_NOATIME_FL)
4381                 new_fl |= S_NOATIME;
4382         if (flags & EXT4_DIRSYNC_FL)
4383                 new_fl |= S_DIRSYNC;
4384         if (ext4_should_use_dax(inode))
4385                 new_fl |= S_DAX;
4386         if (flags & EXT4_ENCRYPT_FL)
4387                 new_fl |= S_ENCRYPTED;
4388         if (flags & EXT4_CASEFOLD_FL)
4389                 new_fl |= S_CASEFOLD;
4390         if (flags & EXT4_VERITY_FL)
4391                 new_fl |= S_VERITY;
4392         inode_set_flags(inode, new_fl,
4393                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4394                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4395 }
4396
4397 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4398                                   struct ext4_inode_info *ei)
4399 {
4400         blkcnt_t i_blocks ;
4401         struct inode *inode = &(ei->vfs_inode);
4402         struct super_block *sb = inode->i_sb;
4403
4404         if (ext4_has_feature_huge_file(sb)) {
4405                 /* we are using combined 48 bit field */
4406                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4407                                         le32_to_cpu(raw_inode->i_blocks_lo);
4408                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4409                         /* i_blocks represent file system block size */
4410                         return i_blocks  << (inode->i_blkbits - 9);
4411                 } else {
4412                         return i_blocks;
4413                 }
4414         } else {
4415                 return le32_to_cpu(raw_inode->i_blocks_lo);
4416         }
4417 }
4418
4419 static inline int ext4_iget_extra_inode(struct inode *inode,
4420                                          struct ext4_inode *raw_inode,
4421                                          struct ext4_inode_info *ei)
4422 {
4423         __le32 *magic = (void *)raw_inode +
4424                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4425
4426         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4427             EXT4_INODE_SIZE(inode->i_sb) &&
4428             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4429                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4430                 return ext4_find_inline_data_nolock(inode);
4431         } else
4432                 EXT4_I(inode)->i_inline_off = 0;
4433         return 0;
4434 }
4435
4436 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4437 {
4438         if (!ext4_has_feature_project(inode->i_sb))
4439                 return -EOPNOTSUPP;
4440         *projid = EXT4_I(inode)->i_projid;
4441         return 0;
4442 }
4443
4444 /*
4445  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4446  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4447  * set.
4448  */
4449 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4450 {
4451         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4452                 inode_set_iversion_raw(inode, val);
4453         else
4454                 inode_set_iversion_queried(inode, val);
4455 }
4456 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4457 {
4458         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4459                 return inode_peek_iversion_raw(inode);
4460         else
4461                 return inode_peek_iversion(inode);
4462 }
4463
4464 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4465                           ext4_iget_flags flags, const char *function,
4466                           unsigned int line)
4467 {
4468         struct ext4_iloc iloc;
4469         struct ext4_inode *raw_inode;
4470         struct ext4_inode_info *ei;
4471         struct inode *inode;
4472         journal_t *journal = EXT4_SB(sb)->s_journal;
4473         long ret;
4474         loff_t size;
4475         int block;
4476         uid_t i_uid;
4477         gid_t i_gid;
4478         projid_t i_projid;
4479
4480         if ((!(flags & EXT4_IGET_SPECIAL) &&
4481              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4482             (ino < EXT4_ROOT_INO) ||
4483             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4484                 if (flags & EXT4_IGET_HANDLE)
4485                         return ERR_PTR(-ESTALE);
4486                 __ext4_error(sb, function, line,
4487                              "inode #%lu: comm %s: iget: illegal inode #",
4488                              ino, current->comm);
4489                 return ERR_PTR(-EFSCORRUPTED);
4490         }
4491
4492         inode = iget_locked(sb, ino);
4493         if (!inode)
4494                 return ERR_PTR(-ENOMEM);
4495         if (!(inode->i_state & I_NEW))
4496                 return inode;
4497
4498         ei = EXT4_I(inode);
4499         iloc.bh = NULL;
4500
4501         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4502         if (ret < 0)
4503                 goto bad_inode;
4504         raw_inode = ext4_raw_inode(&iloc);
4505
4506         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4507                 ext4_error_inode(inode, function, line, 0,
4508                                  "iget: root inode unallocated");
4509                 ret = -EFSCORRUPTED;
4510                 goto bad_inode;
4511         }
4512
4513         if ((flags & EXT4_IGET_HANDLE) &&
4514             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4515                 ret = -ESTALE;
4516                 goto bad_inode;
4517         }
4518
4519         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4520                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4521                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4522                         EXT4_INODE_SIZE(inode->i_sb) ||
4523                     (ei->i_extra_isize & 3)) {
4524                         ext4_error_inode(inode, function, line, 0,
4525                                          "iget: bad extra_isize %u "
4526                                          "(inode size %u)",
4527                                          ei->i_extra_isize,
4528                                          EXT4_INODE_SIZE(inode->i_sb));
4529                         ret = -EFSCORRUPTED;
4530                         goto bad_inode;
4531                 }
4532         } else
4533                 ei->i_extra_isize = 0;
4534
4535         /* Precompute checksum seed for inode metadata */
4536         if (ext4_has_metadata_csum(sb)) {
4537                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4538                 __u32 csum;
4539                 __le32 inum = cpu_to_le32(inode->i_ino);
4540                 __le32 gen = raw_inode->i_generation;
4541                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4542                                    sizeof(inum));
4543                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4544                                               sizeof(gen));
4545         }
4546
4547         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4548                 ext4_error_inode(inode, function, line, 0,
4549                                  "iget: checksum invalid");
4550                 ret = -EFSBADCRC;
4551                 goto bad_inode;
4552         }
4553
4554         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4555         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4556         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4557         if (ext4_has_feature_project(sb) &&
4558             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4559             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4560                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4561         else
4562                 i_projid = EXT4_DEF_PROJID;
4563
4564         if (!(test_opt(inode->i_sb, NO_UID32))) {
4565                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4566                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4567         }
4568         i_uid_write(inode, i_uid);
4569         i_gid_write(inode, i_gid);
4570         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4571         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4572
4573         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4574         ei->i_inline_off = 0;
4575         ei->i_dir_start_lookup = 0;
4576         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4577         /* We now have enough fields to check if the inode was active or not.
4578          * This is needed because nfsd might try to access dead inodes
4579          * the test is that same one that e2fsck uses
4580          * NeilBrown 1999oct15
4581          */
4582         if (inode->i_nlink == 0) {
4583                 if ((inode->i_mode == 0 ||
4584                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4585                     ino != EXT4_BOOT_LOADER_INO) {
4586                         /* this inode is deleted */
4587                         ret = -ESTALE;
4588                         goto bad_inode;
4589                 }
4590                 /* The only unlinked inodes we let through here have
4591                  * valid i_mode and are being read by the orphan
4592                  * recovery code: that's fine, we're about to complete
4593                  * the process of deleting those.
4594                  * OR it is the EXT4_BOOT_LOADER_INO which is
4595                  * not initialized on a new filesystem. */
4596         }
4597         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4598         ext4_set_inode_flags(inode);
4599         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4600         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4601         if (ext4_has_feature_64bit(sb))
4602                 ei->i_file_acl |=
4603                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4604         inode->i_size = ext4_isize(sb, raw_inode);
4605         if ((size = i_size_read(inode)) < 0) {
4606                 ext4_error_inode(inode, function, line, 0,
4607                                  "iget: bad i_size value: %lld", size);
4608                 ret = -EFSCORRUPTED;
4609                 goto bad_inode;
4610         }
4611         ei->i_disksize = inode->i_size;
4612 #ifdef CONFIG_QUOTA
4613         ei->i_reserved_quota = 0;
4614 #endif
4615         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4616         ei->i_block_group = iloc.block_group;
4617         ei->i_last_alloc_group = ~0;
4618         /*
4619          * NOTE! The in-memory inode i_data array is in little-endian order
4620          * even on big-endian machines: we do NOT byteswap the block numbers!
4621          */
4622         for (block = 0; block < EXT4_N_BLOCKS; block++)
4623                 ei->i_data[block] = raw_inode->i_block[block];
4624         INIT_LIST_HEAD(&ei->i_orphan);
4625
4626         /*
4627          * Set transaction id's of transactions that have to be committed
4628          * to finish f[data]sync. We set them to currently running transaction
4629          * as we cannot be sure that the inode or some of its metadata isn't
4630          * part of the transaction - the inode could have been reclaimed and
4631          * now it is reread from disk.
4632          */
4633         if (journal) {
4634                 transaction_t *transaction;
4635                 tid_t tid;
4636
4637                 read_lock(&journal->j_state_lock);
4638                 if (journal->j_running_transaction)
4639                         transaction = journal->j_running_transaction;
4640                 else
4641                         transaction = journal->j_committing_transaction;
4642                 if (transaction)
4643                         tid = transaction->t_tid;
4644                 else
4645                         tid = journal->j_commit_sequence;
4646                 read_unlock(&journal->j_state_lock);
4647                 ei->i_sync_tid = tid;
4648                 ei->i_datasync_tid = tid;
4649         }
4650
4651         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4652                 if (ei->i_extra_isize == 0) {
4653                         /* The extra space is currently unused. Use it. */
4654                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4655                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4656                                             EXT4_GOOD_OLD_INODE_SIZE;
4657                 } else {
4658                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4659                         if (ret)
4660                                 goto bad_inode;
4661                 }
4662         }
4663
4664         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4665         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4666         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4667         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4668
4669         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4670                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4671
4672                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4673                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4674                                 ivers |=
4675                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4676                 }
4677                 ext4_inode_set_iversion_queried(inode, ivers);
4678         }
4679
4680         ret = 0;
4681         if (ei->i_file_acl &&
4682             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4683                 ext4_error_inode(inode, function, line, 0,
4684                                  "iget: bad extended attribute block %llu",
4685                                  ei->i_file_acl);
4686                 ret = -EFSCORRUPTED;
4687                 goto bad_inode;
4688         } else if (!ext4_has_inline_data(inode)) {
4689                 /* validate the block references in the inode */
4690                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4691                    (S_ISLNK(inode->i_mode) &&
4692                     !ext4_inode_is_fast_symlink(inode))) {
4693                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4694                                 ret = ext4_ext_check_inode(inode);
4695                         else
4696                                 ret = ext4_ind_check_inode(inode);
4697                 }
4698         }
4699         if (ret)
4700                 goto bad_inode;
4701
4702         if (S_ISREG(inode->i_mode)) {
4703                 inode->i_op = &ext4_file_inode_operations;
4704                 inode->i_fop = &ext4_file_operations;
4705                 ext4_set_aops(inode);
4706         } else if (S_ISDIR(inode->i_mode)) {
4707                 inode->i_op = &ext4_dir_inode_operations;
4708                 inode->i_fop = &ext4_dir_operations;
4709         } else if (S_ISLNK(inode->i_mode)) {
4710                 /* VFS does not allow setting these so must be corruption */
4711                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4712                         ext4_error_inode(inode, function, line, 0,
4713                                          "iget: immutable or append flags "
4714                                          "not allowed on symlinks");
4715                         ret = -EFSCORRUPTED;
4716                         goto bad_inode;
4717                 }
4718                 if (IS_ENCRYPTED(inode)) {
4719                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4720                         ext4_set_aops(inode);
4721                 } else if (ext4_inode_is_fast_symlink(inode)) {
4722                         inode->i_link = (char *)ei->i_data;
4723                         inode->i_op = &ext4_fast_symlink_inode_operations;
4724                         nd_terminate_link(ei->i_data, inode->i_size,
4725                                 sizeof(ei->i_data) - 1);
4726                 } else {
4727                         inode->i_op = &ext4_symlink_inode_operations;
4728                         ext4_set_aops(inode);
4729                 }
4730                 inode_nohighmem(inode);
4731         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4732               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4733                 inode->i_op = &ext4_special_inode_operations;
4734                 if (raw_inode->i_block[0])
4735                         init_special_inode(inode, inode->i_mode,
4736                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4737                 else
4738                         init_special_inode(inode, inode->i_mode,
4739                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4740         } else if (ino == EXT4_BOOT_LOADER_INO) {
4741                 make_bad_inode(inode);
4742         } else {
4743                 ret = -EFSCORRUPTED;
4744                 ext4_error_inode(inode, function, line, 0,
4745                                  "iget: bogus i_mode (%o)", inode->i_mode);
4746                 goto bad_inode;
4747         }
4748         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4749                 ext4_error_inode(inode, function, line, 0,
4750                                  "casefold flag without casefold feature");
4751         brelse(iloc.bh);
4752
4753         unlock_new_inode(inode);
4754         return inode;
4755
4756 bad_inode:
4757         brelse(iloc.bh);
4758         iget_failed(inode);
4759         return ERR_PTR(ret);
4760 }
4761
4762 static int ext4_inode_blocks_set(handle_t *handle,
4763                                 struct ext4_inode *raw_inode,
4764                                 struct ext4_inode_info *ei)
4765 {
4766         struct inode *inode = &(ei->vfs_inode);
4767         u64 i_blocks = inode->i_blocks;
4768         struct super_block *sb = inode->i_sb;
4769
4770         if (i_blocks <= ~0U) {
4771                 /*
4772                  * i_blocks can be represented in a 32 bit variable
4773                  * as multiple of 512 bytes
4774                  */
4775                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4776                 raw_inode->i_blocks_high = 0;
4777                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4778                 return 0;
4779         }
4780         if (!ext4_has_feature_huge_file(sb))
4781                 return -EFBIG;
4782
4783         if (i_blocks <= 0xffffffffffffULL) {
4784                 /*
4785                  * i_blocks can be represented in a 48 bit variable
4786                  * as multiple of 512 bytes
4787                  */
4788                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4789                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4790                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4791         } else {
4792                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4793                 /* i_block is stored in file system block size */
4794                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4795                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4796                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4797         }
4798         return 0;
4799 }
4800
4801 struct other_inode {
4802         unsigned long           orig_ino;
4803         struct ext4_inode       *raw_inode;
4804 };
4805
4806 static int other_inode_match(struct inode * inode, unsigned long ino,
4807                              void *data)
4808 {
4809         struct other_inode *oi = (struct other_inode *) data;
4810
4811         if ((inode->i_ino != ino) ||
4812             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4813                                I_DIRTY_INODE)) ||
4814             ((inode->i_state & I_DIRTY_TIME) == 0))
4815                 return 0;
4816         spin_lock(&inode->i_lock);
4817         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4818                                 I_DIRTY_INODE)) == 0) &&
4819             (inode->i_state & I_DIRTY_TIME)) {
4820                 struct ext4_inode_info  *ei = EXT4_I(inode);
4821
4822                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4823                 spin_unlock(&inode->i_lock);
4824
4825                 spin_lock(&ei->i_raw_lock);
4826                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4827                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4828                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4829                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4830                 spin_unlock(&ei->i_raw_lock);
4831                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4832                 return -1;
4833         }
4834         spin_unlock(&inode->i_lock);
4835         return -1;
4836 }
4837
4838 /*
4839  * Opportunistically update the other time fields for other inodes in
4840  * the same inode table block.
4841  */
4842 static void ext4_update_other_inodes_time(struct super_block *sb,
4843                                           unsigned long orig_ino, char *buf)
4844 {
4845         struct other_inode oi;
4846         unsigned long ino;
4847         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4848         int inode_size = EXT4_INODE_SIZE(sb);
4849
4850         oi.orig_ino = orig_ino;
4851         /*
4852          * Calculate the first inode in the inode table block.  Inode
4853          * numbers are one-based.  That is, the first inode in a block
4854          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4855          */
4856         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4857         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4858                 if (ino == orig_ino)
4859                         continue;
4860                 oi.raw_inode = (struct ext4_inode *) buf;
4861                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4862         }
4863 }
4864
4865 /*
4866  * Post the struct inode info into an on-disk inode location in the
4867  * buffer-cache.  This gobbles the caller's reference to the
4868  * buffer_head in the inode location struct.
4869  *
4870  * The caller must have write access to iloc->bh.
4871  */
4872 static int ext4_do_update_inode(handle_t *handle,
4873                                 struct inode *inode,
4874                                 struct ext4_iloc *iloc)
4875 {
4876         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4877         struct ext4_inode_info *ei = EXT4_I(inode);
4878         struct buffer_head *bh = iloc->bh;
4879         struct super_block *sb = inode->i_sb;
4880         int err = 0, rc, block;
4881         int need_datasync = 0, set_large_file = 0;
4882         uid_t i_uid;
4883         gid_t i_gid;
4884         projid_t i_projid;
4885
4886         spin_lock(&ei->i_raw_lock);
4887
4888         /* For fields not tracked in the in-memory inode,
4889          * initialise them to zero for new inodes. */
4890         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4891                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4892
4893         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4894         i_uid = i_uid_read(inode);
4895         i_gid = i_gid_read(inode);
4896         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4897         if (!(test_opt(inode->i_sb, NO_UID32))) {
4898                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4899                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4900 /*
4901  * Fix up interoperability with old kernels. Otherwise, old inodes get
4902  * re-used with the upper 16 bits of the uid/gid intact
4903  */
4904                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4905                         raw_inode->i_uid_high = 0;
4906                         raw_inode->i_gid_high = 0;
4907                 } else {
4908                         raw_inode->i_uid_high =
4909                                 cpu_to_le16(high_16_bits(i_uid));
4910                         raw_inode->i_gid_high =
4911                                 cpu_to_le16(high_16_bits(i_gid));
4912                 }
4913         } else {
4914                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4915                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4916                 raw_inode->i_uid_high = 0;
4917                 raw_inode->i_gid_high = 0;
4918         }
4919         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4920
4921         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4922         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4923         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4924         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4925
4926         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4927         if (err) {
4928                 spin_unlock(&ei->i_raw_lock);
4929                 goto out_brelse;
4930         }
4931         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4932         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4933         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4934                 raw_inode->i_file_acl_high =
4935                         cpu_to_le16(ei->i_file_acl >> 32);
4936         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4937         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4938                 ext4_isize_set(raw_inode, ei->i_disksize);
4939                 need_datasync = 1;
4940         }
4941         if (ei->i_disksize > 0x7fffffffULL) {
4942                 if (!ext4_has_feature_large_file(sb) ||
4943                                 EXT4_SB(sb)->s_es->s_rev_level ==
4944                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4945                         set_large_file = 1;
4946         }
4947         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4948         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4949                 if (old_valid_dev(inode->i_rdev)) {
4950                         raw_inode->i_block[0] =
4951                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4952                         raw_inode->i_block[1] = 0;
4953                 } else {
4954                         raw_inode->i_block[0] = 0;
4955                         raw_inode->i_block[1] =
4956                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4957                         raw_inode->i_block[2] = 0;
4958                 }
4959         } else if (!ext4_has_inline_data(inode)) {
4960                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4961                         raw_inode->i_block[block] = ei->i_data[block];
4962         }
4963
4964         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4965                 u64 ivers = ext4_inode_peek_iversion(inode);
4966
4967                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4968                 if (ei->i_extra_isize) {
4969                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4970                                 raw_inode->i_version_hi =
4971                                         cpu_to_le32(ivers >> 32);
4972                         raw_inode->i_extra_isize =
4973                                 cpu_to_le16(ei->i_extra_isize);
4974                 }
4975         }
4976
4977         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4978                i_projid != EXT4_DEF_PROJID);
4979
4980         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4981             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4982                 raw_inode->i_projid = cpu_to_le32(i_projid);
4983
4984         ext4_inode_csum_set(inode, raw_inode, ei);
4985         spin_unlock(&ei->i_raw_lock);
4986         if (inode->i_sb->s_flags & SB_LAZYTIME)
4987                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4988                                               bh->b_data);
4989
4990         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4991         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4992         if (!err)
4993                 err = rc;
4994         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4995         if (set_large_file) {
4996                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4997                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4998                 if (err)
4999                         goto out_brelse;
5000                 ext4_set_feature_large_file(sb);
5001                 ext4_handle_sync(handle);
5002                 err = ext4_handle_dirty_super(handle, sb);
5003         }
5004         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5005 out_brelse:
5006         brelse(bh);
5007         ext4_std_error(inode->i_sb, err);
5008         return err;
5009 }
5010
5011 /*
5012  * ext4_write_inode()
5013  *
5014  * We are called from a few places:
5015  *
5016  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5017  *   Here, there will be no transaction running. We wait for any running
5018  *   transaction to commit.
5019  *
5020  * - Within flush work (sys_sync(), kupdate and such).
5021  *   We wait on commit, if told to.
5022  *
5023  * - Within iput_final() -> write_inode_now()
5024  *   We wait on commit, if told to.
5025  *
5026  * In all cases it is actually safe for us to return without doing anything,
5027  * because the inode has been copied into a raw inode buffer in
5028  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5029  * writeback.
5030  *
5031  * Note that we are absolutely dependent upon all inode dirtiers doing the
5032  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5033  * which we are interested.
5034  *
5035  * It would be a bug for them to not do this.  The code:
5036  *
5037  *      mark_inode_dirty(inode)
5038  *      stuff();
5039  *      inode->i_size = expr;
5040  *
5041  * is in error because write_inode() could occur while `stuff()' is running,
5042  * and the new i_size will be lost.  Plus the inode will no longer be on the
5043  * superblock's dirty inode list.
5044  */
5045 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5046 {
5047         int err;
5048
5049         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5050             sb_rdonly(inode->i_sb))
5051                 return 0;
5052
5053         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5054                 return -EIO;
5055
5056         if (EXT4_SB(inode->i_sb)->s_journal) {
5057                 if (ext4_journal_current_handle()) {
5058                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5059                         dump_stack();
5060                         return -EIO;
5061                 }
5062
5063                 /*
5064                  * No need to force transaction in WB_SYNC_NONE mode. Also
5065                  * ext4_sync_fs() will force the commit after everything is
5066                  * written.
5067                  */
5068                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5069                         return 0;
5070
5071                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5072                                                 EXT4_I(inode)->i_sync_tid);
5073         } else {
5074                 struct ext4_iloc iloc;
5075
5076                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5077                 if (err)
5078                         return err;
5079                 /*
5080                  * sync(2) will flush the whole buffer cache. No need to do
5081                  * it here separately for each inode.
5082                  */
5083                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5084                         sync_dirty_buffer(iloc.bh);
5085                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5086                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5087                                          "IO error syncing inode");
5088                         err = -EIO;
5089                 }
5090                 brelse(iloc.bh);
5091         }
5092         return err;
5093 }
5094
5095 /*
5096  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5097  * buffers that are attached to a page stradding i_size and are undergoing
5098  * commit. In that case we have to wait for commit to finish and try again.
5099  */
5100 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5101 {
5102         struct page *page;
5103         unsigned offset;
5104         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5105         tid_t commit_tid = 0;
5106         int ret;
5107
5108         offset = inode->i_size & (PAGE_SIZE - 1);
5109         /*
5110          * All buffers in the last page remain valid? Then there's nothing to
5111          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5112          * blocksize case
5113          */
5114         if (offset > PAGE_SIZE - i_blocksize(inode))
5115                 return;
5116         while (1) {
5117                 page = find_lock_page(inode->i_mapping,
5118                                       inode->i_size >> PAGE_SHIFT);
5119                 if (!page)
5120                         return;
5121                 ret = __ext4_journalled_invalidatepage(page, offset,
5122                                                 PAGE_SIZE - offset);
5123                 unlock_page(page);
5124                 put_page(page);
5125                 if (ret != -EBUSY)
5126                         return;
5127                 commit_tid = 0;
5128                 read_lock(&journal->j_state_lock);
5129                 if (journal->j_committing_transaction)
5130                         commit_tid = journal->j_committing_transaction->t_tid;
5131                 read_unlock(&journal->j_state_lock);
5132                 if (commit_tid)
5133                         jbd2_log_wait_commit(journal, commit_tid);
5134         }
5135 }
5136
5137 /*
5138  * ext4_setattr()
5139  *
5140  * Called from notify_change.
5141  *
5142  * We want to trap VFS attempts to truncate the file as soon as
5143  * possible.  In particular, we want to make sure that when the VFS
5144  * shrinks i_size, we put the inode on the orphan list and modify
5145  * i_disksize immediately, so that during the subsequent flushing of
5146  * dirty pages and freeing of disk blocks, we can guarantee that any
5147  * commit will leave the blocks being flushed in an unused state on
5148  * disk.  (On recovery, the inode will get truncated and the blocks will
5149  * be freed, so we have a strong guarantee that no future commit will
5150  * leave these blocks visible to the user.)
5151  *
5152  * Another thing we have to assure is that if we are in ordered mode
5153  * and inode is still attached to the committing transaction, we must
5154  * we start writeout of all the dirty pages which are being truncated.
5155  * This way we are sure that all the data written in the previous
5156  * transaction are already on disk (truncate waits for pages under
5157  * writeback).
5158  *
5159  * Called with inode->i_mutex down.
5160  */
5161 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5162 {
5163         struct inode *inode = d_inode(dentry);
5164         int error, rc = 0;
5165         int orphan = 0;
5166         const unsigned int ia_valid = attr->ia_valid;
5167
5168         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5169                 return -EIO;
5170
5171         if (unlikely(IS_IMMUTABLE(inode)))
5172                 return -EPERM;
5173
5174         if (unlikely(IS_APPEND(inode) &&
5175                      (ia_valid & (ATTR_MODE | ATTR_UID |
5176                                   ATTR_GID | ATTR_TIMES_SET))))
5177                 return -EPERM;
5178
5179         error = setattr_prepare(dentry, attr);
5180         if (error)
5181                 return error;
5182
5183         error = fscrypt_prepare_setattr(dentry, attr);
5184         if (error)
5185                 return error;
5186
5187         error = fsverity_prepare_setattr(dentry, attr);
5188         if (error)
5189                 return error;
5190
5191         if (is_quota_modification(inode, attr)) {
5192                 error = dquot_initialize(inode);
5193                 if (error)
5194                         return error;
5195         }
5196         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5197             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5198                 handle_t *handle;
5199
5200                 /* (user+group)*(old+new) structure, inode write (sb,
5201                  * inode block, ? - but truncate inode update has it) */
5202                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5203                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5204                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5205                 if (IS_ERR(handle)) {
5206                         error = PTR_ERR(handle);
5207                         goto err_out;
5208                 }
5209
5210                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5211                  * counts xattr inode references.
5212                  */
5213                 down_read(&EXT4_I(inode)->xattr_sem);
5214                 error = dquot_transfer(inode, attr);
5215                 up_read(&EXT4_I(inode)->xattr_sem);
5216
5217                 if (error) {
5218                         ext4_journal_stop(handle);
5219                         return error;
5220                 }
5221                 /* Update corresponding info in inode so that everything is in
5222                  * one transaction */
5223                 if (attr->ia_valid & ATTR_UID)
5224                         inode->i_uid = attr->ia_uid;
5225                 if (attr->ia_valid & ATTR_GID)
5226                         inode->i_gid = attr->ia_gid;
5227                 error = ext4_mark_inode_dirty(handle, inode);
5228                 ext4_journal_stop(handle);
5229         }
5230
5231         if (attr->ia_valid & ATTR_SIZE) {
5232                 handle_t *handle;
5233                 loff_t oldsize = inode->i_size;
5234                 int shrink = (attr->ia_size < inode->i_size);
5235
5236                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5237                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5238
5239                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5240                                 return -EFBIG;
5241                 }
5242                 if (!S_ISREG(inode->i_mode))
5243                         return -EINVAL;
5244
5245                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5246                         inode_inc_iversion(inode);
5247
5248                 if (shrink) {
5249                         if (ext4_should_order_data(inode)) {
5250                                 error = ext4_begin_ordered_truncate(inode,
5251                                                             attr->ia_size);
5252                                 if (error)
5253                                         goto err_out;
5254                         }
5255                         /*
5256                          * Blocks are going to be removed from the inode. Wait
5257                          * for dio in flight.
5258                          */
5259                         inode_dio_wait(inode);
5260                 }
5261
5262                 down_write(&EXT4_I(inode)->i_mmap_sem);
5263
5264                 rc = ext4_break_layouts(inode);
5265                 if (rc) {
5266                         up_write(&EXT4_I(inode)->i_mmap_sem);
5267                         return rc;
5268                 }
5269
5270                 if (attr->ia_size != inode->i_size) {
5271                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5272                         if (IS_ERR(handle)) {
5273                                 error = PTR_ERR(handle);
5274                                 goto out_mmap_sem;
5275                         }
5276                         if (ext4_handle_valid(handle) && shrink) {
5277                                 error = ext4_orphan_add(handle, inode);
5278                                 orphan = 1;
5279                         }
5280                         /*
5281                          * Update c/mtime on truncate up, ext4_truncate() will
5282                          * update c/mtime in shrink case below
5283                          */
5284                         if (!shrink) {
5285                                 inode->i_mtime = current_time(inode);
5286                                 inode->i_ctime = inode->i_mtime;
5287                         }
5288                         down_write(&EXT4_I(inode)->i_data_sem);
5289                         EXT4_I(inode)->i_disksize = attr->ia_size;
5290                         rc = ext4_mark_inode_dirty(handle, inode);
5291                         if (!error)
5292                                 error = rc;
5293                         /*
5294                          * We have to update i_size under i_data_sem together
5295                          * with i_disksize to avoid races with writeback code
5296                          * running ext4_wb_update_i_disksize().
5297                          */
5298                         if (!error)
5299                                 i_size_write(inode, attr->ia_size);
5300                         up_write(&EXT4_I(inode)->i_data_sem);
5301                         ext4_journal_stop(handle);
5302                         if (error)
5303                                 goto out_mmap_sem;
5304                         if (!shrink) {
5305                                 pagecache_isize_extended(inode, oldsize,
5306                                                          inode->i_size);
5307                         } else if (ext4_should_journal_data(inode)) {
5308                                 ext4_wait_for_tail_page_commit(inode);
5309                         }
5310                 }
5311
5312                 /*
5313                  * Truncate pagecache after we've waited for commit
5314                  * in data=journal mode to make pages freeable.
5315                  */
5316                 truncate_pagecache(inode, inode->i_size);
5317                 /*
5318                  * Call ext4_truncate() even if i_size didn't change to
5319                  * truncate possible preallocated blocks.
5320                  */
5321                 if (attr->ia_size <= oldsize) {
5322                         rc = ext4_truncate(inode);
5323                         if (rc)
5324                                 error = rc;
5325                 }
5326 out_mmap_sem:
5327                 up_write(&EXT4_I(inode)->i_mmap_sem);
5328         }
5329
5330         if (!error) {
5331                 setattr_copy(inode, attr);
5332                 mark_inode_dirty(inode);
5333         }
5334
5335         /*
5336          * If the call to ext4_truncate failed to get a transaction handle at
5337          * all, we need to clean up the in-core orphan list manually.
5338          */
5339         if (orphan && inode->i_nlink)
5340                 ext4_orphan_del(NULL, inode);
5341
5342         if (!error && (ia_valid & ATTR_MODE))
5343                 rc = posix_acl_chmod(inode, inode->i_mode);
5344
5345 err_out:
5346         ext4_std_error(inode->i_sb, error);
5347         if (!error)
5348                 error = rc;
5349         return error;
5350 }
5351
5352 int ext4_getattr(const struct path *path, struct kstat *stat,
5353                  u32 request_mask, unsigned int query_flags)
5354 {
5355         struct inode *inode = d_inode(path->dentry);
5356         struct ext4_inode *raw_inode;
5357         struct ext4_inode_info *ei = EXT4_I(inode);
5358         unsigned int flags;
5359
5360         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5361                 stat->result_mask |= STATX_BTIME;
5362                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5363                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5364         }
5365
5366         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5367         if (flags & EXT4_APPEND_FL)
5368                 stat->attributes |= STATX_ATTR_APPEND;
5369         if (flags & EXT4_COMPR_FL)
5370                 stat->attributes |= STATX_ATTR_COMPRESSED;
5371         if (flags & EXT4_ENCRYPT_FL)
5372                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5373         if (flags & EXT4_IMMUTABLE_FL)
5374                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5375         if (flags & EXT4_NODUMP_FL)
5376                 stat->attributes |= STATX_ATTR_NODUMP;
5377
5378         stat->attributes_mask |= (STATX_ATTR_APPEND |
5379                                   STATX_ATTR_COMPRESSED |
5380                                   STATX_ATTR_ENCRYPTED |
5381                                   STATX_ATTR_IMMUTABLE |
5382                                   STATX_ATTR_NODUMP);
5383
5384         generic_fillattr(inode, stat);
5385         return 0;
5386 }
5387
5388 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5389                       u32 request_mask, unsigned int query_flags)
5390 {
5391         struct inode *inode = d_inode(path->dentry);
5392         u64 delalloc_blocks;
5393
5394         ext4_getattr(path, stat, request_mask, query_flags);
5395
5396         /*
5397          * If there is inline data in the inode, the inode will normally not
5398          * have data blocks allocated (it may have an external xattr block).
5399          * Report at least one sector for such files, so tools like tar, rsync,
5400          * others don't incorrectly think the file is completely sparse.
5401          */
5402         if (unlikely(ext4_has_inline_data(inode)))
5403                 stat->blocks += (stat->size + 511) >> 9;
5404
5405         /*
5406          * We can't update i_blocks if the block allocation is delayed
5407          * otherwise in the case of system crash before the real block
5408          * allocation is done, we will have i_blocks inconsistent with
5409          * on-disk file blocks.
5410          * We always keep i_blocks updated together with real
5411          * allocation. But to not confuse with user, stat
5412          * will return the blocks that include the delayed allocation
5413          * blocks for this file.
5414          */
5415         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5416                                    EXT4_I(inode)->i_reserved_data_blocks);
5417         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5418         return 0;
5419 }
5420
5421 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5422                                    int pextents)
5423 {
5424         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5425                 return ext4_ind_trans_blocks(inode, lblocks);
5426         return ext4_ext_index_trans_blocks(inode, pextents);
5427 }
5428
5429 /*
5430  * Account for index blocks, block groups bitmaps and block group
5431  * descriptor blocks if modify datablocks and index blocks
5432  * worse case, the indexs blocks spread over different block groups
5433  *
5434  * If datablocks are discontiguous, they are possible to spread over
5435  * different block groups too. If they are contiguous, with flexbg,
5436  * they could still across block group boundary.
5437  *
5438  * Also account for superblock, inode, quota and xattr blocks
5439  */
5440 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5441                                   int pextents)
5442 {
5443         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5444         int gdpblocks;
5445         int idxblocks;
5446         int ret = 0;
5447
5448         /*
5449          * How many index blocks need to touch to map @lblocks logical blocks
5450          * to @pextents physical extents?
5451          */
5452         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5453
5454         ret = idxblocks;
5455
5456         /*
5457          * Now let's see how many group bitmaps and group descriptors need
5458          * to account
5459          */
5460         groups = idxblocks + pextents;
5461         gdpblocks = groups;
5462         if (groups > ngroups)
5463                 groups = ngroups;
5464         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5465                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5466
5467         /* bitmaps and block group descriptor blocks */
5468         ret += groups + gdpblocks;
5469
5470         /* Blocks for super block, inode, quota and xattr blocks */
5471         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5472
5473         return ret;
5474 }
5475
5476 /*
5477  * Calculate the total number of credits to reserve to fit
5478  * the modification of a single pages into a single transaction,
5479  * which may include multiple chunks of block allocations.
5480  *
5481  * This could be called via ext4_write_begin()
5482  *
5483  * We need to consider the worse case, when
5484  * one new block per extent.
5485  */
5486 int ext4_writepage_trans_blocks(struct inode *inode)
5487 {
5488         int bpp = ext4_journal_blocks_per_page(inode);
5489         int ret;
5490
5491         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5492
5493         /* Account for data blocks for journalled mode */
5494         if (ext4_should_journal_data(inode))
5495                 ret += bpp;
5496         return ret;
5497 }
5498
5499 /*
5500  * Calculate the journal credits for a chunk of data modification.
5501  *
5502  * This is called from DIO, fallocate or whoever calling
5503  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5504  *
5505  * journal buffers for data blocks are not included here, as DIO
5506  * and fallocate do no need to journal data buffers.
5507  */
5508 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5509 {
5510         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5511 }
5512
5513 /*
5514  * The caller must have previously called ext4_reserve_inode_write().
5515  * Give this, we know that the caller already has write access to iloc->bh.
5516  */
5517 int ext4_mark_iloc_dirty(handle_t *handle,
5518                          struct inode *inode, struct ext4_iloc *iloc)
5519 {
5520         int err = 0;
5521
5522         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5523                 put_bh(iloc->bh);
5524                 return -EIO;
5525         }
5526         if (IS_I_VERSION(inode))
5527                 inode_inc_iversion(inode);
5528
5529         /* the do_update_inode consumes one bh->b_count */
5530         get_bh(iloc->bh);
5531
5532         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5533         err = ext4_do_update_inode(handle, inode, iloc);
5534         put_bh(iloc->bh);
5535         return err;
5536 }
5537
5538 /*
5539  * On success, We end up with an outstanding reference count against
5540  * iloc->bh.  This _must_ be cleaned up later.
5541  */
5542
5543 int
5544 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5545                          struct ext4_iloc *iloc)
5546 {
5547         int err;
5548
5549         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5550                 return -EIO;
5551
5552         err = ext4_get_inode_loc(inode, iloc);
5553         if (!err) {
5554                 BUFFER_TRACE(iloc->bh, "get_write_access");
5555                 err = ext4_journal_get_write_access(handle, iloc->bh);
5556                 if (err) {
5557                         brelse(iloc->bh);
5558                         iloc->bh = NULL;
5559                 }
5560         }
5561         ext4_std_error(inode->i_sb, err);
5562         return err;
5563 }
5564
5565 static int __ext4_expand_extra_isize(struct inode *inode,
5566                                      unsigned int new_extra_isize,
5567                                      struct ext4_iloc *iloc,
5568                                      handle_t *handle, int *no_expand)
5569 {
5570         struct ext4_inode *raw_inode;
5571         struct ext4_xattr_ibody_header *header;
5572         int error;
5573
5574         raw_inode = ext4_raw_inode(iloc);
5575
5576         header = IHDR(inode, raw_inode);
5577
5578         /* No extended attributes present */
5579         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5580             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5581                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5582                        EXT4_I(inode)->i_extra_isize, 0,
5583                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5584                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5585                 return 0;
5586         }
5587
5588         /* try to expand with EAs present */
5589         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5590                                            raw_inode, handle);
5591         if (error) {
5592                 /*
5593                  * Inode size expansion failed; don't try again
5594                  */
5595                 *no_expand = 1;
5596         }
5597
5598         return error;
5599 }
5600
5601 /*
5602  * Expand an inode by new_extra_isize bytes.
5603  * Returns 0 on success or negative error number on failure.
5604  */
5605 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5606                                           unsigned int new_extra_isize,
5607                                           struct ext4_iloc iloc,
5608                                           handle_t *handle)
5609 {
5610         int no_expand;
5611         int error;
5612
5613         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5614                 return -EOVERFLOW;
5615
5616         /*
5617          * In nojournal mode, we can immediately attempt to expand
5618          * the inode.  When journaled, we first need to obtain extra
5619          * buffer credits since we may write into the EA block
5620          * with this same handle. If journal_extend fails, then it will
5621          * only result in a minor loss of functionality for that inode.
5622          * If this is felt to be critical, then e2fsck should be run to
5623          * force a large enough s_min_extra_isize.
5624          */
5625         if (ext4_journal_extend(handle,
5626                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5627                 return -ENOSPC;
5628
5629         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5630                 return -EBUSY;
5631
5632         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5633                                           handle, &no_expand);
5634         ext4_write_unlock_xattr(inode, &no_expand);
5635
5636         return error;
5637 }
5638
5639 int ext4_expand_extra_isize(struct inode *inode,
5640                             unsigned int new_extra_isize,
5641                             struct ext4_iloc *iloc)
5642 {
5643         handle_t *handle;
5644         int no_expand;
5645         int error, rc;
5646
5647         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5648                 brelse(iloc->bh);
5649                 return -EOVERFLOW;
5650         }
5651
5652         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5653                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5654         if (IS_ERR(handle)) {
5655                 error = PTR_ERR(handle);
5656                 brelse(iloc->bh);
5657                 return error;
5658         }
5659
5660         ext4_write_lock_xattr(inode, &no_expand);
5661
5662         BUFFER_TRACE(iloc->bh, "get_write_access");
5663         error = ext4_journal_get_write_access(handle, iloc->bh);
5664         if (error) {
5665                 brelse(iloc->bh);
5666                 goto out_stop;
5667         }
5668
5669         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5670                                           handle, &no_expand);
5671
5672         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5673         if (!error)
5674                 error = rc;
5675
5676         ext4_write_unlock_xattr(inode, &no_expand);
5677 out_stop:
5678         ext4_journal_stop(handle);
5679         return error;
5680 }
5681
5682 /*
5683  * What we do here is to mark the in-core inode as clean with respect to inode
5684  * dirtiness (it may still be data-dirty).
5685  * This means that the in-core inode may be reaped by prune_icache
5686  * without having to perform any I/O.  This is a very good thing,
5687  * because *any* task may call prune_icache - even ones which
5688  * have a transaction open against a different journal.
5689  *
5690  * Is this cheating?  Not really.  Sure, we haven't written the
5691  * inode out, but prune_icache isn't a user-visible syncing function.
5692  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5693  * we start and wait on commits.
5694  */
5695 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5696 {
5697         struct ext4_iloc iloc;
5698         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5699         int err;
5700
5701         might_sleep();
5702         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5703         err = ext4_reserve_inode_write(handle, inode, &iloc);
5704         if (err)
5705                 return err;
5706
5707         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5708                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5709                                                iloc, handle);
5710
5711         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5712 }
5713
5714 /*
5715  * ext4_dirty_inode() is called from __mark_inode_dirty()
5716  *
5717  * We're really interested in the case where a file is being extended.
5718  * i_size has been changed by generic_commit_write() and we thus need
5719  * to include the updated inode in the current transaction.
5720  *
5721  * Also, dquot_alloc_block() will always dirty the inode when blocks
5722  * are allocated to the file.
5723  *
5724  * If the inode is marked synchronous, we don't honour that here - doing
5725  * so would cause a commit on atime updates, which we don't bother doing.
5726  * We handle synchronous inodes at the highest possible level.
5727  *
5728  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5729  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5730  * to copy into the on-disk inode structure are the timestamp files.
5731  */
5732 void ext4_dirty_inode(struct inode *inode, int flags)
5733 {
5734         handle_t *handle;
5735
5736         if (flags == I_DIRTY_TIME)
5737                 return;
5738         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5739         if (IS_ERR(handle))
5740                 goto out;
5741
5742         ext4_mark_inode_dirty(handle, inode);
5743
5744         ext4_journal_stop(handle);
5745 out:
5746         return;
5747 }
5748
5749 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5750 {
5751         journal_t *journal;
5752         handle_t *handle;
5753         int err;
5754         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5755
5756         /*
5757          * We have to be very careful here: changing a data block's
5758          * journaling status dynamically is dangerous.  If we write a
5759          * data block to the journal, change the status and then delete
5760          * that block, we risk forgetting to revoke the old log record
5761          * from the journal and so a subsequent replay can corrupt data.
5762          * So, first we make sure that the journal is empty and that
5763          * nobody is changing anything.
5764          */
5765
5766         journal = EXT4_JOURNAL(inode);
5767         if (!journal)
5768                 return 0;
5769         if (is_journal_aborted(journal))
5770                 return -EROFS;
5771
5772         /* Wait for all existing dio workers */
5773         inode_dio_wait(inode);
5774
5775         /*
5776          * Before flushing the journal and switching inode's aops, we have
5777          * to flush all dirty data the inode has. There can be outstanding
5778          * delayed allocations, there can be unwritten extents created by
5779          * fallocate or buffered writes in dioread_nolock mode covered by
5780          * dirty data which can be converted only after flushing the dirty
5781          * data (and journalled aops don't know how to handle these cases).
5782          */
5783         if (val) {
5784                 down_write(&EXT4_I(inode)->i_mmap_sem);
5785                 err = filemap_write_and_wait(inode->i_mapping);
5786                 if (err < 0) {
5787                         up_write(&EXT4_I(inode)->i_mmap_sem);
5788                         return err;
5789                 }
5790         }
5791
5792         percpu_down_write(&sbi->s_journal_flag_rwsem);
5793         jbd2_journal_lock_updates(journal);
5794
5795         /*
5796          * OK, there are no updates running now, and all cached data is
5797          * synced to disk.  We are now in a completely consistent state
5798          * which doesn't have anything in the journal, and we know that
5799          * no filesystem updates are running, so it is safe to modify
5800          * the inode's in-core data-journaling state flag now.
5801          */
5802
5803         if (val)
5804                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5805         else {
5806                 err = jbd2_journal_flush(journal);
5807                 if (err < 0) {
5808                         jbd2_journal_unlock_updates(journal);
5809                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5810                         return err;
5811                 }
5812                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5813         }
5814         ext4_set_aops(inode);
5815
5816         jbd2_journal_unlock_updates(journal);
5817         percpu_up_write(&sbi->s_journal_flag_rwsem);
5818
5819         if (val)
5820                 up_write(&EXT4_I(inode)->i_mmap_sem);
5821
5822         /* Finally we can mark the inode as dirty. */
5823
5824         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5825         if (IS_ERR(handle))
5826                 return PTR_ERR(handle);
5827
5828         err = ext4_mark_inode_dirty(handle, inode);
5829         ext4_handle_sync(handle);
5830         ext4_journal_stop(handle);
5831         ext4_std_error(inode->i_sb, err);
5832
5833         return err;
5834 }
5835
5836 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5837 {
5838         return !buffer_mapped(bh);
5839 }
5840
5841 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5842 {
5843         struct vm_area_struct *vma = vmf->vma;
5844         struct page *page = vmf->page;
5845         loff_t size;
5846         unsigned long len;
5847         int err;
5848         vm_fault_t ret;
5849         struct file *file = vma->vm_file;
5850         struct inode *inode = file_inode(file);
5851         struct address_space *mapping = inode->i_mapping;
5852         handle_t *handle;
5853         get_block_t *get_block;
5854         int retries = 0;
5855
5856         if (unlikely(IS_IMMUTABLE(inode)))
5857                 return VM_FAULT_SIGBUS;
5858
5859         sb_start_pagefault(inode->i_sb);
5860         file_update_time(vma->vm_file);
5861
5862         down_read(&EXT4_I(inode)->i_mmap_sem);
5863
5864         err = ext4_convert_inline_data(inode);
5865         if (err)
5866                 goto out_ret;
5867
5868         /* Delalloc case is easy... */
5869         if (test_opt(inode->i_sb, DELALLOC) &&
5870             !ext4_should_journal_data(inode) &&
5871             !ext4_nonda_switch(inode->i_sb)) {
5872                 do {
5873                         err = block_page_mkwrite(vma, vmf,
5874                                                    ext4_da_get_block_prep);
5875                 } while (err == -ENOSPC &&
5876                        ext4_should_retry_alloc(inode->i_sb, &retries));
5877                 goto out_ret;
5878         }
5879
5880         lock_page(page);
5881         size = i_size_read(inode);
5882         /* Page got truncated from under us? */
5883         if (page->mapping != mapping || page_offset(page) > size) {
5884                 unlock_page(page);
5885                 ret = VM_FAULT_NOPAGE;
5886                 goto out;
5887         }
5888
5889         if (page->index == size >> PAGE_SHIFT)
5890                 len = size & ~PAGE_MASK;
5891         else
5892                 len = PAGE_SIZE;
5893         /*
5894          * Return if we have all the buffers mapped. This avoids the need to do
5895          * journal_start/journal_stop which can block and take a long time
5896          */
5897         if (page_has_buffers(page)) {
5898                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5899                                             0, len, NULL,
5900                                             ext4_bh_unmapped)) {
5901                         /* Wait so that we don't change page under IO */
5902                         wait_for_stable_page(page);
5903                         ret = VM_FAULT_LOCKED;
5904                         goto out;
5905                 }
5906         }
5907         unlock_page(page);
5908         /* OK, we need to fill the hole... */
5909         if (ext4_should_dioread_nolock(inode))
5910                 get_block = ext4_get_block_unwritten;
5911         else
5912                 get_block = ext4_get_block;
5913 retry_alloc:
5914         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5915                                     ext4_writepage_trans_blocks(inode));
5916         if (IS_ERR(handle)) {
5917                 ret = VM_FAULT_SIGBUS;
5918                 goto out;
5919         }
5920         err = block_page_mkwrite(vma, vmf, get_block);
5921         if (!err && ext4_should_journal_data(inode)) {
5922                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5923                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5924                         unlock_page(page);
5925                         ret = VM_FAULT_SIGBUS;
5926                         ext4_journal_stop(handle);
5927                         goto out;
5928                 }
5929                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5930         }
5931         ext4_journal_stop(handle);
5932         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5933                 goto retry_alloc;
5934 out_ret:
5935         ret = block_page_mkwrite_return(err);
5936 out:
5937         up_read(&EXT4_I(inode)->i_mmap_sem);
5938         sb_end_pagefault(inode->i_sb);
5939         return ret;
5940 }
5941
5942 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
5943 {
5944         struct inode *inode = file_inode(vmf->vma->vm_file);
5945         vm_fault_t ret;
5946
5947         down_read(&EXT4_I(inode)->i_mmap_sem);
5948         ret = filemap_fault(vmf);
5949         up_read(&EXT4_I(inode)->i_mmap_sem);
5950
5951         return ret;
5952 }