fs: port ->setattr() to pass mnt_idmap
[linux-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181                 ext4_evict_ea_inode(inode);
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. And for inodes with dioread_nolock, unwritten
226          * extents converting worker could merge extents and also have dirtied
227          * the inode. Flush worker is ignoring it because of I_FREEING flag but
228          * we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list))
231                 inode_io_list_del(inode);
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         /*
339          * Check out some where else accidentally dirty the evicting inode,
340          * which may probably cause inode use-after-free issues later.
341          */
342         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344         if (!list_empty(&EXT4_I(inode)->i_fc_list))
345                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
347 }
348
349 #ifdef CONFIG_QUOTA
350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352         return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355
356 /*
357  * Called with i_data_sem down, which is important since we can call
358  * ext4_discard_preallocations() from here.
359  */
360 void ext4_da_update_reserve_space(struct inode *inode,
361                                         int used, int quota_claim)
362 {
363         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364         struct ext4_inode_info *ei = EXT4_I(inode);
365
366         spin_lock(&ei->i_block_reservation_lock);
367         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368         if (unlikely(used > ei->i_reserved_data_blocks)) {
369                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370                          "with only %d reserved data blocks",
371                          __func__, inode->i_ino, used,
372                          ei->i_reserved_data_blocks);
373                 WARN_ON(1);
374                 used = ei->i_reserved_data_blocks;
375         }
376
377         /* Update per-inode reservations */
378         ei->i_reserved_data_blocks -= used;
379         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381         spin_unlock(&ei->i_block_reservation_lock);
382
383         /* Update quota subsystem for data blocks */
384         if (quota_claim)
385                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386         else {
387                 /*
388                  * We did fallocate with an offset that is already delayed
389                  * allocated. So on delayed allocated writeback we should
390                  * not re-claim the quota for fallocated blocks.
391                  */
392                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393         }
394
395         /*
396          * If we have done all the pending block allocations and if
397          * there aren't any writers on the inode, we can discard the
398          * inode's preallocations.
399          */
400         if ((ei->i_reserved_data_blocks == 0) &&
401             !inode_is_open_for_write(inode))
402                 ext4_discard_preallocations(inode, 0);
403 }
404
405 static int __check_block_validity(struct inode *inode, const char *func,
406                                 unsigned int line,
407                                 struct ext4_map_blocks *map)
408 {
409         if (ext4_has_feature_journal(inode->i_sb) &&
410             (inode->i_ino ==
411              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412                 return 0;
413         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock %llu "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_pblk, map->m_len);
418                 return -EFSCORRUPTED;
419         }
420         return 0;
421 }
422
423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424                        ext4_lblk_t len)
425 {
426         int ret;
427
428         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432         if (ret > 0)
433                 ret = 0;
434
435         return ret;
436 }
437
438 #define check_block_validity(inode, map)        \
439         __check_block_validity((inode), __func__, __LINE__, (map))
440
441 #ifdef ES_AGGRESSIVE_TEST
442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443                                        struct inode *inode,
444                                        struct ext4_map_blocks *es_map,
445                                        struct ext4_map_blocks *map,
446                                        int flags)
447 {
448         int retval;
449
450         map->m_flags = 0;
451         /*
452          * There is a race window that the result is not the same.
453          * e.g. xfstests #223 when dioread_nolock enables.  The reason
454          * is that we lookup a block mapping in extent status tree with
455          * out taking i_data_sem.  So at the time the unwritten extent
456          * could be converted.
457          */
458         down_read(&EXT4_I(inode)->i_data_sem);
459         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461         } else {
462                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463         }
464         up_read((&EXT4_I(inode)->i_data_sem));
465
466         /*
467          * We don't check m_len because extent will be collpased in status
468          * tree.  So the m_len might not equal.
469          */
470         if (es_map->m_lblk != map->m_lblk ||
471             es_map->m_flags != map->m_flags ||
472             es_map->m_pblk != map->m_pblk) {
473                 printk("ES cache assertion failed for inode: %lu "
474                        "es_cached ex [%d/%d/%llu/%x] != "
475                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476                        inode->i_ino, es_map->m_lblk, es_map->m_len,
477                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
478                        map->m_len, map->m_pblk, map->m_flags,
479                        retval, flags);
480         }
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocated.  if
497  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, @map is returned as unmapped but we still do fill map->m_len to
502  * indicate the length of a hole starting at map->m_lblk.
503  *
504  * It returns the error in case of allocation failure.
505  */
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507                     struct ext4_map_blocks *map, int flags)
508 {
509         struct extent_status es;
510         int retval;
511         int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513         struct ext4_map_blocks orig_map;
514
515         memcpy(&orig_map, map, sizeof(*map));
516 #endif
517
518         map->m_flags = 0;
519         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520                   flags, map->m_len, (unsigned long) map->m_lblk);
521
522         /*
523          * ext4_map_blocks returns an int, and m_len is an unsigned int
524          */
525         if (unlikely(map->m_len > INT_MAX))
526                 map->m_len = INT_MAX;
527
528         /* We can handle the block number less than EXT_MAX_BLOCKS */
529         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530                 return -EFSCORRUPTED;
531
532         /* Lookup extent status tree firstly */
533         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536                         map->m_pblk = ext4_es_pblock(&es) +
537                                         map->m_lblk - es.es_lblk;
538                         map->m_flags |= ext4_es_is_written(&es) ?
539                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545                         map->m_pblk = 0;
546                         retval = es.es_len - (map->m_lblk - es.es_lblk);
547                         if (retval > map->m_len)
548                                 retval = map->m_len;
549                         map->m_len = retval;
550                         retval = 0;
551                 } else {
552                         BUG();
553                 }
554
555                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556                         return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558                 ext4_map_blocks_es_recheck(handle, inode, map,
559                                            &orig_map, flags);
560 #endif
561                 goto found;
562         }
563         /*
564          * In the query cache no-wait mode, nothing we can do more if we
565          * cannot find extent in the cache.
566          */
567         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568                 return 0;
569
570         /*
571          * Try to see if we can get the block without requesting a new
572          * file system block.
573          */
574         down_read(&EXT4_I(inode)->i_data_sem);
575         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577         } else {
578                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579         }
580         if (retval > 0) {
581                 unsigned int status;
582
583                 if (unlikely(retval != map->m_len)) {
584                         ext4_warning(inode->i_sb,
585                                      "ES len assertion failed for inode "
586                                      "%lu: retval %d != map->m_len %d",
587                                      inode->i_ino, retval, map->m_len);
588                         WARN_ON(1);
589                 }
590
591                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594                     !(status & EXTENT_STATUS_WRITTEN) &&
595                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596                                        map->m_lblk + map->m_len - 1))
597                         status |= EXTENT_STATUS_DELAYED;
598                 ret = ext4_es_insert_extent(inode, map->m_lblk,
599                                             map->m_len, map->m_pblk, status);
600                 if (ret < 0)
601                         retval = ret;
602         }
603         up_read((&EXT4_I(inode)->i_data_sem));
604
605 found:
606         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607                 ret = check_block_validity(inode, map);
608                 if (ret != 0)
609                         return ret;
610         }
611
612         /* If it is only a block(s) look up */
613         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614                 return retval;
615
616         /*
617          * Returns if the blocks have already allocated
618          *
619          * Note that if blocks have been preallocated
620          * ext4_ext_get_block() returns the create = 0
621          * with buffer head unmapped.
622          */
623         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624                 /*
625                  * If we need to convert extent to unwritten
626                  * we continue and do the actual work in
627                  * ext4_ext_map_blocks()
628                  */
629                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630                         return retval;
631
632         /*
633          * Here we clear m_flags because after allocating an new extent,
634          * it will be set again.
635          */
636         map->m_flags &= ~EXT4_MAP_FLAGS;
637
638         /*
639          * New blocks allocate and/or writing to unwritten extent
640          * will possibly result in updating i_data, so we take
641          * the write lock of i_data_sem, and call get_block()
642          * with create == 1 flag.
643          */
644         down_write(&EXT4_I(inode)->i_data_sem);
645
646         /*
647          * We need to check for EXT4 here because migrate
648          * could have changed the inode type in between
649          */
650         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652         } else {
653                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656                         /*
657                          * We allocated new blocks which will result in
658                          * i_data's format changing.  Force the migrate
659                          * to fail by clearing migrate flags
660                          */
661                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662                 }
663
664                 /*
665                  * Update reserved blocks/metadata blocks after successful
666                  * block allocation which had been deferred till now. We don't
667                  * support fallocate for non extent files. So we can update
668                  * reserve space here.
669                  */
670                 if ((retval > 0) &&
671                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672                         ext4_da_update_reserve_space(inode, retval, 1);
673         }
674
675         if (retval > 0) {
676                 unsigned int status;
677
678                 if (unlikely(retval != map->m_len)) {
679                         ext4_warning(inode->i_sb,
680                                      "ES len assertion failed for inode "
681                                      "%lu: retval %d != map->m_len %d",
682                                      inode->i_ino, retval, map->m_len);
683                         WARN_ON(1);
684                 }
685
686                 /*
687                  * We have to zeroout blocks before inserting them into extent
688                  * status tree. Otherwise someone could look them up there and
689                  * use them before they are really zeroed. We also have to
690                  * unmap metadata before zeroing as otherwise writeback can
691                  * overwrite zeros with stale data from block device.
692                  */
693                 if (flags & EXT4_GET_BLOCKS_ZERO &&
694                     map->m_flags & EXT4_MAP_MAPPED &&
695                     map->m_flags & EXT4_MAP_NEW) {
696                         ret = ext4_issue_zeroout(inode, map->m_lblk,
697                                                  map->m_pblk, map->m_len);
698                         if (ret) {
699                                 retval = ret;
700                                 goto out_sem;
701                         }
702                 }
703
704                 /*
705                  * If the extent has been zeroed out, we don't need to update
706                  * extent status tree.
707                  */
708                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710                         if (ext4_es_is_written(&es))
711                                 goto out_sem;
712                 }
713                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716                     !(status & EXTENT_STATUS_WRITTEN) &&
717                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718                                        map->m_lblk + map->m_len - 1))
719                         status |= EXTENT_STATUS_DELAYED;
720                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721                                             map->m_pblk, status);
722                 if (ret < 0) {
723                         retval = ret;
724                         goto out_sem;
725                 }
726         }
727
728 out_sem:
729         up_write((&EXT4_I(inode)->i_data_sem));
730         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731                 ret = check_block_validity(inode, map);
732                 if (ret != 0)
733                         return ret;
734
735                 /*
736                  * Inodes with freshly allocated blocks where contents will be
737                  * visible after transaction commit must be on transaction's
738                  * ordered data list.
739                  */
740                 if (map->m_flags & EXT4_MAP_NEW &&
741                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
743                     !ext4_is_quota_file(inode) &&
744                     ext4_should_order_data(inode)) {
745                         loff_t start_byte =
746                                 (loff_t)map->m_lblk << inode->i_blkbits;
747                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
751                                                 start_byte, length);
752                         else
753                                 ret = ext4_jbd2_inode_add_write(handle, inode,
754                                                 start_byte, length);
755                         if (ret)
756                                 return ret;
757                 }
758         }
759         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760                                 map->m_flags & EXT4_MAP_MAPPED))
761                 ext4_fc_track_range(handle, inode, map->m_lblk,
762                                         map->m_lblk + map->m_len - 1);
763         if (retval < 0)
764                 ext_debug(inode, "failed with err %d\n", retval);
765         return retval;
766 }
767
768 /*
769  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770  * we have to be careful as someone else may be manipulating b_state as well.
771  */
772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773 {
774         unsigned long old_state;
775         unsigned long new_state;
776
777         flags &= EXT4_MAP_FLAGS;
778
779         /* Dummy buffer_head? Set non-atomically. */
780         if (!bh->b_page) {
781                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782                 return;
783         }
784         /*
785          * Someone else may be modifying b_state. Be careful! This is ugly but
786          * once we get rid of using bh as a container for mapping information
787          * to pass to / from get_block functions, this can go away.
788          */
789         do {
790                 old_state = READ_ONCE(bh->b_state);
791                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792         } while (unlikely(
793                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794 }
795
796 static int _ext4_get_block(struct inode *inode, sector_t iblock,
797                            struct buffer_head *bh, int flags)
798 {
799         struct ext4_map_blocks map;
800         int ret = 0;
801
802         if (ext4_has_inline_data(inode))
803                 return -ERANGE;
804
805         map.m_lblk = iblock;
806         map.m_len = bh->b_size >> inode->i_blkbits;
807
808         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809                               flags);
810         if (ret > 0) {
811                 map_bh(bh, inode->i_sb, map.m_pblk);
812                 ext4_update_bh_state(bh, map.m_flags);
813                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814                 ret = 0;
815         } else if (ret == 0) {
816                 /* hole case, need to fill in bh->b_size */
817                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
818         }
819         return ret;
820 }
821
822 int ext4_get_block(struct inode *inode, sector_t iblock,
823                    struct buffer_head *bh, int create)
824 {
825         return _ext4_get_block(inode, iblock, bh,
826                                create ? EXT4_GET_BLOCKS_CREATE : 0);
827 }
828
829 /*
830  * Get block function used when preparing for buffered write if we require
831  * creating an unwritten extent if blocks haven't been allocated.  The extent
832  * will be converted to written after the IO is complete.
833  */
834 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835                              struct buffer_head *bh_result, int create)
836 {
837         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838                    inode->i_ino, create);
839         return _ext4_get_block(inode, iblock, bh_result,
840                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
841 }
842
843 /* Maximum number of blocks we map for direct IO at once. */
844 #define DIO_MAX_BLOCKS 4096
845
846 /*
847  * `handle' can be NULL if create is zero
848  */
849 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
850                                 ext4_lblk_t block, int map_flags)
851 {
852         struct ext4_map_blocks map;
853         struct buffer_head *bh;
854         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
855         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
856         int err;
857
858         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859                     || handle != NULL || create == 0);
860         ASSERT(create == 0 || !nowait);
861
862         map.m_lblk = block;
863         map.m_len = 1;
864         err = ext4_map_blocks(handle, inode, &map, map_flags);
865
866         if (err == 0)
867                 return create ? ERR_PTR(-ENOSPC) : NULL;
868         if (err < 0)
869                 return ERR_PTR(err);
870
871         if (nowait)
872                 return sb_find_get_block(inode->i_sb, map.m_pblk);
873
874         bh = sb_getblk(inode->i_sb, map.m_pblk);
875         if (unlikely(!bh))
876                 return ERR_PTR(-ENOMEM);
877         if (map.m_flags & EXT4_MAP_NEW) {
878                 ASSERT(create != 0);
879                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880                             || (handle != NULL));
881
882                 /*
883                  * Now that we do not always journal data, we should
884                  * keep in mind whether this should always journal the
885                  * new buffer as metadata.  For now, regular file
886                  * writes use ext4_get_block instead, so it's not a
887                  * problem.
888                  */
889                 lock_buffer(bh);
890                 BUFFER_TRACE(bh, "call get_create_access");
891                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892                                                      EXT4_JTR_NONE);
893                 if (unlikely(err)) {
894                         unlock_buffer(bh);
895                         goto errout;
896                 }
897                 if (!buffer_uptodate(bh)) {
898                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899                         set_buffer_uptodate(bh);
900                 }
901                 unlock_buffer(bh);
902                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903                 err = ext4_handle_dirty_metadata(handle, inode, bh);
904                 if (unlikely(err))
905                         goto errout;
906         } else
907                 BUFFER_TRACE(bh, "not a new buffer");
908         return bh;
909 errout:
910         brelse(bh);
911         return ERR_PTR(err);
912 }
913
914 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
915                                ext4_lblk_t block, int map_flags)
916 {
917         struct buffer_head *bh;
918         int ret;
919
920         bh = ext4_getblk(handle, inode, block, map_flags);
921         if (IS_ERR(bh))
922                 return bh;
923         if (!bh || ext4_buffer_uptodate(bh))
924                 return bh;
925
926         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927         if (ret) {
928                 put_bh(bh);
929                 return ERR_PTR(ret);
930         }
931         return bh;
932 }
933
934 /* Read a contiguous batch of blocks. */
935 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936                      bool wait, struct buffer_head **bhs)
937 {
938         int i, err;
939
940         for (i = 0; i < bh_count; i++) {
941                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942                 if (IS_ERR(bhs[i])) {
943                         err = PTR_ERR(bhs[i]);
944                         bh_count = i;
945                         goto out_brelse;
946                 }
947         }
948
949         for (i = 0; i < bh_count; i++)
950                 /* Note that NULL bhs[i] is valid because of holes. */
951                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
953
954         if (!wait)
955                 return 0;
956
957         for (i = 0; i < bh_count; i++)
958                 if (bhs[i])
959                         wait_on_buffer(bhs[i]);
960
961         for (i = 0; i < bh_count; i++) {
962                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
963                         err = -EIO;
964                         goto out_brelse;
965                 }
966         }
967         return 0;
968
969 out_brelse:
970         for (i = 0; i < bh_count; i++) {
971                 brelse(bhs[i]);
972                 bhs[i] = NULL;
973         }
974         return err;
975 }
976
977 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
978                            struct buffer_head *head,
979                            unsigned from,
980                            unsigned to,
981                            int *partial,
982                            int (*fn)(handle_t *handle, struct inode *inode,
983                                      struct buffer_head *bh))
984 {
985         struct buffer_head *bh;
986         unsigned block_start, block_end;
987         unsigned blocksize = head->b_size;
988         int err, ret = 0;
989         struct buffer_head *next;
990
991         for (bh = head, block_start = 0;
992              ret == 0 && (bh != head || !block_start);
993              block_start = block_end, bh = next) {
994                 next = bh->b_this_page;
995                 block_end = block_start + blocksize;
996                 if (block_end <= from || block_start >= to) {
997                         if (partial && !buffer_uptodate(bh))
998                                 *partial = 1;
999                         continue;
1000                 }
1001                 err = (*fn)(handle, inode, bh);
1002                 if (!ret)
1003                         ret = err;
1004         }
1005         return ret;
1006 }
1007
1008 /*
1009  * To preserve ordering, it is essential that the hole instantiation and
1010  * the data write be encapsulated in a single transaction.  We cannot
1011  * close off a transaction and start a new one between the ext4_get_block()
1012  * and the commit_write().  So doing the jbd2_journal_start at the start of
1013  * prepare_write() is the right place.
1014  *
1015  * Also, this function can nest inside ext4_writepage().  In that case, we
1016  * *know* that ext4_writepage() has generated enough buffer credits to do the
1017  * whole page.  So we won't block on the journal in that case, which is good,
1018  * because the caller may be PF_MEMALLOC.
1019  *
1020  * By accident, ext4 can be reentered when a transaction is open via
1021  * quota file writes.  If we were to commit the transaction while thus
1022  * reentered, there can be a deadlock - we would be holding a quota
1023  * lock, and the commit would never complete if another thread had a
1024  * transaction open and was blocking on the quota lock - a ranking
1025  * violation.
1026  *
1027  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028  * will _not_ run commit under these circumstances because handle->h_ref
1029  * is elevated.  We'll still have enough credits for the tiny quotafile
1030  * write.
1031  */
1032 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033                                 struct buffer_head *bh)
1034 {
1035         int dirty = buffer_dirty(bh);
1036         int ret;
1037
1038         if (!buffer_mapped(bh) || buffer_freed(bh))
1039                 return 0;
1040         /*
1041          * __block_write_begin() could have dirtied some buffers. Clean
1042          * the dirty bit as jbd2_journal_get_write_access() could complain
1043          * otherwise about fs integrity issues. Setting of the dirty bit
1044          * by __block_write_begin() isn't a real problem here as we clear
1045          * the bit before releasing a page lock and thus writeback cannot
1046          * ever write the buffer.
1047          */
1048         if (dirty)
1049                 clear_buffer_dirty(bh);
1050         BUFFER_TRACE(bh, "get write access");
1051         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052                                             EXT4_JTR_NONE);
1053         if (!ret && dirty)
1054                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055         return ret;
1056 }
1057
1058 #ifdef CONFIG_FS_ENCRYPTION
1059 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060                                   get_block_t *get_block)
1061 {
1062         unsigned from = pos & (PAGE_SIZE - 1);
1063         unsigned to = from + len;
1064         struct inode *inode = page->mapping->host;
1065         unsigned block_start, block_end;
1066         sector_t block;
1067         int err = 0;
1068         unsigned blocksize = inode->i_sb->s_blocksize;
1069         unsigned bbits;
1070         struct buffer_head *bh, *head, *wait[2];
1071         int nr_wait = 0;
1072         int i;
1073
1074         BUG_ON(!PageLocked(page));
1075         BUG_ON(from > PAGE_SIZE);
1076         BUG_ON(to > PAGE_SIZE);
1077         BUG_ON(from > to);
1078
1079         if (!page_has_buffers(page))
1080                 create_empty_buffers(page, blocksize, 0);
1081         head = page_buffers(page);
1082         bbits = ilog2(blocksize);
1083         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084
1085         for (bh = head, block_start = 0; bh != head || !block_start;
1086             block++, block_start = block_end, bh = bh->b_this_page) {
1087                 block_end = block_start + blocksize;
1088                 if (block_end <= from || block_start >= to) {
1089                         if (PageUptodate(page)) {
1090                                 set_buffer_uptodate(bh);
1091                         }
1092                         continue;
1093                 }
1094                 if (buffer_new(bh))
1095                         clear_buffer_new(bh);
1096                 if (!buffer_mapped(bh)) {
1097                         WARN_ON(bh->b_size != blocksize);
1098                         err = get_block(inode, block, bh, 1);
1099                         if (err)
1100                                 break;
1101                         if (buffer_new(bh)) {
1102                                 if (PageUptodate(page)) {
1103                                         clear_buffer_new(bh);
1104                                         set_buffer_uptodate(bh);
1105                                         mark_buffer_dirty(bh);
1106                                         continue;
1107                                 }
1108                                 if (block_end > to || block_start < from)
1109                                         zero_user_segments(page, to, block_end,
1110                                                            block_start, from);
1111                                 continue;
1112                         }
1113                 }
1114                 if (PageUptodate(page)) {
1115                         set_buffer_uptodate(bh);
1116                         continue;
1117                 }
1118                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119                     !buffer_unwritten(bh) &&
1120                     (block_start < from || block_end > to)) {
1121                         ext4_read_bh_lock(bh, 0, false);
1122                         wait[nr_wait++] = bh;
1123                 }
1124         }
1125         /*
1126          * If we issued read requests, let them complete.
1127          */
1128         for (i = 0; i < nr_wait; i++) {
1129                 wait_on_buffer(wait[i]);
1130                 if (!buffer_uptodate(wait[i]))
1131                         err = -EIO;
1132         }
1133         if (unlikely(err)) {
1134                 page_zero_new_buffers(page, from, to);
1135         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136                 for (i = 0; i < nr_wait; i++) {
1137                         int err2;
1138
1139                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140                                                                 bh_offset(wait[i]));
1141                         if (err2) {
1142                                 clear_buffer_uptodate(wait[i]);
1143                                 err = err2;
1144                         }
1145                 }
1146         }
1147
1148         return err;
1149 }
1150 #endif
1151
1152 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153                             loff_t pos, unsigned len,
1154                             struct page **pagep, void **fsdata)
1155 {
1156         struct inode *inode = mapping->host;
1157         int ret, needed_blocks;
1158         handle_t *handle;
1159         int retries = 0;
1160         struct page *page;
1161         pgoff_t index;
1162         unsigned from, to;
1163
1164         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165                 return -EIO;
1166
1167         trace_ext4_write_begin(inode, pos, len);
1168         /*
1169          * Reserve one block more for addition to orphan list in case
1170          * we allocate blocks but write fails for some reason
1171          */
1172         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173         index = pos >> PAGE_SHIFT;
1174         from = pos & (PAGE_SIZE - 1);
1175         to = from + len;
1176
1177         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179                                                     pagep);
1180                 if (ret < 0)
1181                         return ret;
1182                 if (ret == 1)
1183                         return 0;
1184         }
1185
1186         /*
1187          * grab_cache_page_write_begin() can take a long time if the
1188          * system is thrashing due to memory pressure, or if the page
1189          * is being written back.  So grab it first before we start
1190          * the transaction handle.  This also allows us to allocate
1191          * the page (if needed) without using GFP_NOFS.
1192          */
1193 retry_grab:
1194         page = grab_cache_page_write_begin(mapping, index);
1195         if (!page)
1196                 return -ENOMEM;
1197         /*
1198          * The same as page allocation, we prealloc buffer heads before
1199          * starting the handle.
1200          */
1201         if (!page_has_buffers(page))
1202                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204         unlock_page(page);
1205
1206 retry_journal:
1207         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208         if (IS_ERR(handle)) {
1209                 put_page(page);
1210                 return PTR_ERR(handle);
1211         }
1212
1213         lock_page(page);
1214         if (page->mapping != mapping) {
1215                 /* The page got truncated from under us */
1216                 unlock_page(page);
1217                 put_page(page);
1218                 ext4_journal_stop(handle);
1219                 goto retry_grab;
1220         }
1221         /* In case writeback began while the page was unlocked */
1222         wait_for_stable_page(page);
1223
1224 #ifdef CONFIG_FS_ENCRYPTION
1225         if (ext4_should_dioread_nolock(inode))
1226                 ret = ext4_block_write_begin(page, pos, len,
1227                                              ext4_get_block_unwritten);
1228         else
1229                 ret = ext4_block_write_begin(page, pos, len,
1230                                              ext4_get_block);
1231 #else
1232         if (ext4_should_dioread_nolock(inode))
1233                 ret = __block_write_begin(page, pos, len,
1234                                           ext4_get_block_unwritten);
1235         else
1236                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1237 #endif
1238         if (!ret && ext4_should_journal_data(inode)) {
1239                 ret = ext4_walk_page_buffers(handle, inode,
1240                                              page_buffers(page), from, to, NULL,
1241                                              do_journal_get_write_access);
1242         }
1243
1244         if (ret) {
1245                 bool extended = (pos + len > inode->i_size) &&
1246                                 !ext4_verity_in_progress(inode);
1247
1248                 unlock_page(page);
1249                 /*
1250                  * __block_write_begin may have instantiated a few blocks
1251                  * outside i_size.  Trim these off again. Don't need
1252                  * i_size_read because we hold i_rwsem.
1253                  *
1254                  * Add inode to orphan list in case we crash before
1255                  * truncate finishes
1256                  */
1257                 if (extended && ext4_can_truncate(inode))
1258                         ext4_orphan_add(handle, inode);
1259
1260                 ext4_journal_stop(handle);
1261                 if (extended) {
1262                         ext4_truncate_failed_write(inode);
1263                         /*
1264                          * If truncate failed early the inode might
1265                          * still be on the orphan list; we need to
1266                          * make sure the inode is removed from the
1267                          * orphan list in that case.
1268                          */
1269                         if (inode->i_nlink)
1270                                 ext4_orphan_del(NULL, inode);
1271                 }
1272
1273                 if (ret == -ENOSPC &&
1274                     ext4_should_retry_alloc(inode->i_sb, &retries))
1275                         goto retry_journal;
1276                 put_page(page);
1277                 return ret;
1278         }
1279         *pagep = page;
1280         return ret;
1281 }
1282
1283 /* For write_end() in data=journal mode */
1284 static int write_end_fn(handle_t *handle, struct inode *inode,
1285                         struct buffer_head *bh)
1286 {
1287         int ret;
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         set_buffer_uptodate(bh);
1291         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292         clear_buffer_meta(bh);
1293         clear_buffer_prio(bh);
1294         return ret;
1295 }
1296
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305                           struct address_space *mapping,
1306                           loff_t pos, unsigned len, unsigned copied,
1307                           struct page *page, void *fsdata)
1308 {
1309         handle_t *handle = ext4_journal_current_handle();
1310         struct inode *inode = mapping->host;
1311         loff_t old_size = inode->i_size;
1312         int ret = 0, ret2;
1313         int i_size_changed = 0;
1314         bool verity = ext4_verity_in_progress(inode);
1315
1316         trace_ext4_write_end(inode, pos, len, copied);
1317
1318         if (ext4_has_inline_data(inode) &&
1319             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321
1322         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1323         /*
1324          * it's important to update i_size while still holding page lock:
1325          * page writeout could otherwise come in and zero beyond i_size.
1326          *
1327          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328          * blocks are being written past EOF, so skip the i_size update.
1329          */
1330         if (!verity)
1331                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332         unlock_page(page);
1333         put_page(page);
1334
1335         if (old_size < pos && !verity)
1336                 pagecache_isize_extended(inode, old_size, pos);
1337         /*
1338          * Don't mark the inode dirty under page lock. First, it unnecessarily
1339          * makes the holding time of page lock longer. Second, it forces lock
1340          * ordering of page lock and transaction start for journaling
1341          * filesystems.
1342          */
1343         if (i_size_changed)
1344                 ret = ext4_mark_inode_dirty(handle, inode);
1345
1346         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347                 /* if we have allocated more blocks and copied
1348                  * less. We will have blocks allocated outside
1349                  * inode->i_size. So truncate them
1350                  */
1351                 ext4_orphan_add(handle, inode);
1352
1353         ret2 = ext4_journal_stop(handle);
1354         if (!ret)
1355                 ret = ret2;
1356
1357         if (pos + len > inode->i_size && !verity) {
1358                 ext4_truncate_failed_write(inode);
1359                 /*
1360                  * If truncate failed early the inode might still be
1361                  * on the orphan list; we need to make sure the inode
1362                  * is removed from the orphan list in that case.
1363                  */
1364                 if (inode->i_nlink)
1365                         ext4_orphan_del(NULL, inode);
1366         }
1367
1368         return ret ? ret : copied;
1369 }
1370
1371 /*
1372  * This is a private version of page_zero_new_buffers() which doesn't
1373  * set the buffer to be dirty, since in data=journalled mode we need
1374  * to call ext4_handle_dirty_metadata() instead.
1375  */
1376 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377                                             struct inode *inode,
1378                                             struct page *page,
1379                                             unsigned from, unsigned to)
1380 {
1381         unsigned int block_start = 0, block_end;
1382         struct buffer_head *head, *bh;
1383
1384         bh = head = page_buffers(page);
1385         do {
1386                 block_end = block_start + bh->b_size;
1387                 if (buffer_new(bh)) {
1388                         if (block_end > from && block_start < to) {
1389                                 if (!PageUptodate(page)) {
1390                                         unsigned start, size;
1391
1392                                         start = max(from, block_start);
1393                                         size = min(to, block_end) - start;
1394
1395                                         zero_user(page, start, size);
1396                                         write_end_fn(handle, inode, bh);
1397                                 }
1398                                 clear_buffer_new(bh);
1399                         }
1400                 }
1401                 block_start = block_end;
1402                 bh = bh->b_this_page;
1403         } while (bh != head);
1404 }
1405
1406 static int ext4_journalled_write_end(struct file *file,
1407                                      struct address_space *mapping,
1408                                      loff_t pos, unsigned len, unsigned copied,
1409                                      struct page *page, void *fsdata)
1410 {
1411         handle_t *handle = ext4_journal_current_handle();
1412         struct inode *inode = mapping->host;
1413         loff_t old_size = inode->i_size;
1414         int ret = 0, ret2;
1415         int partial = 0;
1416         unsigned from, to;
1417         int size_changed = 0;
1418         bool verity = ext4_verity_in_progress(inode);
1419
1420         trace_ext4_journalled_write_end(inode, pos, len, copied);
1421         from = pos & (PAGE_SIZE - 1);
1422         to = from + len;
1423
1424         BUG_ON(!ext4_handle_valid(handle));
1425
1426         if (ext4_has_inline_data(inode))
1427                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428
1429         if (unlikely(copied < len) && !PageUptodate(page)) {
1430                 copied = 0;
1431                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432         } else {
1433                 if (unlikely(copied < len))
1434                         ext4_journalled_zero_new_buffers(handle, inode, page,
1435                                                          from + copied, to);
1436                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437                                              from, from + copied, &partial,
1438                                              write_end_fn);
1439                 if (!partial)
1440                         SetPageUptodate(page);
1441         }
1442         if (!verity)
1443                 size_changed = ext4_update_inode_size(inode, pos + copied);
1444         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446         unlock_page(page);
1447         put_page(page);
1448
1449         if (old_size < pos && !verity)
1450                 pagecache_isize_extended(inode, old_size, pos);
1451
1452         if (size_changed) {
1453                 ret2 = ext4_mark_inode_dirty(handle, inode);
1454                 if (!ret)
1455                         ret = ret2;
1456         }
1457
1458         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459                 /* if we have allocated more blocks and copied
1460                  * less. We will have blocks allocated outside
1461                  * inode->i_size. So truncate them
1462                  */
1463                 ext4_orphan_add(handle, inode);
1464
1465         ret2 = ext4_journal_stop(handle);
1466         if (!ret)
1467                 ret = ret2;
1468         if (pos + len > inode->i_size && !verity) {
1469                 ext4_truncate_failed_write(inode);
1470                 /*
1471                  * If truncate failed early the inode might still be
1472                  * on the orphan list; we need to make sure the inode
1473                  * is removed from the orphan list in that case.
1474                  */
1475                 if (inode->i_nlink)
1476                         ext4_orphan_del(NULL, inode);
1477         }
1478
1479         return ret ? ret : copied;
1480 }
1481
1482 /*
1483  * Reserve space for a single cluster
1484  */
1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489         int ret;
1490
1491         /*
1492          * We will charge metadata quota at writeout time; this saves
1493          * us from metadata over-estimation, though we may go over by
1494          * a small amount in the end.  Here we just reserve for data.
1495          */
1496         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497         if (ret)
1498                 return ret;
1499
1500         spin_lock(&ei->i_block_reservation_lock);
1501         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502                 spin_unlock(&ei->i_block_reservation_lock);
1503                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504                 return -ENOSPC;
1505         }
1506         ei->i_reserved_data_blocks++;
1507         trace_ext4_da_reserve_space(inode);
1508         spin_unlock(&ei->i_block_reservation_lock);
1509
1510         return 0;       /* success */
1511 }
1512
1513 void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516         struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518         if (!to_free)
1519                 return;         /* Nothing to release, exit */
1520
1521         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523         trace_ext4_da_release_space(inode, to_free);
1524         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525                 /*
1526                  * if there aren't enough reserved blocks, then the
1527                  * counter is messed up somewhere.  Since this
1528                  * function is called from invalidate page, it's
1529                  * harmless to return without any action.
1530                  */
1531                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532                          "ino %lu, to_free %d with only %d reserved "
1533                          "data blocks", inode->i_ino, to_free,
1534                          ei->i_reserved_data_blocks);
1535                 WARN_ON(1);
1536                 to_free = ei->i_reserved_data_blocks;
1537         }
1538         ei->i_reserved_data_blocks -= to_free;
1539
1540         /* update fs dirty data blocks counter */
1541         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547
1548 /*
1549  * Delayed allocation stuff
1550  */
1551
1552 struct mpage_da_data {
1553         /* These are input fields for ext4_do_writepages() */
1554         struct inode *inode;
1555         struct writeback_control *wbc;
1556         unsigned int can_map:1; /* Can writepages call map blocks? */
1557
1558         /* These are internal state of ext4_do_writepages() */
1559         pgoff_t first_page;     /* The first page to write */
1560         pgoff_t next_page;      /* Current page to examine */
1561         pgoff_t last_page;      /* Last page to examine */
1562         /*
1563          * Extent to map - this can be after first_page because that can be
1564          * fully mapped. We somewhat abuse m_flags to store whether the extent
1565          * is delalloc or unwritten.
1566          */
1567         struct ext4_map_blocks map;
1568         struct ext4_io_submit io_submit;        /* IO submission data */
1569         unsigned int do_map:1;
1570         unsigned int scanned_until_end:1;
1571 };
1572
1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574                                        bool invalidate)
1575 {
1576         unsigned nr, i;
1577         pgoff_t index, end;
1578         struct folio_batch fbatch;
1579         struct inode *inode = mpd->inode;
1580         struct address_space *mapping = inode->i_mapping;
1581
1582         /* This is necessary when next_page == 0. */
1583         if (mpd->first_page >= mpd->next_page)
1584                 return;
1585
1586         mpd->scanned_until_end = 0;
1587         index = mpd->first_page;
1588         end   = mpd->next_page - 1;
1589         if (invalidate) {
1590                 ext4_lblk_t start, last;
1591                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1592                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1593
1594                 /*
1595                  * avoid racing with extent status tree scans made by
1596                  * ext4_insert_delayed_block()
1597                  */
1598                 down_write(&EXT4_I(inode)->i_data_sem);
1599                 ext4_es_remove_extent(inode, start, last - start + 1);
1600                 up_write(&EXT4_I(inode)->i_data_sem);
1601         }
1602
1603         folio_batch_init(&fbatch);
1604         while (index <= end) {
1605                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606                 if (nr == 0)
1607                         break;
1608                 for (i = 0; i < nr; i++) {
1609                         struct folio *folio = fbatch.folios[i];
1610
1611                         if (folio->index < mpd->first_page)
1612                                 continue;
1613                         if (folio->index + folio_nr_pages(folio) - 1 > end)
1614                                 continue;
1615                         BUG_ON(!folio_test_locked(folio));
1616                         BUG_ON(folio_test_writeback(folio));
1617                         if (invalidate) {
1618                                 if (folio_mapped(folio))
1619                                         folio_clear_dirty_for_io(folio);
1620                                 block_invalidate_folio(folio, 0,
1621                                                 folio_size(folio));
1622                                 folio_clear_uptodate(folio);
1623                         }
1624                         folio_unlock(folio);
1625                 }
1626                 folio_batch_release(&fbatch);
1627         }
1628 }
1629
1630 static void ext4_print_free_blocks(struct inode *inode)
1631 {
1632         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633         struct super_block *sb = inode->i_sb;
1634         struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637                EXT4_C2B(EXT4_SB(inode->i_sb),
1638                         ext4_count_free_clusters(sb)));
1639         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641                (long long) EXT4_C2B(EXT4_SB(sb),
1642                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644                (long long) EXT4_C2B(EXT4_SB(sb),
1645                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648                  ei->i_reserved_data_blocks);
1649         return;
1650 }
1651
1652 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653                                       struct buffer_head *bh)
1654 {
1655         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656 }
1657
1658 /*
1659  * ext4_insert_delayed_block - adds a delayed block to the extents status
1660  *                             tree, incrementing the reserved cluster/block
1661  *                             count or making a pending reservation
1662  *                             where needed
1663  *
1664  * @inode - file containing the newly added block
1665  * @lblk - logical block to be added
1666  *
1667  * Returns 0 on success, negative error code on failure.
1668  */
1669 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670 {
1671         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672         int ret;
1673         bool allocated = false;
1674         bool reserved = false;
1675
1676         /*
1677          * If the cluster containing lblk is shared with a delayed,
1678          * written, or unwritten extent in a bigalloc file system, it's
1679          * already been accounted for and does not need to be reserved.
1680          * A pending reservation must be made for the cluster if it's
1681          * shared with a written or unwritten extent and doesn't already
1682          * have one.  Written and unwritten extents can be purged from the
1683          * extents status tree if the system is under memory pressure, so
1684          * it's necessary to examine the extent tree if a search of the
1685          * extents status tree doesn't get a match.
1686          */
1687         if (sbi->s_cluster_ratio == 1) {
1688                 ret = ext4_da_reserve_space(inode);
1689                 if (ret != 0)   /* ENOSPC */
1690                         goto errout;
1691                 reserved = true;
1692         } else {   /* bigalloc */
1693                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694                         if (!ext4_es_scan_clu(inode,
1695                                               &ext4_es_is_mapped, lblk)) {
1696                                 ret = ext4_clu_mapped(inode,
1697                                                       EXT4_B2C(sbi, lblk));
1698                                 if (ret < 0)
1699                                         goto errout;
1700                                 if (ret == 0) {
1701                                         ret = ext4_da_reserve_space(inode);
1702                                         if (ret != 0)   /* ENOSPC */
1703                                                 goto errout;
1704                                         reserved = true;
1705                                 } else {
1706                                         allocated = true;
1707                                 }
1708                         } else {
1709                                 allocated = true;
1710                         }
1711                 }
1712         }
1713
1714         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715         if (ret && reserved)
1716                 ext4_da_release_space(inode, 1);
1717
1718 errout:
1719         return ret;
1720 }
1721
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729                               struct ext4_map_blocks *map,
1730                               struct buffer_head *bh)
1731 {
1732         struct extent_status es;
1733         int retval;
1734         sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736         struct ext4_map_blocks orig_map;
1737
1738         memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740
1741         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742                 invalid_block = ~0;
1743
1744         map->m_flags = 0;
1745         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1746                   (unsigned long) map->m_lblk);
1747
1748         /* Lookup extent status tree firstly */
1749         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750                 if (ext4_es_is_hole(&es)) {
1751                         retval = 0;
1752                         down_read(&EXT4_I(inode)->i_data_sem);
1753                         goto add_delayed;
1754                 }
1755
1756                 /*
1757                  * Delayed extent could be allocated by fallocate.
1758                  * So we need to check it.
1759                  */
1760                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761                         map_bh(bh, inode->i_sb, invalid_block);
1762                         set_buffer_new(bh);
1763                         set_buffer_delay(bh);
1764                         return 0;
1765                 }
1766
1767                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768                 retval = es.es_len - (iblock - es.es_lblk);
1769                 if (retval > map->m_len)
1770                         retval = map->m_len;
1771                 map->m_len = retval;
1772                 if (ext4_es_is_written(&es))
1773                         map->m_flags |= EXT4_MAP_MAPPED;
1774                 else if (ext4_es_is_unwritten(&es))
1775                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1776                 else
1777                         BUG();
1778
1779 #ifdef ES_AGGRESSIVE_TEST
1780                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782                 return retval;
1783         }
1784
1785         /*
1786          * Try to see if we can get the block without requesting a new
1787          * file system block.
1788          */
1789         down_read(&EXT4_I(inode)->i_data_sem);
1790         if (ext4_has_inline_data(inode))
1791                 retval = 0;
1792         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794         else
1795                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797 add_delayed:
1798         if (retval == 0) {
1799                 int ret;
1800
1801                 /*
1802                  * XXX: __block_prepare_write() unmaps passed block,
1803                  * is it OK?
1804                  */
1805
1806                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807                 if (ret != 0) {
1808                         retval = ret;
1809                         goto out_unlock;
1810                 }
1811
1812                 map_bh(bh, inode->i_sb, invalid_block);
1813                 set_buffer_new(bh);
1814                 set_buffer_delay(bh);
1815         } else if (retval > 0) {
1816                 int ret;
1817                 unsigned int status;
1818
1819                 if (unlikely(retval != map->m_len)) {
1820                         ext4_warning(inode->i_sb,
1821                                      "ES len assertion failed for inode "
1822                                      "%lu: retval %d != map->m_len %d",
1823                                      inode->i_ino, retval, map->m_len);
1824                         WARN_ON(1);
1825                 }
1826
1827                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830                                             map->m_pblk, status);
1831                 if (ret != 0)
1832                         retval = ret;
1833         }
1834
1835 out_unlock:
1836         up_read((&EXT4_I(inode)->i_data_sem));
1837
1838         return retval;
1839 }
1840
1841 /*
1842  * This is a special get_block_t callback which is used by
1843  * ext4_da_write_begin().  It will either return mapped block or
1844  * reserve space for a single block.
1845  *
1846  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847  * We also have b_blocknr = -1 and b_bdev initialized properly
1848  *
1849  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851  * initialized properly.
1852  */
1853 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854                            struct buffer_head *bh, int create)
1855 {
1856         struct ext4_map_blocks map;
1857         int ret = 0;
1858
1859         BUG_ON(create == 0);
1860         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862         map.m_lblk = iblock;
1863         map.m_len = 1;
1864
1865         /*
1866          * first, we need to know whether the block is allocated already
1867          * preallocated blocks are unmapped but should treated
1868          * the same as allocated blocks.
1869          */
1870         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871         if (ret <= 0)
1872                 return ret;
1873
1874         map_bh(bh, inode->i_sb, map.m_pblk);
1875         ext4_update_bh_state(bh, map.m_flags);
1876
1877         if (buffer_unwritten(bh)) {
1878                 /* A delayed write to unwritten bh should be marked
1879                  * new and mapped.  Mapped ensures that we don't do
1880                  * get_block multiple times when we write to the same
1881                  * offset and new ensures that we do proper zero out
1882                  * for partial write.
1883                  */
1884                 set_buffer_new(bh);
1885                 set_buffer_mapped(bh);
1886         }
1887         return 0;
1888 }
1889
1890 static int __ext4_journalled_writepage(struct page *page,
1891                                        unsigned int len)
1892 {
1893         struct address_space *mapping = page->mapping;
1894         struct inode *inode = mapping->host;
1895         handle_t *handle = NULL;
1896         int ret = 0, err = 0;
1897         int inline_data = ext4_has_inline_data(inode);
1898         struct buffer_head *inode_bh = NULL;
1899         loff_t size;
1900
1901         ClearPageChecked(page);
1902
1903         if (inline_data) {
1904                 BUG_ON(page->index != 0);
1905                 BUG_ON(len > ext4_get_max_inline_size(inode));
1906                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907                 if (inode_bh == NULL)
1908                         goto out;
1909         }
1910         /*
1911          * We need to release the page lock before we start the
1912          * journal, so grab a reference so the page won't disappear
1913          * out from under us.
1914          */
1915         get_page(page);
1916         unlock_page(page);
1917
1918         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919                                     ext4_writepage_trans_blocks(inode));
1920         if (IS_ERR(handle)) {
1921                 ret = PTR_ERR(handle);
1922                 put_page(page);
1923                 goto out_no_pagelock;
1924         }
1925         BUG_ON(!ext4_handle_valid(handle));
1926
1927         lock_page(page);
1928         put_page(page);
1929         size = i_size_read(inode);
1930         if (page->mapping != mapping || page_offset(page) > size) {
1931                 /* The page got truncated from under us */
1932                 ext4_journal_stop(handle);
1933                 ret = 0;
1934                 goto out;
1935         }
1936
1937         if (inline_data) {
1938                 ret = ext4_mark_inode_dirty(handle, inode);
1939         } else {
1940                 struct buffer_head *page_bufs = page_buffers(page);
1941
1942                 if (page->index == size >> PAGE_SHIFT)
1943                         len = size & ~PAGE_MASK;
1944                 else
1945                         len = PAGE_SIZE;
1946
1947                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948                                              NULL, do_journal_get_write_access);
1949
1950                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951                                              NULL, write_end_fn);
1952         }
1953         if (ret == 0)
1954                 ret = err;
1955         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956         if (ret == 0)
1957                 ret = err;
1958         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959         err = ext4_journal_stop(handle);
1960         if (!ret)
1961                 ret = err;
1962
1963         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964 out:
1965         unlock_page(page);
1966 out_no_pagelock:
1967         brelse(inode_bh);
1968         return ret;
1969 }
1970
1971 /*
1972  * Note that we don't need to start a transaction unless we're journaling data
1973  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974  * need to file the inode to the transaction's list in ordered mode because if
1975  * we are writing back data added by write(), the inode is already there and if
1976  * we are writing back data modified via mmap(), no one guarantees in which
1977  * transaction the data will hit the disk. In case we are journaling data, we
1978  * cannot start transaction directly because transaction start ranks above page
1979  * lock so we have to do some magic.
1980  *
1981  * This function can get called via...
1982  *   - ext4_writepages after taking page lock (have journal handle)
1983  *   - journal_submit_inode_data_buffers (no journal handle)
1984  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985  *   - grab_page_cache when doing write_begin (have journal handle)
1986  *
1987  * We don't do any block allocation in this function. If we have page with
1988  * multiple blocks we need to write those buffer_heads that are mapped. This
1989  * is important for mmaped based write. So if we do with blocksize 1K
1990  * truncate(f, 1024);
1991  * a = mmap(f, 0, 4096);
1992  * a[0] = 'a';
1993  * truncate(f, 4096);
1994  * we have in the page first buffer_head mapped via page_mkwrite call back
1995  * but other buffer_heads would be unmapped but dirty (dirty done via the
1996  * do_wp_page). So writepage should write the first block. If we modify
1997  * the mmap area beyond 1024 we will again get a page_fault and the
1998  * page_mkwrite callback will do the block allocation and mark the
1999  * buffer_heads mapped.
2000  *
2001  * We redirty the page if we have any buffer_heads that is either delay or
2002  * unwritten in the page.
2003  *
2004  * We can get recursively called as show below.
2005  *
2006  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007  *              ext4_writepage()
2008  *
2009  * But since we don't do any block allocation we should not deadlock.
2010  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011  */
2012 static int ext4_writepage(struct page *page,
2013                           struct writeback_control *wbc)
2014 {
2015         struct folio *folio = page_folio(page);
2016         int ret = 0;
2017         loff_t size;
2018         unsigned int len;
2019         struct buffer_head *page_bufs = NULL;
2020         struct inode *inode = page->mapping->host;
2021         struct ext4_io_submit io_submit;
2022
2023         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2024                 folio_invalidate(folio, 0, folio_size(folio));
2025                 folio_unlock(folio);
2026                 return -EIO;
2027         }
2028
2029         trace_ext4_writepage(page);
2030         size = i_size_read(inode);
2031         if (page->index == size >> PAGE_SHIFT &&
2032             !ext4_verity_in_progress(inode))
2033                 len = size & ~PAGE_MASK;
2034         else
2035                 len = PAGE_SIZE;
2036
2037         /* Should never happen but for bugs in other kernel subsystems */
2038         if (!page_has_buffers(page)) {
2039                 ext4_warning_inode(inode,
2040                    "page %lu does not have buffers attached", page->index);
2041                 ClearPageDirty(page);
2042                 unlock_page(page);
2043                 return 0;
2044         }
2045
2046         page_bufs = page_buffers(page);
2047         /*
2048          * We cannot do block allocation or other extent handling in this
2049          * function. If there are buffers needing that, we have to redirty
2050          * the page. But we may reach here when we do a journal commit via
2051          * journal_submit_inode_data_buffers() and in that case we must write
2052          * allocated buffers to achieve data=ordered mode guarantees.
2053          *
2054          * Also, if there is only one buffer per page (the fs block
2055          * size == the page size), if one buffer needs block
2056          * allocation or needs to modify the extent tree to clear the
2057          * unwritten flag, we know that the page can't be written at
2058          * all, so we might as well refuse the write immediately.
2059          * Unfortunately if the block size != page size, we can't as
2060          * easily detect this case using ext4_walk_page_buffers(), but
2061          * for the extremely common case, this is an optimization that
2062          * skips a useless round trip through ext4_bio_write_page().
2063          */
2064         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2065                                    ext4_bh_delay_or_unwritten)) {
2066                 redirty_page_for_writepage(wbc, page);
2067                 if ((current->flags & PF_MEMALLOC) ||
2068                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2069                         /*
2070                          * For memory cleaning there's no point in writing only
2071                          * some buffers. So just bail out. Warn if we came here
2072                          * from direct reclaim.
2073                          */
2074                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2075                                                         == PF_MEMALLOC);
2076                         unlock_page(page);
2077                         return 0;
2078                 }
2079         }
2080
2081         if (PageChecked(page) && ext4_should_journal_data(inode))
2082                 /*
2083                  * It's mmapped pagecache.  Add buffers and journal it.  There
2084                  * doesn't seem much point in redirtying the page here.
2085                  */
2086                 return __ext4_journalled_writepage(page, len);
2087
2088         ext4_io_submit_init(&io_submit, wbc);
2089         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2090         if (!io_submit.io_end) {
2091                 redirty_page_for_writepage(wbc, page);
2092                 unlock_page(page);
2093                 return -ENOMEM;
2094         }
2095         ret = ext4_bio_write_page(&io_submit, page, len);
2096         ext4_io_submit(&io_submit);
2097         /* Drop io_end reference we got from init */
2098         ext4_put_io_end_defer(io_submit.io_end);
2099         return ret;
2100 }
2101
2102 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2103 {
2104         int len;
2105         loff_t size;
2106         int err;
2107
2108         BUG_ON(page->index != mpd->first_page);
2109         clear_page_dirty_for_io(page);
2110         /*
2111          * We have to be very careful here!  Nothing protects writeback path
2112          * against i_size changes and the page can be writeably mapped into
2113          * page tables. So an application can be growing i_size and writing
2114          * data through mmap while writeback runs. clear_page_dirty_for_io()
2115          * write-protects our page in page tables and the page cannot get
2116          * written to again until we release page lock. So only after
2117          * clear_page_dirty_for_io() we are safe to sample i_size for
2118          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2119          * on the barrier provided by TestClearPageDirty in
2120          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2121          * after page tables are updated.
2122          */
2123         size = i_size_read(mpd->inode);
2124         if (page->index == size >> PAGE_SHIFT &&
2125             !ext4_verity_in_progress(mpd->inode))
2126                 len = size & ~PAGE_MASK;
2127         else
2128                 len = PAGE_SIZE;
2129         err = ext4_bio_write_page(&mpd->io_submit, page, len);
2130         if (!err)
2131                 mpd->wbc->nr_to_write--;
2132         mpd->first_page++;
2133
2134         return err;
2135 }
2136
2137 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2138
2139 /*
2140  * mballoc gives us at most this number of blocks...
2141  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2142  * The rest of mballoc seems to handle chunks up to full group size.
2143  */
2144 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2145
2146 /*
2147  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2148  *
2149  * @mpd - extent of blocks
2150  * @lblk - logical number of the block in the file
2151  * @bh - buffer head we want to add to the extent
2152  *
2153  * The function is used to collect contig. blocks in the same state. If the
2154  * buffer doesn't require mapping for writeback and we haven't started the
2155  * extent of buffers to map yet, the function returns 'true' immediately - the
2156  * caller can write the buffer right away. Otherwise the function returns true
2157  * if the block has been added to the extent, false if the block couldn't be
2158  * added.
2159  */
2160 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2161                                    struct buffer_head *bh)
2162 {
2163         struct ext4_map_blocks *map = &mpd->map;
2164
2165         /* Buffer that doesn't need mapping for writeback? */
2166         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2167             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2168                 /* So far no extent to map => we write the buffer right away */
2169                 if (map->m_len == 0)
2170                         return true;
2171                 return false;
2172         }
2173
2174         /* First block in the extent? */
2175         if (map->m_len == 0) {
2176                 /* We cannot map unless handle is started... */
2177                 if (!mpd->do_map)
2178                         return false;
2179                 map->m_lblk = lblk;
2180                 map->m_len = 1;
2181                 map->m_flags = bh->b_state & BH_FLAGS;
2182                 return true;
2183         }
2184
2185         /* Don't go larger than mballoc is willing to allocate */
2186         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2187                 return false;
2188
2189         /* Can we merge the block to our big extent? */
2190         if (lblk == map->m_lblk + map->m_len &&
2191             (bh->b_state & BH_FLAGS) == map->m_flags) {
2192                 map->m_len++;
2193                 return true;
2194         }
2195         return false;
2196 }
2197
2198 /*
2199  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2200  *
2201  * @mpd - extent of blocks for mapping
2202  * @head - the first buffer in the page
2203  * @bh - buffer we should start processing from
2204  * @lblk - logical number of the block in the file corresponding to @bh
2205  *
2206  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2207  * the page for IO if all buffers in this page were mapped and there's no
2208  * accumulated extent of buffers to map or add buffers in the page to the
2209  * extent of buffers to map. The function returns 1 if the caller can continue
2210  * by processing the next page, 0 if it should stop adding buffers to the
2211  * extent to map because we cannot extend it anymore. It can also return value
2212  * < 0 in case of error during IO submission.
2213  */
2214 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2215                                    struct buffer_head *head,
2216                                    struct buffer_head *bh,
2217                                    ext4_lblk_t lblk)
2218 {
2219         struct inode *inode = mpd->inode;
2220         int err;
2221         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2222                                                         >> inode->i_blkbits;
2223
2224         if (ext4_verity_in_progress(inode))
2225                 blocks = EXT_MAX_BLOCKS;
2226
2227         do {
2228                 BUG_ON(buffer_locked(bh));
2229
2230                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231                         /* Found extent to map? */
2232                         if (mpd->map.m_len)
2233                                 return 0;
2234                         /* Buffer needs mapping and handle is not started? */
2235                         if (!mpd->do_map)
2236                                 return 0;
2237                         /* Everything mapped so far and we hit EOF */
2238                         break;
2239                 }
2240         } while (lblk++, (bh = bh->b_this_page) != head);
2241         /* So far everything mapped? Submit the page for IO. */
2242         if (mpd->map.m_len == 0) {
2243                 err = mpage_submit_page(mpd, head->b_page);
2244                 if (err < 0)
2245                         return err;
2246         }
2247         if (lblk >= blocks) {
2248                 mpd->scanned_until_end = 1;
2249                 return 0;
2250         }
2251         return 1;
2252 }
2253
2254 /*
2255  * mpage_process_page - update page buffers corresponding to changed extent and
2256  *                     may submit fully mapped page for IO
2257  *
2258  * @mpd         - description of extent to map, on return next extent to map
2259  * @m_lblk      - logical block mapping.
2260  * @m_pblk      - corresponding physical mapping.
2261  * @map_bh      - determines on return whether this page requires any further
2262  *                mapping or not.
2263  * Scan given page buffers corresponding to changed extent and update buffer
2264  * state according to new extent state.
2265  * We map delalloc buffers to their physical location, clear unwritten bits.
2266  * If the given page is not fully mapped, we update @map to the next extent in
2267  * the given page that needs mapping & return @map_bh as true.
2268  */
2269 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2270                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2271                               bool *map_bh)
2272 {
2273         struct buffer_head *head, *bh;
2274         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2275         ext4_lblk_t lblk = *m_lblk;
2276         ext4_fsblk_t pblock = *m_pblk;
2277         int err = 0;
2278         int blkbits = mpd->inode->i_blkbits;
2279         ssize_t io_end_size = 0;
2280         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2281
2282         bh = head = page_buffers(page);
2283         do {
2284                 if (lblk < mpd->map.m_lblk)
2285                         continue;
2286                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287                         /*
2288                          * Buffer after end of mapped extent.
2289                          * Find next buffer in the page to map.
2290                          */
2291                         mpd->map.m_len = 0;
2292                         mpd->map.m_flags = 0;
2293                         io_end_vec->size += io_end_size;
2294
2295                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2296                         if (err > 0)
2297                                 err = 0;
2298                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2299                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2300                                 if (IS_ERR(io_end_vec)) {
2301                                         err = PTR_ERR(io_end_vec);
2302                                         goto out;
2303                                 }
2304                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2305                         }
2306                         *map_bh = true;
2307                         goto out;
2308                 }
2309                 if (buffer_delay(bh)) {
2310                         clear_buffer_delay(bh);
2311                         bh->b_blocknr = pblock++;
2312                 }
2313                 clear_buffer_unwritten(bh);
2314                 io_end_size += (1 << blkbits);
2315         } while (lblk++, (bh = bh->b_this_page) != head);
2316
2317         io_end_vec->size += io_end_size;
2318         *map_bh = false;
2319 out:
2320         *m_lblk = lblk;
2321         *m_pblk = pblock;
2322         return err;
2323 }
2324
2325 /*
2326  * mpage_map_buffers - update buffers corresponding to changed extent and
2327  *                     submit fully mapped pages for IO
2328  *
2329  * @mpd - description of extent to map, on return next extent to map
2330  *
2331  * Scan buffers corresponding to changed extent (we expect corresponding pages
2332  * to be already locked) and update buffer state according to new extent state.
2333  * We map delalloc buffers to their physical location, clear unwritten bits,
2334  * and mark buffers as uninit when we perform writes to unwritten extents
2335  * and do extent conversion after IO is finished. If the last page is not fully
2336  * mapped, we update @map to the next extent in the last page that needs
2337  * mapping. Otherwise we submit the page for IO.
2338  */
2339 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340 {
2341         struct folio_batch fbatch;
2342         unsigned nr, i;
2343         struct inode *inode = mpd->inode;
2344         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2345         pgoff_t start, end;
2346         ext4_lblk_t lblk;
2347         ext4_fsblk_t pblock;
2348         int err;
2349         bool map_bh = false;
2350
2351         start = mpd->map.m_lblk >> bpp_bits;
2352         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353         lblk = start << bpp_bits;
2354         pblock = mpd->map.m_pblk;
2355
2356         folio_batch_init(&fbatch);
2357         while (start <= end) {
2358                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2359                 if (nr == 0)
2360                         break;
2361                 for (i = 0; i < nr; i++) {
2362                         struct page *page = &fbatch.folios[i]->page;
2363
2364                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2365                                                  &map_bh);
2366                         /*
2367                          * If map_bh is true, means page may require further bh
2368                          * mapping, or maybe the page was submitted for IO.
2369                          * So we return to call further extent mapping.
2370                          */
2371                         if (err < 0 || map_bh)
2372                                 goto out;
2373                         /* Page fully mapped - let IO run! */
2374                         err = mpage_submit_page(mpd, page);
2375                         if (err < 0)
2376                                 goto out;
2377                 }
2378                 folio_batch_release(&fbatch);
2379         }
2380         /* Extent fully mapped and matches with page boundary. We are done. */
2381         mpd->map.m_len = 0;
2382         mpd->map.m_flags = 0;
2383         return 0;
2384 out:
2385         folio_batch_release(&fbatch);
2386         return err;
2387 }
2388
2389 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2390 {
2391         struct inode *inode = mpd->inode;
2392         struct ext4_map_blocks *map = &mpd->map;
2393         int get_blocks_flags;
2394         int err, dioread_nolock;
2395
2396         trace_ext4_da_write_pages_extent(inode, map);
2397         /*
2398          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2399          * to convert an unwritten extent to be initialized (in the case
2400          * where we have written into one or more preallocated blocks).  It is
2401          * possible that we're going to need more metadata blocks than
2402          * previously reserved. However we must not fail because we're in
2403          * writeback and there is nothing we can do about it so it might result
2404          * in data loss.  So use reserved blocks to allocate metadata if
2405          * possible.
2406          *
2407          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2408          * the blocks in question are delalloc blocks.  This indicates
2409          * that the blocks and quotas has already been checked when
2410          * the data was copied into the page cache.
2411          */
2412         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2413                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2414                            EXT4_GET_BLOCKS_IO_SUBMIT;
2415         dioread_nolock = ext4_should_dioread_nolock(inode);
2416         if (dioread_nolock)
2417                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2418         if (map->m_flags & BIT(BH_Delay))
2419                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2420
2421         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2422         if (err < 0)
2423                 return err;
2424         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2425                 if (!mpd->io_submit.io_end->handle &&
2426                     ext4_handle_valid(handle)) {
2427                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2428                         handle->h_rsv_handle = NULL;
2429                 }
2430                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2431         }
2432
2433         BUG_ON(map->m_len == 0);
2434         return 0;
2435 }
2436
2437 /*
2438  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2439  *                               mpd->len and submit pages underlying it for IO
2440  *
2441  * @handle - handle for journal operations
2442  * @mpd - extent to map
2443  * @give_up_on_write - we set this to true iff there is a fatal error and there
2444  *                     is no hope of writing the data. The caller should discard
2445  *                     dirty pages to avoid infinite loops.
2446  *
2447  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2448  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2449  * them to initialized or split the described range from larger unwritten
2450  * extent. Note that we need not map all the described range since allocation
2451  * can return less blocks or the range is covered by more unwritten extents. We
2452  * cannot map more because we are limited by reserved transaction credits. On
2453  * the other hand we always make sure that the last touched page is fully
2454  * mapped so that it can be written out (and thus forward progress is
2455  * guaranteed). After mapping we submit all mapped pages for IO.
2456  */
2457 static int mpage_map_and_submit_extent(handle_t *handle,
2458                                        struct mpage_da_data *mpd,
2459                                        bool *give_up_on_write)
2460 {
2461         struct inode *inode = mpd->inode;
2462         struct ext4_map_blocks *map = &mpd->map;
2463         int err;
2464         loff_t disksize;
2465         int progress = 0;
2466         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2467         struct ext4_io_end_vec *io_end_vec;
2468
2469         io_end_vec = ext4_alloc_io_end_vec(io_end);
2470         if (IS_ERR(io_end_vec))
2471                 return PTR_ERR(io_end_vec);
2472         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2473         do {
2474                 err = mpage_map_one_extent(handle, mpd);
2475                 if (err < 0) {
2476                         struct super_block *sb = inode->i_sb;
2477
2478                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2479                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2480                                 goto invalidate_dirty_pages;
2481                         /*
2482                          * Let the uper layers retry transient errors.
2483                          * In the case of ENOSPC, if ext4_count_free_blocks()
2484                          * is non-zero, a commit should free up blocks.
2485                          */
2486                         if ((err == -ENOMEM) ||
2487                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2488                                 if (progress)
2489                                         goto update_disksize;
2490                                 return err;
2491                         }
2492                         ext4_msg(sb, KERN_CRIT,
2493                                  "Delayed block allocation failed for "
2494                                  "inode %lu at logical offset %llu with"
2495                                  " max blocks %u with error %d",
2496                                  inode->i_ino,
2497                                  (unsigned long long)map->m_lblk,
2498                                  (unsigned)map->m_len, -err);
2499                         ext4_msg(sb, KERN_CRIT,
2500                                  "This should not happen!! Data will "
2501                                  "be lost\n");
2502                         if (err == -ENOSPC)
2503                                 ext4_print_free_blocks(inode);
2504                 invalidate_dirty_pages:
2505                         *give_up_on_write = true;
2506                         return err;
2507                 }
2508                 progress = 1;
2509                 /*
2510                  * Update buffer state, submit mapped pages, and get us new
2511                  * extent to map
2512                  */
2513                 err = mpage_map_and_submit_buffers(mpd);
2514                 if (err < 0)
2515                         goto update_disksize;
2516         } while (map->m_len);
2517
2518 update_disksize:
2519         /*
2520          * Update on-disk size after IO is submitted.  Races with
2521          * truncate are avoided by checking i_size under i_data_sem.
2522          */
2523         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2524         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525                 int err2;
2526                 loff_t i_size;
2527
2528                 down_write(&EXT4_I(inode)->i_data_sem);
2529                 i_size = i_size_read(inode);
2530                 if (disksize > i_size)
2531                         disksize = i_size;
2532                 if (disksize > EXT4_I(inode)->i_disksize)
2533                         EXT4_I(inode)->i_disksize = disksize;
2534                 up_write(&EXT4_I(inode)->i_data_sem);
2535                 err2 = ext4_mark_inode_dirty(handle, inode);
2536                 if (err2) {
2537                         ext4_error_err(inode->i_sb, -err2,
2538                                        "Failed to mark inode %lu dirty",
2539                                        inode->i_ino);
2540                 }
2541                 if (!err)
2542                         err = err2;
2543         }
2544         return err;
2545 }
2546
2547 /*
2548  * Calculate the total number of credits to reserve for one writepages
2549  * iteration. This is called from ext4_writepages(). We map an extent of
2550  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2551  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2552  * bpp - 1 blocks in bpp different extents.
2553  */
2554 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2555 {
2556         int bpp = ext4_journal_blocks_per_page(inode);
2557
2558         return ext4_meta_trans_blocks(inode,
2559                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2560 }
2561
2562 /* Return true if the page needs to be written as part of transaction commit */
2563 static bool ext4_page_nomap_can_writeout(struct page *page)
2564 {
2565         struct buffer_head *bh, *head;
2566
2567         bh = head = page_buffers(page);
2568         do {
2569                 if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh))
2570                         return true;
2571         } while ((bh = bh->b_this_page) != head);
2572         return false;
2573 }
2574
2575 /*
2576  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2577  *                               needing mapping, submit mapped pages
2578  *
2579  * @mpd - where to look for pages
2580  *
2581  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2582  * IO immediately. If we cannot map blocks, we submit just already mapped
2583  * buffers in the page for IO and keep page dirty. When we can map blocks and
2584  * we find a page which isn't mapped we start accumulating extent of buffers
2585  * underlying these pages that needs mapping (formed by either delayed or
2586  * unwritten buffers). We also lock the pages containing these buffers. The
2587  * extent found is returned in @mpd structure (starting at mpd->lblk with
2588  * length mpd->len blocks).
2589  *
2590  * Note that this function can attach bios to one io_end structure which are
2591  * neither logically nor physically contiguous. Although it may seem as an
2592  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2593  * case as we need to track IO to all buffers underlying a page in one io_end.
2594  */
2595 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2596 {
2597         struct address_space *mapping = mpd->inode->i_mapping;
2598         struct pagevec pvec;
2599         unsigned int nr_pages;
2600         long left = mpd->wbc->nr_to_write;
2601         pgoff_t index = mpd->first_page;
2602         pgoff_t end = mpd->last_page;
2603         xa_mark_t tag;
2604         int i, err = 0;
2605         int blkbits = mpd->inode->i_blkbits;
2606         ext4_lblk_t lblk;
2607         struct buffer_head *head;
2608
2609         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2610                 tag = PAGECACHE_TAG_TOWRITE;
2611         else
2612                 tag = PAGECACHE_TAG_DIRTY;
2613
2614         pagevec_init(&pvec);
2615         mpd->map.m_len = 0;
2616         mpd->next_page = index;
2617         while (index <= end) {
2618                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2619                                 tag);
2620                 if (nr_pages == 0)
2621                         break;
2622
2623                 for (i = 0; i < nr_pages; i++) {
2624                         struct page *page = pvec.pages[i];
2625
2626                         /*
2627                          * Accumulated enough dirty pages? This doesn't apply
2628                          * to WB_SYNC_ALL mode. For integrity sync we have to
2629                          * keep going because someone may be concurrently
2630                          * dirtying pages, and we might have synced a lot of
2631                          * newly appeared dirty pages, but have not synced all
2632                          * of the old dirty pages.
2633                          */
2634                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2635                                 goto out;
2636
2637                         /* If we can't merge this page, we are done. */
2638                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2639                                 goto out;
2640
2641                         lock_page(page);
2642                         /*
2643                          * If the page is no longer dirty, or its mapping no
2644                          * longer corresponds to inode we are writing (which
2645                          * means it has been truncated or invalidated), or the
2646                          * page is already under writeback and we are not doing
2647                          * a data integrity writeback, skip the page
2648                          */
2649                         if (!PageDirty(page) ||
2650                             (PageWriteback(page) &&
2651                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2652                             unlikely(page->mapping != mapping)) {
2653                                 unlock_page(page);
2654                                 continue;
2655                         }
2656
2657                         wait_on_page_writeback(page);
2658                         BUG_ON(PageWriteback(page));
2659
2660                         /*
2661                          * Should never happen but for buggy code in
2662                          * other subsystems that call
2663                          * set_page_dirty() without properly warning
2664                          * the file system first.  See [1] for more
2665                          * information.
2666                          *
2667                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2668                          */
2669                         if (!page_has_buffers(page)) {
2670                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2671                                 ClearPageDirty(page);
2672                                 unlock_page(page);
2673                                 continue;
2674                         }
2675
2676                         if (mpd->map.m_len == 0)
2677                                 mpd->first_page = page->index;
2678                         mpd->next_page = page->index + 1;
2679                         /*
2680                          * Writeout for transaction commit where we cannot
2681                          * modify metadata is simple. Just submit the page.
2682                          */
2683                         if (!mpd->can_map) {
2684                                 if (ext4_page_nomap_can_writeout(page)) {
2685                                         err = mpage_submit_page(mpd, page);
2686                                         if (err < 0)
2687                                                 goto out;
2688                                 } else {
2689                                         unlock_page(page);
2690                                         mpd->first_page++;
2691                                 }
2692                         } else {
2693                                 /* Add all dirty buffers to mpd */
2694                                 lblk = ((ext4_lblk_t)page->index) <<
2695                                         (PAGE_SHIFT - blkbits);
2696                                 head = page_buffers(page);
2697                                 err = mpage_process_page_bufs(mpd, head, head,
2698                                                               lblk);
2699                                 if (err <= 0)
2700                                         goto out;
2701                                 err = 0;
2702                         }
2703                         left--;
2704                 }
2705                 pagevec_release(&pvec);
2706                 cond_resched();
2707         }
2708         mpd->scanned_until_end = 1;
2709         return 0;
2710 out:
2711         pagevec_release(&pvec);
2712         return err;
2713 }
2714
2715 static int ext4_writepage_cb(struct page *page, struct writeback_control *wbc,
2716                              void *data)
2717 {
2718         return ext4_writepage(page, wbc);
2719 }
2720
2721 static int ext4_do_writepages(struct mpage_da_data *mpd)
2722 {
2723         struct writeback_control *wbc = mpd->wbc;
2724         pgoff_t writeback_index = 0;
2725         long nr_to_write = wbc->nr_to_write;
2726         int range_whole = 0;
2727         int cycled = 1;
2728         handle_t *handle = NULL;
2729         struct inode *inode = mpd->inode;
2730         struct address_space *mapping = inode->i_mapping;
2731         int needed_blocks, rsv_blocks = 0, ret = 0;
2732         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2733         struct blk_plug plug;
2734         bool give_up_on_write = false;
2735
2736         trace_ext4_writepages(inode, wbc);
2737
2738         /*
2739          * No pages to write? This is mainly a kludge to avoid starting
2740          * a transaction for special inodes like journal inode on last iput()
2741          * because that could violate lock ordering on umount
2742          */
2743         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2744                 goto out_writepages;
2745
2746         if (ext4_should_journal_data(inode)) {
2747                 blk_start_plug(&plug);
2748                 ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL);
2749                 blk_finish_plug(&plug);
2750                 goto out_writepages;
2751         }
2752
2753         /*
2754          * If the filesystem has aborted, it is read-only, so return
2755          * right away instead of dumping stack traces later on that
2756          * will obscure the real source of the problem.  We test
2757          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2758          * the latter could be true if the filesystem is mounted
2759          * read-only, and in that case, ext4_writepages should
2760          * *never* be called, so if that ever happens, we would want
2761          * the stack trace.
2762          */
2763         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2765                 ret = -EROFS;
2766                 goto out_writepages;
2767         }
2768
2769         /*
2770          * If we have inline data and arrive here, it means that
2771          * we will soon create the block for the 1st page, so
2772          * we'd better clear the inline data here.
2773          */
2774         if (ext4_has_inline_data(inode)) {
2775                 /* Just inode will be modified... */
2776                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2777                 if (IS_ERR(handle)) {
2778                         ret = PTR_ERR(handle);
2779                         goto out_writepages;
2780                 }
2781                 BUG_ON(ext4_test_inode_state(inode,
2782                                 EXT4_STATE_MAY_INLINE_DATA));
2783                 ext4_destroy_inline_data(handle, inode);
2784                 ext4_journal_stop(handle);
2785         }
2786
2787         if (ext4_should_dioread_nolock(inode)) {
2788                 /*
2789                  * We may need to convert up to one extent per block in
2790                  * the page and we may dirty the inode.
2791                  */
2792                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2793                                                 PAGE_SIZE >> inode->i_blkbits);
2794         }
2795
2796         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797                 range_whole = 1;
2798
2799         if (wbc->range_cyclic) {
2800                 writeback_index = mapping->writeback_index;
2801                 if (writeback_index)
2802                         cycled = 0;
2803                 mpd->first_page = writeback_index;
2804                 mpd->last_page = -1;
2805         } else {
2806                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2807                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2808         }
2809
2810         ext4_io_submit_init(&mpd->io_submit, wbc);
2811 retry:
2812         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2813                 tag_pages_for_writeback(mapping, mpd->first_page,
2814                                         mpd->last_page);
2815         blk_start_plug(&plug);
2816
2817         /*
2818          * First writeback pages that don't need mapping - we can avoid
2819          * starting a transaction unnecessarily and also avoid being blocked
2820          * in the block layer on device congestion while having transaction
2821          * started.
2822          */
2823         mpd->do_map = 0;
2824         mpd->scanned_until_end = 0;
2825         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826         if (!mpd->io_submit.io_end) {
2827                 ret = -ENOMEM;
2828                 goto unplug;
2829         }
2830         ret = mpage_prepare_extent_to_map(mpd);
2831         /* Unlock pages we didn't use */
2832         mpage_release_unused_pages(mpd, false);
2833         /* Submit prepared bio */
2834         ext4_io_submit(&mpd->io_submit);
2835         ext4_put_io_end_defer(mpd->io_submit.io_end);
2836         mpd->io_submit.io_end = NULL;
2837         if (ret < 0)
2838                 goto unplug;
2839
2840         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2841                 /* For each extent of pages we use new io_end */
2842                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843                 if (!mpd->io_submit.io_end) {
2844                         ret = -ENOMEM;
2845                         break;
2846                 }
2847
2848                 WARN_ON_ONCE(!mpd->can_map);
2849                 /*
2850                  * We have two constraints: We find one extent to map and we
2851                  * must always write out whole page (makes a difference when
2852                  * blocksize < pagesize) so that we don't block on IO when we
2853                  * try to write out the rest of the page. Journalled mode is
2854                  * not supported by delalloc.
2855                  */
2856                 BUG_ON(ext4_should_journal_data(inode));
2857                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858
2859                 /* start a new transaction */
2860                 handle = ext4_journal_start_with_reserve(inode,
2861                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2862                 if (IS_ERR(handle)) {
2863                         ret = PTR_ERR(handle);
2864                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2865                                "%ld pages, ino %lu; err %d", __func__,
2866                                 wbc->nr_to_write, inode->i_ino, ret);
2867                         /* Release allocated io_end */
2868                         ext4_put_io_end(mpd->io_submit.io_end);
2869                         mpd->io_submit.io_end = NULL;
2870                         break;
2871                 }
2872                 mpd->do_map = 1;
2873
2874                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2875                 ret = mpage_prepare_extent_to_map(mpd);
2876                 if (!ret && mpd->map.m_len)
2877                         ret = mpage_map_and_submit_extent(handle, mpd,
2878                                         &give_up_on_write);
2879                 /*
2880                  * Caution: If the handle is synchronous,
2881                  * ext4_journal_stop() can wait for transaction commit
2882                  * to finish which may depend on writeback of pages to
2883                  * complete or on page lock to be released.  In that
2884                  * case, we have to wait until after we have
2885                  * submitted all the IO, released page locks we hold,
2886                  * and dropped io_end reference (for extent conversion
2887                  * to be able to complete) before stopping the handle.
2888                  */
2889                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2890                         ext4_journal_stop(handle);
2891                         handle = NULL;
2892                         mpd->do_map = 0;
2893                 }
2894                 /* Unlock pages we didn't use */
2895                 mpage_release_unused_pages(mpd, give_up_on_write);
2896                 /* Submit prepared bio */
2897                 ext4_io_submit(&mpd->io_submit);
2898
2899                 /*
2900                  * Drop our io_end reference we got from init. We have
2901                  * to be careful and use deferred io_end finishing if
2902                  * we are still holding the transaction as we can
2903                  * release the last reference to io_end which may end
2904                  * up doing unwritten extent conversion.
2905                  */
2906                 if (handle) {
2907                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2908                         ext4_journal_stop(handle);
2909                 } else
2910                         ext4_put_io_end(mpd->io_submit.io_end);
2911                 mpd->io_submit.io_end = NULL;
2912
2913                 if (ret == -ENOSPC && sbi->s_journal) {
2914                         /*
2915                          * Commit the transaction which would
2916                          * free blocks released in the transaction
2917                          * and try again
2918                          */
2919                         jbd2_journal_force_commit_nested(sbi->s_journal);
2920                         ret = 0;
2921                         continue;
2922                 }
2923                 /* Fatal error - ENOMEM, EIO... */
2924                 if (ret)
2925                         break;
2926         }
2927 unplug:
2928         blk_finish_plug(&plug);
2929         if (!ret && !cycled && wbc->nr_to_write > 0) {
2930                 cycled = 1;
2931                 mpd->last_page = writeback_index - 1;
2932                 mpd->first_page = 0;
2933                 goto retry;
2934         }
2935
2936         /* Update index */
2937         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2938                 /*
2939                  * Set the writeback_index so that range_cyclic
2940                  * mode will write it back later
2941                  */
2942                 mapping->writeback_index = mpd->first_page;
2943
2944 out_writepages:
2945         trace_ext4_writepages_result(inode, wbc, ret,
2946                                      nr_to_write - wbc->nr_to_write);
2947         return ret;
2948 }
2949
2950 static int ext4_writepages(struct address_space *mapping,
2951                            struct writeback_control *wbc)
2952 {
2953         struct super_block *sb = mapping->host->i_sb;
2954         struct mpage_da_data mpd = {
2955                 .inode = mapping->host,
2956                 .wbc = wbc,
2957                 .can_map = 1,
2958         };
2959         int ret;
2960
2961         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2962                 return -EIO;
2963
2964         percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2965         ret = ext4_do_writepages(&mpd);
2966         percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2967
2968         return ret;
2969 }
2970
2971 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2972 {
2973         struct writeback_control wbc = {
2974                 .sync_mode = WB_SYNC_ALL,
2975                 .nr_to_write = LONG_MAX,
2976                 .range_start = jinode->i_dirty_start,
2977                 .range_end = jinode->i_dirty_end,
2978         };
2979         struct mpage_da_data mpd = {
2980                 .inode = jinode->i_vfs_inode,
2981                 .wbc = &wbc,
2982                 .can_map = 0,
2983         };
2984         return ext4_do_writepages(&mpd);
2985 }
2986
2987 static int ext4_dax_writepages(struct address_space *mapping,
2988                                struct writeback_control *wbc)
2989 {
2990         int ret;
2991         long nr_to_write = wbc->nr_to_write;
2992         struct inode *inode = mapping->host;
2993         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2994
2995         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2996                 return -EIO;
2997
2998         percpu_down_read(&sbi->s_writepages_rwsem);
2999         trace_ext4_writepages(inode, wbc);
3000
3001         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
3002         trace_ext4_writepages_result(inode, wbc, ret,
3003                                      nr_to_write - wbc->nr_to_write);
3004         percpu_up_read(&sbi->s_writepages_rwsem);
3005         return ret;
3006 }
3007
3008 static int ext4_nonda_switch(struct super_block *sb)
3009 {
3010         s64 free_clusters, dirty_clusters;
3011         struct ext4_sb_info *sbi = EXT4_SB(sb);
3012
3013         /*
3014          * switch to non delalloc mode if we are running low
3015          * on free block. The free block accounting via percpu
3016          * counters can get slightly wrong with percpu_counter_batch getting
3017          * accumulated on each CPU without updating global counters
3018          * Delalloc need an accurate free block accounting. So switch
3019          * to non delalloc when we are near to error range.
3020          */
3021         free_clusters =
3022                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3023         dirty_clusters =
3024                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3025         /*
3026          * Start pushing delalloc when 1/2 of free blocks are dirty.
3027          */
3028         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3029                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3030
3031         if (2 * free_clusters < 3 * dirty_clusters ||
3032             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3033                 /*
3034                  * free block count is less than 150% of dirty blocks
3035                  * or free blocks is less than watermark
3036                  */
3037                 return 1;
3038         }
3039         return 0;
3040 }
3041
3042 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3043                                loff_t pos, unsigned len,
3044                                struct page **pagep, void **fsdata)
3045 {
3046         int ret, retries = 0;
3047         struct page *page;
3048         pgoff_t index;
3049         struct inode *inode = mapping->host;
3050
3051         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3052                 return -EIO;
3053
3054         index = pos >> PAGE_SHIFT;
3055
3056         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3057                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3058                 return ext4_write_begin(file, mapping, pos,
3059                                         len, pagep, fsdata);
3060         }
3061         *fsdata = (void *)0;
3062         trace_ext4_da_write_begin(inode, pos, len);
3063
3064         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3065                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
3066                                                       pagep, fsdata);
3067                 if (ret < 0)
3068                         return ret;
3069                 if (ret == 1)
3070                         return 0;
3071         }
3072
3073 retry:
3074         page = grab_cache_page_write_begin(mapping, index);
3075         if (!page)
3076                 return -ENOMEM;
3077
3078         /* In case writeback began while the page was unlocked */
3079         wait_for_stable_page(page);
3080
3081 #ifdef CONFIG_FS_ENCRYPTION
3082         ret = ext4_block_write_begin(page, pos, len,
3083                                      ext4_da_get_block_prep);
3084 #else
3085         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3086 #endif
3087         if (ret < 0) {
3088                 unlock_page(page);
3089                 put_page(page);
3090                 /*
3091                  * block_write_begin may have instantiated a few blocks
3092                  * outside i_size.  Trim these off again. Don't need
3093                  * i_size_read because we hold inode lock.
3094                  */
3095                 if (pos + len > inode->i_size)
3096                         ext4_truncate_failed_write(inode);
3097
3098                 if (ret == -ENOSPC &&
3099                     ext4_should_retry_alloc(inode->i_sb, &retries))
3100                         goto retry;
3101                 return ret;
3102         }
3103
3104         *pagep = page;
3105         return ret;
3106 }
3107
3108 /*
3109  * Check if we should update i_disksize
3110  * when write to the end of file but not require block allocation
3111  */
3112 static int ext4_da_should_update_i_disksize(struct page *page,
3113                                             unsigned long offset)
3114 {
3115         struct buffer_head *bh;
3116         struct inode *inode = page->mapping->host;
3117         unsigned int idx;
3118         int i;
3119
3120         bh = page_buffers(page);
3121         idx = offset >> inode->i_blkbits;
3122
3123         for (i = 0; i < idx; i++)
3124                 bh = bh->b_this_page;
3125
3126         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127                 return 0;
3128         return 1;
3129 }
3130
3131 static int ext4_da_write_end(struct file *file,
3132                              struct address_space *mapping,
3133                              loff_t pos, unsigned len, unsigned copied,
3134                              struct page *page, void *fsdata)
3135 {
3136         struct inode *inode = mapping->host;
3137         loff_t new_i_size;
3138         unsigned long start, end;
3139         int write_mode = (int)(unsigned long)fsdata;
3140
3141         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142                 return ext4_write_end(file, mapping, pos,
3143                                       len, copied, page, fsdata);
3144
3145         trace_ext4_da_write_end(inode, pos, len, copied);
3146
3147         if (write_mode != CONVERT_INLINE_DATA &&
3148             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3149             ext4_has_inline_data(inode))
3150                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3151
3152         start = pos & (PAGE_SIZE - 1);
3153         end = start + copied - 1;
3154
3155         /*
3156          * Since we are holding inode lock, we are sure i_disksize <=
3157          * i_size. We also know that if i_disksize < i_size, there are
3158          * delalloc writes pending in the range upto i_size. If the end of
3159          * the current write is <= i_size, there's no need to touch
3160          * i_disksize since writeback will push i_disksize upto i_size
3161          * eventually. If the end of the current write is > i_size and
3162          * inside an allocated block (ext4_da_should_update_i_disksize()
3163          * check), we need to update i_disksize here as neither
3164          * ext4_writepage() nor certain ext4_writepages() paths not
3165          * allocating blocks update i_disksize.
3166          *
3167          * Note that we defer inode dirtying to generic_write_end() /
3168          * ext4_da_write_inline_data_end().
3169          */
3170         new_i_size = pos + copied;
3171         if (copied && new_i_size > inode->i_size &&
3172             ext4_da_should_update_i_disksize(page, end))
3173                 ext4_update_i_disksize(inode, new_i_size);
3174
3175         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3176 }
3177
3178 /*
3179  * Force all delayed allocation blocks to be allocated for a given inode.
3180  */
3181 int ext4_alloc_da_blocks(struct inode *inode)
3182 {
3183         trace_ext4_alloc_da_blocks(inode);
3184
3185         if (!EXT4_I(inode)->i_reserved_data_blocks)
3186                 return 0;
3187
3188         /*
3189          * We do something simple for now.  The filemap_flush() will
3190          * also start triggering a write of the data blocks, which is
3191          * not strictly speaking necessary (and for users of
3192          * laptop_mode, not even desirable).  However, to do otherwise
3193          * would require replicating code paths in:
3194          *
3195          * ext4_writepages() ->
3196          *    write_cache_pages() ---> (via passed in callback function)
3197          *        __mpage_da_writepage() -->
3198          *           mpage_add_bh_to_extent()
3199          *           mpage_da_map_blocks()
3200          *
3201          * The problem is that write_cache_pages(), located in
3202          * mm/page-writeback.c, marks pages clean in preparation for
3203          * doing I/O, which is not desirable if we're not planning on
3204          * doing I/O at all.
3205          *
3206          * We could call write_cache_pages(), and then redirty all of
3207          * the pages by calling redirty_page_for_writepage() but that
3208          * would be ugly in the extreme.  So instead we would need to
3209          * replicate parts of the code in the above functions,
3210          * simplifying them because we wouldn't actually intend to
3211          * write out the pages, but rather only collect contiguous
3212          * logical block extents, call the multi-block allocator, and
3213          * then update the buffer heads with the block allocations.
3214          *
3215          * For now, though, we'll cheat by calling filemap_flush(),
3216          * which will map the blocks, and start the I/O, but not
3217          * actually wait for the I/O to complete.
3218          */
3219         return filemap_flush(inode->i_mapping);
3220 }
3221
3222 /*
3223  * bmap() is special.  It gets used by applications such as lilo and by
3224  * the swapper to find the on-disk block of a specific piece of data.
3225  *
3226  * Naturally, this is dangerous if the block concerned is still in the
3227  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3228  * filesystem and enables swap, then they may get a nasty shock when the
3229  * data getting swapped to that swapfile suddenly gets overwritten by
3230  * the original zero's written out previously to the journal and
3231  * awaiting writeback in the kernel's buffer cache.
3232  *
3233  * So, if we see any bmap calls here on a modified, data-journaled file,
3234  * take extra steps to flush any blocks which might be in the cache.
3235  */
3236 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3237 {
3238         struct inode *inode = mapping->host;
3239         journal_t *journal;
3240         sector_t ret = 0;
3241         int err;
3242
3243         inode_lock_shared(inode);
3244         /*
3245          * We can get here for an inline file via the FIBMAP ioctl
3246          */
3247         if (ext4_has_inline_data(inode))
3248                 goto out;
3249
3250         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3251                         test_opt(inode->i_sb, DELALLOC)) {
3252                 /*
3253                  * With delalloc we want to sync the file
3254                  * so that we can make sure we allocate
3255                  * blocks for file
3256                  */
3257                 filemap_write_and_wait(mapping);
3258         }
3259
3260         if (EXT4_JOURNAL(inode) &&
3261             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3262                 /*
3263                  * This is a REALLY heavyweight approach, but the use of
3264                  * bmap on dirty files is expected to be extremely rare:
3265                  * only if we run lilo or swapon on a freshly made file
3266                  * do we expect this to happen.
3267                  *
3268                  * (bmap requires CAP_SYS_RAWIO so this does not
3269                  * represent an unprivileged user DOS attack --- we'd be
3270                  * in trouble if mortal users could trigger this path at
3271                  * will.)
3272                  *
3273                  * NB. EXT4_STATE_JDATA is not set on files other than
3274                  * regular files.  If somebody wants to bmap a directory
3275                  * or symlink and gets confused because the buffer
3276                  * hasn't yet been flushed to disk, they deserve
3277                  * everything they get.
3278                  */
3279
3280                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3281                 journal = EXT4_JOURNAL(inode);
3282                 jbd2_journal_lock_updates(journal);
3283                 err = jbd2_journal_flush(journal, 0);
3284                 jbd2_journal_unlock_updates(journal);
3285
3286                 if (err)
3287                         goto out;
3288         }
3289
3290         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3291
3292 out:
3293         inode_unlock_shared(inode);
3294         return ret;
3295 }
3296
3297 static int ext4_read_folio(struct file *file, struct folio *folio)
3298 {
3299         struct page *page = &folio->page;
3300         int ret = -EAGAIN;
3301         struct inode *inode = page->mapping->host;
3302
3303         trace_ext4_readpage(page);
3304
3305         if (ext4_has_inline_data(inode))
3306                 ret = ext4_readpage_inline(inode, page);
3307
3308         if (ret == -EAGAIN)
3309                 return ext4_mpage_readpages(inode, NULL, page);
3310
3311         return ret;
3312 }
3313
3314 static void ext4_readahead(struct readahead_control *rac)
3315 {
3316         struct inode *inode = rac->mapping->host;
3317
3318         /* If the file has inline data, no need to do readahead. */
3319         if (ext4_has_inline_data(inode))
3320                 return;
3321
3322         ext4_mpage_readpages(inode, rac, NULL);
3323 }
3324
3325 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3326                                 size_t length)
3327 {
3328         trace_ext4_invalidate_folio(folio, offset, length);
3329
3330         /* No journalling happens on data buffers when this function is used */
3331         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3332
3333         block_invalidate_folio(folio, offset, length);
3334 }
3335
3336 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3337                                             size_t offset, size_t length)
3338 {
3339         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3340
3341         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3342
3343         /*
3344          * If it's a full truncate we just forget about the pending dirtying
3345          */
3346         if (offset == 0 && length == folio_size(folio))
3347                 folio_clear_checked(folio);
3348
3349         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3350 }
3351
3352 /* Wrapper for aops... */
3353 static void ext4_journalled_invalidate_folio(struct folio *folio,
3354                                            size_t offset,
3355                                            size_t length)
3356 {
3357         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3358 }
3359
3360 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3361 {
3362         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3363
3364         trace_ext4_releasepage(&folio->page);
3365
3366         /* Page has dirty journalled data -> cannot release */
3367         if (folio_test_checked(folio))
3368                 return false;
3369         if (journal)
3370                 return jbd2_journal_try_to_free_buffers(journal, folio);
3371         else
3372                 return try_to_free_buffers(folio);
3373 }
3374
3375 static bool ext4_inode_datasync_dirty(struct inode *inode)
3376 {
3377         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3378
3379         if (journal) {
3380                 if (jbd2_transaction_committed(journal,
3381                         EXT4_I(inode)->i_datasync_tid))
3382                         return false;
3383                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3384                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3385                 return true;
3386         }
3387
3388         /* Any metadata buffers to write? */
3389         if (!list_empty(&inode->i_mapping->private_list))
3390                 return true;
3391         return inode->i_state & I_DIRTY_DATASYNC;
3392 }
3393
3394 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3395                            struct ext4_map_blocks *map, loff_t offset,
3396                            loff_t length, unsigned int flags)
3397 {
3398         u8 blkbits = inode->i_blkbits;
3399
3400         /*
3401          * Writes that span EOF might trigger an I/O size update on completion,
3402          * so consider them to be dirty for the purpose of O_DSYNC, even if
3403          * there is no other metadata changes being made or are pending.
3404          */
3405         iomap->flags = 0;
3406         if (ext4_inode_datasync_dirty(inode) ||
3407             offset + length > i_size_read(inode))
3408                 iomap->flags |= IOMAP_F_DIRTY;
3409
3410         if (map->m_flags & EXT4_MAP_NEW)
3411                 iomap->flags |= IOMAP_F_NEW;
3412
3413         if (flags & IOMAP_DAX)
3414                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3415         else
3416                 iomap->bdev = inode->i_sb->s_bdev;
3417         iomap->offset = (u64) map->m_lblk << blkbits;
3418         iomap->length = (u64) map->m_len << blkbits;
3419
3420         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3421             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3422                 iomap->flags |= IOMAP_F_MERGED;
3423
3424         /*
3425          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3426          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3427          * set. In order for any allocated unwritten extents to be converted
3428          * into written extents correctly within the ->end_io() handler, we
3429          * need to ensure that the iomap->type is set appropriately. Hence, the
3430          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3431          * been set first.
3432          */
3433         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3434                 iomap->type = IOMAP_UNWRITTEN;
3435                 iomap->addr = (u64) map->m_pblk << blkbits;
3436                 if (flags & IOMAP_DAX)
3437                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3438         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3439                 iomap->type = IOMAP_MAPPED;
3440                 iomap->addr = (u64) map->m_pblk << blkbits;
3441                 if (flags & IOMAP_DAX)
3442                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3443         } else {
3444                 iomap->type = IOMAP_HOLE;
3445                 iomap->addr = IOMAP_NULL_ADDR;
3446         }
3447 }
3448
3449 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3450                             unsigned int flags)
3451 {
3452         handle_t *handle;
3453         u8 blkbits = inode->i_blkbits;
3454         int ret, dio_credits, m_flags = 0, retries = 0;
3455
3456         /*
3457          * Trim the mapping request to the maximum value that we can map at
3458          * once for direct I/O.
3459          */
3460         if (map->m_len > DIO_MAX_BLOCKS)
3461                 map->m_len = DIO_MAX_BLOCKS;
3462         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3463
3464 retry:
3465         /*
3466          * Either we allocate blocks and then don't get an unwritten extent, so
3467          * in that case we have reserved enough credits. Or, the blocks are
3468          * already allocated and unwritten. In that case, the extent conversion
3469          * fits into the credits as well.
3470          */
3471         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3472         if (IS_ERR(handle))
3473                 return PTR_ERR(handle);
3474
3475         /*
3476          * DAX and direct I/O are the only two operations that are currently
3477          * supported with IOMAP_WRITE.
3478          */
3479         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3480         if (flags & IOMAP_DAX)
3481                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3482         /*
3483          * We use i_size instead of i_disksize here because delalloc writeback
3484          * can complete at any point during the I/O and subsequently push the
3485          * i_disksize out to i_size. This could be beyond where direct I/O is
3486          * happening and thus expose allocated blocks to direct I/O reads.
3487          */
3488         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3489                 m_flags = EXT4_GET_BLOCKS_CREATE;
3490         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3491                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3492
3493         ret = ext4_map_blocks(handle, inode, map, m_flags);
3494
3495         /*
3496          * We cannot fill holes in indirect tree based inodes as that could
3497          * expose stale data in the case of a crash. Use the magic error code
3498          * to fallback to buffered I/O.
3499          */
3500         if (!m_flags && !ret)
3501                 ret = -ENOTBLK;
3502
3503         ext4_journal_stop(handle);
3504         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3505                 goto retry;
3506
3507         return ret;
3508 }
3509
3510
3511 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3512                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3513 {
3514         int ret;
3515         struct ext4_map_blocks map;
3516         u8 blkbits = inode->i_blkbits;
3517
3518         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3519                 return -EINVAL;
3520
3521         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3522                 return -ERANGE;
3523
3524         /*
3525          * Calculate the first and last logical blocks respectively.
3526          */
3527         map.m_lblk = offset >> blkbits;
3528         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3529                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3530
3531         if (flags & IOMAP_WRITE) {
3532                 /*
3533                  * We check here if the blocks are already allocated, then we
3534                  * don't need to start a journal txn and we can directly return
3535                  * the mapping information. This could boost performance
3536                  * especially in multi-threaded overwrite requests.
3537                  */
3538                 if (offset + length <= i_size_read(inode)) {
3539                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3540                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3541                                 goto out;
3542                 }
3543                 ret = ext4_iomap_alloc(inode, &map, flags);
3544         } else {
3545                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3546         }
3547
3548         if (ret < 0)
3549                 return ret;
3550 out:
3551         /*
3552          * When inline encryption is enabled, sometimes I/O to an encrypted file
3553          * has to be broken up to guarantee DUN contiguity.  Handle this by
3554          * limiting the length of the mapping returned.
3555          */
3556         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3557
3558         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3559
3560         return 0;
3561 }
3562
3563 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3564                 loff_t length, unsigned flags, struct iomap *iomap,
3565                 struct iomap *srcmap)
3566 {
3567         int ret;
3568
3569         /*
3570          * Even for writes we don't need to allocate blocks, so just pretend
3571          * we are reading to save overhead of starting a transaction.
3572          */
3573         flags &= ~IOMAP_WRITE;
3574         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3575         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3576         return ret;
3577 }
3578
3579 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3580                           ssize_t written, unsigned flags, struct iomap *iomap)
3581 {
3582         /*
3583          * Check to see whether an error occurred while writing out the data to
3584          * the allocated blocks. If so, return the magic error code so that we
3585          * fallback to buffered I/O and attempt to complete the remainder of
3586          * the I/O. Any blocks that may have been allocated in preparation for
3587          * the direct I/O will be reused during buffered I/O.
3588          */
3589         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3590                 return -ENOTBLK;
3591
3592         return 0;
3593 }
3594
3595 const struct iomap_ops ext4_iomap_ops = {
3596         .iomap_begin            = ext4_iomap_begin,
3597         .iomap_end              = ext4_iomap_end,
3598 };
3599
3600 const struct iomap_ops ext4_iomap_overwrite_ops = {
3601         .iomap_begin            = ext4_iomap_overwrite_begin,
3602         .iomap_end              = ext4_iomap_end,
3603 };
3604
3605 static bool ext4_iomap_is_delalloc(struct inode *inode,
3606                                    struct ext4_map_blocks *map)
3607 {
3608         struct extent_status es;
3609         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3610
3611         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3612                                   map->m_lblk, end, &es);
3613
3614         if (!es.es_len || es.es_lblk > end)
3615                 return false;
3616
3617         if (es.es_lblk > map->m_lblk) {
3618                 map->m_len = es.es_lblk - map->m_lblk;
3619                 return false;
3620         }
3621
3622         offset = map->m_lblk - es.es_lblk;
3623         map->m_len = es.es_len - offset;
3624
3625         return true;
3626 }
3627
3628 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3629                                    loff_t length, unsigned int flags,
3630                                    struct iomap *iomap, struct iomap *srcmap)
3631 {
3632         int ret;
3633         bool delalloc = false;
3634         struct ext4_map_blocks map;
3635         u8 blkbits = inode->i_blkbits;
3636
3637         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3638                 return -EINVAL;
3639
3640         if (ext4_has_inline_data(inode)) {
3641                 ret = ext4_inline_data_iomap(inode, iomap);
3642                 if (ret != -EAGAIN) {
3643                         if (ret == 0 && offset >= iomap->length)
3644                                 ret = -ENOENT;
3645                         return ret;
3646                 }
3647         }
3648
3649         /*
3650          * Calculate the first and last logical block respectively.
3651          */
3652         map.m_lblk = offset >> blkbits;
3653         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3654                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3655
3656         /*
3657          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3658          * So handle it here itself instead of querying ext4_map_blocks().
3659          * Since ext4_map_blocks() will warn about it and will return
3660          * -EIO error.
3661          */
3662         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3663                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3664
3665                 if (offset >= sbi->s_bitmap_maxbytes) {
3666                         map.m_flags = 0;
3667                         goto set_iomap;
3668                 }
3669         }
3670
3671         ret = ext4_map_blocks(NULL, inode, &map, 0);
3672         if (ret < 0)
3673                 return ret;
3674         if (ret == 0)
3675                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3676
3677 set_iomap:
3678         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3679         if (delalloc && iomap->type == IOMAP_HOLE)
3680                 iomap->type = IOMAP_DELALLOC;
3681
3682         return 0;
3683 }
3684
3685 const struct iomap_ops ext4_iomap_report_ops = {
3686         .iomap_begin = ext4_iomap_begin_report,
3687 };
3688
3689 /*
3690  * Whenever the folio is being dirtied, corresponding buffers should already
3691  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3692  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3693  * lists here because ->dirty_folio is called under VFS locks and the folio
3694  * is not necessarily locked.
3695  *
3696  * We cannot just dirty the folio and leave attached buffers clean, because the
3697  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3698  * or jbddirty because all the journalling code will explode.
3699  *
3700  * So what we do is to mark the folio "pending dirty" and next time writepage
3701  * is called, propagate that into the buffers appropriately.
3702  */
3703 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3704                 struct folio *folio)
3705 {
3706         WARN_ON_ONCE(!folio_buffers(folio));
3707         folio_set_checked(folio);
3708         return filemap_dirty_folio(mapping, folio);
3709 }
3710
3711 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3712 {
3713         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3714         WARN_ON_ONCE(!folio_buffers(folio));
3715         return block_dirty_folio(mapping, folio);
3716 }
3717
3718 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3719                                     struct file *file, sector_t *span)
3720 {
3721         return iomap_swapfile_activate(sis, file, span,
3722                                        &ext4_iomap_report_ops);
3723 }
3724
3725 static const struct address_space_operations ext4_aops = {
3726         .read_folio             = ext4_read_folio,
3727         .readahead              = ext4_readahead,
3728         .writepages             = ext4_writepages,
3729         .write_begin            = ext4_write_begin,
3730         .write_end              = ext4_write_end,
3731         .dirty_folio            = ext4_dirty_folio,
3732         .bmap                   = ext4_bmap,
3733         .invalidate_folio       = ext4_invalidate_folio,
3734         .release_folio          = ext4_release_folio,
3735         .direct_IO              = noop_direct_IO,
3736         .migrate_folio          = buffer_migrate_folio,
3737         .is_partially_uptodate  = block_is_partially_uptodate,
3738         .error_remove_page      = generic_error_remove_page,
3739         .swap_activate          = ext4_iomap_swap_activate,
3740 };
3741
3742 static const struct address_space_operations ext4_journalled_aops = {
3743         .read_folio             = ext4_read_folio,
3744         .readahead              = ext4_readahead,
3745         .writepages             = ext4_writepages,
3746         .write_begin            = ext4_write_begin,
3747         .write_end              = ext4_journalled_write_end,
3748         .dirty_folio            = ext4_journalled_dirty_folio,
3749         .bmap                   = ext4_bmap,
3750         .invalidate_folio       = ext4_journalled_invalidate_folio,
3751         .release_folio          = ext4_release_folio,
3752         .direct_IO              = noop_direct_IO,
3753         .migrate_folio          = buffer_migrate_folio_norefs,
3754         .is_partially_uptodate  = block_is_partially_uptodate,
3755         .error_remove_page      = generic_error_remove_page,
3756         .swap_activate          = ext4_iomap_swap_activate,
3757 };
3758
3759 static const struct address_space_operations ext4_da_aops = {
3760         .read_folio             = ext4_read_folio,
3761         .readahead              = ext4_readahead,
3762         .writepages             = ext4_writepages,
3763         .write_begin            = ext4_da_write_begin,
3764         .write_end              = ext4_da_write_end,
3765         .dirty_folio            = ext4_dirty_folio,
3766         .bmap                   = ext4_bmap,
3767         .invalidate_folio       = ext4_invalidate_folio,
3768         .release_folio          = ext4_release_folio,
3769         .direct_IO              = noop_direct_IO,
3770         .migrate_folio          = buffer_migrate_folio,
3771         .is_partially_uptodate  = block_is_partially_uptodate,
3772         .error_remove_page      = generic_error_remove_page,
3773         .swap_activate          = ext4_iomap_swap_activate,
3774 };
3775
3776 static const struct address_space_operations ext4_dax_aops = {
3777         .writepages             = ext4_dax_writepages,
3778         .direct_IO              = noop_direct_IO,
3779         .dirty_folio            = noop_dirty_folio,
3780         .bmap                   = ext4_bmap,
3781         .swap_activate          = ext4_iomap_swap_activate,
3782 };
3783
3784 void ext4_set_aops(struct inode *inode)
3785 {
3786         switch (ext4_inode_journal_mode(inode)) {
3787         case EXT4_INODE_ORDERED_DATA_MODE:
3788         case EXT4_INODE_WRITEBACK_DATA_MODE:
3789                 break;
3790         case EXT4_INODE_JOURNAL_DATA_MODE:
3791                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3792                 return;
3793         default:
3794                 BUG();
3795         }
3796         if (IS_DAX(inode))
3797                 inode->i_mapping->a_ops = &ext4_dax_aops;
3798         else if (test_opt(inode->i_sb, DELALLOC))
3799                 inode->i_mapping->a_ops = &ext4_da_aops;
3800         else
3801                 inode->i_mapping->a_ops = &ext4_aops;
3802 }
3803
3804 static int __ext4_block_zero_page_range(handle_t *handle,
3805                 struct address_space *mapping, loff_t from, loff_t length)
3806 {
3807         ext4_fsblk_t index = from >> PAGE_SHIFT;
3808         unsigned offset = from & (PAGE_SIZE-1);
3809         unsigned blocksize, pos;
3810         ext4_lblk_t iblock;
3811         struct inode *inode = mapping->host;
3812         struct buffer_head *bh;
3813         struct page *page;
3814         int err = 0;
3815
3816         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3817                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3818         if (!page)
3819                 return -ENOMEM;
3820
3821         blocksize = inode->i_sb->s_blocksize;
3822
3823         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3824
3825         if (!page_has_buffers(page))
3826                 create_empty_buffers(page, blocksize, 0);
3827
3828         /* Find the buffer that contains "offset" */
3829         bh = page_buffers(page);
3830         pos = blocksize;
3831         while (offset >= pos) {
3832                 bh = bh->b_this_page;
3833                 iblock++;
3834                 pos += blocksize;
3835         }
3836         if (buffer_freed(bh)) {
3837                 BUFFER_TRACE(bh, "freed: skip");
3838                 goto unlock;
3839         }
3840         if (!buffer_mapped(bh)) {
3841                 BUFFER_TRACE(bh, "unmapped");
3842                 ext4_get_block(inode, iblock, bh, 0);
3843                 /* unmapped? It's a hole - nothing to do */
3844                 if (!buffer_mapped(bh)) {
3845                         BUFFER_TRACE(bh, "still unmapped");
3846                         goto unlock;
3847                 }
3848         }
3849
3850         /* Ok, it's mapped. Make sure it's up-to-date */
3851         if (PageUptodate(page))
3852                 set_buffer_uptodate(bh);
3853
3854         if (!buffer_uptodate(bh)) {
3855                 err = ext4_read_bh_lock(bh, 0, true);
3856                 if (err)
3857                         goto unlock;
3858                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3859                         /* We expect the key to be set. */
3860                         BUG_ON(!fscrypt_has_encryption_key(inode));
3861                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3862                                                                bh_offset(bh));
3863                         if (err) {
3864                                 clear_buffer_uptodate(bh);
3865                                 goto unlock;
3866                         }
3867                 }
3868         }
3869         if (ext4_should_journal_data(inode)) {
3870                 BUFFER_TRACE(bh, "get write access");
3871                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3872                                                     EXT4_JTR_NONE);
3873                 if (err)
3874                         goto unlock;
3875         }
3876         zero_user(page, offset, length);
3877         BUFFER_TRACE(bh, "zeroed end of block");
3878
3879         if (ext4_should_journal_data(inode)) {
3880                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3881         } else {
3882                 err = 0;
3883                 mark_buffer_dirty(bh);
3884                 if (ext4_should_order_data(inode))
3885                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3886                                         length);
3887         }
3888
3889 unlock:
3890         unlock_page(page);
3891         put_page(page);
3892         return err;
3893 }
3894
3895 /*
3896  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3897  * starting from file offset 'from'.  The range to be zero'd must
3898  * be contained with in one block.  If the specified range exceeds
3899  * the end of the block it will be shortened to end of the block
3900  * that corresponds to 'from'
3901  */
3902 static int ext4_block_zero_page_range(handle_t *handle,
3903                 struct address_space *mapping, loff_t from, loff_t length)
3904 {
3905         struct inode *inode = mapping->host;
3906         unsigned offset = from & (PAGE_SIZE-1);
3907         unsigned blocksize = inode->i_sb->s_blocksize;
3908         unsigned max = blocksize - (offset & (blocksize - 1));
3909
3910         /*
3911          * correct length if it does not fall between
3912          * 'from' and the end of the block
3913          */
3914         if (length > max || length < 0)
3915                 length = max;
3916
3917         if (IS_DAX(inode)) {
3918                 return dax_zero_range(inode, from, length, NULL,
3919                                       &ext4_iomap_ops);
3920         }
3921         return __ext4_block_zero_page_range(handle, mapping, from, length);
3922 }
3923
3924 /*
3925  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3926  * up to the end of the block which corresponds to `from'.
3927  * This required during truncate. We need to physically zero the tail end
3928  * of that block so it doesn't yield old data if the file is later grown.
3929  */
3930 static int ext4_block_truncate_page(handle_t *handle,
3931                 struct address_space *mapping, loff_t from)
3932 {
3933         unsigned offset = from & (PAGE_SIZE-1);
3934         unsigned length;
3935         unsigned blocksize;
3936         struct inode *inode = mapping->host;
3937
3938         /* If we are processing an encrypted inode during orphan list handling */
3939         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3940                 return 0;
3941
3942         blocksize = inode->i_sb->s_blocksize;
3943         length = blocksize - (offset & (blocksize - 1));
3944
3945         return ext4_block_zero_page_range(handle, mapping, from, length);
3946 }
3947
3948 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3949                              loff_t lstart, loff_t length)
3950 {
3951         struct super_block *sb = inode->i_sb;
3952         struct address_space *mapping = inode->i_mapping;
3953         unsigned partial_start, partial_end;
3954         ext4_fsblk_t start, end;
3955         loff_t byte_end = (lstart + length - 1);
3956         int err = 0;
3957
3958         partial_start = lstart & (sb->s_blocksize - 1);
3959         partial_end = byte_end & (sb->s_blocksize - 1);
3960
3961         start = lstart >> sb->s_blocksize_bits;
3962         end = byte_end >> sb->s_blocksize_bits;
3963
3964         /* Handle partial zero within the single block */
3965         if (start == end &&
3966             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3967                 err = ext4_block_zero_page_range(handle, mapping,
3968                                                  lstart, length);
3969                 return err;
3970         }
3971         /* Handle partial zero out on the start of the range */
3972         if (partial_start) {
3973                 err = ext4_block_zero_page_range(handle, mapping,
3974                                                  lstart, sb->s_blocksize);
3975                 if (err)
3976                         return err;
3977         }
3978         /* Handle partial zero out on the end of the range */
3979         if (partial_end != sb->s_blocksize - 1)
3980                 err = ext4_block_zero_page_range(handle, mapping,
3981                                                  byte_end - partial_end,
3982                                                  partial_end + 1);
3983         return err;
3984 }
3985
3986 int ext4_can_truncate(struct inode *inode)
3987 {
3988         if (S_ISREG(inode->i_mode))
3989                 return 1;
3990         if (S_ISDIR(inode->i_mode))
3991                 return 1;
3992         if (S_ISLNK(inode->i_mode))
3993                 return !ext4_inode_is_fast_symlink(inode);
3994         return 0;
3995 }
3996
3997 /*
3998  * We have to make sure i_disksize gets properly updated before we truncate
3999  * page cache due to hole punching or zero range. Otherwise i_disksize update
4000  * can get lost as it may have been postponed to submission of writeback but
4001  * that will never happen after we truncate page cache.
4002  */
4003 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4004                                       loff_t len)
4005 {
4006         handle_t *handle;
4007         int ret;
4008
4009         loff_t size = i_size_read(inode);
4010
4011         WARN_ON(!inode_is_locked(inode));
4012         if (offset > size || offset + len < size)
4013                 return 0;
4014
4015         if (EXT4_I(inode)->i_disksize >= size)
4016                 return 0;
4017
4018         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4019         if (IS_ERR(handle))
4020                 return PTR_ERR(handle);
4021         ext4_update_i_disksize(inode, size);
4022         ret = ext4_mark_inode_dirty(handle, inode);
4023         ext4_journal_stop(handle);
4024
4025         return ret;
4026 }
4027
4028 static void ext4_wait_dax_page(struct inode *inode)
4029 {
4030         filemap_invalidate_unlock(inode->i_mapping);
4031         schedule();
4032         filemap_invalidate_lock(inode->i_mapping);
4033 }
4034
4035 int ext4_break_layouts(struct inode *inode)
4036 {
4037         struct page *page;
4038         int error;
4039
4040         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4041                 return -EINVAL;
4042
4043         do {
4044                 page = dax_layout_busy_page(inode->i_mapping);
4045                 if (!page)
4046                         return 0;
4047
4048                 error = ___wait_var_event(&page->_refcount,
4049                                 atomic_read(&page->_refcount) == 1,
4050                                 TASK_INTERRUPTIBLE, 0, 0,
4051                                 ext4_wait_dax_page(inode));
4052         } while (error == 0);
4053
4054         return error;
4055 }
4056
4057 /*
4058  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4059  * associated with the given offset and length
4060  *
4061  * @inode:  File inode
4062  * @offset: The offset where the hole will begin
4063  * @len:    The length of the hole
4064  *
4065  * Returns: 0 on success or negative on failure
4066  */
4067
4068 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4069 {
4070         struct inode *inode = file_inode(file);
4071         struct super_block *sb = inode->i_sb;
4072         ext4_lblk_t first_block, stop_block;
4073         struct address_space *mapping = inode->i_mapping;
4074         loff_t first_block_offset, last_block_offset, max_length;
4075         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4076         handle_t *handle;
4077         unsigned int credits;
4078         int ret = 0, ret2 = 0;
4079
4080         trace_ext4_punch_hole(inode, offset, length, 0);
4081
4082         /*
4083          * Write out all dirty pages to avoid race conditions
4084          * Then release them.
4085          */
4086         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4087                 ret = filemap_write_and_wait_range(mapping, offset,
4088                                                    offset + length - 1);
4089                 if (ret)
4090                         return ret;
4091         }
4092
4093         inode_lock(inode);
4094
4095         /* No need to punch hole beyond i_size */
4096         if (offset >= inode->i_size)
4097                 goto out_mutex;
4098
4099         /*
4100          * If the hole extends beyond i_size, set the hole
4101          * to end after the page that contains i_size
4102          */
4103         if (offset + length > inode->i_size) {
4104                 length = inode->i_size +
4105                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4106                    offset;
4107         }
4108
4109         /*
4110          * For punch hole the length + offset needs to be within one block
4111          * before last range. Adjust the length if it goes beyond that limit.
4112          */
4113         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4114         if (offset + length > max_length)
4115                 length = max_length - offset;
4116
4117         if (offset & (sb->s_blocksize - 1) ||
4118             (offset + length) & (sb->s_blocksize - 1)) {
4119                 /*
4120                  * Attach jinode to inode for jbd2 if we do any zeroing of
4121                  * partial block
4122                  */
4123                 ret = ext4_inode_attach_jinode(inode);
4124                 if (ret < 0)
4125                         goto out_mutex;
4126
4127         }
4128
4129         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4130         inode_dio_wait(inode);
4131
4132         ret = file_modified(file);
4133         if (ret)
4134                 goto out_mutex;
4135
4136         /*
4137          * Prevent page faults from reinstantiating pages we have released from
4138          * page cache.
4139          */
4140         filemap_invalidate_lock(mapping);
4141
4142         ret = ext4_break_layouts(inode);
4143         if (ret)
4144                 goto out_dio;
4145
4146         first_block_offset = round_up(offset, sb->s_blocksize);
4147         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4148
4149         /* Now release the pages and zero block aligned part of pages*/
4150         if (last_block_offset > first_block_offset) {
4151                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4152                 if (ret)
4153                         goto out_dio;
4154                 truncate_pagecache_range(inode, first_block_offset,
4155                                          last_block_offset);
4156         }
4157
4158         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4159                 credits = ext4_writepage_trans_blocks(inode);
4160         else
4161                 credits = ext4_blocks_for_truncate(inode);
4162         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4163         if (IS_ERR(handle)) {
4164                 ret = PTR_ERR(handle);
4165                 ext4_std_error(sb, ret);
4166                 goto out_dio;
4167         }
4168
4169         ret = ext4_zero_partial_blocks(handle, inode, offset,
4170                                        length);
4171         if (ret)
4172                 goto out_stop;
4173
4174         first_block = (offset + sb->s_blocksize - 1) >>
4175                 EXT4_BLOCK_SIZE_BITS(sb);
4176         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4177
4178         /* If there are blocks to remove, do it */
4179         if (stop_block > first_block) {
4180
4181                 down_write(&EXT4_I(inode)->i_data_sem);
4182                 ext4_discard_preallocations(inode, 0);
4183
4184                 ret = ext4_es_remove_extent(inode, first_block,
4185                                             stop_block - first_block);
4186                 if (ret) {
4187                         up_write(&EXT4_I(inode)->i_data_sem);
4188                         goto out_stop;
4189                 }
4190
4191                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4192                         ret = ext4_ext_remove_space(inode, first_block,
4193                                                     stop_block - 1);
4194                 else
4195                         ret = ext4_ind_remove_space(handle, inode, first_block,
4196                                                     stop_block);
4197
4198                 up_write(&EXT4_I(inode)->i_data_sem);
4199         }
4200         ext4_fc_track_range(handle, inode, first_block, stop_block);
4201         if (IS_SYNC(inode))
4202                 ext4_handle_sync(handle);
4203
4204         inode->i_mtime = inode->i_ctime = current_time(inode);
4205         ret2 = ext4_mark_inode_dirty(handle, inode);
4206         if (unlikely(ret2))
4207                 ret = ret2;
4208         if (ret >= 0)
4209                 ext4_update_inode_fsync_trans(handle, inode, 1);
4210 out_stop:
4211         ext4_journal_stop(handle);
4212 out_dio:
4213         filemap_invalidate_unlock(mapping);
4214 out_mutex:
4215         inode_unlock(inode);
4216         return ret;
4217 }
4218
4219 int ext4_inode_attach_jinode(struct inode *inode)
4220 {
4221         struct ext4_inode_info *ei = EXT4_I(inode);
4222         struct jbd2_inode *jinode;
4223
4224         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4225                 return 0;
4226
4227         jinode = jbd2_alloc_inode(GFP_KERNEL);
4228         spin_lock(&inode->i_lock);
4229         if (!ei->jinode) {
4230                 if (!jinode) {
4231                         spin_unlock(&inode->i_lock);
4232                         return -ENOMEM;
4233                 }
4234                 ei->jinode = jinode;
4235                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4236                 jinode = NULL;
4237         }
4238         spin_unlock(&inode->i_lock);
4239         if (unlikely(jinode != NULL))
4240                 jbd2_free_inode(jinode);
4241         return 0;
4242 }
4243
4244 /*
4245  * ext4_truncate()
4246  *
4247  * We block out ext4_get_block() block instantiations across the entire
4248  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4249  * simultaneously on behalf of the same inode.
4250  *
4251  * As we work through the truncate and commit bits of it to the journal there
4252  * is one core, guiding principle: the file's tree must always be consistent on
4253  * disk.  We must be able to restart the truncate after a crash.
4254  *
4255  * The file's tree may be transiently inconsistent in memory (although it
4256  * probably isn't), but whenever we close off and commit a journal transaction,
4257  * the contents of (the filesystem + the journal) must be consistent and
4258  * restartable.  It's pretty simple, really: bottom up, right to left (although
4259  * left-to-right works OK too).
4260  *
4261  * Note that at recovery time, journal replay occurs *before* the restart of
4262  * truncate against the orphan inode list.
4263  *
4264  * The committed inode has the new, desired i_size (which is the same as
4265  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4266  * that this inode's truncate did not complete and it will again call
4267  * ext4_truncate() to have another go.  So there will be instantiated blocks
4268  * to the right of the truncation point in a crashed ext4 filesystem.  But
4269  * that's fine - as long as they are linked from the inode, the post-crash
4270  * ext4_truncate() run will find them and release them.
4271  */
4272 int ext4_truncate(struct inode *inode)
4273 {
4274         struct ext4_inode_info *ei = EXT4_I(inode);
4275         unsigned int credits;
4276         int err = 0, err2;
4277         handle_t *handle;
4278         struct address_space *mapping = inode->i_mapping;
4279
4280         /*
4281          * There is a possibility that we're either freeing the inode
4282          * or it's a completely new inode. In those cases we might not
4283          * have i_rwsem locked because it's not necessary.
4284          */
4285         if (!(inode->i_state & (I_NEW|I_FREEING)))
4286                 WARN_ON(!inode_is_locked(inode));
4287         trace_ext4_truncate_enter(inode);
4288
4289         if (!ext4_can_truncate(inode))
4290                 goto out_trace;
4291
4292         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4293                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4294
4295         if (ext4_has_inline_data(inode)) {
4296                 int has_inline = 1;
4297
4298                 err = ext4_inline_data_truncate(inode, &has_inline);
4299                 if (err || has_inline)
4300                         goto out_trace;
4301         }
4302
4303         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4304         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4305                 err = ext4_inode_attach_jinode(inode);
4306                 if (err)
4307                         goto out_trace;
4308         }
4309
4310         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4311                 credits = ext4_writepage_trans_blocks(inode);
4312         else
4313                 credits = ext4_blocks_for_truncate(inode);
4314
4315         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4316         if (IS_ERR(handle)) {
4317                 err = PTR_ERR(handle);
4318                 goto out_trace;
4319         }
4320
4321         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4322                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4323
4324         /*
4325          * We add the inode to the orphan list, so that if this
4326          * truncate spans multiple transactions, and we crash, we will
4327          * resume the truncate when the filesystem recovers.  It also
4328          * marks the inode dirty, to catch the new size.
4329          *
4330          * Implication: the file must always be in a sane, consistent
4331          * truncatable state while each transaction commits.
4332          */
4333         err = ext4_orphan_add(handle, inode);
4334         if (err)
4335                 goto out_stop;
4336
4337         down_write(&EXT4_I(inode)->i_data_sem);
4338
4339         ext4_discard_preallocations(inode, 0);
4340
4341         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4342                 err = ext4_ext_truncate(handle, inode);
4343         else
4344                 ext4_ind_truncate(handle, inode);
4345
4346         up_write(&ei->i_data_sem);
4347         if (err)
4348                 goto out_stop;
4349
4350         if (IS_SYNC(inode))
4351                 ext4_handle_sync(handle);
4352
4353 out_stop:
4354         /*
4355          * If this was a simple ftruncate() and the file will remain alive,
4356          * then we need to clear up the orphan record which we created above.
4357          * However, if this was a real unlink then we were called by
4358          * ext4_evict_inode(), and we allow that function to clean up the
4359          * orphan info for us.
4360          */
4361         if (inode->i_nlink)
4362                 ext4_orphan_del(handle, inode);
4363
4364         inode->i_mtime = inode->i_ctime = current_time(inode);
4365         err2 = ext4_mark_inode_dirty(handle, inode);
4366         if (unlikely(err2 && !err))
4367                 err = err2;
4368         ext4_journal_stop(handle);
4369
4370 out_trace:
4371         trace_ext4_truncate_exit(inode);
4372         return err;
4373 }
4374
4375 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4376 {
4377         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4378                 return inode_peek_iversion_raw(inode);
4379         else
4380                 return inode_peek_iversion(inode);
4381 }
4382
4383 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4384                                  struct ext4_inode_info *ei)
4385 {
4386         struct inode *inode = &(ei->vfs_inode);
4387         u64 i_blocks = READ_ONCE(inode->i_blocks);
4388         struct super_block *sb = inode->i_sb;
4389
4390         if (i_blocks <= ~0U) {
4391                 /*
4392                  * i_blocks can be represented in a 32 bit variable
4393                  * as multiple of 512 bytes
4394                  */
4395                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4396                 raw_inode->i_blocks_high = 0;
4397                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398                 return 0;
4399         }
4400
4401         /*
4402          * This should never happen since sb->s_maxbytes should not have
4403          * allowed this, sb->s_maxbytes was set according to the huge_file
4404          * feature in ext4_fill_super().
4405          */
4406         if (!ext4_has_feature_huge_file(sb))
4407                 return -EFSCORRUPTED;
4408
4409         if (i_blocks <= 0xffffffffffffULL) {
4410                 /*
4411                  * i_blocks can be represented in a 48 bit variable
4412                  * as multiple of 512 bytes
4413                  */
4414                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4415                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4416                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4417         } else {
4418                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419                 /* i_block is stored in file system block size */
4420                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4421                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4422                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4423         }
4424         return 0;
4425 }
4426
4427 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4428 {
4429         struct ext4_inode_info *ei = EXT4_I(inode);
4430         uid_t i_uid;
4431         gid_t i_gid;
4432         projid_t i_projid;
4433         int block;
4434         int err;
4435
4436         err = ext4_inode_blocks_set(raw_inode, ei);
4437
4438         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4439         i_uid = i_uid_read(inode);
4440         i_gid = i_gid_read(inode);
4441         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4442         if (!(test_opt(inode->i_sb, NO_UID32))) {
4443                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4444                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4445                 /*
4446                  * Fix up interoperability with old kernels. Otherwise,
4447                  * old inodes get re-used with the upper 16 bits of the
4448                  * uid/gid intact.
4449                  */
4450                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4451                         raw_inode->i_uid_high = 0;
4452                         raw_inode->i_gid_high = 0;
4453                 } else {
4454                         raw_inode->i_uid_high =
4455                                 cpu_to_le16(high_16_bits(i_uid));
4456                         raw_inode->i_gid_high =
4457                                 cpu_to_le16(high_16_bits(i_gid));
4458                 }
4459         } else {
4460                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4461                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4462                 raw_inode->i_uid_high = 0;
4463                 raw_inode->i_gid_high = 0;
4464         }
4465         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4466
4467         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4468         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4469         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4470         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4471
4472         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4473         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4474         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4475                 raw_inode->i_file_acl_high =
4476                         cpu_to_le16(ei->i_file_acl >> 32);
4477         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4478         ext4_isize_set(raw_inode, ei->i_disksize);
4479
4480         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482                 if (old_valid_dev(inode->i_rdev)) {
4483                         raw_inode->i_block[0] =
4484                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4485                         raw_inode->i_block[1] = 0;
4486                 } else {
4487                         raw_inode->i_block[0] = 0;
4488                         raw_inode->i_block[1] =
4489                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4490                         raw_inode->i_block[2] = 0;
4491                 }
4492         } else if (!ext4_has_inline_data(inode)) {
4493                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4494                         raw_inode->i_block[block] = ei->i_data[block];
4495         }
4496
4497         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4498                 u64 ivers = ext4_inode_peek_iversion(inode);
4499
4500                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4501                 if (ei->i_extra_isize) {
4502                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4503                                 raw_inode->i_version_hi =
4504                                         cpu_to_le32(ivers >> 32);
4505                         raw_inode->i_extra_isize =
4506                                 cpu_to_le16(ei->i_extra_isize);
4507                 }
4508         }
4509
4510         if (i_projid != EXT4_DEF_PROJID &&
4511             !ext4_has_feature_project(inode->i_sb))
4512                 err = err ?: -EFSCORRUPTED;
4513
4514         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4515             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4516                 raw_inode->i_projid = cpu_to_le32(i_projid);
4517
4518         ext4_inode_csum_set(inode, raw_inode, ei);
4519         return err;
4520 }
4521
4522 /*
4523  * ext4_get_inode_loc returns with an extra refcount against the inode's
4524  * underlying buffer_head on success. If we pass 'inode' and it does not
4525  * have in-inode xattr, we have all inode data in memory that is needed
4526  * to recreate the on-disk version of this inode.
4527  */
4528 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4529                                 struct inode *inode, struct ext4_iloc *iloc,
4530                                 ext4_fsblk_t *ret_block)
4531 {
4532         struct ext4_group_desc  *gdp;
4533         struct buffer_head      *bh;
4534         ext4_fsblk_t            block;
4535         struct blk_plug         plug;
4536         int                     inodes_per_block, inode_offset;
4537
4538         iloc->bh = NULL;
4539         if (ino < EXT4_ROOT_INO ||
4540             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4541                 return -EFSCORRUPTED;
4542
4543         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4544         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4545         if (!gdp)
4546                 return -EIO;
4547
4548         /*
4549          * Figure out the offset within the block group inode table
4550          */
4551         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4552         inode_offset = ((ino - 1) %
4553                         EXT4_INODES_PER_GROUP(sb));
4554         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4555
4556         block = ext4_inode_table(sb, gdp);
4557         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4558             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4559                 ext4_error(sb, "Invalid inode table block %llu in "
4560                            "block_group %u", block, iloc->block_group);
4561                 return -EFSCORRUPTED;
4562         }
4563         block += (inode_offset / inodes_per_block);
4564
4565         bh = sb_getblk(sb, block);
4566         if (unlikely(!bh))
4567                 return -ENOMEM;
4568         if (ext4_buffer_uptodate(bh))
4569                 goto has_buffer;
4570
4571         lock_buffer(bh);
4572         if (ext4_buffer_uptodate(bh)) {
4573                 /* Someone brought it uptodate while we waited */
4574                 unlock_buffer(bh);
4575                 goto has_buffer;
4576         }
4577
4578         /*
4579          * If we have all information of the inode in memory and this
4580          * is the only valid inode in the block, we need not read the
4581          * block.
4582          */
4583         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4584                 struct buffer_head *bitmap_bh;
4585                 int i, start;
4586
4587                 start = inode_offset & ~(inodes_per_block - 1);
4588
4589                 /* Is the inode bitmap in cache? */
4590                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4591                 if (unlikely(!bitmap_bh))
4592                         goto make_io;
4593
4594                 /*
4595                  * If the inode bitmap isn't in cache then the
4596                  * optimisation may end up performing two reads instead
4597                  * of one, so skip it.
4598                  */
4599                 if (!buffer_uptodate(bitmap_bh)) {
4600                         brelse(bitmap_bh);
4601                         goto make_io;
4602                 }
4603                 for (i = start; i < start + inodes_per_block; i++) {
4604                         if (i == inode_offset)
4605                                 continue;
4606                         if (ext4_test_bit(i, bitmap_bh->b_data))
4607                                 break;
4608                 }
4609                 brelse(bitmap_bh);
4610                 if (i == start + inodes_per_block) {
4611                         struct ext4_inode *raw_inode =
4612                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4613
4614                         /* all other inodes are free, so skip I/O */
4615                         memset(bh->b_data, 0, bh->b_size);
4616                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4617                                 ext4_fill_raw_inode(inode, raw_inode);
4618                         set_buffer_uptodate(bh);
4619                         unlock_buffer(bh);
4620                         goto has_buffer;
4621                 }
4622         }
4623
4624 make_io:
4625         /*
4626          * If we need to do any I/O, try to pre-readahead extra
4627          * blocks from the inode table.
4628          */
4629         blk_start_plug(&plug);
4630         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4631                 ext4_fsblk_t b, end, table;
4632                 unsigned num;
4633                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4634
4635                 table = ext4_inode_table(sb, gdp);
4636                 /* s_inode_readahead_blks is always a power of 2 */
4637                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4638                 if (table > b)
4639                         b = table;
4640                 end = b + ra_blks;
4641                 num = EXT4_INODES_PER_GROUP(sb);
4642                 if (ext4_has_group_desc_csum(sb))
4643                         num -= ext4_itable_unused_count(sb, gdp);
4644                 table += num / inodes_per_block;
4645                 if (end > table)
4646                         end = table;
4647                 while (b <= end)
4648                         ext4_sb_breadahead_unmovable(sb, b++);
4649         }
4650
4651         /*
4652          * There are other valid inodes in the buffer, this inode
4653          * has in-inode xattrs, or we don't have this inode in memory.
4654          * Read the block from disk.
4655          */
4656         trace_ext4_load_inode(sb, ino);
4657         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4658         blk_finish_plug(&plug);
4659         wait_on_buffer(bh);
4660         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4661         if (!buffer_uptodate(bh)) {
4662                 if (ret_block)
4663                         *ret_block = block;
4664                 brelse(bh);
4665                 return -EIO;
4666         }
4667 has_buffer:
4668         iloc->bh = bh;
4669         return 0;
4670 }
4671
4672 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4673                                         struct ext4_iloc *iloc)
4674 {
4675         ext4_fsblk_t err_blk = 0;
4676         int ret;
4677
4678         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4679                                         &err_blk);
4680
4681         if (ret == -EIO)
4682                 ext4_error_inode_block(inode, err_blk, EIO,
4683                                         "unable to read itable block");
4684
4685         return ret;
4686 }
4687
4688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689 {
4690         ext4_fsblk_t err_blk = 0;
4691         int ret;
4692
4693         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4694                                         &err_blk);
4695
4696         if (ret == -EIO)
4697                 ext4_error_inode_block(inode, err_blk, EIO,
4698                                         "unable to read itable block");
4699
4700         return ret;
4701 }
4702
4703
4704 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4705                           struct ext4_iloc *iloc)
4706 {
4707         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4708 }
4709
4710 static bool ext4_should_enable_dax(struct inode *inode)
4711 {
4712         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713
4714         if (test_opt2(inode->i_sb, DAX_NEVER))
4715                 return false;
4716         if (!S_ISREG(inode->i_mode))
4717                 return false;
4718         if (ext4_should_journal_data(inode))
4719                 return false;
4720         if (ext4_has_inline_data(inode))
4721                 return false;
4722         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4723                 return false;
4724         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4725                 return false;
4726         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4727                 return false;
4728         if (test_opt(inode->i_sb, DAX_ALWAYS))
4729                 return true;
4730
4731         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4732 }
4733
4734 void ext4_set_inode_flags(struct inode *inode, bool init)
4735 {
4736         unsigned int flags = EXT4_I(inode)->i_flags;
4737         unsigned int new_fl = 0;
4738
4739         WARN_ON_ONCE(IS_DAX(inode) && init);
4740
4741         if (flags & EXT4_SYNC_FL)
4742                 new_fl |= S_SYNC;
4743         if (flags & EXT4_APPEND_FL)
4744                 new_fl |= S_APPEND;
4745         if (flags & EXT4_IMMUTABLE_FL)
4746                 new_fl |= S_IMMUTABLE;
4747         if (flags & EXT4_NOATIME_FL)
4748                 new_fl |= S_NOATIME;
4749         if (flags & EXT4_DIRSYNC_FL)
4750                 new_fl |= S_DIRSYNC;
4751
4752         /* Because of the way inode_set_flags() works we must preserve S_DAX
4753          * here if already set. */
4754         new_fl |= (inode->i_flags & S_DAX);
4755         if (init && ext4_should_enable_dax(inode))
4756                 new_fl |= S_DAX;
4757
4758         if (flags & EXT4_ENCRYPT_FL)
4759                 new_fl |= S_ENCRYPTED;
4760         if (flags & EXT4_CASEFOLD_FL)
4761                 new_fl |= S_CASEFOLD;
4762         if (flags & EXT4_VERITY_FL)
4763                 new_fl |= S_VERITY;
4764         inode_set_flags(inode, new_fl,
4765                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4766                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4767 }
4768
4769 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4770                                   struct ext4_inode_info *ei)
4771 {
4772         blkcnt_t i_blocks ;
4773         struct inode *inode = &(ei->vfs_inode);
4774         struct super_block *sb = inode->i_sb;
4775
4776         if (ext4_has_feature_huge_file(sb)) {
4777                 /* we are using combined 48 bit field */
4778                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779                                         le32_to_cpu(raw_inode->i_blocks_lo);
4780                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4781                         /* i_blocks represent file system block size */
4782                         return i_blocks  << (inode->i_blkbits - 9);
4783                 } else {
4784                         return i_blocks;
4785                 }
4786         } else {
4787                 return le32_to_cpu(raw_inode->i_blocks_lo);
4788         }
4789 }
4790
4791 static inline int ext4_iget_extra_inode(struct inode *inode,
4792                                          struct ext4_inode *raw_inode,
4793                                          struct ext4_inode_info *ei)
4794 {
4795         __le32 *magic = (void *)raw_inode +
4796                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4797
4798         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4799             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4800                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4801                 return ext4_find_inline_data_nolock(inode);
4802         } else
4803                 EXT4_I(inode)->i_inline_off = 0;
4804         return 0;
4805 }
4806
4807 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4808 {
4809         if (!ext4_has_feature_project(inode->i_sb))
4810                 return -EOPNOTSUPP;
4811         *projid = EXT4_I(inode)->i_projid;
4812         return 0;
4813 }
4814
4815 /*
4816  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4817  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4818  * set.
4819  */
4820 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4821 {
4822         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4823                 inode_set_iversion_raw(inode, val);
4824         else
4825                 inode_set_iversion_queried(inode, val);
4826 }
4827
4828 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4829                           ext4_iget_flags flags, const char *function,
4830                           unsigned int line)
4831 {
4832         struct ext4_iloc iloc;
4833         struct ext4_inode *raw_inode;
4834         struct ext4_inode_info *ei;
4835         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4836         struct inode *inode;
4837         journal_t *journal = EXT4_SB(sb)->s_journal;
4838         long ret;
4839         loff_t size;
4840         int block;
4841         uid_t i_uid;
4842         gid_t i_gid;
4843         projid_t i_projid;
4844
4845         if ((!(flags & EXT4_IGET_SPECIAL) &&
4846              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4847               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4848               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4849               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4850               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4851             (ino < EXT4_ROOT_INO) ||
4852             (ino > le32_to_cpu(es->s_inodes_count))) {
4853                 if (flags & EXT4_IGET_HANDLE)
4854                         return ERR_PTR(-ESTALE);
4855                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4856                              "inode #%lu: comm %s: iget: illegal inode #",
4857                              ino, current->comm);
4858                 return ERR_PTR(-EFSCORRUPTED);
4859         }
4860
4861         inode = iget_locked(sb, ino);
4862         if (!inode)
4863                 return ERR_PTR(-ENOMEM);
4864         if (!(inode->i_state & I_NEW))
4865                 return inode;
4866
4867         ei = EXT4_I(inode);
4868         iloc.bh = NULL;
4869
4870         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4871         if (ret < 0)
4872                 goto bad_inode;
4873         raw_inode = ext4_raw_inode(&iloc);
4874
4875         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4876                 ext4_error_inode(inode, function, line, 0,
4877                                  "iget: root inode unallocated");
4878                 ret = -EFSCORRUPTED;
4879                 goto bad_inode;
4880         }
4881
4882         if ((flags & EXT4_IGET_HANDLE) &&
4883             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4884                 ret = -ESTALE;
4885                 goto bad_inode;
4886         }
4887
4888         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4890                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4891                         EXT4_INODE_SIZE(inode->i_sb) ||
4892                     (ei->i_extra_isize & 3)) {
4893                         ext4_error_inode(inode, function, line, 0,
4894                                          "iget: bad extra_isize %u "
4895                                          "(inode size %u)",
4896                                          ei->i_extra_isize,
4897                                          EXT4_INODE_SIZE(inode->i_sb));
4898                         ret = -EFSCORRUPTED;
4899                         goto bad_inode;
4900                 }
4901         } else
4902                 ei->i_extra_isize = 0;
4903
4904         /* Precompute checksum seed for inode metadata */
4905         if (ext4_has_metadata_csum(sb)) {
4906                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4907                 __u32 csum;
4908                 __le32 inum = cpu_to_le32(inode->i_ino);
4909                 __le32 gen = raw_inode->i_generation;
4910                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4911                                    sizeof(inum));
4912                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4913                                               sizeof(gen));
4914         }
4915
4916         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4917             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4918              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4919                 ext4_error_inode_err(inode, function, line, 0,
4920                                 EFSBADCRC, "iget: checksum invalid");
4921                 ret = -EFSBADCRC;
4922                 goto bad_inode;
4923         }
4924
4925         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4926         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4927         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4928         if (ext4_has_feature_project(sb) &&
4929             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4930             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4931                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4932         else
4933                 i_projid = EXT4_DEF_PROJID;
4934
4935         if (!(test_opt(inode->i_sb, NO_UID32))) {
4936                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4937                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4938         }
4939         i_uid_write(inode, i_uid);
4940         i_gid_write(inode, i_gid);
4941         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4942         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4943
4944         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4945         ei->i_inline_off = 0;
4946         ei->i_dir_start_lookup = 0;
4947         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4948         /* We now have enough fields to check if the inode was active or not.
4949          * This is needed because nfsd might try to access dead inodes
4950          * the test is that same one that e2fsck uses
4951          * NeilBrown 1999oct15
4952          */
4953         if (inode->i_nlink == 0) {
4954                 if ((inode->i_mode == 0 ||
4955                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4956                     ino != EXT4_BOOT_LOADER_INO) {
4957                         /* this inode is deleted */
4958                         ret = -ESTALE;
4959                         goto bad_inode;
4960                 }
4961                 /* The only unlinked inodes we let through here have
4962                  * valid i_mode and are being read by the orphan
4963                  * recovery code: that's fine, we're about to complete
4964                  * the process of deleting those.
4965                  * OR it is the EXT4_BOOT_LOADER_INO which is
4966                  * not initialized on a new filesystem. */
4967         }
4968         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4969         ext4_set_inode_flags(inode, true);
4970         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4971         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4972         if (ext4_has_feature_64bit(sb))
4973                 ei->i_file_acl |=
4974                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4975         inode->i_size = ext4_isize(sb, raw_inode);
4976         if ((size = i_size_read(inode)) < 0) {
4977                 ext4_error_inode(inode, function, line, 0,
4978                                  "iget: bad i_size value: %lld", size);
4979                 ret = -EFSCORRUPTED;
4980                 goto bad_inode;
4981         }
4982         /*
4983          * If dir_index is not enabled but there's dir with INDEX flag set,
4984          * we'd normally treat htree data as empty space. But with metadata
4985          * checksumming that corrupts checksums so forbid that.
4986          */
4987         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4988             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4989                 ext4_error_inode(inode, function, line, 0,
4990                          "iget: Dir with htree data on filesystem without dir_index feature.");
4991                 ret = -EFSCORRUPTED;
4992                 goto bad_inode;
4993         }
4994         ei->i_disksize = inode->i_size;
4995 #ifdef CONFIG_QUOTA
4996         ei->i_reserved_quota = 0;
4997 #endif
4998         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4999         ei->i_block_group = iloc.block_group;
5000         ei->i_last_alloc_group = ~0;
5001         /*
5002          * NOTE! The in-memory inode i_data array is in little-endian order
5003          * even on big-endian machines: we do NOT byteswap the block numbers!
5004          */
5005         for (block = 0; block < EXT4_N_BLOCKS; block++)
5006                 ei->i_data[block] = raw_inode->i_block[block];
5007         INIT_LIST_HEAD(&ei->i_orphan);
5008         ext4_fc_init_inode(&ei->vfs_inode);
5009
5010         /*
5011          * Set transaction id's of transactions that have to be committed
5012          * to finish f[data]sync. We set them to currently running transaction
5013          * as we cannot be sure that the inode or some of its metadata isn't
5014          * part of the transaction - the inode could have been reclaimed and
5015          * now it is reread from disk.
5016          */
5017         if (journal) {
5018                 transaction_t *transaction;
5019                 tid_t tid;
5020
5021                 read_lock(&journal->j_state_lock);
5022                 if (journal->j_running_transaction)
5023                         transaction = journal->j_running_transaction;
5024                 else
5025                         transaction = journal->j_committing_transaction;
5026                 if (transaction)
5027                         tid = transaction->t_tid;
5028                 else
5029                         tid = journal->j_commit_sequence;
5030                 read_unlock(&journal->j_state_lock);
5031                 ei->i_sync_tid = tid;
5032                 ei->i_datasync_tid = tid;
5033         }
5034
5035         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5036                 if (ei->i_extra_isize == 0) {
5037                         /* The extra space is currently unused. Use it. */
5038                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5039                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5040                                             EXT4_GOOD_OLD_INODE_SIZE;
5041                 } else {
5042                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5043                         if (ret)
5044                                 goto bad_inode;
5045                 }
5046         }
5047
5048         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5049         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5050         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5051         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5052
5053         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5054                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5055
5056                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5057                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5058                                 ivers |=
5059                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5060                 }
5061                 ext4_inode_set_iversion_queried(inode, ivers);
5062         }
5063
5064         ret = 0;
5065         if (ei->i_file_acl &&
5066             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5067                 ext4_error_inode(inode, function, line, 0,
5068                                  "iget: bad extended attribute block %llu",
5069                                  ei->i_file_acl);
5070                 ret = -EFSCORRUPTED;
5071                 goto bad_inode;
5072         } else if (!ext4_has_inline_data(inode)) {
5073                 /* validate the block references in the inode */
5074                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5075                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5076                         (S_ISLNK(inode->i_mode) &&
5077                         !ext4_inode_is_fast_symlink(inode)))) {
5078                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5079                                 ret = ext4_ext_check_inode(inode);
5080                         else
5081                                 ret = ext4_ind_check_inode(inode);
5082                 }
5083         }
5084         if (ret)
5085                 goto bad_inode;
5086
5087         if (S_ISREG(inode->i_mode)) {
5088                 inode->i_op = &ext4_file_inode_operations;
5089                 inode->i_fop = &ext4_file_operations;
5090                 ext4_set_aops(inode);
5091         } else if (S_ISDIR(inode->i_mode)) {
5092                 inode->i_op = &ext4_dir_inode_operations;
5093                 inode->i_fop = &ext4_dir_operations;
5094         } else if (S_ISLNK(inode->i_mode)) {
5095                 /* VFS does not allow setting these so must be corruption */
5096                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5097                         ext4_error_inode(inode, function, line, 0,
5098                                          "iget: immutable or append flags "
5099                                          "not allowed on symlinks");
5100                         ret = -EFSCORRUPTED;
5101                         goto bad_inode;
5102                 }
5103                 if (IS_ENCRYPTED(inode)) {
5104                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5105                 } else if (ext4_inode_is_fast_symlink(inode)) {
5106                         inode->i_link = (char *)ei->i_data;
5107                         inode->i_op = &ext4_fast_symlink_inode_operations;
5108                         nd_terminate_link(ei->i_data, inode->i_size,
5109                                 sizeof(ei->i_data) - 1);
5110                 } else {
5111                         inode->i_op = &ext4_symlink_inode_operations;
5112                 }
5113         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5114               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5115                 inode->i_op = &ext4_special_inode_operations;
5116                 if (raw_inode->i_block[0])
5117                         init_special_inode(inode, inode->i_mode,
5118                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5119                 else
5120                         init_special_inode(inode, inode->i_mode,
5121                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5122         } else if (ino == EXT4_BOOT_LOADER_INO) {
5123                 make_bad_inode(inode);
5124         } else {
5125                 ret = -EFSCORRUPTED;
5126                 ext4_error_inode(inode, function, line, 0,
5127                                  "iget: bogus i_mode (%o)", inode->i_mode);
5128                 goto bad_inode;
5129         }
5130         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5131                 ext4_error_inode(inode, function, line, 0,
5132                                  "casefold flag without casefold feature");
5133         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5134                 ext4_error_inode(inode, function, line, 0,
5135                                  "bad inode without EXT4_IGET_BAD flag");
5136                 ret = -EUCLEAN;
5137                 goto bad_inode;
5138         }
5139
5140         brelse(iloc.bh);
5141         unlock_new_inode(inode);
5142         return inode;
5143
5144 bad_inode:
5145         brelse(iloc.bh);
5146         iget_failed(inode);
5147         return ERR_PTR(ret);
5148 }
5149
5150 static void __ext4_update_other_inode_time(struct super_block *sb,
5151                                            unsigned long orig_ino,
5152                                            unsigned long ino,
5153                                            struct ext4_inode *raw_inode)
5154 {
5155         struct inode *inode;
5156
5157         inode = find_inode_by_ino_rcu(sb, ino);
5158         if (!inode)
5159                 return;
5160
5161         if (!inode_is_dirtytime_only(inode))
5162                 return;
5163
5164         spin_lock(&inode->i_lock);
5165         if (inode_is_dirtytime_only(inode)) {
5166                 struct ext4_inode_info  *ei = EXT4_I(inode);
5167
5168                 inode->i_state &= ~I_DIRTY_TIME;
5169                 spin_unlock(&inode->i_lock);
5170
5171                 spin_lock(&ei->i_raw_lock);
5172                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5173                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5174                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5175                 ext4_inode_csum_set(inode, raw_inode, ei);
5176                 spin_unlock(&ei->i_raw_lock);
5177                 trace_ext4_other_inode_update_time(inode, orig_ino);
5178                 return;
5179         }
5180         spin_unlock(&inode->i_lock);
5181 }
5182
5183 /*
5184  * Opportunistically update the other time fields for other inodes in
5185  * the same inode table block.
5186  */
5187 static void ext4_update_other_inodes_time(struct super_block *sb,
5188                                           unsigned long orig_ino, char *buf)
5189 {
5190         unsigned long ino;
5191         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5192         int inode_size = EXT4_INODE_SIZE(sb);
5193
5194         /*
5195          * Calculate the first inode in the inode table block.  Inode
5196          * numbers are one-based.  That is, the first inode in a block
5197          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198          */
5199         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200         rcu_read_lock();
5201         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5202                 if (ino == orig_ino)
5203                         continue;
5204                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5205                                                (struct ext4_inode *)buf);
5206         }
5207         rcu_read_unlock();
5208 }
5209
5210 /*
5211  * Post the struct inode info into an on-disk inode location in the
5212  * buffer-cache.  This gobbles the caller's reference to the
5213  * buffer_head in the inode location struct.
5214  *
5215  * The caller must have write access to iloc->bh.
5216  */
5217 static int ext4_do_update_inode(handle_t *handle,
5218                                 struct inode *inode,
5219                                 struct ext4_iloc *iloc)
5220 {
5221         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5222         struct ext4_inode_info *ei = EXT4_I(inode);
5223         struct buffer_head *bh = iloc->bh;
5224         struct super_block *sb = inode->i_sb;
5225         int err;
5226         int need_datasync = 0, set_large_file = 0;
5227
5228         spin_lock(&ei->i_raw_lock);
5229
5230         /*
5231          * For fields not tracked in the in-memory inode, initialise them
5232          * to zero for new inodes.
5233          */
5234         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5235                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5236
5237         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5238                 need_datasync = 1;
5239         if (ei->i_disksize > 0x7fffffffULL) {
5240                 if (!ext4_has_feature_large_file(sb) ||
5241                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5242                         set_large_file = 1;
5243         }
5244
5245         err = ext4_fill_raw_inode(inode, raw_inode);
5246         spin_unlock(&ei->i_raw_lock);
5247         if (err) {
5248                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5249                 goto out_brelse;
5250         }
5251
5252         if (inode->i_sb->s_flags & SB_LAZYTIME)
5253                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5254                                               bh->b_data);
5255
5256         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5257         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5258         if (err)
5259                 goto out_error;
5260         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5261         if (set_large_file) {
5262                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5263                 err = ext4_journal_get_write_access(handle, sb,
5264                                                     EXT4_SB(sb)->s_sbh,
5265                                                     EXT4_JTR_NONE);
5266                 if (err)
5267                         goto out_error;
5268                 lock_buffer(EXT4_SB(sb)->s_sbh);
5269                 ext4_set_feature_large_file(sb);
5270                 ext4_superblock_csum_set(sb);
5271                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5272                 ext4_handle_sync(handle);
5273                 err = ext4_handle_dirty_metadata(handle, NULL,
5274                                                  EXT4_SB(sb)->s_sbh);
5275         }
5276         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5277 out_error:
5278         ext4_std_error(inode->i_sb, err);
5279 out_brelse:
5280         brelse(bh);
5281         return err;
5282 }
5283
5284 /*
5285  * ext4_write_inode()
5286  *
5287  * We are called from a few places:
5288  *
5289  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5290  *   Here, there will be no transaction running. We wait for any running
5291  *   transaction to commit.
5292  *
5293  * - Within flush work (sys_sync(), kupdate and such).
5294  *   We wait on commit, if told to.
5295  *
5296  * - Within iput_final() -> write_inode_now()
5297  *   We wait on commit, if told to.
5298  *
5299  * In all cases it is actually safe for us to return without doing anything,
5300  * because the inode has been copied into a raw inode buffer in
5301  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5302  * writeback.
5303  *
5304  * Note that we are absolutely dependent upon all inode dirtiers doing the
5305  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5306  * which we are interested.
5307  *
5308  * It would be a bug for them to not do this.  The code:
5309  *
5310  *      mark_inode_dirty(inode)
5311  *      stuff();
5312  *      inode->i_size = expr;
5313  *
5314  * is in error because write_inode() could occur while `stuff()' is running,
5315  * and the new i_size will be lost.  Plus the inode will no longer be on the
5316  * superblock's dirty inode list.
5317  */
5318 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5319 {
5320         int err;
5321
5322         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5323             sb_rdonly(inode->i_sb))
5324                 return 0;
5325
5326         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5327                 return -EIO;
5328
5329         if (EXT4_SB(inode->i_sb)->s_journal) {
5330                 if (ext4_journal_current_handle()) {
5331                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5332                         dump_stack();
5333                         return -EIO;
5334                 }
5335
5336                 /*
5337                  * No need to force transaction in WB_SYNC_NONE mode. Also
5338                  * ext4_sync_fs() will force the commit after everything is
5339                  * written.
5340                  */
5341                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5342                         return 0;
5343
5344                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5345                                                 EXT4_I(inode)->i_sync_tid);
5346         } else {
5347                 struct ext4_iloc iloc;
5348
5349                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5350                 if (err)
5351                         return err;
5352                 /*
5353                  * sync(2) will flush the whole buffer cache. No need to do
5354                  * it here separately for each inode.
5355                  */
5356                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5357                         sync_dirty_buffer(iloc.bh);
5358                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5359                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5360                                                "IO error syncing inode");
5361                         err = -EIO;
5362                 }
5363                 brelse(iloc.bh);
5364         }
5365         return err;
5366 }
5367
5368 /*
5369  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5370  * buffers that are attached to a folio straddling i_size and are undergoing
5371  * commit. In that case we have to wait for commit to finish and try again.
5372  */
5373 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5374 {
5375         unsigned offset;
5376         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5377         tid_t commit_tid = 0;
5378         int ret;
5379
5380         offset = inode->i_size & (PAGE_SIZE - 1);
5381         /*
5382          * If the folio is fully truncated, we don't need to wait for any commit
5383          * (and we even should not as __ext4_journalled_invalidate_folio() may
5384          * strip all buffers from the folio but keep the folio dirty which can then
5385          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5386          * buffers). Also we don't need to wait for any commit if all buffers in
5387          * the folio remain valid. This is most beneficial for the common case of
5388          * blocksize == PAGESIZE.
5389          */
5390         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5391                 return;
5392         while (1) {
5393                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5394                                       inode->i_size >> PAGE_SHIFT);
5395                 if (!folio)
5396                         return;
5397                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5398                                                 folio_size(folio) - offset);
5399                 folio_unlock(folio);
5400                 folio_put(folio);
5401                 if (ret != -EBUSY)
5402                         return;
5403                 commit_tid = 0;
5404                 read_lock(&journal->j_state_lock);
5405                 if (journal->j_committing_transaction)
5406                         commit_tid = journal->j_committing_transaction->t_tid;
5407                 read_unlock(&journal->j_state_lock);
5408                 if (commit_tid)
5409                         jbd2_log_wait_commit(journal, commit_tid);
5410         }
5411 }
5412
5413 /*
5414  * ext4_setattr()
5415  *
5416  * Called from notify_change.
5417  *
5418  * We want to trap VFS attempts to truncate the file as soon as
5419  * possible.  In particular, we want to make sure that when the VFS
5420  * shrinks i_size, we put the inode on the orphan list and modify
5421  * i_disksize immediately, so that during the subsequent flushing of
5422  * dirty pages and freeing of disk blocks, we can guarantee that any
5423  * commit will leave the blocks being flushed in an unused state on
5424  * disk.  (On recovery, the inode will get truncated and the blocks will
5425  * be freed, so we have a strong guarantee that no future commit will
5426  * leave these blocks visible to the user.)
5427  *
5428  * Another thing we have to assure is that if we are in ordered mode
5429  * and inode is still attached to the committing transaction, we must
5430  * we start writeout of all the dirty pages which are being truncated.
5431  * This way we are sure that all the data written in the previous
5432  * transaction are already on disk (truncate waits for pages under
5433  * writeback).
5434  *
5435  * Called with inode->i_rwsem down.
5436  */
5437 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5438                  struct iattr *attr)
5439 {
5440         struct inode *inode = d_inode(dentry);
5441         int error, rc = 0;
5442         int orphan = 0;
5443         const unsigned int ia_valid = attr->ia_valid;
5444         bool inc_ivers = true;
5445         struct user_namespace *mnt_userns = mnt_idmap_owner(idmap);
5446
5447         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5448                 return -EIO;
5449
5450         if (unlikely(IS_IMMUTABLE(inode)))
5451                 return -EPERM;
5452
5453         if (unlikely(IS_APPEND(inode) &&
5454                      (ia_valid & (ATTR_MODE | ATTR_UID |
5455                                   ATTR_GID | ATTR_TIMES_SET))))
5456                 return -EPERM;
5457
5458         error = setattr_prepare(idmap, dentry, attr);
5459         if (error)
5460                 return error;
5461
5462         error = fscrypt_prepare_setattr(dentry, attr);
5463         if (error)
5464                 return error;
5465
5466         error = fsverity_prepare_setattr(dentry, attr);
5467         if (error)
5468                 return error;
5469
5470         if (is_quota_modification(mnt_userns, inode, attr)) {
5471                 error = dquot_initialize(inode);
5472                 if (error)
5473                         return error;
5474         }
5475
5476         if (i_uid_needs_update(mnt_userns, attr, inode) ||
5477             i_gid_needs_update(mnt_userns, attr, inode)) {
5478                 handle_t *handle;
5479
5480                 /* (user+group)*(old+new) structure, inode write (sb,
5481                  * inode block, ? - but truncate inode update has it) */
5482                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5483                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5484                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5485                 if (IS_ERR(handle)) {
5486                         error = PTR_ERR(handle);
5487                         goto err_out;
5488                 }
5489
5490                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5491                  * counts xattr inode references.
5492                  */
5493                 down_read(&EXT4_I(inode)->xattr_sem);
5494                 error = dquot_transfer(mnt_userns, inode, attr);
5495                 up_read(&EXT4_I(inode)->xattr_sem);
5496
5497                 if (error) {
5498                         ext4_journal_stop(handle);
5499                         return error;
5500                 }
5501                 /* Update corresponding info in inode so that everything is in
5502                  * one transaction */
5503                 i_uid_update(mnt_userns, attr, inode);
5504                 i_gid_update(mnt_userns, attr, inode);
5505                 error = ext4_mark_inode_dirty(handle, inode);
5506                 ext4_journal_stop(handle);
5507                 if (unlikely(error)) {
5508                         return error;
5509                 }
5510         }
5511
5512         if (attr->ia_valid & ATTR_SIZE) {
5513                 handle_t *handle;
5514                 loff_t oldsize = inode->i_size;
5515                 loff_t old_disksize;
5516                 int shrink = (attr->ia_size < inode->i_size);
5517
5518                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5519                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5520
5521                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5522                                 return -EFBIG;
5523                         }
5524                 }
5525                 if (!S_ISREG(inode->i_mode)) {
5526                         return -EINVAL;
5527                 }
5528
5529                 if (attr->ia_size == inode->i_size)
5530                         inc_ivers = false;
5531
5532                 if (shrink) {
5533                         if (ext4_should_order_data(inode)) {
5534                                 error = ext4_begin_ordered_truncate(inode,
5535                                                             attr->ia_size);
5536                                 if (error)
5537                                         goto err_out;
5538                         }
5539                         /*
5540                          * Blocks are going to be removed from the inode. Wait
5541                          * for dio in flight.
5542                          */
5543                         inode_dio_wait(inode);
5544                 }
5545
5546                 filemap_invalidate_lock(inode->i_mapping);
5547
5548                 rc = ext4_break_layouts(inode);
5549                 if (rc) {
5550                         filemap_invalidate_unlock(inode->i_mapping);
5551                         goto err_out;
5552                 }
5553
5554                 if (attr->ia_size != inode->i_size) {
5555                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5556                         if (IS_ERR(handle)) {
5557                                 error = PTR_ERR(handle);
5558                                 goto out_mmap_sem;
5559                         }
5560                         if (ext4_handle_valid(handle) && shrink) {
5561                                 error = ext4_orphan_add(handle, inode);
5562                                 orphan = 1;
5563                         }
5564                         /*
5565                          * Update c/mtime on truncate up, ext4_truncate() will
5566                          * update c/mtime in shrink case below
5567                          */
5568                         if (!shrink) {
5569                                 inode->i_mtime = current_time(inode);
5570                                 inode->i_ctime = inode->i_mtime;
5571                         }
5572
5573                         if (shrink)
5574                                 ext4_fc_track_range(handle, inode,
5575                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5576                                         inode->i_sb->s_blocksize_bits,
5577                                         EXT_MAX_BLOCKS - 1);
5578                         else
5579                                 ext4_fc_track_range(
5580                                         handle, inode,
5581                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5582                                         inode->i_sb->s_blocksize_bits,
5583                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5584                                         inode->i_sb->s_blocksize_bits);
5585
5586                         down_write(&EXT4_I(inode)->i_data_sem);
5587                         old_disksize = EXT4_I(inode)->i_disksize;
5588                         EXT4_I(inode)->i_disksize = attr->ia_size;
5589                         rc = ext4_mark_inode_dirty(handle, inode);
5590                         if (!error)
5591                                 error = rc;
5592                         /*
5593                          * We have to update i_size under i_data_sem together
5594                          * with i_disksize to avoid races with writeback code
5595                          * running ext4_wb_update_i_disksize().
5596                          */
5597                         if (!error)
5598                                 i_size_write(inode, attr->ia_size);
5599                         else
5600                                 EXT4_I(inode)->i_disksize = old_disksize;
5601                         up_write(&EXT4_I(inode)->i_data_sem);
5602                         ext4_journal_stop(handle);
5603                         if (error)
5604                                 goto out_mmap_sem;
5605                         if (!shrink) {
5606                                 pagecache_isize_extended(inode, oldsize,
5607                                                          inode->i_size);
5608                         } else if (ext4_should_journal_data(inode)) {
5609                                 ext4_wait_for_tail_page_commit(inode);
5610                         }
5611                 }
5612
5613                 /*
5614                  * Truncate pagecache after we've waited for commit
5615                  * in data=journal mode to make pages freeable.
5616                  */
5617                 truncate_pagecache(inode, inode->i_size);
5618                 /*
5619                  * Call ext4_truncate() even if i_size didn't change to
5620                  * truncate possible preallocated blocks.
5621                  */
5622                 if (attr->ia_size <= oldsize) {
5623                         rc = ext4_truncate(inode);
5624                         if (rc)
5625                                 error = rc;
5626                 }
5627 out_mmap_sem:
5628                 filemap_invalidate_unlock(inode->i_mapping);
5629         }
5630
5631         if (!error) {
5632                 if (inc_ivers)
5633                         inode_inc_iversion(inode);
5634                 setattr_copy(idmap, inode, attr);
5635                 mark_inode_dirty(inode);
5636         }
5637
5638         /*
5639          * If the call to ext4_truncate failed to get a transaction handle at
5640          * all, we need to clean up the in-core orphan list manually.
5641          */
5642         if (orphan && inode->i_nlink)
5643                 ext4_orphan_del(NULL, inode);
5644
5645         if (!error && (ia_valid & ATTR_MODE))
5646                 rc = posix_acl_chmod(mnt_userns, dentry, inode->i_mode);
5647
5648 err_out:
5649         if  (error)
5650                 ext4_std_error(inode->i_sb, error);
5651         if (!error)
5652                 error = rc;
5653         return error;
5654 }
5655
5656 u32 ext4_dio_alignment(struct inode *inode)
5657 {
5658         if (fsverity_active(inode))
5659                 return 0;
5660         if (ext4_should_journal_data(inode))
5661                 return 0;
5662         if (ext4_has_inline_data(inode))
5663                 return 0;
5664         if (IS_ENCRYPTED(inode)) {
5665                 if (!fscrypt_dio_supported(inode))
5666                         return 0;
5667                 return i_blocksize(inode);
5668         }
5669         return 1; /* use the iomap defaults */
5670 }
5671
5672 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5673                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5674 {
5675         struct inode *inode = d_inode(path->dentry);
5676         struct ext4_inode *raw_inode;
5677         struct ext4_inode_info *ei = EXT4_I(inode);
5678         unsigned int flags;
5679
5680         if ((request_mask & STATX_BTIME) &&
5681             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5682                 stat->result_mask |= STATX_BTIME;
5683                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5684                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5685         }
5686
5687         /*
5688          * Return the DIO alignment restrictions if requested.  We only return
5689          * this information when requested, since on encrypted files it might
5690          * take a fair bit of work to get if the file wasn't opened recently.
5691          */
5692         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5693                 u32 dio_align = ext4_dio_alignment(inode);
5694
5695                 stat->result_mask |= STATX_DIOALIGN;
5696                 if (dio_align == 1) {
5697                         struct block_device *bdev = inode->i_sb->s_bdev;
5698
5699                         /* iomap defaults */
5700                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5701                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5702                 } else {
5703                         stat->dio_mem_align = dio_align;
5704                         stat->dio_offset_align = dio_align;
5705                 }
5706         }
5707
5708         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5709         if (flags & EXT4_APPEND_FL)
5710                 stat->attributes |= STATX_ATTR_APPEND;
5711         if (flags & EXT4_COMPR_FL)
5712                 stat->attributes |= STATX_ATTR_COMPRESSED;
5713         if (flags & EXT4_ENCRYPT_FL)
5714                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5715         if (flags & EXT4_IMMUTABLE_FL)
5716                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5717         if (flags & EXT4_NODUMP_FL)
5718                 stat->attributes |= STATX_ATTR_NODUMP;
5719         if (flags & EXT4_VERITY_FL)
5720                 stat->attributes |= STATX_ATTR_VERITY;
5721
5722         stat->attributes_mask |= (STATX_ATTR_APPEND |
5723                                   STATX_ATTR_COMPRESSED |
5724                                   STATX_ATTR_ENCRYPTED |
5725                                   STATX_ATTR_IMMUTABLE |
5726                                   STATX_ATTR_NODUMP |
5727                                   STATX_ATTR_VERITY);
5728
5729         generic_fillattr(mnt_userns, inode, stat);
5730         return 0;
5731 }
5732
5733 int ext4_file_getattr(struct user_namespace *mnt_userns,
5734                       const struct path *path, struct kstat *stat,
5735                       u32 request_mask, unsigned int query_flags)
5736 {
5737         struct inode *inode = d_inode(path->dentry);
5738         u64 delalloc_blocks;
5739
5740         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5741
5742         /*
5743          * If there is inline data in the inode, the inode will normally not
5744          * have data blocks allocated (it may have an external xattr block).
5745          * Report at least one sector for such files, so tools like tar, rsync,
5746          * others don't incorrectly think the file is completely sparse.
5747          */
5748         if (unlikely(ext4_has_inline_data(inode)))
5749                 stat->blocks += (stat->size + 511) >> 9;
5750
5751         /*
5752          * We can't update i_blocks if the block allocation is delayed
5753          * otherwise in the case of system crash before the real block
5754          * allocation is done, we will have i_blocks inconsistent with
5755          * on-disk file blocks.
5756          * We always keep i_blocks updated together with real
5757          * allocation. But to not confuse with user, stat
5758          * will return the blocks that include the delayed allocation
5759          * blocks for this file.
5760          */
5761         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5762                                    EXT4_I(inode)->i_reserved_data_blocks);
5763         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5764         return 0;
5765 }
5766
5767 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5768                                    int pextents)
5769 {
5770         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5771                 return ext4_ind_trans_blocks(inode, lblocks);
5772         return ext4_ext_index_trans_blocks(inode, pextents);
5773 }
5774
5775 /*
5776  * Account for index blocks, block groups bitmaps and block group
5777  * descriptor blocks if modify datablocks and index blocks
5778  * worse case, the indexs blocks spread over different block groups
5779  *
5780  * If datablocks are discontiguous, they are possible to spread over
5781  * different block groups too. If they are contiguous, with flexbg,
5782  * they could still across block group boundary.
5783  *
5784  * Also account for superblock, inode, quota and xattr blocks
5785  */
5786 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5787                                   int pextents)
5788 {
5789         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5790         int gdpblocks;
5791         int idxblocks;
5792         int ret = 0;
5793
5794         /*
5795          * How many index blocks need to touch to map @lblocks logical blocks
5796          * to @pextents physical extents?
5797          */
5798         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5799
5800         ret = idxblocks;
5801
5802         /*
5803          * Now let's see how many group bitmaps and group descriptors need
5804          * to account
5805          */
5806         groups = idxblocks + pextents;
5807         gdpblocks = groups;
5808         if (groups > ngroups)
5809                 groups = ngroups;
5810         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5811                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5812
5813         /* bitmaps and block group descriptor blocks */
5814         ret += groups + gdpblocks;
5815
5816         /* Blocks for super block, inode, quota and xattr blocks */
5817         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5818
5819         return ret;
5820 }
5821
5822 /*
5823  * Calculate the total number of credits to reserve to fit
5824  * the modification of a single pages into a single transaction,
5825  * which may include multiple chunks of block allocations.
5826  *
5827  * This could be called via ext4_write_begin()
5828  *
5829  * We need to consider the worse case, when
5830  * one new block per extent.
5831  */
5832 int ext4_writepage_trans_blocks(struct inode *inode)
5833 {
5834         int bpp = ext4_journal_blocks_per_page(inode);
5835         int ret;
5836
5837         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5838
5839         /* Account for data blocks for journalled mode */
5840         if (ext4_should_journal_data(inode))
5841                 ret += bpp;
5842         return ret;
5843 }
5844
5845 /*
5846  * Calculate the journal credits for a chunk of data modification.
5847  *
5848  * This is called from DIO, fallocate or whoever calling
5849  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5850  *
5851  * journal buffers for data blocks are not included here, as DIO
5852  * and fallocate do no need to journal data buffers.
5853  */
5854 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5855 {
5856         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5857 }
5858
5859 /*
5860  * The caller must have previously called ext4_reserve_inode_write().
5861  * Give this, we know that the caller already has write access to iloc->bh.
5862  */
5863 int ext4_mark_iloc_dirty(handle_t *handle,
5864                          struct inode *inode, struct ext4_iloc *iloc)
5865 {
5866         int err = 0;
5867
5868         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5869                 put_bh(iloc->bh);
5870                 return -EIO;
5871         }
5872         ext4_fc_track_inode(handle, inode);
5873
5874         /* the do_update_inode consumes one bh->b_count */
5875         get_bh(iloc->bh);
5876
5877         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5878         err = ext4_do_update_inode(handle, inode, iloc);
5879         put_bh(iloc->bh);
5880         return err;
5881 }
5882
5883 /*
5884  * On success, We end up with an outstanding reference count against
5885  * iloc->bh.  This _must_ be cleaned up later.
5886  */
5887
5888 int
5889 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5890                          struct ext4_iloc *iloc)
5891 {
5892         int err;
5893
5894         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5895                 return -EIO;
5896
5897         err = ext4_get_inode_loc(inode, iloc);
5898         if (!err) {
5899                 BUFFER_TRACE(iloc->bh, "get_write_access");
5900                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5901                                                     iloc->bh, EXT4_JTR_NONE);
5902                 if (err) {
5903                         brelse(iloc->bh);
5904                         iloc->bh = NULL;
5905                 }
5906         }
5907         ext4_std_error(inode->i_sb, err);
5908         return err;
5909 }
5910
5911 static int __ext4_expand_extra_isize(struct inode *inode,
5912                                      unsigned int new_extra_isize,
5913                                      struct ext4_iloc *iloc,
5914                                      handle_t *handle, int *no_expand)
5915 {
5916         struct ext4_inode *raw_inode;
5917         struct ext4_xattr_ibody_header *header;
5918         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5919         struct ext4_inode_info *ei = EXT4_I(inode);
5920         int error;
5921
5922         /* this was checked at iget time, but double check for good measure */
5923         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5924             (ei->i_extra_isize & 3)) {
5925                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5926                                  ei->i_extra_isize,
5927                                  EXT4_INODE_SIZE(inode->i_sb));
5928                 return -EFSCORRUPTED;
5929         }
5930         if ((new_extra_isize < ei->i_extra_isize) ||
5931             (new_extra_isize < 4) ||
5932             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5933                 return -EINVAL; /* Should never happen */
5934
5935         raw_inode = ext4_raw_inode(iloc);
5936
5937         header = IHDR(inode, raw_inode);
5938
5939         /* No extended attributes present */
5940         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5941             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5942                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5943                        EXT4_I(inode)->i_extra_isize, 0,
5944                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5945                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5946                 return 0;
5947         }
5948
5949         /*
5950          * We may need to allocate external xattr block so we need quotas
5951          * initialized. Here we can be called with various locks held so we
5952          * cannot affort to initialize quotas ourselves. So just bail.
5953          */
5954         if (dquot_initialize_needed(inode))
5955                 return -EAGAIN;
5956
5957         /* try to expand with EAs present */
5958         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5959                                            raw_inode, handle);
5960         if (error) {
5961                 /*
5962                  * Inode size expansion failed; don't try again
5963                  */
5964                 *no_expand = 1;
5965         }
5966
5967         return error;
5968 }
5969
5970 /*
5971  * Expand an inode by new_extra_isize bytes.
5972  * Returns 0 on success or negative error number on failure.
5973  */
5974 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5975                                           unsigned int new_extra_isize,
5976                                           struct ext4_iloc iloc,
5977                                           handle_t *handle)
5978 {
5979         int no_expand;
5980         int error;
5981
5982         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5983                 return -EOVERFLOW;
5984
5985         /*
5986          * In nojournal mode, we can immediately attempt to expand
5987          * the inode.  When journaled, we first need to obtain extra
5988          * buffer credits since we may write into the EA block
5989          * with this same handle. If journal_extend fails, then it will
5990          * only result in a minor loss of functionality for that inode.
5991          * If this is felt to be critical, then e2fsck should be run to
5992          * force a large enough s_min_extra_isize.
5993          */
5994         if (ext4_journal_extend(handle,
5995                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5996                 return -ENOSPC;
5997
5998         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5999                 return -EBUSY;
6000
6001         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6002                                           handle, &no_expand);
6003         ext4_write_unlock_xattr(inode, &no_expand);
6004
6005         return error;
6006 }
6007
6008 int ext4_expand_extra_isize(struct inode *inode,
6009                             unsigned int new_extra_isize,
6010                             struct ext4_iloc *iloc)
6011 {
6012         handle_t *handle;
6013         int no_expand;
6014         int error, rc;
6015
6016         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6017                 brelse(iloc->bh);
6018                 return -EOVERFLOW;
6019         }
6020
6021         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6022                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6023         if (IS_ERR(handle)) {
6024                 error = PTR_ERR(handle);
6025                 brelse(iloc->bh);
6026                 return error;
6027         }
6028
6029         ext4_write_lock_xattr(inode, &no_expand);
6030
6031         BUFFER_TRACE(iloc->bh, "get_write_access");
6032         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6033                                               EXT4_JTR_NONE);
6034         if (error) {
6035                 brelse(iloc->bh);
6036                 goto out_unlock;
6037         }
6038
6039         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6040                                           handle, &no_expand);
6041
6042         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6043         if (!error)
6044                 error = rc;
6045
6046 out_unlock:
6047         ext4_write_unlock_xattr(inode, &no_expand);
6048         ext4_journal_stop(handle);
6049         return error;
6050 }
6051
6052 /*
6053  * What we do here is to mark the in-core inode as clean with respect to inode
6054  * dirtiness (it may still be data-dirty).
6055  * This means that the in-core inode may be reaped by prune_icache
6056  * without having to perform any I/O.  This is a very good thing,
6057  * because *any* task may call prune_icache - even ones which
6058  * have a transaction open against a different journal.
6059  *
6060  * Is this cheating?  Not really.  Sure, we haven't written the
6061  * inode out, but prune_icache isn't a user-visible syncing function.
6062  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6063  * we start and wait on commits.
6064  */
6065 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6066                                 const char *func, unsigned int line)
6067 {
6068         struct ext4_iloc iloc;
6069         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6070         int err;
6071
6072         might_sleep();
6073         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6074         err = ext4_reserve_inode_write(handle, inode, &iloc);
6075         if (err)
6076                 goto out;
6077
6078         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6079                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6080                                                iloc, handle);
6081
6082         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6083 out:
6084         if (unlikely(err))
6085                 ext4_error_inode_err(inode, func, line, 0, err,
6086                                         "mark_inode_dirty error");
6087         return err;
6088 }
6089
6090 /*
6091  * ext4_dirty_inode() is called from __mark_inode_dirty()
6092  *
6093  * We're really interested in the case where a file is being extended.
6094  * i_size has been changed by generic_commit_write() and we thus need
6095  * to include the updated inode in the current transaction.
6096  *
6097  * Also, dquot_alloc_block() will always dirty the inode when blocks
6098  * are allocated to the file.
6099  *
6100  * If the inode is marked synchronous, we don't honour that here - doing
6101  * so would cause a commit on atime updates, which we don't bother doing.
6102  * We handle synchronous inodes at the highest possible level.
6103  */
6104 void ext4_dirty_inode(struct inode *inode, int flags)
6105 {
6106         handle_t *handle;
6107
6108         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6109         if (IS_ERR(handle))
6110                 return;
6111         ext4_mark_inode_dirty(handle, inode);
6112         ext4_journal_stop(handle);
6113 }
6114
6115 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6116 {
6117         journal_t *journal;
6118         handle_t *handle;
6119         int err;
6120         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6121
6122         /*
6123          * We have to be very careful here: changing a data block's
6124          * journaling status dynamically is dangerous.  If we write a
6125          * data block to the journal, change the status and then delete
6126          * that block, we risk forgetting to revoke the old log record
6127          * from the journal and so a subsequent replay can corrupt data.
6128          * So, first we make sure that the journal is empty and that
6129          * nobody is changing anything.
6130          */
6131
6132         journal = EXT4_JOURNAL(inode);
6133         if (!journal)
6134                 return 0;
6135         if (is_journal_aborted(journal))
6136                 return -EROFS;
6137
6138         /* Wait for all existing dio workers */
6139         inode_dio_wait(inode);
6140
6141         /*
6142          * Before flushing the journal and switching inode's aops, we have
6143          * to flush all dirty data the inode has. There can be outstanding
6144          * delayed allocations, there can be unwritten extents created by
6145          * fallocate or buffered writes in dioread_nolock mode covered by
6146          * dirty data which can be converted only after flushing the dirty
6147          * data (and journalled aops don't know how to handle these cases).
6148          */
6149         if (val) {
6150                 filemap_invalidate_lock(inode->i_mapping);
6151                 err = filemap_write_and_wait(inode->i_mapping);
6152                 if (err < 0) {
6153                         filemap_invalidate_unlock(inode->i_mapping);
6154                         return err;
6155                 }
6156         }
6157
6158         percpu_down_write(&sbi->s_writepages_rwsem);
6159         jbd2_journal_lock_updates(journal);
6160
6161         /*
6162          * OK, there are no updates running now, and all cached data is
6163          * synced to disk.  We are now in a completely consistent state
6164          * which doesn't have anything in the journal, and we know that
6165          * no filesystem updates are running, so it is safe to modify
6166          * the inode's in-core data-journaling state flag now.
6167          */
6168
6169         if (val)
6170                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6171         else {
6172                 err = jbd2_journal_flush(journal, 0);
6173                 if (err < 0) {
6174                         jbd2_journal_unlock_updates(journal);
6175                         percpu_up_write(&sbi->s_writepages_rwsem);
6176                         return err;
6177                 }
6178                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6179         }
6180         ext4_set_aops(inode);
6181
6182         jbd2_journal_unlock_updates(journal);
6183         percpu_up_write(&sbi->s_writepages_rwsem);
6184
6185         if (val)
6186                 filemap_invalidate_unlock(inode->i_mapping);
6187
6188         /* Finally we can mark the inode as dirty. */
6189
6190         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6191         if (IS_ERR(handle))
6192                 return PTR_ERR(handle);
6193
6194         ext4_fc_mark_ineligible(inode->i_sb,
6195                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6196         err = ext4_mark_inode_dirty(handle, inode);
6197         ext4_handle_sync(handle);
6198         ext4_journal_stop(handle);
6199         ext4_std_error(inode->i_sb, err);
6200
6201         return err;
6202 }
6203
6204 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6205                             struct buffer_head *bh)
6206 {
6207         return !buffer_mapped(bh);
6208 }
6209
6210 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6211 {
6212         struct vm_area_struct *vma = vmf->vma;
6213         struct page *page = vmf->page;
6214         loff_t size;
6215         unsigned long len;
6216         int err;
6217         vm_fault_t ret;
6218         struct file *file = vma->vm_file;
6219         struct inode *inode = file_inode(file);
6220         struct address_space *mapping = inode->i_mapping;
6221         handle_t *handle;
6222         get_block_t *get_block;
6223         int retries = 0;
6224
6225         if (unlikely(IS_IMMUTABLE(inode)))
6226                 return VM_FAULT_SIGBUS;
6227
6228         sb_start_pagefault(inode->i_sb);
6229         file_update_time(vma->vm_file);
6230
6231         filemap_invalidate_lock_shared(mapping);
6232
6233         err = ext4_convert_inline_data(inode);
6234         if (err)
6235                 goto out_ret;
6236
6237         /*
6238          * On data journalling we skip straight to the transaction handle:
6239          * there's no delalloc; page truncated will be checked later; the
6240          * early return w/ all buffers mapped (calculates size/len) can't
6241          * be used; and there's no dioread_nolock, so only ext4_get_block.
6242          */
6243         if (ext4_should_journal_data(inode))
6244                 goto retry_alloc;
6245
6246         /* Delalloc case is easy... */
6247         if (test_opt(inode->i_sb, DELALLOC) &&
6248             !ext4_nonda_switch(inode->i_sb)) {
6249                 do {
6250                         err = block_page_mkwrite(vma, vmf,
6251                                                    ext4_da_get_block_prep);
6252                 } while (err == -ENOSPC &&
6253                        ext4_should_retry_alloc(inode->i_sb, &retries));
6254                 goto out_ret;
6255         }
6256
6257         lock_page(page);
6258         size = i_size_read(inode);
6259         /* Page got truncated from under us? */
6260         if (page->mapping != mapping || page_offset(page) > size) {
6261                 unlock_page(page);
6262                 ret = VM_FAULT_NOPAGE;
6263                 goto out;
6264         }
6265
6266         if (page->index == size >> PAGE_SHIFT)
6267                 len = size & ~PAGE_MASK;
6268         else
6269                 len = PAGE_SIZE;
6270         /*
6271          * Return if we have all the buffers mapped. This avoids the need to do
6272          * journal_start/journal_stop which can block and take a long time
6273          *
6274          * This cannot be done for data journalling, as we have to add the
6275          * inode to the transaction's list to writeprotect pages on commit.
6276          */
6277         if (page_has_buffers(page)) {
6278                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6279                                             0, len, NULL,
6280                                             ext4_bh_unmapped)) {
6281                         /* Wait so that we don't change page under IO */
6282                         wait_for_stable_page(page);
6283                         ret = VM_FAULT_LOCKED;
6284                         goto out;
6285                 }
6286         }
6287         unlock_page(page);
6288         /* OK, we need to fill the hole... */
6289         if (ext4_should_dioread_nolock(inode))
6290                 get_block = ext4_get_block_unwritten;
6291         else
6292                 get_block = ext4_get_block;
6293 retry_alloc:
6294         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6295                                     ext4_writepage_trans_blocks(inode));
6296         if (IS_ERR(handle)) {
6297                 ret = VM_FAULT_SIGBUS;
6298                 goto out;
6299         }
6300         /*
6301          * Data journalling can't use block_page_mkwrite() because it
6302          * will set_buffer_dirty() before do_journal_get_write_access()
6303          * thus might hit warning messages for dirty metadata buffers.
6304          */
6305         if (!ext4_should_journal_data(inode)) {
6306                 err = block_page_mkwrite(vma, vmf, get_block);
6307         } else {
6308                 lock_page(page);
6309                 size = i_size_read(inode);
6310                 /* Page got truncated from under us? */
6311                 if (page->mapping != mapping || page_offset(page) > size) {
6312                         ret = VM_FAULT_NOPAGE;
6313                         goto out_error;
6314                 }
6315
6316                 if (page->index == size >> PAGE_SHIFT)
6317                         len = size & ~PAGE_MASK;
6318                 else
6319                         len = PAGE_SIZE;
6320
6321                 err = __block_write_begin(page, 0, len, ext4_get_block);
6322                 if (!err) {
6323                         ret = VM_FAULT_SIGBUS;
6324                         if (ext4_walk_page_buffers(handle, inode,
6325                                         page_buffers(page), 0, len, NULL,
6326                                         do_journal_get_write_access))
6327                                 goto out_error;
6328                         if (ext4_walk_page_buffers(handle, inode,
6329                                         page_buffers(page), 0, len, NULL,
6330                                         write_end_fn))
6331                                 goto out_error;
6332                         if (ext4_jbd2_inode_add_write(handle, inode,
6333                                                       page_offset(page), len))
6334                                 goto out_error;
6335                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6336                 } else {
6337                         unlock_page(page);
6338                 }
6339         }
6340         ext4_journal_stop(handle);
6341         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6342                 goto retry_alloc;
6343 out_ret:
6344         ret = block_page_mkwrite_return(err);
6345 out:
6346         filemap_invalidate_unlock_shared(mapping);
6347         sb_end_pagefault(inode->i_sb);
6348         return ret;
6349 out_error:
6350         unlock_page(page);
6351         ext4_journal_stop(handle);
6352         goto out;
6353 }