ext4: fix use-after-free in ext4_orphan_cleanup
[linux-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181                 ext4_evict_ea_inode(inode);
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. And for inodes with dioread_nolock, unwritten
226          * extents converting worker could merge extents and also have dirtied
227          * the inode. Flush worker is ignoring it because of I_FREEING flag but
228          * we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list))
231                 inode_io_list_del(inode);
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         /*
339          * Check out some where else accidentally dirty the evicting inode,
340          * which may probably cause inode use-after-free issues later.
341          */
342         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344         if (!list_empty(&EXT4_I(inode)->i_fc_list))
345                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
347 }
348
349 #ifdef CONFIG_QUOTA
350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352         return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355
356 /*
357  * Called with i_data_sem down, which is important since we can call
358  * ext4_discard_preallocations() from here.
359  */
360 void ext4_da_update_reserve_space(struct inode *inode,
361                                         int used, int quota_claim)
362 {
363         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364         struct ext4_inode_info *ei = EXT4_I(inode);
365
366         spin_lock(&ei->i_block_reservation_lock);
367         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368         if (unlikely(used > ei->i_reserved_data_blocks)) {
369                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370                          "with only %d reserved data blocks",
371                          __func__, inode->i_ino, used,
372                          ei->i_reserved_data_blocks);
373                 WARN_ON(1);
374                 used = ei->i_reserved_data_blocks;
375         }
376
377         /* Update per-inode reservations */
378         ei->i_reserved_data_blocks -= used;
379         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381         spin_unlock(&ei->i_block_reservation_lock);
382
383         /* Update quota subsystem for data blocks */
384         if (quota_claim)
385                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386         else {
387                 /*
388                  * We did fallocate with an offset that is already delayed
389                  * allocated. So on delayed allocated writeback we should
390                  * not re-claim the quota for fallocated blocks.
391                  */
392                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393         }
394
395         /*
396          * If we have done all the pending block allocations and if
397          * there aren't any writers on the inode, we can discard the
398          * inode's preallocations.
399          */
400         if ((ei->i_reserved_data_blocks == 0) &&
401             !inode_is_open_for_write(inode))
402                 ext4_discard_preallocations(inode, 0);
403 }
404
405 static int __check_block_validity(struct inode *inode, const char *func,
406                                 unsigned int line,
407                                 struct ext4_map_blocks *map)
408 {
409         if (ext4_has_feature_journal(inode->i_sb) &&
410             (inode->i_ino ==
411              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412                 return 0;
413         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock %llu "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_pblk, map->m_len);
418                 return -EFSCORRUPTED;
419         }
420         return 0;
421 }
422
423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424                        ext4_lblk_t len)
425 {
426         int ret;
427
428         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432         if (ret > 0)
433                 ret = 0;
434
435         return ret;
436 }
437
438 #define check_block_validity(inode, map)        \
439         __check_block_validity((inode), __func__, __LINE__, (map))
440
441 #ifdef ES_AGGRESSIVE_TEST
442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443                                        struct inode *inode,
444                                        struct ext4_map_blocks *es_map,
445                                        struct ext4_map_blocks *map,
446                                        int flags)
447 {
448         int retval;
449
450         map->m_flags = 0;
451         /*
452          * There is a race window that the result is not the same.
453          * e.g. xfstests #223 when dioread_nolock enables.  The reason
454          * is that we lookup a block mapping in extent status tree with
455          * out taking i_data_sem.  So at the time the unwritten extent
456          * could be converted.
457          */
458         down_read(&EXT4_I(inode)->i_data_sem);
459         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461         } else {
462                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463         }
464         up_read((&EXT4_I(inode)->i_data_sem));
465
466         /*
467          * We don't check m_len because extent will be collpased in status
468          * tree.  So the m_len might not equal.
469          */
470         if (es_map->m_lblk != map->m_lblk ||
471             es_map->m_flags != map->m_flags ||
472             es_map->m_pblk != map->m_pblk) {
473                 printk("ES cache assertion failed for inode: %lu "
474                        "es_cached ex [%d/%d/%llu/%x] != "
475                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476                        inode->i_ino, es_map->m_lblk, es_map->m_len,
477                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
478                        map->m_len, map->m_pblk, map->m_flags,
479                        retval, flags);
480         }
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocated.  if
497  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, @map is returned as unmapped but we still do fill map->m_len to
502  * indicate the length of a hole starting at map->m_lblk.
503  *
504  * It returns the error in case of allocation failure.
505  */
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507                     struct ext4_map_blocks *map, int flags)
508 {
509         struct extent_status es;
510         int retval;
511         int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513         struct ext4_map_blocks orig_map;
514
515         memcpy(&orig_map, map, sizeof(*map));
516 #endif
517
518         map->m_flags = 0;
519         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520                   flags, map->m_len, (unsigned long) map->m_lblk);
521
522         /*
523          * ext4_map_blocks returns an int, and m_len is an unsigned int
524          */
525         if (unlikely(map->m_len > INT_MAX))
526                 map->m_len = INT_MAX;
527
528         /* We can handle the block number less than EXT_MAX_BLOCKS */
529         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530                 return -EFSCORRUPTED;
531
532         /* Lookup extent status tree firstly */
533         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536                         map->m_pblk = ext4_es_pblock(&es) +
537                                         map->m_lblk - es.es_lblk;
538                         map->m_flags |= ext4_es_is_written(&es) ?
539                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545                         map->m_pblk = 0;
546                         retval = es.es_len - (map->m_lblk - es.es_lblk);
547                         if (retval > map->m_len)
548                                 retval = map->m_len;
549                         map->m_len = retval;
550                         retval = 0;
551                 } else {
552                         BUG();
553                 }
554
555                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556                         return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558                 ext4_map_blocks_es_recheck(handle, inode, map,
559                                            &orig_map, flags);
560 #endif
561                 goto found;
562         }
563         /*
564          * In the query cache no-wait mode, nothing we can do more if we
565          * cannot find extent in the cache.
566          */
567         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568                 return 0;
569
570         /*
571          * Try to see if we can get the block without requesting a new
572          * file system block.
573          */
574         down_read(&EXT4_I(inode)->i_data_sem);
575         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577         } else {
578                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579         }
580         if (retval > 0) {
581                 unsigned int status;
582
583                 if (unlikely(retval != map->m_len)) {
584                         ext4_warning(inode->i_sb,
585                                      "ES len assertion failed for inode "
586                                      "%lu: retval %d != map->m_len %d",
587                                      inode->i_ino, retval, map->m_len);
588                         WARN_ON(1);
589                 }
590
591                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594                     !(status & EXTENT_STATUS_WRITTEN) &&
595                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596                                        map->m_lblk + map->m_len - 1))
597                         status |= EXTENT_STATUS_DELAYED;
598                 ret = ext4_es_insert_extent(inode, map->m_lblk,
599                                             map->m_len, map->m_pblk, status);
600                 if (ret < 0)
601                         retval = ret;
602         }
603         up_read((&EXT4_I(inode)->i_data_sem));
604
605 found:
606         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607                 ret = check_block_validity(inode, map);
608                 if (ret != 0)
609                         return ret;
610         }
611
612         /* If it is only a block(s) look up */
613         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614                 return retval;
615
616         /*
617          * Returns if the blocks have already allocated
618          *
619          * Note that if blocks have been preallocated
620          * ext4_ext_get_block() returns the create = 0
621          * with buffer head unmapped.
622          */
623         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624                 /*
625                  * If we need to convert extent to unwritten
626                  * we continue and do the actual work in
627                  * ext4_ext_map_blocks()
628                  */
629                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630                         return retval;
631
632         /*
633          * Here we clear m_flags because after allocating an new extent,
634          * it will be set again.
635          */
636         map->m_flags &= ~EXT4_MAP_FLAGS;
637
638         /*
639          * New blocks allocate and/or writing to unwritten extent
640          * will possibly result in updating i_data, so we take
641          * the write lock of i_data_sem, and call get_block()
642          * with create == 1 flag.
643          */
644         down_write(&EXT4_I(inode)->i_data_sem);
645
646         /*
647          * We need to check for EXT4 here because migrate
648          * could have changed the inode type in between
649          */
650         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652         } else {
653                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656                         /*
657                          * We allocated new blocks which will result in
658                          * i_data's format changing.  Force the migrate
659                          * to fail by clearing migrate flags
660                          */
661                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662                 }
663
664                 /*
665                  * Update reserved blocks/metadata blocks after successful
666                  * block allocation which had been deferred till now. We don't
667                  * support fallocate for non extent files. So we can update
668                  * reserve space here.
669                  */
670                 if ((retval > 0) &&
671                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672                         ext4_da_update_reserve_space(inode, retval, 1);
673         }
674
675         if (retval > 0) {
676                 unsigned int status;
677
678                 if (unlikely(retval != map->m_len)) {
679                         ext4_warning(inode->i_sb,
680                                      "ES len assertion failed for inode "
681                                      "%lu: retval %d != map->m_len %d",
682                                      inode->i_ino, retval, map->m_len);
683                         WARN_ON(1);
684                 }
685
686                 /*
687                  * We have to zeroout blocks before inserting them into extent
688                  * status tree. Otherwise someone could look them up there and
689                  * use them before they are really zeroed. We also have to
690                  * unmap metadata before zeroing as otherwise writeback can
691                  * overwrite zeros with stale data from block device.
692                  */
693                 if (flags & EXT4_GET_BLOCKS_ZERO &&
694                     map->m_flags & EXT4_MAP_MAPPED &&
695                     map->m_flags & EXT4_MAP_NEW) {
696                         ret = ext4_issue_zeroout(inode, map->m_lblk,
697                                                  map->m_pblk, map->m_len);
698                         if (ret) {
699                                 retval = ret;
700                                 goto out_sem;
701                         }
702                 }
703
704                 /*
705                  * If the extent has been zeroed out, we don't need to update
706                  * extent status tree.
707                  */
708                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710                         if (ext4_es_is_written(&es))
711                                 goto out_sem;
712                 }
713                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716                     !(status & EXTENT_STATUS_WRITTEN) &&
717                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718                                        map->m_lblk + map->m_len - 1))
719                         status |= EXTENT_STATUS_DELAYED;
720                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721                                             map->m_pblk, status);
722                 if (ret < 0) {
723                         retval = ret;
724                         goto out_sem;
725                 }
726         }
727
728 out_sem:
729         up_write((&EXT4_I(inode)->i_data_sem));
730         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731                 ret = check_block_validity(inode, map);
732                 if (ret != 0)
733                         return ret;
734
735                 /*
736                  * Inodes with freshly allocated blocks where contents will be
737                  * visible after transaction commit must be on transaction's
738                  * ordered data list.
739                  */
740                 if (map->m_flags & EXT4_MAP_NEW &&
741                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
743                     !ext4_is_quota_file(inode) &&
744                     ext4_should_order_data(inode)) {
745                         loff_t start_byte =
746                                 (loff_t)map->m_lblk << inode->i_blkbits;
747                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
751                                                 start_byte, length);
752                         else
753                                 ret = ext4_jbd2_inode_add_write(handle, inode,
754                                                 start_byte, length);
755                         if (ret)
756                                 return ret;
757                 }
758         }
759         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760                                 map->m_flags & EXT4_MAP_MAPPED))
761                 ext4_fc_track_range(handle, inode, map->m_lblk,
762                                         map->m_lblk + map->m_len - 1);
763         if (retval < 0)
764                 ext_debug(inode, "failed with err %d\n", retval);
765         return retval;
766 }
767
768 /*
769  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770  * we have to be careful as someone else may be manipulating b_state as well.
771  */
772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773 {
774         unsigned long old_state;
775         unsigned long new_state;
776
777         flags &= EXT4_MAP_FLAGS;
778
779         /* Dummy buffer_head? Set non-atomically. */
780         if (!bh->b_page) {
781                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782                 return;
783         }
784         /*
785          * Someone else may be modifying b_state. Be careful! This is ugly but
786          * once we get rid of using bh as a container for mapping information
787          * to pass to / from get_block functions, this can go away.
788          */
789         do {
790                 old_state = READ_ONCE(bh->b_state);
791                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792         } while (unlikely(
793                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794 }
795
796 static int _ext4_get_block(struct inode *inode, sector_t iblock,
797                            struct buffer_head *bh, int flags)
798 {
799         struct ext4_map_blocks map;
800         int ret = 0;
801
802         if (ext4_has_inline_data(inode))
803                 return -ERANGE;
804
805         map.m_lblk = iblock;
806         map.m_len = bh->b_size >> inode->i_blkbits;
807
808         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809                               flags);
810         if (ret > 0) {
811                 map_bh(bh, inode->i_sb, map.m_pblk);
812                 ext4_update_bh_state(bh, map.m_flags);
813                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814                 ret = 0;
815         } else if (ret == 0) {
816                 /* hole case, need to fill in bh->b_size */
817                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
818         }
819         return ret;
820 }
821
822 int ext4_get_block(struct inode *inode, sector_t iblock,
823                    struct buffer_head *bh, int create)
824 {
825         return _ext4_get_block(inode, iblock, bh,
826                                create ? EXT4_GET_BLOCKS_CREATE : 0);
827 }
828
829 /*
830  * Get block function used when preparing for buffered write if we require
831  * creating an unwritten extent if blocks haven't been allocated.  The extent
832  * will be converted to written after the IO is complete.
833  */
834 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835                              struct buffer_head *bh_result, int create)
836 {
837         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838                    inode->i_ino, create);
839         return _ext4_get_block(inode, iblock, bh_result,
840                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
841 }
842
843 /* Maximum number of blocks we map for direct IO at once. */
844 #define DIO_MAX_BLOCKS 4096
845
846 /*
847  * `handle' can be NULL if create is zero
848  */
849 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
850                                 ext4_lblk_t block, int map_flags)
851 {
852         struct ext4_map_blocks map;
853         struct buffer_head *bh;
854         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
855         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
856         int err;
857
858         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859                     || handle != NULL || create == 0);
860         ASSERT(create == 0 || !nowait);
861
862         map.m_lblk = block;
863         map.m_len = 1;
864         err = ext4_map_blocks(handle, inode, &map, map_flags);
865
866         if (err == 0)
867                 return create ? ERR_PTR(-ENOSPC) : NULL;
868         if (err < 0)
869                 return ERR_PTR(err);
870
871         if (nowait)
872                 return sb_find_get_block(inode->i_sb, map.m_pblk);
873
874         bh = sb_getblk(inode->i_sb, map.m_pblk);
875         if (unlikely(!bh))
876                 return ERR_PTR(-ENOMEM);
877         if (map.m_flags & EXT4_MAP_NEW) {
878                 ASSERT(create != 0);
879                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880                             || (handle != NULL));
881
882                 /*
883                  * Now that we do not always journal data, we should
884                  * keep in mind whether this should always journal the
885                  * new buffer as metadata.  For now, regular file
886                  * writes use ext4_get_block instead, so it's not a
887                  * problem.
888                  */
889                 lock_buffer(bh);
890                 BUFFER_TRACE(bh, "call get_create_access");
891                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892                                                      EXT4_JTR_NONE);
893                 if (unlikely(err)) {
894                         unlock_buffer(bh);
895                         goto errout;
896                 }
897                 if (!buffer_uptodate(bh)) {
898                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899                         set_buffer_uptodate(bh);
900                 }
901                 unlock_buffer(bh);
902                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903                 err = ext4_handle_dirty_metadata(handle, inode, bh);
904                 if (unlikely(err))
905                         goto errout;
906         } else
907                 BUFFER_TRACE(bh, "not a new buffer");
908         return bh;
909 errout:
910         brelse(bh);
911         return ERR_PTR(err);
912 }
913
914 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
915                                ext4_lblk_t block, int map_flags)
916 {
917         struct buffer_head *bh;
918         int ret;
919
920         bh = ext4_getblk(handle, inode, block, map_flags);
921         if (IS_ERR(bh))
922                 return bh;
923         if (!bh || ext4_buffer_uptodate(bh))
924                 return bh;
925
926         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927         if (ret) {
928                 put_bh(bh);
929                 return ERR_PTR(ret);
930         }
931         return bh;
932 }
933
934 /* Read a contiguous batch of blocks. */
935 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936                      bool wait, struct buffer_head **bhs)
937 {
938         int i, err;
939
940         for (i = 0; i < bh_count; i++) {
941                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942                 if (IS_ERR(bhs[i])) {
943                         err = PTR_ERR(bhs[i]);
944                         bh_count = i;
945                         goto out_brelse;
946                 }
947         }
948
949         for (i = 0; i < bh_count; i++)
950                 /* Note that NULL bhs[i] is valid because of holes. */
951                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
953
954         if (!wait)
955                 return 0;
956
957         for (i = 0; i < bh_count; i++)
958                 if (bhs[i])
959                         wait_on_buffer(bhs[i]);
960
961         for (i = 0; i < bh_count; i++) {
962                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
963                         err = -EIO;
964                         goto out_brelse;
965                 }
966         }
967         return 0;
968
969 out_brelse:
970         for (i = 0; i < bh_count; i++) {
971                 brelse(bhs[i]);
972                 bhs[i] = NULL;
973         }
974         return err;
975 }
976
977 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
978                            struct buffer_head *head,
979                            unsigned from,
980                            unsigned to,
981                            int *partial,
982                            int (*fn)(handle_t *handle, struct inode *inode,
983                                      struct buffer_head *bh))
984 {
985         struct buffer_head *bh;
986         unsigned block_start, block_end;
987         unsigned blocksize = head->b_size;
988         int err, ret = 0;
989         struct buffer_head *next;
990
991         for (bh = head, block_start = 0;
992              ret == 0 && (bh != head || !block_start);
993              block_start = block_end, bh = next) {
994                 next = bh->b_this_page;
995                 block_end = block_start + blocksize;
996                 if (block_end <= from || block_start >= to) {
997                         if (partial && !buffer_uptodate(bh))
998                                 *partial = 1;
999                         continue;
1000                 }
1001                 err = (*fn)(handle, inode, bh);
1002                 if (!ret)
1003                         ret = err;
1004         }
1005         return ret;
1006 }
1007
1008 /*
1009  * To preserve ordering, it is essential that the hole instantiation and
1010  * the data write be encapsulated in a single transaction.  We cannot
1011  * close off a transaction and start a new one between the ext4_get_block()
1012  * and the commit_write().  So doing the jbd2_journal_start at the start of
1013  * prepare_write() is the right place.
1014  *
1015  * Also, this function can nest inside ext4_writepage().  In that case, we
1016  * *know* that ext4_writepage() has generated enough buffer credits to do the
1017  * whole page.  So we won't block on the journal in that case, which is good,
1018  * because the caller may be PF_MEMALLOC.
1019  *
1020  * By accident, ext4 can be reentered when a transaction is open via
1021  * quota file writes.  If we were to commit the transaction while thus
1022  * reentered, there can be a deadlock - we would be holding a quota
1023  * lock, and the commit would never complete if another thread had a
1024  * transaction open and was blocking on the quota lock - a ranking
1025  * violation.
1026  *
1027  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028  * will _not_ run commit under these circumstances because handle->h_ref
1029  * is elevated.  We'll still have enough credits for the tiny quotafile
1030  * write.
1031  */
1032 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033                                 struct buffer_head *bh)
1034 {
1035         int dirty = buffer_dirty(bh);
1036         int ret;
1037
1038         if (!buffer_mapped(bh) || buffer_freed(bh))
1039                 return 0;
1040         /*
1041          * __block_write_begin() could have dirtied some buffers. Clean
1042          * the dirty bit as jbd2_journal_get_write_access() could complain
1043          * otherwise about fs integrity issues. Setting of the dirty bit
1044          * by __block_write_begin() isn't a real problem here as we clear
1045          * the bit before releasing a page lock and thus writeback cannot
1046          * ever write the buffer.
1047          */
1048         if (dirty)
1049                 clear_buffer_dirty(bh);
1050         BUFFER_TRACE(bh, "get write access");
1051         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052                                             EXT4_JTR_NONE);
1053         if (!ret && dirty)
1054                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055         return ret;
1056 }
1057
1058 #ifdef CONFIG_FS_ENCRYPTION
1059 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060                                   get_block_t *get_block)
1061 {
1062         unsigned from = pos & (PAGE_SIZE - 1);
1063         unsigned to = from + len;
1064         struct inode *inode = page->mapping->host;
1065         unsigned block_start, block_end;
1066         sector_t block;
1067         int err = 0;
1068         unsigned blocksize = inode->i_sb->s_blocksize;
1069         unsigned bbits;
1070         struct buffer_head *bh, *head, *wait[2];
1071         int nr_wait = 0;
1072         int i;
1073
1074         BUG_ON(!PageLocked(page));
1075         BUG_ON(from > PAGE_SIZE);
1076         BUG_ON(to > PAGE_SIZE);
1077         BUG_ON(from > to);
1078
1079         if (!page_has_buffers(page))
1080                 create_empty_buffers(page, blocksize, 0);
1081         head = page_buffers(page);
1082         bbits = ilog2(blocksize);
1083         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084
1085         for (bh = head, block_start = 0; bh != head || !block_start;
1086             block++, block_start = block_end, bh = bh->b_this_page) {
1087                 block_end = block_start + blocksize;
1088                 if (block_end <= from || block_start >= to) {
1089                         if (PageUptodate(page)) {
1090                                 set_buffer_uptodate(bh);
1091                         }
1092                         continue;
1093                 }
1094                 if (buffer_new(bh))
1095                         clear_buffer_new(bh);
1096                 if (!buffer_mapped(bh)) {
1097                         WARN_ON(bh->b_size != blocksize);
1098                         err = get_block(inode, block, bh, 1);
1099                         if (err)
1100                                 break;
1101                         if (buffer_new(bh)) {
1102                                 if (PageUptodate(page)) {
1103                                         clear_buffer_new(bh);
1104                                         set_buffer_uptodate(bh);
1105                                         mark_buffer_dirty(bh);
1106                                         continue;
1107                                 }
1108                                 if (block_end > to || block_start < from)
1109                                         zero_user_segments(page, to, block_end,
1110                                                            block_start, from);
1111                                 continue;
1112                         }
1113                 }
1114                 if (PageUptodate(page)) {
1115                         set_buffer_uptodate(bh);
1116                         continue;
1117                 }
1118                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119                     !buffer_unwritten(bh) &&
1120                     (block_start < from || block_end > to)) {
1121                         ext4_read_bh_lock(bh, 0, false);
1122                         wait[nr_wait++] = bh;
1123                 }
1124         }
1125         /*
1126          * If we issued read requests, let them complete.
1127          */
1128         for (i = 0; i < nr_wait; i++) {
1129                 wait_on_buffer(wait[i]);
1130                 if (!buffer_uptodate(wait[i]))
1131                         err = -EIO;
1132         }
1133         if (unlikely(err)) {
1134                 page_zero_new_buffers(page, from, to);
1135         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136                 for (i = 0; i < nr_wait; i++) {
1137                         int err2;
1138
1139                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140                                                                 bh_offset(wait[i]));
1141                         if (err2) {
1142                                 clear_buffer_uptodate(wait[i]);
1143                                 err = err2;
1144                         }
1145                 }
1146         }
1147
1148         return err;
1149 }
1150 #endif
1151
1152 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153                             loff_t pos, unsigned len,
1154                             struct page **pagep, void **fsdata)
1155 {
1156         struct inode *inode = mapping->host;
1157         int ret, needed_blocks;
1158         handle_t *handle;
1159         int retries = 0;
1160         struct page *page;
1161         pgoff_t index;
1162         unsigned from, to;
1163
1164         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165                 return -EIO;
1166
1167         trace_ext4_write_begin(inode, pos, len);
1168         /*
1169          * Reserve one block more for addition to orphan list in case
1170          * we allocate blocks but write fails for some reason
1171          */
1172         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173         index = pos >> PAGE_SHIFT;
1174         from = pos & (PAGE_SIZE - 1);
1175         to = from + len;
1176
1177         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179                                                     pagep);
1180                 if (ret < 0)
1181                         return ret;
1182                 if (ret == 1)
1183                         return 0;
1184         }
1185
1186         /*
1187          * grab_cache_page_write_begin() can take a long time if the
1188          * system is thrashing due to memory pressure, or if the page
1189          * is being written back.  So grab it first before we start
1190          * the transaction handle.  This also allows us to allocate
1191          * the page (if needed) without using GFP_NOFS.
1192          */
1193 retry_grab:
1194         page = grab_cache_page_write_begin(mapping, index);
1195         if (!page)
1196                 return -ENOMEM;
1197         /*
1198          * The same as page allocation, we prealloc buffer heads before
1199          * starting the handle.
1200          */
1201         if (!page_has_buffers(page))
1202                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204         unlock_page(page);
1205
1206 retry_journal:
1207         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208         if (IS_ERR(handle)) {
1209                 put_page(page);
1210                 return PTR_ERR(handle);
1211         }
1212
1213         lock_page(page);
1214         if (page->mapping != mapping) {
1215                 /* The page got truncated from under us */
1216                 unlock_page(page);
1217                 put_page(page);
1218                 ext4_journal_stop(handle);
1219                 goto retry_grab;
1220         }
1221         /* In case writeback began while the page was unlocked */
1222         wait_for_stable_page(page);
1223
1224 #ifdef CONFIG_FS_ENCRYPTION
1225         if (ext4_should_dioread_nolock(inode))
1226                 ret = ext4_block_write_begin(page, pos, len,
1227                                              ext4_get_block_unwritten);
1228         else
1229                 ret = ext4_block_write_begin(page, pos, len,
1230                                              ext4_get_block);
1231 #else
1232         if (ext4_should_dioread_nolock(inode))
1233                 ret = __block_write_begin(page, pos, len,
1234                                           ext4_get_block_unwritten);
1235         else
1236                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1237 #endif
1238         if (!ret && ext4_should_journal_data(inode)) {
1239                 ret = ext4_walk_page_buffers(handle, inode,
1240                                              page_buffers(page), from, to, NULL,
1241                                              do_journal_get_write_access);
1242         }
1243
1244         if (ret) {
1245                 bool extended = (pos + len > inode->i_size) &&
1246                                 !ext4_verity_in_progress(inode);
1247
1248                 unlock_page(page);
1249                 /*
1250                  * __block_write_begin may have instantiated a few blocks
1251                  * outside i_size.  Trim these off again. Don't need
1252                  * i_size_read because we hold i_rwsem.
1253                  *
1254                  * Add inode to orphan list in case we crash before
1255                  * truncate finishes
1256                  */
1257                 if (extended && ext4_can_truncate(inode))
1258                         ext4_orphan_add(handle, inode);
1259
1260                 ext4_journal_stop(handle);
1261                 if (extended) {
1262                         ext4_truncate_failed_write(inode);
1263                         /*
1264                          * If truncate failed early the inode might
1265                          * still be on the orphan list; we need to
1266                          * make sure the inode is removed from the
1267                          * orphan list in that case.
1268                          */
1269                         if (inode->i_nlink)
1270                                 ext4_orphan_del(NULL, inode);
1271                 }
1272
1273                 if (ret == -ENOSPC &&
1274                     ext4_should_retry_alloc(inode->i_sb, &retries))
1275                         goto retry_journal;
1276                 put_page(page);
1277                 return ret;
1278         }
1279         *pagep = page;
1280         return ret;
1281 }
1282
1283 /* For write_end() in data=journal mode */
1284 static int write_end_fn(handle_t *handle, struct inode *inode,
1285                         struct buffer_head *bh)
1286 {
1287         int ret;
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         set_buffer_uptodate(bh);
1291         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292         clear_buffer_meta(bh);
1293         clear_buffer_prio(bh);
1294         return ret;
1295 }
1296
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305                           struct address_space *mapping,
1306                           loff_t pos, unsigned len, unsigned copied,
1307                           struct page *page, void *fsdata)
1308 {
1309         handle_t *handle = ext4_journal_current_handle();
1310         struct inode *inode = mapping->host;
1311         loff_t old_size = inode->i_size;
1312         int ret = 0, ret2;
1313         int i_size_changed = 0;
1314         bool verity = ext4_verity_in_progress(inode);
1315
1316         trace_ext4_write_end(inode, pos, len, copied);
1317
1318         if (ext4_has_inline_data(inode))
1319                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1320
1321         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1322         /*
1323          * it's important to update i_size while still holding page lock:
1324          * page writeout could otherwise come in and zero beyond i_size.
1325          *
1326          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1327          * blocks are being written past EOF, so skip the i_size update.
1328          */
1329         if (!verity)
1330                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1331         unlock_page(page);
1332         put_page(page);
1333
1334         if (old_size < pos && !verity)
1335                 pagecache_isize_extended(inode, old_size, pos);
1336         /*
1337          * Don't mark the inode dirty under page lock. First, it unnecessarily
1338          * makes the holding time of page lock longer. Second, it forces lock
1339          * ordering of page lock and transaction start for journaling
1340          * filesystems.
1341          */
1342         if (i_size_changed)
1343                 ret = ext4_mark_inode_dirty(handle, inode);
1344
1345         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1346                 /* if we have allocated more blocks and copied
1347                  * less. We will have blocks allocated outside
1348                  * inode->i_size. So truncate them
1349                  */
1350                 ext4_orphan_add(handle, inode);
1351
1352         ret2 = ext4_journal_stop(handle);
1353         if (!ret)
1354                 ret = ret2;
1355
1356         if (pos + len > inode->i_size && !verity) {
1357                 ext4_truncate_failed_write(inode);
1358                 /*
1359                  * If truncate failed early the inode might still be
1360                  * on the orphan list; we need to make sure the inode
1361                  * is removed from the orphan list in that case.
1362                  */
1363                 if (inode->i_nlink)
1364                         ext4_orphan_del(NULL, inode);
1365         }
1366
1367         return ret ? ret : copied;
1368 }
1369
1370 /*
1371  * This is a private version of page_zero_new_buffers() which doesn't
1372  * set the buffer to be dirty, since in data=journalled mode we need
1373  * to call ext4_handle_dirty_metadata() instead.
1374  */
1375 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1376                                             struct inode *inode,
1377                                             struct page *page,
1378                                             unsigned from, unsigned to)
1379 {
1380         unsigned int block_start = 0, block_end;
1381         struct buffer_head *head, *bh;
1382
1383         bh = head = page_buffers(page);
1384         do {
1385                 block_end = block_start + bh->b_size;
1386                 if (buffer_new(bh)) {
1387                         if (block_end > from && block_start < to) {
1388                                 if (!PageUptodate(page)) {
1389                                         unsigned start, size;
1390
1391                                         start = max(from, block_start);
1392                                         size = min(to, block_end) - start;
1393
1394                                         zero_user(page, start, size);
1395                                         write_end_fn(handle, inode, bh);
1396                                 }
1397                                 clear_buffer_new(bh);
1398                         }
1399                 }
1400                 block_start = block_end;
1401                 bh = bh->b_this_page;
1402         } while (bh != head);
1403 }
1404
1405 static int ext4_journalled_write_end(struct file *file,
1406                                      struct address_space *mapping,
1407                                      loff_t pos, unsigned len, unsigned copied,
1408                                      struct page *page, void *fsdata)
1409 {
1410         handle_t *handle = ext4_journal_current_handle();
1411         struct inode *inode = mapping->host;
1412         loff_t old_size = inode->i_size;
1413         int ret = 0, ret2;
1414         int partial = 0;
1415         unsigned from, to;
1416         int size_changed = 0;
1417         bool verity = ext4_verity_in_progress(inode);
1418
1419         trace_ext4_journalled_write_end(inode, pos, len, copied);
1420         from = pos & (PAGE_SIZE - 1);
1421         to = from + len;
1422
1423         BUG_ON(!ext4_handle_valid(handle));
1424
1425         if (ext4_has_inline_data(inode))
1426                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1427
1428         if (unlikely(copied < len) && !PageUptodate(page)) {
1429                 copied = 0;
1430                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1431         } else {
1432                 if (unlikely(copied < len))
1433                         ext4_journalled_zero_new_buffers(handle, inode, page,
1434                                                          from + copied, to);
1435                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1436                                              from, from + copied, &partial,
1437                                              write_end_fn);
1438                 if (!partial)
1439                         SetPageUptodate(page);
1440         }
1441         if (!verity)
1442                 size_changed = ext4_update_inode_size(inode, pos + copied);
1443         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1444         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1445         unlock_page(page);
1446         put_page(page);
1447
1448         if (old_size < pos && !verity)
1449                 pagecache_isize_extended(inode, old_size, pos);
1450
1451         if (size_changed) {
1452                 ret2 = ext4_mark_inode_dirty(handle, inode);
1453                 if (!ret)
1454                         ret = ret2;
1455         }
1456
1457         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1458                 /* if we have allocated more blocks and copied
1459                  * less. We will have blocks allocated outside
1460                  * inode->i_size. So truncate them
1461                  */
1462                 ext4_orphan_add(handle, inode);
1463
1464         ret2 = ext4_journal_stop(handle);
1465         if (!ret)
1466                 ret = ret2;
1467         if (pos + len > inode->i_size && !verity) {
1468                 ext4_truncate_failed_write(inode);
1469                 /*
1470                  * If truncate failed early the inode might still be
1471                  * on the orphan list; we need to make sure the inode
1472                  * is removed from the orphan list in that case.
1473                  */
1474                 if (inode->i_nlink)
1475                         ext4_orphan_del(NULL, inode);
1476         }
1477
1478         return ret ? ret : copied;
1479 }
1480
1481 /*
1482  * Reserve space for a single cluster
1483  */
1484 static int ext4_da_reserve_space(struct inode *inode)
1485 {
1486         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487         struct ext4_inode_info *ei = EXT4_I(inode);
1488         int ret;
1489
1490         /*
1491          * We will charge metadata quota at writeout time; this saves
1492          * us from metadata over-estimation, though we may go over by
1493          * a small amount in the end.  Here we just reserve for data.
1494          */
1495         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1496         if (ret)
1497                 return ret;
1498
1499         spin_lock(&ei->i_block_reservation_lock);
1500         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1501                 spin_unlock(&ei->i_block_reservation_lock);
1502                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1503                 return -ENOSPC;
1504         }
1505         ei->i_reserved_data_blocks++;
1506         trace_ext4_da_reserve_space(inode);
1507         spin_unlock(&ei->i_block_reservation_lock);
1508
1509         return 0;       /* success */
1510 }
1511
1512 void ext4_da_release_space(struct inode *inode, int to_free)
1513 {
1514         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1515         struct ext4_inode_info *ei = EXT4_I(inode);
1516
1517         if (!to_free)
1518                 return;         /* Nothing to release, exit */
1519
1520         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522         trace_ext4_da_release_space(inode, to_free);
1523         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1524                 /*
1525                  * if there aren't enough reserved blocks, then the
1526                  * counter is messed up somewhere.  Since this
1527                  * function is called from invalidate page, it's
1528                  * harmless to return without any action.
1529                  */
1530                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1531                          "ino %lu, to_free %d with only %d reserved "
1532                          "data blocks", inode->i_ino, to_free,
1533                          ei->i_reserved_data_blocks);
1534                 WARN_ON(1);
1535                 to_free = ei->i_reserved_data_blocks;
1536         }
1537         ei->i_reserved_data_blocks -= to_free;
1538
1539         /* update fs dirty data blocks counter */
1540         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1541
1542         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1543
1544         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1545 }
1546
1547 /*
1548  * Delayed allocation stuff
1549  */
1550
1551 struct mpage_da_data {
1552         struct inode *inode;
1553         struct writeback_control *wbc;
1554
1555         pgoff_t first_page;     /* The first page to write */
1556         pgoff_t next_page;      /* Current page to examine */
1557         pgoff_t last_page;      /* Last page to examine */
1558         /*
1559          * Extent to map - this can be after first_page because that can be
1560          * fully mapped. We somewhat abuse m_flags to store whether the extent
1561          * is delalloc or unwritten.
1562          */
1563         struct ext4_map_blocks map;
1564         struct ext4_io_submit io_submit;        /* IO submission data */
1565         unsigned int do_map:1;
1566         unsigned int scanned_until_end:1;
1567 };
1568
1569 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1570                                        bool invalidate)
1571 {
1572         unsigned nr, i;
1573         pgoff_t index, end;
1574         struct folio_batch fbatch;
1575         struct inode *inode = mpd->inode;
1576         struct address_space *mapping = inode->i_mapping;
1577
1578         /* This is necessary when next_page == 0. */
1579         if (mpd->first_page >= mpd->next_page)
1580                 return;
1581
1582         mpd->scanned_until_end = 0;
1583         index = mpd->first_page;
1584         end   = mpd->next_page - 1;
1585         if (invalidate) {
1586                 ext4_lblk_t start, last;
1587                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1588                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1589
1590                 /*
1591                  * avoid racing with extent status tree scans made by
1592                  * ext4_insert_delayed_block()
1593                  */
1594                 down_write(&EXT4_I(inode)->i_data_sem);
1595                 ext4_es_remove_extent(inode, start, last - start + 1);
1596                 up_write(&EXT4_I(inode)->i_data_sem);
1597         }
1598
1599         folio_batch_init(&fbatch);
1600         while (index <= end) {
1601                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1602                 if (nr == 0)
1603                         break;
1604                 for (i = 0; i < nr; i++) {
1605                         struct folio *folio = fbatch.folios[i];
1606
1607                         if (folio->index < mpd->first_page)
1608                                 continue;
1609                         if (folio->index + folio_nr_pages(folio) - 1 > end)
1610                                 continue;
1611                         BUG_ON(!folio_test_locked(folio));
1612                         BUG_ON(folio_test_writeback(folio));
1613                         if (invalidate) {
1614                                 if (folio_mapped(folio))
1615                                         folio_clear_dirty_for_io(folio);
1616                                 block_invalidate_folio(folio, 0,
1617                                                 folio_size(folio));
1618                                 folio_clear_uptodate(folio);
1619                         }
1620                         folio_unlock(folio);
1621                 }
1622                 folio_batch_release(&fbatch);
1623         }
1624 }
1625
1626 static void ext4_print_free_blocks(struct inode *inode)
1627 {
1628         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629         struct super_block *sb = inode->i_sb;
1630         struct ext4_inode_info *ei = EXT4_I(inode);
1631
1632         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1633                EXT4_C2B(EXT4_SB(inode->i_sb),
1634                         ext4_count_free_clusters(sb)));
1635         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1636         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1637                (long long) EXT4_C2B(EXT4_SB(sb),
1638                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1639         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1640                (long long) EXT4_C2B(EXT4_SB(sb),
1641                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1642         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1643         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1644                  ei->i_reserved_data_blocks);
1645         return;
1646 }
1647
1648 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1649                                       struct buffer_head *bh)
1650 {
1651         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1652 }
1653
1654 /*
1655  * ext4_insert_delayed_block - adds a delayed block to the extents status
1656  *                             tree, incrementing the reserved cluster/block
1657  *                             count or making a pending reservation
1658  *                             where needed
1659  *
1660  * @inode - file containing the newly added block
1661  * @lblk - logical block to be added
1662  *
1663  * Returns 0 on success, negative error code on failure.
1664  */
1665 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1666 {
1667         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1668         int ret;
1669         bool allocated = false;
1670         bool reserved = false;
1671
1672         /*
1673          * If the cluster containing lblk is shared with a delayed,
1674          * written, or unwritten extent in a bigalloc file system, it's
1675          * already been accounted for and does not need to be reserved.
1676          * A pending reservation must be made for the cluster if it's
1677          * shared with a written or unwritten extent and doesn't already
1678          * have one.  Written and unwritten extents can be purged from the
1679          * extents status tree if the system is under memory pressure, so
1680          * it's necessary to examine the extent tree if a search of the
1681          * extents status tree doesn't get a match.
1682          */
1683         if (sbi->s_cluster_ratio == 1) {
1684                 ret = ext4_da_reserve_space(inode);
1685                 if (ret != 0)   /* ENOSPC */
1686                         goto errout;
1687                 reserved = true;
1688         } else {   /* bigalloc */
1689                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1690                         if (!ext4_es_scan_clu(inode,
1691                                               &ext4_es_is_mapped, lblk)) {
1692                                 ret = ext4_clu_mapped(inode,
1693                                                       EXT4_B2C(sbi, lblk));
1694                                 if (ret < 0)
1695                                         goto errout;
1696                                 if (ret == 0) {
1697                                         ret = ext4_da_reserve_space(inode);
1698                                         if (ret != 0)   /* ENOSPC */
1699                                                 goto errout;
1700                                         reserved = true;
1701                                 } else {
1702                                         allocated = true;
1703                                 }
1704                         } else {
1705                                 allocated = true;
1706                         }
1707                 }
1708         }
1709
1710         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1711         if (ret && reserved)
1712                 ext4_da_release_space(inode, 1);
1713
1714 errout:
1715         return ret;
1716 }
1717
1718 /*
1719  * This function is grabs code from the very beginning of
1720  * ext4_map_blocks, but assumes that the caller is from delayed write
1721  * time. This function looks up the requested blocks and sets the
1722  * buffer delay bit under the protection of i_data_sem.
1723  */
1724 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725                               struct ext4_map_blocks *map,
1726                               struct buffer_head *bh)
1727 {
1728         struct extent_status es;
1729         int retval;
1730         sector_t invalid_block = ~((sector_t) 0xffff);
1731 #ifdef ES_AGGRESSIVE_TEST
1732         struct ext4_map_blocks orig_map;
1733
1734         memcpy(&orig_map, map, sizeof(*map));
1735 #endif
1736
1737         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738                 invalid_block = ~0;
1739
1740         map->m_flags = 0;
1741         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1742                   (unsigned long) map->m_lblk);
1743
1744         /* Lookup extent status tree firstly */
1745         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1746                 if (ext4_es_is_hole(&es)) {
1747                         retval = 0;
1748                         down_read(&EXT4_I(inode)->i_data_sem);
1749                         goto add_delayed;
1750                 }
1751
1752                 /*
1753                  * Delayed extent could be allocated by fallocate.
1754                  * So we need to check it.
1755                  */
1756                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1757                         map_bh(bh, inode->i_sb, invalid_block);
1758                         set_buffer_new(bh);
1759                         set_buffer_delay(bh);
1760                         return 0;
1761                 }
1762
1763                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1764                 retval = es.es_len - (iblock - es.es_lblk);
1765                 if (retval > map->m_len)
1766                         retval = map->m_len;
1767                 map->m_len = retval;
1768                 if (ext4_es_is_written(&es))
1769                         map->m_flags |= EXT4_MAP_MAPPED;
1770                 else if (ext4_es_is_unwritten(&es))
1771                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1772                 else
1773                         BUG();
1774
1775 #ifdef ES_AGGRESSIVE_TEST
1776                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1777 #endif
1778                 return retval;
1779         }
1780
1781         /*
1782          * Try to see if we can get the block without requesting a new
1783          * file system block.
1784          */
1785         down_read(&EXT4_I(inode)->i_data_sem);
1786         if (ext4_has_inline_data(inode))
1787                 retval = 0;
1788         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1789                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1790         else
1791                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1792
1793 add_delayed:
1794         if (retval == 0) {
1795                 int ret;
1796
1797                 /*
1798                  * XXX: __block_prepare_write() unmaps passed block,
1799                  * is it OK?
1800                  */
1801
1802                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1803                 if (ret != 0) {
1804                         retval = ret;
1805                         goto out_unlock;
1806                 }
1807
1808                 map_bh(bh, inode->i_sb, invalid_block);
1809                 set_buffer_new(bh);
1810                 set_buffer_delay(bh);
1811         } else if (retval > 0) {
1812                 int ret;
1813                 unsigned int status;
1814
1815                 if (unlikely(retval != map->m_len)) {
1816                         ext4_warning(inode->i_sb,
1817                                      "ES len assertion failed for inode "
1818                                      "%lu: retval %d != map->m_len %d",
1819                                      inode->i_ino, retval, map->m_len);
1820                         WARN_ON(1);
1821                 }
1822
1823                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1824                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1825                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1826                                             map->m_pblk, status);
1827                 if (ret != 0)
1828                         retval = ret;
1829         }
1830
1831 out_unlock:
1832         up_read((&EXT4_I(inode)->i_data_sem));
1833
1834         return retval;
1835 }
1836
1837 /*
1838  * This is a special get_block_t callback which is used by
1839  * ext4_da_write_begin().  It will either return mapped block or
1840  * reserve space for a single block.
1841  *
1842  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1843  * We also have b_blocknr = -1 and b_bdev initialized properly
1844  *
1845  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1846  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1847  * initialized properly.
1848  */
1849 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1850                            struct buffer_head *bh, int create)
1851 {
1852         struct ext4_map_blocks map;
1853         int ret = 0;
1854
1855         BUG_ON(create == 0);
1856         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1857
1858         map.m_lblk = iblock;
1859         map.m_len = 1;
1860
1861         /*
1862          * first, we need to know whether the block is allocated already
1863          * preallocated blocks are unmapped but should treated
1864          * the same as allocated blocks.
1865          */
1866         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1867         if (ret <= 0)
1868                 return ret;
1869
1870         map_bh(bh, inode->i_sb, map.m_pblk);
1871         ext4_update_bh_state(bh, map.m_flags);
1872
1873         if (buffer_unwritten(bh)) {
1874                 /* A delayed write to unwritten bh should be marked
1875                  * new and mapped.  Mapped ensures that we don't do
1876                  * get_block multiple times when we write to the same
1877                  * offset and new ensures that we do proper zero out
1878                  * for partial write.
1879                  */
1880                 set_buffer_new(bh);
1881                 set_buffer_mapped(bh);
1882         }
1883         return 0;
1884 }
1885
1886 static int __ext4_journalled_writepage(struct page *page,
1887                                        unsigned int len)
1888 {
1889         struct address_space *mapping = page->mapping;
1890         struct inode *inode = mapping->host;
1891         handle_t *handle = NULL;
1892         int ret = 0, err = 0;
1893         int inline_data = ext4_has_inline_data(inode);
1894         struct buffer_head *inode_bh = NULL;
1895         loff_t size;
1896
1897         ClearPageChecked(page);
1898
1899         if (inline_data) {
1900                 BUG_ON(page->index != 0);
1901                 BUG_ON(len > ext4_get_max_inline_size(inode));
1902                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1903                 if (inode_bh == NULL)
1904                         goto out;
1905         }
1906         /*
1907          * We need to release the page lock before we start the
1908          * journal, so grab a reference so the page won't disappear
1909          * out from under us.
1910          */
1911         get_page(page);
1912         unlock_page(page);
1913
1914         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1915                                     ext4_writepage_trans_blocks(inode));
1916         if (IS_ERR(handle)) {
1917                 ret = PTR_ERR(handle);
1918                 put_page(page);
1919                 goto out_no_pagelock;
1920         }
1921         BUG_ON(!ext4_handle_valid(handle));
1922
1923         lock_page(page);
1924         put_page(page);
1925         size = i_size_read(inode);
1926         if (page->mapping != mapping || page_offset(page) > size) {
1927                 /* The page got truncated from under us */
1928                 ext4_journal_stop(handle);
1929                 ret = 0;
1930                 goto out;
1931         }
1932
1933         if (inline_data) {
1934                 ret = ext4_mark_inode_dirty(handle, inode);
1935         } else {
1936                 struct buffer_head *page_bufs = page_buffers(page);
1937
1938                 if (page->index == size >> PAGE_SHIFT)
1939                         len = size & ~PAGE_MASK;
1940                 else
1941                         len = PAGE_SIZE;
1942
1943                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1944                                              NULL, do_journal_get_write_access);
1945
1946                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1947                                              NULL, write_end_fn);
1948         }
1949         if (ret == 0)
1950                 ret = err;
1951         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1952         if (ret == 0)
1953                 ret = err;
1954         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1955         err = ext4_journal_stop(handle);
1956         if (!ret)
1957                 ret = err;
1958
1959         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1960 out:
1961         unlock_page(page);
1962 out_no_pagelock:
1963         brelse(inode_bh);
1964         return ret;
1965 }
1966
1967 /*
1968  * Note that we don't need to start a transaction unless we're journaling data
1969  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1970  * need to file the inode to the transaction's list in ordered mode because if
1971  * we are writing back data added by write(), the inode is already there and if
1972  * we are writing back data modified via mmap(), no one guarantees in which
1973  * transaction the data will hit the disk. In case we are journaling data, we
1974  * cannot start transaction directly because transaction start ranks above page
1975  * lock so we have to do some magic.
1976  *
1977  * This function can get called via...
1978  *   - ext4_writepages after taking page lock (have journal handle)
1979  *   - journal_submit_inode_data_buffers (no journal handle)
1980  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1981  *   - grab_page_cache when doing write_begin (have journal handle)
1982  *
1983  * We don't do any block allocation in this function. If we have page with
1984  * multiple blocks we need to write those buffer_heads that are mapped. This
1985  * is important for mmaped based write. So if we do with blocksize 1K
1986  * truncate(f, 1024);
1987  * a = mmap(f, 0, 4096);
1988  * a[0] = 'a';
1989  * truncate(f, 4096);
1990  * we have in the page first buffer_head mapped via page_mkwrite call back
1991  * but other buffer_heads would be unmapped but dirty (dirty done via the
1992  * do_wp_page). So writepage should write the first block. If we modify
1993  * the mmap area beyond 1024 we will again get a page_fault and the
1994  * page_mkwrite callback will do the block allocation and mark the
1995  * buffer_heads mapped.
1996  *
1997  * We redirty the page if we have any buffer_heads that is either delay or
1998  * unwritten in the page.
1999  *
2000  * We can get recursively called as show below.
2001  *
2002  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2003  *              ext4_writepage()
2004  *
2005  * But since we don't do any block allocation we should not deadlock.
2006  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2007  */
2008 static int ext4_writepage(struct page *page,
2009                           struct writeback_control *wbc)
2010 {
2011         struct folio *folio = page_folio(page);
2012         int ret = 0;
2013         loff_t size;
2014         unsigned int len;
2015         struct buffer_head *page_bufs = NULL;
2016         struct inode *inode = page->mapping->host;
2017         struct ext4_io_submit io_submit;
2018         bool keep_towrite = false;
2019
2020         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2021                 folio_invalidate(folio, 0, folio_size(folio));
2022                 folio_unlock(folio);
2023                 return -EIO;
2024         }
2025
2026         trace_ext4_writepage(page);
2027         size = i_size_read(inode);
2028         if (page->index == size >> PAGE_SHIFT &&
2029             !ext4_verity_in_progress(inode))
2030                 len = size & ~PAGE_MASK;
2031         else
2032                 len = PAGE_SIZE;
2033
2034         /* Should never happen but for bugs in other kernel subsystems */
2035         if (!page_has_buffers(page)) {
2036                 ext4_warning_inode(inode,
2037                    "page %lu does not have buffers attached", page->index);
2038                 ClearPageDirty(page);
2039                 unlock_page(page);
2040                 return 0;
2041         }
2042
2043         page_bufs = page_buffers(page);
2044         /*
2045          * We cannot do block allocation or other extent handling in this
2046          * function. If there are buffers needing that, we have to redirty
2047          * the page. But we may reach here when we do a journal commit via
2048          * journal_submit_inode_data_buffers() and in that case we must write
2049          * allocated buffers to achieve data=ordered mode guarantees.
2050          *
2051          * Also, if there is only one buffer per page (the fs block
2052          * size == the page size), if one buffer needs block
2053          * allocation or needs to modify the extent tree to clear the
2054          * unwritten flag, we know that the page can't be written at
2055          * all, so we might as well refuse the write immediately.
2056          * Unfortunately if the block size != page size, we can't as
2057          * easily detect this case using ext4_walk_page_buffers(), but
2058          * for the extremely common case, this is an optimization that
2059          * skips a useless round trip through ext4_bio_write_page().
2060          */
2061         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2062                                    ext4_bh_delay_or_unwritten)) {
2063                 redirty_page_for_writepage(wbc, page);
2064                 if ((current->flags & PF_MEMALLOC) ||
2065                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2066                         /*
2067                          * For memory cleaning there's no point in writing only
2068                          * some buffers. So just bail out. Warn if we came here
2069                          * from direct reclaim.
2070                          */
2071                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2072                                                         == PF_MEMALLOC);
2073                         unlock_page(page);
2074                         return 0;
2075                 }
2076                 keep_towrite = true;
2077         }
2078
2079         if (PageChecked(page) && ext4_should_journal_data(inode))
2080                 /*
2081                  * It's mmapped pagecache.  Add buffers and journal it.  There
2082                  * doesn't seem much point in redirtying the page here.
2083                  */
2084                 return __ext4_journalled_writepage(page, len);
2085
2086         ext4_io_submit_init(&io_submit, wbc);
2087         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2088         if (!io_submit.io_end) {
2089                 redirty_page_for_writepage(wbc, page);
2090                 unlock_page(page);
2091                 return -ENOMEM;
2092         }
2093         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2094         ext4_io_submit(&io_submit);
2095         /* Drop io_end reference we got from init */
2096         ext4_put_io_end_defer(io_submit.io_end);
2097         return ret;
2098 }
2099
2100 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2101 {
2102         int len;
2103         loff_t size;
2104         int err;
2105
2106         BUG_ON(page->index != mpd->first_page);
2107         clear_page_dirty_for_io(page);
2108         /*
2109          * We have to be very careful here!  Nothing protects writeback path
2110          * against i_size changes and the page can be writeably mapped into
2111          * page tables. So an application can be growing i_size and writing
2112          * data through mmap while writeback runs. clear_page_dirty_for_io()
2113          * write-protects our page in page tables and the page cannot get
2114          * written to again until we release page lock. So only after
2115          * clear_page_dirty_for_io() we are safe to sample i_size for
2116          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2117          * on the barrier provided by TestClearPageDirty in
2118          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2119          * after page tables are updated.
2120          */
2121         size = i_size_read(mpd->inode);
2122         if (page->index == size >> PAGE_SHIFT &&
2123             !ext4_verity_in_progress(mpd->inode))
2124                 len = size & ~PAGE_MASK;
2125         else
2126                 len = PAGE_SIZE;
2127         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2128         if (!err)
2129                 mpd->wbc->nr_to_write--;
2130         mpd->first_page++;
2131
2132         return err;
2133 }
2134
2135 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2136
2137 /*
2138  * mballoc gives us at most this number of blocks...
2139  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2140  * The rest of mballoc seems to handle chunks up to full group size.
2141  */
2142 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2143
2144 /*
2145  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2146  *
2147  * @mpd - extent of blocks
2148  * @lblk - logical number of the block in the file
2149  * @bh - buffer head we want to add to the extent
2150  *
2151  * The function is used to collect contig. blocks in the same state. If the
2152  * buffer doesn't require mapping for writeback and we haven't started the
2153  * extent of buffers to map yet, the function returns 'true' immediately - the
2154  * caller can write the buffer right away. Otherwise the function returns true
2155  * if the block has been added to the extent, false if the block couldn't be
2156  * added.
2157  */
2158 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2159                                    struct buffer_head *bh)
2160 {
2161         struct ext4_map_blocks *map = &mpd->map;
2162
2163         /* Buffer that doesn't need mapping for writeback? */
2164         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2165             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2166                 /* So far no extent to map => we write the buffer right away */
2167                 if (map->m_len == 0)
2168                         return true;
2169                 return false;
2170         }
2171
2172         /* First block in the extent? */
2173         if (map->m_len == 0) {
2174                 /* We cannot map unless handle is started... */
2175                 if (!mpd->do_map)
2176                         return false;
2177                 map->m_lblk = lblk;
2178                 map->m_len = 1;
2179                 map->m_flags = bh->b_state & BH_FLAGS;
2180                 return true;
2181         }
2182
2183         /* Don't go larger than mballoc is willing to allocate */
2184         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2185                 return false;
2186
2187         /* Can we merge the block to our big extent? */
2188         if (lblk == map->m_lblk + map->m_len &&
2189             (bh->b_state & BH_FLAGS) == map->m_flags) {
2190                 map->m_len++;
2191                 return true;
2192         }
2193         return false;
2194 }
2195
2196 /*
2197  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2198  *
2199  * @mpd - extent of blocks for mapping
2200  * @head - the first buffer in the page
2201  * @bh - buffer we should start processing from
2202  * @lblk - logical number of the block in the file corresponding to @bh
2203  *
2204  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2205  * the page for IO if all buffers in this page were mapped and there's no
2206  * accumulated extent of buffers to map or add buffers in the page to the
2207  * extent of buffers to map. The function returns 1 if the caller can continue
2208  * by processing the next page, 0 if it should stop adding buffers to the
2209  * extent to map because we cannot extend it anymore. It can also return value
2210  * < 0 in case of error during IO submission.
2211  */
2212 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2213                                    struct buffer_head *head,
2214                                    struct buffer_head *bh,
2215                                    ext4_lblk_t lblk)
2216 {
2217         struct inode *inode = mpd->inode;
2218         int err;
2219         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2220                                                         >> inode->i_blkbits;
2221
2222         if (ext4_verity_in_progress(inode))
2223                 blocks = EXT_MAX_BLOCKS;
2224
2225         do {
2226                 BUG_ON(buffer_locked(bh));
2227
2228                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2229                         /* Found extent to map? */
2230                         if (mpd->map.m_len)
2231                                 return 0;
2232                         /* Buffer needs mapping and handle is not started? */
2233                         if (!mpd->do_map)
2234                                 return 0;
2235                         /* Everything mapped so far and we hit EOF */
2236                         break;
2237                 }
2238         } while (lblk++, (bh = bh->b_this_page) != head);
2239         /* So far everything mapped? Submit the page for IO. */
2240         if (mpd->map.m_len == 0) {
2241                 err = mpage_submit_page(mpd, head->b_page);
2242                 if (err < 0)
2243                         return err;
2244         }
2245         if (lblk >= blocks) {
2246                 mpd->scanned_until_end = 1;
2247                 return 0;
2248         }
2249         return 1;
2250 }
2251
2252 /*
2253  * mpage_process_page - update page buffers corresponding to changed extent and
2254  *                     may submit fully mapped page for IO
2255  *
2256  * @mpd         - description of extent to map, on return next extent to map
2257  * @m_lblk      - logical block mapping.
2258  * @m_pblk      - corresponding physical mapping.
2259  * @map_bh      - determines on return whether this page requires any further
2260  *                mapping or not.
2261  * Scan given page buffers corresponding to changed extent and update buffer
2262  * state according to new extent state.
2263  * We map delalloc buffers to their physical location, clear unwritten bits.
2264  * If the given page is not fully mapped, we update @map to the next extent in
2265  * the given page that needs mapping & return @map_bh as true.
2266  */
2267 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2268                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2269                               bool *map_bh)
2270 {
2271         struct buffer_head *head, *bh;
2272         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2273         ext4_lblk_t lblk = *m_lblk;
2274         ext4_fsblk_t pblock = *m_pblk;
2275         int err = 0;
2276         int blkbits = mpd->inode->i_blkbits;
2277         ssize_t io_end_size = 0;
2278         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2279
2280         bh = head = page_buffers(page);
2281         do {
2282                 if (lblk < mpd->map.m_lblk)
2283                         continue;
2284                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2285                         /*
2286                          * Buffer after end of mapped extent.
2287                          * Find next buffer in the page to map.
2288                          */
2289                         mpd->map.m_len = 0;
2290                         mpd->map.m_flags = 0;
2291                         io_end_vec->size += io_end_size;
2292
2293                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2294                         if (err > 0)
2295                                 err = 0;
2296                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2297                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2298                                 if (IS_ERR(io_end_vec)) {
2299                                         err = PTR_ERR(io_end_vec);
2300                                         goto out;
2301                                 }
2302                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2303                         }
2304                         *map_bh = true;
2305                         goto out;
2306                 }
2307                 if (buffer_delay(bh)) {
2308                         clear_buffer_delay(bh);
2309                         bh->b_blocknr = pblock++;
2310                 }
2311                 clear_buffer_unwritten(bh);
2312                 io_end_size += (1 << blkbits);
2313         } while (lblk++, (bh = bh->b_this_page) != head);
2314
2315         io_end_vec->size += io_end_size;
2316         *map_bh = false;
2317 out:
2318         *m_lblk = lblk;
2319         *m_pblk = pblock;
2320         return err;
2321 }
2322
2323 /*
2324  * mpage_map_buffers - update buffers corresponding to changed extent and
2325  *                     submit fully mapped pages for IO
2326  *
2327  * @mpd - description of extent to map, on return next extent to map
2328  *
2329  * Scan buffers corresponding to changed extent (we expect corresponding pages
2330  * to be already locked) and update buffer state according to new extent state.
2331  * We map delalloc buffers to their physical location, clear unwritten bits,
2332  * and mark buffers as uninit when we perform writes to unwritten extents
2333  * and do extent conversion after IO is finished. If the last page is not fully
2334  * mapped, we update @map to the next extent in the last page that needs
2335  * mapping. Otherwise we submit the page for IO.
2336  */
2337 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2338 {
2339         struct folio_batch fbatch;
2340         unsigned nr, i;
2341         struct inode *inode = mpd->inode;
2342         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2343         pgoff_t start, end;
2344         ext4_lblk_t lblk;
2345         ext4_fsblk_t pblock;
2346         int err;
2347         bool map_bh = false;
2348
2349         start = mpd->map.m_lblk >> bpp_bits;
2350         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2351         lblk = start << bpp_bits;
2352         pblock = mpd->map.m_pblk;
2353
2354         folio_batch_init(&fbatch);
2355         while (start <= end) {
2356                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2357                 if (nr == 0)
2358                         break;
2359                 for (i = 0; i < nr; i++) {
2360                         struct page *page = &fbatch.folios[i]->page;
2361
2362                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2363                                                  &map_bh);
2364                         /*
2365                          * If map_bh is true, means page may require further bh
2366                          * mapping, or maybe the page was submitted for IO.
2367                          * So we return to call further extent mapping.
2368                          */
2369                         if (err < 0 || map_bh)
2370                                 goto out;
2371                         /* Page fully mapped - let IO run! */
2372                         err = mpage_submit_page(mpd, page);
2373                         if (err < 0)
2374                                 goto out;
2375                 }
2376                 folio_batch_release(&fbatch);
2377         }
2378         /* Extent fully mapped and matches with page boundary. We are done. */
2379         mpd->map.m_len = 0;
2380         mpd->map.m_flags = 0;
2381         return 0;
2382 out:
2383         folio_batch_release(&fbatch);
2384         return err;
2385 }
2386
2387 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2388 {
2389         struct inode *inode = mpd->inode;
2390         struct ext4_map_blocks *map = &mpd->map;
2391         int get_blocks_flags;
2392         int err, dioread_nolock;
2393
2394         trace_ext4_da_write_pages_extent(inode, map);
2395         /*
2396          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2397          * to convert an unwritten extent to be initialized (in the case
2398          * where we have written into one or more preallocated blocks).  It is
2399          * possible that we're going to need more metadata blocks than
2400          * previously reserved. However we must not fail because we're in
2401          * writeback and there is nothing we can do about it so it might result
2402          * in data loss.  So use reserved blocks to allocate metadata if
2403          * possible.
2404          *
2405          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2406          * the blocks in question are delalloc blocks.  This indicates
2407          * that the blocks and quotas has already been checked when
2408          * the data was copied into the page cache.
2409          */
2410         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2411                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2412                            EXT4_GET_BLOCKS_IO_SUBMIT;
2413         dioread_nolock = ext4_should_dioread_nolock(inode);
2414         if (dioread_nolock)
2415                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2416         if (map->m_flags & BIT(BH_Delay))
2417                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2418
2419         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2420         if (err < 0)
2421                 return err;
2422         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2423                 if (!mpd->io_submit.io_end->handle &&
2424                     ext4_handle_valid(handle)) {
2425                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2426                         handle->h_rsv_handle = NULL;
2427                 }
2428                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2429         }
2430
2431         BUG_ON(map->m_len == 0);
2432         return 0;
2433 }
2434
2435 /*
2436  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2437  *                               mpd->len and submit pages underlying it for IO
2438  *
2439  * @handle - handle for journal operations
2440  * @mpd - extent to map
2441  * @give_up_on_write - we set this to true iff there is a fatal error and there
2442  *                     is no hope of writing the data. The caller should discard
2443  *                     dirty pages to avoid infinite loops.
2444  *
2445  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2446  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2447  * them to initialized or split the described range from larger unwritten
2448  * extent. Note that we need not map all the described range since allocation
2449  * can return less blocks or the range is covered by more unwritten extents. We
2450  * cannot map more because we are limited by reserved transaction credits. On
2451  * the other hand we always make sure that the last touched page is fully
2452  * mapped so that it can be written out (and thus forward progress is
2453  * guaranteed). After mapping we submit all mapped pages for IO.
2454  */
2455 static int mpage_map_and_submit_extent(handle_t *handle,
2456                                        struct mpage_da_data *mpd,
2457                                        bool *give_up_on_write)
2458 {
2459         struct inode *inode = mpd->inode;
2460         struct ext4_map_blocks *map = &mpd->map;
2461         int err;
2462         loff_t disksize;
2463         int progress = 0;
2464         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2465         struct ext4_io_end_vec *io_end_vec;
2466
2467         io_end_vec = ext4_alloc_io_end_vec(io_end);
2468         if (IS_ERR(io_end_vec))
2469                 return PTR_ERR(io_end_vec);
2470         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2471         do {
2472                 err = mpage_map_one_extent(handle, mpd);
2473                 if (err < 0) {
2474                         struct super_block *sb = inode->i_sb;
2475
2476                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2477                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2478                                 goto invalidate_dirty_pages;
2479                         /*
2480                          * Let the uper layers retry transient errors.
2481                          * In the case of ENOSPC, if ext4_count_free_blocks()
2482                          * is non-zero, a commit should free up blocks.
2483                          */
2484                         if ((err == -ENOMEM) ||
2485                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2486                                 if (progress)
2487                                         goto update_disksize;
2488                                 return err;
2489                         }
2490                         ext4_msg(sb, KERN_CRIT,
2491                                  "Delayed block allocation failed for "
2492                                  "inode %lu at logical offset %llu with"
2493                                  " max blocks %u with error %d",
2494                                  inode->i_ino,
2495                                  (unsigned long long)map->m_lblk,
2496                                  (unsigned)map->m_len, -err);
2497                         ext4_msg(sb, KERN_CRIT,
2498                                  "This should not happen!! Data will "
2499                                  "be lost\n");
2500                         if (err == -ENOSPC)
2501                                 ext4_print_free_blocks(inode);
2502                 invalidate_dirty_pages:
2503                         *give_up_on_write = true;
2504                         return err;
2505                 }
2506                 progress = 1;
2507                 /*
2508                  * Update buffer state, submit mapped pages, and get us new
2509                  * extent to map
2510                  */
2511                 err = mpage_map_and_submit_buffers(mpd);
2512                 if (err < 0)
2513                         goto update_disksize;
2514         } while (map->m_len);
2515
2516 update_disksize:
2517         /*
2518          * Update on-disk size after IO is submitted.  Races with
2519          * truncate are avoided by checking i_size under i_data_sem.
2520          */
2521         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2522         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2523                 int err2;
2524                 loff_t i_size;
2525
2526                 down_write(&EXT4_I(inode)->i_data_sem);
2527                 i_size = i_size_read(inode);
2528                 if (disksize > i_size)
2529                         disksize = i_size;
2530                 if (disksize > EXT4_I(inode)->i_disksize)
2531                         EXT4_I(inode)->i_disksize = disksize;
2532                 up_write(&EXT4_I(inode)->i_data_sem);
2533                 err2 = ext4_mark_inode_dirty(handle, inode);
2534                 if (err2) {
2535                         ext4_error_err(inode->i_sb, -err2,
2536                                        "Failed to mark inode %lu dirty",
2537                                        inode->i_ino);
2538                 }
2539                 if (!err)
2540                         err = err2;
2541         }
2542         return err;
2543 }
2544
2545 /*
2546  * Calculate the total number of credits to reserve for one writepages
2547  * iteration. This is called from ext4_writepages(). We map an extent of
2548  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2549  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2550  * bpp - 1 blocks in bpp different extents.
2551  */
2552 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2553 {
2554         int bpp = ext4_journal_blocks_per_page(inode);
2555
2556         return ext4_meta_trans_blocks(inode,
2557                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2558 }
2559
2560 /*
2561  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2562  *                               and underlying extent to map
2563  *
2564  * @mpd - where to look for pages
2565  *
2566  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2567  * IO immediately. When we find a page which isn't mapped we start accumulating
2568  * extent of buffers underlying these pages that needs mapping (formed by
2569  * either delayed or unwritten buffers). We also lock the pages containing
2570  * these buffers. The extent found is returned in @mpd structure (starting at
2571  * mpd->lblk with length mpd->len blocks).
2572  *
2573  * Note that this function can attach bios to one io_end structure which are
2574  * neither logically nor physically contiguous. Although it may seem as an
2575  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2576  * case as we need to track IO to all buffers underlying a page in one io_end.
2577  */
2578 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2579 {
2580         struct address_space *mapping = mpd->inode->i_mapping;
2581         struct pagevec pvec;
2582         unsigned int nr_pages;
2583         long left = mpd->wbc->nr_to_write;
2584         pgoff_t index = mpd->first_page;
2585         pgoff_t end = mpd->last_page;
2586         xa_mark_t tag;
2587         int i, err = 0;
2588         int blkbits = mpd->inode->i_blkbits;
2589         ext4_lblk_t lblk;
2590         struct buffer_head *head;
2591
2592         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2593                 tag = PAGECACHE_TAG_TOWRITE;
2594         else
2595                 tag = PAGECACHE_TAG_DIRTY;
2596
2597         pagevec_init(&pvec);
2598         mpd->map.m_len = 0;
2599         mpd->next_page = index;
2600         while (index <= end) {
2601                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2602                                 tag);
2603                 if (nr_pages == 0)
2604                         break;
2605
2606                 for (i = 0; i < nr_pages; i++) {
2607                         struct page *page = pvec.pages[i];
2608
2609                         /*
2610                          * Accumulated enough dirty pages? This doesn't apply
2611                          * to WB_SYNC_ALL mode. For integrity sync we have to
2612                          * keep going because someone may be concurrently
2613                          * dirtying pages, and we might have synced a lot of
2614                          * newly appeared dirty pages, but have not synced all
2615                          * of the old dirty pages.
2616                          */
2617                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2618                                 goto out;
2619
2620                         /* If we can't merge this page, we are done. */
2621                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2622                                 goto out;
2623
2624                         lock_page(page);
2625                         /*
2626                          * If the page is no longer dirty, or its mapping no
2627                          * longer corresponds to inode we are writing (which
2628                          * means it has been truncated or invalidated), or the
2629                          * page is already under writeback and we are not doing
2630                          * a data integrity writeback, skip the page
2631                          */
2632                         if (!PageDirty(page) ||
2633                             (PageWriteback(page) &&
2634                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2635                             unlikely(page->mapping != mapping)) {
2636                                 unlock_page(page);
2637                                 continue;
2638                         }
2639
2640                         wait_on_page_writeback(page);
2641                         BUG_ON(PageWriteback(page));
2642
2643                         /*
2644                          * Should never happen but for buggy code in
2645                          * other subsystems that call
2646                          * set_page_dirty() without properly warning
2647                          * the file system first.  See [1] for more
2648                          * information.
2649                          *
2650                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2651                          */
2652                         if (!page_has_buffers(page)) {
2653                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2654                                 ClearPageDirty(page);
2655                                 unlock_page(page);
2656                                 continue;
2657                         }
2658
2659                         if (mpd->map.m_len == 0)
2660                                 mpd->first_page = page->index;
2661                         mpd->next_page = page->index + 1;
2662                         /* Add all dirty buffers to mpd */
2663                         lblk = ((ext4_lblk_t)page->index) <<
2664                                 (PAGE_SHIFT - blkbits);
2665                         head = page_buffers(page);
2666                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2667                         if (err <= 0)
2668                                 goto out;
2669                         err = 0;
2670                         left--;
2671                 }
2672                 pagevec_release(&pvec);
2673                 cond_resched();
2674         }
2675         mpd->scanned_until_end = 1;
2676         return 0;
2677 out:
2678         pagevec_release(&pvec);
2679         return err;
2680 }
2681
2682 static int ext4_writepages(struct address_space *mapping,
2683                            struct writeback_control *wbc)
2684 {
2685         pgoff_t writeback_index = 0;
2686         long nr_to_write = wbc->nr_to_write;
2687         int range_whole = 0;
2688         int cycled = 1;
2689         handle_t *handle = NULL;
2690         struct mpage_da_data mpd;
2691         struct inode *inode = mapping->host;
2692         int needed_blocks, rsv_blocks = 0, ret = 0;
2693         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2694         struct blk_plug plug;
2695         bool give_up_on_write = false;
2696
2697         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2698                 return -EIO;
2699
2700         percpu_down_read(&sbi->s_writepages_rwsem);
2701         trace_ext4_writepages(inode, wbc);
2702
2703         /*
2704          * No pages to write? This is mainly a kludge to avoid starting
2705          * a transaction for special inodes like journal inode on last iput()
2706          * because that could violate lock ordering on umount
2707          */
2708         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2709                 goto out_writepages;
2710
2711         if (ext4_should_journal_data(inode)) {
2712                 ret = generic_writepages(mapping, wbc);
2713                 goto out_writepages;
2714         }
2715
2716         /*
2717          * If the filesystem has aborted, it is read-only, so return
2718          * right away instead of dumping stack traces later on that
2719          * will obscure the real source of the problem.  We test
2720          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2721          * the latter could be true if the filesystem is mounted
2722          * read-only, and in that case, ext4_writepages should
2723          * *never* be called, so if that ever happens, we would want
2724          * the stack trace.
2725          */
2726         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2727                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2728                 ret = -EROFS;
2729                 goto out_writepages;
2730         }
2731
2732         /*
2733          * If we have inline data and arrive here, it means that
2734          * we will soon create the block for the 1st page, so
2735          * we'd better clear the inline data here.
2736          */
2737         if (ext4_has_inline_data(inode)) {
2738                 /* Just inode will be modified... */
2739                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2740                 if (IS_ERR(handle)) {
2741                         ret = PTR_ERR(handle);
2742                         goto out_writepages;
2743                 }
2744                 BUG_ON(ext4_test_inode_state(inode,
2745                                 EXT4_STATE_MAY_INLINE_DATA));
2746                 ext4_destroy_inline_data(handle, inode);
2747                 ext4_journal_stop(handle);
2748         }
2749
2750         if (ext4_should_dioread_nolock(inode)) {
2751                 /*
2752                  * We may need to convert up to one extent per block in
2753                  * the page and we may dirty the inode.
2754                  */
2755                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2756                                                 PAGE_SIZE >> inode->i_blkbits);
2757         }
2758
2759         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2760                 range_whole = 1;
2761
2762         if (wbc->range_cyclic) {
2763                 writeback_index = mapping->writeback_index;
2764                 if (writeback_index)
2765                         cycled = 0;
2766                 mpd.first_page = writeback_index;
2767                 mpd.last_page = -1;
2768         } else {
2769                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2770                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2771         }
2772
2773         mpd.inode = inode;
2774         mpd.wbc = wbc;
2775         ext4_io_submit_init(&mpd.io_submit, wbc);
2776 retry:
2777         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2778                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2779         blk_start_plug(&plug);
2780
2781         /*
2782          * First writeback pages that don't need mapping - we can avoid
2783          * starting a transaction unnecessarily and also avoid being blocked
2784          * in the block layer on device congestion while having transaction
2785          * started.
2786          */
2787         mpd.do_map = 0;
2788         mpd.scanned_until_end = 0;
2789         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2790         if (!mpd.io_submit.io_end) {
2791                 ret = -ENOMEM;
2792                 goto unplug;
2793         }
2794         ret = mpage_prepare_extent_to_map(&mpd);
2795         /* Unlock pages we didn't use */
2796         mpage_release_unused_pages(&mpd, false);
2797         /* Submit prepared bio */
2798         ext4_io_submit(&mpd.io_submit);
2799         ext4_put_io_end_defer(mpd.io_submit.io_end);
2800         mpd.io_submit.io_end = NULL;
2801         if (ret < 0)
2802                 goto unplug;
2803
2804         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2805                 /* For each extent of pages we use new io_end */
2806                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2807                 if (!mpd.io_submit.io_end) {
2808                         ret = -ENOMEM;
2809                         break;
2810                 }
2811
2812                 /*
2813                  * We have two constraints: We find one extent to map and we
2814                  * must always write out whole page (makes a difference when
2815                  * blocksize < pagesize) so that we don't block on IO when we
2816                  * try to write out the rest of the page. Journalled mode is
2817                  * not supported by delalloc.
2818                  */
2819                 BUG_ON(ext4_should_journal_data(inode));
2820                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2821
2822                 /* start a new transaction */
2823                 handle = ext4_journal_start_with_reserve(inode,
2824                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2825                 if (IS_ERR(handle)) {
2826                         ret = PTR_ERR(handle);
2827                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2828                                "%ld pages, ino %lu; err %d", __func__,
2829                                 wbc->nr_to_write, inode->i_ino, ret);
2830                         /* Release allocated io_end */
2831                         ext4_put_io_end(mpd.io_submit.io_end);
2832                         mpd.io_submit.io_end = NULL;
2833                         break;
2834                 }
2835                 mpd.do_map = 1;
2836
2837                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2838                 ret = mpage_prepare_extent_to_map(&mpd);
2839                 if (!ret && mpd.map.m_len)
2840                         ret = mpage_map_and_submit_extent(handle, &mpd,
2841                                         &give_up_on_write);
2842                 /*
2843                  * Caution: If the handle is synchronous,
2844                  * ext4_journal_stop() can wait for transaction commit
2845                  * to finish which may depend on writeback of pages to
2846                  * complete or on page lock to be released.  In that
2847                  * case, we have to wait until after we have
2848                  * submitted all the IO, released page locks we hold,
2849                  * and dropped io_end reference (for extent conversion
2850                  * to be able to complete) before stopping the handle.
2851                  */
2852                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2853                         ext4_journal_stop(handle);
2854                         handle = NULL;
2855                         mpd.do_map = 0;
2856                 }
2857                 /* Unlock pages we didn't use */
2858                 mpage_release_unused_pages(&mpd, give_up_on_write);
2859                 /* Submit prepared bio */
2860                 ext4_io_submit(&mpd.io_submit);
2861
2862                 /*
2863                  * Drop our io_end reference we got from init. We have
2864                  * to be careful and use deferred io_end finishing if
2865                  * we are still holding the transaction as we can
2866                  * release the last reference to io_end which may end
2867                  * up doing unwritten extent conversion.
2868                  */
2869                 if (handle) {
2870                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2871                         ext4_journal_stop(handle);
2872                 } else
2873                         ext4_put_io_end(mpd.io_submit.io_end);
2874                 mpd.io_submit.io_end = NULL;
2875
2876                 if (ret == -ENOSPC && sbi->s_journal) {
2877                         /*
2878                          * Commit the transaction which would
2879                          * free blocks released in the transaction
2880                          * and try again
2881                          */
2882                         jbd2_journal_force_commit_nested(sbi->s_journal);
2883                         ret = 0;
2884                         continue;
2885                 }
2886                 /* Fatal error - ENOMEM, EIO... */
2887                 if (ret)
2888                         break;
2889         }
2890 unplug:
2891         blk_finish_plug(&plug);
2892         if (!ret && !cycled && wbc->nr_to_write > 0) {
2893                 cycled = 1;
2894                 mpd.last_page = writeback_index - 1;
2895                 mpd.first_page = 0;
2896                 goto retry;
2897         }
2898
2899         /* Update index */
2900         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2901                 /*
2902                  * Set the writeback_index so that range_cyclic
2903                  * mode will write it back later
2904                  */
2905                 mapping->writeback_index = mpd.first_page;
2906
2907 out_writepages:
2908         trace_ext4_writepages_result(inode, wbc, ret,
2909                                      nr_to_write - wbc->nr_to_write);
2910         percpu_up_read(&sbi->s_writepages_rwsem);
2911         return ret;
2912 }
2913
2914 static int ext4_dax_writepages(struct address_space *mapping,
2915                                struct writeback_control *wbc)
2916 {
2917         int ret;
2918         long nr_to_write = wbc->nr_to_write;
2919         struct inode *inode = mapping->host;
2920         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2921
2922         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2923                 return -EIO;
2924
2925         percpu_down_read(&sbi->s_writepages_rwsem);
2926         trace_ext4_writepages(inode, wbc);
2927
2928         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2929         trace_ext4_writepages_result(inode, wbc, ret,
2930                                      nr_to_write - wbc->nr_to_write);
2931         percpu_up_read(&sbi->s_writepages_rwsem);
2932         return ret;
2933 }
2934
2935 static int ext4_nonda_switch(struct super_block *sb)
2936 {
2937         s64 free_clusters, dirty_clusters;
2938         struct ext4_sb_info *sbi = EXT4_SB(sb);
2939
2940         /*
2941          * switch to non delalloc mode if we are running low
2942          * on free block. The free block accounting via percpu
2943          * counters can get slightly wrong with percpu_counter_batch getting
2944          * accumulated on each CPU without updating global counters
2945          * Delalloc need an accurate free block accounting. So switch
2946          * to non delalloc when we are near to error range.
2947          */
2948         free_clusters =
2949                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2950         dirty_clusters =
2951                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2952         /*
2953          * Start pushing delalloc when 1/2 of free blocks are dirty.
2954          */
2955         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2956                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2957
2958         if (2 * free_clusters < 3 * dirty_clusters ||
2959             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2960                 /*
2961                  * free block count is less than 150% of dirty blocks
2962                  * or free blocks is less than watermark
2963                  */
2964                 return 1;
2965         }
2966         return 0;
2967 }
2968
2969 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2970                                loff_t pos, unsigned len,
2971                                struct page **pagep, void **fsdata)
2972 {
2973         int ret, retries = 0;
2974         struct page *page;
2975         pgoff_t index;
2976         struct inode *inode = mapping->host;
2977
2978         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2979                 return -EIO;
2980
2981         index = pos >> PAGE_SHIFT;
2982
2983         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2984                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2985                 return ext4_write_begin(file, mapping, pos,
2986                                         len, pagep, fsdata);
2987         }
2988         *fsdata = (void *)0;
2989         trace_ext4_da_write_begin(inode, pos, len);
2990
2991         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2992                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2993                                                       pagep, fsdata);
2994                 if (ret < 0)
2995                         return ret;
2996                 if (ret == 1)
2997                         return 0;
2998         }
2999
3000 retry:
3001         page = grab_cache_page_write_begin(mapping, index);
3002         if (!page)
3003                 return -ENOMEM;
3004
3005         /* In case writeback began while the page was unlocked */
3006         wait_for_stable_page(page);
3007
3008 #ifdef CONFIG_FS_ENCRYPTION
3009         ret = ext4_block_write_begin(page, pos, len,
3010                                      ext4_da_get_block_prep);
3011 #else
3012         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3013 #endif
3014         if (ret < 0) {
3015                 unlock_page(page);
3016                 put_page(page);
3017                 /*
3018                  * block_write_begin may have instantiated a few blocks
3019                  * outside i_size.  Trim these off again. Don't need
3020                  * i_size_read because we hold inode lock.
3021                  */
3022                 if (pos + len > inode->i_size)
3023                         ext4_truncate_failed_write(inode);
3024
3025                 if (ret == -ENOSPC &&
3026                     ext4_should_retry_alloc(inode->i_sb, &retries))
3027                         goto retry;
3028                 return ret;
3029         }
3030
3031         *pagep = page;
3032         return ret;
3033 }
3034
3035 /*
3036  * Check if we should update i_disksize
3037  * when write to the end of file but not require block allocation
3038  */
3039 static int ext4_da_should_update_i_disksize(struct page *page,
3040                                             unsigned long offset)
3041 {
3042         struct buffer_head *bh;
3043         struct inode *inode = page->mapping->host;
3044         unsigned int idx;
3045         int i;
3046
3047         bh = page_buffers(page);
3048         idx = offset >> inode->i_blkbits;
3049
3050         for (i = 0; i < idx; i++)
3051                 bh = bh->b_this_page;
3052
3053         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3054                 return 0;
3055         return 1;
3056 }
3057
3058 static int ext4_da_write_end(struct file *file,
3059                              struct address_space *mapping,
3060                              loff_t pos, unsigned len, unsigned copied,
3061                              struct page *page, void *fsdata)
3062 {
3063         struct inode *inode = mapping->host;
3064         loff_t new_i_size;
3065         unsigned long start, end;
3066         int write_mode = (int)(unsigned long)fsdata;
3067
3068         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3069                 return ext4_write_end(file, mapping, pos,
3070                                       len, copied, page, fsdata);
3071
3072         trace_ext4_da_write_end(inode, pos, len, copied);
3073
3074         if (write_mode != CONVERT_INLINE_DATA &&
3075             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3076             ext4_has_inline_data(inode))
3077                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3078
3079         start = pos & (PAGE_SIZE - 1);
3080         end = start + copied - 1;
3081
3082         /*
3083          * Since we are holding inode lock, we are sure i_disksize <=
3084          * i_size. We also know that if i_disksize < i_size, there are
3085          * delalloc writes pending in the range upto i_size. If the end of
3086          * the current write is <= i_size, there's no need to touch
3087          * i_disksize since writeback will push i_disksize upto i_size
3088          * eventually. If the end of the current write is > i_size and
3089          * inside an allocated block (ext4_da_should_update_i_disksize()
3090          * check), we need to update i_disksize here as neither
3091          * ext4_writepage() nor certain ext4_writepages() paths not
3092          * allocating blocks update i_disksize.
3093          *
3094          * Note that we defer inode dirtying to generic_write_end() /
3095          * ext4_da_write_inline_data_end().
3096          */
3097         new_i_size = pos + copied;
3098         if (copied && new_i_size > inode->i_size &&
3099             ext4_da_should_update_i_disksize(page, end))
3100                 ext4_update_i_disksize(inode, new_i_size);
3101
3102         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3103 }
3104
3105 /*
3106  * Force all delayed allocation blocks to be allocated for a given inode.
3107  */
3108 int ext4_alloc_da_blocks(struct inode *inode)
3109 {
3110         trace_ext4_alloc_da_blocks(inode);
3111
3112         if (!EXT4_I(inode)->i_reserved_data_blocks)
3113                 return 0;
3114
3115         /*
3116          * We do something simple for now.  The filemap_flush() will
3117          * also start triggering a write of the data blocks, which is
3118          * not strictly speaking necessary (and for users of
3119          * laptop_mode, not even desirable).  However, to do otherwise
3120          * would require replicating code paths in:
3121          *
3122          * ext4_writepages() ->
3123          *    write_cache_pages() ---> (via passed in callback function)
3124          *        __mpage_da_writepage() -->
3125          *           mpage_add_bh_to_extent()
3126          *           mpage_da_map_blocks()
3127          *
3128          * The problem is that write_cache_pages(), located in
3129          * mm/page-writeback.c, marks pages clean in preparation for
3130          * doing I/O, which is not desirable if we're not planning on
3131          * doing I/O at all.
3132          *
3133          * We could call write_cache_pages(), and then redirty all of
3134          * the pages by calling redirty_page_for_writepage() but that
3135          * would be ugly in the extreme.  So instead we would need to
3136          * replicate parts of the code in the above functions,
3137          * simplifying them because we wouldn't actually intend to
3138          * write out the pages, but rather only collect contiguous
3139          * logical block extents, call the multi-block allocator, and
3140          * then update the buffer heads with the block allocations.
3141          *
3142          * For now, though, we'll cheat by calling filemap_flush(),
3143          * which will map the blocks, and start the I/O, but not
3144          * actually wait for the I/O to complete.
3145          */
3146         return filemap_flush(inode->i_mapping);
3147 }
3148
3149 /*
3150  * bmap() is special.  It gets used by applications such as lilo and by
3151  * the swapper to find the on-disk block of a specific piece of data.
3152  *
3153  * Naturally, this is dangerous if the block concerned is still in the
3154  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3155  * filesystem and enables swap, then they may get a nasty shock when the
3156  * data getting swapped to that swapfile suddenly gets overwritten by
3157  * the original zero's written out previously to the journal and
3158  * awaiting writeback in the kernel's buffer cache.
3159  *
3160  * So, if we see any bmap calls here on a modified, data-journaled file,
3161  * take extra steps to flush any blocks which might be in the cache.
3162  */
3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164 {
3165         struct inode *inode = mapping->host;
3166         journal_t *journal;
3167         sector_t ret = 0;
3168         int err;
3169
3170         inode_lock_shared(inode);
3171         /*
3172          * We can get here for an inline file via the FIBMAP ioctl
3173          */
3174         if (ext4_has_inline_data(inode))
3175                 goto out;
3176
3177         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3178                         test_opt(inode->i_sb, DELALLOC)) {
3179                 /*
3180                  * With delalloc we want to sync the file
3181                  * so that we can make sure we allocate
3182                  * blocks for file
3183                  */
3184                 filemap_write_and_wait(mapping);
3185         }
3186
3187         if (EXT4_JOURNAL(inode) &&
3188             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3189                 /*
3190                  * This is a REALLY heavyweight approach, but the use of
3191                  * bmap on dirty files is expected to be extremely rare:
3192                  * only if we run lilo or swapon on a freshly made file
3193                  * do we expect this to happen.
3194                  *
3195                  * (bmap requires CAP_SYS_RAWIO so this does not
3196                  * represent an unprivileged user DOS attack --- we'd be
3197                  * in trouble if mortal users could trigger this path at
3198                  * will.)
3199                  *
3200                  * NB. EXT4_STATE_JDATA is not set on files other than
3201                  * regular files.  If somebody wants to bmap a directory
3202                  * or symlink and gets confused because the buffer
3203                  * hasn't yet been flushed to disk, they deserve
3204                  * everything they get.
3205                  */
3206
3207                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3208                 journal = EXT4_JOURNAL(inode);
3209                 jbd2_journal_lock_updates(journal);
3210                 err = jbd2_journal_flush(journal, 0);
3211                 jbd2_journal_unlock_updates(journal);
3212
3213                 if (err)
3214                         goto out;
3215         }
3216
3217         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3218
3219 out:
3220         inode_unlock_shared(inode);
3221         return ret;
3222 }
3223
3224 static int ext4_read_folio(struct file *file, struct folio *folio)
3225 {
3226         struct page *page = &folio->page;
3227         int ret = -EAGAIN;
3228         struct inode *inode = page->mapping->host;
3229
3230         trace_ext4_readpage(page);
3231
3232         if (ext4_has_inline_data(inode))
3233                 ret = ext4_readpage_inline(inode, page);
3234
3235         if (ret == -EAGAIN)
3236                 return ext4_mpage_readpages(inode, NULL, page);
3237
3238         return ret;
3239 }
3240
3241 static void ext4_readahead(struct readahead_control *rac)
3242 {
3243         struct inode *inode = rac->mapping->host;
3244
3245         /* If the file has inline data, no need to do readahead. */
3246         if (ext4_has_inline_data(inode))
3247                 return;
3248
3249         ext4_mpage_readpages(inode, rac, NULL);
3250 }
3251
3252 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3253                                 size_t length)
3254 {
3255         trace_ext4_invalidate_folio(folio, offset, length);
3256
3257         /* No journalling happens on data buffers when this function is used */
3258         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3259
3260         block_invalidate_folio(folio, offset, length);
3261 }
3262
3263 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3264                                             size_t offset, size_t length)
3265 {
3266         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3267
3268         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3269
3270         /*
3271          * If it's a full truncate we just forget about the pending dirtying
3272          */
3273         if (offset == 0 && length == folio_size(folio))
3274                 folio_clear_checked(folio);
3275
3276         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3277 }
3278
3279 /* Wrapper for aops... */
3280 static void ext4_journalled_invalidate_folio(struct folio *folio,
3281                                            size_t offset,
3282                                            size_t length)
3283 {
3284         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3285 }
3286
3287 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3288 {
3289         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3290
3291         trace_ext4_releasepage(&folio->page);
3292
3293         /* Page has dirty journalled data -> cannot release */
3294         if (folio_test_checked(folio))
3295                 return false;
3296         if (journal)
3297                 return jbd2_journal_try_to_free_buffers(journal, folio);
3298         else
3299                 return try_to_free_buffers(folio);
3300 }
3301
3302 static bool ext4_inode_datasync_dirty(struct inode *inode)
3303 {
3304         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3305
3306         if (journal) {
3307                 if (jbd2_transaction_committed(journal,
3308                         EXT4_I(inode)->i_datasync_tid))
3309                         return false;
3310                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3311                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3312                 return true;
3313         }
3314
3315         /* Any metadata buffers to write? */
3316         if (!list_empty(&inode->i_mapping->private_list))
3317                 return true;
3318         return inode->i_state & I_DIRTY_DATASYNC;
3319 }
3320
3321 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3322                            struct ext4_map_blocks *map, loff_t offset,
3323                            loff_t length, unsigned int flags)
3324 {
3325         u8 blkbits = inode->i_blkbits;
3326
3327         /*
3328          * Writes that span EOF might trigger an I/O size update on completion,
3329          * so consider them to be dirty for the purpose of O_DSYNC, even if
3330          * there is no other metadata changes being made or are pending.
3331          */
3332         iomap->flags = 0;
3333         if (ext4_inode_datasync_dirty(inode) ||
3334             offset + length > i_size_read(inode))
3335                 iomap->flags |= IOMAP_F_DIRTY;
3336
3337         if (map->m_flags & EXT4_MAP_NEW)
3338                 iomap->flags |= IOMAP_F_NEW;
3339
3340         if (flags & IOMAP_DAX)
3341                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3342         else
3343                 iomap->bdev = inode->i_sb->s_bdev;
3344         iomap->offset = (u64) map->m_lblk << blkbits;
3345         iomap->length = (u64) map->m_len << blkbits;
3346
3347         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3348             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3349                 iomap->flags |= IOMAP_F_MERGED;
3350
3351         /*
3352          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3353          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3354          * set. In order for any allocated unwritten extents to be converted
3355          * into written extents correctly within the ->end_io() handler, we
3356          * need to ensure that the iomap->type is set appropriately. Hence, the
3357          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3358          * been set first.
3359          */
3360         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3361                 iomap->type = IOMAP_UNWRITTEN;
3362                 iomap->addr = (u64) map->m_pblk << blkbits;
3363                 if (flags & IOMAP_DAX)
3364                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3365         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3366                 iomap->type = IOMAP_MAPPED;
3367                 iomap->addr = (u64) map->m_pblk << blkbits;
3368                 if (flags & IOMAP_DAX)
3369                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3370         } else {
3371                 iomap->type = IOMAP_HOLE;
3372                 iomap->addr = IOMAP_NULL_ADDR;
3373         }
3374 }
3375
3376 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3377                             unsigned int flags)
3378 {
3379         handle_t *handle;
3380         u8 blkbits = inode->i_blkbits;
3381         int ret, dio_credits, m_flags = 0, retries = 0;
3382
3383         /*
3384          * Trim the mapping request to the maximum value that we can map at
3385          * once for direct I/O.
3386          */
3387         if (map->m_len > DIO_MAX_BLOCKS)
3388                 map->m_len = DIO_MAX_BLOCKS;
3389         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3390
3391 retry:
3392         /*
3393          * Either we allocate blocks and then don't get an unwritten extent, so
3394          * in that case we have reserved enough credits. Or, the blocks are
3395          * already allocated and unwritten. In that case, the extent conversion
3396          * fits into the credits as well.
3397          */
3398         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3399         if (IS_ERR(handle))
3400                 return PTR_ERR(handle);
3401
3402         /*
3403          * DAX and direct I/O are the only two operations that are currently
3404          * supported with IOMAP_WRITE.
3405          */
3406         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3407         if (flags & IOMAP_DAX)
3408                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3409         /*
3410          * We use i_size instead of i_disksize here because delalloc writeback
3411          * can complete at any point during the I/O and subsequently push the
3412          * i_disksize out to i_size. This could be beyond where direct I/O is
3413          * happening and thus expose allocated blocks to direct I/O reads.
3414          */
3415         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3416                 m_flags = EXT4_GET_BLOCKS_CREATE;
3417         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3418                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3419
3420         ret = ext4_map_blocks(handle, inode, map, m_flags);
3421
3422         /*
3423          * We cannot fill holes in indirect tree based inodes as that could
3424          * expose stale data in the case of a crash. Use the magic error code
3425          * to fallback to buffered I/O.
3426          */
3427         if (!m_flags && !ret)
3428                 ret = -ENOTBLK;
3429
3430         ext4_journal_stop(handle);
3431         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3432                 goto retry;
3433
3434         return ret;
3435 }
3436
3437
3438 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3439                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3440 {
3441         int ret;
3442         struct ext4_map_blocks map;
3443         u8 blkbits = inode->i_blkbits;
3444
3445         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3446                 return -EINVAL;
3447
3448         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3449                 return -ERANGE;
3450
3451         /*
3452          * Calculate the first and last logical blocks respectively.
3453          */
3454         map.m_lblk = offset >> blkbits;
3455         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3456                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3457
3458         if (flags & IOMAP_WRITE) {
3459                 /*
3460                  * We check here if the blocks are already allocated, then we
3461                  * don't need to start a journal txn and we can directly return
3462                  * the mapping information. This could boost performance
3463                  * especially in multi-threaded overwrite requests.
3464                  */
3465                 if (offset + length <= i_size_read(inode)) {
3466                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3467                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3468                                 goto out;
3469                 }
3470                 ret = ext4_iomap_alloc(inode, &map, flags);
3471         } else {
3472                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3473         }
3474
3475         if (ret < 0)
3476                 return ret;
3477 out:
3478         /*
3479          * When inline encryption is enabled, sometimes I/O to an encrypted file
3480          * has to be broken up to guarantee DUN contiguity.  Handle this by
3481          * limiting the length of the mapping returned.
3482          */
3483         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3484
3485         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3486
3487         return 0;
3488 }
3489
3490 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3491                 loff_t length, unsigned flags, struct iomap *iomap,
3492                 struct iomap *srcmap)
3493 {
3494         int ret;
3495
3496         /*
3497          * Even for writes we don't need to allocate blocks, so just pretend
3498          * we are reading to save overhead of starting a transaction.
3499          */
3500         flags &= ~IOMAP_WRITE;
3501         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3502         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3503         return ret;
3504 }
3505
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507                           ssize_t written, unsigned flags, struct iomap *iomap)
3508 {
3509         /*
3510          * Check to see whether an error occurred while writing out the data to
3511          * the allocated blocks. If so, return the magic error code so that we
3512          * fallback to buffered I/O and attempt to complete the remainder of
3513          * the I/O. Any blocks that may have been allocated in preparation for
3514          * the direct I/O will be reused during buffered I/O.
3515          */
3516         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3517                 return -ENOTBLK;
3518
3519         return 0;
3520 }
3521
3522 const struct iomap_ops ext4_iomap_ops = {
3523         .iomap_begin            = ext4_iomap_begin,
3524         .iomap_end              = ext4_iomap_end,
3525 };
3526
3527 const struct iomap_ops ext4_iomap_overwrite_ops = {
3528         .iomap_begin            = ext4_iomap_overwrite_begin,
3529         .iomap_end              = ext4_iomap_end,
3530 };
3531
3532 static bool ext4_iomap_is_delalloc(struct inode *inode,
3533                                    struct ext4_map_blocks *map)
3534 {
3535         struct extent_status es;
3536         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3537
3538         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3539                                   map->m_lblk, end, &es);
3540
3541         if (!es.es_len || es.es_lblk > end)
3542                 return false;
3543
3544         if (es.es_lblk > map->m_lblk) {
3545                 map->m_len = es.es_lblk - map->m_lblk;
3546                 return false;
3547         }
3548
3549         offset = map->m_lblk - es.es_lblk;
3550         map->m_len = es.es_len - offset;
3551
3552         return true;
3553 }
3554
3555 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3556                                    loff_t length, unsigned int flags,
3557                                    struct iomap *iomap, struct iomap *srcmap)
3558 {
3559         int ret;
3560         bool delalloc = false;
3561         struct ext4_map_blocks map;
3562         u8 blkbits = inode->i_blkbits;
3563
3564         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3565                 return -EINVAL;
3566
3567         if (ext4_has_inline_data(inode)) {
3568                 ret = ext4_inline_data_iomap(inode, iomap);
3569                 if (ret != -EAGAIN) {
3570                         if (ret == 0 && offset >= iomap->length)
3571                                 ret = -ENOENT;
3572                         return ret;
3573                 }
3574         }
3575
3576         /*
3577          * Calculate the first and last logical block respectively.
3578          */
3579         map.m_lblk = offset >> blkbits;
3580         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3581                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3582
3583         /*
3584          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585          * So handle it here itself instead of querying ext4_map_blocks().
3586          * Since ext4_map_blocks() will warn about it and will return
3587          * -EIO error.
3588          */
3589         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3590                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3591
3592                 if (offset >= sbi->s_bitmap_maxbytes) {
3593                         map.m_flags = 0;
3594                         goto set_iomap;
3595                 }
3596         }
3597
3598         ret = ext4_map_blocks(NULL, inode, &map, 0);
3599         if (ret < 0)
3600                 return ret;
3601         if (ret == 0)
3602                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3603
3604 set_iomap:
3605         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3606         if (delalloc && iomap->type == IOMAP_HOLE)
3607                 iomap->type = IOMAP_DELALLOC;
3608
3609         return 0;
3610 }
3611
3612 const struct iomap_ops ext4_iomap_report_ops = {
3613         .iomap_begin = ext4_iomap_begin_report,
3614 };
3615
3616 /*
3617  * Whenever the folio is being dirtied, corresponding buffers should already
3618  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3619  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3620  * lists here because ->dirty_folio is called under VFS locks and the folio
3621  * is not necessarily locked.
3622  *
3623  * We cannot just dirty the folio and leave attached buffers clean, because the
3624  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3625  * or jbddirty because all the journalling code will explode.
3626  *
3627  * So what we do is to mark the folio "pending dirty" and next time writepage
3628  * is called, propagate that into the buffers appropriately.
3629  */
3630 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3631                 struct folio *folio)
3632 {
3633         WARN_ON_ONCE(!folio_buffers(folio));
3634         folio_set_checked(folio);
3635         return filemap_dirty_folio(mapping, folio);
3636 }
3637
3638 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3639 {
3640         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3641         WARN_ON_ONCE(!folio_buffers(folio));
3642         return block_dirty_folio(mapping, folio);
3643 }
3644
3645 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3646                                     struct file *file, sector_t *span)
3647 {
3648         return iomap_swapfile_activate(sis, file, span,
3649                                        &ext4_iomap_report_ops);
3650 }
3651
3652 static const struct address_space_operations ext4_aops = {
3653         .read_folio             = ext4_read_folio,
3654         .readahead              = ext4_readahead,
3655         .writepage              = ext4_writepage,
3656         .writepages             = ext4_writepages,
3657         .write_begin            = ext4_write_begin,
3658         .write_end              = ext4_write_end,
3659         .dirty_folio            = ext4_dirty_folio,
3660         .bmap                   = ext4_bmap,
3661         .invalidate_folio       = ext4_invalidate_folio,
3662         .release_folio          = ext4_release_folio,
3663         .direct_IO              = noop_direct_IO,
3664         .migrate_folio          = buffer_migrate_folio,
3665         .is_partially_uptodate  = block_is_partially_uptodate,
3666         .error_remove_page      = generic_error_remove_page,
3667         .swap_activate          = ext4_iomap_swap_activate,
3668 };
3669
3670 static const struct address_space_operations ext4_journalled_aops = {
3671         .read_folio             = ext4_read_folio,
3672         .readahead              = ext4_readahead,
3673         .writepage              = ext4_writepage,
3674         .writepages             = ext4_writepages,
3675         .write_begin            = ext4_write_begin,
3676         .write_end              = ext4_journalled_write_end,
3677         .dirty_folio            = ext4_journalled_dirty_folio,
3678         .bmap                   = ext4_bmap,
3679         .invalidate_folio       = ext4_journalled_invalidate_folio,
3680         .release_folio          = ext4_release_folio,
3681         .direct_IO              = noop_direct_IO,
3682         .is_partially_uptodate  = block_is_partially_uptodate,
3683         .error_remove_page      = generic_error_remove_page,
3684         .swap_activate          = ext4_iomap_swap_activate,
3685 };
3686
3687 static const struct address_space_operations ext4_da_aops = {
3688         .read_folio             = ext4_read_folio,
3689         .readahead              = ext4_readahead,
3690         .writepage              = ext4_writepage,
3691         .writepages             = ext4_writepages,
3692         .write_begin            = ext4_da_write_begin,
3693         .write_end              = ext4_da_write_end,
3694         .dirty_folio            = ext4_dirty_folio,
3695         .bmap                   = ext4_bmap,
3696         .invalidate_folio       = ext4_invalidate_folio,
3697         .release_folio          = ext4_release_folio,
3698         .direct_IO              = noop_direct_IO,
3699         .migrate_folio          = buffer_migrate_folio,
3700         .is_partially_uptodate  = block_is_partially_uptodate,
3701         .error_remove_page      = generic_error_remove_page,
3702         .swap_activate          = ext4_iomap_swap_activate,
3703 };
3704
3705 static const struct address_space_operations ext4_dax_aops = {
3706         .writepages             = ext4_dax_writepages,
3707         .direct_IO              = noop_direct_IO,
3708         .dirty_folio            = noop_dirty_folio,
3709         .bmap                   = ext4_bmap,
3710         .swap_activate          = ext4_iomap_swap_activate,
3711 };
3712
3713 void ext4_set_aops(struct inode *inode)
3714 {
3715         switch (ext4_inode_journal_mode(inode)) {
3716         case EXT4_INODE_ORDERED_DATA_MODE:
3717         case EXT4_INODE_WRITEBACK_DATA_MODE:
3718                 break;
3719         case EXT4_INODE_JOURNAL_DATA_MODE:
3720                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3721                 return;
3722         default:
3723                 BUG();
3724         }
3725         if (IS_DAX(inode))
3726                 inode->i_mapping->a_ops = &ext4_dax_aops;
3727         else if (test_opt(inode->i_sb, DELALLOC))
3728                 inode->i_mapping->a_ops = &ext4_da_aops;
3729         else
3730                 inode->i_mapping->a_ops = &ext4_aops;
3731 }
3732
3733 static int __ext4_block_zero_page_range(handle_t *handle,
3734                 struct address_space *mapping, loff_t from, loff_t length)
3735 {
3736         ext4_fsblk_t index = from >> PAGE_SHIFT;
3737         unsigned offset = from & (PAGE_SIZE-1);
3738         unsigned blocksize, pos;
3739         ext4_lblk_t iblock;
3740         struct inode *inode = mapping->host;
3741         struct buffer_head *bh;
3742         struct page *page;
3743         int err = 0;
3744
3745         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3746                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3747         if (!page)
3748                 return -ENOMEM;
3749
3750         blocksize = inode->i_sb->s_blocksize;
3751
3752         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3753
3754         if (!page_has_buffers(page))
3755                 create_empty_buffers(page, blocksize, 0);
3756
3757         /* Find the buffer that contains "offset" */
3758         bh = page_buffers(page);
3759         pos = blocksize;
3760         while (offset >= pos) {
3761                 bh = bh->b_this_page;
3762                 iblock++;
3763                 pos += blocksize;
3764         }
3765         if (buffer_freed(bh)) {
3766                 BUFFER_TRACE(bh, "freed: skip");
3767                 goto unlock;
3768         }
3769         if (!buffer_mapped(bh)) {
3770                 BUFFER_TRACE(bh, "unmapped");
3771                 ext4_get_block(inode, iblock, bh, 0);
3772                 /* unmapped? It's a hole - nothing to do */
3773                 if (!buffer_mapped(bh)) {
3774                         BUFFER_TRACE(bh, "still unmapped");
3775                         goto unlock;
3776                 }
3777         }
3778
3779         /* Ok, it's mapped. Make sure it's up-to-date */
3780         if (PageUptodate(page))
3781                 set_buffer_uptodate(bh);
3782
3783         if (!buffer_uptodate(bh)) {
3784                 err = ext4_read_bh_lock(bh, 0, true);
3785                 if (err)
3786                         goto unlock;
3787                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3788                         /* We expect the key to be set. */
3789                         BUG_ON(!fscrypt_has_encryption_key(inode));
3790                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3791                                                                bh_offset(bh));
3792                         if (err) {
3793                                 clear_buffer_uptodate(bh);
3794                                 goto unlock;
3795                         }
3796                 }
3797         }
3798         if (ext4_should_journal_data(inode)) {
3799                 BUFFER_TRACE(bh, "get write access");
3800                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3801                                                     EXT4_JTR_NONE);
3802                 if (err)
3803                         goto unlock;
3804         }
3805         zero_user(page, offset, length);
3806         BUFFER_TRACE(bh, "zeroed end of block");
3807
3808         if (ext4_should_journal_data(inode)) {
3809                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3810         } else {
3811                 err = 0;
3812                 mark_buffer_dirty(bh);
3813                 if (ext4_should_order_data(inode))
3814                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3815                                         length);
3816         }
3817
3818 unlock:
3819         unlock_page(page);
3820         put_page(page);
3821         return err;
3822 }
3823
3824 /*
3825  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3826  * starting from file offset 'from'.  The range to be zero'd must
3827  * be contained with in one block.  If the specified range exceeds
3828  * the end of the block it will be shortened to end of the block
3829  * that corresponds to 'from'
3830  */
3831 static int ext4_block_zero_page_range(handle_t *handle,
3832                 struct address_space *mapping, loff_t from, loff_t length)
3833 {
3834         struct inode *inode = mapping->host;
3835         unsigned offset = from & (PAGE_SIZE-1);
3836         unsigned blocksize = inode->i_sb->s_blocksize;
3837         unsigned max = blocksize - (offset & (blocksize - 1));
3838
3839         /*
3840          * correct length if it does not fall between
3841          * 'from' and the end of the block
3842          */
3843         if (length > max || length < 0)
3844                 length = max;
3845
3846         if (IS_DAX(inode)) {
3847                 return dax_zero_range(inode, from, length, NULL,
3848                                       &ext4_iomap_ops);
3849         }
3850         return __ext4_block_zero_page_range(handle, mapping, from, length);
3851 }
3852
3853 /*
3854  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3855  * up to the end of the block which corresponds to `from'.
3856  * This required during truncate. We need to physically zero the tail end
3857  * of that block so it doesn't yield old data if the file is later grown.
3858  */
3859 static int ext4_block_truncate_page(handle_t *handle,
3860                 struct address_space *mapping, loff_t from)
3861 {
3862         unsigned offset = from & (PAGE_SIZE-1);
3863         unsigned length;
3864         unsigned blocksize;
3865         struct inode *inode = mapping->host;
3866
3867         /* If we are processing an encrypted inode during orphan list handling */
3868         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3869                 return 0;
3870
3871         blocksize = inode->i_sb->s_blocksize;
3872         length = blocksize - (offset & (blocksize - 1));
3873
3874         return ext4_block_zero_page_range(handle, mapping, from, length);
3875 }
3876
3877 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3878                              loff_t lstart, loff_t length)
3879 {
3880         struct super_block *sb = inode->i_sb;
3881         struct address_space *mapping = inode->i_mapping;
3882         unsigned partial_start, partial_end;
3883         ext4_fsblk_t start, end;
3884         loff_t byte_end = (lstart + length - 1);
3885         int err = 0;
3886
3887         partial_start = lstart & (sb->s_blocksize - 1);
3888         partial_end = byte_end & (sb->s_blocksize - 1);
3889
3890         start = lstart >> sb->s_blocksize_bits;
3891         end = byte_end >> sb->s_blocksize_bits;
3892
3893         /* Handle partial zero within the single block */
3894         if (start == end &&
3895             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3896                 err = ext4_block_zero_page_range(handle, mapping,
3897                                                  lstart, length);
3898                 return err;
3899         }
3900         /* Handle partial zero out on the start of the range */
3901         if (partial_start) {
3902                 err = ext4_block_zero_page_range(handle, mapping,
3903                                                  lstart, sb->s_blocksize);
3904                 if (err)
3905                         return err;
3906         }
3907         /* Handle partial zero out on the end of the range */
3908         if (partial_end != sb->s_blocksize - 1)
3909                 err = ext4_block_zero_page_range(handle, mapping,
3910                                                  byte_end - partial_end,
3911                                                  partial_end + 1);
3912         return err;
3913 }
3914
3915 int ext4_can_truncate(struct inode *inode)
3916 {
3917         if (S_ISREG(inode->i_mode))
3918                 return 1;
3919         if (S_ISDIR(inode->i_mode))
3920                 return 1;
3921         if (S_ISLNK(inode->i_mode))
3922                 return !ext4_inode_is_fast_symlink(inode);
3923         return 0;
3924 }
3925
3926 /*
3927  * We have to make sure i_disksize gets properly updated before we truncate
3928  * page cache due to hole punching or zero range. Otherwise i_disksize update
3929  * can get lost as it may have been postponed to submission of writeback but
3930  * that will never happen after we truncate page cache.
3931  */
3932 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3933                                       loff_t len)
3934 {
3935         handle_t *handle;
3936         int ret;
3937
3938         loff_t size = i_size_read(inode);
3939
3940         WARN_ON(!inode_is_locked(inode));
3941         if (offset > size || offset + len < size)
3942                 return 0;
3943
3944         if (EXT4_I(inode)->i_disksize >= size)
3945                 return 0;
3946
3947         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3948         if (IS_ERR(handle))
3949                 return PTR_ERR(handle);
3950         ext4_update_i_disksize(inode, size);
3951         ret = ext4_mark_inode_dirty(handle, inode);
3952         ext4_journal_stop(handle);
3953
3954         return ret;
3955 }
3956
3957 static void ext4_wait_dax_page(struct inode *inode)
3958 {
3959         filemap_invalidate_unlock(inode->i_mapping);
3960         schedule();
3961         filemap_invalidate_lock(inode->i_mapping);
3962 }
3963
3964 int ext4_break_layouts(struct inode *inode)
3965 {
3966         struct page *page;
3967         int error;
3968
3969         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3970                 return -EINVAL;
3971
3972         do {
3973                 page = dax_layout_busy_page(inode->i_mapping);
3974                 if (!page)
3975                         return 0;
3976
3977                 error = ___wait_var_event(&page->_refcount,
3978                                 atomic_read(&page->_refcount) == 1,
3979                                 TASK_INTERRUPTIBLE, 0, 0,
3980                                 ext4_wait_dax_page(inode));
3981         } while (error == 0);
3982
3983         return error;
3984 }
3985
3986 /*
3987  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3988  * associated with the given offset and length
3989  *
3990  * @inode:  File inode
3991  * @offset: The offset where the hole will begin
3992  * @len:    The length of the hole
3993  *
3994  * Returns: 0 on success or negative on failure
3995  */
3996
3997 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3998 {
3999         struct inode *inode = file_inode(file);
4000         struct super_block *sb = inode->i_sb;
4001         ext4_lblk_t first_block, stop_block;
4002         struct address_space *mapping = inode->i_mapping;
4003         loff_t first_block_offset, last_block_offset, max_length;
4004         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4005         handle_t *handle;
4006         unsigned int credits;
4007         int ret = 0, ret2 = 0;
4008
4009         trace_ext4_punch_hole(inode, offset, length, 0);
4010
4011         /*
4012          * Write out all dirty pages to avoid race conditions
4013          * Then release them.
4014          */
4015         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4016                 ret = filemap_write_and_wait_range(mapping, offset,
4017                                                    offset + length - 1);
4018                 if (ret)
4019                         return ret;
4020         }
4021
4022         inode_lock(inode);
4023
4024         /* No need to punch hole beyond i_size */
4025         if (offset >= inode->i_size)
4026                 goto out_mutex;
4027
4028         /*
4029          * If the hole extends beyond i_size, set the hole
4030          * to end after the page that contains i_size
4031          */
4032         if (offset + length > inode->i_size) {
4033                 length = inode->i_size +
4034                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4035                    offset;
4036         }
4037
4038         /*
4039          * For punch hole the length + offset needs to be within one block
4040          * before last range. Adjust the length if it goes beyond that limit.
4041          */
4042         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4043         if (offset + length > max_length)
4044                 length = max_length - offset;
4045
4046         if (offset & (sb->s_blocksize - 1) ||
4047             (offset + length) & (sb->s_blocksize - 1)) {
4048                 /*
4049                  * Attach jinode to inode for jbd2 if we do any zeroing of
4050                  * partial block
4051                  */
4052                 ret = ext4_inode_attach_jinode(inode);
4053                 if (ret < 0)
4054                         goto out_mutex;
4055
4056         }
4057
4058         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4059         inode_dio_wait(inode);
4060
4061         ret = file_modified(file);
4062         if (ret)
4063                 goto out_mutex;
4064
4065         /*
4066          * Prevent page faults from reinstantiating pages we have released from
4067          * page cache.
4068          */
4069         filemap_invalidate_lock(mapping);
4070
4071         ret = ext4_break_layouts(inode);
4072         if (ret)
4073                 goto out_dio;
4074
4075         first_block_offset = round_up(offset, sb->s_blocksize);
4076         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4077
4078         /* Now release the pages and zero block aligned part of pages*/
4079         if (last_block_offset > first_block_offset) {
4080                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4081                 if (ret)
4082                         goto out_dio;
4083                 truncate_pagecache_range(inode, first_block_offset,
4084                                          last_block_offset);
4085         }
4086
4087         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088                 credits = ext4_writepage_trans_blocks(inode);
4089         else
4090                 credits = ext4_blocks_for_truncate(inode);
4091         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092         if (IS_ERR(handle)) {
4093                 ret = PTR_ERR(handle);
4094                 ext4_std_error(sb, ret);
4095                 goto out_dio;
4096         }
4097
4098         ret = ext4_zero_partial_blocks(handle, inode, offset,
4099                                        length);
4100         if (ret)
4101                 goto out_stop;
4102
4103         first_block = (offset + sb->s_blocksize - 1) >>
4104                 EXT4_BLOCK_SIZE_BITS(sb);
4105         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106
4107         /* If there are blocks to remove, do it */
4108         if (stop_block > first_block) {
4109
4110                 down_write(&EXT4_I(inode)->i_data_sem);
4111                 ext4_discard_preallocations(inode, 0);
4112
4113                 ret = ext4_es_remove_extent(inode, first_block,
4114                                             stop_block - first_block);
4115                 if (ret) {
4116                         up_write(&EXT4_I(inode)->i_data_sem);
4117                         goto out_stop;
4118                 }
4119
4120                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4121                         ret = ext4_ext_remove_space(inode, first_block,
4122                                                     stop_block - 1);
4123                 else
4124                         ret = ext4_ind_remove_space(handle, inode, first_block,
4125                                                     stop_block);
4126
4127                 up_write(&EXT4_I(inode)->i_data_sem);
4128         }
4129         ext4_fc_track_range(handle, inode, first_block, stop_block);
4130         if (IS_SYNC(inode))
4131                 ext4_handle_sync(handle);
4132
4133         inode->i_mtime = inode->i_ctime = current_time(inode);
4134         ret2 = ext4_mark_inode_dirty(handle, inode);
4135         if (unlikely(ret2))
4136                 ret = ret2;
4137         if (ret >= 0)
4138                 ext4_update_inode_fsync_trans(handle, inode, 1);
4139 out_stop:
4140         ext4_journal_stop(handle);
4141 out_dio:
4142         filemap_invalidate_unlock(mapping);
4143 out_mutex:
4144         inode_unlock(inode);
4145         return ret;
4146 }
4147
4148 int ext4_inode_attach_jinode(struct inode *inode)
4149 {
4150         struct ext4_inode_info *ei = EXT4_I(inode);
4151         struct jbd2_inode *jinode;
4152
4153         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4154                 return 0;
4155
4156         jinode = jbd2_alloc_inode(GFP_KERNEL);
4157         spin_lock(&inode->i_lock);
4158         if (!ei->jinode) {
4159                 if (!jinode) {
4160                         spin_unlock(&inode->i_lock);
4161                         return -ENOMEM;
4162                 }
4163                 ei->jinode = jinode;
4164                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4165                 jinode = NULL;
4166         }
4167         spin_unlock(&inode->i_lock);
4168         if (unlikely(jinode != NULL))
4169                 jbd2_free_inode(jinode);
4170         return 0;
4171 }
4172
4173 /*
4174  * ext4_truncate()
4175  *
4176  * We block out ext4_get_block() block instantiations across the entire
4177  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4178  * simultaneously on behalf of the same inode.
4179  *
4180  * As we work through the truncate and commit bits of it to the journal there
4181  * is one core, guiding principle: the file's tree must always be consistent on
4182  * disk.  We must be able to restart the truncate after a crash.
4183  *
4184  * The file's tree may be transiently inconsistent in memory (although it
4185  * probably isn't), but whenever we close off and commit a journal transaction,
4186  * the contents of (the filesystem + the journal) must be consistent and
4187  * restartable.  It's pretty simple, really: bottom up, right to left (although
4188  * left-to-right works OK too).
4189  *
4190  * Note that at recovery time, journal replay occurs *before* the restart of
4191  * truncate against the orphan inode list.
4192  *
4193  * The committed inode has the new, desired i_size (which is the same as
4194  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4195  * that this inode's truncate did not complete and it will again call
4196  * ext4_truncate() to have another go.  So there will be instantiated blocks
4197  * to the right of the truncation point in a crashed ext4 filesystem.  But
4198  * that's fine - as long as they are linked from the inode, the post-crash
4199  * ext4_truncate() run will find them and release them.
4200  */
4201 int ext4_truncate(struct inode *inode)
4202 {
4203         struct ext4_inode_info *ei = EXT4_I(inode);
4204         unsigned int credits;
4205         int err = 0, err2;
4206         handle_t *handle;
4207         struct address_space *mapping = inode->i_mapping;
4208
4209         /*
4210          * There is a possibility that we're either freeing the inode
4211          * or it's a completely new inode. In those cases we might not
4212          * have i_rwsem locked because it's not necessary.
4213          */
4214         if (!(inode->i_state & (I_NEW|I_FREEING)))
4215                 WARN_ON(!inode_is_locked(inode));
4216         trace_ext4_truncate_enter(inode);
4217
4218         if (!ext4_can_truncate(inode))
4219                 goto out_trace;
4220
4221         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4222                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4223
4224         if (ext4_has_inline_data(inode)) {
4225                 int has_inline = 1;
4226
4227                 err = ext4_inline_data_truncate(inode, &has_inline);
4228                 if (err || has_inline)
4229                         goto out_trace;
4230         }
4231
4232         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4233         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4234                 err = ext4_inode_attach_jinode(inode);
4235                 if (err)
4236                         goto out_trace;
4237         }
4238
4239         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240                 credits = ext4_writepage_trans_blocks(inode);
4241         else
4242                 credits = ext4_blocks_for_truncate(inode);
4243
4244         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4245         if (IS_ERR(handle)) {
4246                 err = PTR_ERR(handle);
4247                 goto out_trace;
4248         }
4249
4250         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4251                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4252
4253         /*
4254          * We add the inode to the orphan list, so that if this
4255          * truncate spans multiple transactions, and we crash, we will
4256          * resume the truncate when the filesystem recovers.  It also
4257          * marks the inode dirty, to catch the new size.
4258          *
4259          * Implication: the file must always be in a sane, consistent
4260          * truncatable state while each transaction commits.
4261          */
4262         err = ext4_orphan_add(handle, inode);
4263         if (err)
4264                 goto out_stop;
4265
4266         down_write(&EXT4_I(inode)->i_data_sem);
4267
4268         ext4_discard_preallocations(inode, 0);
4269
4270         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4271                 err = ext4_ext_truncate(handle, inode);
4272         else
4273                 ext4_ind_truncate(handle, inode);
4274
4275         up_write(&ei->i_data_sem);
4276         if (err)
4277                 goto out_stop;
4278
4279         if (IS_SYNC(inode))
4280                 ext4_handle_sync(handle);
4281
4282 out_stop:
4283         /*
4284          * If this was a simple ftruncate() and the file will remain alive,
4285          * then we need to clear up the orphan record which we created above.
4286          * However, if this was a real unlink then we were called by
4287          * ext4_evict_inode(), and we allow that function to clean up the
4288          * orphan info for us.
4289          */
4290         if (inode->i_nlink)
4291                 ext4_orphan_del(handle, inode);
4292
4293         inode->i_mtime = inode->i_ctime = current_time(inode);
4294         err2 = ext4_mark_inode_dirty(handle, inode);
4295         if (unlikely(err2 && !err))
4296                 err = err2;
4297         ext4_journal_stop(handle);
4298
4299 out_trace:
4300         trace_ext4_truncate_exit(inode);
4301         return err;
4302 }
4303
4304 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4305 {
4306         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4307                 return inode_peek_iversion_raw(inode);
4308         else
4309                 return inode_peek_iversion(inode);
4310 }
4311
4312 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4313                                  struct ext4_inode_info *ei)
4314 {
4315         struct inode *inode = &(ei->vfs_inode);
4316         u64 i_blocks = READ_ONCE(inode->i_blocks);
4317         struct super_block *sb = inode->i_sb;
4318
4319         if (i_blocks <= ~0U) {
4320                 /*
4321                  * i_blocks can be represented in a 32 bit variable
4322                  * as multiple of 512 bytes
4323                  */
4324                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4325                 raw_inode->i_blocks_high = 0;
4326                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4327                 return 0;
4328         }
4329
4330         /*
4331          * This should never happen since sb->s_maxbytes should not have
4332          * allowed this, sb->s_maxbytes was set according to the huge_file
4333          * feature in ext4_fill_super().
4334          */
4335         if (!ext4_has_feature_huge_file(sb))
4336                 return -EFSCORRUPTED;
4337
4338         if (i_blocks <= 0xffffffffffffULL) {
4339                 /*
4340                  * i_blocks can be represented in a 48 bit variable
4341                  * as multiple of 512 bytes
4342                  */
4343                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4344                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4345                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4346         } else {
4347                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4348                 /* i_block is stored in file system block size */
4349                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4350                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4351                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4352         }
4353         return 0;
4354 }
4355
4356 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4357 {
4358         struct ext4_inode_info *ei = EXT4_I(inode);
4359         uid_t i_uid;
4360         gid_t i_gid;
4361         projid_t i_projid;
4362         int block;
4363         int err;
4364
4365         err = ext4_inode_blocks_set(raw_inode, ei);
4366
4367         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4368         i_uid = i_uid_read(inode);
4369         i_gid = i_gid_read(inode);
4370         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4371         if (!(test_opt(inode->i_sb, NO_UID32))) {
4372                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4373                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4374                 /*
4375                  * Fix up interoperability with old kernels. Otherwise,
4376                  * old inodes get re-used with the upper 16 bits of the
4377                  * uid/gid intact.
4378                  */
4379                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4380                         raw_inode->i_uid_high = 0;
4381                         raw_inode->i_gid_high = 0;
4382                 } else {
4383                         raw_inode->i_uid_high =
4384                                 cpu_to_le16(high_16_bits(i_uid));
4385                         raw_inode->i_gid_high =
4386                                 cpu_to_le16(high_16_bits(i_gid));
4387                 }
4388         } else {
4389                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4390                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4391                 raw_inode->i_uid_high = 0;
4392                 raw_inode->i_gid_high = 0;
4393         }
4394         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4395
4396         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4397         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4398         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4399         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4400
4401         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4402         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4403         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4404                 raw_inode->i_file_acl_high =
4405                         cpu_to_le16(ei->i_file_acl >> 32);
4406         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4407         ext4_isize_set(raw_inode, ei->i_disksize);
4408
4409         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4410         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4411                 if (old_valid_dev(inode->i_rdev)) {
4412                         raw_inode->i_block[0] =
4413                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4414                         raw_inode->i_block[1] = 0;
4415                 } else {
4416                         raw_inode->i_block[0] = 0;
4417                         raw_inode->i_block[1] =
4418                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4419                         raw_inode->i_block[2] = 0;
4420                 }
4421         } else if (!ext4_has_inline_data(inode)) {
4422                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4423                         raw_inode->i_block[block] = ei->i_data[block];
4424         }
4425
4426         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4427                 u64 ivers = ext4_inode_peek_iversion(inode);
4428
4429                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4430                 if (ei->i_extra_isize) {
4431                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4432                                 raw_inode->i_version_hi =
4433                                         cpu_to_le32(ivers >> 32);
4434                         raw_inode->i_extra_isize =
4435                                 cpu_to_le16(ei->i_extra_isize);
4436                 }
4437         }
4438
4439         if (i_projid != EXT4_DEF_PROJID &&
4440             !ext4_has_feature_project(inode->i_sb))
4441                 err = err ?: -EFSCORRUPTED;
4442
4443         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4444             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4445                 raw_inode->i_projid = cpu_to_le32(i_projid);
4446
4447         ext4_inode_csum_set(inode, raw_inode, ei);
4448         return err;
4449 }
4450
4451 /*
4452  * ext4_get_inode_loc returns with an extra refcount against the inode's
4453  * underlying buffer_head on success. If we pass 'inode' and it does not
4454  * have in-inode xattr, we have all inode data in memory that is needed
4455  * to recreate the on-disk version of this inode.
4456  */
4457 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4458                                 struct inode *inode, struct ext4_iloc *iloc,
4459                                 ext4_fsblk_t *ret_block)
4460 {
4461         struct ext4_group_desc  *gdp;
4462         struct buffer_head      *bh;
4463         ext4_fsblk_t            block;
4464         struct blk_plug         plug;
4465         int                     inodes_per_block, inode_offset;
4466
4467         iloc->bh = NULL;
4468         if (ino < EXT4_ROOT_INO ||
4469             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4470                 return -EFSCORRUPTED;
4471
4472         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4473         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4474         if (!gdp)
4475                 return -EIO;
4476
4477         /*
4478          * Figure out the offset within the block group inode table
4479          */
4480         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4481         inode_offset = ((ino - 1) %
4482                         EXT4_INODES_PER_GROUP(sb));
4483         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4484
4485         block = ext4_inode_table(sb, gdp);
4486         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4487             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4488                 ext4_error(sb, "Invalid inode table block %llu in "
4489                            "block_group %u", block, iloc->block_group);
4490                 return -EFSCORRUPTED;
4491         }
4492         block += (inode_offset / inodes_per_block);
4493
4494         bh = sb_getblk(sb, block);
4495         if (unlikely(!bh))
4496                 return -ENOMEM;
4497         if (ext4_buffer_uptodate(bh))
4498                 goto has_buffer;
4499
4500         lock_buffer(bh);
4501         if (ext4_buffer_uptodate(bh)) {
4502                 /* Someone brought it uptodate while we waited */
4503                 unlock_buffer(bh);
4504                 goto has_buffer;
4505         }
4506
4507         /*
4508          * If we have all information of the inode in memory and this
4509          * is the only valid inode in the block, we need not read the
4510          * block.
4511          */
4512         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4513                 struct buffer_head *bitmap_bh;
4514                 int i, start;
4515
4516                 start = inode_offset & ~(inodes_per_block - 1);
4517
4518                 /* Is the inode bitmap in cache? */
4519                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4520                 if (unlikely(!bitmap_bh))
4521                         goto make_io;
4522
4523                 /*
4524                  * If the inode bitmap isn't in cache then the
4525                  * optimisation may end up performing two reads instead
4526                  * of one, so skip it.
4527                  */
4528                 if (!buffer_uptodate(bitmap_bh)) {
4529                         brelse(bitmap_bh);
4530                         goto make_io;
4531                 }
4532                 for (i = start; i < start + inodes_per_block; i++) {
4533                         if (i == inode_offset)
4534                                 continue;
4535                         if (ext4_test_bit(i, bitmap_bh->b_data))
4536                                 break;
4537                 }
4538                 brelse(bitmap_bh);
4539                 if (i == start + inodes_per_block) {
4540                         struct ext4_inode *raw_inode =
4541                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4542
4543                         /* all other inodes are free, so skip I/O */
4544                         memset(bh->b_data, 0, bh->b_size);
4545                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4546                                 ext4_fill_raw_inode(inode, raw_inode);
4547                         set_buffer_uptodate(bh);
4548                         unlock_buffer(bh);
4549                         goto has_buffer;
4550                 }
4551         }
4552
4553 make_io:
4554         /*
4555          * If we need to do any I/O, try to pre-readahead extra
4556          * blocks from the inode table.
4557          */
4558         blk_start_plug(&plug);
4559         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4560                 ext4_fsblk_t b, end, table;
4561                 unsigned num;
4562                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4563
4564                 table = ext4_inode_table(sb, gdp);
4565                 /* s_inode_readahead_blks is always a power of 2 */
4566                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4567                 if (table > b)
4568                         b = table;
4569                 end = b + ra_blks;
4570                 num = EXT4_INODES_PER_GROUP(sb);
4571                 if (ext4_has_group_desc_csum(sb))
4572                         num -= ext4_itable_unused_count(sb, gdp);
4573                 table += num / inodes_per_block;
4574                 if (end > table)
4575                         end = table;
4576                 while (b <= end)
4577                         ext4_sb_breadahead_unmovable(sb, b++);
4578         }
4579
4580         /*
4581          * There are other valid inodes in the buffer, this inode
4582          * has in-inode xattrs, or we don't have this inode in memory.
4583          * Read the block from disk.
4584          */
4585         trace_ext4_load_inode(sb, ino);
4586         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4587         blk_finish_plug(&plug);
4588         wait_on_buffer(bh);
4589         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4590         if (!buffer_uptodate(bh)) {
4591                 if (ret_block)
4592                         *ret_block = block;
4593                 brelse(bh);
4594                 return -EIO;
4595         }
4596 has_buffer:
4597         iloc->bh = bh;
4598         return 0;
4599 }
4600
4601 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4602                                         struct ext4_iloc *iloc)
4603 {
4604         ext4_fsblk_t err_blk = 0;
4605         int ret;
4606
4607         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4608                                         &err_blk);
4609
4610         if (ret == -EIO)
4611                 ext4_error_inode_block(inode, err_blk, EIO,
4612                                         "unable to read itable block");
4613
4614         return ret;
4615 }
4616
4617 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4618 {
4619         ext4_fsblk_t err_blk = 0;
4620         int ret;
4621
4622         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4623                                         &err_blk);
4624
4625         if (ret == -EIO)
4626                 ext4_error_inode_block(inode, err_blk, EIO,
4627                                         "unable to read itable block");
4628
4629         return ret;
4630 }
4631
4632
4633 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4634                           struct ext4_iloc *iloc)
4635 {
4636         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4637 }
4638
4639 static bool ext4_should_enable_dax(struct inode *inode)
4640 {
4641         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4642
4643         if (test_opt2(inode->i_sb, DAX_NEVER))
4644                 return false;
4645         if (!S_ISREG(inode->i_mode))
4646                 return false;
4647         if (ext4_should_journal_data(inode))
4648                 return false;
4649         if (ext4_has_inline_data(inode))
4650                 return false;
4651         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4652                 return false;
4653         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4654                 return false;
4655         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4656                 return false;
4657         if (test_opt(inode->i_sb, DAX_ALWAYS))
4658                 return true;
4659
4660         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4661 }
4662
4663 void ext4_set_inode_flags(struct inode *inode, bool init)
4664 {
4665         unsigned int flags = EXT4_I(inode)->i_flags;
4666         unsigned int new_fl = 0;
4667
4668         WARN_ON_ONCE(IS_DAX(inode) && init);
4669
4670         if (flags & EXT4_SYNC_FL)
4671                 new_fl |= S_SYNC;
4672         if (flags & EXT4_APPEND_FL)
4673                 new_fl |= S_APPEND;
4674         if (flags & EXT4_IMMUTABLE_FL)
4675                 new_fl |= S_IMMUTABLE;
4676         if (flags & EXT4_NOATIME_FL)
4677                 new_fl |= S_NOATIME;
4678         if (flags & EXT4_DIRSYNC_FL)
4679                 new_fl |= S_DIRSYNC;
4680
4681         /* Because of the way inode_set_flags() works we must preserve S_DAX
4682          * here if already set. */
4683         new_fl |= (inode->i_flags & S_DAX);
4684         if (init && ext4_should_enable_dax(inode))
4685                 new_fl |= S_DAX;
4686
4687         if (flags & EXT4_ENCRYPT_FL)
4688                 new_fl |= S_ENCRYPTED;
4689         if (flags & EXT4_CASEFOLD_FL)
4690                 new_fl |= S_CASEFOLD;
4691         if (flags & EXT4_VERITY_FL)
4692                 new_fl |= S_VERITY;
4693         inode_set_flags(inode, new_fl,
4694                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4695                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4696 }
4697
4698 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4699                                   struct ext4_inode_info *ei)
4700 {
4701         blkcnt_t i_blocks ;
4702         struct inode *inode = &(ei->vfs_inode);
4703         struct super_block *sb = inode->i_sb;
4704
4705         if (ext4_has_feature_huge_file(sb)) {
4706                 /* we are using combined 48 bit field */
4707                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4708                                         le32_to_cpu(raw_inode->i_blocks_lo);
4709                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4710                         /* i_blocks represent file system block size */
4711                         return i_blocks  << (inode->i_blkbits - 9);
4712                 } else {
4713                         return i_blocks;
4714                 }
4715         } else {
4716                 return le32_to_cpu(raw_inode->i_blocks_lo);
4717         }
4718 }
4719
4720 static inline int ext4_iget_extra_inode(struct inode *inode,
4721                                          struct ext4_inode *raw_inode,
4722                                          struct ext4_inode_info *ei)
4723 {
4724         __le32 *magic = (void *)raw_inode +
4725                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4726
4727         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4728             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4729                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4730                 return ext4_find_inline_data_nolock(inode);
4731         } else
4732                 EXT4_I(inode)->i_inline_off = 0;
4733         return 0;
4734 }
4735
4736 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4737 {
4738         if (!ext4_has_feature_project(inode->i_sb))
4739                 return -EOPNOTSUPP;
4740         *projid = EXT4_I(inode)->i_projid;
4741         return 0;
4742 }
4743
4744 /*
4745  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4746  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4747  * set.
4748  */
4749 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4750 {
4751         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4752                 inode_set_iversion_raw(inode, val);
4753         else
4754                 inode_set_iversion_queried(inode, val);
4755 }
4756
4757 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4758                           ext4_iget_flags flags, const char *function,
4759                           unsigned int line)
4760 {
4761         struct ext4_iloc iloc;
4762         struct ext4_inode *raw_inode;
4763         struct ext4_inode_info *ei;
4764         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4765         struct inode *inode;
4766         journal_t *journal = EXT4_SB(sb)->s_journal;
4767         long ret;
4768         loff_t size;
4769         int block;
4770         uid_t i_uid;
4771         gid_t i_gid;
4772         projid_t i_projid;
4773
4774         if ((!(flags & EXT4_IGET_SPECIAL) &&
4775              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4776               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4777               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4778               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4779               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4780             (ino < EXT4_ROOT_INO) ||
4781             (ino > le32_to_cpu(es->s_inodes_count))) {
4782                 if (flags & EXT4_IGET_HANDLE)
4783                         return ERR_PTR(-ESTALE);
4784                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4785                              "inode #%lu: comm %s: iget: illegal inode #",
4786                              ino, current->comm);
4787                 return ERR_PTR(-EFSCORRUPTED);
4788         }
4789
4790         inode = iget_locked(sb, ino);
4791         if (!inode)
4792                 return ERR_PTR(-ENOMEM);
4793         if (!(inode->i_state & I_NEW))
4794                 return inode;
4795
4796         ei = EXT4_I(inode);
4797         iloc.bh = NULL;
4798
4799         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4800         if (ret < 0)
4801                 goto bad_inode;
4802         raw_inode = ext4_raw_inode(&iloc);
4803
4804         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4805                 ext4_error_inode(inode, function, line, 0,
4806                                  "iget: root inode unallocated");
4807                 ret = -EFSCORRUPTED;
4808                 goto bad_inode;
4809         }
4810
4811         if ((flags & EXT4_IGET_HANDLE) &&
4812             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4813                 ret = -ESTALE;
4814                 goto bad_inode;
4815         }
4816
4817         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4819                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4820                         EXT4_INODE_SIZE(inode->i_sb) ||
4821                     (ei->i_extra_isize & 3)) {
4822                         ext4_error_inode(inode, function, line, 0,
4823                                          "iget: bad extra_isize %u "
4824                                          "(inode size %u)",
4825                                          ei->i_extra_isize,
4826                                          EXT4_INODE_SIZE(inode->i_sb));
4827                         ret = -EFSCORRUPTED;
4828                         goto bad_inode;
4829                 }
4830         } else
4831                 ei->i_extra_isize = 0;
4832
4833         /* Precompute checksum seed for inode metadata */
4834         if (ext4_has_metadata_csum(sb)) {
4835                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4836                 __u32 csum;
4837                 __le32 inum = cpu_to_le32(inode->i_ino);
4838                 __le32 gen = raw_inode->i_generation;
4839                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4840                                    sizeof(inum));
4841                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4842                                               sizeof(gen));
4843         }
4844
4845         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4846             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4847              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4848                 ext4_error_inode_err(inode, function, line, 0,
4849                                 EFSBADCRC, "iget: checksum invalid");
4850                 ret = -EFSBADCRC;
4851                 goto bad_inode;
4852         }
4853
4854         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4855         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4856         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4857         if (ext4_has_feature_project(sb) &&
4858             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4859             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4860                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4861         else
4862                 i_projid = EXT4_DEF_PROJID;
4863
4864         if (!(test_opt(inode->i_sb, NO_UID32))) {
4865                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4866                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4867         }
4868         i_uid_write(inode, i_uid);
4869         i_gid_write(inode, i_gid);
4870         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4871         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4872
4873         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4874         ei->i_inline_off = 0;
4875         ei->i_dir_start_lookup = 0;
4876         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4877         /* We now have enough fields to check if the inode was active or not.
4878          * This is needed because nfsd might try to access dead inodes
4879          * the test is that same one that e2fsck uses
4880          * NeilBrown 1999oct15
4881          */
4882         if (inode->i_nlink == 0) {
4883                 if ((inode->i_mode == 0 ||
4884                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4885                     ino != EXT4_BOOT_LOADER_INO) {
4886                         /* this inode is deleted */
4887                         ret = -ESTALE;
4888                         goto bad_inode;
4889                 }
4890                 /* The only unlinked inodes we let through here have
4891                  * valid i_mode and are being read by the orphan
4892                  * recovery code: that's fine, we're about to complete
4893                  * the process of deleting those.
4894                  * OR it is the EXT4_BOOT_LOADER_INO which is
4895                  * not initialized on a new filesystem. */
4896         }
4897         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4898         ext4_set_inode_flags(inode, true);
4899         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4900         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4901         if (ext4_has_feature_64bit(sb))
4902                 ei->i_file_acl |=
4903                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4904         inode->i_size = ext4_isize(sb, raw_inode);
4905         if ((size = i_size_read(inode)) < 0) {
4906                 ext4_error_inode(inode, function, line, 0,
4907                                  "iget: bad i_size value: %lld", size);
4908                 ret = -EFSCORRUPTED;
4909                 goto bad_inode;
4910         }
4911         /*
4912          * If dir_index is not enabled but there's dir with INDEX flag set,
4913          * we'd normally treat htree data as empty space. But with metadata
4914          * checksumming that corrupts checksums so forbid that.
4915          */
4916         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4917             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4918                 ext4_error_inode(inode, function, line, 0,
4919                          "iget: Dir with htree data on filesystem without dir_index feature.");
4920                 ret = -EFSCORRUPTED;
4921                 goto bad_inode;
4922         }
4923         ei->i_disksize = inode->i_size;
4924 #ifdef CONFIG_QUOTA
4925         ei->i_reserved_quota = 0;
4926 #endif
4927         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4928         ei->i_block_group = iloc.block_group;
4929         ei->i_last_alloc_group = ~0;
4930         /*
4931          * NOTE! The in-memory inode i_data array is in little-endian order
4932          * even on big-endian machines: we do NOT byteswap the block numbers!
4933          */
4934         for (block = 0; block < EXT4_N_BLOCKS; block++)
4935                 ei->i_data[block] = raw_inode->i_block[block];
4936         INIT_LIST_HEAD(&ei->i_orphan);
4937         ext4_fc_init_inode(&ei->vfs_inode);
4938
4939         /*
4940          * Set transaction id's of transactions that have to be committed
4941          * to finish f[data]sync. We set them to currently running transaction
4942          * as we cannot be sure that the inode or some of its metadata isn't
4943          * part of the transaction - the inode could have been reclaimed and
4944          * now it is reread from disk.
4945          */
4946         if (journal) {
4947                 transaction_t *transaction;
4948                 tid_t tid;
4949
4950                 read_lock(&journal->j_state_lock);
4951                 if (journal->j_running_transaction)
4952                         transaction = journal->j_running_transaction;
4953                 else
4954                         transaction = journal->j_committing_transaction;
4955                 if (transaction)
4956                         tid = transaction->t_tid;
4957                 else
4958                         tid = journal->j_commit_sequence;
4959                 read_unlock(&journal->j_state_lock);
4960                 ei->i_sync_tid = tid;
4961                 ei->i_datasync_tid = tid;
4962         }
4963
4964         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4965                 if (ei->i_extra_isize == 0) {
4966                         /* The extra space is currently unused. Use it. */
4967                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4968                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4969                                             EXT4_GOOD_OLD_INODE_SIZE;
4970                 } else {
4971                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4972                         if (ret)
4973                                 goto bad_inode;
4974                 }
4975         }
4976
4977         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4978         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4979         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4980         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4981
4982         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4983                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4984
4985                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4986                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4987                                 ivers |=
4988                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4989                 }
4990                 ext4_inode_set_iversion_queried(inode, ivers);
4991         }
4992
4993         ret = 0;
4994         if (ei->i_file_acl &&
4995             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4996                 ext4_error_inode(inode, function, line, 0,
4997                                  "iget: bad extended attribute block %llu",
4998                                  ei->i_file_acl);
4999                 ret = -EFSCORRUPTED;
5000                 goto bad_inode;
5001         } else if (!ext4_has_inline_data(inode)) {
5002                 /* validate the block references in the inode */
5003                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5004                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5005                         (S_ISLNK(inode->i_mode) &&
5006                         !ext4_inode_is_fast_symlink(inode)))) {
5007                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5008                                 ret = ext4_ext_check_inode(inode);
5009                         else
5010                                 ret = ext4_ind_check_inode(inode);
5011                 }
5012         }
5013         if (ret)
5014                 goto bad_inode;
5015
5016         if (S_ISREG(inode->i_mode)) {
5017                 inode->i_op = &ext4_file_inode_operations;
5018                 inode->i_fop = &ext4_file_operations;
5019                 ext4_set_aops(inode);
5020         } else if (S_ISDIR(inode->i_mode)) {
5021                 inode->i_op = &ext4_dir_inode_operations;
5022                 inode->i_fop = &ext4_dir_operations;
5023         } else if (S_ISLNK(inode->i_mode)) {
5024                 /* VFS does not allow setting these so must be corruption */
5025                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5026                         ext4_error_inode(inode, function, line, 0,
5027                                          "iget: immutable or append flags "
5028                                          "not allowed on symlinks");
5029                         ret = -EFSCORRUPTED;
5030                         goto bad_inode;
5031                 }
5032                 if (IS_ENCRYPTED(inode)) {
5033                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5034                 } else if (ext4_inode_is_fast_symlink(inode)) {
5035                         inode->i_link = (char *)ei->i_data;
5036                         inode->i_op = &ext4_fast_symlink_inode_operations;
5037                         nd_terminate_link(ei->i_data, inode->i_size,
5038                                 sizeof(ei->i_data) - 1);
5039                 } else {
5040                         inode->i_op = &ext4_symlink_inode_operations;
5041                 }
5042         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5043               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5044                 inode->i_op = &ext4_special_inode_operations;
5045                 if (raw_inode->i_block[0])
5046                         init_special_inode(inode, inode->i_mode,
5047                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5048                 else
5049                         init_special_inode(inode, inode->i_mode,
5050                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5051         } else if (ino == EXT4_BOOT_LOADER_INO) {
5052                 make_bad_inode(inode);
5053         } else {
5054                 ret = -EFSCORRUPTED;
5055                 ext4_error_inode(inode, function, line, 0,
5056                                  "iget: bogus i_mode (%o)", inode->i_mode);
5057                 goto bad_inode;
5058         }
5059         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5060                 ext4_error_inode(inode, function, line, 0,
5061                                  "casefold flag without casefold feature");
5062         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5063                 ext4_error_inode(inode, function, line, 0,
5064                                  "bad inode without EXT4_IGET_BAD flag");
5065                 ret = -EUCLEAN;
5066                 goto bad_inode;
5067         }
5068
5069         brelse(iloc.bh);
5070         unlock_new_inode(inode);
5071         return inode;
5072
5073 bad_inode:
5074         brelse(iloc.bh);
5075         iget_failed(inode);
5076         return ERR_PTR(ret);
5077 }
5078
5079 static void __ext4_update_other_inode_time(struct super_block *sb,
5080                                            unsigned long orig_ino,
5081                                            unsigned long ino,
5082                                            struct ext4_inode *raw_inode)
5083 {
5084         struct inode *inode;
5085
5086         inode = find_inode_by_ino_rcu(sb, ino);
5087         if (!inode)
5088                 return;
5089
5090         if (!inode_is_dirtytime_only(inode))
5091                 return;
5092
5093         spin_lock(&inode->i_lock);
5094         if (inode_is_dirtytime_only(inode)) {
5095                 struct ext4_inode_info  *ei = EXT4_I(inode);
5096
5097                 inode->i_state &= ~I_DIRTY_TIME;
5098                 spin_unlock(&inode->i_lock);
5099
5100                 spin_lock(&ei->i_raw_lock);
5101                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5102                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5103                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5104                 ext4_inode_csum_set(inode, raw_inode, ei);
5105                 spin_unlock(&ei->i_raw_lock);
5106                 trace_ext4_other_inode_update_time(inode, orig_ino);
5107                 return;
5108         }
5109         spin_unlock(&inode->i_lock);
5110 }
5111
5112 /*
5113  * Opportunistically update the other time fields for other inodes in
5114  * the same inode table block.
5115  */
5116 static void ext4_update_other_inodes_time(struct super_block *sb,
5117                                           unsigned long orig_ino, char *buf)
5118 {
5119         unsigned long ino;
5120         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5121         int inode_size = EXT4_INODE_SIZE(sb);
5122
5123         /*
5124          * Calculate the first inode in the inode table block.  Inode
5125          * numbers are one-based.  That is, the first inode in a block
5126          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5127          */
5128         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5129         rcu_read_lock();
5130         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5131                 if (ino == orig_ino)
5132                         continue;
5133                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5134                                                (struct ext4_inode *)buf);
5135         }
5136         rcu_read_unlock();
5137 }
5138
5139 /*
5140  * Post the struct inode info into an on-disk inode location in the
5141  * buffer-cache.  This gobbles the caller's reference to the
5142  * buffer_head in the inode location struct.
5143  *
5144  * The caller must have write access to iloc->bh.
5145  */
5146 static int ext4_do_update_inode(handle_t *handle,
5147                                 struct inode *inode,
5148                                 struct ext4_iloc *iloc)
5149 {
5150         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5151         struct ext4_inode_info *ei = EXT4_I(inode);
5152         struct buffer_head *bh = iloc->bh;
5153         struct super_block *sb = inode->i_sb;
5154         int err;
5155         int need_datasync = 0, set_large_file = 0;
5156
5157         spin_lock(&ei->i_raw_lock);
5158
5159         /*
5160          * For fields not tracked in the in-memory inode, initialise them
5161          * to zero for new inodes.
5162          */
5163         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5164                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5165
5166         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5167                 need_datasync = 1;
5168         if (ei->i_disksize > 0x7fffffffULL) {
5169                 if (!ext4_has_feature_large_file(sb) ||
5170                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5171                         set_large_file = 1;
5172         }
5173
5174         err = ext4_fill_raw_inode(inode, raw_inode);
5175         spin_unlock(&ei->i_raw_lock);
5176         if (err) {
5177                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5178                 goto out_brelse;
5179         }
5180
5181         if (inode->i_sb->s_flags & SB_LAZYTIME)
5182                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5183                                               bh->b_data);
5184
5185         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5186         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5187         if (err)
5188                 goto out_error;
5189         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5190         if (set_large_file) {
5191                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5192                 err = ext4_journal_get_write_access(handle, sb,
5193                                                     EXT4_SB(sb)->s_sbh,
5194                                                     EXT4_JTR_NONE);
5195                 if (err)
5196                         goto out_error;
5197                 lock_buffer(EXT4_SB(sb)->s_sbh);
5198                 ext4_set_feature_large_file(sb);
5199                 ext4_superblock_csum_set(sb);
5200                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5201                 ext4_handle_sync(handle);
5202                 err = ext4_handle_dirty_metadata(handle, NULL,
5203                                                  EXT4_SB(sb)->s_sbh);
5204         }
5205         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5206 out_error:
5207         ext4_std_error(inode->i_sb, err);
5208 out_brelse:
5209         brelse(bh);
5210         return err;
5211 }
5212
5213 /*
5214  * ext4_write_inode()
5215  *
5216  * We are called from a few places:
5217  *
5218  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5219  *   Here, there will be no transaction running. We wait for any running
5220  *   transaction to commit.
5221  *
5222  * - Within flush work (sys_sync(), kupdate and such).
5223  *   We wait on commit, if told to.
5224  *
5225  * - Within iput_final() -> write_inode_now()
5226  *   We wait on commit, if told to.
5227  *
5228  * In all cases it is actually safe for us to return without doing anything,
5229  * because the inode has been copied into a raw inode buffer in
5230  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5231  * writeback.
5232  *
5233  * Note that we are absolutely dependent upon all inode dirtiers doing the
5234  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5235  * which we are interested.
5236  *
5237  * It would be a bug for them to not do this.  The code:
5238  *
5239  *      mark_inode_dirty(inode)
5240  *      stuff();
5241  *      inode->i_size = expr;
5242  *
5243  * is in error because write_inode() could occur while `stuff()' is running,
5244  * and the new i_size will be lost.  Plus the inode will no longer be on the
5245  * superblock's dirty inode list.
5246  */
5247 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5248 {
5249         int err;
5250
5251         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5252             sb_rdonly(inode->i_sb))
5253                 return 0;
5254
5255         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5256                 return -EIO;
5257
5258         if (EXT4_SB(inode->i_sb)->s_journal) {
5259                 if (ext4_journal_current_handle()) {
5260                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5261                         dump_stack();
5262                         return -EIO;
5263                 }
5264
5265                 /*
5266                  * No need to force transaction in WB_SYNC_NONE mode. Also
5267                  * ext4_sync_fs() will force the commit after everything is
5268                  * written.
5269                  */
5270                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5271                         return 0;
5272
5273                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5274                                                 EXT4_I(inode)->i_sync_tid);
5275         } else {
5276                 struct ext4_iloc iloc;
5277
5278                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5279                 if (err)
5280                         return err;
5281                 /*
5282                  * sync(2) will flush the whole buffer cache. No need to do
5283                  * it here separately for each inode.
5284                  */
5285                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5286                         sync_dirty_buffer(iloc.bh);
5287                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5288                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5289                                                "IO error syncing inode");
5290                         err = -EIO;
5291                 }
5292                 brelse(iloc.bh);
5293         }
5294         return err;
5295 }
5296
5297 /*
5298  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5299  * buffers that are attached to a folio straddling i_size and are undergoing
5300  * commit. In that case we have to wait for commit to finish and try again.
5301  */
5302 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5303 {
5304         unsigned offset;
5305         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5306         tid_t commit_tid = 0;
5307         int ret;
5308
5309         offset = inode->i_size & (PAGE_SIZE - 1);
5310         /*
5311          * If the folio is fully truncated, we don't need to wait for any commit
5312          * (and we even should not as __ext4_journalled_invalidate_folio() may
5313          * strip all buffers from the folio but keep the folio dirty which can then
5314          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5315          * buffers). Also we don't need to wait for any commit if all buffers in
5316          * the folio remain valid. This is most beneficial for the common case of
5317          * blocksize == PAGESIZE.
5318          */
5319         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5320                 return;
5321         while (1) {
5322                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5323                                       inode->i_size >> PAGE_SHIFT);
5324                 if (!folio)
5325                         return;
5326                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5327                                                 folio_size(folio) - offset);
5328                 folio_unlock(folio);
5329                 folio_put(folio);
5330                 if (ret != -EBUSY)
5331                         return;
5332                 commit_tid = 0;
5333                 read_lock(&journal->j_state_lock);
5334                 if (journal->j_committing_transaction)
5335                         commit_tid = journal->j_committing_transaction->t_tid;
5336                 read_unlock(&journal->j_state_lock);
5337                 if (commit_tid)
5338                         jbd2_log_wait_commit(journal, commit_tid);
5339         }
5340 }
5341
5342 /*
5343  * ext4_setattr()
5344  *
5345  * Called from notify_change.
5346  *
5347  * We want to trap VFS attempts to truncate the file as soon as
5348  * possible.  In particular, we want to make sure that when the VFS
5349  * shrinks i_size, we put the inode on the orphan list and modify
5350  * i_disksize immediately, so that during the subsequent flushing of
5351  * dirty pages and freeing of disk blocks, we can guarantee that any
5352  * commit will leave the blocks being flushed in an unused state on
5353  * disk.  (On recovery, the inode will get truncated and the blocks will
5354  * be freed, so we have a strong guarantee that no future commit will
5355  * leave these blocks visible to the user.)
5356  *
5357  * Another thing we have to assure is that if we are in ordered mode
5358  * and inode is still attached to the committing transaction, we must
5359  * we start writeout of all the dirty pages which are being truncated.
5360  * This way we are sure that all the data written in the previous
5361  * transaction are already on disk (truncate waits for pages under
5362  * writeback).
5363  *
5364  * Called with inode->i_rwsem down.
5365  */
5366 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5367                  struct iattr *attr)
5368 {
5369         struct inode *inode = d_inode(dentry);
5370         int error, rc = 0;
5371         int orphan = 0;
5372         const unsigned int ia_valid = attr->ia_valid;
5373         bool inc_ivers = true;
5374
5375         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5376                 return -EIO;
5377
5378         if (unlikely(IS_IMMUTABLE(inode)))
5379                 return -EPERM;
5380
5381         if (unlikely(IS_APPEND(inode) &&
5382                      (ia_valid & (ATTR_MODE | ATTR_UID |
5383                                   ATTR_GID | ATTR_TIMES_SET))))
5384                 return -EPERM;
5385
5386         error = setattr_prepare(mnt_userns, dentry, attr);
5387         if (error)
5388                 return error;
5389
5390         error = fscrypt_prepare_setattr(dentry, attr);
5391         if (error)
5392                 return error;
5393
5394         error = fsverity_prepare_setattr(dentry, attr);
5395         if (error)
5396                 return error;
5397
5398         if (is_quota_modification(mnt_userns, inode, attr)) {
5399                 error = dquot_initialize(inode);
5400                 if (error)
5401                         return error;
5402         }
5403
5404         if (i_uid_needs_update(mnt_userns, attr, inode) ||
5405             i_gid_needs_update(mnt_userns, attr, inode)) {
5406                 handle_t *handle;
5407
5408                 /* (user+group)*(old+new) structure, inode write (sb,
5409                  * inode block, ? - but truncate inode update has it) */
5410                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5411                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5412                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5413                 if (IS_ERR(handle)) {
5414                         error = PTR_ERR(handle);
5415                         goto err_out;
5416                 }
5417
5418                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5419                  * counts xattr inode references.
5420                  */
5421                 down_read(&EXT4_I(inode)->xattr_sem);
5422                 error = dquot_transfer(mnt_userns, inode, attr);
5423                 up_read(&EXT4_I(inode)->xattr_sem);
5424
5425                 if (error) {
5426                         ext4_journal_stop(handle);
5427                         return error;
5428                 }
5429                 /* Update corresponding info in inode so that everything is in
5430                  * one transaction */
5431                 i_uid_update(mnt_userns, attr, inode);
5432                 i_gid_update(mnt_userns, attr, inode);
5433                 error = ext4_mark_inode_dirty(handle, inode);
5434                 ext4_journal_stop(handle);
5435                 if (unlikely(error)) {
5436                         return error;
5437                 }
5438         }
5439
5440         if (attr->ia_valid & ATTR_SIZE) {
5441                 handle_t *handle;
5442                 loff_t oldsize = inode->i_size;
5443                 loff_t old_disksize;
5444                 int shrink = (attr->ia_size < inode->i_size);
5445
5446                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5447                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5448
5449                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5450                                 return -EFBIG;
5451                         }
5452                 }
5453                 if (!S_ISREG(inode->i_mode)) {
5454                         return -EINVAL;
5455                 }
5456
5457                 if (attr->ia_size == inode->i_size)
5458                         inc_ivers = false;
5459
5460                 if (shrink) {
5461                         if (ext4_should_order_data(inode)) {
5462                                 error = ext4_begin_ordered_truncate(inode,
5463                                                             attr->ia_size);
5464                                 if (error)
5465                                         goto err_out;
5466                         }
5467                         /*
5468                          * Blocks are going to be removed from the inode. Wait
5469                          * for dio in flight.
5470                          */
5471                         inode_dio_wait(inode);
5472                 }
5473
5474                 filemap_invalidate_lock(inode->i_mapping);
5475
5476                 rc = ext4_break_layouts(inode);
5477                 if (rc) {
5478                         filemap_invalidate_unlock(inode->i_mapping);
5479                         goto err_out;
5480                 }
5481
5482                 if (attr->ia_size != inode->i_size) {
5483                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5484                         if (IS_ERR(handle)) {
5485                                 error = PTR_ERR(handle);
5486                                 goto out_mmap_sem;
5487                         }
5488                         if (ext4_handle_valid(handle) && shrink) {
5489                                 error = ext4_orphan_add(handle, inode);
5490                                 orphan = 1;
5491                         }
5492                         /*
5493                          * Update c/mtime on truncate up, ext4_truncate() will
5494                          * update c/mtime in shrink case below
5495                          */
5496                         if (!shrink) {
5497                                 inode->i_mtime = current_time(inode);
5498                                 inode->i_ctime = inode->i_mtime;
5499                         }
5500
5501                         if (shrink)
5502                                 ext4_fc_track_range(handle, inode,
5503                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5504                                         inode->i_sb->s_blocksize_bits,
5505                                         EXT_MAX_BLOCKS - 1);
5506                         else
5507                                 ext4_fc_track_range(
5508                                         handle, inode,
5509                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5510                                         inode->i_sb->s_blocksize_bits,
5511                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5512                                         inode->i_sb->s_blocksize_bits);
5513
5514                         down_write(&EXT4_I(inode)->i_data_sem);
5515                         old_disksize = EXT4_I(inode)->i_disksize;
5516                         EXT4_I(inode)->i_disksize = attr->ia_size;
5517                         rc = ext4_mark_inode_dirty(handle, inode);
5518                         if (!error)
5519                                 error = rc;
5520                         /*
5521                          * We have to update i_size under i_data_sem together
5522                          * with i_disksize to avoid races with writeback code
5523                          * running ext4_wb_update_i_disksize().
5524                          */
5525                         if (!error)
5526                                 i_size_write(inode, attr->ia_size);
5527                         else
5528                                 EXT4_I(inode)->i_disksize = old_disksize;
5529                         up_write(&EXT4_I(inode)->i_data_sem);
5530                         ext4_journal_stop(handle);
5531                         if (error)
5532                                 goto out_mmap_sem;
5533                         if (!shrink) {
5534                                 pagecache_isize_extended(inode, oldsize,
5535                                                          inode->i_size);
5536                         } else if (ext4_should_journal_data(inode)) {
5537                                 ext4_wait_for_tail_page_commit(inode);
5538                         }
5539                 }
5540
5541                 /*
5542                  * Truncate pagecache after we've waited for commit
5543                  * in data=journal mode to make pages freeable.
5544                  */
5545                 truncate_pagecache(inode, inode->i_size);
5546                 /*
5547                  * Call ext4_truncate() even if i_size didn't change to
5548                  * truncate possible preallocated blocks.
5549                  */
5550                 if (attr->ia_size <= oldsize) {
5551                         rc = ext4_truncate(inode);
5552                         if (rc)
5553                                 error = rc;
5554                 }
5555 out_mmap_sem:
5556                 filemap_invalidate_unlock(inode->i_mapping);
5557         }
5558
5559         if (!error) {
5560                 if (inc_ivers)
5561                         inode_inc_iversion(inode);
5562                 setattr_copy(mnt_userns, inode, attr);
5563                 mark_inode_dirty(inode);
5564         }
5565
5566         /*
5567          * If the call to ext4_truncate failed to get a transaction handle at
5568          * all, we need to clean up the in-core orphan list manually.
5569          */
5570         if (orphan && inode->i_nlink)
5571                 ext4_orphan_del(NULL, inode);
5572
5573         if (!error && (ia_valid & ATTR_MODE))
5574                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5575
5576 err_out:
5577         if  (error)
5578                 ext4_std_error(inode->i_sb, error);
5579         if (!error)
5580                 error = rc;
5581         return error;
5582 }
5583
5584 u32 ext4_dio_alignment(struct inode *inode)
5585 {
5586         if (fsverity_active(inode))
5587                 return 0;
5588         if (ext4_should_journal_data(inode))
5589                 return 0;
5590         if (ext4_has_inline_data(inode))
5591                 return 0;
5592         if (IS_ENCRYPTED(inode)) {
5593                 if (!fscrypt_dio_supported(inode))
5594                         return 0;
5595                 return i_blocksize(inode);
5596         }
5597         return 1; /* use the iomap defaults */
5598 }
5599
5600 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5601                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5602 {
5603         struct inode *inode = d_inode(path->dentry);
5604         struct ext4_inode *raw_inode;
5605         struct ext4_inode_info *ei = EXT4_I(inode);
5606         unsigned int flags;
5607
5608         if ((request_mask & STATX_BTIME) &&
5609             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5610                 stat->result_mask |= STATX_BTIME;
5611                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5612                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5613         }
5614
5615         /*
5616          * Return the DIO alignment restrictions if requested.  We only return
5617          * this information when requested, since on encrypted files it might
5618          * take a fair bit of work to get if the file wasn't opened recently.
5619          */
5620         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5621                 u32 dio_align = ext4_dio_alignment(inode);
5622
5623                 stat->result_mask |= STATX_DIOALIGN;
5624                 if (dio_align == 1) {
5625                         struct block_device *bdev = inode->i_sb->s_bdev;
5626
5627                         /* iomap defaults */
5628                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5629                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5630                 } else {
5631                         stat->dio_mem_align = dio_align;
5632                         stat->dio_offset_align = dio_align;
5633                 }
5634         }
5635
5636         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5637         if (flags & EXT4_APPEND_FL)
5638                 stat->attributes |= STATX_ATTR_APPEND;
5639         if (flags & EXT4_COMPR_FL)
5640                 stat->attributes |= STATX_ATTR_COMPRESSED;
5641         if (flags & EXT4_ENCRYPT_FL)
5642                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5643         if (flags & EXT4_IMMUTABLE_FL)
5644                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5645         if (flags & EXT4_NODUMP_FL)
5646                 stat->attributes |= STATX_ATTR_NODUMP;
5647         if (flags & EXT4_VERITY_FL)
5648                 stat->attributes |= STATX_ATTR_VERITY;
5649
5650         stat->attributes_mask |= (STATX_ATTR_APPEND |
5651                                   STATX_ATTR_COMPRESSED |
5652                                   STATX_ATTR_ENCRYPTED |
5653                                   STATX_ATTR_IMMUTABLE |
5654                                   STATX_ATTR_NODUMP |
5655                                   STATX_ATTR_VERITY);
5656
5657         generic_fillattr(mnt_userns, inode, stat);
5658         return 0;
5659 }
5660
5661 int ext4_file_getattr(struct user_namespace *mnt_userns,
5662                       const struct path *path, struct kstat *stat,
5663                       u32 request_mask, unsigned int query_flags)
5664 {
5665         struct inode *inode = d_inode(path->dentry);
5666         u64 delalloc_blocks;
5667
5668         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5669
5670         /*
5671          * If there is inline data in the inode, the inode will normally not
5672          * have data blocks allocated (it may have an external xattr block).
5673          * Report at least one sector for such files, so tools like tar, rsync,
5674          * others don't incorrectly think the file is completely sparse.
5675          */
5676         if (unlikely(ext4_has_inline_data(inode)))
5677                 stat->blocks += (stat->size + 511) >> 9;
5678
5679         /*
5680          * We can't update i_blocks if the block allocation is delayed
5681          * otherwise in the case of system crash before the real block
5682          * allocation is done, we will have i_blocks inconsistent with
5683          * on-disk file blocks.
5684          * We always keep i_blocks updated together with real
5685          * allocation. But to not confuse with user, stat
5686          * will return the blocks that include the delayed allocation
5687          * blocks for this file.
5688          */
5689         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5690                                    EXT4_I(inode)->i_reserved_data_blocks);
5691         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5692         return 0;
5693 }
5694
5695 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5696                                    int pextents)
5697 {
5698         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5699                 return ext4_ind_trans_blocks(inode, lblocks);
5700         return ext4_ext_index_trans_blocks(inode, pextents);
5701 }
5702
5703 /*
5704  * Account for index blocks, block groups bitmaps and block group
5705  * descriptor blocks if modify datablocks and index blocks
5706  * worse case, the indexs blocks spread over different block groups
5707  *
5708  * If datablocks are discontiguous, they are possible to spread over
5709  * different block groups too. If they are contiguous, with flexbg,
5710  * they could still across block group boundary.
5711  *
5712  * Also account for superblock, inode, quota and xattr blocks
5713  */
5714 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5715                                   int pextents)
5716 {
5717         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5718         int gdpblocks;
5719         int idxblocks;
5720         int ret = 0;
5721
5722         /*
5723          * How many index blocks need to touch to map @lblocks logical blocks
5724          * to @pextents physical extents?
5725          */
5726         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5727
5728         ret = idxblocks;
5729
5730         /*
5731          * Now let's see how many group bitmaps and group descriptors need
5732          * to account
5733          */
5734         groups = idxblocks + pextents;
5735         gdpblocks = groups;
5736         if (groups > ngroups)
5737                 groups = ngroups;
5738         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5739                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5740
5741         /* bitmaps and block group descriptor blocks */
5742         ret += groups + gdpblocks;
5743
5744         /* Blocks for super block, inode, quota and xattr blocks */
5745         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5746
5747         return ret;
5748 }
5749
5750 /*
5751  * Calculate the total number of credits to reserve to fit
5752  * the modification of a single pages into a single transaction,
5753  * which may include multiple chunks of block allocations.
5754  *
5755  * This could be called via ext4_write_begin()
5756  *
5757  * We need to consider the worse case, when
5758  * one new block per extent.
5759  */
5760 int ext4_writepage_trans_blocks(struct inode *inode)
5761 {
5762         int bpp = ext4_journal_blocks_per_page(inode);
5763         int ret;
5764
5765         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5766
5767         /* Account for data blocks for journalled mode */
5768         if (ext4_should_journal_data(inode))
5769                 ret += bpp;
5770         return ret;
5771 }
5772
5773 /*
5774  * Calculate the journal credits for a chunk of data modification.
5775  *
5776  * This is called from DIO, fallocate or whoever calling
5777  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5778  *
5779  * journal buffers for data blocks are not included here, as DIO
5780  * and fallocate do no need to journal data buffers.
5781  */
5782 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5783 {
5784         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5785 }
5786
5787 /*
5788  * The caller must have previously called ext4_reserve_inode_write().
5789  * Give this, we know that the caller already has write access to iloc->bh.
5790  */
5791 int ext4_mark_iloc_dirty(handle_t *handle,
5792                          struct inode *inode, struct ext4_iloc *iloc)
5793 {
5794         int err = 0;
5795
5796         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5797                 put_bh(iloc->bh);
5798                 return -EIO;
5799         }
5800         ext4_fc_track_inode(handle, inode);
5801
5802         /* the do_update_inode consumes one bh->b_count */
5803         get_bh(iloc->bh);
5804
5805         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5806         err = ext4_do_update_inode(handle, inode, iloc);
5807         put_bh(iloc->bh);
5808         return err;
5809 }
5810
5811 /*
5812  * On success, We end up with an outstanding reference count against
5813  * iloc->bh.  This _must_ be cleaned up later.
5814  */
5815
5816 int
5817 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5818                          struct ext4_iloc *iloc)
5819 {
5820         int err;
5821
5822         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5823                 return -EIO;
5824
5825         err = ext4_get_inode_loc(inode, iloc);
5826         if (!err) {
5827                 BUFFER_TRACE(iloc->bh, "get_write_access");
5828                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5829                                                     iloc->bh, EXT4_JTR_NONE);
5830                 if (err) {
5831                         brelse(iloc->bh);
5832                         iloc->bh = NULL;
5833                 }
5834         }
5835         ext4_std_error(inode->i_sb, err);
5836         return err;
5837 }
5838
5839 static int __ext4_expand_extra_isize(struct inode *inode,
5840                                      unsigned int new_extra_isize,
5841                                      struct ext4_iloc *iloc,
5842                                      handle_t *handle, int *no_expand)
5843 {
5844         struct ext4_inode *raw_inode;
5845         struct ext4_xattr_ibody_header *header;
5846         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5847         struct ext4_inode_info *ei = EXT4_I(inode);
5848         int error;
5849
5850         /* this was checked at iget time, but double check for good measure */
5851         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5852             (ei->i_extra_isize & 3)) {
5853                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5854                                  ei->i_extra_isize,
5855                                  EXT4_INODE_SIZE(inode->i_sb));
5856                 return -EFSCORRUPTED;
5857         }
5858         if ((new_extra_isize < ei->i_extra_isize) ||
5859             (new_extra_isize < 4) ||
5860             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5861                 return -EINVAL; /* Should never happen */
5862
5863         raw_inode = ext4_raw_inode(iloc);
5864
5865         header = IHDR(inode, raw_inode);
5866
5867         /* No extended attributes present */
5868         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5869             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5870                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5871                        EXT4_I(inode)->i_extra_isize, 0,
5872                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5873                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5874                 return 0;
5875         }
5876
5877         /* try to expand with EAs present */
5878         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5879                                            raw_inode, handle);
5880         if (error) {
5881                 /*
5882                  * Inode size expansion failed; don't try again
5883                  */
5884                 *no_expand = 1;
5885         }
5886
5887         return error;
5888 }
5889
5890 /*
5891  * Expand an inode by new_extra_isize bytes.
5892  * Returns 0 on success or negative error number on failure.
5893  */
5894 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5895                                           unsigned int new_extra_isize,
5896                                           struct ext4_iloc iloc,
5897                                           handle_t *handle)
5898 {
5899         int no_expand;
5900         int error;
5901
5902         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5903                 return -EOVERFLOW;
5904
5905         /*
5906          * In nojournal mode, we can immediately attempt to expand
5907          * the inode.  When journaled, we first need to obtain extra
5908          * buffer credits since we may write into the EA block
5909          * with this same handle. If journal_extend fails, then it will
5910          * only result in a minor loss of functionality for that inode.
5911          * If this is felt to be critical, then e2fsck should be run to
5912          * force a large enough s_min_extra_isize.
5913          */
5914         if (ext4_journal_extend(handle,
5915                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5916                 return -ENOSPC;
5917
5918         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5919                 return -EBUSY;
5920
5921         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5922                                           handle, &no_expand);
5923         ext4_write_unlock_xattr(inode, &no_expand);
5924
5925         return error;
5926 }
5927
5928 int ext4_expand_extra_isize(struct inode *inode,
5929                             unsigned int new_extra_isize,
5930                             struct ext4_iloc *iloc)
5931 {
5932         handle_t *handle;
5933         int no_expand;
5934         int error, rc;
5935
5936         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5937                 brelse(iloc->bh);
5938                 return -EOVERFLOW;
5939         }
5940
5941         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5942                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5943         if (IS_ERR(handle)) {
5944                 error = PTR_ERR(handle);
5945                 brelse(iloc->bh);
5946                 return error;
5947         }
5948
5949         ext4_write_lock_xattr(inode, &no_expand);
5950
5951         BUFFER_TRACE(iloc->bh, "get_write_access");
5952         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5953                                               EXT4_JTR_NONE);
5954         if (error) {
5955                 brelse(iloc->bh);
5956                 goto out_unlock;
5957         }
5958
5959         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5960                                           handle, &no_expand);
5961
5962         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5963         if (!error)
5964                 error = rc;
5965
5966 out_unlock:
5967         ext4_write_unlock_xattr(inode, &no_expand);
5968         ext4_journal_stop(handle);
5969         return error;
5970 }
5971
5972 /*
5973  * What we do here is to mark the in-core inode as clean with respect to inode
5974  * dirtiness (it may still be data-dirty).
5975  * This means that the in-core inode may be reaped by prune_icache
5976  * without having to perform any I/O.  This is a very good thing,
5977  * because *any* task may call prune_icache - even ones which
5978  * have a transaction open against a different journal.
5979  *
5980  * Is this cheating?  Not really.  Sure, we haven't written the
5981  * inode out, but prune_icache isn't a user-visible syncing function.
5982  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5983  * we start and wait on commits.
5984  */
5985 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5986                                 const char *func, unsigned int line)
5987 {
5988         struct ext4_iloc iloc;
5989         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5990         int err;
5991
5992         might_sleep();
5993         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5994         err = ext4_reserve_inode_write(handle, inode, &iloc);
5995         if (err)
5996                 goto out;
5997
5998         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5999                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6000                                                iloc, handle);
6001
6002         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6003 out:
6004         if (unlikely(err))
6005                 ext4_error_inode_err(inode, func, line, 0, err,
6006                                         "mark_inode_dirty error");
6007         return err;
6008 }
6009
6010 /*
6011  * ext4_dirty_inode() is called from __mark_inode_dirty()
6012  *
6013  * We're really interested in the case where a file is being extended.
6014  * i_size has been changed by generic_commit_write() and we thus need
6015  * to include the updated inode in the current transaction.
6016  *
6017  * Also, dquot_alloc_block() will always dirty the inode when blocks
6018  * are allocated to the file.
6019  *
6020  * If the inode is marked synchronous, we don't honour that here - doing
6021  * so would cause a commit on atime updates, which we don't bother doing.
6022  * We handle synchronous inodes at the highest possible level.
6023  */
6024 void ext4_dirty_inode(struct inode *inode, int flags)
6025 {
6026         handle_t *handle;
6027
6028         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6029         if (IS_ERR(handle))
6030                 return;
6031         ext4_mark_inode_dirty(handle, inode);
6032         ext4_journal_stop(handle);
6033 }
6034
6035 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6036 {
6037         journal_t *journal;
6038         handle_t *handle;
6039         int err;
6040         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6041
6042         /*
6043          * We have to be very careful here: changing a data block's
6044          * journaling status dynamically is dangerous.  If we write a
6045          * data block to the journal, change the status and then delete
6046          * that block, we risk forgetting to revoke the old log record
6047          * from the journal and so a subsequent replay can corrupt data.
6048          * So, first we make sure that the journal is empty and that
6049          * nobody is changing anything.
6050          */
6051
6052         journal = EXT4_JOURNAL(inode);
6053         if (!journal)
6054                 return 0;
6055         if (is_journal_aborted(journal))
6056                 return -EROFS;
6057
6058         /* Wait for all existing dio workers */
6059         inode_dio_wait(inode);
6060
6061         /*
6062          * Before flushing the journal and switching inode's aops, we have
6063          * to flush all dirty data the inode has. There can be outstanding
6064          * delayed allocations, there can be unwritten extents created by
6065          * fallocate or buffered writes in dioread_nolock mode covered by
6066          * dirty data which can be converted only after flushing the dirty
6067          * data (and journalled aops don't know how to handle these cases).
6068          */
6069         if (val) {
6070                 filemap_invalidate_lock(inode->i_mapping);
6071                 err = filemap_write_and_wait(inode->i_mapping);
6072                 if (err < 0) {
6073                         filemap_invalidate_unlock(inode->i_mapping);
6074                         return err;
6075                 }
6076         }
6077
6078         percpu_down_write(&sbi->s_writepages_rwsem);
6079         jbd2_journal_lock_updates(journal);
6080
6081         /*
6082          * OK, there are no updates running now, and all cached data is
6083          * synced to disk.  We are now in a completely consistent state
6084          * which doesn't have anything in the journal, and we know that
6085          * no filesystem updates are running, so it is safe to modify
6086          * the inode's in-core data-journaling state flag now.
6087          */
6088
6089         if (val)
6090                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6091         else {
6092                 err = jbd2_journal_flush(journal, 0);
6093                 if (err < 0) {
6094                         jbd2_journal_unlock_updates(journal);
6095                         percpu_up_write(&sbi->s_writepages_rwsem);
6096                         return err;
6097                 }
6098                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6099         }
6100         ext4_set_aops(inode);
6101
6102         jbd2_journal_unlock_updates(journal);
6103         percpu_up_write(&sbi->s_writepages_rwsem);
6104
6105         if (val)
6106                 filemap_invalidate_unlock(inode->i_mapping);
6107
6108         /* Finally we can mark the inode as dirty. */
6109
6110         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6111         if (IS_ERR(handle))
6112                 return PTR_ERR(handle);
6113
6114         ext4_fc_mark_ineligible(inode->i_sb,
6115                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6116         err = ext4_mark_inode_dirty(handle, inode);
6117         ext4_handle_sync(handle);
6118         ext4_journal_stop(handle);
6119         ext4_std_error(inode->i_sb, err);
6120
6121         return err;
6122 }
6123
6124 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6125                             struct buffer_head *bh)
6126 {
6127         return !buffer_mapped(bh);
6128 }
6129
6130 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6131 {
6132         struct vm_area_struct *vma = vmf->vma;
6133         struct page *page = vmf->page;
6134         loff_t size;
6135         unsigned long len;
6136         int err;
6137         vm_fault_t ret;
6138         struct file *file = vma->vm_file;
6139         struct inode *inode = file_inode(file);
6140         struct address_space *mapping = inode->i_mapping;
6141         handle_t *handle;
6142         get_block_t *get_block;
6143         int retries = 0;
6144
6145         if (unlikely(IS_IMMUTABLE(inode)))
6146                 return VM_FAULT_SIGBUS;
6147
6148         sb_start_pagefault(inode->i_sb);
6149         file_update_time(vma->vm_file);
6150
6151         filemap_invalidate_lock_shared(mapping);
6152
6153         err = ext4_convert_inline_data(inode);
6154         if (err)
6155                 goto out_ret;
6156
6157         /*
6158          * On data journalling we skip straight to the transaction handle:
6159          * there's no delalloc; page truncated will be checked later; the
6160          * early return w/ all buffers mapped (calculates size/len) can't
6161          * be used; and there's no dioread_nolock, so only ext4_get_block.
6162          */
6163         if (ext4_should_journal_data(inode))
6164                 goto retry_alloc;
6165
6166         /* Delalloc case is easy... */
6167         if (test_opt(inode->i_sb, DELALLOC) &&
6168             !ext4_nonda_switch(inode->i_sb)) {
6169                 do {
6170                         err = block_page_mkwrite(vma, vmf,
6171                                                    ext4_da_get_block_prep);
6172                 } while (err == -ENOSPC &&
6173                        ext4_should_retry_alloc(inode->i_sb, &retries));
6174                 goto out_ret;
6175         }
6176
6177         lock_page(page);
6178         size = i_size_read(inode);
6179         /* Page got truncated from under us? */
6180         if (page->mapping != mapping || page_offset(page) > size) {
6181                 unlock_page(page);
6182                 ret = VM_FAULT_NOPAGE;
6183                 goto out;
6184         }
6185
6186         if (page->index == size >> PAGE_SHIFT)
6187                 len = size & ~PAGE_MASK;
6188         else
6189                 len = PAGE_SIZE;
6190         /*
6191          * Return if we have all the buffers mapped. This avoids the need to do
6192          * journal_start/journal_stop which can block and take a long time
6193          *
6194          * This cannot be done for data journalling, as we have to add the
6195          * inode to the transaction's list to writeprotect pages on commit.
6196          */
6197         if (page_has_buffers(page)) {
6198                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6199                                             0, len, NULL,
6200                                             ext4_bh_unmapped)) {
6201                         /* Wait so that we don't change page under IO */
6202                         wait_for_stable_page(page);
6203                         ret = VM_FAULT_LOCKED;
6204                         goto out;
6205                 }
6206         }
6207         unlock_page(page);
6208         /* OK, we need to fill the hole... */
6209         if (ext4_should_dioread_nolock(inode))
6210                 get_block = ext4_get_block_unwritten;
6211         else
6212                 get_block = ext4_get_block;
6213 retry_alloc:
6214         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6215                                     ext4_writepage_trans_blocks(inode));
6216         if (IS_ERR(handle)) {
6217                 ret = VM_FAULT_SIGBUS;
6218                 goto out;
6219         }
6220         /*
6221          * Data journalling can't use block_page_mkwrite() because it
6222          * will set_buffer_dirty() before do_journal_get_write_access()
6223          * thus might hit warning messages for dirty metadata buffers.
6224          */
6225         if (!ext4_should_journal_data(inode)) {
6226                 err = block_page_mkwrite(vma, vmf, get_block);
6227         } else {
6228                 lock_page(page);
6229                 size = i_size_read(inode);
6230                 /* Page got truncated from under us? */
6231                 if (page->mapping != mapping || page_offset(page) > size) {
6232                         ret = VM_FAULT_NOPAGE;
6233                         goto out_error;
6234                 }
6235
6236                 if (page->index == size >> PAGE_SHIFT)
6237                         len = size & ~PAGE_MASK;
6238                 else
6239                         len = PAGE_SIZE;
6240
6241                 err = __block_write_begin(page, 0, len, ext4_get_block);
6242                 if (!err) {
6243                         ret = VM_FAULT_SIGBUS;
6244                         if (ext4_walk_page_buffers(handle, inode,
6245                                         page_buffers(page), 0, len, NULL,
6246                                         do_journal_get_write_access))
6247                                 goto out_error;
6248                         if (ext4_walk_page_buffers(handle, inode,
6249                                         page_buffers(page), 0, len, NULL,
6250                                         write_end_fn))
6251                                 goto out_error;
6252                         if (ext4_jbd2_inode_add_write(handle, inode,
6253                                                       page_offset(page), len))
6254                                 goto out_error;
6255                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6256                 } else {
6257                         unlock_page(page);
6258                 }
6259         }
6260         ext4_journal_stop(handle);
6261         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6262                 goto retry_alloc;
6263 out_ret:
6264         ret = block_page_mkwrite_return(err);
6265 out:
6266         filemap_invalidate_unlock_shared(mapping);
6267         sb_end_pagefault(inode->i_sb);
6268         return ret;
6269 out_error:
6270         unlock_page(page);
6271         ext4_journal_stop(handle);
6272         goto out;
6273 }