Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152                 if (ext4_has_inline_data(inode))
153                         return 0;
154
155                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156         }
157         return S_ISLNK(inode->i_mode) && inode->i_size &&
158                (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166         handle_t *handle;
167         int err;
168         /*
169          * Credits for final inode cleanup and freeing:
170          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171          * (xattr block freeing), bitmap, group descriptor (inode freeing)
172          */
173         int extra_credits = 6;
174         struct ext4_xattr_inode_array *ea_inode_array = NULL;
175         bool freeze_protected = false;
176
177         trace_ext4_evict_inode(inode);
178
179         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180                 ext4_evict_ea_inode(inode);
181         if (inode->i_nlink) {
182                 truncate_inode_pages_final(&inode->i_data);
183
184                 goto no_delete;
185         }
186
187         if (is_bad_inode(inode))
188                 goto no_delete;
189         dquot_initialize(inode);
190
191         if (ext4_should_order_data(inode))
192                 ext4_begin_ordered_truncate(inode, 0);
193         truncate_inode_pages_final(&inode->i_data);
194
195         /*
196          * For inodes with journalled data, transaction commit could have
197          * dirtied the inode. And for inodes with dioread_nolock, unwritten
198          * extents converting worker could merge extents and also have dirtied
199          * the inode. Flush worker is ignoring it because of I_FREEING flag but
200          * we still need to remove the inode from the writeback lists.
201          */
202         if (!list_empty_careful(&inode->i_io_list))
203                 inode_io_list_del(inode);
204
205         /*
206          * Protect us against freezing - iput() caller didn't have to have any
207          * protection against it. When we are in a running transaction though,
208          * we are already protected against freezing and we cannot grab further
209          * protection due to lock ordering constraints.
210          */
211         if (!ext4_journal_current_handle()) {
212                 sb_start_intwrite(inode->i_sb);
213                 freeze_protected = true;
214         }
215
216         if (!IS_NOQUOTA(inode))
217                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219         /*
220          * Block bitmap, group descriptor, and inode are accounted in both
221          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222          */
223         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
225         if (IS_ERR(handle)) {
226                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227                 /*
228                  * If we're going to skip the normal cleanup, we still need to
229                  * make sure that the in-core orphan linked list is properly
230                  * cleaned up.
231                  */
232                 ext4_orphan_del(NULL, inode);
233                 if (freeze_protected)
234                         sb_end_intwrite(inode->i_sb);
235                 goto no_delete;
236         }
237
238         if (IS_SYNC(inode))
239                 ext4_handle_sync(handle);
240
241         /*
242          * Set inode->i_size to 0 before calling ext4_truncate(). We need
243          * special handling of symlinks here because i_size is used to
244          * determine whether ext4_inode_info->i_data contains symlink data or
245          * block mappings. Setting i_size to 0 will remove its fast symlink
246          * status. Erase i_data so that it becomes a valid empty block map.
247          */
248         if (ext4_inode_is_fast_symlink(inode))
249                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250         inode->i_size = 0;
251         err = ext4_mark_inode_dirty(handle, inode);
252         if (err) {
253                 ext4_warning(inode->i_sb,
254                              "couldn't mark inode dirty (err %d)", err);
255                 goto stop_handle;
256         }
257         if (inode->i_blocks) {
258                 err = ext4_truncate(inode);
259                 if (err) {
260                         ext4_error_err(inode->i_sb, -err,
261                                        "couldn't truncate inode %lu (err %d)",
262                                        inode->i_ino, err);
263                         goto stop_handle;
264                 }
265         }
266
267         /* Remove xattr references. */
268         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269                                       extra_credits);
270         if (err) {
271                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273                 ext4_journal_stop(handle);
274                 ext4_orphan_del(NULL, inode);
275                 if (freeze_protected)
276                         sb_end_intwrite(inode->i_sb);
277                 ext4_xattr_inode_array_free(ea_inode_array);
278                 goto no_delete;
279         }
280
281         /*
282          * Kill off the orphan record which ext4_truncate created.
283          * AKPM: I think this can be inside the above `if'.
284          * Note that ext4_orphan_del() has to be able to cope with the
285          * deletion of a non-existent orphan - this is because we don't
286          * know if ext4_truncate() actually created an orphan record.
287          * (Well, we could do this if we need to, but heck - it works)
288          */
289         ext4_orphan_del(handle, inode);
290         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
291
292         /*
293          * One subtle ordering requirement: if anything has gone wrong
294          * (transaction abort, IO errors, whatever), then we can still
295          * do these next steps (the fs will already have been marked as
296          * having errors), but we can't free the inode if the mark_dirty
297          * fails.
298          */
299         if (ext4_mark_inode_dirty(handle, inode))
300                 /* If that failed, just do the required in-core inode clear. */
301                 ext4_clear_inode(inode);
302         else
303                 ext4_free_inode(handle, inode);
304         ext4_journal_stop(handle);
305         if (freeze_protected)
306                 sb_end_intwrite(inode->i_sb);
307         ext4_xattr_inode_array_free(ea_inode_array);
308         return;
309 no_delete:
310         /*
311          * Check out some where else accidentally dirty the evicting inode,
312          * which may probably cause inode use-after-free issues later.
313          */
314         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316         if (!list_empty(&EXT4_I(inode)->i_fc_list))
317                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324         return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353         spin_unlock(&ei->i_block_reservation_lock);
354
355         /* Update quota subsystem for data blocks */
356         if (quota_claim)
357                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358         else {
359                 /*
360                  * We did fallocate with an offset that is already delayed
361                  * allocated. So on delayed allocated writeback we should
362                  * not re-claim the quota for fallocated blocks.
363                  */
364                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365         }
366
367         /*
368          * If we have done all the pending block allocations and if
369          * there aren't any writers on the inode, we can discard the
370          * inode's preallocations.
371          */
372         if ((ei->i_reserved_data_blocks == 0) &&
373             !inode_is_open_for_write(inode))
374                 ext4_discard_preallocations(inode, 0);
375 }
376
377 static int __check_block_validity(struct inode *inode, const char *func,
378                                 unsigned int line,
379                                 struct ext4_map_blocks *map)
380 {
381         if (ext4_has_feature_journal(inode->i_sb) &&
382             (inode->i_ino ==
383              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384                 return 0;
385         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386                 ext4_error_inode(inode, func, line, map->m_pblk,
387                                  "lblock %lu mapped to illegal pblock %llu "
388                                  "(length %d)", (unsigned long) map->m_lblk,
389                                  map->m_pblk, map->m_len);
390                 return -EFSCORRUPTED;
391         }
392         return 0;
393 }
394
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396                        ext4_lblk_t len)
397 {
398         int ret;
399
400         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404         if (ret > 0)
405                 ret = 0;
406
407         return ret;
408 }
409
410 #define check_block_validity(inode, map)        \
411         __check_block_validity((inode), __func__, __LINE__, (map))
412
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415                                        struct inode *inode,
416                                        struct ext4_map_blocks *es_map,
417                                        struct ext4_map_blocks *map,
418                                        int flags)
419 {
420         int retval;
421
422         map->m_flags = 0;
423         /*
424          * There is a race window that the result is not the same.
425          * e.g. xfstests #223 when dioread_nolock enables.  The reason
426          * is that we lookup a block mapping in extent status tree with
427          * out taking i_data_sem.  So at the time the unwritten extent
428          * could be converted.
429          */
430         down_read(&EXT4_I(inode)->i_data_sem);
431         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433         } else {
434                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435         }
436         up_read((&EXT4_I(inode)->i_data_sem));
437
438         /*
439          * We don't check m_len because extent will be collpased in status
440          * tree.  So the m_len might not equal.
441          */
442         if (es_map->m_lblk != map->m_lblk ||
443             es_map->m_flags != map->m_flags ||
444             es_map->m_pblk != map->m_pblk) {
445                 printk("ES cache assertion failed for inode: %lu "
446                        "es_cached ex [%d/%d/%llu/%x] != "
447                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448                        inode->i_ino, es_map->m_lblk, es_map->m_len,
449                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
450                        map->m_len, map->m_pblk, map->m_flags,
451                        retval, flags);
452         }
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.  if
469  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471  *
472  * It returns 0 if plain look up failed (blocks have not been allocated), in
473  * that case, @map is returned as unmapped but we still do fill map->m_len to
474  * indicate the length of a hole starting at map->m_lblk.
475  *
476  * It returns the error in case of allocation failure.
477  */
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479                     struct ext4_map_blocks *map, int flags)
480 {
481         struct extent_status es;
482         int retval;
483         int ret = 0;
484 #ifdef ES_AGGRESSIVE_TEST
485         struct ext4_map_blocks orig_map;
486
487         memcpy(&orig_map, map, sizeof(*map));
488 #endif
489
490         map->m_flags = 0;
491         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492                   flags, map->m_len, (unsigned long) map->m_lblk);
493
494         /*
495          * ext4_map_blocks returns an int, and m_len is an unsigned int
496          */
497         if (unlikely(map->m_len > INT_MAX))
498                 map->m_len = INT_MAX;
499
500         /* We can handle the block number less than EXT_MAX_BLOCKS */
501         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502                 return -EFSCORRUPTED;
503
504         /* Lookup extent status tree firstly */
505         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508                         map->m_pblk = ext4_es_pblock(&es) +
509                                         map->m_lblk - es.es_lblk;
510                         map->m_flags |= ext4_es_is_written(&es) ?
511                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512                         retval = es.es_len - (map->m_lblk - es.es_lblk);
513                         if (retval > map->m_len)
514                                 retval = map->m_len;
515                         map->m_len = retval;
516                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517                         map->m_pblk = 0;
518                         retval = es.es_len - (map->m_lblk - es.es_lblk);
519                         if (retval > map->m_len)
520                                 retval = map->m_len;
521                         map->m_len = retval;
522                         retval = 0;
523                 } else {
524                         BUG();
525                 }
526
527                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528                         return retval;
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535         /*
536          * In the query cache no-wait mode, nothing we can do more if we
537          * cannot find extent in the cache.
538          */
539         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540                 return 0;
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         down_read(&EXT4_I(inode)->i_data_sem);
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
549         } else {
550                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
551         }
552         if (retval > 0) {
553                 unsigned int status;
554
555                 if (unlikely(retval != map->m_len)) {
556                         ext4_warning(inode->i_sb,
557                                      "ES len assertion failed for inode "
558                                      "%lu: retval %d != map->m_len %d",
559                                      inode->i_ino, retval, map->m_len);
560                         WARN_ON(1);
561                 }
562
563                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566                     !(status & EXTENT_STATUS_WRITTEN) &&
567                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568                                        map->m_lblk + map->m_len - 1))
569                         status |= EXTENT_STATUS_DELAYED;
570                 ret = ext4_es_insert_extent(inode, map->m_lblk,
571                                             map->m_len, map->m_pblk, status);
572                 if (ret < 0)
573                         retval = ret;
574         }
575         up_read((&EXT4_I(inode)->i_data_sem));
576
577 found:
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579                 ret = check_block_validity(inode, map);
580                 if (ret != 0)
581                         return ret;
582         }
583
584         /* If it is only a block(s) look up */
585         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
586                 return retval;
587
588         /*
589          * Returns if the blocks have already allocated
590          *
591          * Note that if blocks have been preallocated
592          * ext4_ext_get_block() returns the create = 0
593          * with buffer head unmapped.
594          */
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596                 /*
597                  * If we need to convert extent to unwritten
598                  * we continue and do the actual work in
599                  * ext4_ext_map_blocks()
600                  */
601                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602                         return retval;
603
604         /*
605          * Here we clear m_flags because after allocating an new extent,
606          * it will be set again.
607          */
608         map->m_flags &= ~EXT4_MAP_FLAGS;
609
610         /*
611          * New blocks allocate and/or writing to unwritten extent
612          * will possibly result in updating i_data, so we take
613          * the write lock of i_data_sem, and call get_block()
614          * with create == 1 flag.
615          */
616         down_write(&EXT4_I(inode)->i_data_sem);
617
618         /*
619          * We need to check for EXT4 here because migrate
620          * could have changed the inode type in between
621          */
622         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
624         } else {
625                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628                         /*
629                          * We allocated new blocks which will result in
630                          * i_data's format changing.  Force the migrate
631                          * to fail by clearing migrate flags
632                          */
633                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634                 }
635
636                 /*
637                  * Update reserved blocks/metadata blocks after successful
638                  * block allocation which had been deferred till now. We don't
639                  * support fallocate for non extent files. So we can update
640                  * reserve space here.
641                  */
642                 if ((retval > 0) &&
643                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
644                         ext4_da_update_reserve_space(inode, retval, 1);
645         }
646
647         if (retval > 0) {
648                 unsigned int status;
649
650                 if (unlikely(retval != map->m_len)) {
651                         ext4_warning(inode->i_sb,
652                                      "ES len assertion failed for inode "
653                                      "%lu: retval %d != map->m_len %d",
654                                      inode->i_ino, retval, map->m_len);
655                         WARN_ON(1);
656                 }
657
658                 /*
659                  * We have to zeroout blocks before inserting them into extent
660                  * status tree. Otherwise someone could look them up there and
661                  * use them before they are really zeroed. We also have to
662                  * unmap metadata before zeroing as otherwise writeback can
663                  * overwrite zeros with stale data from block device.
664                  */
665                 if (flags & EXT4_GET_BLOCKS_ZERO &&
666                     map->m_flags & EXT4_MAP_MAPPED &&
667                     map->m_flags & EXT4_MAP_NEW) {
668                         ret = ext4_issue_zeroout(inode, map->m_lblk,
669                                                  map->m_pblk, map->m_len);
670                         if (ret) {
671                                 retval = ret;
672                                 goto out_sem;
673                         }
674                 }
675
676                 /*
677                  * If the extent has been zeroed out, we don't need to update
678                  * extent status tree.
679                  */
680                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
681                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
682                         if (ext4_es_is_written(&es))
683                                 goto out_sem;
684                 }
685                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
686                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
687                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
688                     !(status & EXTENT_STATUS_WRITTEN) &&
689                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
690                                        map->m_lblk + map->m_len - 1))
691                         status |= EXTENT_STATUS_DELAYED;
692                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693                                             map->m_pblk, status);
694                 if (ret < 0) {
695                         retval = ret;
696                         goto out_sem;
697                 }
698         }
699
700 out_sem:
701         up_write((&EXT4_I(inode)->i_data_sem));
702         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
703                 ret = check_block_validity(inode, map);
704                 if (ret != 0)
705                         return ret;
706
707                 /*
708                  * Inodes with freshly allocated blocks where contents will be
709                  * visible after transaction commit must be on transaction's
710                  * ordered data list.
711                  */
712                 if (map->m_flags & EXT4_MAP_NEW &&
713                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
714                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
715                     !ext4_is_quota_file(inode) &&
716                     ext4_should_order_data(inode)) {
717                         loff_t start_byte =
718                                 (loff_t)map->m_lblk << inode->i_blkbits;
719                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
720
721                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
723                                                 start_byte, length);
724                         else
725                                 ret = ext4_jbd2_inode_add_write(handle, inode,
726                                                 start_byte, length);
727                         if (ret)
728                                 return ret;
729                 }
730         }
731         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
732                                 map->m_flags & EXT4_MAP_MAPPED))
733                 ext4_fc_track_range(handle, inode, map->m_lblk,
734                                         map->m_lblk + map->m_len - 1);
735         if (retval < 0)
736                 ext_debug(inode, "failed with err %d\n", retval);
737         return retval;
738 }
739
740 /*
741  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
742  * we have to be careful as someone else may be manipulating b_state as well.
743  */
744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
745 {
746         unsigned long old_state;
747         unsigned long new_state;
748
749         flags &= EXT4_MAP_FLAGS;
750
751         /* Dummy buffer_head? Set non-atomically. */
752         if (!bh->b_page) {
753                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
754                 return;
755         }
756         /*
757          * Someone else may be modifying b_state. Be careful! This is ugly but
758          * once we get rid of using bh as a container for mapping information
759          * to pass to / from get_block functions, this can go away.
760          */
761         old_state = READ_ONCE(bh->b_state);
762         do {
763                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
764         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
765 }
766
767 static int _ext4_get_block(struct inode *inode, sector_t iblock,
768                            struct buffer_head *bh, int flags)
769 {
770         struct ext4_map_blocks map;
771         int ret = 0;
772
773         if (ext4_has_inline_data(inode))
774                 return -ERANGE;
775
776         map.m_lblk = iblock;
777         map.m_len = bh->b_size >> inode->i_blkbits;
778
779         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
780                               flags);
781         if (ret > 0) {
782                 map_bh(bh, inode->i_sb, map.m_pblk);
783                 ext4_update_bh_state(bh, map.m_flags);
784                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
785                 ret = 0;
786         } else if (ret == 0) {
787                 /* hole case, need to fill in bh->b_size */
788                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789         }
790         return ret;
791 }
792
793 int ext4_get_block(struct inode *inode, sector_t iblock,
794                    struct buffer_head *bh, int create)
795 {
796         return _ext4_get_block(inode, iblock, bh,
797                                create ? EXT4_GET_BLOCKS_CREATE : 0);
798 }
799
800 /*
801  * Get block function used when preparing for buffered write if we require
802  * creating an unwritten extent if blocks haven't been allocated.  The extent
803  * will be converted to written after the IO is complete.
804  */
805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
806                              struct buffer_head *bh_result, int create)
807 {
808         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
809                    inode->i_ino, create);
810         return _ext4_get_block(inode, iblock, bh_result,
811                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
812 }
813
814 /* Maximum number of blocks we map for direct IO at once. */
815 #define DIO_MAX_BLOCKS 4096
816
817 /*
818  * `handle' can be NULL if create is zero
819  */
820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
821                                 ext4_lblk_t block, int map_flags)
822 {
823         struct ext4_map_blocks map;
824         struct buffer_head *bh;
825         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
826         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
827         int err;
828
829         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
830                     || handle != NULL || create == 0);
831         ASSERT(create == 0 || !nowait);
832
833         map.m_lblk = block;
834         map.m_len = 1;
835         err = ext4_map_blocks(handle, inode, &map, map_flags);
836
837         if (err == 0)
838                 return create ? ERR_PTR(-ENOSPC) : NULL;
839         if (err < 0)
840                 return ERR_PTR(err);
841
842         if (nowait)
843                 return sb_find_get_block(inode->i_sb, map.m_pblk);
844
845         bh = sb_getblk(inode->i_sb, map.m_pblk);
846         if (unlikely(!bh))
847                 return ERR_PTR(-ENOMEM);
848         if (map.m_flags & EXT4_MAP_NEW) {
849                 ASSERT(create != 0);
850                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851                             || (handle != NULL));
852
853                 /*
854                  * Now that we do not always journal data, we should
855                  * keep in mind whether this should always journal the
856                  * new buffer as metadata.  For now, regular file
857                  * writes use ext4_get_block instead, so it's not a
858                  * problem.
859                  */
860                 lock_buffer(bh);
861                 BUFFER_TRACE(bh, "call get_create_access");
862                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
863                                                      EXT4_JTR_NONE);
864                 if (unlikely(err)) {
865                         unlock_buffer(bh);
866                         goto errout;
867                 }
868                 if (!buffer_uptodate(bh)) {
869                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
870                         set_buffer_uptodate(bh);
871                 }
872                 unlock_buffer(bh);
873                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
874                 err = ext4_handle_dirty_metadata(handle, inode, bh);
875                 if (unlikely(err))
876                         goto errout;
877         } else
878                 BUFFER_TRACE(bh, "not a new buffer");
879         return bh;
880 errout:
881         brelse(bh);
882         return ERR_PTR(err);
883 }
884
885 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
886                                ext4_lblk_t block, int map_flags)
887 {
888         struct buffer_head *bh;
889         int ret;
890
891         bh = ext4_getblk(handle, inode, block, map_flags);
892         if (IS_ERR(bh))
893                 return bh;
894         if (!bh || ext4_buffer_uptodate(bh))
895                 return bh;
896
897         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
898         if (ret) {
899                 put_bh(bh);
900                 return ERR_PTR(ret);
901         }
902         return bh;
903 }
904
905 /* Read a contiguous batch of blocks. */
906 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
907                      bool wait, struct buffer_head **bhs)
908 {
909         int i, err;
910
911         for (i = 0; i < bh_count; i++) {
912                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
913                 if (IS_ERR(bhs[i])) {
914                         err = PTR_ERR(bhs[i]);
915                         bh_count = i;
916                         goto out_brelse;
917                 }
918         }
919
920         for (i = 0; i < bh_count; i++)
921                 /* Note that NULL bhs[i] is valid because of holes. */
922                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
923                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
924
925         if (!wait)
926                 return 0;
927
928         for (i = 0; i < bh_count; i++)
929                 if (bhs[i])
930                         wait_on_buffer(bhs[i]);
931
932         for (i = 0; i < bh_count; i++) {
933                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
934                         err = -EIO;
935                         goto out_brelse;
936                 }
937         }
938         return 0;
939
940 out_brelse:
941         for (i = 0; i < bh_count; i++) {
942                 brelse(bhs[i]);
943                 bhs[i] = NULL;
944         }
945         return err;
946 }
947
948 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
949                            struct buffer_head *head,
950                            unsigned from,
951                            unsigned to,
952                            int *partial,
953                            int (*fn)(handle_t *handle, struct inode *inode,
954                                      struct buffer_head *bh))
955 {
956         struct buffer_head *bh;
957         unsigned block_start, block_end;
958         unsigned blocksize = head->b_size;
959         int err, ret = 0;
960         struct buffer_head *next;
961
962         for (bh = head, block_start = 0;
963              ret == 0 && (bh != head || !block_start);
964              block_start = block_end, bh = next) {
965                 next = bh->b_this_page;
966                 block_end = block_start + blocksize;
967                 if (block_end <= from || block_start >= to) {
968                         if (partial && !buffer_uptodate(bh))
969                                 *partial = 1;
970                         continue;
971                 }
972                 err = (*fn)(handle, inode, bh);
973                 if (!ret)
974                         ret = err;
975         }
976         return ret;
977 }
978
979 /*
980  * Helper for handling dirtying of journalled data. We also mark the folio as
981  * dirty so that writeback code knows about this page (and inode) contains
982  * dirty data. ext4_writepages() then commits appropriate transaction to
983  * make data stable.
984  */
985 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
986 {
987         folio_mark_dirty(bh->b_folio);
988         return ext4_handle_dirty_metadata(handle, NULL, bh);
989 }
990
991 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
992                                 struct buffer_head *bh)
993 {
994         int dirty = buffer_dirty(bh);
995         int ret;
996
997         if (!buffer_mapped(bh) || buffer_freed(bh))
998                 return 0;
999         /*
1000          * __block_write_begin() could have dirtied some buffers. Clean
1001          * the dirty bit as jbd2_journal_get_write_access() could complain
1002          * otherwise about fs integrity issues. Setting of the dirty bit
1003          * by __block_write_begin() isn't a real problem here as we clear
1004          * the bit before releasing a page lock and thus writeback cannot
1005          * ever write the buffer.
1006          */
1007         if (dirty)
1008                 clear_buffer_dirty(bh);
1009         BUFFER_TRACE(bh, "get write access");
1010         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1011                                             EXT4_JTR_NONE);
1012         if (!ret && dirty)
1013                 ret = ext4_dirty_journalled_data(handle, bh);
1014         return ret;
1015 }
1016
1017 #ifdef CONFIG_FS_ENCRYPTION
1018 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1019                                   get_block_t *get_block)
1020 {
1021         unsigned from = pos & (PAGE_SIZE - 1);
1022         unsigned to = from + len;
1023         struct inode *inode = folio->mapping->host;
1024         unsigned block_start, block_end;
1025         sector_t block;
1026         int err = 0;
1027         unsigned blocksize = inode->i_sb->s_blocksize;
1028         unsigned bbits;
1029         struct buffer_head *bh, *head, *wait[2];
1030         int nr_wait = 0;
1031         int i;
1032
1033         BUG_ON(!folio_test_locked(folio));
1034         BUG_ON(from > PAGE_SIZE);
1035         BUG_ON(to > PAGE_SIZE);
1036         BUG_ON(from > to);
1037
1038         head = folio_buffers(folio);
1039         if (!head) {
1040                 create_empty_buffers(&folio->page, blocksize, 0);
1041                 head = folio_buffers(folio);
1042         }
1043         bbits = ilog2(blocksize);
1044         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1045
1046         for (bh = head, block_start = 0; bh != head || !block_start;
1047             block++, block_start = block_end, bh = bh->b_this_page) {
1048                 block_end = block_start + blocksize;
1049                 if (block_end <= from || block_start >= to) {
1050                         if (folio_test_uptodate(folio)) {
1051                                 set_buffer_uptodate(bh);
1052                         }
1053                         continue;
1054                 }
1055                 if (buffer_new(bh))
1056                         clear_buffer_new(bh);
1057                 if (!buffer_mapped(bh)) {
1058                         WARN_ON(bh->b_size != blocksize);
1059                         err = get_block(inode, block, bh, 1);
1060                         if (err)
1061                                 break;
1062                         if (buffer_new(bh)) {
1063                                 if (folio_test_uptodate(folio)) {
1064                                         clear_buffer_new(bh);
1065                                         set_buffer_uptodate(bh);
1066                                         mark_buffer_dirty(bh);
1067                                         continue;
1068                                 }
1069                                 if (block_end > to || block_start < from)
1070                                         folio_zero_segments(folio, to,
1071                                                             block_end,
1072                                                             block_start, from);
1073                                 continue;
1074                         }
1075                 }
1076                 if (folio_test_uptodate(folio)) {
1077                         set_buffer_uptodate(bh);
1078                         continue;
1079                 }
1080                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1081                     !buffer_unwritten(bh) &&
1082                     (block_start < from || block_end > to)) {
1083                         ext4_read_bh_lock(bh, 0, false);
1084                         wait[nr_wait++] = bh;
1085                 }
1086         }
1087         /*
1088          * If we issued read requests, let them complete.
1089          */
1090         for (i = 0; i < nr_wait; i++) {
1091                 wait_on_buffer(wait[i]);
1092                 if (!buffer_uptodate(wait[i]))
1093                         err = -EIO;
1094         }
1095         if (unlikely(err)) {
1096                 page_zero_new_buffers(&folio->page, from, to);
1097         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1098                 for (i = 0; i < nr_wait; i++) {
1099                         int err2;
1100
1101                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1102                                                 blocksize, bh_offset(wait[i]));
1103                         if (err2) {
1104                                 clear_buffer_uptodate(wait[i]);
1105                                 err = err2;
1106                         }
1107                 }
1108         }
1109
1110         return err;
1111 }
1112 #endif
1113
1114 /*
1115  * To preserve ordering, it is essential that the hole instantiation and
1116  * the data write be encapsulated in a single transaction.  We cannot
1117  * close off a transaction and start a new one between the ext4_get_block()
1118  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1119  * ext4_write_begin() is the right place.
1120  */
1121 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1122                             loff_t pos, unsigned len,
1123                             struct page **pagep, void **fsdata)
1124 {
1125         struct inode *inode = mapping->host;
1126         int ret, needed_blocks;
1127         handle_t *handle;
1128         int retries = 0;
1129         struct folio *folio;
1130         pgoff_t index;
1131         unsigned from, to;
1132
1133         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1134                 return -EIO;
1135
1136         trace_ext4_write_begin(inode, pos, len);
1137         /*
1138          * Reserve one block more for addition to orphan list in case
1139          * we allocate blocks but write fails for some reason
1140          */
1141         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1142         index = pos >> PAGE_SHIFT;
1143         from = pos & (PAGE_SIZE - 1);
1144         to = from + len;
1145
1146         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1147                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1148                                                     pagep);
1149                 if (ret < 0)
1150                         return ret;
1151                 if (ret == 1)
1152                         return 0;
1153         }
1154
1155         /*
1156          * __filemap_get_folio() can take a long time if the
1157          * system is thrashing due to memory pressure, or if the folio
1158          * is being written back.  So grab it first before we start
1159          * the transaction handle.  This also allows us to allocate
1160          * the folio (if needed) without using GFP_NOFS.
1161          */
1162 retry_grab:
1163         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1164                                         mapping_gfp_mask(mapping));
1165         if (IS_ERR(folio))
1166                 return PTR_ERR(folio);
1167         /*
1168          * The same as page allocation, we prealloc buffer heads before
1169          * starting the handle.
1170          */
1171         if (!folio_buffers(folio))
1172                 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1173
1174         folio_unlock(folio);
1175
1176 retry_journal:
1177         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1178         if (IS_ERR(handle)) {
1179                 folio_put(folio);
1180                 return PTR_ERR(handle);
1181         }
1182
1183         folio_lock(folio);
1184         if (folio->mapping != mapping) {
1185                 /* The folio got truncated from under us */
1186                 folio_unlock(folio);
1187                 folio_put(folio);
1188                 ext4_journal_stop(handle);
1189                 goto retry_grab;
1190         }
1191         /* In case writeback began while the folio was unlocked */
1192         folio_wait_stable(folio);
1193
1194 #ifdef CONFIG_FS_ENCRYPTION
1195         if (ext4_should_dioread_nolock(inode))
1196                 ret = ext4_block_write_begin(folio, pos, len,
1197                                              ext4_get_block_unwritten);
1198         else
1199                 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1200 #else
1201         if (ext4_should_dioread_nolock(inode))
1202                 ret = __block_write_begin(&folio->page, pos, len,
1203                                           ext4_get_block_unwritten);
1204         else
1205                 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1206 #endif
1207         if (!ret && ext4_should_journal_data(inode)) {
1208                 ret = ext4_walk_page_buffers(handle, inode,
1209                                              folio_buffers(folio), from, to,
1210                                              NULL, do_journal_get_write_access);
1211         }
1212
1213         if (ret) {
1214                 bool extended = (pos + len > inode->i_size) &&
1215                                 !ext4_verity_in_progress(inode);
1216
1217                 folio_unlock(folio);
1218                 /*
1219                  * __block_write_begin may have instantiated a few blocks
1220                  * outside i_size.  Trim these off again. Don't need
1221                  * i_size_read because we hold i_rwsem.
1222                  *
1223                  * Add inode to orphan list in case we crash before
1224                  * truncate finishes
1225                  */
1226                 if (extended && ext4_can_truncate(inode))
1227                         ext4_orphan_add(handle, inode);
1228
1229                 ext4_journal_stop(handle);
1230                 if (extended) {
1231                         ext4_truncate_failed_write(inode);
1232                         /*
1233                          * If truncate failed early the inode might
1234                          * still be on the orphan list; we need to
1235                          * make sure the inode is removed from the
1236                          * orphan list in that case.
1237                          */
1238                         if (inode->i_nlink)
1239                                 ext4_orphan_del(NULL, inode);
1240                 }
1241
1242                 if (ret == -ENOSPC &&
1243                     ext4_should_retry_alloc(inode->i_sb, &retries))
1244                         goto retry_journal;
1245                 folio_put(folio);
1246                 return ret;
1247         }
1248         *pagep = &folio->page;
1249         return ret;
1250 }
1251
1252 /* For write_end() in data=journal mode */
1253 static int write_end_fn(handle_t *handle, struct inode *inode,
1254                         struct buffer_head *bh)
1255 {
1256         int ret;
1257         if (!buffer_mapped(bh) || buffer_freed(bh))
1258                 return 0;
1259         set_buffer_uptodate(bh);
1260         ret = ext4_dirty_journalled_data(handle, bh);
1261         clear_buffer_meta(bh);
1262         clear_buffer_prio(bh);
1263         return ret;
1264 }
1265
1266 /*
1267  * We need to pick up the new inode size which generic_commit_write gave us
1268  * `file' can be NULL - eg, when called from page_symlink().
1269  *
1270  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1271  * buffers are managed internally.
1272  */
1273 static int ext4_write_end(struct file *file,
1274                           struct address_space *mapping,
1275                           loff_t pos, unsigned len, unsigned copied,
1276                           struct page *page, void *fsdata)
1277 {
1278         struct folio *folio = page_folio(page);
1279         handle_t *handle = ext4_journal_current_handle();
1280         struct inode *inode = mapping->host;
1281         loff_t old_size = inode->i_size;
1282         int ret = 0, ret2;
1283         int i_size_changed = 0;
1284         bool verity = ext4_verity_in_progress(inode);
1285
1286         trace_ext4_write_end(inode, pos, len, copied);
1287
1288         if (ext4_has_inline_data(inode) &&
1289             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1290                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1291
1292         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1293         /*
1294          * it's important to update i_size while still holding folio lock:
1295          * page writeout could otherwise come in and zero beyond i_size.
1296          *
1297          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1298          * blocks are being written past EOF, so skip the i_size update.
1299          */
1300         if (!verity)
1301                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1302         folio_unlock(folio);
1303         folio_put(folio);
1304
1305         if (old_size < pos && !verity)
1306                 pagecache_isize_extended(inode, old_size, pos);
1307         /*
1308          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1309          * makes the holding time of folio lock longer. Second, it forces lock
1310          * ordering of folio lock and transaction start for journaling
1311          * filesystems.
1312          */
1313         if (i_size_changed)
1314                 ret = ext4_mark_inode_dirty(handle, inode);
1315
1316         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1317                 /* if we have allocated more blocks and copied
1318                  * less. We will have blocks allocated outside
1319                  * inode->i_size. So truncate them
1320                  */
1321                 ext4_orphan_add(handle, inode);
1322
1323         ret2 = ext4_journal_stop(handle);
1324         if (!ret)
1325                 ret = ret2;
1326
1327         if (pos + len > inode->i_size && !verity) {
1328                 ext4_truncate_failed_write(inode);
1329                 /*
1330                  * If truncate failed early the inode might still be
1331                  * on the orphan list; we need to make sure the inode
1332                  * is removed from the orphan list in that case.
1333                  */
1334                 if (inode->i_nlink)
1335                         ext4_orphan_del(NULL, inode);
1336         }
1337
1338         return ret ? ret : copied;
1339 }
1340
1341 /*
1342  * This is a private version of page_zero_new_buffers() which doesn't
1343  * set the buffer to be dirty, since in data=journalled mode we need
1344  * to call ext4_dirty_journalled_data() instead.
1345  */
1346 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1347                                             struct inode *inode,
1348                                             struct folio *folio,
1349                                             unsigned from, unsigned to)
1350 {
1351         unsigned int block_start = 0, block_end;
1352         struct buffer_head *head, *bh;
1353
1354         bh = head = folio_buffers(folio);
1355         do {
1356                 block_end = block_start + bh->b_size;
1357                 if (buffer_new(bh)) {
1358                         if (block_end > from && block_start < to) {
1359                                 if (!folio_test_uptodate(folio)) {
1360                                         unsigned start, size;
1361
1362                                         start = max(from, block_start);
1363                                         size = min(to, block_end) - start;
1364
1365                                         folio_zero_range(folio, start, size);
1366                                         write_end_fn(handle, inode, bh);
1367                                 }
1368                                 clear_buffer_new(bh);
1369                         }
1370                 }
1371                 block_start = block_end;
1372                 bh = bh->b_this_page;
1373         } while (bh != head);
1374 }
1375
1376 static int ext4_journalled_write_end(struct file *file,
1377                                      struct address_space *mapping,
1378                                      loff_t pos, unsigned len, unsigned copied,
1379                                      struct page *page, void *fsdata)
1380 {
1381         struct folio *folio = page_folio(page);
1382         handle_t *handle = ext4_journal_current_handle();
1383         struct inode *inode = mapping->host;
1384         loff_t old_size = inode->i_size;
1385         int ret = 0, ret2;
1386         int partial = 0;
1387         unsigned from, to;
1388         int size_changed = 0;
1389         bool verity = ext4_verity_in_progress(inode);
1390
1391         trace_ext4_journalled_write_end(inode, pos, len, copied);
1392         from = pos & (PAGE_SIZE - 1);
1393         to = from + len;
1394
1395         BUG_ON(!ext4_handle_valid(handle));
1396
1397         if (ext4_has_inline_data(inode))
1398                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1399
1400         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1401                 copied = 0;
1402                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1403                                                  from, to);
1404         } else {
1405                 if (unlikely(copied < len))
1406                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1407                                                          from + copied, to);
1408                 ret = ext4_walk_page_buffers(handle, inode,
1409                                              folio_buffers(folio),
1410                                              from, from + copied, &partial,
1411                                              write_end_fn);
1412                 if (!partial)
1413                         folio_mark_uptodate(folio);
1414         }
1415         if (!verity)
1416                 size_changed = ext4_update_inode_size(inode, pos + copied);
1417         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418         folio_unlock(folio);
1419         folio_put(folio);
1420
1421         if (old_size < pos && !verity)
1422                 pagecache_isize_extended(inode, old_size, pos);
1423
1424         if (size_changed) {
1425                 ret2 = ext4_mark_inode_dirty(handle, inode);
1426                 if (!ret)
1427                         ret = ret2;
1428         }
1429
1430         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431                 /* if we have allocated more blocks and copied
1432                  * less. We will have blocks allocated outside
1433                  * inode->i_size. So truncate them
1434                  */
1435                 ext4_orphan_add(handle, inode);
1436
1437         ret2 = ext4_journal_stop(handle);
1438         if (!ret)
1439                 ret = ret2;
1440         if (pos + len > inode->i_size && !verity) {
1441                 ext4_truncate_failed_write(inode);
1442                 /*
1443                  * If truncate failed early the inode might still be
1444                  * on the orphan list; we need to make sure the inode
1445                  * is removed from the orphan list in that case.
1446                  */
1447                 if (inode->i_nlink)
1448                         ext4_orphan_del(NULL, inode);
1449         }
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460         struct ext4_inode_info *ei = EXT4_I(inode);
1461         int ret;
1462
1463         /*
1464          * We will charge metadata quota at writeout time; this saves
1465          * us from metadata over-estimation, though we may go over by
1466          * a small amount in the end.  Here we just reserve for data.
1467          */
1468         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469         if (ret)
1470                 return ret;
1471
1472         spin_lock(&ei->i_block_reservation_lock);
1473         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                 spin_unlock(&ei->i_block_reservation_lock);
1475                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                 return -ENOSPC;
1477         }
1478         ei->i_reserved_data_blocks++;
1479         trace_ext4_da_reserve_space(inode);
1480         spin_unlock(&ei->i_block_reservation_lock);
1481
1482         return 0;       /* success */
1483 }
1484
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         if (!to_free)
1491                 return;         /* Nothing to release, exit */
1492
1493         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495         trace_ext4_da_release_space(inode, to_free);
1496         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                 /*
1498                  * if there aren't enough reserved blocks, then the
1499                  * counter is messed up somewhere.  Since this
1500                  * function is called from invalidate page, it's
1501                  * harmless to return without any action.
1502                  */
1503                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                          "ino %lu, to_free %d with only %d reserved "
1505                          "data blocks", inode->i_ino, to_free,
1506                          ei->i_reserved_data_blocks);
1507                 WARN_ON(1);
1508                 to_free = ei->i_reserved_data_blocks;
1509         }
1510         ei->i_reserved_data_blocks -= to_free;
1511
1512         /* update fs dirty data blocks counter */
1513         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519
1520 /*
1521  * Delayed allocation stuff
1522  */
1523
1524 struct mpage_da_data {
1525         /* These are input fields for ext4_do_writepages() */
1526         struct inode *inode;
1527         struct writeback_control *wbc;
1528         unsigned int can_map:1; /* Can writepages call map blocks? */
1529
1530         /* These are internal state of ext4_do_writepages() */
1531         pgoff_t first_page;     /* The first page to write */
1532         pgoff_t next_page;      /* Current page to examine */
1533         pgoff_t last_page;      /* Last page to examine */
1534         /*
1535          * Extent to map - this can be after first_page because that can be
1536          * fully mapped. We somewhat abuse m_flags to store whether the extent
1537          * is delalloc or unwritten.
1538          */
1539         struct ext4_map_blocks map;
1540         struct ext4_io_submit io_submit;        /* IO submission data */
1541         unsigned int do_map:1;
1542         unsigned int scanned_until_end:1;
1543         unsigned int journalled_more_data:1;
1544 };
1545
1546 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1547                                        bool invalidate)
1548 {
1549         unsigned nr, i;
1550         pgoff_t index, end;
1551         struct folio_batch fbatch;
1552         struct inode *inode = mpd->inode;
1553         struct address_space *mapping = inode->i_mapping;
1554
1555         /* This is necessary when next_page == 0. */
1556         if (mpd->first_page >= mpd->next_page)
1557                 return;
1558
1559         mpd->scanned_until_end = 0;
1560         index = mpd->first_page;
1561         end   = mpd->next_page - 1;
1562         if (invalidate) {
1563                 ext4_lblk_t start, last;
1564                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1565                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1566
1567                 /*
1568                  * avoid racing with extent status tree scans made by
1569                  * ext4_insert_delayed_block()
1570                  */
1571                 down_write(&EXT4_I(inode)->i_data_sem);
1572                 ext4_es_remove_extent(inode, start, last - start + 1);
1573                 up_write(&EXT4_I(inode)->i_data_sem);
1574         }
1575
1576         folio_batch_init(&fbatch);
1577         while (index <= end) {
1578                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1579                 if (nr == 0)
1580                         break;
1581                 for (i = 0; i < nr; i++) {
1582                         struct folio *folio = fbatch.folios[i];
1583
1584                         if (folio->index < mpd->first_page)
1585                                 continue;
1586                         if (folio->index + folio_nr_pages(folio) - 1 > end)
1587                                 continue;
1588                         BUG_ON(!folio_test_locked(folio));
1589                         BUG_ON(folio_test_writeback(folio));
1590                         if (invalidate) {
1591                                 if (folio_mapped(folio))
1592                                         folio_clear_dirty_for_io(folio);
1593                                 block_invalidate_folio(folio, 0,
1594                                                 folio_size(folio));
1595                                 folio_clear_uptodate(folio);
1596                         }
1597                         folio_unlock(folio);
1598                 }
1599                 folio_batch_release(&fbatch);
1600         }
1601 }
1602
1603 static void ext4_print_free_blocks(struct inode *inode)
1604 {
1605         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606         struct super_block *sb = inode->i_sb;
1607         struct ext4_inode_info *ei = EXT4_I(inode);
1608
1609         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610                EXT4_C2B(EXT4_SB(inode->i_sb),
1611                         ext4_count_free_clusters(sb)));
1612         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614                (long long) EXT4_C2B(EXT4_SB(sb),
1615                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617                (long long) EXT4_C2B(EXT4_SB(sb),
1618                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621                  ei->i_reserved_data_blocks);
1622         return;
1623 }
1624
1625 /*
1626  * ext4_insert_delayed_block - adds a delayed block to the extents status
1627  *                             tree, incrementing the reserved cluster/block
1628  *                             count or making a pending reservation
1629  *                             where needed
1630  *
1631  * @inode - file containing the newly added block
1632  * @lblk - logical block to be added
1633  *
1634  * Returns 0 on success, negative error code on failure.
1635  */
1636 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1637 {
1638         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1639         int ret;
1640         bool allocated = false;
1641         bool reserved = false;
1642
1643         /*
1644          * If the cluster containing lblk is shared with a delayed,
1645          * written, or unwritten extent in a bigalloc file system, it's
1646          * already been accounted for and does not need to be reserved.
1647          * A pending reservation must be made for the cluster if it's
1648          * shared with a written or unwritten extent and doesn't already
1649          * have one.  Written and unwritten extents can be purged from the
1650          * extents status tree if the system is under memory pressure, so
1651          * it's necessary to examine the extent tree if a search of the
1652          * extents status tree doesn't get a match.
1653          */
1654         if (sbi->s_cluster_ratio == 1) {
1655                 ret = ext4_da_reserve_space(inode);
1656                 if (ret != 0)   /* ENOSPC */
1657                         goto errout;
1658                 reserved = true;
1659         } else {   /* bigalloc */
1660                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1661                         if (!ext4_es_scan_clu(inode,
1662                                               &ext4_es_is_mapped, lblk)) {
1663                                 ret = ext4_clu_mapped(inode,
1664                                                       EXT4_B2C(sbi, lblk));
1665                                 if (ret < 0)
1666                                         goto errout;
1667                                 if (ret == 0) {
1668                                         ret = ext4_da_reserve_space(inode);
1669                                         if (ret != 0)   /* ENOSPC */
1670                                                 goto errout;
1671                                         reserved = true;
1672                                 } else {
1673                                         allocated = true;
1674                                 }
1675                         } else {
1676                                 allocated = true;
1677                         }
1678                 }
1679         }
1680
1681         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1682         if (ret && reserved)
1683                 ext4_da_release_space(inode, 1);
1684
1685 errout:
1686         return ret;
1687 }
1688
1689 /*
1690  * This function is grabs code from the very beginning of
1691  * ext4_map_blocks, but assumes that the caller is from delayed write
1692  * time. This function looks up the requested blocks and sets the
1693  * buffer delay bit under the protection of i_data_sem.
1694  */
1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1696                               struct ext4_map_blocks *map,
1697                               struct buffer_head *bh)
1698 {
1699         struct extent_status es;
1700         int retval;
1701         sector_t invalid_block = ~((sector_t) 0xffff);
1702 #ifdef ES_AGGRESSIVE_TEST
1703         struct ext4_map_blocks orig_map;
1704
1705         memcpy(&orig_map, map, sizeof(*map));
1706 #endif
1707
1708         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1709                 invalid_block = ~0;
1710
1711         map->m_flags = 0;
1712         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1713                   (unsigned long) map->m_lblk);
1714
1715         /* Lookup extent status tree firstly */
1716         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1717                 if (ext4_es_is_hole(&es)) {
1718                         retval = 0;
1719                         down_read(&EXT4_I(inode)->i_data_sem);
1720                         goto add_delayed;
1721                 }
1722
1723                 /*
1724                  * Delayed extent could be allocated by fallocate.
1725                  * So we need to check it.
1726                  */
1727                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1728                         map_bh(bh, inode->i_sb, invalid_block);
1729                         set_buffer_new(bh);
1730                         set_buffer_delay(bh);
1731                         return 0;
1732                 }
1733
1734                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1735                 retval = es.es_len - (iblock - es.es_lblk);
1736                 if (retval > map->m_len)
1737                         retval = map->m_len;
1738                 map->m_len = retval;
1739                 if (ext4_es_is_written(&es))
1740                         map->m_flags |= EXT4_MAP_MAPPED;
1741                 else if (ext4_es_is_unwritten(&es))
1742                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1743                 else
1744                         BUG();
1745
1746 #ifdef ES_AGGRESSIVE_TEST
1747                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1748 #endif
1749                 return retval;
1750         }
1751
1752         /*
1753          * Try to see if we can get the block without requesting a new
1754          * file system block.
1755          */
1756         down_read(&EXT4_I(inode)->i_data_sem);
1757         if (ext4_has_inline_data(inode))
1758                 retval = 0;
1759         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1760                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1761         else
1762                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1763
1764 add_delayed:
1765         if (retval == 0) {
1766                 int ret;
1767
1768                 /*
1769                  * XXX: __block_prepare_write() unmaps passed block,
1770                  * is it OK?
1771                  */
1772
1773                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1774                 if (ret != 0) {
1775                         retval = ret;
1776                         goto out_unlock;
1777                 }
1778
1779                 map_bh(bh, inode->i_sb, invalid_block);
1780                 set_buffer_new(bh);
1781                 set_buffer_delay(bh);
1782         } else if (retval > 0) {
1783                 int ret;
1784                 unsigned int status;
1785
1786                 if (unlikely(retval != map->m_len)) {
1787                         ext4_warning(inode->i_sb,
1788                                      "ES len assertion failed for inode "
1789                                      "%lu: retval %d != map->m_len %d",
1790                                      inode->i_ino, retval, map->m_len);
1791                         WARN_ON(1);
1792                 }
1793
1794                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797                                             map->m_pblk, status);
1798                 if (ret != 0)
1799                         retval = ret;
1800         }
1801
1802 out_unlock:
1803         up_read((&EXT4_I(inode)->i_data_sem));
1804
1805         return retval;
1806 }
1807
1808 /*
1809  * This is a special get_block_t callback which is used by
1810  * ext4_da_write_begin().  It will either return mapped block or
1811  * reserve space for a single block.
1812  *
1813  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814  * We also have b_blocknr = -1 and b_bdev initialized properly
1815  *
1816  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818  * initialized properly.
1819  */
1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821                            struct buffer_head *bh, int create)
1822 {
1823         struct ext4_map_blocks map;
1824         int ret = 0;
1825
1826         BUG_ON(create == 0);
1827         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829         map.m_lblk = iblock;
1830         map.m_len = 1;
1831
1832         /*
1833          * first, we need to know whether the block is allocated already
1834          * preallocated blocks are unmapped but should treated
1835          * the same as allocated blocks.
1836          */
1837         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838         if (ret <= 0)
1839                 return ret;
1840
1841         map_bh(bh, inode->i_sb, map.m_pblk);
1842         ext4_update_bh_state(bh, map.m_flags);
1843
1844         if (buffer_unwritten(bh)) {
1845                 /* A delayed write to unwritten bh should be marked
1846                  * new and mapped.  Mapped ensures that we don't do
1847                  * get_block multiple times when we write to the same
1848                  * offset and new ensures that we do proper zero out
1849                  * for partial write.
1850                  */
1851                 set_buffer_new(bh);
1852                 set_buffer_mapped(bh);
1853         }
1854         return 0;
1855 }
1856
1857 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1858 {
1859         mpd->first_page += folio_nr_pages(folio);
1860         folio_unlock(folio);
1861 }
1862
1863 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1864 {
1865         size_t len;
1866         loff_t size;
1867         int err;
1868
1869         BUG_ON(folio->index != mpd->first_page);
1870         folio_clear_dirty_for_io(folio);
1871         /*
1872          * We have to be very careful here!  Nothing protects writeback path
1873          * against i_size changes and the page can be writeably mapped into
1874          * page tables. So an application can be growing i_size and writing
1875          * data through mmap while writeback runs. folio_clear_dirty_for_io()
1876          * write-protects our page in page tables and the page cannot get
1877          * written to again until we release folio lock. So only after
1878          * folio_clear_dirty_for_io() we are safe to sample i_size for
1879          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1880          * on the barrier provided by folio_test_clear_dirty() in
1881          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1882          * after page tables are updated.
1883          */
1884         size = i_size_read(mpd->inode);
1885         len = folio_size(folio);
1886         if (folio_pos(folio) + len > size &&
1887             !ext4_verity_in_progress(mpd->inode))
1888                 len = size & ~PAGE_MASK;
1889         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1890         if (!err)
1891                 mpd->wbc->nr_to_write--;
1892
1893         return err;
1894 }
1895
1896 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1897
1898 /*
1899  * mballoc gives us at most this number of blocks...
1900  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1901  * The rest of mballoc seems to handle chunks up to full group size.
1902  */
1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1904
1905 /*
1906  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1907  *
1908  * @mpd - extent of blocks
1909  * @lblk - logical number of the block in the file
1910  * @bh - buffer head we want to add to the extent
1911  *
1912  * The function is used to collect contig. blocks in the same state. If the
1913  * buffer doesn't require mapping for writeback and we haven't started the
1914  * extent of buffers to map yet, the function returns 'true' immediately - the
1915  * caller can write the buffer right away. Otherwise the function returns true
1916  * if the block has been added to the extent, false if the block couldn't be
1917  * added.
1918  */
1919 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1920                                    struct buffer_head *bh)
1921 {
1922         struct ext4_map_blocks *map = &mpd->map;
1923
1924         /* Buffer that doesn't need mapping for writeback? */
1925         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1926             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1927                 /* So far no extent to map => we write the buffer right away */
1928                 if (map->m_len == 0)
1929                         return true;
1930                 return false;
1931         }
1932
1933         /* First block in the extent? */
1934         if (map->m_len == 0) {
1935                 /* We cannot map unless handle is started... */
1936                 if (!mpd->do_map)
1937                         return false;
1938                 map->m_lblk = lblk;
1939                 map->m_len = 1;
1940                 map->m_flags = bh->b_state & BH_FLAGS;
1941                 return true;
1942         }
1943
1944         /* Don't go larger than mballoc is willing to allocate */
1945         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1946                 return false;
1947
1948         /* Can we merge the block to our big extent? */
1949         if (lblk == map->m_lblk + map->m_len &&
1950             (bh->b_state & BH_FLAGS) == map->m_flags) {
1951                 map->m_len++;
1952                 return true;
1953         }
1954         return false;
1955 }
1956
1957 /*
1958  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1959  *
1960  * @mpd - extent of blocks for mapping
1961  * @head - the first buffer in the page
1962  * @bh - buffer we should start processing from
1963  * @lblk - logical number of the block in the file corresponding to @bh
1964  *
1965  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1966  * the page for IO if all buffers in this page were mapped and there's no
1967  * accumulated extent of buffers to map or add buffers in the page to the
1968  * extent of buffers to map. The function returns 1 if the caller can continue
1969  * by processing the next page, 0 if it should stop adding buffers to the
1970  * extent to map because we cannot extend it anymore. It can also return value
1971  * < 0 in case of error during IO submission.
1972  */
1973 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1974                                    struct buffer_head *head,
1975                                    struct buffer_head *bh,
1976                                    ext4_lblk_t lblk)
1977 {
1978         struct inode *inode = mpd->inode;
1979         int err;
1980         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1981                                                         >> inode->i_blkbits;
1982
1983         if (ext4_verity_in_progress(inode))
1984                 blocks = EXT_MAX_BLOCKS;
1985
1986         do {
1987                 BUG_ON(buffer_locked(bh));
1988
1989                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1990                         /* Found extent to map? */
1991                         if (mpd->map.m_len)
1992                                 return 0;
1993                         /* Buffer needs mapping and handle is not started? */
1994                         if (!mpd->do_map)
1995                                 return 0;
1996                         /* Everything mapped so far and we hit EOF */
1997                         break;
1998                 }
1999         } while (lblk++, (bh = bh->b_this_page) != head);
2000         /* So far everything mapped? Submit the page for IO. */
2001         if (mpd->map.m_len == 0) {
2002                 err = mpage_submit_folio(mpd, head->b_folio);
2003                 if (err < 0)
2004                         return err;
2005                 mpage_folio_done(mpd, head->b_folio);
2006         }
2007         if (lblk >= blocks) {
2008                 mpd->scanned_until_end = 1;
2009                 return 0;
2010         }
2011         return 1;
2012 }
2013
2014 /*
2015  * mpage_process_folio - update folio buffers corresponding to changed extent
2016  *                       and may submit fully mapped page for IO
2017  * @mpd: description of extent to map, on return next extent to map
2018  * @folio: Contains these buffers.
2019  * @m_lblk: logical block mapping.
2020  * @m_pblk: corresponding physical mapping.
2021  * @map_bh: determines on return whether this page requires any further
2022  *                mapping or not.
2023  *
2024  * Scan given folio buffers corresponding to changed extent and update buffer
2025  * state according to new extent state.
2026  * We map delalloc buffers to their physical location, clear unwritten bits.
2027  * If the given folio is not fully mapped, we update @mpd to the next extent in
2028  * the given folio that needs mapping & return @map_bh as true.
2029  */
2030 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2031                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2032                               bool *map_bh)
2033 {
2034         struct buffer_head *head, *bh;
2035         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2036         ext4_lblk_t lblk = *m_lblk;
2037         ext4_fsblk_t pblock = *m_pblk;
2038         int err = 0;
2039         int blkbits = mpd->inode->i_blkbits;
2040         ssize_t io_end_size = 0;
2041         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2042
2043         bh = head = folio_buffers(folio);
2044         do {
2045                 if (lblk < mpd->map.m_lblk)
2046                         continue;
2047                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2048                         /*
2049                          * Buffer after end of mapped extent.
2050                          * Find next buffer in the folio to map.
2051                          */
2052                         mpd->map.m_len = 0;
2053                         mpd->map.m_flags = 0;
2054                         io_end_vec->size += io_end_size;
2055
2056                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2057                         if (err > 0)
2058                                 err = 0;
2059                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2060                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2061                                 if (IS_ERR(io_end_vec)) {
2062                                         err = PTR_ERR(io_end_vec);
2063                                         goto out;
2064                                 }
2065                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2066                         }
2067                         *map_bh = true;
2068                         goto out;
2069                 }
2070                 if (buffer_delay(bh)) {
2071                         clear_buffer_delay(bh);
2072                         bh->b_blocknr = pblock++;
2073                 }
2074                 clear_buffer_unwritten(bh);
2075                 io_end_size += (1 << blkbits);
2076         } while (lblk++, (bh = bh->b_this_page) != head);
2077
2078         io_end_vec->size += io_end_size;
2079         *map_bh = false;
2080 out:
2081         *m_lblk = lblk;
2082         *m_pblk = pblock;
2083         return err;
2084 }
2085
2086 /*
2087  * mpage_map_buffers - update buffers corresponding to changed extent and
2088  *                     submit fully mapped pages for IO
2089  *
2090  * @mpd - description of extent to map, on return next extent to map
2091  *
2092  * Scan buffers corresponding to changed extent (we expect corresponding pages
2093  * to be already locked) and update buffer state according to new extent state.
2094  * We map delalloc buffers to their physical location, clear unwritten bits,
2095  * and mark buffers as uninit when we perform writes to unwritten extents
2096  * and do extent conversion after IO is finished. If the last page is not fully
2097  * mapped, we update @map to the next extent in the last page that needs
2098  * mapping. Otherwise we submit the page for IO.
2099  */
2100 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2101 {
2102         struct folio_batch fbatch;
2103         unsigned nr, i;
2104         struct inode *inode = mpd->inode;
2105         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2106         pgoff_t start, end;
2107         ext4_lblk_t lblk;
2108         ext4_fsblk_t pblock;
2109         int err;
2110         bool map_bh = false;
2111
2112         start = mpd->map.m_lblk >> bpp_bits;
2113         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2114         lblk = start << bpp_bits;
2115         pblock = mpd->map.m_pblk;
2116
2117         folio_batch_init(&fbatch);
2118         while (start <= end) {
2119                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2120                 if (nr == 0)
2121                         break;
2122                 for (i = 0; i < nr; i++) {
2123                         struct folio *folio = fbatch.folios[i];
2124
2125                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2126                                                  &map_bh);
2127                         /*
2128                          * If map_bh is true, means page may require further bh
2129                          * mapping, or maybe the page was submitted for IO.
2130                          * So we return to call further extent mapping.
2131                          */
2132                         if (err < 0 || map_bh)
2133                                 goto out;
2134                         /* Page fully mapped - let IO run! */
2135                         err = mpage_submit_folio(mpd, folio);
2136                         if (err < 0)
2137                                 goto out;
2138                         mpage_folio_done(mpd, folio);
2139                 }
2140                 folio_batch_release(&fbatch);
2141         }
2142         /* Extent fully mapped and matches with page boundary. We are done. */
2143         mpd->map.m_len = 0;
2144         mpd->map.m_flags = 0;
2145         return 0;
2146 out:
2147         folio_batch_release(&fbatch);
2148         return err;
2149 }
2150
2151 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2152 {
2153         struct inode *inode = mpd->inode;
2154         struct ext4_map_blocks *map = &mpd->map;
2155         int get_blocks_flags;
2156         int err, dioread_nolock;
2157
2158         trace_ext4_da_write_pages_extent(inode, map);
2159         /*
2160          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2161          * to convert an unwritten extent to be initialized (in the case
2162          * where we have written into one or more preallocated blocks).  It is
2163          * possible that we're going to need more metadata blocks than
2164          * previously reserved. However we must not fail because we're in
2165          * writeback and there is nothing we can do about it so it might result
2166          * in data loss.  So use reserved blocks to allocate metadata if
2167          * possible.
2168          *
2169          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2170          * the blocks in question are delalloc blocks.  This indicates
2171          * that the blocks and quotas has already been checked when
2172          * the data was copied into the page cache.
2173          */
2174         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2175                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2176                            EXT4_GET_BLOCKS_IO_SUBMIT;
2177         dioread_nolock = ext4_should_dioread_nolock(inode);
2178         if (dioread_nolock)
2179                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2180         if (map->m_flags & BIT(BH_Delay))
2181                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2182
2183         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2184         if (err < 0)
2185                 return err;
2186         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2187                 if (!mpd->io_submit.io_end->handle &&
2188                     ext4_handle_valid(handle)) {
2189                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2190                         handle->h_rsv_handle = NULL;
2191                 }
2192                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2193         }
2194
2195         BUG_ON(map->m_len == 0);
2196         return 0;
2197 }
2198
2199 /*
2200  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2201  *                               mpd->len and submit pages underlying it for IO
2202  *
2203  * @handle - handle for journal operations
2204  * @mpd - extent to map
2205  * @give_up_on_write - we set this to true iff there is a fatal error and there
2206  *                     is no hope of writing the data. The caller should discard
2207  *                     dirty pages to avoid infinite loops.
2208  *
2209  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2210  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2211  * them to initialized or split the described range from larger unwritten
2212  * extent. Note that we need not map all the described range since allocation
2213  * can return less blocks or the range is covered by more unwritten extents. We
2214  * cannot map more because we are limited by reserved transaction credits. On
2215  * the other hand we always make sure that the last touched page is fully
2216  * mapped so that it can be written out (and thus forward progress is
2217  * guaranteed). After mapping we submit all mapped pages for IO.
2218  */
2219 static int mpage_map_and_submit_extent(handle_t *handle,
2220                                        struct mpage_da_data *mpd,
2221                                        bool *give_up_on_write)
2222 {
2223         struct inode *inode = mpd->inode;
2224         struct ext4_map_blocks *map = &mpd->map;
2225         int err;
2226         loff_t disksize;
2227         int progress = 0;
2228         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2229         struct ext4_io_end_vec *io_end_vec;
2230
2231         io_end_vec = ext4_alloc_io_end_vec(io_end);
2232         if (IS_ERR(io_end_vec))
2233                 return PTR_ERR(io_end_vec);
2234         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2235         do {
2236                 err = mpage_map_one_extent(handle, mpd);
2237                 if (err < 0) {
2238                         struct super_block *sb = inode->i_sb;
2239
2240                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2241                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2242                                 goto invalidate_dirty_pages;
2243                         /*
2244                          * Let the uper layers retry transient errors.
2245                          * In the case of ENOSPC, if ext4_count_free_blocks()
2246                          * is non-zero, a commit should free up blocks.
2247                          */
2248                         if ((err == -ENOMEM) ||
2249                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2250                                 if (progress)
2251                                         goto update_disksize;
2252                                 return err;
2253                         }
2254                         ext4_msg(sb, KERN_CRIT,
2255                                  "Delayed block allocation failed for "
2256                                  "inode %lu at logical offset %llu with"
2257                                  " max blocks %u with error %d",
2258                                  inode->i_ino,
2259                                  (unsigned long long)map->m_lblk,
2260                                  (unsigned)map->m_len, -err);
2261                         ext4_msg(sb, KERN_CRIT,
2262                                  "This should not happen!! Data will "
2263                                  "be lost\n");
2264                         if (err == -ENOSPC)
2265                                 ext4_print_free_blocks(inode);
2266                 invalidate_dirty_pages:
2267                         *give_up_on_write = true;
2268                         return err;
2269                 }
2270                 progress = 1;
2271                 /*
2272                  * Update buffer state, submit mapped pages, and get us new
2273                  * extent to map
2274                  */
2275                 err = mpage_map_and_submit_buffers(mpd);
2276                 if (err < 0)
2277                         goto update_disksize;
2278         } while (map->m_len);
2279
2280 update_disksize:
2281         /*
2282          * Update on-disk size after IO is submitted.  Races with
2283          * truncate are avoided by checking i_size under i_data_sem.
2284          */
2285         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2286         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2287                 int err2;
2288                 loff_t i_size;
2289
2290                 down_write(&EXT4_I(inode)->i_data_sem);
2291                 i_size = i_size_read(inode);
2292                 if (disksize > i_size)
2293                         disksize = i_size;
2294                 if (disksize > EXT4_I(inode)->i_disksize)
2295                         EXT4_I(inode)->i_disksize = disksize;
2296                 up_write(&EXT4_I(inode)->i_data_sem);
2297                 err2 = ext4_mark_inode_dirty(handle, inode);
2298                 if (err2) {
2299                         ext4_error_err(inode->i_sb, -err2,
2300                                        "Failed to mark inode %lu dirty",
2301                                        inode->i_ino);
2302                 }
2303                 if (!err)
2304                         err = err2;
2305         }
2306         return err;
2307 }
2308
2309 /*
2310  * Calculate the total number of credits to reserve for one writepages
2311  * iteration. This is called from ext4_writepages(). We map an extent of
2312  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2313  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2314  * bpp - 1 blocks in bpp different extents.
2315  */
2316 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2317 {
2318         int bpp = ext4_journal_blocks_per_page(inode);
2319
2320         return ext4_meta_trans_blocks(inode,
2321                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2322 }
2323
2324 static int ext4_journal_page_buffers(handle_t *handle, struct page *page,
2325                                      int len)
2326 {
2327         struct buffer_head *page_bufs = page_buffers(page);
2328         struct inode *inode = page->mapping->host;
2329         int ret, err;
2330
2331         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2332                                      NULL, do_journal_get_write_access);
2333         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2334                                      NULL, write_end_fn);
2335         if (ret == 0)
2336                 ret = err;
2337         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
2338         if (ret == 0)
2339                 ret = err;
2340         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2341
2342         return ret;
2343 }
2344
2345 static int mpage_journal_page_buffers(handle_t *handle,
2346                                       struct mpage_da_data *mpd,
2347                                       struct page *page)
2348 {
2349         struct inode *inode = mpd->inode;
2350         loff_t size = i_size_read(inode);
2351         int len;
2352
2353         ClearPageChecked(page);
2354         mpd->wbc->nr_to_write--;
2355
2356         if (page->index == size >> PAGE_SHIFT &&
2357             !ext4_verity_in_progress(inode))
2358                 len = size & ~PAGE_MASK;
2359         else
2360                 len = PAGE_SIZE;
2361
2362         return ext4_journal_page_buffers(handle, page, len);
2363 }
2364
2365 /*
2366  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2367  *                               needing mapping, submit mapped pages
2368  *
2369  * @mpd - where to look for pages
2370  *
2371  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2372  * IO immediately. If we cannot map blocks, we submit just already mapped
2373  * buffers in the page for IO and keep page dirty. When we can map blocks and
2374  * we find a page which isn't mapped we start accumulating extent of buffers
2375  * underlying these pages that needs mapping (formed by either delayed or
2376  * unwritten buffers). We also lock the pages containing these buffers. The
2377  * extent found is returned in @mpd structure (starting at mpd->lblk with
2378  * length mpd->len blocks).
2379  *
2380  * Note that this function can attach bios to one io_end structure which are
2381  * neither logically nor physically contiguous. Although it may seem as an
2382  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2383  * case as we need to track IO to all buffers underlying a page in one io_end.
2384  */
2385 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2386 {
2387         struct address_space *mapping = mpd->inode->i_mapping;
2388         struct folio_batch fbatch;
2389         unsigned int nr_folios;
2390         pgoff_t index = mpd->first_page;
2391         pgoff_t end = mpd->last_page;
2392         xa_mark_t tag;
2393         int i, err = 0;
2394         int blkbits = mpd->inode->i_blkbits;
2395         ext4_lblk_t lblk;
2396         struct buffer_head *head;
2397         handle_t *handle = NULL;
2398         int bpp = ext4_journal_blocks_per_page(mpd->inode);
2399
2400         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2401                 tag = PAGECACHE_TAG_TOWRITE;
2402         else
2403                 tag = PAGECACHE_TAG_DIRTY;
2404
2405         mpd->map.m_len = 0;
2406         mpd->next_page = index;
2407         if (ext4_should_journal_data(mpd->inode)) {
2408                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2409                                             bpp);
2410                 if (IS_ERR(handle))
2411                         return PTR_ERR(handle);
2412         }
2413         folio_batch_init(&fbatch);
2414         while (index <= end) {
2415                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2416                                 tag, &fbatch);
2417                 if (nr_folios == 0)
2418                         break;
2419
2420                 for (i = 0; i < nr_folios; i++) {
2421                         struct folio *folio = fbatch.folios[i];
2422
2423                         /*
2424                          * Accumulated enough dirty pages? This doesn't apply
2425                          * to WB_SYNC_ALL mode. For integrity sync we have to
2426                          * keep going because someone may be concurrently
2427                          * dirtying pages, and we might have synced a lot of
2428                          * newly appeared dirty pages, but have not synced all
2429                          * of the old dirty pages.
2430                          */
2431                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2432                             mpd->wbc->nr_to_write <=
2433                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2434                                 goto out;
2435
2436                         /* If we can't merge this page, we are done. */
2437                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2438                                 goto out;
2439
2440                         if (handle) {
2441                                 err = ext4_journal_ensure_credits(handle, bpp,
2442                                                                   0);
2443                                 if (err < 0)
2444                                         goto out;
2445                         }
2446
2447                         folio_lock(folio);
2448                         /*
2449                          * If the page is no longer dirty, or its mapping no
2450                          * longer corresponds to inode we are writing (which
2451                          * means it has been truncated or invalidated), or the
2452                          * page is already under writeback and we are not doing
2453                          * a data integrity writeback, skip the page
2454                          */
2455                         if (!folio_test_dirty(folio) ||
2456                             (folio_test_writeback(folio) &&
2457                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2458                             unlikely(folio->mapping != mapping)) {
2459                                 folio_unlock(folio);
2460                                 continue;
2461                         }
2462
2463                         folio_wait_writeback(folio);
2464                         BUG_ON(folio_test_writeback(folio));
2465
2466                         /*
2467                          * Should never happen but for buggy code in
2468                          * other subsystems that call
2469                          * set_page_dirty() without properly warning
2470                          * the file system first.  See [1] for more
2471                          * information.
2472                          *
2473                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2474                          */
2475                         if (!folio_buffers(folio)) {
2476                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2477                                 folio_clear_dirty(folio);
2478                                 folio_unlock(folio);
2479                                 continue;
2480                         }
2481
2482                         if (mpd->map.m_len == 0)
2483                                 mpd->first_page = folio->index;
2484                         mpd->next_page = folio->index + folio_nr_pages(folio);
2485                         /*
2486                          * Writeout when we cannot modify metadata is simple.
2487                          * Just submit the page. For data=journal mode we
2488                          * first handle writeout of the page for checkpoint and
2489                          * only after that handle delayed page dirtying. This
2490                          * makes sure current data is checkpointed to the final
2491                          * location before possibly journalling it again which
2492                          * is desirable when the page is frequently dirtied
2493                          * through a pin.
2494                          */
2495                         if (!mpd->can_map) {
2496                                 err = mpage_submit_folio(mpd, folio);
2497                                 if (err < 0)
2498                                         goto out;
2499                                 /* Pending dirtying of journalled data? */
2500                                 if (folio_test_checked(folio)) {
2501                                         err = mpage_journal_page_buffers(handle,
2502                                                 mpd, &folio->page);
2503                                         if (err < 0)
2504                                                 goto out;
2505                                         mpd->journalled_more_data = 1;
2506                                 }
2507                                 mpage_folio_done(mpd, folio);
2508                         } else {
2509                                 /* Add all dirty buffers to mpd */
2510                                 lblk = ((ext4_lblk_t)folio->index) <<
2511                                         (PAGE_SHIFT - blkbits);
2512                                 head = folio_buffers(folio);
2513                                 err = mpage_process_page_bufs(mpd, head, head,
2514                                                 lblk);
2515                                 if (err <= 0)
2516                                         goto out;
2517                                 err = 0;
2518                         }
2519                 }
2520                 folio_batch_release(&fbatch);
2521                 cond_resched();
2522         }
2523         mpd->scanned_until_end = 1;
2524         if (handle)
2525                 ext4_journal_stop(handle);
2526         return 0;
2527 out:
2528         folio_batch_release(&fbatch);
2529         if (handle)
2530                 ext4_journal_stop(handle);
2531         return err;
2532 }
2533
2534 static int ext4_do_writepages(struct mpage_da_data *mpd)
2535 {
2536         struct writeback_control *wbc = mpd->wbc;
2537         pgoff_t writeback_index = 0;
2538         long nr_to_write = wbc->nr_to_write;
2539         int range_whole = 0;
2540         int cycled = 1;
2541         handle_t *handle = NULL;
2542         struct inode *inode = mpd->inode;
2543         struct address_space *mapping = inode->i_mapping;
2544         int needed_blocks, rsv_blocks = 0, ret = 0;
2545         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2546         struct blk_plug plug;
2547         bool give_up_on_write = false;
2548
2549         trace_ext4_writepages(inode, wbc);
2550
2551         /*
2552          * No pages to write? This is mainly a kludge to avoid starting
2553          * a transaction for special inodes like journal inode on last iput()
2554          * because that could violate lock ordering on umount
2555          */
2556         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2557                 goto out_writepages;
2558
2559         /*
2560          * If the filesystem has aborted, it is read-only, so return
2561          * right away instead of dumping stack traces later on that
2562          * will obscure the real source of the problem.  We test
2563          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2564          * the latter could be true if the filesystem is mounted
2565          * read-only, and in that case, ext4_writepages should
2566          * *never* be called, so if that ever happens, we would want
2567          * the stack trace.
2568          */
2569         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2570                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2571                 ret = -EROFS;
2572                 goto out_writepages;
2573         }
2574
2575         /*
2576          * If we have inline data and arrive here, it means that
2577          * we will soon create the block for the 1st page, so
2578          * we'd better clear the inline data here.
2579          */
2580         if (ext4_has_inline_data(inode)) {
2581                 /* Just inode will be modified... */
2582                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2583                 if (IS_ERR(handle)) {
2584                         ret = PTR_ERR(handle);
2585                         goto out_writepages;
2586                 }
2587                 BUG_ON(ext4_test_inode_state(inode,
2588                                 EXT4_STATE_MAY_INLINE_DATA));
2589                 ext4_destroy_inline_data(handle, inode);
2590                 ext4_journal_stop(handle);
2591         }
2592
2593         /*
2594          * data=journal mode does not do delalloc so we just need to writeout /
2595          * journal already mapped buffers. On the other hand we need to commit
2596          * transaction to make data stable. We expect all the data to be
2597          * already in the journal (the only exception are DMA pinned pages
2598          * dirtied behind our back) so we commit transaction here and run the
2599          * writeback loop to checkpoint them. The checkpointing is not actually
2600          * necessary to make data persistent *but* quite a few places (extent
2601          * shifting operations, fsverity, ...) depend on being able to drop
2602          * pagecache pages after calling filemap_write_and_wait() and for that
2603          * checkpointing needs to happen.
2604          */
2605         if (ext4_should_journal_data(inode)) {
2606                 mpd->can_map = 0;
2607                 if (wbc->sync_mode == WB_SYNC_ALL)
2608                         ext4_fc_commit(sbi->s_journal,
2609                                        EXT4_I(inode)->i_datasync_tid);
2610         }
2611         mpd->journalled_more_data = 0;
2612
2613         if (ext4_should_dioread_nolock(inode)) {
2614                 /*
2615                  * We may need to convert up to one extent per block in
2616                  * the page and we may dirty the inode.
2617                  */
2618                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2619                                                 PAGE_SIZE >> inode->i_blkbits);
2620         }
2621
2622         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2623                 range_whole = 1;
2624
2625         if (wbc->range_cyclic) {
2626                 writeback_index = mapping->writeback_index;
2627                 if (writeback_index)
2628                         cycled = 0;
2629                 mpd->first_page = writeback_index;
2630                 mpd->last_page = -1;
2631         } else {
2632                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2633                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2634         }
2635
2636         ext4_io_submit_init(&mpd->io_submit, wbc);
2637 retry:
2638         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2639                 tag_pages_for_writeback(mapping, mpd->first_page,
2640                                         mpd->last_page);
2641         blk_start_plug(&plug);
2642
2643         /*
2644          * First writeback pages that don't need mapping - we can avoid
2645          * starting a transaction unnecessarily and also avoid being blocked
2646          * in the block layer on device congestion while having transaction
2647          * started.
2648          */
2649         mpd->do_map = 0;
2650         mpd->scanned_until_end = 0;
2651         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2652         if (!mpd->io_submit.io_end) {
2653                 ret = -ENOMEM;
2654                 goto unplug;
2655         }
2656         ret = mpage_prepare_extent_to_map(mpd);
2657         /* Unlock pages we didn't use */
2658         mpage_release_unused_pages(mpd, false);
2659         /* Submit prepared bio */
2660         ext4_io_submit(&mpd->io_submit);
2661         ext4_put_io_end_defer(mpd->io_submit.io_end);
2662         mpd->io_submit.io_end = NULL;
2663         if (ret < 0)
2664                 goto unplug;
2665
2666         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2667                 /* For each extent of pages we use new io_end */
2668                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2669                 if (!mpd->io_submit.io_end) {
2670                         ret = -ENOMEM;
2671                         break;
2672                 }
2673
2674                 WARN_ON_ONCE(!mpd->can_map);
2675                 /*
2676                  * We have two constraints: We find one extent to map and we
2677                  * must always write out whole page (makes a difference when
2678                  * blocksize < pagesize) so that we don't block on IO when we
2679                  * try to write out the rest of the page. Journalled mode is
2680                  * not supported by delalloc.
2681                  */
2682                 BUG_ON(ext4_should_journal_data(inode));
2683                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2684
2685                 /* start a new transaction */
2686                 handle = ext4_journal_start_with_reserve(inode,
2687                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2688                 if (IS_ERR(handle)) {
2689                         ret = PTR_ERR(handle);
2690                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2691                                "%ld pages, ino %lu; err %d", __func__,
2692                                 wbc->nr_to_write, inode->i_ino, ret);
2693                         /* Release allocated io_end */
2694                         ext4_put_io_end(mpd->io_submit.io_end);
2695                         mpd->io_submit.io_end = NULL;
2696                         break;
2697                 }
2698                 mpd->do_map = 1;
2699
2700                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2701                 ret = mpage_prepare_extent_to_map(mpd);
2702                 if (!ret && mpd->map.m_len)
2703                         ret = mpage_map_and_submit_extent(handle, mpd,
2704                                         &give_up_on_write);
2705                 /*
2706                  * Caution: If the handle is synchronous,
2707                  * ext4_journal_stop() can wait for transaction commit
2708                  * to finish which may depend on writeback of pages to
2709                  * complete or on page lock to be released.  In that
2710                  * case, we have to wait until after we have
2711                  * submitted all the IO, released page locks we hold,
2712                  * and dropped io_end reference (for extent conversion
2713                  * to be able to complete) before stopping the handle.
2714                  */
2715                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2716                         ext4_journal_stop(handle);
2717                         handle = NULL;
2718                         mpd->do_map = 0;
2719                 }
2720                 /* Unlock pages we didn't use */
2721                 mpage_release_unused_pages(mpd, give_up_on_write);
2722                 /* Submit prepared bio */
2723                 ext4_io_submit(&mpd->io_submit);
2724
2725                 /*
2726                  * Drop our io_end reference we got from init. We have
2727                  * to be careful and use deferred io_end finishing if
2728                  * we are still holding the transaction as we can
2729                  * release the last reference to io_end which may end
2730                  * up doing unwritten extent conversion.
2731                  */
2732                 if (handle) {
2733                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2734                         ext4_journal_stop(handle);
2735                 } else
2736                         ext4_put_io_end(mpd->io_submit.io_end);
2737                 mpd->io_submit.io_end = NULL;
2738
2739                 if (ret == -ENOSPC && sbi->s_journal) {
2740                         /*
2741                          * Commit the transaction which would
2742                          * free blocks released in the transaction
2743                          * and try again
2744                          */
2745                         jbd2_journal_force_commit_nested(sbi->s_journal);
2746                         ret = 0;
2747                         continue;
2748                 }
2749                 /* Fatal error - ENOMEM, EIO... */
2750                 if (ret)
2751                         break;
2752         }
2753 unplug:
2754         blk_finish_plug(&plug);
2755         if (!ret && !cycled && wbc->nr_to_write > 0) {
2756                 cycled = 1;
2757                 mpd->last_page = writeback_index - 1;
2758                 mpd->first_page = 0;
2759                 goto retry;
2760         }
2761
2762         /* Update index */
2763         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2764                 /*
2765                  * Set the writeback_index so that range_cyclic
2766                  * mode will write it back later
2767                  */
2768                 mapping->writeback_index = mpd->first_page;
2769
2770 out_writepages:
2771         trace_ext4_writepages_result(inode, wbc, ret,
2772                                      nr_to_write - wbc->nr_to_write);
2773         return ret;
2774 }
2775
2776 static int ext4_writepages(struct address_space *mapping,
2777                            struct writeback_control *wbc)
2778 {
2779         struct super_block *sb = mapping->host->i_sb;
2780         struct mpage_da_data mpd = {
2781                 .inode = mapping->host,
2782                 .wbc = wbc,
2783                 .can_map = 1,
2784         };
2785         int ret;
2786
2787         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2788                 return -EIO;
2789
2790         percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2791         ret = ext4_do_writepages(&mpd);
2792         /*
2793          * For data=journal writeback we could have come across pages marked
2794          * for delayed dirtying (PageChecked) which were just added to the
2795          * running transaction. Try once more to get them to stable storage.
2796          */
2797         if (!ret && mpd.journalled_more_data)
2798                 ret = ext4_do_writepages(&mpd);
2799         percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2800
2801         return ret;
2802 }
2803
2804 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2805 {
2806         struct writeback_control wbc = {
2807                 .sync_mode = WB_SYNC_ALL,
2808                 .nr_to_write = LONG_MAX,
2809                 .range_start = jinode->i_dirty_start,
2810                 .range_end = jinode->i_dirty_end,
2811         };
2812         struct mpage_da_data mpd = {
2813                 .inode = jinode->i_vfs_inode,
2814                 .wbc = &wbc,
2815                 .can_map = 0,
2816         };
2817         return ext4_do_writepages(&mpd);
2818 }
2819
2820 static int ext4_dax_writepages(struct address_space *mapping,
2821                                struct writeback_control *wbc)
2822 {
2823         int ret;
2824         long nr_to_write = wbc->nr_to_write;
2825         struct inode *inode = mapping->host;
2826         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2827
2828         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2829                 return -EIO;
2830
2831         percpu_down_read(&sbi->s_writepages_rwsem);
2832         trace_ext4_writepages(inode, wbc);
2833
2834         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2835         trace_ext4_writepages_result(inode, wbc, ret,
2836                                      nr_to_write - wbc->nr_to_write);
2837         percpu_up_read(&sbi->s_writepages_rwsem);
2838         return ret;
2839 }
2840
2841 static int ext4_nonda_switch(struct super_block *sb)
2842 {
2843         s64 free_clusters, dirty_clusters;
2844         struct ext4_sb_info *sbi = EXT4_SB(sb);
2845
2846         /*
2847          * switch to non delalloc mode if we are running low
2848          * on free block. The free block accounting via percpu
2849          * counters can get slightly wrong with percpu_counter_batch getting
2850          * accumulated on each CPU without updating global counters
2851          * Delalloc need an accurate free block accounting. So switch
2852          * to non delalloc when we are near to error range.
2853          */
2854         free_clusters =
2855                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2856         dirty_clusters =
2857                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2858         /*
2859          * Start pushing delalloc when 1/2 of free blocks are dirty.
2860          */
2861         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2862                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2863
2864         if (2 * free_clusters < 3 * dirty_clusters ||
2865             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2866                 /*
2867                  * free block count is less than 150% of dirty blocks
2868                  * or free blocks is less than watermark
2869                  */
2870                 return 1;
2871         }
2872         return 0;
2873 }
2874
2875 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2876                                loff_t pos, unsigned len,
2877                                struct page **pagep, void **fsdata)
2878 {
2879         int ret, retries = 0;
2880         struct folio *folio;
2881         pgoff_t index;
2882         struct inode *inode = mapping->host;
2883
2884         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2885                 return -EIO;
2886
2887         index = pos >> PAGE_SHIFT;
2888
2889         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2890                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2891                 return ext4_write_begin(file, mapping, pos,
2892                                         len, pagep, fsdata);
2893         }
2894         *fsdata = (void *)0;
2895         trace_ext4_da_write_begin(inode, pos, len);
2896
2897         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2898                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2899                                                       pagep, fsdata);
2900                 if (ret < 0)
2901                         return ret;
2902                 if (ret == 1)
2903                         return 0;
2904         }
2905
2906 retry:
2907         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2908                         mapping_gfp_mask(mapping));
2909         if (IS_ERR(folio))
2910                 return PTR_ERR(folio);
2911
2912         /* In case writeback began while the folio was unlocked */
2913         folio_wait_stable(folio);
2914
2915 #ifdef CONFIG_FS_ENCRYPTION
2916         ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2917 #else
2918         ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2919 #endif
2920         if (ret < 0) {
2921                 folio_unlock(folio);
2922                 folio_put(folio);
2923                 /*
2924                  * block_write_begin may have instantiated a few blocks
2925                  * outside i_size.  Trim these off again. Don't need
2926                  * i_size_read because we hold inode lock.
2927                  */
2928                 if (pos + len > inode->i_size)
2929                         ext4_truncate_failed_write(inode);
2930
2931                 if (ret == -ENOSPC &&
2932                     ext4_should_retry_alloc(inode->i_sb, &retries))
2933                         goto retry;
2934                 return ret;
2935         }
2936
2937         *pagep = &folio->page;
2938         return ret;
2939 }
2940
2941 /*
2942  * Check if we should update i_disksize
2943  * when write to the end of file but not require block allocation
2944  */
2945 static int ext4_da_should_update_i_disksize(struct page *page,
2946                                             unsigned long offset)
2947 {
2948         struct buffer_head *bh;
2949         struct inode *inode = page->mapping->host;
2950         unsigned int idx;
2951         int i;
2952
2953         bh = page_buffers(page);
2954         idx = offset >> inode->i_blkbits;
2955
2956         for (i = 0; i < idx; i++)
2957                 bh = bh->b_this_page;
2958
2959         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2960                 return 0;
2961         return 1;
2962 }
2963
2964 static int ext4_da_write_end(struct file *file,
2965                              struct address_space *mapping,
2966                              loff_t pos, unsigned len, unsigned copied,
2967                              struct page *page, void *fsdata)
2968 {
2969         struct inode *inode = mapping->host;
2970         loff_t new_i_size;
2971         unsigned long start, end;
2972         int write_mode = (int)(unsigned long)fsdata;
2973
2974         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2975                 return ext4_write_end(file, mapping, pos,
2976                                       len, copied, page, fsdata);
2977
2978         trace_ext4_da_write_end(inode, pos, len, copied);
2979
2980         if (write_mode != CONVERT_INLINE_DATA &&
2981             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2982             ext4_has_inline_data(inode))
2983                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
2984
2985         if (unlikely(copied < len) && !PageUptodate(page))
2986                 copied = 0;
2987
2988         start = pos & (PAGE_SIZE - 1);
2989         end = start + copied - 1;
2990
2991         /*
2992          * Since we are holding inode lock, we are sure i_disksize <=
2993          * i_size. We also know that if i_disksize < i_size, there are
2994          * delalloc writes pending in the range upto i_size. If the end of
2995          * the current write is <= i_size, there's no need to touch
2996          * i_disksize since writeback will push i_disksize upto i_size
2997          * eventually. If the end of the current write is > i_size and
2998          * inside an allocated block (ext4_da_should_update_i_disksize()
2999          * check), we need to update i_disksize here as certain
3000          * ext4_writepages() paths not allocating blocks update i_disksize.
3001          *
3002          * Note that we defer inode dirtying to generic_write_end() /
3003          * ext4_da_write_inline_data_end().
3004          */
3005         new_i_size = pos + copied;
3006         if (copied && new_i_size > inode->i_size &&
3007             ext4_da_should_update_i_disksize(page, end))
3008                 ext4_update_i_disksize(inode, new_i_size);
3009
3010         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3011 }
3012
3013 /*
3014  * Force all delayed allocation blocks to be allocated for a given inode.
3015  */
3016 int ext4_alloc_da_blocks(struct inode *inode)
3017 {
3018         trace_ext4_alloc_da_blocks(inode);
3019
3020         if (!EXT4_I(inode)->i_reserved_data_blocks)
3021                 return 0;
3022
3023         /*
3024          * We do something simple for now.  The filemap_flush() will
3025          * also start triggering a write of the data blocks, which is
3026          * not strictly speaking necessary (and for users of
3027          * laptop_mode, not even desirable).  However, to do otherwise
3028          * would require replicating code paths in:
3029          *
3030          * ext4_writepages() ->
3031          *    write_cache_pages() ---> (via passed in callback function)
3032          *        __mpage_da_writepage() -->
3033          *           mpage_add_bh_to_extent()
3034          *           mpage_da_map_blocks()
3035          *
3036          * The problem is that write_cache_pages(), located in
3037          * mm/page-writeback.c, marks pages clean in preparation for
3038          * doing I/O, which is not desirable if we're not planning on
3039          * doing I/O at all.
3040          *
3041          * We could call write_cache_pages(), and then redirty all of
3042          * the pages by calling redirty_page_for_writepage() but that
3043          * would be ugly in the extreme.  So instead we would need to
3044          * replicate parts of the code in the above functions,
3045          * simplifying them because we wouldn't actually intend to
3046          * write out the pages, but rather only collect contiguous
3047          * logical block extents, call the multi-block allocator, and
3048          * then update the buffer heads with the block allocations.
3049          *
3050          * For now, though, we'll cheat by calling filemap_flush(),
3051          * which will map the blocks, and start the I/O, but not
3052          * actually wait for the I/O to complete.
3053          */
3054         return filemap_flush(inode->i_mapping);
3055 }
3056
3057 /*
3058  * bmap() is special.  It gets used by applications such as lilo and by
3059  * the swapper to find the on-disk block of a specific piece of data.
3060  *
3061  * Naturally, this is dangerous if the block concerned is still in the
3062  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3063  * filesystem and enables swap, then they may get a nasty shock when the
3064  * data getting swapped to that swapfile suddenly gets overwritten by
3065  * the original zero's written out previously to the journal and
3066  * awaiting writeback in the kernel's buffer cache.
3067  *
3068  * So, if we see any bmap calls here on a modified, data-journaled file,
3069  * take extra steps to flush any blocks which might be in the cache.
3070  */
3071 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3072 {
3073         struct inode *inode = mapping->host;
3074         sector_t ret = 0;
3075
3076         inode_lock_shared(inode);
3077         /*
3078          * We can get here for an inline file via the FIBMAP ioctl
3079          */
3080         if (ext4_has_inline_data(inode))
3081                 goto out;
3082
3083         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3084             (test_opt(inode->i_sb, DELALLOC) ||
3085              ext4_should_journal_data(inode))) {
3086                 /*
3087                  * With delalloc or journalled data we want to sync the file so
3088                  * that we can make sure we allocate blocks for file and data
3089                  * is in place for the user to see it
3090                  */
3091                 filemap_write_and_wait(mapping);
3092         }
3093
3094         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3095
3096 out:
3097         inode_unlock_shared(inode);
3098         return ret;
3099 }
3100
3101 static int ext4_read_folio(struct file *file, struct folio *folio)
3102 {
3103         int ret = -EAGAIN;
3104         struct inode *inode = folio->mapping->host;
3105
3106         trace_ext4_readpage(&folio->page);
3107
3108         if (ext4_has_inline_data(inode))
3109                 ret = ext4_readpage_inline(inode, folio);
3110
3111         if (ret == -EAGAIN)
3112                 return ext4_mpage_readpages(inode, NULL, folio);
3113
3114         return ret;
3115 }
3116
3117 static void ext4_readahead(struct readahead_control *rac)
3118 {
3119         struct inode *inode = rac->mapping->host;
3120
3121         /* If the file has inline data, no need to do readahead. */
3122         if (ext4_has_inline_data(inode))
3123                 return;
3124
3125         ext4_mpage_readpages(inode, rac, NULL);
3126 }
3127
3128 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3129                                 size_t length)
3130 {
3131         trace_ext4_invalidate_folio(folio, offset, length);
3132
3133         /* No journalling happens on data buffers when this function is used */
3134         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3135
3136         block_invalidate_folio(folio, offset, length);
3137 }
3138
3139 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3140                                             size_t offset, size_t length)
3141 {
3142         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3143
3144         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3145
3146         /*
3147          * If it's a full truncate we just forget about the pending dirtying
3148          */
3149         if (offset == 0 && length == folio_size(folio))
3150                 folio_clear_checked(folio);
3151
3152         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3153 }
3154
3155 /* Wrapper for aops... */
3156 static void ext4_journalled_invalidate_folio(struct folio *folio,
3157                                            size_t offset,
3158                                            size_t length)
3159 {
3160         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3161 }
3162
3163 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3164 {
3165         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3166
3167         trace_ext4_releasepage(&folio->page);
3168
3169         /* Page has dirty journalled data -> cannot release */
3170         if (folio_test_checked(folio))
3171                 return false;
3172         if (journal)
3173                 return jbd2_journal_try_to_free_buffers(journal, folio);
3174         else
3175                 return try_to_free_buffers(folio);
3176 }
3177
3178 static bool ext4_inode_datasync_dirty(struct inode *inode)
3179 {
3180         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3181
3182         if (journal) {
3183                 if (jbd2_transaction_committed(journal,
3184                         EXT4_I(inode)->i_datasync_tid))
3185                         return false;
3186                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3187                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3188                 return true;
3189         }
3190
3191         /* Any metadata buffers to write? */
3192         if (!list_empty(&inode->i_mapping->private_list))
3193                 return true;
3194         return inode->i_state & I_DIRTY_DATASYNC;
3195 }
3196
3197 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3198                            struct ext4_map_blocks *map, loff_t offset,
3199                            loff_t length, unsigned int flags)
3200 {
3201         u8 blkbits = inode->i_blkbits;
3202
3203         /*
3204          * Writes that span EOF might trigger an I/O size update on completion,
3205          * so consider them to be dirty for the purpose of O_DSYNC, even if
3206          * there is no other metadata changes being made or are pending.
3207          */
3208         iomap->flags = 0;
3209         if (ext4_inode_datasync_dirty(inode) ||
3210             offset + length > i_size_read(inode))
3211                 iomap->flags |= IOMAP_F_DIRTY;
3212
3213         if (map->m_flags & EXT4_MAP_NEW)
3214                 iomap->flags |= IOMAP_F_NEW;
3215
3216         if (flags & IOMAP_DAX)
3217                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3218         else
3219                 iomap->bdev = inode->i_sb->s_bdev;
3220         iomap->offset = (u64) map->m_lblk << blkbits;
3221         iomap->length = (u64) map->m_len << blkbits;
3222
3223         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3224             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3225                 iomap->flags |= IOMAP_F_MERGED;
3226
3227         /*
3228          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3229          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3230          * set. In order for any allocated unwritten extents to be converted
3231          * into written extents correctly within the ->end_io() handler, we
3232          * need to ensure that the iomap->type is set appropriately. Hence, the
3233          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3234          * been set first.
3235          */
3236         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3237                 iomap->type = IOMAP_UNWRITTEN;
3238                 iomap->addr = (u64) map->m_pblk << blkbits;
3239                 if (flags & IOMAP_DAX)
3240                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3241         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3242                 iomap->type = IOMAP_MAPPED;
3243                 iomap->addr = (u64) map->m_pblk << blkbits;
3244                 if (flags & IOMAP_DAX)
3245                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3246         } else {
3247                 iomap->type = IOMAP_HOLE;
3248                 iomap->addr = IOMAP_NULL_ADDR;
3249         }
3250 }
3251
3252 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3253                             unsigned int flags)
3254 {
3255         handle_t *handle;
3256         u8 blkbits = inode->i_blkbits;
3257         int ret, dio_credits, m_flags = 0, retries = 0;
3258
3259         /*
3260          * Trim the mapping request to the maximum value that we can map at
3261          * once for direct I/O.
3262          */
3263         if (map->m_len > DIO_MAX_BLOCKS)
3264                 map->m_len = DIO_MAX_BLOCKS;
3265         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3266
3267 retry:
3268         /*
3269          * Either we allocate blocks and then don't get an unwritten extent, so
3270          * in that case we have reserved enough credits. Or, the blocks are
3271          * already allocated and unwritten. In that case, the extent conversion
3272          * fits into the credits as well.
3273          */
3274         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3275         if (IS_ERR(handle))
3276                 return PTR_ERR(handle);
3277
3278         /*
3279          * DAX and direct I/O are the only two operations that are currently
3280          * supported with IOMAP_WRITE.
3281          */
3282         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3283         if (flags & IOMAP_DAX)
3284                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3285         /*
3286          * We use i_size instead of i_disksize here because delalloc writeback
3287          * can complete at any point during the I/O and subsequently push the
3288          * i_disksize out to i_size. This could be beyond where direct I/O is
3289          * happening and thus expose allocated blocks to direct I/O reads.
3290          */
3291         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3292                 m_flags = EXT4_GET_BLOCKS_CREATE;
3293         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3294                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3295
3296         ret = ext4_map_blocks(handle, inode, map, m_flags);
3297
3298         /*
3299          * We cannot fill holes in indirect tree based inodes as that could
3300          * expose stale data in the case of a crash. Use the magic error code
3301          * to fallback to buffered I/O.
3302          */
3303         if (!m_flags && !ret)
3304                 ret = -ENOTBLK;
3305
3306         ext4_journal_stop(handle);
3307         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3308                 goto retry;
3309
3310         return ret;
3311 }
3312
3313
3314 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3315                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3316 {
3317         int ret;
3318         struct ext4_map_blocks map;
3319         u8 blkbits = inode->i_blkbits;
3320
3321         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3322                 return -EINVAL;
3323
3324         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3325                 return -ERANGE;
3326
3327         /*
3328          * Calculate the first and last logical blocks respectively.
3329          */
3330         map.m_lblk = offset >> blkbits;
3331         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3332                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3333
3334         if (flags & IOMAP_WRITE) {
3335                 /*
3336                  * We check here if the blocks are already allocated, then we
3337                  * don't need to start a journal txn and we can directly return
3338                  * the mapping information. This could boost performance
3339                  * especially in multi-threaded overwrite requests.
3340                  */
3341                 if (offset + length <= i_size_read(inode)) {
3342                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3343                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3344                                 goto out;
3345                 }
3346                 ret = ext4_iomap_alloc(inode, &map, flags);
3347         } else {
3348                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3349         }
3350
3351         if (ret < 0)
3352                 return ret;
3353 out:
3354         /*
3355          * When inline encryption is enabled, sometimes I/O to an encrypted file
3356          * has to be broken up to guarantee DUN contiguity.  Handle this by
3357          * limiting the length of the mapping returned.
3358          */
3359         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3360
3361         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3362
3363         return 0;
3364 }
3365
3366 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3367                 loff_t length, unsigned flags, struct iomap *iomap,
3368                 struct iomap *srcmap)
3369 {
3370         int ret;
3371
3372         /*
3373          * Even for writes we don't need to allocate blocks, so just pretend
3374          * we are reading to save overhead of starting a transaction.
3375          */
3376         flags &= ~IOMAP_WRITE;
3377         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3378         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3379         return ret;
3380 }
3381
3382 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3383                           ssize_t written, unsigned flags, struct iomap *iomap)
3384 {
3385         /*
3386          * Check to see whether an error occurred while writing out the data to
3387          * the allocated blocks. If so, return the magic error code so that we
3388          * fallback to buffered I/O and attempt to complete the remainder of
3389          * the I/O. Any blocks that may have been allocated in preparation for
3390          * the direct I/O will be reused during buffered I/O.
3391          */
3392         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3393                 return -ENOTBLK;
3394
3395         return 0;
3396 }
3397
3398 const struct iomap_ops ext4_iomap_ops = {
3399         .iomap_begin            = ext4_iomap_begin,
3400         .iomap_end              = ext4_iomap_end,
3401 };
3402
3403 const struct iomap_ops ext4_iomap_overwrite_ops = {
3404         .iomap_begin            = ext4_iomap_overwrite_begin,
3405         .iomap_end              = ext4_iomap_end,
3406 };
3407
3408 static bool ext4_iomap_is_delalloc(struct inode *inode,
3409                                    struct ext4_map_blocks *map)
3410 {
3411         struct extent_status es;
3412         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3413
3414         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3415                                   map->m_lblk, end, &es);
3416
3417         if (!es.es_len || es.es_lblk > end)
3418                 return false;
3419
3420         if (es.es_lblk > map->m_lblk) {
3421                 map->m_len = es.es_lblk - map->m_lblk;
3422                 return false;
3423         }
3424
3425         offset = map->m_lblk - es.es_lblk;
3426         map->m_len = es.es_len - offset;
3427
3428         return true;
3429 }
3430
3431 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3432                                    loff_t length, unsigned int flags,
3433                                    struct iomap *iomap, struct iomap *srcmap)
3434 {
3435         int ret;
3436         bool delalloc = false;
3437         struct ext4_map_blocks map;
3438         u8 blkbits = inode->i_blkbits;
3439
3440         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3441                 return -EINVAL;
3442
3443         if (ext4_has_inline_data(inode)) {
3444                 ret = ext4_inline_data_iomap(inode, iomap);
3445                 if (ret != -EAGAIN) {
3446                         if (ret == 0 && offset >= iomap->length)
3447                                 ret = -ENOENT;
3448                         return ret;
3449                 }
3450         }
3451
3452         /*
3453          * Calculate the first and last logical block respectively.
3454          */
3455         map.m_lblk = offset >> blkbits;
3456         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3457                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3458
3459         /*
3460          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3461          * So handle it here itself instead of querying ext4_map_blocks().
3462          * Since ext4_map_blocks() will warn about it and will return
3463          * -EIO error.
3464          */
3465         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3466                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3467
3468                 if (offset >= sbi->s_bitmap_maxbytes) {
3469                         map.m_flags = 0;
3470                         goto set_iomap;
3471                 }
3472         }
3473
3474         ret = ext4_map_blocks(NULL, inode, &map, 0);
3475         if (ret < 0)
3476                 return ret;
3477         if (ret == 0)
3478                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3479
3480 set_iomap:
3481         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3482         if (delalloc && iomap->type == IOMAP_HOLE)
3483                 iomap->type = IOMAP_DELALLOC;
3484
3485         return 0;
3486 }
3487
3488 const struct iomap_ops ext4_iomap_report_ops = {
3489         .iomap_begin = ext4_iomap_begin_report,
3490 };
3491
3492 /*
3493  * For data=journal mode, folio should be marked dirty only when it was
3494  * writeably mapped. When that happens, it was already attached to the
3495  * transaction and marked as jbddirty (we take care of this in
3496  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3497  * so we should have nothing to do here, except for the case when someone
3498  * had the page pinned and dirtied the page through this pin (e.g. by doing
3499  * direct IO to it). In that case we'd need to attach buffers here to the
3500  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3501  * folio and leave attached buffers clean, because the buffers' dirty state is
3502  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3503  * the journalling code will explode.  So what we do is to mark the folio
3504  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3505  * to the transaction appropriately.
3506  */
3507 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3508                 struct folio *folio)
3509 {
3510         WARN_ON_ONCE(!folio_buffers(folio));
3511         if (folio_maybe_dma_pinned(folio))
3512                 folio_set_checked(folio);
3513         return filemap_dirty_folio(mapping, folio);
3514 }
3515
3516 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3517 {
3518         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3519         WARN_ON_ONCE(!folio_buffers(folio));
3520         return block_dirty_folio(mapping, folio);
3521 }
3522
3523 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3524                                     struct file *file, sector_t *span)
3525 {
3526         return iomap_swapfile_activate(sis, file, span,
3527                                        &ext4_iomap_report_ops);
3528 }
3529
3530 static const struct address_space_operations ext4_aops = {
3531         .read_folio             = ext4_read_folio,
3532         .readahead              = ext4_readahead,
3533         .writepages             = ext4_writepages,
3534         .write_begin            = ext4_write_begin,
3535         .write_end              = ext4_write_end,
3536         .dirty_folio            = ext4_dirty_folio,
3537         .bmap                   = ext4_bmap,
3538         .invalidate_folio       = ext4_invalidate_folio,
3539         .release_folio          = ext4_release_folio,
3540         .direct_IO              = noop_direct_IO,
3541         .migrate_folio          = buffer_migrate_folio,
3542         .is_partially_uptodate  = block_is_partially_uptodate,
3543         .error_remove_page      = generic_error_remove_page,
3544         .swap_activate          = ext4_iomap_swap_activate,
3545 };
3546
3547 static const struct address_space_operations ext4_journalled_aops = {
3548         .read_folio             = ext4_read_folio,
3549         .readahead              = ext4_readahead,
3550         .writepages             = ext4_writepages,
3551         .write_begin            = ext4_write_begin,
3552         .write_end              = ext4_journalled_write_end,
3553         .dirty_folio            = ext4_journalled_dirty_folio,
3554         .bmap                   = ext4_bmap,
3555         .invalidate_folio       = ext4_journalled_invalidate_folio,
3556         .release_folio          = ext4_release_folio,
3557         .direct_IO              = noop_direct_IO,
3558         .migrate_folio          = buffer_migrate_folio_norefs,
3559         .is_partially_uptodate  = block_is_partially_uptodate,
3560         .error_remove_page      = generic_error_remove_page,
3561         .swap_activate          = ext4_iomap_swap_activate,
3562 };
3563
3564 static const struct address_space_operations ext4_da_aops = {
3565         .read_folio             = ext4_read_folio,
3566         .readahead              = ext4_readahead,
3567         .writepages             = ext4_writepages,
3568         .write_begin            = ext4_da_write_begin,
3569         .write_end              = ext4_da_write_end,
3570         .dirty_folio            = ext4_dirty_folio,
3571         .bmap                   = ext4_bmap,
3572         .invalidate_folio       = ext4_invalidate_folio,
3573         .release_folio          = ext4_release_folio,
3574         .direct_IO              = noop_direct_IO,
3575         .migrate_folio          = buffer_migrate_folio,
3576         .is_partially_uptodate  = block_is_partially_uptodate,
3577         .error_remove_page      = generic_error_remove_page,
3578         .swap_activate          = ext4_iomap_swap_activate,
3579 };
3580
3581 static const struct address_space_operations ext4_dax_aops = {
3582         .writepages             = ext4_dax_writepages,
3583         .direct_IO              = noop_direct_IO,
3584         .dirty_folio            = noop_dirty_folio,
3585         .bmap                   = ext4_bmap,
3586         .swap_activate          = ext4_iomap_swap_activate,
3587 };
3588
3589 void ext4_set_aops(struct inode *inode)
3590 {
3591         switch (ext4_inode_journal_mode(inode)) {
3592         case EXT4_INODE_ORDERED_DATA_MODE:
3593         case EXT4_INODE_WRITEBACK_DATA_MODE:
3594                 break;
3595         case EXT4_INODE_JOURNAL_DATA_MODE:
3596                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3597                 return;
3598         default:
3599                 BUG();
3600         }
3601         if (IS_DAX(inode))
3602                 inode->i_mapping->a_ops = &ext4_dax_aops;
3603         else if (test_opt(inode->i_sb, DELALLOC))
3604                 inode->i_mapping->a_ops = &ext4_da_aops;
3605         else
3606                 inode->i_mapping->a_ops = &ext4_aops;
3607 }
3608
3609 static int __ext4_block_zero_page_range(handle_t *handle,
3610                 struct address_space *mapping, loff_t from, loff_t length)
3611 {
3612         ext4_fsblk_t index = from >> PAGE_SHIFT;
3613         unsigned offset = from & (PAGE_SIZE-1);
3614         unsigned blocksize, pos;
3615         ext4_lblk_t iblock;
3616         struct inode *inode = mapping->host;
3617         struct buffer_head *bh;
3618         struct folio *folio;
3619         int err = 0;
3620
3621         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3622                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3623                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
3624         if (IS_ERR(folio))
3625                 return PTR_ERR(folio);
3626
3627         blocksize = inode->i_sb->s_blocksize;
3628
3629         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3630
3631         bh = folio_buffers(folio);
3632         if (!bh) {
3633                 create_empty_buffers(&folio->page, blocksize, 0);
3634                 bh = folio_buffers(folio);
3635         }
3636
3637         /* Find the buffer that contains "offset" */
3638         pos = blocksize;
3639         while (offset >= pos) {
3640                 bh = bh->b_this_page;
3641                 iblock++;
3642                 pos += blocksize;
3643         }
3644         if (buffer_freed(bh)) {
3645                 BUFFER_TRACE(bh, "freed: skip");
3646                 goto unlock;
3647         }
3648         if (!buffer_mapped(bh)) {
3649                 BUFFER_TRACE(bh, "unmapped");
3650                 ext4_get_block(inode, iblock, bh, 0);
3651                 /* unmapped? It's a hole - nothing to do */
3652                 if (!buffer_mapped(bh)) {
3653                         BUFFER_TRACE(bh, "still unmapped");
3654                         goto unlock;
3655                 }
3656         }
3657
3658         /* Ok, it's mapped. Make sure it's up-to-date */
3659         if (folio_test_uptodate(folio))
3660                 set_buffer_uptodate(bh);
3661
3662         if (!buffer_uptodate(bh)) {
3663                 err = ext4_read_bh_lock(bh, 0, true);
3664                 if (err)
3665                         goto unlock;
3666                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3667                         /* We expect the key to be set. */
3668                         BUG_ON(!fscrypt_has_encryption_key(inode));
3669                         err = fscrypt_decrypt_pagecache_blocks(folio,
3670                                                                blocksize,
3671                                                                bh_offset(bh));
3672                         if (err) {
3673                                 clear_buffer_uptodate(bh);
3674                                 goto unlock;
3675                         }
3676                 }
3677         }
3678         if (ext4_should_journal_data(inode)) {
3679                 BUFFER_TRACE(bh, "get write access");
3680                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3681                                                     EXT4_JTR_NONE);
3682                 if (err)
3683                         goto unlock;
3684         }
3685         folio_zero_range(folio, offset, length);
3686         BUFFER_TRACE(bh, "zeroed end of block");
3687
3688         if (ext4_should_journal_data(inode)) {
3689                 err = ext4_dirty_journalled_data(handle, bh);
3690         } else {
3691                 err = 0;
3692                 mark_buffer_dirty(bh);
3693                 if (ext4_should_order_data(inode))
3694                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3695                                         length);
3696         }
3697
3698 unlock:
3699         folio_unlock(folio);
3700         folio_put(folio);
3701         return err;
3702 }
3703
3704 /*
3705  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3706  * starting from file offset 'from'.  The range to be zero'd must
3707  * be contained with in one block.  If the specified range exceeds
3708  * the end of the block it will be shortened to end of the block
3709  * that corresponds to 'from'
3710  */
3711 static int ext4_block_zero_page_range(handle_t *handle,
3712                 struct address_space *mapping, loff_t from, loff_t length)
3713 {
3714         struct inode *inode = mapping->host;
3715         unsigned offset = from & (PAGE_SIZE-1);
3716         unsigned blocksize = inode->i_sb->s_blocksize;
3717         unsigned max = blocksize - (offset & (blocksize - 1));
3718
3719         /*
3720          * correct length if it does not fall between
3721          * 'from' and the end of the block
3722          */
3723         if (length > max || length < 0)
3724                 length = max;
3725
3726         if (IS_DAX(inode)) {
3727                 return dax_zero_range(inode, from, length, NULL,
3728                                       &ext4_iomap_ops);
3729         }
3730         return __ext4_block_zero_page_range(handle, mapping, from, length);
3731 }
3732
3733 /*
3734  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3735  * up to the end of the block which corresponds to `from'.
3736  * This required during truncate. We need to physically zero the tail end
3737  * of that block so it doesn't yield old data if the file is later grown.
3738  */
3739 static int ext4_block_truncate_page(handle_t *handle,
3740                 struct address_space *mapping, loff_t from)
3741 {
3742         unsigned offset = from & (PAGE_SIZE-1);
3743         unsigned length;
3744         unsigned blocksize;
3745         struct inode *inode = mapping->host;
3746
3747         /* If we are processing an encrypted inode during orphan list handling */
3748         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3749                 return 0;
3750
3751         blocksize = inode->i_sb->s_blocksize;
3752         length = blocksize - (offset & (blocksize - 1));
3753
3754         return ext4_block_zero_page_range(handle, mapping, from, length);
3755 }
3756
3757 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3758                              loff_t lstart, loff_t length)
3759 {
3760         struct super_block *sb = inode->i_sb;
3761         struct address_space *mapping = inode->i_mapping;
3762         unsigned partial_start, partial_end;
3763         ext4_fsblk_t start, end;
3764         loff_t byte_end = (lstart + length - 1);
3765         int err = 0;
3766
3767         partial_start = lstart & (sb->s_blocksize - 1);
3768         partial_end = byte_end & (sb->s_blocksize - 1);
3769
3770         start = lstart >> sb->s_blocksize_bits;
3771         end = byte_end >> sb->s_blocksize_bits;
3772
3773         /* Handle partial zero within the single block */
3774         if (start == end &&
3775             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3776                 err = ext4_block_zero_page_range(handle, mapping,
3777                                                  lstart, length);
3778                 return err;
3779         }
3780         /* Handle partial zero out on the start of the range */
3781         if (partial_start) {
3782                 err = ext4_block_zero_page_range(handle, mapping,
3783                                                  lstart, sb->s_blocksize);
3784                 if (err)
3785                         return err;
3786         }
3787         /* Handle partial zero out on the end of the range */
3788         if (partial_end != sb->s_blocksize - 1)
3789                 err = ext4_block_zero_page_range(handle, mapping,
3790                                                  byte_end - partial_end,
3791                                                  partial_end + 1);
3792         return err;
3793 }
3794
3795 int ext4_can_truncate(struct inode *inode)
3796 {
3797         if (S_ISREG(inode->i_mode))
3798                 return 1;
3799         if (S_ISDIR(inode->i_mode))
3800                 return 1;
3801         if (S_ISLNK(inode->i_mode))
3802                 return !ext4_inode_is_fast_symlink(inode);
3803         return 0;
3804 }
3805
3806 /*
3807  * We have to make sure i_disksize gets properly updated before we truncate
3808  * page cache due to hole punching or zero range. Otherwise i_disksize update
3809  * can get lost as it may have been postponed to submission of writeback but
3810  * that will never happen after we truncate page cache.
3811  */
3812 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3813                                       loff_t len)
3814 {
3815         handle_t *handle;
3816         int ret;
3817
3818         loff_t size = i_size_read(inode);
3819
3820         WARN_ON(!inode_is_locked(inode));
3821         if (offset > size || offset + len < size)
3822                 return 0;
3823
3824         if (EXT4_I(inode)->i_disksize >= size)
3825                 return 0;
3826
3827         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3828         if (IS_ERR(handle))
3829                 return PTR_ERR(handle);
3830         ext4_update_i_disksize(inode, size);
3831         ret = ext4_mark_inode_dirty(handle, inode);
3832         ext4_journal_stop(handle);
3833
3834         return ret;
3835 }
3836
3837 static void ext4_wait_dax_page(struct inode *inode)
3838 {
3839         filemap_invalidate_unlock(inode->i_mapping);
3840         schedule();
3841         filemap_invalidate_lock(inode->i_mapping);
3842 }
3843
3844 int ext4_break_layouts(struct inode *inode)
3845 {
3846         struct page *page;
3847         int error;
3848
3849         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3850                 return -EINVAL;
3851
3852         do {
3853                 page = dax_layout_busy_page(inode->i_mapping);
3854                 if (!page)
3855                         return 0;
3856
3857                 error = ___wait_var_event(&page->_refcount,
3858                                 atomic_read(&page->_refcount) == 1,
3859                                 TASK_INTERRUPTIBLE, 0, 0,
3860                                 ext4_wait_dax_page(inode));
3861         } while (error == 0);
3862
3863         return error;
3864 }
3865
3866 /*
3867  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3868  * associated with the given offset and length
3869  *
3870  * @inode:  File inode
3871  * @offset: The offset where the hole will begin
3872  * @len:    The length of the hole
3873  *
3874  * Returns: 0 on success or negative on failure
3875  */
3876
3877 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3878 {
3879         struct inode *inode = file_inode(file);
3880         struct super_block *sb = inode->i_sb;
3881         ext4_lblk_t first_block, stop_block;
3882         struct address_space *mapping = inode->i_mapping;
3883         loff_t first_block_offset, last_block_offset, max_length;
3884         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3885         handle_t *handle;
3886         unsigned int credits;
3887         int ret = 0, ret2 = 0;
3888
3889         trace_ext4_punch_hole(inode, offset, length, 0);
3890
3891         /*
3892          * Write out all dirty pages to avoid race conditions
3893          * Then release them.
3894          */
3895         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3896                 ret = filemap_write_and_wait_range(mapping, offset,
3897                                                    offset + length - 1);
3898                 if (ret)
3899                         return ret;
3900         }
3901
3902         inode_lock(inode);
3903
3904         /* No need to punch hole beyond i_size */
3905         if (offset >= inode->i_size)
3906                 goto out_mutex;
3907
3908         /*
3909          * If the hole extends beyond i_size, set the hole
3910          * to end after the page that contains i_size
3911          */
3912         if (offset + length > inode->i_size) {
3913                 length = inode->i_size +
3914                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3915                    offset;
3916         }
3917
3918         /*
3919          * For punch hole the length + offset needs to be within one block
3920          * before last range. Adjust the length if it goes beyond that limit.
3921          */
3922         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3923         if (offset + length > max_length)
3924                 length = max_length - offset;
3925
3926         if (offset & (sb->s_blocksize - 1) ||
3927             (offset + length) & (sb->s_blocksize - 1)) {
3928                 /*
3929                  * Attach jinode to inode for jbd2 if we do any zeroing of
3930                  * partial block
3931                  */
3932                 ret = ext4_inode_attach_jinode(inode);
3933                 if (ret < 0)
3934                         goto out_mutex;
3935
3936         }
3937
3938         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3939         inode_dio_wait(inode);
3940
3941         ret = file_modified(file);
3942         if (ret)
3943                 goto out_mutex;
3944
3945         /*
3946          * Prevent page faults from reinstantiating pages we have released from
3947          * page cache.
3948          */
3949         filemap_invalidate_lock(mapping);
3950
3951         ret = ext4_break_layouts(inode);
3952         if (ret)
3953                 goto out_dio;
3954
3955         first_block_offset = round_up(offset, sb->s_blocksize);
3956         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3957
3958         /* Now release the pages and zero block aligned part of pages*/
3959         if (last_block_offset > first_block_offset) {
3960                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3961                 if (ret)
3962                         goto out_dio;
3963                 truncate_pagecache_range(inode, first_block_offset,
3964                                          last_block_offset);
3965         }
3966
3967         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3968                 credits = ext4_writepage_trans_blocks(inode);
3969         else
3970                 credits = ext4_blocks_for_truncate(inode);
3971         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3972         if (IS_ERR(handle)) {
3973                 ret = PTR_ERR(handle);
3974                 ext4_std_error(sb, ret);
3975                 goto out_dio;
3976         }
3977
3978         ret = ext4_zero_partial_blocks(handle, inode, offset,
3979                                        length);
3980         if (ret)
3981                 goto out_stop;
3982
3983         first_block = (offset + sb->s_blocksize - 1) >>
3984                 EXT4_BLOCK_SIZE_BITS(sb);
3985         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3986
3987         /* If there are blocks to remove, do it */
3988         if (stop_block > first_block) {
3989
3990                 down_write(&EXT4_I(inode)->i_data_sem);
3991                 ext4_discard_preallocations(inode, 0);
3992
3993                 ret = ext4_es_remove_extent(inode, first_block,
3994                                             stop_block - first_block);
3995                 if (ret) {
3996                         up_write(&EXT4_I(inode)->i_data_sem);
3997                         goto out_stop;
3998                 }
3999
4000                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4001                         ret = ext4_ext_remove_space(inode, first_block,
4002                                                     stop_block - 1);
4003                 else
4004                         ret = ext4_ind_remove_space(handle, inode, first_block,
4005                                                     stop_block);
4006
4007                 up_write(&EXT4_I(inode)->i_data_sem);
4008         }
4009         ext4_fc_track_range(handle, inode, first_block, stop_block);
4010         if (IS_SYNC(inode))
4011                 ext4_handle_sync(handle);
4012
4013         inode->i_mtime = inode->i_ctime = current_time(inode);
4014         ret2 = ext4_mark_inode_dirty(handle, inode);
4015         if (unlikely(ret2))
4016                 ret = ret2;
4017         if (ret >= 0)
4018                 ext4_update_inode_fsync_trans(handle, inode, 1);
4019 out_stop:
4020         ext4_journal_stop(handle);
4021 out_dio:
4022         filemap_invalidate_unlock(mapping);
4023 out_mutex:
4024         inode_unlock(inode);
4025         return ret;
4026 }
4027
4028 int ext4_inode_attach_jinode(struct inode *inode)
4029 {
4030         struct ext4_inode_info *ei = EXT4_I(inode);
4031         struct jbd2_inode *jinode;
4032
4033         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4034                 return 0;
4035
4036         jinode = jbd2_alloc_inode(GFP_KERNEL);
4037         spin_lock(&inode->i_lock);
4038         if (!ei->jinode) {
4039                 if (!jinode) {
4040                         spin_unlock(&inode->i_lock);
4041                         return -ENOMEM;
4042                 }
4043                 ei->jinode = jinode;
4044                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4045                 jinode = NULL;
4046         }
4047         spin_unlock(&inode->i_lock);
4048         if (unlikely(jinode != NULL))
4049                 jbd2_free_inode(jinode);
4050         return 0;
4051 }
4052
4053 /*
4054  * ext4_truncate()
4055  *
4056  * We block out ext4_get_block() block instantiations across the entire
4057  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4058  * simultaneously on behalf of the same inode.
4059  *
4060  * As we work through the truncate and commit bits of it to the journal there
4061  * is one core, guiding principle: the file's tree must always be consistent on
4062  * disk.  We must be able to restart the truncate after a crash.
4063  *
4064  * The file's tree may be transiently inconsistent in memory (although it
4065  * probably isn't), but whenever we close off and commit a journal transaction,
4066  * the contents of (the filesystem + the journal) must be consistent and
4067  * restartable.  It's pretty simple, really: bottom up, right to left (although
4068  * left-to-right works OK too).
4069  *
4070  * Note that at recovery time, journal replay occurs *before* the restart of
4071  * truncate against the orphan inode list.
4072  *
4073  * The committed inode has the new, desired i_size (which is the same as
4074  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4075  * that this inode's truncate did not complete and it will again call
4076  * ext4_truncate() to have another go.  So there will be instantiated blocks
4077  * to the right of the truncation point in a crashed ext4 filesystem.  But
4078  * that's fine - as long as they are linked from the inode, the post-crash
4079  * ext4_truncate() run will find them and release them.
4080  */
4081 int ext4_truncate(struct inode *inode)
4082 {
4083         struct ext4_inode_info *ei = EXT4_I(inode);
4084         unsigned int credits;
4085         int err = 0, err2;
4086         handle_t *handle;
4087         struct address_space *mapping = inode->i_mapping;
4088
4089         /*
4090          * There is a possibility that we're either freeing the inode
4091          * or it's a completely new inode. In those cases we might not
4092          * have i_rwsem locked because it's not necessary.
4093          */
4094         if (!(inode->i_state & (I_NEW|I_FREEING)))
4095                 WARN_ON(!inode_is_locked(inode));
4096         trace_ext4_truncate_enter(inode);
4097
4098         if (!ext4_can_truncate(inode))
4099                 goto out_trace;
4100
4101         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4102                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4103
4104         if (ext4_has_inline_data(inode)) {
4105                 int has_inline = 1;
4106
4107                 err = ext4_inline_data_truncate(inode, &has_inline);
4108                 if (err || has_inline)
4109                         goto out_trace;
4110         }
4111
4112         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4113         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4114                 err = ext4_inode_attach_jinode(inode);
4115                 if (err)
4116                         goto out_trace;
4117         }
4118
4119         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4120                 credits = ext4_writepage_trans_blocks(inode);
4121         else
4122                 credits = ext4_blocks_for_truncate(inode);
4123
4124         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4125         if (IS_ERR(handle)) {
4126                 err = PTR_ERR(handle);
4127                 goto out_trace;
4128         }
4129
4130         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4131                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4132
4133         /*
4134          * We add the inode to the orphan list, so that if this
4135          * truncate spans multiple transactions, and we crash, we will
4136          * resume the truncate when the filesystem recovers.  It also
4137          * marks the inode dirty, to catch the new size.
4138          *
4139          * Implication: the file must always be in a sane, consistent
4140          * truncatable state while each transaction commits.
4141          */
4142         err = ext4_orphan_add(handle, inode);
4143         if (err)
4144                 goto out_stop;
4145
4146         down_write(&EXT4_I(inode)->i_data_sem);
4147
4148         ext4_discard_preallocations(inode, 0);
4149
4150         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4151                 err = ext4_ext_truncate(handle, inode);
4152         else
4153                 ext4_ind_truncate(handle, inode);
4154
4155         up_write(&ei->i_data_sem);
4156         if (err)
4157                 goto out_stop;
4158
4159         if (IS_SYNC(inode))
4160                 ext4_handle_sync(handle);
4161
4162 out_stop:
4163         /*
4164          * If this was a simple ftruncate() and the file will remain alive,
4165          * then we need to clear up the orphan record which we created above.
4166          * However, if this was a real unlink then we were called by
4167          * ext4_evict_inode(), and we allow that function to clean up the
4168          * orphan info for us.
4169          */
4170         if (inode->i_nlink)
4171                 ext4_orphan_del(handle, inode);
4172
4173         inode->i_mtime = inode->i_ctime = current_time(inode);
4174         err2 = ext4_mark_inode_dirty(handle, inode);
4175         if (unlikely(err2 && !err))
4176                 err = err2;
4177         ext4_journal_stop(handle);
4178
4179 out_trace:
4180         trace_ext4_truncate_exit(inode);
4181         return err;
4182 }
4183
4184 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4185 {
4186         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4187                 return inode_peek_iversion_raw(inode);
4188         else
4189                 return inode_peek_iversion(inode);
4190 }
4191
4192 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4193                                  struct ext4_inode_info *ei)
4194 {
4195         struct inode *inode = &(ei->vfs_inode);
4196         u64 i_blocks = READ_ONCE(inode->i_blocks);
4197         struct super_block *sb = inode->i_sb;
4198
4199         if (i_blocks <= ~0U) {
4200                 /*
4201                  * i_blocks can be represented in a 32 bit variable
4202                  * as multiple of 512 bytes
4203                  */
4204                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4205                 raw_inode->i_blocks_high = 0;
4206                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4207                 return 0;
4208         }
4209
4210         /*
4211          * This should never happen since sb->s_maxbytes should not have
4212          * allowed this, sb->s_maxbytes was set according to the huge_file
4213          * feature in ext4_fill_super().
4214          */
4215         if (!ext4_has_feature_huge_file(sb))
4216                 return -EFSCORRUPTED;
4217
4218         if (i_blocks <= 0xffffffffffffULL) {
4219                 /*
4220                  * i_blocks can be represented in a 48 bit variable
4221                  * as multiple of 512 bytes
4222                  */
4223                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4224                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4225                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4226         } else {
4227                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4228                 /* i_block is stored in file system block size */
4229                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4230                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4231                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4232         }
4233         return 0;
4234 }
4235
4236 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4237 {
4238         struct ext4_inode_info *ei = EXT4_I(inode);
4239         uid_t i_uid;
4240         gid_t i_gid;
4241         projid_t i_projid;
4242         int block;
4243         int err;
4244
4245         err = ext4_inode_blocks_set(raw_inode, ei);
4246
4247         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4248         i_uid = i_uid_read(inode);
4249         i_gid = i_gid_read(inode);
4250         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4251         if (!(test_opt(inode->i_sb, NO_UID32))) {
4252                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4253                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4254                 /*
4255                  * Fix up interoperability with old kernels. Otherwise,
4256                  * old inodes get re-used with the upper 16 bits of the
4257                  * uid/gid intact.
4258                  */
4259                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4260                         raw_inode->i_uid_high = 0;
4261                         raw_inode->i_gid_high = 0;
4262                 } else {
4263                         raw_inode->i_uid_high =
4264                                 cpu_to_le16(high_16_bits(i_uid));
4265                         raw_inode->i_gid_high =
4266                                 cpu_to_le16(high_16_bits(i_gid));
4267                 }
4268         } else {
4269                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4270                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4271                 raw_inode->i_uid_high = 0;
4272                 raw_inode->i_gid_high = 0;
4273         }
4274         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4275
4276         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4277         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4278         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4279         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4280
4281         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4282         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4283         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4284                 raw_inode->i_file_acl_high =
4285                         cpu_to_le16(ei->i_file_acl >> 32);
4286         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4287         ext4_isize_set(raw_inode, ei->i_disksize);
4288
4289         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4290         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4291                 if (old_valid_dev(inode->i_rdev)) {
4292                         raw_inode->i_block[0] =
4293                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4294                         raw_inode->i_block[1] = 0;
4295                 } else {
4296                         raw_inode->i_block[0] = 0;
4297                         raw_inode->i_block[1] =
4298                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4299                         raw_inode->i_block[2] = 0;
4300                 }
4301         } else if (!ext4_has_inline_data(inode)) {
4302                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4303                         raw_inode->i_block[block] = ei->i_data[block];
4304         }
4305
4306         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4307                 u64 ivers = ext4_inode_peek_iversion(inode);
4308
4309                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4310                 if (ei->i_extra_isize) {
4311                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4312                                 raw_inode->i_version_hi =
4313                                         cpu_to_le32(ivers >> 32);
4314                         raw_inode->i_extra_isize =
4315                                 cpu_to_le16(ei->i_extra_isize);
4316                 }
4317         }
4318
4319         if (i_projid != EXT4_DEF_PROJID &&
4320             !ext4_has_feature_project(inode->i_sb))
4321                 err = err ?: -EFSCORRUPTED;
4322
4323         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4324             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4325                 raw_inode->i_projid = cpu_to_le32(i_projid);
4326
4327         ext4_inode_csum_set(inode, raw_inode, ei);
4328         return err;
4329 }
4330
4331 /*
4332  * ext4_get_inode_loc returns with an extra refcount against the inode's
4333  * underlying buffer_head on success. If we pass 'inode' and it does not
4334  * have in-inode xattr, we have all inode data in memory that is needed
4335  * to recreate the on-disk version of this inode.
4336  */
4337 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4338                                 struct inode *inode, struct ext4_iloc *iloc,
4339                                 ext4_fsblk_t *ret_block)
4340 {
4341         struct ext4_group_desc  *gdp;
4342         struct buffer_head      *bh;
4343         ext4_fsblk_t            block;
4344         struct blk_plug         plug;
4345         int                     inodes_per_block, inode_offset;
4346
4347         iloc->bh = NULL;
4348         if (ino < EXT4_ROOT_INO ||
4349             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4350                 return -EFSCORRUPTED;
4351
4352         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4353         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4354         if (!gdp)
4355                 return -EIO;
4356
4357         /*
4358          * Figure out the offset within the block group inode table
4359          */
4360         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4361         inode_offset = ((ino - 1) %
4362                         EXT4_INODES_PER_GROUP(sb));
4363         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4364
4365         block = ext4_inode_table(sb, gdp);
4366         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4367             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4368                 ext4_error(sb, "Invalid inode table block %llu in "
4369                            "block_group %u", block, iloc->block_group);
4370                 return -EFSCORRUPTED;
4371         }
4372         block += (inode_offset / inodes_per_block);
4373
4374         bh = sb_getblk(sb, block);
4375         if (unlikely(!bh))
4376                 return -ENOMEM;
4377         if (ext4_buffer_uptodate(bh))
4378                 goto has_buffer;
4379
4380         lock_buffer(bh);
4381         if (ext4_buffer_uptodate(bh)) {
4382                 /* Someone brought it uptodate while we waited */
4383                 unlock_buffer(bh);
4384                 goto has_buffer;
4385         }
4386
4387         /*
4388          * If we have all information of the inode in memory and this
4389          * is the only valid inode in the block, we need not read the
4390          * block.
4391          */
4392         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4393                 struct buffer_head *bitmap_bh;
4394                 int i, start;
4395
4396                 start = inode_offset & ~(inodes_per_block - 1);
4397
4398                 /* Is the inode bitmap in cache? */
4399                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4400                 if (unlikely(!bitmap_bh))
4401                         goto make_io;
4402
4403                 /*
4404                  * If the inode bitmap isn't in cache then the
4405                  * optimisation may end up performing two reads instead
4406                  * of one, so skip it.
4407                  */
4408                 if (!buffer_uptodate(bitmap_bh)) {
4409                         brelse(bitmap_bh);
4410                         goto make_io;
4411                 }
4412                 for (i = start; i < start + inodes_per_block; i++) {
4413                         if (i == inode_offset)
4414                                 continue;
4415                         if (ext4_test_bit(i, bitmap_bh->b_data))
4416                                 break;
4417                 }
4418                 brelse(bitmap_bh);
4419                 if (i == start + inodes_per_block) {
4420                         struct ext4_inode *raw_inode =
4421                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4422
4423                         /* all other inodes are free, so skip I/O */
4424                         memset(bh->b_data, 0, bh->b_size);
4425                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4426                                 ext4_fill_raw_inode(inode, raw_inode);
4427                         set_buffer_uptodate(bh);
4428                         unlock_buffer(bh);
4429                         goto has_buffer;
4430                 }
4431         }
4432
4433 make_io:
4434         /*
4435          * If we need to do any I/O, try to pre-readahead extra
4436          * blocks from the inode table.
4437          */
4438         blk_start_plug(&plug);
4439         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4440                 ext4_fsblk_t b, end, table;
4441                 unsigned num;
4442                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4443
4444                 table = ext4_inode_table(sb, gdp);
4445                 /* s_inode_readahead_blks is always a power of 2 */
4446                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4447                 if (table > b)
4448                         b = table;
4449                 end = b + ra_blks;
4450                 num = EXT4_INODES_PER_GROUP(sb);
4451                 if (ext4_has_group_desc_csum(sb))
4452                         num -= ext4_itable_unused_count(sb, gdp);
4453                 table += num / inodes_per_block;
4454                 if (end > table)
4455                         end = table;
4456                 while (b <= end)
4457                         ext4_sb_breadahead_unmovable(sb, b++);
4458         }
4459
4460         /*
4461          * There are other valid inodes in the buffer, this inode
4462          * has in-inode xattrs, or we don't have this inode in memory.
4463          * Read the block from disk.
4464          */
4465         trace_ext4_load_inode(sb, ino);
4466         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4467         blk_finish_plug(&plug);
4468         wait_on_buffer(bh);
4469         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4470         if (!buffer_uptodate(bh)) {
4471                 if (ret_block)
4472                         *ret_block = block;
4473                 brelse(bh);
4474                 return -EIO;
4475         }
4476 has_buffer:
4477         iloc->bh = bh;
4478         return 0;
4479 }
4480
4481 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4482                                         struct ext4_iloc *iloc)
4483 {
4484         ext4_fsblk_t err_blk = 0;
4485         int ret;
4486
4487         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4488                                         &err_blk);
4489
4490         if (ret == -EIO)
4491                 ext4_error_inode_block(inode, err_blk, EIO,
4492                                         "unable to read itable block");
4493
4494         return ret;
4495 }
4496
4497 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4498 {
4499         ext4_fsblk_t err_blk = 0;
4500         int ret;
4501
4502         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4503                                         &err_blk);
4504
4505         if (ret == -EIO)
4506                 ext4_error_inode_block(inode, err_blk, EIO,
4507                                         "unable to read itable block");
4508
4509         return ret;
4510 }
4511
4512
4513 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4514                           struct ext4_iloc *iloc)
4515 {
4516         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4517 }
4518
4519 static bool ext4_should_enable_dax(struct inode *inode)
4520 {
4521         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4522
4523         if (test_opt2(inode->i_sb, DAX_NEVER))
4524                 return false;
4525         if (!S_ISREG(inode->i_mode))
4526                 return false;
4527         if (ext4_should_journal_data(inode))
4528                 return false;
4529         if (ext4_has_inline_data(inode))
4530                 return false;
4531         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4532                 return false;
4533         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4534                 return false;
4535         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4536                 return false;
4537         if (test_opt(inode->i_sb, DAX_ALWAYS))
4538                 return true;
4539
4540         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4541 }
4542
4543 void ext4_set_inode_flags(struct inode *inode, bool init)
4544 {
4545         unsigned int flags = EXT4_I(inode)->i_flags;
4546         unsigned int new_fl = 0;
4547
4548         WARN_ON_ONCE(IS_DAX(inode) && init);
4549
4550         if (flags & EXT4_SYNC_FL)
4551                 new_fl |= S_SYNC;
4552         if (flags & EXT4_APPEND_FL)
4553                 new_fl |= S_APPEND;
4554         if (flags & EXT4_IMMUTABLE_FL)
4555                 new_fl |= S_IMMUTABLE;
4556         if (flags & EXT4_NOATIME_FL)
4557                 new_fl |= S_NOATIME;
4558         if (flags & EXT4_DIRSYNC_FL)
4559                 new_fl |= S_DIRSYNC;
4560
4561         /* Because of the way inode_set_flags() works we must preserve S_DAX
4562          * here if already set. */
4563         new_fl |= (inode->i_flags & S_DAX);
4564         if (init && ext4_should_enable_dax(inode))
4565                 new_fl |= S_DAX;
4566
4567         if (flags & EXT4_ENCRYPT_FL)
4568                 new_fl |= S_ENCRYPTED;
4569         if (flags & EXT4_CASEFOLD_FL)
4570                 new_fl |= S_CASEFOLD;
4571         if (flags & EXT4_VERITY_FL)
4572                 new_fl |= S_VERITY;
4573         inode_set_flags(inode, new_fl,
4574                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4575                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4576 }
4577
4578 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4579                                   struct ext4_inode_info *ei)
4580 {
4581         blkcnt_t i_blocks ;
4582         struct inode *inode = &(ei->vfs_inode);
4583         struct super_block *sb = inode->i_sb;
4584
4585         if (ext4_has_feature_huge_file(sb)) {
4586                 /* we are using combined 48 bit field */
4587                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4588                                         le32_to_cpu(raw_inode->i_blocks_lo);
4589                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4590                         /* i_blocks represent file system block size */
4591                         return i_blocks  << (inode->i_blkbits - 9);
4592                 } else {
4593                         return i_blocks;
4594                 }
4595         } else {
4596                 return le32_to_cpu(raw_inode->i_blocks_lo);
4597         }
4598 }
4599
4600 static inline int ext4_iget_extra_inode(struct inode *inode,
4601                                          struct ext4_inode *raw_inode,
4602                                          struct ext4_inode_info *ei)
4603 {
4604         __le32 *magic = (void *)raw_inode +
4605                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4606
4607         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4608             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4609                 int err;
4610
4611                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4612                 err = ext4_find_inline_data_nolock(inode);
4613                 if (!err && ext4_has_inline_data(inode))
4614                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4615                 return err;
4616         } else
4617                 EXT4_I(inode)->i_inline_off = 0;
4618         return 0;
4619 }
4620
4621 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4622 {
4623         if (!ext4_has_feature_project(inode->i_sb))
4624                 return -EOPNOTSUPP;
4625         *projid = EXT4_I(inode)->i_projid;
4626         return 0;
4627 }
4628
4629 /*
4630  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4631  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4632  * set.
4633  */
4634 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4635 {
4636         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4637                 inode_set_iversion_raw(inode, val);
4638         else
4639                 inode_set_iversion_queried(inode, val);
4640 }
4641
4642 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4643                           ext4_iget_flags flags, const char *function,
4644                           unsigned int line)
4645 {
4646         struct ext4_iloc iloc;
4647         struct ext4_inode *raw_inode;
4648         struct ext4_inode_info *ei;
4649         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4650         struct inode *inode;
4651         journal_t *journal = EXT4_SB(sb)->s_journal;
4652         long ret;
4653         loff_t size;
4654         int block;
4655         uid_t i_uid;
4656         gid_t i_gid;
4657         projid_t i_projid;
4658
4659         if ((!(flags & EXT4_IGET_SPECIAL) &&
4660              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4661               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4662               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4663               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4664               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4665             (ino < EXT4_ROOT_INO) ||
4666             (ino > le32_to_cpu(es->s_inodes_count))) {
4667                 if (flags & EXT4_IGET_HANDLE)
4668                         return ERR_PTR(-ESTALE);
4669                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4670                              "inode #%lu: comm %s: iget: illegal inode #",
4671                              ino, current->comm);
4672                 return ERR_PTR(-EFSCORRUPTED);
4673         }
4674
4675         inode = iget_locked(sb, ino);
4676         if (!inode)
4677                 return ERR_PTR(-ENOMEM);
4678         if (!(inode->i_state & I_NEW))
4679                 return inode;
4680
4681         ei = EXT4_I(inode);
4682         iloc.bh = NULL;
4683
4684         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4685         if (ret < 0)
4686                 goto bad_inode;
4687         raw_inode = ext4_raw_inode(&iloc);
4688
4689         if ((flags & EXT4_IGET_HANDLE) &&
4690             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4691                 ret = -ESTALE;
4692                 goto bad_inode;
4693         }
4694
4695         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4696                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4697                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4698                         EXT4_INODE_SIZE(inode->i_sb) ||
4699                     (ei->i_extra_isize & 3)) {
4700                         ext4_error_inode(inode, function, line, 0,
4701                                          "iget: bad extra_isize %u "
4702                                          "(inode size %u)",
4703                                          ei->i_extra_isize,
4704                                          EXT4_INODE_SIZE(inode->i_sb));
4705                         ret = -EFSCORRUPTED;
4706                         goto bad_inode;
4707                 }
4708         } else
4709                 ei->i_extra_isize = 0;
4710
4711         /* Precompute checksum seed for inode metadata */
4712         if (ext4_has_metadata_csum(sb)) {
4713                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4714                 __u32 csum;
4715                 __le32 inum = cpu_to_le32(inode->i_ino);
4716                 __le32 gen = raw_inode->i_generation;
4717                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4718                                    sizeof(inum));
4719                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4720                                               sizeof(gen));
4721         }
4722
4723         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4724             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4725              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4726                 ext4_error_inode_err(inode, function, line, 0,
4727                                 EFSBADCRC, "iget: checksum invalid");
4728                 ret = -EFSBADCRC;
4729                 goto bad_inode;
4730         }
4731
4732         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4733         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4734         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4735         if (ext4_has_feature_project(sb) &&
4736             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4737             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4738                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4739         else
4740                 i_projid = EXT4_DEF_PROJID;
4741
4742         if (!(test_opt(inode->i_sb, NO_UID32))) {
4743                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4744                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4745         }
4746         i_uid_write(inode, i_uid);
4747         i_gid_write(inode, i_gid);
4748         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4749         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4750
4751         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4752         ei->i_inline_off = 0;
4753         ei->i_dir_start_lookup = 0;
4754         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4755         /* We now have enough fields to check if the inode was active or not.
4756          * This is needed because nfsd might try to access dead inodes
4757          * the test is that same one that e2fsck uses
4758          * NeilBrown 1999oct15
4759          */
4760         if (inode->i_nlink == 0) {
4761                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4762                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4763                     ino != EXT4_BOOT_LOADER_INO) {
4764                         /* this inode is deleted or unallocated */
4765                         if (flags & EXT4_IGET_SPECIAL) {
4766                                 ext4_error_inode(inode, function, line, 0,
4767                                                  "iget: special inode unallocated");
4768                                 ret = -EFSCORRUPTED;
4769                         } else
4770                                 ret = -ESTALE;
4771                         goto bad_inode;
4772                 }
4773                 /* The only unlinked inodes we let through here have
4774                  * valid i_mode and are being read by the orphan
4775                  * recovery code: that's fine, we're about to complete
4776                  * the process of deleting those.
4777                  * OR it is the EXT4_BOOT_LOADER_INO which is
4778                  * not initialized on a new filesystem. */
4779         }
4780         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4781         ext4_set_inode_flags(inode, true);
4782         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4783         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4784         if (ext4_has_feature_64bit(sb))
4785                 ei->i_file_acl |=
4786                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4787         inode->i_size = ext4_isize(sb, raw_inode);
4788         if ((size = i_size_read(inode)) < 0) {
4789                 ext4_error_inode(inode, function, line, 0,
4790                                  "iget: bad i_size value: %lld", size);
4791                 ret = -EFSCORRUPTED;
4792                 goto bad_inode;
4793         }
4794         /*
4795          * If dir_index is not enabled but there's dir with INDEX flag set,
4796          * we'd normally treat htree data as empty space. But with metadata
4797          * checksumming that corrupts checksums so forbid that.
4798          */
4799         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4800             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4801                 ext4_error_inode(inode, function, line, 0,
4802                          "iget: Dir with htree data on filesystem without dir_index feature.");
4803                 ret = -EFSCORRUPTED;
4804                 goto bad_inode;
4805         }
4806         ei->i_disksize = inode->i_size;
4807 #ifdef CONFIG_QUOTA
4808         ei->i_reserved_quota = 0;
4809 #endif
4810         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4811         ei->i_block_group = iloc.block_group;
4812         ei->i_last_alloc_group = ~0;
4813         /*
4814          * NOTE! The in-memory inode i_data array is in little-endian order
4815          * even on big-endian machines: we do NOT byteswap the block numbers!
4816          */
4817         for (block = 0; block < EXT4_N_BLOCKS; block++)
4818                 ei->i_data[block] = raw_inode->i_block[block];
4819         INIT_LIST_HEAD(&ei->i_orphan);
4820         ext4_fc_init_inode(&ei->vfs_inode);
4821
4822         /*
4823          * Set transaction id's of transactions that have to be committed
4824          * to finish f[data]sync. We set them to currently running transaction
4825          * as we cannot be sure that the inode or some of its metadata isn't
4826          * part of the transaction - the inode could have been reclaimed and
4827          * now it is reread from disk.
4828          */
4829         if (journal) {
4830                 transaction_t *transaction;
4831                 tid_t tid;
4832
4833                 read_lock(&journal->j_state_lock);
4834                 if (journal->j_running_transaction)
4835                         transaction = journal->j_running_transaction;
4836                 else
4837                         transaction = journal->j_committing_transaction;
4838                 if (transaction)
4839                         tid = transaction->t_tid;
4840                 else
4841                         tid = journal->j_commit_sequence;
4842                 read_unlock(&journal->j_state_lock);
4843                 ei->i_sync_tid = tid;
4844                 ei->i_datasync_tid = tid;
4845         }
4846
4847         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4848                 if (ei->i_extra_isize == 0) {
4849                         /* The extra space is currently unused. Use it. */
4850                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4851                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4852                                             EXT4_GOOD_OLD_INODE_SIZE;
4853                 } else {
4854                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4855                         if (ret)
4856                                 goto bad_inode;
4857                 }
4858         }
4859
4860         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4861         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4862         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4863         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4864
4865         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4866                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4867
4868                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4869                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4870                                 ivers |=
4871                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4872                 }
4873                 ext4_inode_set_iversion_queried(inode, ivers);
4874         }
4875
4876         ret = 0;
4877         if (ei->i_file_acl &&
4878             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4879                 ext4_error_inode(inode, function, line, 0,
4880                                  "iget: bad extended attribute block %llu",
4881                                  ei->i_file_acl);
4882                 ret = -EFSCORRUPTED;
4883                 goto bad_inode;
4884         } else if (!ext4_has_inline_data(inode)) {
4885                 /* validate the block references in the inode */
4886                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4887                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4888                         (S_ISLNK(inode->i_mode) &&
4889                         !ext4_inode_is_fast_symlink(inode)))) {
4890                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4891                                 ret = ext4_ext_check_inode(inode);
4892                         else
4893                                 ret = ext4_ind_check_inode(inode);
4894                 }
4895         }
4896         if (ret)
4897                 goto bad_inode;
4898
4899         if (S_ISREG(inode->i_mode)) {
4900                 inode->i_op = &ext4_file_inode_operations;
4901                 inode->i_fop = &ext4_file_operations;
4902                 ext4_set_aops(inode);
4903         } else if (S_ISDIR(inode->i_mode)) {
4904                 inode->i_op = &ext4_dir_inode_operations;
4905                 inode->i_fop = &ext4_dir_operations;
4906         } else if (S_ISLNK(inode->i_mode)) {
4907                 /* VFS does not allow setting these so must be corruption */
4908                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4909                         ext4_error_inode(inode, function, line, 0,
4910                                          "iget: immutable or append flags "
4911                                          "not allowed on symlinks");
4912                         ret = -EFSCORRUPTED;
4913                         goto bad_inode;
4914                 }
4915                 if (IS_ENCRYPTED(inode)) {
4916                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4917                 } else if (ext4_inode_is_fast_symlink(inode)) {
4918                         inode->i_link = (char *)ei->i_data;
4919                         inode->i_op = &ext4_fast_symlink_inode_operations;
4920                         nd_terminate_link(ei->i_data, inode->i_size,
4921                                 sizeof(ei->i_data) - 1);
4922                 } else {
4923                         inode->i_op = &ext4_symlink_inode_operations;
4924                 }
4925         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4926               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4927                 inode->i_op = &ext4_special_inode_operations;
4928                 if (raw_inode->i_block[0])
4929                         init_special_inode(inode, inode->i_mode,
4930                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4931                 else
4932                         init_special_inode(inode, inode->i_mode,
4933                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4934         } else if (ino == EXT4_BOOT_LOADER_INO) {
4935                 make_bad_inode(inode);
4936         } else {
4937                 ret = -EFSCORRUPTED;
4938                 ext4_error_inode(inode, function, line, 0,
4939                                  "iget: bogus i_mode (%o)", inode->i_mode);
4940                 goto bad_inode;
4941         }
4942         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4943                 ext4_error_inode(inode, function, line, 0,
4944                                  "casefold flag without casefold feature");
4945         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
4946                 ext4_error_inode(inode, function, line, 0,
4947                                  "bad inode without EXT4_IGET_BAD flag");
4948                 ret = -EUCLEAN;
4949                 goto bad_inode;
4950         }
4951
4952         brelse(iloc.bh);
4953         unlock_new_inode(inode);
4954         return inode;
4955
4956 bad_inode:
4957         brelse(iloc.bh);
4958         iget_failed(inode);
4959         return ERR_PTR(ret);
4960 }
4961
4962 static void __ext4_update_other_inode_time(struct super_block *sb,
4963                                            unsigned long orig_ino,
4964                                            unsigned long ino,
4965                                            struct ext4_inode *raw_inode)
4966 {
4967         struct inode *inode;
4968
4969         inode = find_inode_by_ino_rcu(sb, ino);
4970         if (!inode)
4971                 return;
4972
4973         if (!inode_is_dirtytime_only(inode))
4974                 return;
4975
4976         spin_lock(&inode->i_lock);
4977         if (inode_is_dirtytime_only(inode)) {
4978                 struct ext4_inode_info  *ei = EXT4_I(inode);
4979
4980                 inode->i_state &= ~I_DIRTY_TIME;
4981                 spin_unlock(&inode->i_lock);
4982
4983                 spin_lock(&ei->i_raw_lock);
4984                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4985                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4986                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4987                 ext4_inode_csum_set(inode, raw_inode, ei);
4988                 spin_unlock(&ei->i_raw_lock);
4989                 trace_ext4_other_inode_update_time(inode, orig_ino);
4990                 return;
4991         }
4992         spin_unlock(&inode->i_lock);
4993 }
4994
4995 /*
4996  * Opportunistically update the other time fields for other inodes in
4997  * the same inode table block.
4998  */
4999 static void ext4_update_other_inodes_time(struct super_block *sb,
5000                                           unsigned long orig_ino, char *buf)
5001 {
5002         unsigned long ino;
5003         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5004         int inode_size = EXT4_INODE_SIZE(sb);
5005
5006         /*
5007          * Calculate the first inode in the inode table block.  Inode
5008          * numbers are one-based.  That is, the first inode in a block
5009          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5010          */
5011         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5012         rcu_read_lock();
5013         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5014                 if (ino == orig_ino)
5015                         continue;
5016                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5017                                                (struct ext4_inode *)buf);
5018         }
5019         rcu_read_unlock();
5020 }
5021
5022 /*
5023  * Post the struct inode info into an on-disk inode location in the
5024  * buffer-cache.  This gobbles the caller's reference to the
5025  * buffer_head in the inode location struct.
5026  *
5027  * The caller must have write access to iloc->bh.
5028  */
5029 static int ext4_do_update_inode(handle_t *handle,
5030                                 struct inode *inode,
5031                                 struct ext4_iloc *iloc)
5032 {
5033         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034         struct ext4_inode_info *ei = EXT4_I(inode);
5035         struct buffer_head *bh = iloc->bh;
5036         struct super_block *sb = inode->i_sb;
5037         int err;
5038         int need_datasync = 0, set_large_file = 0;
5039
5040         spin_lock(&ei->i_raw_lock);
5041
5042         /*
5043          * For fields not tracked in the in-memory inode, initialise them
5044          * to zero for new inodes.
5045          */
5046         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5047                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5048
5049         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5050                 need_datasync = 1;
5051         if (ei->i_disksize > 0x7fffffffULL) {
5052                 if (!ext4_has_feature_large_file(sb) ||
5053                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5054                         set_large_file = 1;
5055         }
5056
5057         err = ext4_fill_raw_inode(inode, raw_inode);
5058         spin_unlock(&ei->i_raw_lock);
5059         if (err) {
5060                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5061                 goto out_brelse;
5062         }
5063
5064         if (inode->i_sb->s_flags & SB_LAZYTIME)
5065                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5066                                               bh->b_data);
5067
5068         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5069         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5070         if (err)
5071                 goto out_error;
5072         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5073         if (set_large_file) {
5074                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5075                 err = ext4_journal_get_write_access(handle, sb,
5076                                                     EXT4_SB(sb)->s_sbh,
5077                                                     EXT4_JTR_NONE);
5078                 if (err)
5079                         goto out_error;
5080                 lock_buffer(EXT4_SB(sb)->s_sbh);
5081                 ext4_set_feature_large_file(sb);
5082                 ext4_superblock_csum_set(sb);
5083                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5084                 ext4_handle_sync(handle);
5085                 err = ext4_handle_dirty_metadata(handle, NULL,
5086                                                  EXT4_SB(sb)->s_sbh);
5087         }
5088         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5089 out_error:
5090         ext4_std_error(inode->i_sb, err);
5091 out_brelse:
5092         brelse(bh);
5093         return err;
5094 }
5095
5096 /*
5097  * ext4_write_inode()
5098  *
5099  * We are called from a few places:
5100  *
5101  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5102  *   Here, there will be no transaction running. We wait for any running
5103  *   transaction to commit.
5104  *
5105  * - Within flush work (sys_sync(), kupdate and such).
5106  *   We wait on commit, if told to.
5107  *
5108  * - Within iput_final() -> write_inode_now()
5109  *   We wait on commit, if told to.
5110  *
5111  * In all cases it is actually safe for us to return without doing anything,
5112  * because the inode has been copied into a raw inode buffer in
5113  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5114  * writeback.
5115  *
5116  * Note that we are absolutely dependent upon all inode dirtiers doing the
5117  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5118  * which we are interested.
5119  *
5120  * It would be a bug for them to not do this.  The code:
5121  *
5122  *      mark_inode_dirty(inode)
5123  *      stuff();
5124  *      inode->i_size = expr;
5125  *
5126  * is in error because write_inode() could occur while `stuff()' is running,
5127  * and the new i_size will be lost.  Plus the inode will no longer be on the
5128  * superblock's dirty inode list.
5129  */
5130 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5131 {
5132         int err;
5133
5134         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5135             sb_rdonly(inode->i_sb))
5136                 return 0;
5137
5138         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5139                 return -EIO;
5140
5141         if (EXT4_SB(inode->i_sb)->s_journal) {
5142                 if (ext4_journal_current_handle()) {
5143                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5144                         dump_stack();
5145                         return -EIO;
5146                 }
5147
5148                 /*
5149                  * No need to force transaction in WB_SYNC_NONE mode. Also
5150                  * ext4_sync_fs() will force the commit after everything is
5151                  * written.
5152                  */
5153                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5154                         return 0;
5155
5156                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5157                                                 EXT4_I(inode)->i_sync_tid);
5158         } else {
5159                 struct ext4_iloc iloc;
5160
5161                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5162                 if (err)
5163                         return err;
5164                 /*
5165                  * sync(2) will flush the whole buffer cache. No need to do
5166                  * it here separately for each inode.
5167                  */
5168                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5169                         sync_dirty_buffer(iloc.bh);
5170                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5171                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5172                                                "IO error syncing inode");
5173                         err = -EIO;
5174                 }
5175                 brelse(iloc.bh);
5176         }
5177         return err;
5178 }
5179
5180 /*
5181  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5182  * buffers that are attached to a folio straddling i_size and are undergoing
5183  * commit. In that case we have to wait for commit to finish and try again.
5184  */
5185 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5186 {
5187         unsigned offset;
5188         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5189         tid_t commit_tid = 0;
5190         int ret;
5191
5192         offset = inode->i_size & (PAGE_SIZE - 1);
5193         /*
5194          * If the folio is fully truncated, we don't need to wait for any commit
5195          * (and we even should not as __ext4_journalled_invalidate_folio() may
5196          * strip all buffers from the folio but keep the folio dirty which can then
5197          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5198          * buffers). Also we don't need to wait for any commit if all buffers in
5199          * the folio remain valid. This is most beneficial for the common case of
5200          * blocksize == PAGESIZE.
5201          */
5202         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5203                 return;
5204         while (1) {
5205                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5206                                       inode->i_size >> PAGE_SHIFT);
5207                 if (IS_ERR(folio))
5208                         return;
5209                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5210                                                 folio_size(folio) - offset);
5211                 folio_unlock(folio);
5212                 folio_put(folio);
5213                 if (ret != -EBUSY)
5214                         return;
5215                 commit_tid = 0;
5216                 read_lock(&journal->j_state_lock);
5217                 if (journal->j_committing_transaction)
5218                         commit_tid = journal->j_committing_transaction->t_tid;
5219                 read_unlock(&journal->j_state_lock);
5220                 if (commit_tid)
5221                         jbd2_log_wait_commit(journal, commit_tid);
5222         }
5223 }
5224
5225 /*
5226  * ext4_setattr()
5227  *
5228  * Called from notify_change.
5229  *
5230  * We want to trap VFS attempts to truncate the file as soon as
5231  * possible.  In particular, we want to make sure that when the VFS
5232  * shrinks i_size, we put the inode on the orphan list and modify
5233  * i_disksize immediately, so that during the subsequent flushing of
5234  * dirty pages and freeing of disk blocks, we can guarantee that any
5235  * commit will leave the blocks being flushed in an unused state on
5236  * disk.  (On recovery, the inode will get truncated and the blocks will
5237  * be freed, so we have a strong guarantee that no future commit will
5238  * leave these blocks visible to the user.)
5239  *
5240  * Another thing we have to assure is that if we are in ordered mode
5241  * and inode is still attached to the committing transaction, we must
5242  * we start writeout of all the dirty pages which are being truncated.
5243  * This way we are sure that all the data written in the previous
5244  * transaction are already on disk (truncate waits for pages under
5245  * writeback).
5246  *
5247  * Called with inode->i_rwsem down.
5248  */
5249 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5250                  struct iattr *attr)
5251 {
5252         struct inode *inode = d_inode(dentry);
5253         int error, rc = 0;
5254         int orphan = 0;
5255         const unsigned int ia_valid = attr->ia_valid;
5256         bool inc_ivers = true;
5257
5258         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5259                 return -EIO;
5260
5261         if (unlikely(IS_IMMUTABLE(inode)))
5262                 return -EPERM;
5263
5264         if (unlikely(IS_APPEND(inode) &&
5265                      (ia_valid & (ATTR_MODE | ATTR_UID |
5266                                   ATTR_GID | ATTR_TIMES_SET))))
5267                 return -EPERM;
5268
5269         error = setattr_prepare(idmap, dentry, attr);
5270         if (error)
5271                 return error;
5272
5273         error = fscrypt_prepare_setattr(dentry, attr);
5274         if (error)
5275                 return error;
5276
5277         error = fsverity_prepare_setattr(dentry, attr);
5278         if (error)
5279                 return error;
5280
5281         if (is_quota_modification(idmap, inode, attr)) {
5282                 error = dquot_initialize(inode);
5283                 if (error)
5284                         return error;
5285         }
5286
5287         if (i_uid_needs_update(idmap, attr, inode) ||
5288             i_gid_needs_update(idmap, attr, inode)) {
5289                 handle_t *handle;
5290
5291                 /* (user+group)*(old+new) structure, inode write (sb,
5292                  * inode block, ? - but truncate inode update has it) */
5293                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5294                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5295                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5296                 if (IS_ERR(handle)) {
5297                         error = PTR_ERR(handle);
5298                         goto err_out;
5299                 }
5300
5301                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5302                  * counts xattr inode references.
5303                  */
5304                 down_read(&EXT4_I(inode)->xattr_sem);
5305                 error = dquot_transfer(idmap, inode, attr);
5306                 up_read(&EXT4_I(inode)->xattr_sem);
5307
5308                 if (error) {
5309                         ext4_journal_stop(handle);
5310                         return error;
5311                 }
5312                 /* Update corresponding info in inode so that everything is in
5313                  * one transaction */
5314                 i_uid_update(idmap, attr, inode);
5315                 i_gid_update(idmap, attr, inode);
5316                 error = ext4_mark_inode_dirty(handle, inode);
5317                 ext4_journal_stop(handle);
5318                 if (unlikely(error)) {
5319                         return error;
5320                 }
5321         }
5322
5323         if (attr->ia_valid & ATTR_SIZE) {
5324                 handle_t *handle;
5325                 loff_t oldsize = inode->i_size;
5326                 loff_t old_disksize;
5327                 int shrink = (attr->ia_size < inode->i_size);
5328
5329                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5330                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5331
5332                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5333                                 return -EFBIG;
5334                         }
5335                 }
5336                 if (!S_ISREG(inode->i_mode)) {
5337                         return -EINVAL;
5338                 }
5339
5340                 if (attr->ia_size == inode->i_size)
5341                         inc_ivers = false;
5342
5343                 if (shrink) {
5344                         if (ext4_should_order_data(inode)) {
5345                                 error = ext4_begin_ordered_truncate(inode,
5346                                                             attr->ia_size);
5347                                 if (error)
5348                                         goto err_out;
5349                         }
5350                         /*
5351                          * Blocks are going to be removed from the inode. Wait
5352                          * for dio in flight.
5353                          */
5354                         inode_dio_wait(inode);
5355                 }
5356
5357                 filemap_invalidate_lock(inode->i_mapping);
5358
5359                 rc = ext4_break_layouts(inode);
5360                 if (rc) {
5361                         filemap_invalidate_unlock(inode->i_mapping);
5362                         goto err_out;
5363                 }
5364
5365                 if (attr->ia_size != inode->i_size) {
5366                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5367                         if (IS_ERR(handle)) {
5368                                 error = PTR_ERR(handle);
5369                                 goto out_mmap_sem;
5370                         }
5371                         if (ext4_handle_valid(handle) && shrink) {
5372                                 error = ext4_orphan_add(handle, inode);
5373                                 orphan = 1;
5374                         }
5375                         /*
5376                          * Update c/mtime on truncate up, ext4_truncate() will
5377                          * update c/mtime in shrink case below
5378                          */
5379                         if (!shrink) {
5380                                 inode->i_mtime = current_time(inode);
5381                                 inode->i_ctime = inode->i_mtime;
5382                         }
5383
5384                         if (shrink)
5385                                 ext4_fc_track_range(handle, inode,
5386                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5387                                         inode->i_sb->s_blocksize_bits,
5388                                         EXT_MAX_BLOCKS - 1);
5389                         else
5390                                 ext4_fc_track_range(
5391                                         handle, inode,
5392                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5393                                         inode->i_sb->s_blocksize_bits,
5394                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5395                                         inode->i_sb->s_blocksize_bits);
5396
5397                         down_write(&EXT4_I(inode)->i_data_sem);
5398                         old_disksize = EXT4_I(inode)->i_disksize;
5399                         EXT4_I(inode)->i_disksize = attr->ia_size;
5400                         rc = ext4_mark_inode_dirty(handle, inode);
5401                         if (!error)
5402                                 error = rc;
5403                         /*
5404                          * We have to update i_size under i_data_sem together
5405                          * with i_disksize to avoid races with writeback code
5406                          * running ext4_wb_update_i_disksize().
5407                          */
5408                         if (!error)
5409                                 i_size_write(inode, attr->ia_size);
5410                         else
5411                                 EXT4_I(inode)->i_disksize = old_disksize;
5412                         up_write(&EXT4_I(inode)->i_data_sem);
5413                         ext4_journal_stop(handle);
5414                         if (error)
5415                                 goto out_mmap_sem;
5416                         if (!shrink) {
5417                                 pagecache_isize_extended(inode, oldsize,
5418                                                          inode->i_size);
5419                         } else if (ext4_should_journal_data(inode)) {
5420                                 ext4_wait_for_tail_page_commit(inode);
5421                         }
5422                 }
5423
5424                 /*
5425                  * Truncate pagecache after we've waited for commit
5426                  * in data=journal mode to make pages freeable.
5427                  */
5428                 truncate_pagecache(inode, inode->i_size);
5429                 /*
5430                  * Call ext4_truncate() even if i_size didn't change to
5431                  * truncate possible preallocated blocks.
5432                  */
5433                 if (attr->ia_size <= oldsize) {
5434                         rc = ext4_truncate(inode);
5435                         if (rc)
5436                                 error = rc;
5437                 }
5438 out_mmap_sem:
5439                 filemap_invalidate_unlock(inode->i_mapping);
5440         }
5441
5442         if (!error) {
5443                 if (inc_ivers)
5444                         inode_inc_iversion(inode);
5445                 setattr_copy(idmap, inode, attr);
5446                 mark_inode_dirty(inode);
5447         }
5448
5449         /*
5450          * If the call to ext4_truncate failed to get a transaction handle at
5451          * all, we need to clean up the in-core orphan list manually.
5452          */
5453         if (orphan && inode->i_nlink)
5454                 ext4_orphan_del(NULL, inode);
5455
5456         if (!error && (ia_valid & ATTR_MODE))
5457                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5458
5459 err_out:
5460         if  (error)
5461                 ext4_std_error(inode->i_sb, error);
5462         if (!error)
5463                 error = rc;
5464         return error;
5465 }
5466
5467 u32 ext4_dio_alignment(struct inode *inode)
5468 {
5469         if (fsverity_active(inode))
5470                 return 0;
5471         if (ext4_should_journal_data(inode))
5472                 return 0;
5473         if (ext4_has_inline_data(inode))
5474                 return 0;
5475         if (IS_ENCRYPTED(inode)) {
5476                 if (!fscrypt_dio_supported(inode))
5477                         return 0;
5478                 return i_blocksize(inode);
5479         }
5480         return 1; /* use the iomap defaults */
5481 }
5482
5483 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5484                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5485 {
5486         struct inode *inode = d_inode(path->dentry);
5487         struct ext4_inode *raw_inode;
5488         struct ext4_inode_info *ei = EXT4_I(inode);
5489         unsigned int flags;
5490
5491         if ((request_mask & STATX_BTIME) &&
5492             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5493                 stat->result_mask |= STATX_BTIME;
5494                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5495                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5496         }
5497
5498         /*
5499          * Return the DIO alignment restrictions if requested.  We only return
5500          * this information when requested, since on encrypted files it might
5501          * take a fair bit of work to get if the file wasn't opened recently.
5502          */
5503         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5504                 u32 dio_align = ext4_dio_alignment(inode);
5505
5506                 stat->result_mask |= STATX_DIOALIGN;
5507                 if (dio_align == 1) {
5508                         struct block_device *bdev = inode->i_sb->s_bdev;
5509
5510                         /* iomap defaults */
5511                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5512                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5513                 } else {
5514                         stat->dio_mem_align = dio_align;
5515                         stat->dio_offset_align = dio_align;
5516                 }
5517         }
5518
5519         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5520         if (flags & EXT4_APPEND_FL)
5521                 stat->attributes |= STATX_ATTR_APPEND;
5522         if (flags & EXT4_COMPR_FL)
5523                 stat->attributes |= STATX_ATTR_COMPRESSED;
5524         if (flags & EXT4_ENCRYPT_FL)
5525                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5526         if (flags & EXT4_IMMUTABLE_FL)
5527                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5528         if (flags & EXT4_NODUMP_FL)
5529                 stat->attributes |= STATX_ATTR_NODUMP;
5530         if (flags & EXT4_VERITY_FL)
5531                 stat->attributes |= STATX_ATTR_VERITY;
5532
5533         stat->attributes_mask |= (STATX_ATTR_APPEND |
5534                                   STATX_ATTR_COMPRESSED |
5535                                   STATX_ATTR_ENCRYPTED |
5536                                   STATX_ATTR_IMMUTABLE |
5537                                   STATX_ATTR_NODUMP |
5538                                   STATX_ATTR_VERITY);
5539
5540         generic_fillattr(idmap, inode, stat);
5541         return 0;
5542 }
5543
5544 int ext4_file_getattr(struct mnt_idmap *idmap,
5545                       const struct path *path, struct kstat *stat,
5546                       u32 request_mask, unsigned int query_flags)
5547 {
5548         struct inode *inode = d_inode(path->dentry);
5549         u64 delalloc_blocks;
5550
5551         ext4_getattr(idmap, path, stat, request_mask, query_flags);
5552
5553         /*
5554          * If there is inline data in the inode, the inode will normally not
5555          * have data blocks allocated (it may have an external xattr block).
5556          * Report at least one sector for such files, so tools like tar, rsync,
5557          * others don't incorrectly think the file is completely sparse.
5558          */
5559         if (unlikely(ext4_has_inline_data(inode)))
5560                 stat->blocks += (stat->size + 511) >> 9;
5561
5562         /*
5563          * We can't update i_blocks if the block allocation is delayed
5564          * otherwise in the case of system crash before the real block
5565          * allocation is done, we will have i_blocks inconsistent with
5566          * on-disk file blocks.
5567          * We always keep i_blocks updated together with real
5568          * allocation. But to not confuse with user, stat
5569          * will return the blocks that include the delayed allocation
5570          * blocks for this file.
5571          */
5572         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5573                                    EXT4_I(inode)->i_reserved_data_blocks);
5574         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5575         return 0;
5576 }
5577
5578 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5579                                    int pextents)
5580 {
5581         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5582                 return ext4_ind_trans_blocks(inode, lblocks);
5583         return ext4_ext_index_trans_blocks(inode, pextents);
5584 }
5585
5586 /*
5587  * Account for index blocks, block groups bitmaps and block group
5588  * descriptor blocks if modify datablocks and index blocks
5589  * worse case, the indexs blocks spread over different block groups
5590  *
5591  * If datablocks are discontiguous, they are possible to spread over
5592  * different block groups too. If they are contiguous, with flexbg,
5593  * they could still across block group boundary.
5594  *
5595  * Also account for superblock, inode, quota and xattr blocks
5596  */
5597 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5598                                   int pextents)
5599 {
5600         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5601         int gdpblocks;
5602         int idxblocks;
5603         int ret;
5604
5605         /*
5606          * How many index blocks need to touch to map @lblocks logical blocks
5607          * to @pextents physical extents?
5608          */
5609         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5610
5611         ret = idxblocks;
5612
5613         /*
5614          * Now let's see how many group bitmaps and group descriptors need
5615          * to account
5616          */
5617         groups = idxblocks + pextents;
5618         gdpblocks = groups;
5619         if (groups > ngroups)
5620                 groups = ngroups;
5621         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5622                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5623
5624         /* bitmaps and block group descriptor blocks */
5625         ret += groups + gdpblocks;
5626
5627         /* Blocks for super block, inode, quota and xattr blocks */
5628         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5629
5630         return ret;
5631 }
5632
5633 /*
5634  * Calculate the total number of credits to reserve to fit
5635  * the modification of a single pages into a single transaction,
5636  * which may include multiple chunks of block allocations.
5637  *
5638  * This could be called via ext4_write_begin()
5639  *
5640  * We need to consider the worse case, when
5641  * one new block per extent.
5642  */
5643 int ext4_writepage_trans_blocks(struct inode *inode)
5644 {
5645         int bpp = ext4_journal_blocks_per_page(inode);
5646         int ret;
5647
5648         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5649
5650         /* Account for data blocks for journalled mode */
5651         if (ext4_should_journal_data(inode))
5652                 ret += bpp;
5653         return ret;
5654 }
5655
5656 /*
5657  * Calculate the journal credits for a chunk of data modification.
5658  *
5659  * This is called from DIO, fallocate or whoever calling
5660  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5661  *
5662  * journal buffers for data blocks are not included here, as DIO
5663  * and fallocate do no need to journal data buffers.
5664  */
5665 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5666 {
5667         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5668 }
5669
5670 /*
5671  * The caller must have previously called ext4_reserve_inode_write().
5672  * Give this, we know that the caller already has write access to iloc->bh.
5673  */
5674 int ext4_mark_iloc_dirty(handle_t *handle,
5675                          struct inode *inode, struct ext4_iloc *iloc)
5676 {
5677         int err = 0;
5678
5679         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5680                 put_bh(iloc->bh);
5681                 return -EIO;
5682         }
5683         ext4_fc_track_inode(handle, inode);
5684
5685         /* the do_update_inode consumes one bh->b_count */
5686         get_bh(iloc->bh);
5687
5688         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5689         err = ext4_do_update_inode(handle, inode, iloc);
5690         put_bh(iloc->bh);
5691         return err;
5692 }
5693
5694 /*
5695  * On success, We end up with an outstanding reference count against
5696  * iloc->bh.  This _must_ be cleaned up later.
5697  */
5698
5699 int
5700 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5701                          struct ext4_iloc *iloc)
5702 {
5703         int err;
5704
5705         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5706                 return -EIO;
5707
5708         err = ext4_get_inode_loc(inode, iloc);
5709         if (!err) {
5710                 BUFFER_TRACE(iloc->bh, "get_write_access");
5711                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5712                                                     iloc->bh, EXT4_JTR_NONE);
5713                 if (err) {
5714                         brelse(iloc->bh);
5715                         iloc->bh = NULL;
5716                 }
5717         }
5718         ext4_std_error(inode->i_sb, err);
5719         return err;
5720 }
5721
5722 static int __ext4_expand_extra_isize(struct inode *inode,
5723                                      unsigned int new_extra_isize,
5724                                      struct ext4_iloc *iloc,
5725                                      handle_t *handle, int *no_expand)
5726 {
5727         struct ext4_inode *raw_inode;
5728         struct ext4_xattr_ibody_header *header;
5729         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5730         struct ext4_inode_info *ei = EXT4_I(inode);
5731         int error;
5732
5733         /* this was checked at iget time, but double check for good measure */
5734         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5735             (ei->i_extra_isize & 3)) {
5736                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5737                                  ei->i_extra_isize,
5738                                  EXT4_INODE_SIZE(inode->i_sb));
5739                 return -EFSCORRUPTED;
5740         }
5741         if ((new_extra_isize < ei->i_extra_isize) ||
5742             (new_extra_isize < 4) ||
5743             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5744                 return -EINVAL; /* Should never happen */
5745
5746         raw_inode = ext4_raw_inode(iloc);
5747
5748         header = IHDR(inode, raw_inode);
5749
5750         /* No extended attributes present */
5751         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5752             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5753                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5754                        EXT4_I(inode)->i_extra_isize, 0,
5755                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5756                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5757                 return 0;
5758         }
5759
5760         /*
5761          * We may need to allocate external xattr block so we need quotas
5762          * initialized. Here we can be called with various locks held so we
5763          * cannot affort to initialize quotas ourselves. So just bail.
5764          */
5765         if (dquot_initialize_needed(inode))
5766                 return -EAGAIN;
5767
5768         /* try to expand with EAs present */
5769         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5770                                            raw_inode, handle);
5771         if (error) {
5772                 /*
5773                  * Inode size expansion failed; don't try again
5774                  */
5775                 *no_expand = 1;
5776         }
5777
5778         return error;
5779 }
5780
5781 /*
5782  * Expand an inode by new_extra_isize bytes.
5783  * Returns 0 on success or negative error number on failure.
5784  */
5785 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5786                                           unsigned int new_extra_isize,
5787                                           struct ext4_iloc iloc,
5788                                           handle_t *handle)
5789 {
5790         int no_expand;
5791         int error;
5792
5793         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5794                 return -EOVERFLOW;
5795
5796         /*
5797          * In nojournal mode, we can immediately attempt to expand
5798          * the inode.  When journaled, we first need to obtain extra
5799          * buffer credits since we may write into the EA block
5800          * with this same handle. If journal_extend fails, then it will
5801          * only result in a minor loss of functionality for that inode.
5802          * If this is felt to be critical, then e2fsck should be run to
5803          * force a large enough s_min_extra_isize.
5804          */
5805         if (ext4_journal_extend(handle,
5806                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5807                 return -ENOSPC;
5808
5809         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5810                 return -EBUSY;
5811
5812         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5813                                           handle, &no_expand);
5814         ext4_write_unlock_xattr(inode, &no_expand);
5815
5816         return error;
5817 }
5818
5819 int ext4_expand_extra_isize(struct inode *inode,
5820                             unsigned int new_extra_isize,
5821                             struct ext4_iloc *iloc)
5822 {
5823         handle_t *handle;
5824         int no_expand;
5825         int error, rc;
5826
5827         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5828                 brelse(iloc->bh);
5829                 return -EOVERFLOW;
5830         }
5831
5832         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5833                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5834         if (IS_ERR(handle)) {
5835                 error = PTR_ERR(handle);
5836                 brelse(iloc->bh);
5837                 return error;
5838         }
5839
5840         ext4_write_lock_xattr(inode, &no_expand);
5841
5842         BUFFER_TRACE(iloc->bh, "get_write_access");
5843         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5844                                               EXT4_JTR_NONE);
5845         if (error) {
5846                 brelse(iloc->bh);
5847                 goto out_unlock;
5848         }
5849
5850         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5851                                           handle, &no_expand);
5852
5853         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5854         if (!error)
5855                 error = rc;
5856
5857 out_unlock:
5858         ext4_write_unlock_xattr(inode, &no_expand);
5859         ext4_journal_stop(handle);
5860         return error;
5861 }
5862
5863 /*
5864  * What we do here is to mark the in-core inode as clean with respect to inode
5865  * dirtiness (it may still be data-dirty).
5866  * This means that the in-core inode may be reaped by prune_icache
5867  * without having to perform any I/O.  This is a very good thing,
5868  * because *any* task may call prune_icache - even ones which
5869  * have a transaction open against a different journal.
5870  *
5871  * Is this cheating?  Not really.  Sure, we haven't written the
5872  * inode out, but prune_icache isn't a user-visible syncing function.
5873  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5874  * we start and wait on commits.
5875  */
5876 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5877                                 const char *func, unsigned int line)
5878 {
5879         struct ext4_iloc iloc;
5880         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5881         int err;
5882
5883         might_sleep();
5884         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5885         err = ext4_reserve_inode_write(handle, inode, &iloc);
5886         if (err)
5887                 goto out;
5888
5889         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5890                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5891                                                iloc, handle);
5892
5893         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5894 out:
5895         if (unlikely(err))
5896                 ext4_error_inode_err(inode, func, line, 0, err,
5897                                         "mark_inode_dirty error");
5898         return err;
5899 }
5900
5901 /*
5902  * ext4_dirty_inode() is called from __mark_inode_dirty()
5903  *
5904  * We're really interested in the case where a file is being extended.
5905  * i_size has been changed by generic_commit_write() and we thus need
5906  * to include the updated inode in the current transaction.
5907  *
5908  * Also, dquot_alloc_block() will always dirty the inode when blocks
5909  * are allocated to the file.
5910  *
5911  * If the inode is marked synchronous, we don't honour that here - doing
5912  * so would cause a commit on atime updates, which we don't bother doing.
5913  * We handle synchronous inodes at the highest possible level.
5914  */
5915 void ext4_dirty_inode(struct inode *inode, int flags)
5916 {
5917         handle_t *handle;
5918
5919         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5920         if (IS_ERR(handle))
5921                 return;
5922         ext4_mark_inode_dirty(handle, inode);
5923         ext4_journal_stop(handle);
5924 }
5925
5926 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5927 {
5928         journal_t *journal;
5929         handle_t *handle;
5930         int err;
5931         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5932
5933         /*
5934          * We have to be very careful here: changing a data block's
5935          * journaling status dynamically is dangerous.  If we write a
5936          * data block to the journal, change the status and then delete
5937          * that block, we risk forgetting to revoke the old log record
5938          * from the journal and so a subsequent replay can corrupt data.
5939          * So, first we make sure that the journal is empty and that
5940          * nobody is changing anything.
5941          */
5942
5943         journal = EXT4_JOURNAL(inode);
5944         if (!journal)
5945                 return 0;
5946         if (is_journal_aborted(journal))
5947                 return -EROFS;
5948
5949         /* Wait for all existing dio workers */
5950         inode_dio_wait(inode);
5951
5952         /*
5953          * Before flushing the journal and switching inode's aops, we have
5954          * to flush all dirty data the inode has. There can be outstanding
5955          * delayed allocations, there can be unwritten extents created by
5956          * fallocate or buffered writes in dioread_nolock mode covered by
5957          * dirty data which can be converted only after flushing the dirty
5958          * data (and journalled aops don't know how to handle these cases).
5959          */
5960         if (val) {
5961                 filemap_invalidate_lock(inode->i_mapping);
5962                 err = filemap_write_and_wait(inode->i_mapping);
5963                 if (err < 0) {
5964                         filemap_invalidate_unlock(inode->i_mapping);
5965                         return err;
5966                 }
5967         }
5968
5969         percpu_down_write(&sbi->s_writepages_rwsem);
5970         jbd2_journal_lock_updates(journal);
5971
5972         /*
5973          * OK, there are no updates running now, and all cached data is
5974          * synced to disk.  We are now in a completely consistent state
5975          * which doesn't have anything in the journal, and we know that
5976          * no filesystem updates are running, so it is safe to modify
5977          * the inode's in-core data-journaling state flag now.
5978          */
5979
5980         if (val)
5981                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5982         else {
5983                 err = jbd2_journal_flush(journal, 0);
5984                 if (err < 0) {
5985                         jbd2_journal_unlock_updates(journal);
5986                         percpu_up_write(&sbi->s_writepages_rwsem);
5987                         return err;
5988                 }
5989                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5990         }
5991         ext4_set_aops(inode);
5992
5993         jbd2_journal_unlock_updates(journal);
5994         percpu_up_write(&sbi->s_writepages_rwsem);
5995
5996         if (val)
5997                 filemap_invalidate_unlock(inode->i_mapping);
5998
5999         /* Finally we can mark the inode as dirty. */
6000
6001         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6002         if (IS_ERR(handle))
6003                 return PTR_ERR(handle);
6004
6005         ext4_fc_mark_ineligible(inode->i_sb,
6006                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6007         err = ext4_mark_inode_dirty(handle, inode);
6008         ext4_handle_sync(handle);
6009         ext4_journal_stop(handle);
6010         ext4_std_error(inode->i_sb, err);
6011
6012         return err;
6013 }
6014
6015 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6016                             struct buffer_head *bh)
6017 {
6018         return !buffer_mapped(bh);
6019 }
6020
6021 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6022 {
6023         struct vm_area_struct *vma = vmf->vma;
6024         struct folio *folio = page_folio(vmf->page);
6025         loff_t size;
6026         unsigned long len;
6027         int err;
6028         vm_fault_t ret;
6029         struct file *file = vma->vm_file;
6030         struct inode *inode = file_inode(file);
6031         struct address_space *mapping = inode->i_mapping;
6032         handle_t *handle;
6033         get_block_t *get_block;
6034         int retries = 0;
6035
6036         if (unlikely(IS_IMMUTABLE(inode)))
6037                 return VM_FAULT_SIGBUS;
6038
6039         sb_start_pagefault(inode->i_sb);
6040         file_update_time(vma->vm_file);
6041
6042         filemap_invalidate_lock_shared(mapping);
6043
6044         err = ext4_convert_inline_data(inode);
6045         if (err)
6046                 goto out_ret;
6047
6048         /*
6049          * On data journalling we skip straight to the transaction handle:
6050          * there's no delalloc; page truncated will be checked later; the
6051          * early return w/ all buffers mapped (calculates size/len) can't
6052          * be used; and there's no dioread_nolock, so only ext4_get_block.
6053          */
6054         if (ext4_should_journal_data(inode))
6055                 goto retry_alloc;
6056
6057         /* Delalloc case is easy... */
6058         if (test_opt(inode->i_sb, DELALLOC) &&
6059             !ext4_nonda_switch(inode->i_sb)) {
6060                 do {
6061                         err = block_page_mkwrite(vma, vmf,
6062                                                    ext4_da_get_block_prep);
6063                 } while (err == -ENOSPC &&
6064                        ext4_should_retry_alloc(inode->i_sb, &retries));
6065                 goto out_ret;
6066         }
6067
6068         folio_lock(folio);
6069         size = i_size_read(inode);
6070         /* Page got truncated from under us? */
6071         if (folio->mapping != mapping || folio_pos(folio) > size) {
6072                 folio_unlock(folio);
6073                 ret = VM_FAULT_NOPAGE;
6074                 goto out;
6075         }
6076
6077         len = folio_size(folio);
6078         if (folio_pos(folio) + len > size)
6079                 len = size - folio_pos(folio);
6080         /*
6081          * Return if we have all the buffers mapped. This avoids the need to do
6082          * journal_start/journal_stop which can block and take a long time
6083          *
6084          * This cannot be done for data journalling, as we have to add the
6085          * inode to the transaction's list to writeprotect pages on commit.
6086          */
6087         if (folio_buffers(folio)) {
6088                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6089                                             0, len, NULL,
6090                                             ext4_bh_unmapped)) {
6091                         /* Wait so that we don't change page under IO */
6092                         folio_wait_stable(folio);
6093                         ret = VM_FAULT_LOCKED;
6094                         goto out;
6095                 }
6096         }
6097         folio_unlock(folio);
6098         /* OK, we need to fill the hole... */
6099         if (ext4_should_dioread_nolock(inode))
6100                 get_block = ext4_get_block_unwritten;
6101         else
6102                 get_block = ext4_get_block;
6103 retry_alloc:
6104         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6105                                     ext4_writepage_trans_blocks(inode));
6106         if (IS_ERR(handle)) {
6107                 ret = VM_FAULT_SIGBUS;
6108                 goto out;
6109         }
6110         /*
6111          * Data journalling can't use block_page_mkwrite() because it
6112          * will set_buffer_dirty() before do_journal_get_write_access()
6113          * thus might hit warning messages for dirty metadata buffers.
6114          */
6115         if (!ext4_should_journal_data(inode)) {
6116                 err = block_page_mkwrite(vma, vmf, get_block);
6117         } else {
6118                 folio_lock(folio);
6119                 size = i_size_read(inode);
6120                 /* Page got truncated from under us? */
6121                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6122                         ret = VM_FAULT_NOPAGE;
6123                         goto out_error;
6124                 }
6125
6126                 len = folio_size(folio);
6127                 if (folio_pos(folio) + len > size)
6128                         len = size - folio_pos(folio);
6129
6130                 err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6131                 if (!err) {
6132                         ret = VM_FAULT_SIGBUS;
6133                         if (ext4_journal_page_buffers(handle, &folio->page, len))
6134                                 goto out_error;
6135                 } else {
6136                         folio_unlock(folio);
6137                 }
6138         }
6139         ext4_journal_stop(handle);
6140         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6141                 goto retry_alloc;
6142 out_ret:
6143         ret = block_page_mkwrite_return(err);
6144 out:
6145         filemap_invalidate_unlock_shared(mapping);
6146         sb_end_pagefault(inode->i_sb);
6147         return ret;
6148 out_error:
6149         folio_unlock(folio);
6150         ext4_journal_stop(handle);
6151         goto out;
6152 }