42bee1d4f9f97834d92d22cfc5d5e67d2e352458
[linux-2.6-block.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 #include <linux/lockdep.h>
16 /*
17  * Ext4 Fast Commits
18  * -----------------
19  *
20  * Ext4 fast commits implement fine grained journalling for Ext4.
21  *
22  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
23  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
24  * TLV during the recovery phase. For the scenarios for which we currently
25  * don't have replay code, fast commit falls back to full commits.
26  * Fast commits record delta in one of the following three categories.
27  *
28  * (A) Directory entry updates:
29  *
30  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
31  * - EXT4_FC_TAG_LINK           - records directory entry link
32  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
33  *
34  * (B) File specific data range updates:
35  *
36  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
37  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
38  *
39  * (C) Inode metadata (mtime / ctime etc):
40  *
41  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
42  *                                during recovery. Note that iblocks field is
43  *                                not replayed and instead derived during
44  *                                replay.
45  * Commit Operation
46  * ----------------
47  * With fast commits, we maintain all the directory entry operations in the
48  * order in which they are issued in an in-memory queue. This queue is flushed
49  * to disk during the commit operation. We also maintain a list of inodes
50  * that need to be committed during a fast commit in another in memory queue of
51  * inodes. During the commit operation, we commit in the following order:
52  *
53  * [1] Prepare all the inodes to write out their data by setting
54  *     "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be
55  *     deleted while it is being flushed.
56  * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA"
57  *     state.
58  * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that
59  *     all the exsiting handles finish and no new handles can start.
60  * [4] Mark all the fast commit eligible inodes as undergoing fast commit
61  *     by setting "EXT4_STATE_FC_COMMITTING" state.
62  * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows
63  *     starting of new handles. If new handles try to start an update on
64  *     any of the inodes that are being committed, ext4_fc_track_inode()
65  *     will block until those inodes have finished the fast commit.
66  * [6] Commit all the directory entry updates in the fast commit space.
67  * [7] Commit all the changed inodes in the fast commit space and clear
68  *     "EXT4_STATE_FC_COMMITTING" for these inodes.
69  * [8] Write tail tag (this tag ensures the atomicity, please read the following
70  *     section for more details).
71  *
72  * All the inode updates must be enclosed within jbd2_jounrnal_start()
73  * and jbd2_journal_stop() similar to JBD2 journaling.
74  *
75  * Fast Commit Ineligibility
76  * -------------------------
77  *
78  * Not all operations are supported by fast commits today (e.g extended
79  * attributes). Fast commit ineligibility is marked by calling
80  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
81  * to full commit.
82  *
83  * Atomicity of commits
84  * --------------------
85  * In order to guarantee atomicity during the commit operation, fast commit
86  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
87  * tag contains CRC of the contents and TID of the transaction after which
88  * this fast commit should be applied. Recovery code replays fast commit
89  * logs only if there's at least 1 valid tail present. For every fast commit
90  * operation, there is 1 tail. This means, we may end up with multiple tails
91  * in the fast commit space. Here's an example:
92  *
93  * - Create a new file A and remove existing file B
94  * - fsync()
95  * - Append contents to file A
96  * - Truncate file A
97  * - fsync()
98  *
99  * The fast commit space at the end of above operations would look like this:
100  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
101  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
102  *
103  * Replay code should thus check for all the valid tails in the FC area.
104  *
105  * Fast Commit Replay Idempotence
106  * ------------------------------
107  *
108  * Fast commits tags are idempotent in nature provided the recovery code follows
109  * certain rules. The guiding principle that the commit path follows while
110  * committing is that it stores the result of a particular operation instead of
111  * storing the procedure.
112  *
113  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
114  * was associated with inode 10. During fast commit, instead of storing this
115  * operation as a procedure "rename a to b", we store the resulting file system
116  * state as a "series" of outcomes:
117  *
118  * - Link dirent b to inode 10
119  * - Unlink dirent a
120  * - Inode <10> with valid refcount
121  *
122  * Now when recovery code runs, it needs "enforce" this state on the file
123  * system. This is what guarantees idempotence of fast commit replay.
124  *
125  * Let's take an example of a procedure that is not idempotent and see how fast
126  * commits make it idempotent. Consider following sequence of operations:
127  *
128  *     rm A;    mv B A;    read A
129  *  (x)     (y)        (z)
130  *
131  * (x), (y) and (z) are the points at which we can crash. If we store this
132  * sequence of operations as is then the replay is not idempotent. Let's say
133  * while in replay, we crash at (z). During the second replay, file A (which was
134  * actually created as a result of "mv B A" operation) would get deleted. Thus,
135  * file named A would be absent when we try to read A. So, this sequence of
136  * operations is not idempotent. However, as mentioned above, instead of storing
137  * the procedure fast commits store the outcome of each procedure. Thus the fast
138  * commit log for above procedure would be as follows:
139  *
140  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
141  * inode 11 before the replay)
142  *
143  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
144  * (w)          (x)                    (y)          (z)
145  *
146  * If we crash at (z), we will have file A linked to inode 11. During the second
147  * replay, we will remove file A (inode 11). But we will create it back and make
148  * it point to inode 11. We won't find B, so we'll just skip that step. At this
149  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
150  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
151  * similarly. Thus, by converting a non-idempotent procedure into a series of
152  * idempotent outcomes, fast commits ensured idempotence during the replay.
153  *
154  * Locking
155  * -------
156  * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit
157  * dentry queue. ei->i_fc_lock protects the fast commit related info in a given
158  * inode. Most of the code avoids acquiring both the locks, but if one must do
159  * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock.
160  *
161  * TODOs
162  * -----
163  *
164  * 0) Fast commit replay path hardening: Fast commit replay code should use
165  *    journal handles to make sure all the updates it does during the replay
166  *    path are atomic. With that if we crash during fast commit replay, after
167  *    trying to do recovery again, we will find a file system where fast commit
168  *    area is invalid (because new full commit would be found). In order to deal
169  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
170  *    superblock state is persisted before starting the replay, so that after
171  *    the crash, fast commit recovery code can look at that flag and perform
172  *    fast commit recovery even if that area is invalidated by later full
173  *    commits.
174  *
175  * 1) Handle more ineligible cases.
176  *
177  * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent
178  *    status tree. This would get rid of the need to call ext4_fc_track_inode()
179  *    before acquiring i_data_sem. To do that we would need to ensure that
180  *    modified extents from the extent status tree are not evicted from memory.
181  */
182
183 #include <trace/events/ext4.h>
184 static struct kmem_cache *ext4_fc_dentry_cachep;
185
186 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
187 {
188         BUFFER_TRACE(bh, "");
189         if (uptodate) {
190                 ext4_debug("%s: Block %lld up-to-date",
191                            __func__, bh->b_blocknr);
192                 set_buffer_uptodate(bh);
193         } else {
194                 ext4_debug("%s: Block %lld not up-to-date",
195                            __func__, bh->b_blocknr);
196                 clear_buffer_uptodate(bh);
197         }
198
199         unlock_buffer(bh);
200 }
201
202 static inline void ext4_fc_reset_inode(struct inode *inode)
203 {
204         struct ext4_inode_info *ei = EXT4_I(inode);
205
206         ei->i_fc_lblk_start = 0;
207         ei->i_fc_lblk_len = 0;
208 }
209
210 void ext4_fc_init_inode(struct inode *inode)
211 {
212         struct ext4_inode_info *ei = EXT4_I(inode);
213
214         ext4_fc_reset_inode(inode);
215         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
216         INIT_LIST_HEAD(&ei->i_fc_list);
217         INIT_LIST_HEAD(&ei->i_fc_dilist);
218         init_waitqueue_head(&ei->i_fc_wait);
219 }
220
221 static bool ext4_fc_disabled(struct super_block *sb)
222 {
223         return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
224                 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
225 }
226
227 /*
228  * Remove inode from fast commit list. If the inode is being committed
229  * we wait until inode commit is done.
230  */
231 void ext4_fc_del(struct inode *inode)
232 {
233         struct ext4_inode_info *ei = EXT4_I(inode);
234         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
235         struct ext4_fc_dentry_update *fc_dentry;
236         wait_queue_head_t *wq;
237
238         if (ext4_fc_disabled(inode->i_sb))
239                 return;
240
241         mutex_lock(&sbi->s_fc_lock);
242         if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
243                 mutex_unlock(&sbi->s_fc_lock);
244                 return;
245         }
246
247         /*
248          * Since ext4_fc_del is called from ext4_evict_inode while having a
249          * handle open, there is no need for us to wait here even if a fast
250          * commit is going on. That is because, if this inode is being
251          * committed, ext4_mark_inode_dirty would have waited for inode commit
252          * operation to finish before we come here. So, by the time we come
253          * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So,
254          * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode
255          * here.
256          *
257          * We may come here without any handles open in the "no_delete" case of
258          * ext4_evict_inode as well. However, if that happens, we first mark the
259          * file system as fast commit ineligible anyway. So, even in that case,
260          * it is okay to remove the inode from the fc list.
261          */
262         WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)
263                 && !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE));
264         while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) {
265 #if (BITS_PER_LONG < 64)
266                 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
267                                 EXT4_STATE_FC_FLUSHING_DATA);
268                 wq = bit_waitqueue(&ei->i_state_flags,
269                                    EXT4_STATE_FC_FLUSHING_DATA);
270 #else
271                 DEFINE_WAIT_BIT(wait, &ei->i_flags,
272                                 EXT4_STATE_FC_FLUSHING_DATA);
273                 wq = bit_waitqueue(&ei->i_flags,
274                                    EXT4_STATE_FC_FLUSHING_DATA);
275 #endif
276                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
277                 if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) {
278                         mutex_unlock(&sbi->s_fc_lock);
279                         schedule();
280                         mutex_lock(&sbi->s_fc_lock);
281                 }
282                 finish_wait(wq, &wait.wq_entry);
283         }
284         list_del_init(&ei->i_fc_list);
285
286         /*
287          * Since this inode is getting removed, let's also remove all FC
288          * dentry create references, since it is not needed to log it anyways.
289          */
290         if (list_empty(&ei->i_fc_dilist)) {
291                 mutex_unlock(&sbi->s_fc_lock);
292                 return;
293         }
294
295         fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
296         WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
297         list_del_init(&fc_dentry->fcd_list);
298         list_del_init(&fc_dentry->fcd_dilist);
299
300         WARN_ON(!list_empty(&ei->i_fc_dilist));
301         mutex_unlock(&sbi->s_fc_lock);
302
303         release_dentry_name_snapshot(&fc_dentry->fcd_name);
304         kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
305 }
306
307 /*
308  * Mark file system as fast commit ineligible, and record latest
309  * ineligible transaction tid. This means until the recorded
310  * transaction, commit operation would result in a full jbd2 commit.
311  */
312 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
313 {
314         struct ext4_sb_info *sbi = EXT4_SB(sb);
315         tid_t tid;
316         bool has_transaction = true;
317         bool is_ineligible;
318
319         if (ext4_fc_disabled(sb))
320                 return;
321
322         if (handle && !IS_ERR(handle))
323                 tid = handle->h_transaction->t_tid;
324         else {
325                 read_lock(&sbi->s_journal->j_state_lock);
326                 if (sbi->s_journal->j_running_transaction)
327                         tid = sbi->s_journal->j_running_transaction->t_tid;
328                 else
329                         has_transaction = false;
330                 read_unlock(&sbi->s_journal->j_state_lock);
331         }
332         mutex_lock(&sbi->s_fc_lock);
333         is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
334         if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
335                 sbi->s_fc_ineligible_tid = tid;
336         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
337         mutex_unlock(&sbi->s_fc_lock);
338         WARN_ON(reason >= EXT4_FC_REASON_MAX);
339         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
340 }
341
342 /*
343  * Generic fast commit tracking function. If this is the first time this we are
344  * called after a full commit, we initialize fast commit fields and then call
345  * __fc_track_fn() with update = 0. If we have already been called after a full
346  * commit, we pass update = 1. Based on that, the track function can determine
347  * if it needs to track a field for the first time or if it needs to just
348  * update the previously tracked value.
349  *
350  * If enqueue is set, this function enqueues the inode in fast commit list.
351  */
352 static int ext4_fc_track_template(
353         handle_t *handle, struct inode *inode,
354         int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
355         void *args, int enqueue)
356 {
357         bool update = false;
358         struct ext4_inode_info *ei = EXT4_I(inode);
359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360         tid_t tid = 0;
361         int ret;
362
363         tid = handle->h_transaction->t_tid;
364         spin_lock(&ei->i_fc_lock);
365         if (tid == ei->i_sync_tid) {
366                 update = true;
367         } else {
368                 ext4_fc_reset_inode(inode);
369                 ei->i_sync_tid = tid;
370         }
371         ret = __fc_track_fn(handle, inode, args, update);
372         spin_unlock(&ei->i_fc_lock);
373         if (!enqueue)
374                 return ret;
375
376         mutex_lock(&sbi->s_fc_lock);
377         if (list_empty(&EXT4_I(inode)->i_fc_list))
378                 list_add_tail(&EXT4_I(inode)->i_fc_list,
379                                 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
380                                  sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
381                                 &sbi->s_fc_q[FC_Q_STAGING] :
382                                 &sbi->s_fc_q[FC_Q_MAIN]);
383         mutex_unlock(&sbi->s_fc_lock);
384
385         return ret;
386 }
387
388 struct __track_dentry_update_args {
389         struct dentry *dentry;
390         int op;
391 };
392
393 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
394 static int __track_dentry_update(handle_t *handle, struct inode *inode,
395                                  void *arg, bool update)
396 {
397         struct ext4_fc_dentry_update *node;
398         struct ext4_inode_info *ei = EXT4_I(inode);
399         struct __track_dentry_update_args *dentry_update =
400                 (struct __track_dentry_update_args *)arg;
401         struct dentry *dentry = dentry_update->dentry;
402         struct inode *dir = dentry->d_parent->d_inode;
403         struct super_block *sb = inode->i_sb;
404         struct ext4_sb_info *sbi = EXT4_SB(sb);
405
406         spin_unlock(&ei->i_fc_lock);
407
408         if (IS_ENCRYPTED(dir)) {
409                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
410                                         handle);
411                 spin_lock(&ei->i_fc_lock);
412                 return -EOPNOTSUPP;
413         }
414
415         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
416         if (!node) {
417                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
418                 spin_lock(&ei->i_fc_lock);
419                 return -ENOMEM;
420         }
421
422         node->fcd_op = dentry_update->op;
423         node->fcd_parent = dir->i_ino;
424         node->fcd_ino = inode->i_ino;
425         take_dentry_name_snapshot(&node->fcd_name, dentry);
426         INIT_LIST_HEAD(&node->fcd_dilist);
427         INIT_LIST_HEAD(&node->fcd_list);
428         mutex_lock(&sbi->s_fc_lock);
429         if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
430                 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
431                 list_add_tail(&node->fcd_list,
432                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
433         else
434                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
435
436         /*
437          * This helps us keep a track of all fc_dentry updates which is part of
438          * this ext4 inode. So in case the inode is getting unlinked, before
439          * even we get a chance to fsync, we could remove all fc_dentry
440          * references while evicting the inode in ext4_fc_del().
441          * Also with this, we don't need to loop over all the inodes in
442          * sbi->s_fc_q to get the corresponding inode in
443          * ext4_fc_commit_dentry_updates().
444          */
445         if (dentry_update->op == EXT4_FC_TAG_CREAT) {
446                 WARN_ON(!list_empty(&ei->i_fc_dilist));
447                 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
448         }
449         mutex_unlock(&sbi->s_fc_lock);
450         spin_lock(&ei->i_fc_lock);
451
452         return 0;
453 }
454
455 void __ext4_fc_track_unlink(handle_t *handle,
456                 struct inode *inode, struct dentry *dentry)
457 {
458         struct __track_dentry_update_args args;
459         int ret;
460
461         args.dentry = dentry;
462         args.op = EXT4_FC_TAG_UNLINK;
463
464         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
465                                         (void *)&args, 0);
466         trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
467 }
468
469 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
470 {
471         struct inode *inode = d_inode(dentry);
472
473         if (ext4_fc_disabled(inode->i_sb))
474                 return;
475
476         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
477                 return;
478
479         __ext4_fc_track_unlink(handle, inode, dentry);
480 }
481
482 void __ext4_fc_track_link(handle_t *handle,
483         struct inode *inode, struct dentry *dentry)
484 {
485         struct __track_dentry_update_args args;
486         int ret;
487
488         args.dentry = dentry;
489         args.op = EXT4_FC_TAG_LINK;
490
491         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
492                                         (void *)&args, 0);
493         trace_ext4_fc_track_link(handle, inode, dentry, ret);
494 }
495
496 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
497 {
498         struct inode *inode = d_inode(dentry);
499
500         if (ext4_fc_disabled(inode->i_sb))
501                 return;
502
503         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
504                 return;
505
506         __ext4_fc_track_link(handle, inode, dentry);
507 }
508
509 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
510                           struct dentry *dentry)
511 {
512         struct __track_dentry_update_args args;
513         int ret;
514
515         args.dentry = dentry;
516         args.op = EXT4_FC_TAG_CREAT;
517
518         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
519                                         (void *)&args, 0);
520         trace_ext4_fc_track_create(handle, inode, dentry, ret);
521 }
522
523 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
524 {
525         struct inode *inode = d_inode(dentry);
526
527         if (ext4_fc_disabled(inode->i_sb))
528                 return;
529
530         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
531                 return;
532
533         __ext4_fc_track_create(handle, inode, dentry);
534 }
535
536 /* __track_fn for inode tracking */
537 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
538                          bool update)
539 {
540         if (update)
541                 return -EEXIST;
542
543         EXT4_I(inode)->i_fc_lblk_len = 0;
544
545         return 0;
546 }
547
548 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
549 {
550         struct ext4_inode_info *ei = EXT4_I(inode);
551         wait_queue_head_t *wq;
552         int ret;
553
554         if (S_ISDIR(inode->i_mode))
555                 return;
556
557         if (ext4_fc_disabled(inode->i_sb))
558                 return;
559
560         if (ext4_should_journal_data(inode)) {
561                 ext4_fc_mark_ineligible(inode->i_sb,
562                                         EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
563                 return;
564         }
565
566         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
567                 return;
568
569         /*
570          * If we come here, we may sleep while waiting for the inode to
571          * commit. We shouldn't be holding i_data_sem when we go to sleep since
572          * the commit path needs to grab the lock while committing the inode.
573          */
574         lockdep_assert_not_held(&ei->i_data_sem);
575
576         while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
577 #if (BITS_PER_LONG < 64)
578                 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
579                                 EXT4_STATE_FC_COMMITTING);
580                 wq = bit_waitqueue(&ei->i_state_flags,
581                                    EXT4_STATE_FC_COMMITTING);
582 #else
583                 DEFINE_WAIT_BIT(wait, &ei->i_flags,
584                                 EXT4_STATE_FC_COMMITTING);
585                 wq = bit_waitqueue(&ei->i_flags,
586                                    EXT4_STATE_FC_COMMITTING);
587 #endif
588                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
589                 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
590                         schedule();
591                 finish_wait(wq, &wait.wq_entry);
592         }
593
594         /*
595          * From this point on, this inode will not be committed either
596          * by fast or full commit as long as the handle is open.
597          */
598         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
599         trace_ext4_fc_track_inode(handle, inode, ret);
600 }
601
602 struct __track_range_args {
603         ext4_lblk_t start, end;
604 };
605
606 /* __track_fn for tracking data updates */
607 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
608                          bool update)
609 {
610         struct ext4_inode_info *ei = EXT4_I(inode);
611         ext4_lblk_t oldstart;
612         struct __track_range_args *__arg =
613                 (struct __track_range_args *)arg;
614
615         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
616                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
617                 return -ECANCELED;
618         }
619
620         oldstart = ei->i_fc_lblk_start;
621
622         if (update && ei->i_fc_lblk_len > 0) {
623                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
624                 ei->i_fc_lblk_len =
625                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
626                                 ei->i_fc_lblk_start + 1;
627         } else {
628                 ei->i_fc_lblk_start = __arg->start;
629                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
630         }
631
632         return 0;
633 }
634
635 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
636                          ext4_lblk_t end)
637 {
638         struct __track_range_args args;
639         int ret;
640
641         if (S_ISDIR(inode->i_mode))
642                 return;
643
644         if (ext4_fc_disabled(inode->i_sb))
645                 return;
646
647         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
648                 return;
649
650         if (ext4_has_inline_data(inode)) {
651                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
652                                         handle);
653                 return;
654         }
655
656         args.start = start;
657         args.end = end;
658
659         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
660
661         trace_ext4_fc_track_range(handle, inode, start, end, ret);
662 }
663
664 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
665 {
666         blk_opf_t write_flags = REQ_SYNC;
667         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
668
669         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
670         if (test_opt(sb, BARRIER) && is_tail)
671                 write_flags |= REQ_FUA | REQ_PREFLUSH;
672         lock_buffer(bh);
673         set_buffer_dirty(bh);
674         set_buffer_uptodate(bh);
675         bh->b_end_io = ext4_end_buffer_io_sync;
676         submit_bh(REQ_OP_WRITE | write_flags, bh);
677         EXT4_SB(sb)->s_fc_bh = NULL;
678 }
679
680 /* Ext4 commit path routines */
681
682 /*
683  * Allocate len bytes on a fast commit buffer.
684  *
685  * During the commit time this function is used to manage fast commit
686  * block space. We don't split a fast commit log onto different
687  * blocks. So this function makes sure that if there's not enough space
688  * on the current block, the remaining space in the current block is
689  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
690  * new block is from jbd2 and CRC is updated to reflect the padding
691  * we added.
692  */
693 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
694 {
695         struct ext4_fc_tl tl;
696         struct ext4_sb_info *sbi = EXT4_SB(sb);
697         struct buffer_head *bh;
698         int bsize = sbi->s_journal->j_blocksize;
699         int ret, off = sbi->s_fc_bytes % bsize;
700         int remaining;
701         u8 *dst;
702
703         /*
704          * If 'len' is too long to fit in any block alongside a PAD tlv, then we
705          * cannot fulfill the request.
706          */
707         if (len > bsize - EXT4_FC_TAG_BASE_LEN)
708                 return NULL;
709
710         if (!sbi->s_fc_bh) {
711                 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
712                 if (ret)
713                         return NULL;
714                 sbi->s_fc_bh = bh;
715         }
716         dst = sbi->s_fc_bh->b_data + off;
717
718         /*
719          * Allocate the bytes in the current block if we can do so while still
720          * leaving enough space for a PAD tlv.
721          */
722         remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
723         if (len <= remaining) {
724                 sbi->s_fc_bytes += len;
725                 return dst;
726         }
727
728         /*
729          * Else, terminate the current block with a PAD tlv, then allocate a new
730          * block and allocate the bytes at the start of that new block.
731          */
732
733         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
734         tl.fc_len = cpu_to_le16(remaining);
735         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
736         memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
737         *crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize);
738
739         ext4_fc_submit_bh(sb, false);
740
741         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
742         if (ret)
743                 return NULL;
744         sbi->s_fc_bh = bh;
745         sbi->s_fc_bytes += bsize - off + len;
746         return sbi->s_fc_bh->b_data;
747 }
748
749 /*
750  * Complete a fast commit by writing tail tag.
751  *
752  * Writing tail tag marks the end of a fast commit. In order to guarantee
753  * atomicity, after writing tail tag, even if there's space remaining
754  * in the block, next commit shouldn't use it. That's why tail tag
755  * has the length as that of the remaining space on the block.
756  */
757 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
758 {
759         struct ext4_sb_info *sbi = EXT4_SB(sb);
760         struct ext4_fc_tl tl;
761         struct ext4_fc_tail tail;
762         int off, bsize = sbi->s_journal->j_blocksize;
763         u8 *dst;
764
765         /*
766          * ext4_fc_reserve_space takes care of allocating an extra block if
767          * there's no enough space on this block for accommodating this tail.
768          */
769         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
770         if (!dst)
771                 return -ENOSPC;
772
773         off = sbi->s_fc_bytes % bsize;
774
775         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
776         tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
777         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
778
779         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
780         dst += EXT4_FC_TAG_BASE_LEN;
781         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
782         memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
783         dst += sizeof(tail.fc_tid);
784         crc = ext4_chksum(crc, sbi->s_fc_bh->b_data,
785                           dst - (u8 *)sbi->s_fc_bh->b_data);
786         tail.fc_crc = cpu_to_le32(crc);
787         memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
788         dst += sizeof(tail.fc_crc);
789         memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
790
791         ext4_fc_submit_bh(sb, true);
792
793         return 0;
794 }
795
796 /*
797  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
798  * Returns false if there's not enough space.
799  */
800 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
801                            u32 *crc)
802 {
803         struct ext4_fc_tl tl;
804         u8 *dst;
805
806         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
807         if (!dst)
808                 return false;
809
810         tl.fc_tag = cpu_to_le16(tag);
811         tl.fc_len = cpu_to_le16(len);
812
813         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
814         memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
815
816         return true;
817 }
818
819 /* Same as above, but adds dentry tlv. */
820 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
821                                    struct ext4_fc_dentry_update *fc_dentry)
822 {
823         struct ext4_fc_dentry_info fcd;
824         struct ext4_fc_tl tl;
825         int dlen = fc_dentry->fcd_name.name.len;
826         u8 *dst = ext4_fc_reserve_space(sb,
827                         EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
828
829         if (!dst)
830                 return false;
831
832         fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
833         fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
834         tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
835         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
836         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
837         dst += EXT4_FC_TAG_BASE_LEN;
838         memcpy(dst, &fcd, sizeof(fcd));
839         dst += sizeof(fcd);
840         memcpy(dst, fc_dentry->fcd_name.name.name, dlen);
841
842         return true;
843 }
844
845 /*
846  * Writes inode in the fast commit space under TLV with tag @tag.
847  * Returns 0 on success, error on failure.
848  */
849 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
850 {
851         struct ext4_inode_info *ei = EXT4_I(inode);
852         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
853         int ret;
854         struct ext4_iloc iloc;
855         struct ext4_fc_inode fc_inode;
856         struct ext4_fc_tl tl;
857         u8 *dst;
858
859         ret = ext4_get_inode_loc(inode, &iloc);
860         if (ret)
861                 return ret;
862
863         if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
864                 inode_len = EXT4_INODE_SIZE(inode->i_sb);
865         else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
866                 inode_len += ei->i_extra_isize;
867
868         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
869         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
870         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
871
872         ret = -ECANCELED;
873         dst = ext4_fc_reserve_space(inode->i_sb,
874                 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
875         if (!dst)
876                 goto err;
877
878         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
879         dst += EXT4_FC_TAG_BASE_LEN;
880         memcpy(dst, &fc_inode, sizeof(fc_inode));
881         dst += sizeof(fc_inode);
882         memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
883         ret = 0;
884 err:
885         brelse(iloc.bh);
886         return ret;
887 }
888
889 /*
890  * Writes updated data ranges for the inode in question. Updates CRC.
891  * Returns 0 on success, error otherwise.
892  */
893 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
894 {
895         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
896         struct ext4_inode_info *ei = EXT4_I(inode);
897         struct ext4_map_blocks map;
898         struct ext4_fc_add_range fc_ext;
899         struct ext4_fc_del_range lrange;
900         struct ext4_extent *ex;
901         int ret;
902
903         spin_lock(&ei->i_fc_lock);
904         if (ei->i_fc_lblk_len == 0) {
905                 spin_unlock(&ei->i_fc_lock);
906                 return 0;
907         }
908         old_blk_size = ei->i_fc_lblk_start;
909         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
910         ei->i_fc_lblk_len = 0;
911         spin_unlock(&ei->i_fc_lock);
912
913         cur_lblk_off = old_blk_size;
914         ext4_debug("will try writing %d to %d for inode %ld\n",
915                    cur_lblk_off, new_blk_size, inode->i_ino);
916
917         while (cur_lblk_off <= new_blk_size) {
918                 map.m_lblk = cur_lblk_off;
919                 map.m_len = new_blk_size - cur_lblk_off + 1;
920                 ret = ext4_map_blocks(NULL, inode, &map,
921                                       EXT4_GET_BLOCKS_IO_SUBMIT |
922                                       EXT4_EX_NOCACHE);
923                 if (ret < 0)
924                         return -ECANCELED;
925
926                 if (map.m_len == 0) {
927                         cur_lblk_off++;
928                         continue;
929                 }
930
931                 if (ret == 0) {
932                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
933                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
934                         lrange.fc_len = cpu_to_le32(map.m_len);
935                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
936                                             sizeof(lrange), (u8 *)&lrange, crc))
937                                 return -ENOSPC;
938                 } else {
939                         unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
940                                 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
941
942                         /* Limit the number of blocks in one extent */
943                         map.m_len = min(max, map.m_len);
944
945                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
946                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
947                         ex->ee_block = cpu_to_le32(map.m_lblk);
948                         ex->ee_len = cpu_to_le16(map.m_len);
949                         ext4_ext_store_pblock(ex, map.m_pblk);
950                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
951                                 ext4_ext_mark_unwritten(ex);
952                         else
953                                 ext4_ext_mark_initialized(ex);
954                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
955                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
956                                 return -ENOSPC;
957                 }
958
959                 cur_lblk_off += map.m_len;
960         }
961
962         return 0;
963 }
964
965
966 /* Flushes data of all the inodes in the commit queue. */
967 static int ext4_fc_flush_data(journal_t *journal)
968 {
969         struct super_block *sb = journal->j_private;
970         struct ext4_sb_info *sbi = EXT4_SB(sb);
971         struct ext4_inode_info *ei;
972         int ret = 0;
973
974         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
975                 ret = jbd2_submit_inode_data(journal, ei->jinode);
976                 if (ret)
977                         return ret;
978         }
979
980         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
981                 ret = jbd2_wait_inode_data(journal, ei->jinode);
982                 if (ret)
983                         return ret;
984         }
985
986         return 0;
987 }
988
989 /* Commit all the directory entry updates */
990 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
991 {
992         struct super_block *sb = journal->j_private;
993         struct ext4_sb_info *sbi = EXT4_SB(sb);
994         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
995         struct inode *inode;
996         struct ext4_inode_info *ei;
997         int ret;
998
999         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1000                 return 0;
1001         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1002                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1003                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1004                         if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry))
1005                                 return -ENOSPC;
1006                         continue;
1007                 }
1008                 /*
1009                  * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1010                  * corresponding inode. Also, the corresponding inode could have been
1011                  * deleted, in which case, we don't need to do anything.
1012                  */
1013                 if (list_empty(&fc_dentry->fcd_dilist))
1014                         continue;
1015                 ei = list_first_entry(&fc_dentry->fcd_dilist,
1016                                 struct ext4_inode_info, i_fc_dilist);
1017                 inode = &ei->vfs_inode;
1018                 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1019
1020                 /*
1021                  * We first write the inode and then the create dirent. This
1022                  * allows the recovery code to create an unnamed inode first
1023                  * and then link it to a directory entry. This allows us
1024                  * to use namei.c routines almost as is and simplifies
1025                  * the recovery code.
1026                  */
1027                 ret = ext4_fc_write_inode(inode, crc);
1028                 if (ret)
1029                         return ret;
1030                 ret = ext4_fc_write_inode_data(inode, crc);
1031                 if (ret)
1032                         return ret;
1033                 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry))
1034                         return -ENOSPC;
1035         }
1036         return 0;
1037 }
1038
1039 static int ext4_fc_perform_commit(journal_t *journal)
1040 {
1041         struct super_block *sb = journal->j_private;
1042         struct ext4_sb_info *sbi = EXT4_SB(sb);
1043         struct ext4_inode_info *iter;
1044         struct ext4_fc_head head;
1045         struct inode *inode;
1046         struct blk_plug plug;
1047         int ret = 0;
1048         u32 crc = 0;
1049
1050         /*
1051          * Step 1: Mark all inodes on s_fc_q[MAIN] with
1052          * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being
1053          * freed until the data flush is over.
1054          */
1055         mutex_lock(&sbi->s_fc_lock);
1056         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1057                 ext4_set_inode_state(&iter->vfs_inode,
1058                                      EXT4_STATE_FC_FLUSHING_DATA);
1059         }
1060         mutex_unlock(&sbi->s_fc_lock);
1061
1062         /* Step 2: Flush data for all the eligible inodes. */
1063         ret = ext4_fc_flush_data(journal);
1064
1065         /*
1066          * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning
1067          * any error from step 2. This ensures that waiters waiting on
1068          * EXT4_STATE_FC_FLUSHING_DATA can resume.
1069          */
1070         mutex_lock(&sbi->s_fc_lock);
1071         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1072                 ext4_clear_inode_state(&iter->vfs_inode,
1073                                        EXT4_STATE_FC_FLUSHING_DATA);
1074 #if (BITS_PER_LONG < 64)
1075                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA);
1076 #else
1077                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA);
1078 #endif
1079         }
1080
1081         /*
1082          * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before
1083          * the waiter checks the bit. Pairs with implicit barrier in
1084          * prepare_to_wait() in ext4_fc_del().
1085          */
1086         smp_mb();
1087         mutex_unlock(&sbi->s_fc_lock);
1088
1089         /*
1090          * If we encountered error in Step 2, return it now after clearing
1091          * EXT4_STATE_FC_FLUSHING_DATA bit.
1092          */
1093         if (ret)
1094                 return ret;
1095
1096
1097         /* Step 4: Mark all inodes as being committed. */
1098         jbd2_journal_lock_updates(journal);
1099         /*
1100          * The journal is now locked. No more handles can start and all the
1101          * previous handles are now drained. We now mark the inodes on the
1102          * commit queue as being committed.
1103          */
1104         mutex_lock(&sbi->s_fc_lock);
1105         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1106                 ext4_set_inode_state(&iter->vfs_inode,
1107                                      EXT4_STATE_FC_COMMITTING);
1108         }
1109         mutex_unlock(&sbi->s_fc_lock);
1110         jbd2_journal_unlock_updates(journal);
1111
1112         /*
1113          * Step 5: If file system device is different from journal device,
1114          * issue a cache flush before we start writing fast commit blocks.
1115          */
1116         if (journal->j_fs_dev != journal->j_dev)
1117                 blkdev_issue_flush(journal->j_fs_dev);
1118
1119         blk_start_plug(&plug);
1120         /* Step 6: Write fast commit blocks to disk. */
1121         if (sbi->s_fc_bytes == 0) {
1122                 /*
1123                  * Step 6.1: Add a head tag only if this is the first fast
1124                  * commit in this TID.
1125                  */
1126                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1127                 head.fc_tid = cpu_to_le32(
1128                         sbi->s_journal->j_running_transaction->t_tid);
1129                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1130                         (u8 *)&head, &crc)) {
1131                         ret = -ENOSPC;
1132                         goto out;
1133                 }
1134         }
1135
1136         /* Step 6.2: Now write all the dentry updates. */
1137         mutex_lock(&sbi->s_fc_lock);
1138         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1139         if (ret)
1140                 goto out;
1141
1142         /* Step 6.3: Now write all the changed inodes to disk. */
1143         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1144                 inode = &iter->vfs_inode;
1145                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1146                         continue;
1147
1148                 ret = ext4_fc_write_inode_data(inode, &crc);
1149                 if (ret)
1150                         goto out;
1151                 ret = ext4_fc_write_inode(inode, &crc);
1152                 if (ret)
1153                         goto out;
1154         }
1155         /* Step 6.4: Finally write tail tag to conclude this fast commit. */
1156         ret = ext4_fc_write_tail(sb, crc);
1157
1158 out:
1159         mutex_unlock(&sbi->s_fc_lock);
1160         blk_finish_plug(&plug);
1161         return ret;
1162 }
1163
1164 static void ext4_fc_update_stats(struct super_block *sb, int status,
1165                                  u64 commit_time, int nblks, tid_t commit_tid)
1166 {
1167         struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1168
1169         ext4_debug("Fast commit ended with status = %d for tid %u",
1170                         status, commit_tid);
1171         if (status == EXT4_FC_STATUS_OK) {
1172                 stats->fc_num_commits++;
1173                 stats->fc_numblks += nblks;
1174                 if (likely(stats->s_fc_avg_commit_time))
1175                         stats->s_fc_avg_commit_time =
1176                                 (commit_time +
1177                                  stats->s_fc_avg_commit_time * 3) / 4;
1178                 else
1179                         stats->s_fc_avg_commit_time = commit_time;
1180         } else if (status == EXT4_FC_STATUS_FAILED ||
1181                    status == EXT4_FC_STATUS_INELIGIBLE) {
1182                 if (status == EXT4_FC_STATUS_FAILED)
1183                         stats->fc_failed_commits++;
1184                 stats->fc_ineligible_commits++;
1185         } else {
1186                 stats->fc_skipped_commits++;
1187         }
1188         trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1189 }
1190
1191 /*
1192  * The main commit entry point. Performs a fast commit for transaction
1193  * commit_tid if needed. If it's not possible to perform a fast commit
1194  * due to various reasons, we fall back to full commit. Returns 0
1195  * on success, error otherwise.
1196  */
1197 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1198 {
1199         struct super_block *sb = journal->j_private;
1200         struct ext4_sb_info *sbi = EXT4_SB(sb);
1201         int nblks = 0, ret, bsize = journal->j_blocksize;
1202         int subtid = atomic_read(&sbi->s_fc_subtid);
1203         int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1204         ktime_t start_time, commit_time;
1205         int old_ioprio, journal_ioprio;
1206
1207         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1208                 return jbd2_complete_transaction(journal, commit_tid);
1209
1210         trace_ext4_fc_commit_start(sb, commit_tid);
1211
1212         start_time = ktime_get();
1213         old_ioprio = get_current_ioprio();
1214
1215 restart_fc:
1216         ret = jbd2_fc_begin_commit(journal, commit_tid);
1217         if (ret == -EALREADY) {
1218                 /* There was an ongoing commit, check if we need to restart */
1219                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1220                     tid_gt(commit_tid, journal->j_commit_sequence))
1221                         goto restart_fc;
1222                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1223                                 commit_tid);
1224                 return 0;
1225         } else if (ret) {
1226                 /*
1227                  * Commit couldn't start. Just update stats and perform a
1228                  * full commit.
1229                  */
1230                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1231                                 commit_tid);
1232                 return jbd2_complete_transaction(journal, commit_tid);
1233         }
1234
1235         /*
1236          * After establishing journal barrier via jbd2_fc_begin_commit(), check
1237          * if we are fast commit ineligible.
1238          */
1239         if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1240                 status = EXT4_FC_STATUS_INELIGIBLE;
1241                 goto fallback;
1242         }
1243
1244         /*
1245          * Now that we know that this thread is going to do a fast commit,
1246          * elevate the priority to match that of the journal thread.
1247          */
1248         if (journal->j_task->io_context)
1249                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
1250         else
1251                 journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
1252         set_task_ioprio(current, journal_ioprio);
1253         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1254         ret = ext4_fc_perform_commit(journal);
1255         if (ret < 0) {
1256                 status = EXT4_FC_STATUS_FAILED;
1257                 goto fallback;
1258         }
1259         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1260         ret = jbd2_fc_wait_bufs(journal, nblks);
1261         if (ret < 0) {
1262                 status = EXT4_FC_STATUS_FAILED;
1263                 goto fallback;
1264         }
1265         atomic_inc(&sbi->s_fc_subtid);
1266         ret = jbd2_fc_end_commit(journal);
1267         set_task_ioprio(current, old_ioprio);
1268         /*
1269          * weight the commit time higher than the average time so we
1270          * don't react too strongly to vast changes in the commit time
1271          */
1272         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1273         ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1274         return ret;
1275
1276 fallback:
1277         set_task_ioprio(current, old_ioprio);
1278         ret = jbd2_fc_end_commit_fallback(journal);
1279         ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1280         return ret;
1281 }
1282
1283 /*
1284  * Fast commit cleanup routine. This is called after every fast commit and
1285  * full commit. full is true if we are called after a full commit.
1286  */
1287 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1288 {
1289         struct super_block *sb = journal->j_private;
1290         struct ext4_sb_info *sbi = EXT4_SB(sb);
1291         struct ext4_inode_info *ei;
1292         struct ext4_fc_dentry_update *fc_dentry;
1293
1294         if (full && sbi->s_fc_bh)
1295                 sbi->s_fc_bh = NULL;
1296
1297         trace_ext4_fc_cleanup(journal, full, tid);
1298         jbd2_fc_release_bufs(journal);
1299
1300         mutex_lock(&sbi->s_fc_lock);
1301         while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) {
1302                 ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN],
1303                                         struct ext4_inode_info,
1304                                         i_fc_list);
1305                 list_del_init(&ei->i_fc_list);
1306                 ext4_clear_inode_state(&ei->vfs_inode,
1307                                        EXT4_STATE_FC_COMMITTING);
1308                 if (tid_geq(tid, ei->i_sync_tid)) {
1309                         ext4_fc_reset_inode(&ei->vfs_inode);
1310                 } else if (full) {
1311                         /*
1312                          * We are called after a full commit, inode has been
1313                          * modified while the commit was running. Re-enqueue
1314                          * the inode into STAGING, which will then be splice
1315                          * back into MAIN. This cannot happen during
1316                          * fastcommit because the journal is locked all the
1317                          * time in that case (and tid doesn't increase so
1318                          * tid check above isn't reliable).
1319                          */
1320                         list_add_tail(&ei->i_fc_list,
1321                                       &sbi->s_fc_q[FC_Q_STAGING]);
1322                 }
1323                 /*
1324                  * Make sure clearing of EXT4_STATE_FC_COMMITTING is
1325                  * visible before we send the wakeup. Pairs with implicit
1326                  * barrier in prepare_to_wait() in ext4_fc_track_inode().
1327                  */
1328                 smp_mb();
1329 #if (BITS_PER_LONG < 64)
1330                 wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING);
1331 #else
1332                 wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING);
1333 #endif
1334         }
1335
1336         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1337                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1338                                              struct ext4_fc_dentry_update,
1339                                              fcd_list);
1340                 list_del_init(&fc_dentry->fcd_list);
1341                 list_del_init(&fc_dentry->fcd_dilist);
1342
1343                 release_dentry_name_snapshot(&fc_dentry->fcd_name);
1344                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1345         }
1346
1347         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1348                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1349         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1350                                 &sbi->s_fc_q[FC_Q_MAIN]);
1351
1352         if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1353                 sbi->s_fc_ineligible_tid = 0;
1354                 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1355         }
1356
1357         if (full)
1358                 sbi->s_fc_bytes = 0;
1359         mutex_unlock(&sbi->s_fc_lock);
1360         trace_ext4_fc_stats(sb);
1361 }
1362
1363 /* Ext4 Replay Path Routines */
1364
1365 /* Helper struct for dentry replay routines */
1366 struct dentry_info_args {
1367         int parent_ino, dname_len, ino, inode_len;
1368         char *dname;
1369 };
1370
1371 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1372 struct ext4_fc_tl_mem {
1373         u16 fc_tag;
1374         u16 fc_len;
1375 };
1376
1377 static inline void tl_to_darg(struct dentry_info_args *darg,
1378                               struct ext4_fc_tl_mem *tl, u8 *val)
1379 {
1380         struct ext4_fc_dentry_info fcd;
1381
1382         memcpy(&fcd, val, sizeof(fcd));
1383
1384         darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1385         darg->ino = le32_to_cpu(fcd.fc_ino);
1386         darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1387         darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1388 }
1389
1390 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1391 {
1392         struct ext4_fc_tl tl_disk;
1393
1394         memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1395         tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1396         tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1397 }
1398
1399 /* Unlink replay function */
1400 static int ext4_fc_replay_unlink(struct super_block *sb,
1401                                  struct ext4_fc_tl_mem *tl, u8 *val)
1402 {
1403         struct inode *inode, *old_parent;
1404         struct qstr entry;
1405         struct dentry_info_args darg;
1406         int ret = 0;
1407
1408         tl_to_darg(&darg, tl, val);
1409
1410         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1411                         darg.parent_ino, darg.dname_len);
1412
1413         entry.name = darg.dname;
1414         entry.len = darg.dname_len;
1415         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1416
1417         if (IS_ERR(inode)) {
1418                 ext4_debug("Inode %d not found", darg.ino);
1419                 return 0;
1420         }
1421
1422         old_parent = ext4_iget(sb, darg.parent_ino,
1423                                 EXT4_IGET_NORMAL);
1424         if (IS_ERR(old_parent)) {
1425                 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1426                 iput(inode);
1427                 return 0;
1428         }
1429
1430         ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1431         /* -ENOENT ok coz it might not exist anymore. */
1432         if (ret == -ENOENT)
1433                 ret = 0;
1434         iput(old_parent);
1435         iput(inode);
1436         return ret;
1437 }
1438
1439 static int ext4_fc_replay_link_internal(struct super_block *sb,
1440                                 struct dentry_info_args *darg,
1441                                 struct inode *inode)
1442 {
1443         struct inode *dir = NULL;
1444         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1445         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1446         int ret = 0;
1447
1448         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1449         if (IS_ERR(dir)) {
1450                 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1451                 dir = NULL;
1452                 goto out;
1453         }
1454
1455         dentry_dir = d_obtain_alias(dir);
1456         if (IS_ERR(dentry_dir)) {
1457                 ext4_debug("Failed to obtain dentry");
1458                 dentry_dir = NULL;
1459                 goto out;
1460         }
1461
1462         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1463         if (!dentry_inode) {
1464                 ext4_debug("Inode dentry not created.");
1465                 ret = -ENOMEM;
1466                 goto out;
1467         }
1468
1469         ret = __ext4_link(dir, inode, dentry_inode);
1470         /*
1471          * It's possible that link already existed since data blocks
1472          * for the dir in question got persisted before we crashed OR
1473          * we replayed this tag and crashed before the entire replay
1474          * could complete.
1475          */
1476         if (ret && ret != -EEXIST) {
1477                 ext4_debug("Failed to link\n");
1478                 goto out;
1479         }
1480
1481         ret = 0;
1482 out:
1483         if (dentry_dir) {
1484                 d_drop(dentry_dir);
1485                 dput(dentry_dir);
1486         } else if (dir) {
1487                 iput(dir);
1488         }
1489         if (dentry_inode) {
1490                 d_drop(dentry_inode);
1491                 dput(dentry_inode);
1492         }
1493
1494         return ret;
1495 }
1496
1497 /* Link replay function */
1498 static int ext4_fc_replay_link(struct super_block *sb,
1499                                struct ext4_fc_tl_mem *tl, u8 *val)
1500 {
1501         struct inode *inode;
1502         struct dentry_info_args darg;
1503         int ret = 0;
1504
1505         tl_to_darg(&darg, tl, val);
1506         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1507                         darg.parent_ino, darg.dname_len);
1508
1509         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1510         if (IS_ERR(inode)) {
1511                 ext4_debug("Inode not found.");
1512                 return 0;
1513         }
1514
1515         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1516         iput(inode);
1517         return ret;
1518 }
1519
1520 /*
1521  * Record all the modified inodes during replay. We use this later to setup
1522  * block bitmaps correctly.
1523  */
1524 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1525 {
1526         struct ext4_fc_replay_state *state;
1527         int i;
1528
1529         state = &EXT4_SB(sb)->s_fc_replay_state;
1530         for (i = 0; i < state->fc_modified_inodes_used; i++)
1531                 if (state->fc_modified_inodes[i] == ino)
1532                         return 0;
1533         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1534                 int *fc_modified_inodes;
1535
1536                 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1537                                 sizeof(int) * (state->fc_modified_inodes_size +
1538                                 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1539                                 GFP_KERNEL);
1540                 if (!fc_modified_inodes)
1541                         return -ENOMEM;
1542                 state->fc_modified_inodes = fc_modified_inodes;
1543                 state->fc_modified_inodes_size +=
1544                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1545         }
1546         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1547         return 0;
1548 }
1549
1550 /*
1551  * Inode replay function
1552  */
1553 static int ext4_fc_replay_inode(struct super_block *sb,
1554                                 struct ext4_fc_tl_mem *tl, u8 *val)
1555 {
1556         struct ext4_fc_inode fc_inode;
1557         struct ext4_inode *raw_inode;
1558         struct ext4_inode *raw_fc_inode;
1559         struct inode *inode = NULL;
1560         struct ext4_iloc iloc;
1561         int inode_len, ino, ret, tag = tl->fc_tag;
1562         struct ext4_extent_header *eh;
1563         size_t off_gen = offsetof(struct ext4_inode, i_generation);
1564
1565         memcpy(&fc_inode, val, sizeof(fc_inode));
1566
1567         ino = le32_to_cpu(fc_inode.fc_ino);
1568         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1569
1570         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1571         if (!IS_ERR(inode)) {
1572                 ext4_ext_clear_bb(inode);
1573                 iput(inode);
1574         }
1575         inode = NULL;
1576
1577         ret = ext4_fc_record_modified_inode(sb, ino);
1578         if (ret)
1579                 goto out;
1580
1581         raw_fc_inode = (struct ext4_inode *)
1582                 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1583         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1584         if (ret)
1585                 goto out;
1586
1587         inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1588         raw_inode = ext4_raw_inode(&iloc);
1589
1590         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1591         memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1592                inode_len - off_gen);
1593         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1594                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1595                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1596                         memset(eh, 0, sizeof(*eh));
1597                         eh->eh_magic = EXT4_EXT_MAGIC;
1598                         eh->eh_max = cpu_to_le16(
1599                                 (sizeof(raw_inode->i_block) -
1600                                  sizeof(struct ext4_extent_header))
1601                                  / sizeof(struct ext4_extent));
1602                 }
1603         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1604                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1605                         sizeof(raw_inode->i_block));
1606         }
1607
1608         /* Immediately update the inode on disk. */
1609         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1610         if (ret)
1611                 goto out;
1612         ret = sync_dirty_buffer(iloc.bh);
1613         if (ret)
1614                 goto out;
1615         ret = ext4_mark_inode_used(sb, ino);
1616         if (ret)
1617                 goto out;
1618
1619         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1620         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1621         if (IS_ERR(inode)) {
1622                 ext4_debug("Inode not found.");
1623                 return -EFSCORRUPTED;
1624         }
1625
1626         /*
1627          * Our allocator could have made different decisions than before
1628          * crashing. This should be fixed but until then, we calculate
1629          * the number of blocks the inode.
1630          */
1631         if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1632                 ext4_ext_replay_set_iblocks(inode);
1633
1634         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1635         ext4_reset_inode_seed(inode);
1636
1637         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1638         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1639         sync_dirty_buffer(iloc.bh);
1640         brelse(iloc.bh);
1641 out:
1642         iput(inode);
1643         if (!ret)
1644                 blkdev_issue_flush(sb->s_bdev);
1645
1646         return 0;
1647 }
1648
1649 /*
1650  * Dentry create replay function.
1651  *
1652  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1653  * inode for which we are trying to create a dentry here, should already have
1654  * been replayed before we start here.
1655  */
1656 static int ext4_fc_replay_create(struct super_block *sb,
1657                                  struct ext4_fc_tl_mem *tl, u8 *val)
1658 {
1659         int ret = 0;
1660         struct inode *inode = NULL;
1661         struct inode *dir = NULL;
1662         struct dentry_info_args darg;
1663
1664         tl_to_darg(&darg, tl, val);
1665
1666         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1667                         darg.parent_ino, darg.dname_len);
1668
1669         /* This takes care of update group descriptor and other metadata */
1670         ret = ext4_mark_inode_used(sb, darg.ino);
1671         if (ret)
1672                 goto out;
1673
1674         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1675         if (IS_ERR(inode)) {
1676                 ext4_debug("inode %d not found.", darg.ino);
1677                 inode = NULL;
1678                 ret = -EINVAL;
1679                 goto out;
1680         }
1681
1682         if (S_ISDIR(inode->i_mode)) {
1683                 /*
1684                  * If we are creating a directory, we need to make sure that the
1685                  * dot and dot dot dirents are setup properly.
1686                  */
1687                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1688                 if (IS_ERR(dir)) {
1689                         ext4_debug("Dir %d not found.", darg.ino);
1690                         goto out;
1691                 }
1692                 ret = ext4_init_new_dir(NULL, dir, inode);
1693                 iput(dir);
1694                 if (ret) {
1695                         ret = 0;
1696                         goto out;
1697                 }
1698         }
1699         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1700         if (ret)
1701                 goto out;
1702         set_nlink(inode, 1);
1703         ext4_mark_inode_dirty(NULL, inode);
1704 out:
1705         iput(inode);
1706         return ret;
1707 }
1708
1709 /*
1710  * Record physical disk regions which are in use as per fast commit area,
1711  * and used by inodes during replay phase. Our simple replay phase
1712  * allocator excludes these regions from allocation.
1713  */
1714 int ext4_fc_record_regions(struct super_block *sb, int ino,
1715                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1716 {
1717         struct ext4_fc_replay_state *state;
1718         struct ext4_fc_alloc_region *region;
1719
1720         state = &EXT4_SB(sb)->s_fc_replay_state;
1721         /*
1722          * during replay phase, the fc_regions_valid may not same as
1723          * fc_regions_used, update it when do new additions.
1724          */
1725         if (replay && state->fc_regions_used != state->fc_regions_valid)
1726                 state->fc_regions_used = state->fc_regions_valid;
1727         if (state->fc_regions_used == state->fc_regions_size) {
1728                 struct ext4_fc_alloc_region *fc_regions;
1729
1730                 fc_regions = krealloc(state->fc_regions,
1731                                       sizeof(struct ext4_fc_alloc_region) *
1732                                       (state->fc_regions_size +
1733                                        EXT4_FC_REPLAY_REALLOC_INCREMENT),
1734                                       GFP_KERNEL);
1735                 if (!fc_regions)
1736                         return -ENOMEM;
1737                 state->fc_regions_size +=
1738                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1739                 state->fc_regions = fc_regions;
1740         }
1741         region = &state->fc_regions[state->fc_regions_used++];
1742         region->ino = ino;
1743         region->lblk = lblk;
1744         region->pblk = pblk;
1745         region->len = len;
1746
1747         if (replay)
1748                 state->fc_regions_valid++;
1749
1750         return 0;
1751 }
1752
1753 /* Replay add range tag */
1754 static int ext4_fc_replay_add_range(struct super_block *sb,
1755                                     struct ext4_fc_tl_mem *tl, u8 *val)
1756 {
1757         struct ext4_fc_add_range fc_add_ex;
1758         struct ext4_extent newex, *ex;
1759         struct inode *inode;
1760         ext4_lblk_t start, cur;
1761         int remaining, len;
1762         ext4_fsblk_t start_pblk;
1763         struct ext4_map_blocks map;
1764         struct ext4_ext_path *path = NULL;
1765         int ret;
1766
1767         memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1768         ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1769
1770         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1771                 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1772                 ext4_ext_get_actual_len(ex));
1773
1774         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1775         if (IS_ERR(inode)) {
1776                 ext4_debug("Inode not found.");
1777                 return 0;
1778         }
1779
1780         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1781         if (ret)
1782                 goto out;
1783
1784         start = le32_to_cpu(ex->ee_block);
1785         start_pblk = ext4_ext_pblock(ex);
1786         len = ext4_ext_get_actual_len(ex);
1787
1788         cur = start;
1789         remaining = len;
1790         ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1791                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1792                   inode->i_ino);
1793
1794         while (remaining > 0) {
1795                 map.m_lblk = cur;
1796                 map.m_len = remaining;
1797                 map.m_pblk = 0;
1798                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1799
1800                 if (ret < 0)
1801                         goto out;
1802
1803                 if (ret == 0) {
1804                         /* Range is not mapped */
1805                         path = ext4_find_extent(inode, cur, path, 0);
1806                         if (IS_ERR(path))
1807                                 goto out;
1808                         memset(&newex, 0, sizeof(newex));
1809                         newex.ee_block = cpu_to_le32(cur);
1810                         ext4_ext_store_pblock(
1811                                 &newex, start_pblk + cur - start);
1812                         newex.ee_len = cpu_to_le16(map.m_len);
1813                         if (ext4_ext_is_unwritten(ex))
1814                                 ext4_ext_mark_unwritten(&newex);
1815                         down_write(&EXT4_I(inode)->i_data_sem);
1816                         path = ext4_ext_insert_extent(NULL, inode,
1817                                                       path, &newex, 0);
1818                         up_write((&EXT4_I(inode)->i_data_sem));
1819                         if (IS_ERR(path))
1820                                 goto out;
1821                         goto next;
1822                 }
1823
1824                 if (start_pblk + cur - start != map.m_pblk) {
1825                         /*
1826                          * Logical to physical mapping changed. This can happen
1827                          * if this range was removed and then reallocated to
1828                          * map to new physical blocks during a fast commit.
1829                          */
1830                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1831                                         ext4_ext_is_unwritten(ex),
1832                                         start_pblk + cur - start);
1833                         if (ret)
1834                                 goto out;
1835                         /*
1836                          * Mark the old blocks as free since they aren't used
1837                          * anymore. We maintain an array of all the modified
1838                          * inodes. In case these blocks are still used at either
1839                          * a different logical range in the same inode or in
1840                          * some different inode, we will mark them as allocated
1841                          * at the end of the FC replay using our array of
1842                          * modified inodes.
1843                          */
1844                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1845                         goto next;
1846                 }
1847
1848                 /* Range is mapped and needs a state change */
1849                 ext4_debug("Converting from %ld to %d %lld",
1850                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1851                         ext4_ext_is_unwritten(ex), map.m_pblk);
1852                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1853                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1854                 if (ret)
1855                         goto out;
1856                 /*
1857                  * We may have split the extent tree while toggling the state.
1858                  * Try to shrink the extent tree now.
1859                  */
1860                 ext4_ext_replay_shrink_inode(inode, start + len);
1861 next:
1862                 cur += map.m_len;
1863                 remaining -= map.m_len;
1864         }
1865         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1866                                         sb->s_blocksize_bits);
1867 out:
1868         ext4_free_ext_path(path);
1869         iput(inode);
1870         return 0;
1871 }
1872
1873 /* Replay DEL_RANGE tag */
1874 static int
1875 ext4_fc_replay_del_range(struct super_block *sb,
1876                          struct ext4_fc_tl_mem *tl, u8 *val)
1877 {
1878         struct inode *inode;
1879         struct ext4_fc_del_range lrange;
1880         struct ext4_map_blocks map;
1881         ext4_lblk_t cur, remaining;
1882         int ret;
1883
1884         memcpy(&lrange, val, sizeof(lrange));
1885         cur = le32_to_cpu(lrange.fc_lblk);
1886         remaining = le32_to_cpu(lrange.fc_len);
1887
1888         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1889                 le32_to_cpu(lrange.fc_ino), cur, remaining);
1890
1891         inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1892         if (IS_ERR(inode)) {
1893                 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1894                 return 0;
1895         }
1896
1897         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1898         if (ret)
1899                 goto out;
1900
1901         ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1902                         inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1903                         le32_to_cpu(lrange.fc_len));
1904         while (remaining > 0) {
1905                 map.m_lblk = cur;
1906                 map.m_len = remaining;
1907
1908                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1909                 if (ret < 0)
1910                         goto out;
1911                 if (ret > 0) {
1912                         remaining -= ret;
1913                         cur += ret;
1914                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1915                 } else {
1916                         remaining -= map.m_len;
1917                         cur += map.m_len;
1918                 }
1919         }
1920
1921         down_write(&EXT4_I(inode)->i_data_sem);
1922         ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1923                                 le32_to_cpu(lrange.fc_lblk) +
1924                                 le32_to_cpu(lrange.fc_len) - 1);
1925         up_write(&EXT4_I(inode)->i_data_sem);
1926         if (ret)
1927                 goto out;
1928         ext4_ext_replay_shrink_inode(inode,
1929                 i_size_read(inode) >> sb->s_blocksize_bits);
1930         ext4_mark_inode_dirty(NULL, inode);
1931 out:
1932         iput(inode);
1933         return 0;
1934 }
1935
1936 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1937 {
1938         struct ext4_fc_replay_state *state;
1939         struct inode *inode;
1940         struct ext4_ext_path *path = NULL;
1941         struct ext4_map_blocks map;
1942         int i, ret, j;
1943         ext4_lblk_t cur, end;
1944
1945         state = &EXT4_SB(sb)->s_fc_replay_state;
1946         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1947                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1948                         EXT4_IGET_NORMAL);
1949                 if (IS_ERR(inode)) {
1950                         ext4_debug("Inode %d not found.",
1951                                 state->fc_modified_inodes[i]);
1952                         continue;
1953                 }
1954                 cur = 0;
1955                 end = EXT_MAX_BLOCKS;
1956                 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1957                         iput(inode);
1958                         continue;
1959                 }
1960                 while (cur < end) {
1961                         map.m_lblk = cur;
1962                         map.m_len = end - cur;
1963
1964                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1965                         if (ret < 0)
1966                                 break;
1967
1968                         if (ret > 0) {
1969                                 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1970                                 if (!IS_ERR(path)) {
1971                                         for (j = 0; j < path->p_depth; j++)
1972                                                 ext4_mb_mark_bb(inode->i_sb,
1973                                                         path[j].p_block, 1, true);
1974                                 } else {
1975                                         path = NULL;
1976                                 }
1977                                 cur += ret;
1978                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1979                                                         map.m_len, true);
1980                         } else {
1981                                 cur = cur + (map.m_len ? map.m_len : 1);
1982                         }
1983                 }
1984                 iput(inode);
1985         }
1986
1987         ext4_free_ext_path(path);
1988 }
1989
1990 /*
1991  * Check if block is in excluded regions for block allocation. The simple
1992  * allocator that runs during replay phase is calls this function to see
1993  * if it is okay to use a block.
1994  */
1995 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1996 {
1997         int i;
1998         struct ext4_fc_replay_state *state;
1999
2000         state = &EXT4_SB(sb)->s_fc_replay_state;
2001         for (i = 0; i < state->fc_regions_valid; i++) {
2002                 if (state->fc_regions[i].ino == 0 ||
2003                         state->fc_regions[i].len == 0)
2004                         continue;
2005                 if (in_range(blk, state->fc_regions[i].pblk,
2006                                         state->fc_regions[i].len))
2007                         return true;
2008         }
2009         return false;
2010 }
2011
2012 /* Cleanup function called after replay */
2013 void ext4_fc_replay_cleanup(struct super_block *sb)
2014 {
2015         struct ext4_sb_info *sbi = EXT4_SB(sb);
2016
2017         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2018         kfree(sbi->s_fc_replay_state.fc_regions);
2019         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2020 }
2021
2022 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2023                                       int tag, int len)
2024 {
2025         switch (tag) {
2026         case EXT4_FC_TAG_ADD_RANGE:
2027                 return len == sizeof(struct ext4_fc_add_range);
2028         case EXT4_FC_TAG_DEL_RANGE:
2029                 return len == sizeof(struct ext4_fc_del_range);
2030         case EXT4_FC_TAG_CREAT:
2031         case EXT4_FC_TAG_LINK:
2032         case EXT4_FC_TAG_UNLINK:
2033                 len -= sizeof(struct ext4_fc_dentry_info);
2034                 return len >= 1 && len <= EXT4_NAME_LEN;
2035         case EXT4_FC_TAG_INODE:
2036                 len -= sizeof(struct ext4_fc_inode);
2037                 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2038                         len <= sbi->s_inode_size;
2039         case EXT4_FC_TAG_PAD:
2040                 return true; /* padding can have any length */
2041         case EXT4_FC_TAG_TAIL:
2042                 return len >= sizeof(struct ext4_fc_tail);
2043         case EXT4_FC_TAG_HEAD:
2044                 return len == sizeof(struct ext4_fc_head);
2045         }
2046         return false;
2047 }
2048
2049 /*
2050  * Recovery Scan phase handler
2051  *
2052  * This function is called during the scan phase and is responsible
2053  * for doing following things:
2054  * - Make sure the fast commit area has valid tags for replay
2055  * - Count number of tags that need to be replayed by the replay handler
2056  * - Verify CRC
2057  * - Create a list of excluded blocks for allocation during replay phase
2058  *
2059  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2060  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2061  * to indicate that scan has finished and JBD2 can now start replay phase.
2062  * It returns a negative error to indicate that there was an error. At the end
2063  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2064  * to indicate the number of tags that need to replayed during the replay phase.
2065  */
2066 static int ext4_fc_replay_scan(journal_t *journal,
2067                                 struct buffer_head *bh, int off,
2068                                 tid_t expected_tid)
2069 {
2070         struct super_block *sb = journal->j_private;
2071         struct ext4_sb_info *sbi = EXT4_SB(sb);
2072         struct ext4_fc_replay_state *state;
2073         int ret = JBD2_FC_REPLAY_CONTINUE;
2074         struct ext4_fc_add_range ext;
2075         struct ext4_fc_tl_mem tl;
2076         struct ext4_fc_tail tail;
2077         __u8 *start, *end, *cur, *val;
2078         struct ext4_fc_head head;
2079         struct ext4_extent *ex;
2080
2081         state = &sbi->s_fc_replay_state;
2082
2083         start = (u8 *)bh->b_data;
2084         end = start + journal->j_blocksize;
2085
2086         if (state->fc_replay_expected_off == 0) {
2087                 state->fc_cur_tag = 0;
2088                 state->fc_replay_num_tags = 0;
2089                 state->fc_crc = 0;
2090                 state->fc_regions = NULL;
2091                 state->fc_regions_valid = state->fc_regions_used =
2092                         state->fc_regions_size = 0;
2093                 /* Check if we can stop early */
2094                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2095                         != EXT4_FC_TAG_HEAD)
2096                         return 0;
2097         }
2098
2099         if (off != state->fc_replay_expected_off) {
2100                 ret = -EFSCORRUPTED;
2101                 goto out_err;
2102         }
2103
2104         state->fc_replay_expected_off++;
2105         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2106              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2107                 ext4_fc_get_tl(&tl, cur);
2108                 val = cur + EXT4_FC_TAG_BASE_LEN;
2109                 if (tl.fc_len > end - val ||
2110                     !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2111                         ret = state->fc_replay_num_tags ?
2112                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2113                         goto out_err;
2114                 }
2115                 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2116                            tag2str(tl.fc_tag), bh->b_blocknr);
2117                 switch (tl.fc_tag) {
2118                 case EXT4_FC_TAG_ADD_RANGE:
2119                         memcpy(&ext, val, sizeof(ext));
2120                         ex = (struct ext4_extent *)&ext.fc_ex;
2121                         ret = ext4_fc_record_regions(sb,
2122                                 le32_to_cpu(ext.fc_ino),
2123                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2124                                 ext4_ext_get_actual_len(ex), 0);
2125                         if (ret < 0)
2126                                 break;
2127                         ret = JBD2_FC_REPLAY_CONTINUE;
2128                         fallthrough;
2129                 case EXT4_FC_TAG_DEL_RANGE:
2130                 case EXT4_FC_TAG_LINK:
2131                 case EXT4_FC_TAG_UNLINK:
2132                 case EXT4_FC_TAG_CREAT:
2133                 case EXT4_FC_TAG_INODE:
2134                 case EXT4_FC_TAG_PAD:
2135                         state->fc_cur_tag++;
2136                         state->fc_crc = ext4_chksum(state->fc_crc, cur,
2137                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2138                         break;
2139                 case EXT4_FC_TAG_TAIL:
2140                         state->fc_cur_tag++;
2141                         memcpy(&tail, val, sizeof(tail));
2142                         state->fc_crc = ext4_chksum(state->fc_crc, cur,
2143                                                 EXT4_FC_TAG_BASE_LEN +
2144                                                 offsetof(struct ext4_fc_tail,
2145                                                 fc_crc));
2146                         if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2147                                 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2148                                 state->fc_replay_num_tags = state->fc_cur_tag;
2149                                 state->fc_regions_valid =
2150                                         state->fc_regions_used;
2151                         } else {
2152                                 ret = state->fc_replay_num_tags ?
2153                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2154                         }
2155                         state->fc_crc = 0;
2156                         break;
2157                 case EXT4_FC_TAG_HEAD:
2158                         memcpy(&head, val, sizeof(head));
2159                         if (le32_to_cpu(head.fc_features) &
2160                                 ~EXT4_FC_SUPPORTED_FEATURES) {
2161                                 ret = -EOPNOTSUPP;
2162                                 break;
2163                         }
2164                         if (le32_to_cpu(head.fc_tid) != expected_tid) {
2165                                 ret = JBD2_FC_REPLAY_STOP;
2166                                 break;
2167                         }
2168                         state->fc_cur_tag++;
2169                         state->fc_crc = ext4_chksum(state->fc_crc, cur,
2170                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2171                         break;
2172                 default:
2173                         ret = state->fc_replay_num_tags ?
2174                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2175                 }
2176                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2177                         break;
2178         }
2179
2180 out_err:
2181         trace_ext4_fc_replay_scan(sb, ret, off);
2182         return ret;
2183 }
2184
2185 /*
2186  * Main recovery path entry point.
2187  * The meaning of return codes is similar as above.
2188  */
2189 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2190                                 enum passtype pass, int off, tid_t expected_tid)
2191 {
2192         struct super_block *sb = journal->j_private;
2193         struct ext4_sb_info *sbi = EXT4_SB(sb);
2194         struct ext4_fc_tl_mem tl;
2195         __u8 *start, *end, *cur, *val;
2196         int ret = JBD2_FC_REPLAY_CONTINUE;
2197         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2198         struct ext4_fc_tail tail;
2199
2200         if (pass == PASS_SCAN) {
2201                 state->fc_current_pass = PASS_SCAN;
2202                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2203         }
2204
2205         if (state->fc_current_pass != pass) {
2206                 state->fc_current_pass = pass;
2207                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2208         }
2209         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2210                 ext4_debug("Replay stops\n");
2211                 ext4_fc_set_bitmaps_and_counters(sb);
2212                 return 0;
2213         }
2214
2215 #ifdef CONFIG_EXT4_DEBUG
2216         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2217                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2218                 return JBD2_FC_REPLAY_STOP;
2219         }
2220 #endif
2221
2222         start = (u8 *)bh->b_data;
2223         end = start + journal->j_blocksize;
2224
2225         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2226              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2227                 ext4_fc_get_tl(&tl, cur);
2228                 val = cur + EXT4_FC_TAG_BASE_LEN;
2229
2230                 if (state->fc_replay_num_tags == 0) {
2231                         ret = JBD2_FC_REPLAY_STOP;
2232                         ext4_fc_set_bitmaps_and_counters(sb);
2233                         break;
2234                 }
2235
2236                 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2237                 state->fc_replay_num_tags--;
2238                 switch (tl.fc_tag) {
2239                 case EXT4_FC_TAG_LINK:
2240                         ret = ext4_fc_replay_link(sb, &tl, val);
2241                         break;
2242                 case EXT4_FC_TAG_UNLINK:
2243                         ret = ext4_fc_replay_unlink(sb, &tl, val);
2244                         break;
2245                 case EXT4_FC_TAG_ADD_RANGE:
2246                         ret = ext4_fc_replay_add_range(sb, &tl, val);
2247                         break;
2248                 case EXT4_FC_TAG_CREAT:
2249                         ret = ext4_fc_replay_create(sb, &tl, val);
2250                         break;
2251                 case EXT4_FC_TAG_DEL_RANGE:
2252                         ret = ext4_fc_replay_del_range(sb, &tl, val);
2253                         break;
2254                 case EXT4_FC_TAG_INODE:
2255                         ret = ext4_fc_replay_inode(sb, &tl, val);
2256                         break;
2257                 case EXT4_FC_TAG_PAD:
2258                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2259                                              tl.fc_len, 0);
2260                         break;
2261                 case EXT4_FC_TAG_TAIL:
2262                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2263                                              0, tl.fc_len, 0);
2264                         memcpy(&tail, val, sizeof(tail));
2265                         WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2266                         break;
2267                 case EXT4_FC_TAG_HEAD:
2268                         break;
2269                 default:
2270                         trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2271                         ret = -ECANCELED;
2272                         break;
2273                 }
2274                 if (ret < 0)
2275                         break;
2276                 ret = JBD2_FC_REPLAY_CONTINUE;
2277         }
2278         return ret;
2279 }
2280
2281 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2282 {
2283         /*
2284          * We set replay callback even if fast commit disabled because we may
2285          * could still have fast commit blocks that need to be replayed even if
2286          * fast commit has now been turned off.
2287          */
2288         journal->j_fc_replay_callback = ext4_fc_replay;
2289         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2290                 return;
2291         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2292 }
2293
2294 static const char * const fc_ineligible_reasons[] = {
2295         [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2296         [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2297         [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2298         [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2299         [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2300         [EXT4_FC_REASON_RESIZE] = "Resize",
2301         [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2302         [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2303         [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2304         [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2305 };
2306
2307 int ext4_fc_info_show(struct seq_file *seq, void *v)
2308 {
2309         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2310         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2311         int i;
2312
2313         if (v != SEQ_START_TOKEN)
2314                 return 0;
2315
2316         seq_printf(seq,
2317                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2318                    stats->fc_num_commits, stats->fc_ineligible_commits,
2319                    stats->fc_numblks,
2320                    div_u64(stats->s_fc_avg_commit_time, 1000));
2321         seq_puts(seq, "Ineligible reasons:\n");
2322         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2323                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2324                         stats->fc_ineligible_reason_count[i]);
2325
2326         return 0;
2327 }
2328
2329 int __init ext4_fc_init_dentry_cache(void)
2330 {
2331         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2332                                            SLAB_RECLAIM_ACCOUNT);
2333
2334         if (ext4_fc_dentry_cachep == NULL)
2335                 return -ENOMEM;
2336
2337         return 0;
2338 }
2339
2340 void ext4_fc_destroy_dentry_cache(void)
2341 {
2342         kmem_cache_destroy(ext4_fc_dentry_cachep);
2343 }