sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-block.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/pagemap.h>
38 #include <linux/perf_event.h>
39 #include <linux/highmem.h>
40 #include <linux/spinlock.h>
41 #include <linux/key.h>
42 #include <linux/personality.h>
43 #include <linux/binfmts.h>
44 #include <linux/utsname.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/module.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
59 #include <linux/oom.h>
60 #include <linux/compat.h>
61 #include <linux/vmalloc.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79         BUG_ON(!fmt);
80         if (WARN_ON(!fmt->load_binary))
81                 return;
82         write_lock(&binfmt_lock);
83         insert ? list_add(&fmt->lh, &formats) :
84                  list_add_tail(&fmt->lh, &formats);
85         write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92         write_lock(&binfmt_lock);
93         list_del(&fmt->lh);
94         write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101         module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109
110 #ifdef CONFIG_USELIB
111 /*
112  * Note that a shared library must be both readable and executable due to
113  * security reasons.
114  *
115  * Also note that we take the address to load from from the file itself.
116  */
117 SYSCALL_DEFINE1(uselib, const char __user *, library)
118 {
119         struct linux_binfmt *fmt;
120         struct file *file;
121         struct filename *tmp = getname(library);
122         int error = PTR_ERR(tmp);
123         static const struct open_flags uselib_flags = {
124                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
125                 .acc_mode = MAY_READ | MAY_EXEC,
126                 .intent = LOOKUP_OPEN,
127                 .lookup_flags = LOOKUP_FOLLOW,
128         };
129
130         if (IS_ERR(tmp))
131                 goto out;
132
133         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
134         putname(tmp);
135         error = PTR_ERR(file);
136         if (IS_ERR(file))
137                 goto out;
138
139         error = -EINVAL;
140         if (!S_ISREG(file_inode(file)->i_mode))
141                 goto exit;
142
143         error = -EACCES;
144         if (path_noexec(&file->f_path))
145                 goto exit;
146
147         fsnotify_open(file);
148
149         error = -ENOEXEC;
150
151         read_lock(&binfmt_lock);
152         list_for_each_entry(fmt, &formats, lh) {
153                 if (!fmt->load_shlib)
154                         continue;
155                 if (!try_module_get(fmt->module))
156                         continue;
157                 read_unlock(&binfmt_lock);
158                 error = fmt->load_shlib(file);
159                 read_lock(&binfmt_lock);
160                 put_binfmt(fmt);
161                 if (error != -ENOEXEC)
162                         break;
163         }
164         read_unlock(&binfmt_lock);
165 exit:
166         fput(file);
167 out:
168         return error;
169 }
170 #endif /* #ifdef CONFIG_USELIB */
171
172 #ifdef CONFIG_MMU
173 /*
174  * The nascent bprm->mm is not visible until exec_mmap() but it can
175  * use a lot of memory, account these pages in current->mm temporary
176  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
177  * change the counter back via acct_arg_size(0).
178  */
179 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
180 {
181         struct mm_struct *mm = current->mm;
182         long diff = (long)(pages - bprm->vma_pages);
183
184         if (!mm || !diff)
185                 return;
186
187         bprm->vma_pages = pages;
188         add_mm_counter(mm, MM_ANONPAGES, diff);
189 }
190
191 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
192                 int write)
193 {
194         struct page *page;
195         int ret;
196         unsigned int gup_flags = FOLL_FORCE;
197
198 #ifdef CONFIG_STACK_GROWSUP
199         if (write) {
200                 ret = expand_downwards(bprm->vma, pos);
201                 if (ret < 0)
202                         return NULL;
203         }
204 #endif
205
206         if (write)
207                 gup_flags |= FOLL_WRITE;
208
209         /*
210          * We are doing an exec().  'current' is the process
211          * doing the exec and bprm->mm is the new process's mm.
212          */
213         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
214                         &page, NULL, NULL);
215         if (ret <= 0)
216                 return NULL;
217
218         if (write) {
219                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
220                 struct rlimit *rlim;
221
222                 acct_arg_size(bprm, size / PAGE_SIZE);
223
224                 /*
225                  * We've historically supported up to 32 pages (ARG_MAX)
226                  * of argument strings even with small stacks
227                  */
228                 if (size <= ARG_MAX)
229                         return page;
230
231                 /*
232                  * Limit to 1/4-th the stack size for the argv+env strings.
233                  * This ensures that:
234                  *  - the remaining binfmt code will not run out of stack space,
235                  *  - the program will have a reasonable amount of stack left
236                  *    to work from.
237                  */
238                 rlim = current->signal->rlim;
239                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
240                         put_page(page);
241                         return NULL;
242                 }
243         }
244
245         return page;
246 }
247
248 static void put_arg_page(struct page *page)
249 {
250         put_page(page);
251 }
252
253 static void free_arg_pages(struct linux_binprm *bprm)
254 {
255 }
256
257 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
258                 struct page *page)
259 {
260         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
261 }
262
263 static int __bprm_mm_init(struct linux_binprm *bprm)
264 {
265         int err;
266         struct vm_area_struct *vma = NULL;
267         struct mm_struct *mm = bprm->mm;
268
269         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
270         if (!vma)
271                 return -ENOMEM;
272
273         if (down_write_killable(&mm->mmap_sem)) {
274                 err = -EINTR;
275                 goto err_free;
276         }
277         vma->vm_mm = mm;
278
279         /*
280          * Place the stack at the largest stack address the architecture
281          * supports. Later, we'll move this to an appropriate place. We don't
282          * use STACK_TOP because that can depend on attributes which aren't
283          * configured yet.
284          */
285         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286         vma->vm_end = STACK_TOP_MAX;
287         vma->vm_start = vma->vm_end - PAGE_SIZE;
288         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
289         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290         INIT_LIST_HEAD(&vma->anon_vma_chain);
291
292         err = insert_vm_struct(mm, vma);
293         if (err)
294                 goto err;
295
296         mm->stack_vm = mm->total_vm = 1;
297         arch_bprm_mm_init(mm, vma);
298         up_write(&mm->mmap_sem);
299         bprm->p = vma->vm_end - sizeof(void *);
300         return 0;
301 err:
302         up_write(&mm->mmap_sem);
303 err_free:
304         bprm->vma = NULL;
305         kmem_cache_free(vm_area_cachep, vma);
306         return err;
307 }
308
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311         return len <= MAX_ARG_STRLEN;
312 }
313
314 #else
315
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321                 int write)
322 {
323         struct page *page;
324
325         page = bprm->page[pos / PAGE_SIZE];
326         if (!page && write) {
327                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328                 if (!page)
329                         return NULL;
330                 bprm->page[pos / PAGE_SIZE] = page;
331         }
332
333         return page;
334 }
335
336 static void put_arg_page(struct page *page)
337 {
338 }
339
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342         if (bprm->page[i]) {
343                 __free_page(bprm->page[i]);
344                 bprm->page[i] = NULL;
345         }
346 }
347
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350         int i;
351
352         for (i = 0; i < MAX_ARG_PAGES; i++)
353                 free_arg_page(bprm, i);
354 }
355
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357                 struct page *page)
358 {
359 }
360
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364         return 0;
365 }
366
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369         return len <= bprm->p;
370 }
371
372 #endif /* CONFIG_MMU */
373
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382         int err;
383         struct mm_struct *mm = NULL;
384
385         bprm->mm = mm = mm_alloc();
386         err = -ENOMEM;
387         if (!mm)
388                 goto err;
389
390         err = __bprm_mm_init(bprm);
391         if (err)
392                 goto err;
393
394         return 0;
395
396 err:
397         if (mm) {
398                 bprm->mm = NULL;
399                 mmdrop(mm);
400         }
401
402         return err;
403 }
404
405 struct user_arg_ptr {
406 #ifdef CONFIG_COMPAT
407         bool is_compat;
408 #endif
409         union {
410                 const char __user *const __user *native;
411 #ifdef CONFIG_COMPAT
412                 const compat_uptr_t __user *compat;
413 #endif
414         } ptr;
415 };
416
417 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
418 {
419         const char __user *native;
420
421 #ifdef CONFIG_COMPAT
422         if (unlikely(argv.is_compat)) {
423                 compat_uptr_t compat;
424
425                 if (get_user(compat, argv.ptr.compat + nr))
426                         return ERR_PTR(-EFAULT);
427
428                 return compat_ptr(compat);
429         }
430 #endif
431
432         if (get_user(native, argv.ptr.native + nr))
433                 return ERR_PTR(-EFAULT);
434
435         return native;
436 }
437
438 /*
439  * count() counts the number of strings in array ARGV.
440  */
441 static int count(struct user_arg_ptr argv, int max)
442 {
443         int i = 0;
444
445         if (argv.ptr.native != NULL) {
446                 for (;;) {
447                         const char __user *p = get_user_arg_ptr(argv, i);
448
449                         if (!p)
450                                 break;
451
452                         if (IS_ERR(p))
453                                 return -EFAULT;
454
455                         if (i >= max)
456                                 return -E2BIG;
457                         ++i;
458
459                         if (fatal_signal_pending(current))
460                                 return -ERESTARTNOHAND;
461                         cond_resched();
462                 }
463         }
464         return i;
465 }
466
467 /*
468  * 'copy_strings()' copies argument/environment strings from the old
469  * processes's memory to the new process's stack.  The call to get_user_pages()
470  * ensures the destination page is created and not swapped out.
471  */
472 static int copy_strings(int argc, struct user_arg_ptr argv,
473                         struct linux_binprm *bprm)
474 {
475         struct page *kmapped_page = NULL;
476         char *kaddr = NULL;
477         unsigned long kpos = 0;
478         int ret;
479
480         while (argc-- > 0) {
481                 const char __user *str;
482                 int len;
483                 unsigned long pos;
484
485                 ret = -EFAULT;
486                 str = get_user_arg_ptr(argv, argc);
487                 if (IS_ERR(str))
488                         goto out;
489
490                 len = strnlen_user(str, MAX_ARG_STRLEN);
491                 if (!len)
492                         goto out;
493
494                 ret = -E2BIG;
495                 if (!valid_arg_len(bprm, len))
496                         goto out;
497
498                 /* We're going to work our way backwords. */
499                 pos = bprm->p;
500                 str += len;
501                 bprm->p -= len;
502
503                 while (len > 0) {
504                         int offset, bytes_to_copy;
505
506                         if (fatal_signal_pending(current)) {
507                                 ret = -ERESTARTNOHAND;
508                                 goto out;
509                         }
510                         cond_resched();
511
512                         offset = pos % PAGE_SIZE;
513                         if (offset == 0)
514                                 offset = PAGE_SIZE;
515
516                         bytes_to_copy = offset;
517                         if (bytes_to_copy > len)
518                                 bytes_to_copy = len;
519
520                         offset -= bytes_to_copy;
521                         pos -= bytes_to_copy;
522                         str -= bytes_to_copy;
523                         len -= bytes_to_copy;
524
525                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526                                 struct page *page;
527
528                                 page = get_arg_page(bprm, pos, 1);
529                                 if (!page) {
530                                         ret = -E2BIG;
531                                         goto out;
532                                 }
533
534                                 if (kmapped_page) {
535                                         flush_kernel_dcache_page(kmapped_page);
536                                         kunmap(kmapped_page);
537                                         put_arg_page(kmapped_page);
538                                 }
539                                 kmapped_page = page;
540                                 kaddr = kmap(kmapped_page);
541                                 kpos = pos & PAGE_MASK;
542                                 flush_arg_page(bprm, kpos, kmapped_page);
543                         }
544                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545                                 ret = -EFAULT;
546                                 goto out;
547                         }
548                 }
549         }
550         ret = 0;
551 out:
552         if (kmapped_page) {
553                 flush_kernel_dcache_page(kmapped_page);
554                 kunmap(kmapped_page);
555                 put_arg_page(kmapped_page);
556         }
557         return ret;
558 }
559
560 /*
561  * Like copy_strings, but get argv and its values from kernel memory.
562  */
563 int copy_strings_kernel(int argc, const char *const *__argv,
564                         struct linux_binprm *bprm)
565 {
566         int r;
567         mm_segment_t oldfs = get_fs();
568         struct user_arg_ptr argv = {
569                 .ptr.native = (const char __user *const  __user *)__argv,
570         };
571
572         set_fs(KERNEL_DS);
573         r = copy_strings(argc, argv, bprm);
574         set_fs(oldfs);
575
576         return r;
577 }
578 EXPORT_SYMBOL(copy_strings_kernel);
579
580 #ifdef CONFIG_MMU
581
582 /*
583  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
584  * the binfmt code determines where the new stack should reside, we shift it to
585  * its final location.  The process proceeds as follows:
586  *
587  * 1) Use shift to calculate the new vma endpoints.
588  * 2) Extend vma to cover both the old and new ranges.  This ensures the
589  *    arguments passed to subsequent functions are consistent.
590  * 3) Move vma's page tables to the new range.
591  * 4) Free up any cleared pgd range.
592  * 5) Shrink the vma to cover only the new range.
593  */
594 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595 {
596         struct mm_struct *mm = vma->vm_mm;
597         unsigned long old_start = vma->vm_start;
598         unsigned long old_end = vma->vm_end;
599         unsigned long length = old_end - old_start;
600         unsigned long new_start = old_start - shift;
601         unsigned long new_end = old_end - shift;
602         struct mmu_gather tlb;
603
604         BUG_ON(new_start > new_end);
605
606         /*
607          * ensure there are no vmas between where we want to go
608          * and where we are
609          */
610         if (vma != find_vma(mm, new_start))
611                 return -EFAULT;
612
613         /*
614          * cover the whole range: [new_start, old_end)
615          */
616         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617                 return -ENOMEM;
618
619         /*
620          * move the page tables downwards, on failure we rely on
621          * process cleanup to remove whatever mess we made.
622          */
623         if (length != move_page_tables(vma, old_start,
624                                        vma, new_start, length, false))
625                 return -ENOMEM;
626
627         lru_add_drain();
628         tlb_gather_mmu(&tlb, mm, old_start, old_end);
629         if (new_end > old_start) {
630                 /*
631                  * when the old and new regions overlap clear from new_end.
632                  */
633                 free_pgd_range(&tlb, new_end, old_end, new_end,
634                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
635         } else {
636                 /*
637                  * otherwise, clean from old_start; this is done to not touch
638                  * the address space in [new_end, old_start) some architectures
639                  * have constraints on va-space that make this illegal (IA64) -
640                  * for the others its just a little faster.
641                  */
642                 free_pgd_range(&tlb, old_start, old_end, new_end,
643                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
644         }
645         tlb_finish_mmu(&tlb, old_start, old_end);
646
647         /*
648          * Shrink the vma to just the new range.  Always succeeds.
649          */
650         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652         return 0;
653 }
654
655 /*
656  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657  * the stack is optionally relocated, and some extra space is added.
658  */
659 int setup_arg_pages(struct linux_binprm *bprm,
660                     unsigned long stack_top,
661                     int executable_stack)
662 {
663         unsigned long ret;
664         unsigned long stack_shift;
665         struct mm_struct *mm = current->mm;
666         struct vm_area_struct *vma = bprm->vma;
667         struct vm_area_struct *prev = NULL;
668         unsigned long vm_flags;
669         unsigned long stack_base;
670         unsigned long stack_size;
671         unsigned long stack_expand;
672         unsigned long rlim_stack;
673
674 #ifdef CONFIG_STACK_GROWSUP
675         /* Limit stack size */
676         stack_base = rlimit_max(RLIMIT_STACK);
677         if (stack_base > STACK_SIZE_MAX)
678                 stack_base = STACK_SIZE_MAX;
679
680         /* Add space for stack randomization. */
681         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
682
683         /* Make sure we didn't let the argument array grow too large. */
684         if (vma->vm_end - vma->vm_start > stack_base)
685                 return -ENOMEM;
686
687         stack_base = PAGE_ALIGN(stack_top - stack_base);
688
689         stack_shift = vma->vm_start - stack_base;
690         mm->arg_start = bprm->p - stack_shift;
691         bprm->p = vma->vm_end - stack_shift;
692 #else
693         stack_top = arch_align_stack(stack_top);
694         stack_top = PAGE_ALIGN(stack_top);
695
696         if (unlikely(stack_top < mmap_min_addr) ||
697             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
698                 return -ENOMEM;
699
700         stack_shift = vma->vm_end - stack_top;
701
702         bprm->p -= stack_shift;
703         mm->arg_start = bprm->p;
704 #endif
705
706         if (bprm->loader)
707                 bprm->loader -= stack_shift;
708         bprm->exec -= stack_shift;
709
710         if (down_write_killable(&mm->mmap_sem))
711                 return -EINTR;
712
713         vm_flags = VM_STACK_FLAGS;
714
715         /*
716          * Adjust stack execute permissions; explicitly enable for
717          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
718          * (arch default) otherwise.
719          */
720         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
721                 vm_flags |= VM_EXEC;
722         else if (executable_stack == EXSTACK_DISABLE_X)
723                 vm_flags &= ~VM_EXEC;
724         vm_flags |= mm->def_flags;
725         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
726
727         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
728                         vm_flags);
729         if (ret)
730                 goto out_unlock;
731         BUG_ON(prev != vma);
732
733         /* Move stack pages down in memory. */
734         if (stack_shift) {
735                 ret = shift_arg_pages(vma, stack_shift);
736                 if (ret)
737                         goto out_unlock;
738         }
739
740         /* mprotect_fixup is overkill to remove the temporary stack flags */
741         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
742
743         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
744         stack_size = vma->vm_end - vma->vm_start;
745         /*
746          * Align this down to a page boundary as expand_stack
747          * will align it up.
748          */
749         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
750 #ifdef CONFIG_STACK_GROWSUP
751         if (stack_size + stack_expand > rlim_stack)
752                 stack_base = vma->vm_start + rlim_stack;
753         else
754                 stack_base = vma->vm_end + stack_expand;
755 #else
756         if (stack_size + stack_expand > rlim_stack)
757                 stack_base = vma->vm_end - rlim_stack;
758         else
759                 stack_base = vma->vm_start - stack_expand;
760 #endif
761         current->mm->start_stack = bprm->p;
762         ret = expand_stack(vma, stack_base);
763         if (ret)
764                 ret = -EFAULT;
765
766 out_unlock:
767         up_write(&mm->mmap_sem);
768         return ret;
769 }
770 EXPORT_SYMBOL(setup_arg_pages);
771
772 #else
773
774 /*
775  * Transfer the program arguments and environment from the holding pages
776  * onto the stack. The provided stack pointer is adjusted accordingly.
777  */
778 int transfer_args_to_stack(struct linux_binprm *bprm,
779                            unsigned long *sp_location)
780 {
781         unsigned long index, stop, sp;
782         int ret = 0;
783
784         stop = bprm->p >> PAGE_SHIFT;
785         sp = *sp_location;
786
787         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
788                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
789                 char *src = kmap(bprm->page[index]) + offset;
790                 sp -= PAGE_SIZE - offset;
791                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
792                         ret = -EFAULT;
793                 kunmap(bprm->page[index]);
794                 if (ret)
795                         goto out;
796         }
797
798         *sp_location = sp;
799
800 out:
801         return ret;
802 }
803 EXPORT_SYMBOL(transfer_args_to_stack);
804
805 #endif /* CONFIG_MMU */
806
807 static struct file *do_open_execat(int fd, struct filename *name, int flags)
808 {
809         struct file *file;
810         int err;
811         struct open_flags open_exec_flags = {
812                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
813                 .acc_mode = MAY_EXEC,
814                 .intent = LOOKUP_OPEN,
815                 .lookup_flags = LOOKUP_FOLLOW,
816         };
817
818         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
819                 return ERR_PTR(-EINVAL);
820         if (flags & AT_SYMLINK_NOFOLLOW)
821                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
822         if (flags & AT_EMPTY_PATH)
823                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
824
825         file = do_filp_open(fd, name, &open_exec_flags);
826         if (IS_ERR(file))
827                 goto out;
828
829         err = -EACCES;
830         if (!S_ISREG(file_inode(file)->i_mode))
831                 goto exit;
832
833         if (path_noexec(&file->f_path))
834                 goto exit;
835
836         err = deny_write_access(file);
837         if (err)
838                 goto exit;
839
840         if (name->name[0] != '\0')
841                 fsnotify_open(file);
842
843 out:
844         return file;
845
846 exit:
847         fput(file);
848         return ERR_PTR(err);
849 }
850
851 struct file *open_exec(const char *name)
852 {
853         struct filename *filename = getname_kernel(name);
854         struct file *f = ERR_CAST(filename);
855
856         if (!IS_ERR(filename)) {
857                 f = do_open_execat(AT_FDCWD, filename, 0);
858                 putname(filename);
859         }
860         return f;
861 }
862 EXPORT_SYMBOL(open_exec);
863
864 int kernel_read(struct file *file, loff_t offset,
865                 char *addr, unsigned long count)
866 {
867         mm_segment_t old_fs;
868         loff_t pos = offset;
869         int result;
870
871         old_fs = get_fs();
872         set_fs(get_ds());
873         /* The cast to a user pointer is valid due to the set_fs() */
874         result = vfs_read(file, (void __user *)addr, count, &pos);
875         set_fs(old_fs);
876         return result;
877 }
878
879 EXPORT_SYMBOL(kernel_read);
880
881 int kernel_read_file(struct file *file, void **buf, loff_t *size,
882                      loff_t max_size, enum kernel_read_file_id id)
883 {
884         loff_t i_size, pos;
885         ssize_t bytes = 0;
886         int ret;
887
888         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
889                 return -EINVAL;
890
891         ret = security_kernel_read_file(file, id);
892         if (ret)
893                 return ret;
894
895         ret = deny_write_access(file);
896         if (ret)
897                 return ret;
898
899         i_size = i_size_read(file_inode(file));
900         if (max_size > 0 && i_size > max_size) {
901                 ret = -EFBIG;
902                 goto out;
903         }
904         if (i_size <= 0) {
905                 ret = -EINVAL;
906                 goto out;
907         }
908
909         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
910                 *buf = vmalloc(i_size);
911         if (!*buf) {
912                 ret = -ENOMEM;
913                 goto out;
914         }
915
916         pos = 0;
917         while (pos < i_size) {
918                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
919                                     i_size - pos);
920                 if (bytes < 0) {
921                         ret = bytes;
922                         goto out;
923                 }
924
925                 if (bytes == 0)
926                         break;
927                 pos += bytes;
928         }
929
930         if (pos != i_size) {
931                 ret = -EIO;
932                 goto out_free;
933         }
934
935         ret = security_kernel_post_read_file(file, *buf, i_size, id);
936         if (!ret)
937                 *size = pos;
938
939 out_free:
940         if (ret < 0) {
941                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
942                         vfree(*buf);
943                         *buf = NULL;
944                 }
945         }
946
947 out:
948         allow_write_access(file);
949         return ret;
950 }
951 EXPORT_SYMBOL_GPL(kernel_read_file);
952
953 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
954                                loff_t max_size, enum kernel_read_file_id id)
955 {
956         struct file *file;
957         int ret;
958
959         if (!path || !*path)
960                 return -EINVAL;
961
962         file = filp_open(path, O_RDONLY, 0);
963         if (IS_ERR(file))
964                 return PTR_ERR(file);
965
966         ret = kernel_read_file(file, buf, size, max_size, id);
967         fput(file);
968         return ret;
969 }
970 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
971
972 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
973                              enum kernel_read_file_id id)
974 {
975         struct fd f = fdget(fd);
976         int ret = -EBADF;
977
978         if (!f.file)
979                 goto out;
980
981         ret = kernel_read_file(f.file, buf, size, max_size, id);
982 out:
983         fdput(f);
984         return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
987
988 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
989 {
990         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
991         if (res > 0)
992                 flush_icache_range(addr, addr + len);
993         return res;
994 }
995 EXPORT_SYMBOL(read_code);
996
997 static int exec_mmap(struct mm_struct *mm)
998 {
999         struct task_struct *tsk;
1000         struct mm_struct *old_mm, *active_mm;
1001
1002         /* Notify parent that we're no longer interested in the old VM */
1003         tsk = current;
1004         old_mm = current->mm;
1005         mm_release(tsk, old_mm);
1006
1007         if (old_mm) {
1008                 sync_mm_rss(old_mm);
1009                 /*
1010                  * Make sure that if there is a core dump in progress
1011                  * for the old mm, we get out and die instead of going
1012                  * through with the exec.  We must hold mmap_sem around
1013                  * checking core_state and changing tsk->mm.
1014                  */
1015                 down_read(&old_mm->mmap_sem);
1016                 if (unlikely(old_mm->core_state)) {
1017                         up_read(&old_mm->mmap_sem);
1018                         return -EINTR;
1019                 }
1020         }
1021         task_lock(tsk);
1022         active_mm = tsk->active_mm;
1023         tsk->mm = mm;
1024         tsk->active_mm = mm;
1025         activate_mm(active_mm, mm);
1026         tsk->mm->vmacache_seqnum = 0;
1027         vmacache_flush(tsk);
1028         task_unlock(tsk);
1029         if (old_mm) {
1030                 up_read(&old_mm->mmap_sem);
1031                 BUG_ON(active_mm != old_mm);
1032                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1033                 mm_update_next_owner(old_mm);
1034                 mmput(old_mm);
1035                 return 0;
1036         }
1037         mmdrop(active_mm);
1038         return 0;
1039 }
1040
1041 /*
1042  * This function makes sure the current process has its own signal table,
1043  * so that flush_signal_handlers can later reset the handlers without
1044  * disturbing other processes.  (Other processes might share the signal
1045  * table via the CLONE_SIGHAND option to clone().)
1046  */
1047 static int de_thread(struct task_struct *tsk)
1048 {
1049         struct signal_struct *sig = tsk->signal;
1050         struct sighand_struct *oldsighand = tsk->sighand;
1051         spinlock_t *lock = &oldsighand->siglock;
1052
1053         if (thread_group_empty(tsk))
1054                 goto no_thread_group;
1055
1056         /*
1057          * Kill all other threads in the thread group.
1058          */
1059         spin_lock_irq(lock);
1060         if (signal_group_exit(sig)) {
1061                 /*
1062                  * Another group action in progress, just
1063                  * return so that the signal is processed.
1064                  */
1065                 spin_unlock_irq(lock);
1066                 return -EAGAIN;
1067         }
1068
1069         sig->group_exit_task = tsk;
1070         sig->notify_count = zap_other_threads(tsk);
1071         if (!thread_group_leader(tsk))
1072                 sig->notify_count--;
1073
1074         while (sig->notify_count) {
1075                 __set_current_state(TASK_KILLABLE);
1076                 spin_unlock_irq(lock);
1077                 schedule();
1078                 if (unlikely(__fatal_signal_pending(tsk)))
1079                         goto killed;
1080                 spin_lock_irq(lock);
1081         }
1082         spin_unlock_irq(lock);
1083
1084         /*
1085          * At this point all other threads have exited, all we have to
1086          * do is to wait for the thread group leader to become inactive,
1087          * and to assume its PID:
1088          */
1089         if (!thread_group_leader(tsk)) {
1090                 struct task_struct *leader = tsk->group_leader;
1091
1092                 for (;;) {
1093                         cgroup_threadgroup_change_begin(tsk);
1094                         write_lock_irq(&tasklist_lock);
1095                         /*
1096                          * Do this under tasklist_lock to ensure that
1097                          * exit_notify() can't miss ->group_exit_task
1098                          */
1099                         sig->notify_count = -1;
1100                         if (likely(leader->exit_state))
1101                                 break;
1102                         __set_current_state(TASK_KILLABLE);
1103                         write_unlock_irq(&tasklist_lock);
1104                         cgroup_threadgroup_change_end(tsk);
1105                         schedule();
1106                         if (unlikely(__fatal_signal_pending(tsk)))
1107                                 goto killed;
1108                 }
1109
1110                 /*
1111                  * The only record we have of the real-time age of a
1112                  * process, regardless of execs it's done, is start_time.
1113                  * All the past CPU time is accumulated in signal_struct
1114                  * from sister threads now dead.  But in this non-leader
1115                  * exec, nothing survives from the original leader thread,
1116                  * whose birth marks the true age of this process now.
1117                  * When we take on its identity by switching to its PID, we
1118                  * also take its birthdate (always earlier than our own).
1119                  */
1120                 tsk->start_time = leader->start_time;
1121                 tsk->real_start_time = leader->real_start_time;
1122
1123                 BUG_ON(!same_thread_group(leader, tsk));
1124                 BUG_ON(has_group_leader_pid(tsk));
1125                 /*
1126                  * An exec() starts a new thread group with the
1127                  * TGID of the previous thread group. Rehash the
1128                  * two threads with a switched PID, and release
1129                  * the former thread group leader:
1130                  */
1131
1132                 /* Become a process group leader with the old leader's pid.
1133                  * The old leader becomes a thread of the this thread group.
1134                  * Note: The old leader also uses this pid until release_task
1135                  *       is called.  Odd but simple and correct.
1136                  */
1137                 tsk->pid = leader->pid;
1138                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1139                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1140                 transfer_pid(leader, tsk, PIDTYPE_SID);
1141
1142                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1143                 list_replace_init(&leader->sibling, &tsk->sibling);
1144
1145                 tsk->group_leader = tsk;
1146                 leader->group_leader = tsk;
1147
1148                 tsk->exit_signal = SIGCHLD;
1149                 leader->exit_signal = -1;
1150
1151                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1152                 leader->exit_state = EXIT_DEAD;
1153
1154                 /*
1155                  * We are going to release_task()->ptrace_unlink() silently,
1156                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1157                  * the tracer wont't block again waiting for this thread.
1158                  */
1159                 if (unlikely(leader->ptrace))
1160                         __wake_up_parent(leader, leader->parent);
1161                 write_unlock_irq(&tasklist_lock);
1162                 cgroup_threadgroup_change_end(tsk);
1163
1164                 release_task(leader);
1165         }
1166
1167         sig->group_exit_task = NULL;
1168         sig->notify_count = 0;
1169
1170 no_thread_group:
1171         /* we have changed execution domain */
1172         tsk->exit_signal = SIGCHLD;
1173
1174 #ifdef CONFIG_POSIX_TIMERS
1175         exit_itimers(sig);
1176         flush_itimer_signals();
1177 #endif
1178
1179         if (atomic_read(&oldsighand->count) != 1) {
1180                 struct sighand_struct *newsighand;
1181                 /*
1182                  * This ->sighand is shared with the CLONE_SIGHAND
1183                  * but not CLONE_THREAD task, switch to the new one.
1184                  */
1185                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1186                 if (!newsighand)
1187                         return -ENOMEM;
1188
1189                 atomic_set(&newsighand->count, 1);
1190                 memcpy(newsighand->action, oldsighand->action,
1191                        sizeof(newsighand->action));
1192
1193                 write_lock_irq(&tasklist_lock);
1194                 spin_lock(&oldsighand->siglock);
1195                 rcu_assign_pointer(tsk->sighand, newsighand);
1196                 spin_unlock(&oldsighand->siglock);
1197                 write_unlock_irq(&tasklist_lock);
1198
1199                 __cleanup_sighand(oldsighand);
1200         }
1201
1202         BUG_ON(!thread_group_leader(tsk));
1203         return 0;
1204
1205 killed:
1206         /* protects against exit_notify() and __exit_signal() */
1207         read_lock(&tasklist_lock);
1208         sig->group_exit_task = NULL;
1209         sig->notify_count = 0;
1210         read_unlock(&tasklist_lock);
1211         return -EAGAIN;
1212 }
1213
1214 char *get_task_comm(char *buf, struct task_struct *tsk)
1215 {
1216         /* buf must be at least sizeof(tsk->comm) in size */
1217         task_lock(tsk);
1218         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1219         task_unlock(tsk);
1220         return buf;
1221 }
1222 EXPORT_SYMBOL_GPL(get_task_comm);
1223
1224 /*
1225  * These functions flushes out all traces of the currently running executable
1226  * so that a new one can be started
1227  */
1228
1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230 {
1231         task_lock(tsk);
1232         trace_task_rename(tsk, buf);
1233         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1234         task_unlock(tsk);
1235         perf_event_comm(tsk, exec);
1236 }
1237
1238 int flush_old_exec(struct linux_binprm * bprm)
1239 {
1240         int retval;
1241
1242         /*
1243          * Make sure we have a private signal table and that
1244          * we are unassociated from the previous thread group.
1245          */
1246         retval = de_thread(current);
1247         if (retval)
1248                 goto out;
1249
1250         /*
1251          * Must be called _before_ exec_mmap() as bprm->mm is
1252          * not visibile until then. This also enables the update
1253          * to be lockless.
1254          */
1255         set_mm_exe_file(bprm->mm, bprm->file);
1256
1257         /*
1258          * Release all of the old mmap stuff
1259          */
1260         acct_arg_size(bprm, 0);
1261         retval = exec_mmap(bprm->mm);
1262         if (retval)
1263                 goto out;
1264
1265         bprm->mm = NULL;                /* We're using it now */
1266
1267         set_fs(USER_DS);
1268         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1269                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1270         flush_thread();
1271         current->personality &= ~bprm->per_clear;
1272
1273         /*
1274          * We have to apply CLOEXEC before we change whether the process is
1275          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1276          * trying to access the should-be-closed file descriptors of a process
1277          * undergoing exec(2).
1278          */
1279         do_close_on_exec(current->files);
1280         return 0;
1281
1282 out:
1283         return retval;
1284 }
1285 EXPORT_SYMBOL(flush_old_exec);
1286
1287 void would_dump(struct linux_binprm *bprm, struct file *file)
1288 {
1289         struct inode *inode = file_inode(file);
1290         if (inode_permission(inode, MAY_READ) < 0) {
1291                 struct user_namespace *old, *user_ns;
1292                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1293
1294                 /* Ensure mm->user_ns contains the executable */
1295                 user_ns = old = bprm->mm->user_ns;
1296                 while ((user_ns != &init_user_ns) &&
1297                        !privileged_wrt_inode_uidgid(user_ns, inode))
1298                         user_ns = user_ns->parent;
1299
1300                 if (old != user_ns) {
1301                         bprm->mm->user_ns = get_user_ns(user_ns);
1302                         put_user_ns(old);
1303                 }
1304         }
1305 }
1306 EXPORT_SYMBOL(would_dump);
1307
1308 void setup_new_exec(struct linux_binprm * bprm)
1309 {
1310         arch_pick_mmap_layout(current->mm);
1311
1312         /* This is the point of no return */
1313         current->sas_ss_sp = current->sas_ss_size = 0;
1314
1315         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1316                 set_dumpable(current->mm, SUID_DUMP_USER);
1317         else
1318                 set_dumpable(current->mm, suid_dumpable);
1319
1320         perf_event_exec();
1321         __set_task_comm(current, kbasename(bprm->filename), true);
1322
1323         /* Set the new mm task size. We have to do that late because it may
1324          * depend on TIF_32BIT which is only updated in flush_thread() on
1325          * some architectures like powerpc
1326          */
1327         current->mm->task_size = TASK_SIZE;
1328
1329         /* install the new credentials */
1330         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1331             !gid_eq(bprm->cred->gid, current_egid())) {
1332                 current->pdeath_signal = 0;
1333         } else {
1334                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1335                         set_dumpable(current->mm, suid_dumpable);
1336         }
1337
1338         /* An exec changes our domain. We are no longer part of the thread
1339            group */
1340         current->self_exec_id++;
1341         flush_signal_handlers(current, 0);
1342 }
1343 EXPORT_SYMBOL(setup_new_exec);
1344
1345 /*
1346  * Prepare credentials and lock ->cred_guard_mutex.
1347  * install_exec_creds() commits the new creds and drops the lock.
1348  * Or, if exec fails before, free_bprm() should release ->cred and
1349  * and unlock.
1350  */
1351 int prepare_bprm_creds(struct linux_binprm *bprm)
1352 {
1353         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1354                 return -ERESTARTNOINTR;
1355
1356         bprm->cred = prepare_exec_creds();
1357         if (likely(bprm->cred))
1358                 return 0;
1359
1360         mutex_unlock(&current->signal->cred_guard_mutex);
1361         return -ENOMEM;
1362 }
1363
1364 static void free_bprm(struct linux_binprm *bprm)
1365 {
1366         free_arg_pages(bprm);
1367         if (bprm->cred) {
1368                 mutex_unlock(&current->signal->cred_guard_mutex);
1369                 abort_creds(bprm->cred);
1370         }
1371         if (bprm->file) {
1372                 allow_write_access(bprm->file);
1373                 fput(bprm->file);
1374         }
1375         /* If a binfmt changed the interp, free it. */
1376         if (bprm->interp != bprm->filename)
1377                 kfree(bprm->interp);
1378         kfree(bprm);
1379 }
1380
1381 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1382 {
1383         /* If a binfmt changed the interp, free it first. */
1384         if (bprm->interp != bprm->filename)
1385                 kfree(bprm->interp);
1386         bprm->interp = kstrdup(interp, GFP_KERNEL);
1387         if (!bprm->interp)
1388                 return -ENOMEM;
1389         return 0;
1390 }
1391 EXPORT_SYMBOL(bprm_change_interp);
1392
1393 /*
1394  * install the new credentials for this executable
1395  */
1396 void install_exec_creds(struct linux_binprm *bprm)
1397 {
1398         security_bprm_committing_creds(bprm);
1399
1400         commit_creds(bprm->cred);
1401         bprm->cred = NULL;
1402
1403         /*
1404          * Disable monitoring for regular users
1405          * when executing setuid binaries. Must
1406          * wait until new credentials are committed
1407          * by commit_creds() above
1408          */
1409         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1410                 perf_event_exit_task(current);
1411         /*
1412          * cred_guard_mutex must be held at least to this point to prevent
1413          * ptrace_attach() from altering our determination of the task's
1414          * credentials; any time after this it may be unlocked.
1415          */
1416         security_bprm_committed_creds(bprm);
1417         mutex_unlock(&current->signal->cred_guard_mutex);
1418 }
1419 EXPORT_SYMBOL(install_exec_creds);
1420
1421 /*
1422  * determine how safe it is to execute the proposed program
1423  * - the caller must hold ->cred_guard_mutex to protect against
1424  *   PTRACE_ATTACH or seccomp thread-sync
1425  */
1426 static void check_unsafe_exec(struct linux_binprm *bprm)
1427 {
1428         struct task_struct *p = current, *t;
1429         unsigned n_fs;
1430
1431         if (p->ptrace)
1432                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1433
1434         /*
1435          * This isn't strictly necessary, but it makes it harder for LSMs to
1436          * mess up.
1437          */
1438         if (task_no_new_privs(current))
1439                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1440
1441         t = p;
1442         n_fs = 1;
1443         spin_lock(&p->fs->lock);
1444         rcu_read_lock();
1445         while_each_thread(p, t) {
1446                 if (t->fs == p->fs)
1447                         n_fs++;
1448         }
1449         rcu_read_unlock();
1450
1451         if (p->fs->users > n_fs)
1452                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1453         else
1454                 p->fs->in_exec = 1;
1455         spin_unlock(&p->fs->lock);
1456 }
1457
1458 static void bprm_fill_uid(struct linux_binprm *bprm)
1459 {
1460         struct inode *inode;
1461         unsigned int mode;
1462         kuid_t uid;
1463         kgid_t gid;
1464
1465         /*
1466          * Since this can be called multiple times (via prepare_binprm),
1467          * we must clear any previous work done when setting set[ug]id
1468          * bits from any earlier bprm->file uses (for example when run
1469          * first for a setuid script then again for its interpreter).
1470          */
1471         bprm->cred->euid = current_euid();
1472         bprm->cred->egid = current_egid();
1473
1474         if (!mnt_may_suid(bprm->file->f_path.mnt))
1475                 return;
1476
1477         if (task_no_new_privs(current))
1478                 return;
1479
1480         inode = bprm->file->f_path.dentry->d_inode;
1481         mode = READ_ONCE(inode->i_mode);
1482         if (!(mode & (S_ISUID|S_ISGID)))
1483                 return;
1484
1485         /* Be careful if suid/sgid is set */
1486         inode_lock(inode);
1487
1488         /* reload atomically mode/uid/gid now that lock held */
1489         mode = inode->i_mode;
1490         uid = inode->i_uid;
1491         gid = inode->i_gid;
1492         inode_unlock(inode);
1493
1494         /* We ignore suid/sgid if there are no mappings for them in the ns */
1495         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1496                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1497                 return;
1498
1499         if (mode & S_ISUID) {
1500                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1501                 bprm->cred->euid = uid;
1502         }
1503
1504         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1505                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1506                 bprm->cred->egid = gid;
1507         }
1508 }
1509
1510 /*
1511  * Fill the binprm structure from the inode.
1512  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1513  *
1514  * This may be called multiple times for binary chains (scripts for example).
1515  */
1516 int prepare_binprm(struct linux_binprm *bprm)
1517 {
1518         int retval;
1519
1520         bprm_fill_uid(bprm);
1521
1522         /* fill in binprm security blob */
1523         retval = security_bprm_set_creds(bprm);
1524         if (retval)
1525                 return retval;
1526         bprm->cred_prepared = 1;
1527
1528         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1529         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1530 }
1531
1532 EXPORT_SYMBOL(prepare_binprm);
1533
1534 /*
1535  * Arguments are '\0' separated strings found at the location bprm->p
1536  * points to; chop off the first by relocating brpm->p to right after
1537  * the first '\0' encountered.
1538  */
1539 int remove_arg_zero(struct linux_binprm *bprm)
1540 {
1541         int ret = 0;
1542         unsigned long offset;
1543         char *kaddr;
1544         struct page *page;
1545
1546         if (!bprm->argc)
1547                 return 0;
1548
1549         do {
1550                 offset = bprm->p & ~PAGE_MASK;
1551                 page = get_arg_page(bprm, bprm->p, 0);
1552                 if (!page) {
1553                         ret = -EFAULT;
1554                         goto out;
1555                 }
1556                 kaddr = kmap_atomic(page);
1557
1558                 for (; offset < PAGE_SIZE && kaddr[offset];
1559                                 offset++, bprm->p++)
1560                         ;
1561
1562                 kunmap_atomic(kaddr);
1563                 put_arg_page(page);
1564         } while (offset == PAGE_SIZE);
1565
1566         bprm->p++;
1567         bprm->argc--;
1568         ret = 0;
1569
1570 out:
1571         return ret;
1572 }
1573 EXPORT_SYMBOL(remove_arg_zero);
1574
1575 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1576 /*
1577  * cycle the list of binary formats handler, until one recognizes the image
1578  */
1579 int search_binary_handler(struct linux_binprm *bprm)
1580 {
1581         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1582         struct linux_binfmt *fmt;
1583         int retval;
1584
1585         /* This allows 4 levels of binfmt rewrites before failing hard. */
1586         if (bprm->recursion_depth > 5)
1587                 return -ELOOP;
1588
1589         retval = security_bprm_check(bprm);
1590         if (retval)
1591                 return retval;
1592
1593         retval = -ENOENT;
1594  retry:
1595         read_lock(&binfmt_lock);
1596         list_for_each_entry(fmt, &formats, lh) {
1597                 if (!try_module_get(fmt->module))
1598                         continue;
1599                 read_unlock(&binfmt_lock);
1600                 bprm->recursion_depth++;
1601                 retval = fmt->load_binary(bprm);
1602                 read_lock(&binfmt_lock);
1603                 put_binfmt(fmt);
1604                 bprm->recursion_depth--;
1605                 if (retval < 0 && !bprm->mm) {
1606                         /* we got to flush_old_exec() and failed after it */
1607                         read_unlock(&binfmt_lock);
1608                         force_sigsegv(SIGSEGV, current);
1609                         return retval;
1610                 }
1611                 if (retval != -ENOEXEC || !bprm->file) {
1612                         read_unlock(&binfmt_lock);
1613                         return retval;
1614                 }
1615         }
1616         read_unlock(&binfmt_lock);
1617
1618         if (need_retry) {
1619                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1620                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1621                         return retval;
1622                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1623                         return retval;
1624                 need_retry = false;
1625                 goto retry;
1626         }
1627
1628         return retval;
1629 }
1630 EXPORT_SYMBOL(search_binary_handler);
1631
1632 static int exec_binprm(struct linux_binprm *bprm)
1633 {
1634         pid_t old_pid, old_vpid;
1635         int ret;
1636
1637         /* Need to fetch pid before load_binary changes it */
1638         old_pid = current->pid;
1639         rcu_read_lock();
1640         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1641         rcu_read_unlock();
1642
1643         ret = search_binary_handler(bprm);
1644         if (ret >= 0) {
1645                 audit_bprm(bprm);
1646                 trace_sched_process_exec(current, old_pid, bprm);
1647                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1648                 proc_exec_connector(current);
1649         }
1650
1651         return ret;
1652 }
1653
1654 /*
1655  * sys_execve() executes a new program.
1656  */
1657 static int do_execveat_common(int fd, struct filename *filename,
1658                               struct user_arg_ptr argv,
1659                               struct user_arg_ptr envp,
1660                               int flags)
1661 {
1662         char *pathbuf = NULL;
1663         struct linux_binprm *bprm;
1664         struct file *file;
1665         struct files_struct *displaced;
1666         int retval;
1667
1668         if (IS_ERR(filename))
1669                 return PTR_ERR(filename);
1670
1671         /*
1672          * We move the actual failure in case of RLIMIT_NPROC excess from
1673          * set*uid() to execve() because too many poorly written programs
1674          * don't check setuid() return code.  Here we additionally recheck
1675          * whether NPROC limit is still exceeded.
1676          */
1677         if ((current->flags & PF_NPROC_EXCEEDED) &&
1678             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1679                 retval = -EAGAIN;
1680                 goto out_ret;
1681         }
1682
1683         /* We're below the limit (still or again), so we don't want to make
1684          * further execve() calls fail. */
1685         current->flags &= ~PF_NPROC_EXCEEDED;
1686
1687         retval = unshare_files(&displaced);
1688         if (retval)
1689                 goto out_ret;
1690
1691         retval = -ENOMEM;
1692         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1693         if (!bprm)
1694                 goto out_files;
1695
1696         retval = prepare_bprm_creds(bprm);
1697         if (retval)
1698                 goto out_free;
1699
1700         check_unsafe_exec(bprm);
1701         current->in_execve = 1;
1702
1703         file = do_open_execat(fd, filename, flags);
1704         retval = PTR_ERR(file);
1705         if (IS_ERR(file))
1706                 goto out_unmark;
1707
1708         sched_exec();
1709
1710         bprm->file = file;
1711         if (fd == AT_FDCWD || filename->name[0] == '/') {
1712                 bprm->filename = filename->name;
1713         } else {
1714                 if (filename->name[0] == '\0')
1715                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1716                 else
1717                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1718                                             fd, filename->name);
1719                 if (!pathbuf) {
1720                         retval = -ENOMEM;
1721                         goto out_unmark;
1722                 }
1723                 /*
1724                  * Record that a name derived from an O_CLOEXEC fd will be
1725                  * inaccessible after exec. Relies on having exclusive access to
1726                  * current->files (due to unshare_files above).
1727                  */
1728                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1729                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1730                 bprm->filename = pathbuf;
1731         }
1732         bprm->interp = bprm->filename;
1733
1734         retval = bprm_mm_init(bprm);
1735         if (retval)
1736                 goto out_unmark;
1737
1738         bprm->argc = count(argv, MAX_ARG_STRINGS);
1739         if ((retval = bprm->argc) < 0)
1740                 goto out;
1741
1742         bprm->envc = count(envp, MAX_ARG_STRINGS);
1743         if ((retval = bprm->envc) < 0)
1744                 goto out;
1745
1746         retval = prepare_binprm(bprm);
1747         if (retval < 0)
1748                 goto out;
1749
1750         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1751         if (retval < 0)
1752                 goto out;
1753
1754         bprm->exec = bprm->p;
1755         retval = copy_strings(bprm->envc, envp, bprm);
1756         if (retval < 0)
1757                 goto out;
1758
1759         retval = copy_strings(bprm->argc, argv, bprm);
1760         if (retval < 0)
1761                 goto out;
1762
1763         would_dump(bprm, bprm->file);
1764
1765         retval = exec_binprm(bprm);
1766         if (retval < 0)
1767                 goto out;
1768
1769         /* execve succeeded */
1770         current->fs->in_exec = 0;
1771         current->in_execve = 0;
1772         acct_update_integrals(current);
1773         task_numa_free(current);
1774         free_bprm(bprm);
1775         kfree(pathbuf);
1776         putname(filename);
1777         if (displaced)
1778                 put_files_struct(displaced);
1779         return retval;
1780
1781 out:
1782         if (bprm->mm) {
1783                 acct_arg_size(bprm, 0);
1784                 mmput(bprm->mm);
1785         }
1786
1787 out_unmark:
1788         current->fs->in_exec = 0;
1789         current->in_execve = 0;
1790
1791 out_free:
1792         free_bprm(bprm);
1793         kfree(pathbuf);
1794
1795 out_files:
1796         if (displaced)
1797                 reset_files_struct(displaced);
1798 out_ret:
1799         putname(filename);
1800         return retval;
1801 }
1802
1803 int do_execve(struct filename *filename,
1804         const char __user *const __user *__argv,
1805         const char __user *const __user *__envp)
1806 {
1807         struct user_arg_ptr argv = { .ptr.native = __argv };
1808         struct user_arg_ptr envp = { .ptr.native = __envp };
1809         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1810 }
1811
1812 int do_execveat(int fd, struct filename *filename,
1813                 const char __user *const __user *__argv,
1814                 const char __user *const __user *__envp,
1815                 int flags)
1816 {
1817         struct user_arg_ptr argv = { .ptr.native = __argv };
1818         struct user_arg_ptr envp = { .ptr.native = __envp };
1819
1820         return do_execveat_common(fd, filename, argv, envp, flags);
1821 }
1822
1823 #ifdef CONFIG_COMPAT
1824 static int compat_do_execve(struct filename *filename,
1825         const compat_uptr_t __user *__argv,
1826         const compat_uptr_t __user *__envp)
1827 {
1828         struct user_arg_ptr argv = {
1829                 .is_compat = true,
1830                 .ptr.compat = __argv,
1831         };
1832         struct user_arg_ptr envp = {
1833                 .is_compat = true,
1834                 .ptr.compat = __envp,
1835         };
1836         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1837 }
1838
1839 static int compat_do_execveat(int fd, struct filename *filename,
1840                               const compat_uptr_t __user *__argv,
1841                               const compat_uptr_t __user *__envp,
1842                               int flags)
1843 {
1844         struct user_arg_ptr argv = {
1845                 .is_compat = true,
1846                 .ptr.compat = __argv,
1847         };
1848         struct user_arg_ptr envp = {
1849                 .is_compat = true,
1850                 .ptr.compat = __envp,
1851         };
1852         return do_execveat_common(fd, filename, argv, envp, flags);
1853 }
1854 #endif
1855
1856 void set_binfmt(struct linux_binfmt *new)
1857 {
1858         struct mm_struct *mm = current->mm;
1859
1860         if (mm->binfmt)
1861                 module_put(mm->binfmt->module);
1862
1863         mm->binfmt = new;
1864         if (new)
1865                 __module_get(new->module);
1866 }
1867 EXPORT_SYMBOL(set_binfmt);
1868
1869 /*
1870  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1871  */
1872 void set_dumpable(struct mm_struct *mm, int value)
1873 {
1874         unsigned long old, new;
1875
1876         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1877                 return;
1878
1879         do {
1880                 old = ACCESS_ONCE(mm->flags);
1881                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1882         } while (cmpxchg(&mm->flags, old, new) != old);
1883 }
1884
1885 SYSCALL_DEFINE3(execve,
1886                 const char __user *, filename,
1887                 const char __user *const __user *, argv,
1888                 const char __user *const __user *, envp)
1889 {
1890         return do_execve(getname(filename), argv, envp);
1891 }
1892
1893 SYSCALL_DEFINE5(execveat,
1894                 int, fd, const char __user *, filename,
1895                 const char __user *const __user *, argv,
1896                 const char __user *const __user *, envp,
1897                 int, flags)
1898 {
1899         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1900
1901         return do_execveat(fd,
1902                            getname_flags(filename, lookup_flags, NULL),
1903                            argv, envp, flags);
1904 }
1905
1906 #ifdef CONFIG_COMPAT
1907 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1908         const compat_uptr_t __user *, argv,
1909         const compat_uptr_t __user *, envp)
1910 {
1911         return compat_do_execve(getname(filename), argv, envp);
1912 }
1913
1914 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1915                        const char __user *, filename,
1916                        const compat_uptr_t __user *, argv,
1917                        const compat_uptr_t __user *, envp,
1918                        int,  flags)
1919 {
1920         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1921
1922         return compat_do_execveat(fd,
1923                                   getname_flags(filename, lookup_flags, NULL),
1924                                   argv, envp, flags);
1925 }
1926 #endif